Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * IPv4 specific functions
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 */
18
19/*
20 * Changes:
21 * David S. Miller : New socket lookup architecture.
22 * This code is dedicated to John Dyson.
23 * David S. Miller : Change semantics of established hash,
24 * half is devoted to TIME_WAIT sockets
25 * and the rest go in the other half.
26 * Andi Kleen : Add support for syncookies and fixed
27 * some bugs: ip options weren't passed to
28 * the TCP layer, missed a check for an
29 * ACK bit.
30 * Andi Kleen : Implemented fast path mtu discovery.
31 * Fixed many serious bugs in the
32 * request_sock handling and moved
33 * most of it into the af independent code.
34 * Added tail drop and some other bugfixes.
35 * Added new listen semantics.
36 * Mike McLagan : Routing by source
37 * Juan Jose Ciarlante: ip_dynaddr bits
38 * Andi Kleen: various fixes.
39 * Vitaly E. Lavrov : Transparent proxy revived after year
40 * coma.
41 * Andi Kleen : Fix new listen.
42 * Andi Kleen : Fix accept error reporting.
43 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
44 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
45 * a single port at the same time.
46 */
47
48#define pr_fmt(fmt) "TCP: " fmt
49
50#include <linux/bottom_half.h>
51#include <linux/types.h>
52#include <linux/fcntl.h>
53#include <linux/module.h>
54#include <linux/random.h>
55#include <linux/cache.h>
56#include <linux/jhash.h>
57#include <linux/init.h>
58#include <linux/times.h>
59#include <linux/slab.h>
60
61#include <net/net_namespace.h>
62#include <net/icmp.h>
63#include <net/inet_hashtables.h>
64#include <net/tcp.h>
65#include <net/transp_v6.h>
66#include <net/ipv6.h>
67#include <net/inet_common.h>
68#include <net/timewait_sock.h>
69#include <net/xfrm.h>
70#include <net/secure_seq.h>
71#include <net/busy_poll.h>
72
73#include <linux/inet.h>
74#include <linux/ipv6.h>
75#include <linux/stddef.h>
76#include <linux/proc_fs.h>
77#include <linux/seq_file.h>
78#include <linux/inetdevice.h>
79#include <linux/btf_ids.h>
80
81#include <crypto/hash.h>
82#include <linux/scatterlist.h>
83
84#include <trace/events/tcp.h>
85
86#ifdef CONFIG_TCP_MD5SIG
87static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
88 __be32 daddr, __be32 saddr, const struct tcphdr *th);
89#endif
90
91struct inet_hashinfo tcp_hashinfo;
92EXPORT_SYMBOL(tcp_hashinfo);
93
94static u32 tcp_v4_init_seq(const struct sk_buff *skb)
95{
96 return secure_tcp_seq(ip_hdr(skb)->daddr,
97 ip_hdr(skb)->saddr,
98 tcp_hdr(skb)->dest,
99 tcp_hdr(skb)->source);
100}
101
102static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
103{
104 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
105}
106
107int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
108{
109 const struct inet_timewait_sock *tw = inet_twsk(sktw);
110 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
111 struct tcp_sock *tp = tcp_sk(sk);
112 int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse;
113
114 if (reuse == 2) {
115 /* Still does not detect *everything* that goes through
116 * lo, since we require a loopback src or dst address
117 * or direct binding to 'lo' interface.
118 */
119 bool loopback = false;
120 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
121 loopback = true;
122#if IS_ENABLED(CONFIG_IPV6)
123 if (tw->tw_family == AF_INET6) {
124 if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
125 ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
126 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
127 ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
128 loopback = true;
129 } else
130#endif
131 {
132 if (ipv4_is_loopback(tw->tw_daddr) ||
133 ipv4_is_loopback(tw->tw_rcv_saddr))
134 loopback = true;
135 }
136 if (!loopback)
137 reuse = 0;
138 }
139
140 /* With PAWS, it is safe from the viewpoint
141 of data integrity. Even without PAWS it is safe provided sequence
142 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
143
144 Actually, the idea is close to VJ's one, only timestamp cache is
145 held not per host, but per port pair and TW bucket is used as state
146 holder.
147
148 If TW bucket has been already destroyed we fall back to VJ's scheme
149 and use initial timestamp retrieved from peer table.
150 */
151 if (tcptw->tw_ts_recent_stamp &&
152 (!twp || (reuse && time_after32(ktime_get_seconds(),
153 tcptw->tw_ts_recent_stamp)))) {
154 /* In case of repair and re-using TIME-WAIT sockets we still
155 * want to be sure that it is safe as above but honor the
156 * sequence numbers and time stamps set as part of the repair
157 * process.
158 *
159 * Without this check re-using a TIME-WAIT socket with TCP
160 * repair would accumulate a -1 on the repair assigned
161 * sequence number. The first time it is reused the sequence
162 * is -1, the second time -2, etc. This fixes that issue
163 * without appearing to create any others.
164 */
165 if (likely(!tp->repair)) {
166 u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
167
168 if (!seq)
169 seq = 1;
170 WRITE_ONCE(tp->write_seq, seq);
171 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
172 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
173 }
174 sock_hold(sktw);
175 return 1;
176 }
177
178 return 0;
179}
180EXPORT_SYMBOL_GPL(tcp_twsk_unique);
181
182static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
183 int addr_len)
184{
185 /* This check is replicated from tcp_v4_connect() and intended to
186 * prevent BPF program called below from accessing bytes that are out
187 * of the bound specified by user in addr_len.
188 */
189 if (addr_len < sizeof(struct sockaddr_in))
190 return -EINVAL;
191
192 sock_owned_by_me(sk);
193
194 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
195}
196
197/* This will initiate an outgoing connection. */
198int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
199{
200 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
201 struct inet_sock *inet = inet_sk(sk);
202 struct tcp_sock *tp = tcp_sk(sk);
203 __be16 orig_sport, orig_dport;
204 __be32 daddr, nexthop;
205 struct flowi4 *fl4;
206 struct rtable *rt;
207 int err;
208 struct ip_options_rcu *inet_opt;
209 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
210
211 if (addr_len < sizeof(struct sockaddr_in))
212 return -EINVAL;
213
214 if (usin->sin_family != AF_INET)
215 return -EAFNOSUPPORT;
216
217 nexthop = daddr = usin->sin_addr.s_addr;
218 inet_opt = rcu_dereference_protected(inet->inet_opt,
219 lockdep_sock_is_held(sk));
220 if (inet_opt && inet_opt->opt.srr) {
221 if (!daddr)
222 return -EINVAL;
223 nexthop = inet_opt->opt.faddr;
224 }
225
226 orig_sport = inet->inet_sport;
227 orig_dport = usin->sin_port;
228 fl4 = &inet->cork.fl.u.ip4;
229 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
230 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
231 IPPROTO_TCP,
232 orig_sport, orig_dport, sk);
233 if (IS_ERR(rt)) {
234 err = PTR_ERR(rt);
235 if (err == -ENETUNREACH)
236 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
237 return err;
238 }
239
240 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
241 ip_rt_put(rt);
242 return -ENETUNREACH;
243 }
244
245 if (!inet_opt || !inet_opt->opt.srr)
246 daddr = fl4->daddr;
247
248 if (!inet->inet_saddr)
249 inet->inet_saddr = fl4->saddr;
250 sk_rcv_saddr_set(sk, inet->inet_saddr);
251
252 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
253 /* Reset inherited state */
254 tp->rx_opt.ts_recent = 0;
255 tp->rx_opt.ts_recent_stamp = 0;
256 if (likely(!tp->repair))
257 WRITE_ONCE(tp->write_seq, 0);
258 }
259
260 inet->inet_dport = usin->sin_port;
261 sk_daddr_set(sk, daddr);
262
263 inet_csk(sk)->icsk_ext_hdr_len = 0;
264 if (inet_opt)
265 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
266
267 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
268
269 /* Socket identity is still unknown (sport may be zero).
270 * However we set state to SYN-SENT and not releasing socket
271 * lock select source port, enter ourselves into the hash tables and
272 * complete initialization after this.
273 */
274 tcp_set_state(sk, TCP_SYN_SENT);
275 err = inet_hash_connect(tcp_death_row, sk);
276 if (err)
277 goto failure;
278
279 sk_set_txhash(sk);
280
281 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
282 inet->inet_sport, inet->inet_dport, sk);
283 if (IS_ERR(rt)) {
284 err = PTR_ERR(rt);
285 rt = NULL;
286 goto failure;
287 }
288 /* OK, now commit destination to socket. */
289 sk->sk_gso_type = SKB_GSO_TCPV4;
290 sk_setup_caps(sk, &rt->dst);
291 rt = NULL;
292
293 if (likely(!tp->repair)) {
294 if (!tp->write_seq)
295 WRITE_ONCE(tp->write_seq,
296 secure_tcp_seq(inet->inet_saddr,
297 inet->inet_daddr,
298 inet->inet_sport,
299 usin->sin_port));
300 tp->tsoffset = secure_tcp_ts_off(sock_net(sk),
301 inet->inet_saddr,
302 inet->inet_daddr);
303 }
304
305 inet->inet_id = prandom_u32();
306
307 if (tcp_fastopen_defer_connect(sk, &err))
308 return err;
309 if (err)
310 goto failure;
311
312 err = tcp_connect(sk);
313
314 if (err)
315 goto failure;
316
317 return 0;
318
319failure:
320 /*
321 * This unhashes the socket and releases the local port,
322 * if necessary.
323 */
324 tcp_set_state(sk, TCP_CLOSE);
325 ip_rt_put(rt);
326 sk->sk_route_caps = 0;
327 inet->inet_dport = 0;
328 return err;
329}
330EXPORT_SYMBOL(tcp_v4_connect);
331
332/*
333 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
334 * It can be called through tcp_release_cb() if socket was owned by user
335 * at the time tcp_v4_err() was called to handle ICMP message.
336 */
337void tcp_v4_mtu_reduced(struct sock *sk)
338{
339 struct inet_sock *inet = inet_sk(sk);
340 struct dst_entry *dst;
341 u32 mtu;
342
343 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
344 return;
345 mtu = tcp_sk(sk)->mtu_info;
346 dst = inet_csk_update_pmtu(sk, mtu);
347 if (!dst)
348 return;
349
350 /* Something is about to be wrong... Remember soft error
351 * for the case, if this connection will not able to recover.
352 */
353 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
354 sk->sk_err_soft = EMSGSIZE;
355
356 mtu = dst_mtu(dst);
357
358 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
359 ip_sk_accept_pmtu(sk) &&
360 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
361 tcp_sync_mss(sk, mtu);
362
363 /* Resend the TCP packet because it's
364 * clear that the old packet has been
365 * dropped. This is the new "fast" path mtu
366 * discovery.
367 */
368 tcp_simple_retransmit(sk);
369 } /* else let the usual retransmit timer handle it */
370}
371EXPORT_SYMBOL(tcp_v4_mtu_reduced);
372
373static void do_redirect(struct sk_buff *skb, struct sock *sk)
374{
375 struct dst_entry *dst = __sk_dst_check(sk, 0);
376
377 if (dst)
378 dst->ops->redirect(dst, sk, skb);
379}
380
381
382/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
383void tcp_req_err(struct sock *sk, u32 seq, bool abort)
384{
385 struct request_sock *req = inet_reqsk(sk);
386 struct net *net = sock_net(sk);
387
388 /* ICMPs are not backlogged, hence we cannot get
389 * an established socket here.
390 */
391 if (seq != tcp_rsk(req)->snt_isn) {
392 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
393 } else if (abort) {
394 /*
395 * Still in SYN_RECV, just remove it silently.
396 * There is no good way to pass the error to the newly
397 * created socket, and POSIX does not want network
398 * errors returned from accept().
399 */
400 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
401 tcp_listendrop(req->rsk_listener);
402 }
403 reqsk_put(req);
404}
405EXPORT_SYMBOL(tcp_req_err);
406
407/* TCP-LD (RFC 6069) logic */
408void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
409{
410 struct inet_connection_sock *icsk = inet_csk(sk);
411 struct tcp_sock *tp = tcp_sk(sk);
412 struct sk_buff *skb;
413 s32 remaining;
414 u32 delta_us;
415
416 if (sock_owned_by_user(sk))
417 return;
418
419 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
420 !icsk->icsk_backoff)
421 return;
422
423 skb = tcp_rtx_queue_head(sk);
424 if (WARN_ON_ONCE(!skb))
425 return;
426
427 icsk->icsk_backoff--;
428 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
429 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
430
431 tcp_mstamp_refresh(tp);
432 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
433 remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
434
435 if (remaining > 0) {
436 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
437 remaining, TCP_RTO_MAX);
438 } else {
439 /* RTO revert clocked out retransmission.
440 * Will retransmit now.
441 */
442 tcp_retransmit_timer(sk);
443 }
444}
445EXPORT_SYMBOL(tcp_ld_RTO_revert);
446
447/*
448 * This routine is called by the ICMP module when it gets some
449 * sort of error condition. If err < 0 then the socket should
450 * be closed and the error returned to the user. If err > 0
451 * it's just the icmp type << 8 | icmp code. After adjustment
452 * header points to the first 8 bytes of the tcp header. We need
453 * to find the appropriate port.
454 *
455 * The locking strategy used here is very "optimistic". When
456 * someone else accesses the socket the ICMP is just dropped
457 * and for some paths there is no check at all.
458 * A more general error queue to queue errors for later handling
459 * is probably better.
460 *
461 */
462
463int tcp_v4_err(struct sk_buff *skb, u32 info)
464{
465 const struct iphdr *iph = (const struct iphdr *)skb->data;
466 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
467 struct tcp_sock *tp;
468 struct inet_sock *inet;
469 const int type = icmp_hdr(skb)->type;
470 const int code = icmp_hdr(skb)->code;
471 struct sock *sk;
472 struct request_sock *fastopen;
473 u32 seq, snd_una;
474 int err;
475 struct net *net = dev_net(skb->dev);
476
477 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
478 th->dest, iph->saddr, ntohs(th->source),
479 inet_iif(skb), 0);
480 if (!sk) {
481 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
482 return -ENOENT;
483 }
484 if (sk->sk_state == TCP_TIME_WAIT) {
485 inet_twsk_put(inet_twsk(sk));
486 return 0;
487 }
488 seq = ntohl(th->seq);
489 if (sk->sk_state == TCP_NEW_SYN_RECV) {
490 tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
491 type == ICMP_TIME_EXCEEDED ||
492 (type == ICMP_DEST_UNREACH &&
493 (code == ICMP_NET_UNREACH ||
494 code == ICMP_HOST_UNREACH)));
495 return 0;
496 }
497
498 bh_lock_sock(sk);
499 /* If too many ICMPs get dropped on busy
500 * servers this needs to be solved differently.
501 * We do take care of PMTU discovery (RFC1191) special case :
502 * we can receive locally generated ICMP messages while socket is held.
503 */
504 if (sock_owned_by_user(sk)) {
505 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
506 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
507 }
508 if (sk->sk_state == TCP_CLOSE)
509 goto out;
510
511 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
512 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
513 goto out;
514 }
515
516 tp = tcp_sk(sk);
517 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
518 fastopen = rcu_dereference(tp->fastopen_rsk);
519 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
520 if (sk->sk_state != TCP_LISTEN &&
521 !between(seq, snd_una, tp->snd_nxt)) {
522 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
523 goto out;
524 }
525
526 switch (type) {
527 case ICMP_REDIRECT:
528 if (!sock_owned_by_user(sk))
529 do_redirect(skb, sk);
530 goto out;
531 case ICMP_SOURCE_QUENCH:
532 /* Just silently ignore these. */
533 goto out;
534 case ICMP_PARAMETERPROB:
535 err = EPROTO;
536 break;
537 case ICMP_DEST_UNREACH:
538 if (code > NR_ICMP_UNREACH)
539 goto out;
540
541 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
542 /* We are not interested in TCP_LISTEN and open_requests
543 * (SYN-ACKs send out by Linux are always <576bytes so
544 * they should go through unfragmented).
545 */
546 if (sk->sk_state == TCP_LISTEN)
547 goto out;
548
549 tp->mtu_info = info;
550 if (!sock_owned_by_user(sk)) {
551 tcp_v4_mtu_reduced(sk);
552 } else {
553 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
554 sock_hold(sk);
555 }
556 goto out;
557 }
558
559 err = icmp_err_convert[code].errno;
560 /* check if this ICMP message allows revert of backoff.
561 * (see RFC 6069)
562 */
563 if (!fastopen &&
564 (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
565 tcp_ld_RTO_revert(sk, seq);
566 break;
567 case ICMP_TIME_EXCEEDED:
568 err = EHOSTUNREACH;
569 break;
570 default:
571 goto out;
572 }
573
574 switch (sk->sk_state) {
575 case TCP_SYN_SENT:
576 case TCP_SYN_RECV:
577 /* Only in fast or simultaneous open. If a fast open socket is
578 * is already accepted it is treated as a connected one below.
579 */
580 if (fastopen && !fastopen->sk)
581 break;
582
583 ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
584
585 if (!sock_owned_by_user(sk)) {
586 sk->sk_err = err;
587
588 sk->sk_error_report(sk);
589
590 tcp_done(sk);
591 } else {
592 sk->sk_err_soft = err;
593 }
594 goto out;
595 }
596
597 /* If we've already connected we will keep trying
598 * until we time out, or the user gives up.
599 *
600 * rfc1122 4.2.3.9 allows to consider as hard errors
601 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
602 * but it is obsoleted by pmtu discovery).
603 *
604 * Note, that in modern internet, where routing is unreliable
605 * and in each dark corner broken firewalls sit, sending random
606 * errors ordered by their masters even this two messages finally lose
607 * their original sense (even Linux sends invalid PORT_UNREACHs)
608 *
609 * Now we are in compliance with RFCs.
610 * --ANK (980905)
611 */
612
613 inet = inet_sk(sk);
614 if (!sock_owned_by_user(sk) && inet->recverr) {
615 sk->sk_err = err;
616 sk->sk_error_report(sk);
617 } else { /* Only an error on timeout */
618 sk->sk_err_soft = err;
619 }
620
621out:
622 bh_unlock_sock(sk);
623 sock_put(sk);
624 return 0;
625}
626
627void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
628{
629 struct tcphdr *th = tcp_hdr(skb);
630
631 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
632 skb->csum_start = skb_transport_header(skb) - skb->head;
633 skb->csum_offset = offsetof(struct tcphdr, check);
634}
635
636/* This routine computes an IPv4 TCP checksum. */
637void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
638{
639 const struct inet_sock *inet = inet_sk(sk);
640
641 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
642}
643EXPORT_SYMBOL(tcp_v4_send_check);
644
645/*
646 * This routine will send an RST to the other tcp.
647 *
648 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
649 * for reset.
650 * Answer: if a packet caused RST, it is not for a socket
651 * existing in our system, if it is matched to a socket,
652 * it is just duplicate segment or bug in other side's TCP.
653 * So that we build reply only basing on parameters
654 * arrived with segment.
655 * Exception: precedence violation. We do not implement it in any case.
656 */
657
658static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
659{
660 const struct tcphdr *th = tcp_hdr(skb);
661 struct {
662 struct tcphdr th;
663#ifdef CONFIG_TCP_MD5SIG
664 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
665#endif
666 } rep;
667 struct ip_reply_arg arg;
668#ifdef CONFIG_TCP_MD5SIG
669 struct tcp_md5sig_key *key = NULL;
670 const __u8 *hash_location = NULL;
671 unsigned char newhash[16];
672 int genhash;
673 struct sock *sk1 = NULL;
674#endif
675 u64 transmit_time = 0;
676 struct sock *ctl_sk;
677 struct net *net;
678
679 /* Never send a reset in response to a reset. */
680 if (th->rst)
681 return;
682
683 /* If sk not NULL, it means we did a successful lookup and incoming
684 * route had to be correct. prequeue might have dropped our dst.
685 */
686 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
687 return;
688
689 /* Swap the send and the receive. */
690 memset(&rep, 0, sizeof(rep));
691 rep.th.dest = th->source;
692 rep.th.source = th->dest;
693 rep.th.doff = sizeof(struct tcphdr) / 4;
694 rep.th.rst = 1;
695
696 if (th->ack) {
697 rep.th.seq = th->ack_seq;
698 } else {
699 rep.th.ack = 1;
700 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
701 skb->len - (th->doff << 2));
702 }
703
704 memset(&arg, 0, sizeof(arg));
705 arg.iov[0].iov_base = (unsigned char *)&rep;
706 arg.iov[0].iov_len = sizeof(rep.th);
707
708 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
709#ifdef CONFIG_TCP_MD5SIG
710 rcu_read_lock();
711 hash_location = tcp_parse_md5sig_option(th);
712 if (sk && sk_fullsock(sk)) {
713 const union tcp_md5_addr *addr;
714 int l3index;
715
716 /* sdif set, means packet ingressed via a device
717 * in an L3 domain and inet_iif is set to it.
718 */
719 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
720 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
721 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
722 } else if (hash_location) {
723 const union tcp_md5_addr *addr;
724 int sdif = tcp_v4_sdif(skb);
725 int dif = inet_iif(skb);
726 int l3index;
727
728 /*
729 * active side is lost. Try to find listening socket through
730 * source port, and then find md5 key through listening socket.
731 * we are not loose security here:
732 * Incoming packet is checked with md5 hash with finding key,
733 * no RST generated if md5 hash doesn't match.
734 */
735 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
736 ip_hdr(skb)->saddr,
737 th->source, ip_hdr(skb)->daddr,
738 ntohs(th->source), dif, sdif);
739 /* don't send rst if it can't find key */
740 if (!sk1)
741 goto out;
742
743 /* sdif set, means packet ingressed via a device
744 * in an L3 domain and dif is set to it.
745 */
746 l3index = sdif ? dif : 0;
747 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
748 key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
749 if (!key)
750 goto out;
751
752
753 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
754 if (genhash || memcmp(hash_location, newhash, 16) != 0)
755 goto out;
756
757 }
758
759 if (key) {
760 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
761 (TCPOPT_NOP << 16) |
762 (TCPOPT_MD5SIG << 8) |
763 TCPOLEN_MD5SIG);
764 /* Update length and the length the header thinks exists */
765 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
766 rep.th.doff = arg.iov[0].iov_len / 4;
767
768 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
769 key, ip_hdr(skb)->saddr,
770 ip_hdr(skb)->daddr, &rep.th);
771 }
772#endif
773 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
774 ip_hdr(skb)->saddr, /* XXX */
775 arg.iov[0].iov_len, IPPROTO_TCP, 0);
776 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
777 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
778
779 /* When socket is gone, all binding information is lost.
780 * routing might fail in this case. No choice here, if we choose to force
781 * input interface, we will misroute in case of asymmetric route.
782 */
783 if (sk) {
784 arg.bound_dev_if = sk->sk_bound_dev_if;
785 if (sk_fullsock(sk))
786 trace_tcp_send_reset(sk, skb);
787 }
788
789 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
790 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
791
792 arg.tos = ip_hdr(skb)->tos;
793 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
794 local_bh_disable();
795 ctl_sk = this_cpu_read(*net->ipv4.tcp_sk);
796 if (sk) {
797 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
798 inet_twsk(sk)->tw_mark : sk->sk_mark;
799 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
800 inet_twsk(sk)->tw_priority : sk->sk_priority;
801 transmit_time = tcp_transmit_time(sk);
802 }
803 ip_send_unicast_reply(ctl_sk,
804 skb, &TCP_SKB_CB(skb)->header.h4.opt,
805 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
806 &arg, arg.iov[0].iov_len,
807 transmit_time);
808
809 ctl_sk->sk_mark = 0;
810 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
811 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
812 local_bh_enable();
813
814#ifdef CONFIG_TCP_MD5SIG
815out:
816 rcu_read_unlock();
817#endif
818}
819
820/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
821 outside socket context is ugly, certainly. What can I do?
822 */
823
824static void tcp_v4_send_ack(const struct sock *sk,
825 struct sk_buff *skb, u32 seq, u32 ack,
826 u32 win, u32 tsval, u32 tsecr, int oif,
827 struct tcp_md5sig_key *key,
828 int reply_flags, u8 tos)
829{
830 const struct tcphdr *th = tcp_hdr(skb);
831 struct {
832 struct tcphdr th;
833 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
834#ifdef CONFIG_TCP_MD5SIG
835 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
836#endif
837 ];
838 } rep;
839 struct net *net = sock_net(sk);
840 struct ip_reply_arg arg;
841 struct sock *ctl_sk;
842 u64 transmit_time;
843
844 memset(&rep.th, 0, sizeof(struct tcphdr));
845 memset(&arg, 0, sizeof(arg));
846
847 arg.iov[0].iov_base = (unsigned char *)&rep;
848 arg.iov[0].iov_len = sizeof(rep.th);
849 if (tsecr) {
850 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
851 (TCPOPT_TIMESTAMP << 8) |
852 TCPOLEN_TIMESTAMP);
853 rep.opt[1] = htonl(tsval);
854 rep.opt[2] = htonl(tsecr);
855 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
856 }
857
858 /* Swap the send and the receive. */
859 rep.th.dest = th->source;
860 rep.th.source = th->dest;
861 rep.th.doff = arg.iov[0].iov_len / 4;
862 rep.th.seq = htonl(seq);
863 rep.th.ack_seq = htonl(ack);
864 rep.th.ack = 1;
865 rep.th.window = htons(win);
866
867#ifdef CONFIG_TCP_MD5SIG
868 if (key) {
869 int offset = (tsecr) ? 3 : 0;
870
871 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
872 (TCPOPT_NOP << 16) |
873 (TCPOPT_MD5SIG << 8) |
874 TCPOLEN_MD5SIG);
875 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
876 rep.th.doff = arg.iov[0].iov_len/4;
877
878 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
879 key, ip_hdr(skb)->saddr,
880 ip_hdr(skb)->daddr, &rep.th);
881 }
882#endif
883 arg.flags = reply_flags;
884 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
885 ip_hdr(skb)->saddr, /* XXX */
886 arg.iov[0].iov_len, IPPROTO_TCP, 0);
887 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
888 if (oif)
889 arg.bound_dev_if = oif;
890 arg.tos = tos;
891 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
892 local_bh_disable();
893 ctl_sk = this_cpu_read(*net->ipv4.tcp_sk);
894 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
895 inet_twsk(sk)->tw_mark : sk->sk_mark;
896 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
897 inet_twsk(sk)->tw_priority : sk->sk_priority;
898 transmit_time = tcp_transmit_time(sk);
899 ip_send_unicast_reply(ctl_sk,
900 skb, &TCP_SKB_CB(skb)->header.h4.opt,
901 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
902 &arg, arg.iov[0].iov_len,
903 transmit_time);
904
905 ctl_sk->sk_mark = 0;
906 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
907 local_bh_enable();
908}
909
910static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
911{
912 struct inet_timewait_sock *tw = inet_twsk(sk);
913 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
914
915 tcp_v4_send_ack(sk, skb,
916 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
917 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
918 tcp_time_stamp_raw() + tcptw->tw_ts_offset,
919 tcptw->tw_ts_recent,
920 tw->tw_bound_dev_if,
921 tcp_twsk_md5_key(tcptw),
922 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
923 tw->tw_tos
924 );
925
926 inet_twsk_put(tw);
927}
928
929static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
930 struct request_sock *req)
931{
932 const union tcp_md5_addr *addr;
933 int l3index;
934
935 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
936 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
937 */
938 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
939 tcp_sk(sk)->snd_nxt;
940
941 /* RFC 7323 2.3
942 * The window field (SEG.WND) of every outgoing segment, with the
943 * exception of <SYN> segments, MUST be right-shifted by
944 * Rcv.Wind.Shift bits:
945 */
946 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
947 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
948 tcp_v4_send_ack(sk, skb, seq,
949 tcp_rsk(req)->rcv_nxt,
950 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
951 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
952 req->ts_recent,
953 0,
954 tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
955 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
956 ip_hdr(skb)->tos);
957}
958
959/*
960 * Send a SYN-ACK after having received a SYN.
961 * This still operates on a request_sock only, not on a big
962 * socket.
963 */
964static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
965 struct flowi *fl,
966 struct request_sock *req,
967 struct tcp_fastopen_cookie *foc,
968 enum tcp_synack_type synack_type)
969{
970 const struct inet_request_sock *ireq = inet_rsk(req);
971 struct flowi4 fl4;
972 int err = -1;
973 struct sk_buff *skb;
974
975 /* First, grab a route. */
976 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
977 return -1;
978
979 skb = tcp_make_synack(sk, dst, req, foc, synack_type);
980
981 if (skb) {
982 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
983
984 rcu_read_lock();
985 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
986 ireq->ir_rmt_addr,
987 rcu_dereference(ireq->ireq_opt));
988 rcu_read_unlock();
989 err = net_xmit_eval(err);
990 }
991
992 return err;
993}
994
995/*
996 * IPv4 request_sock destructor.
997 */
998static void tcp_v4_reqsk_destructor(struct request_sock *req)
999{
1000 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1001}
1002
1003#ifdef CONFIG_TCP_MD5SIG
1004/*
1005 * RFC2385 MD5 checksumming requires a mapping of
1006 * IP address->MD5 Key.
1007 * We need to maintain these in the sk structure.
1008 */
1009
1010DEFINE_STATIC_KEY_FALSE(tcp_md5_needed);
1011EXPORT_SYMBOL(tcp_md5_needed);
1012
1013/* Find the Key structure for an address. */
1014struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1015 const union tcp_md5_addr *addr,
1016 int family)
1017{
1018 const struct tcp_sock *tp = tcp_sk(sk);
1019 struct tcp_md5sig_key *key;
1020 const struct tcp_md5sig_info *md5sig;
1021 __be32 mask;
1022 struct tcp_md5sig_key *best_match = NULL;
1023 bool match;
1024
1025 /* caller either holds rcu_read_lock() or socket lock */
1026 md5sig = rcu_dereference_check(tp->md5sig_info,
1027 lockdep_sock_is_held(sk));
1028 if (!md5sig)
1029 return NULL;
1030
1031 hlist_for_each_entry_rcu(key, &md5sig->head, node,
1032 lockdep_sock_is_held(sk)) {
1033 if (key->family != family)
1034 continue;
1035 if (key->l3index && key->l3index != l3index)
1036 continue;
1037 if (family == AF_INET) {
1038 mask = inet_make_mask(key->prefixlen);
1039 match = (key->addr.a4.s_addr & mask) ==
1040 (addr->a4.s_addr & mask);
1041#if IS_ENABLED(CONFIG_IPV6)
1042 } else if (family == AF_INET6) {
1043 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1044 key->prefixlen);
1045#endif
1046 } else {
1047 match = false;
1048 }
1049
1050 if (match && (!best_match ||
1051 key->prefixlen > best_match->prefixlen))
1052 best_match = key;
1053 }
1054 return best_match;
1055}
1056EXPORT_SYMBOL(__tcp_md5_do_lookup);
1057
1058static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1059 const union tcp_md5_addr *addr,
1060 int family, u8 prefixlen,
1061 int l3index)
1062{
1063 const struct tcp_sock *tp = tcp_sk(sk);
1064 struct tcp_md5sig_key *key;
1065 unsigned int size = sizeof(struct in_addr);
1066 const struct tcp_md5sig_info *md5sig;
1067
1068 /* caller either holds rcu_read_lock() or socket lock */
1069 md5sig = rcu_dereference_check(tp->md5sig_info,
1070 lockdep_sock_is_held(sk));
1071 if (!md5sig)
1072 return NULL;
1073#if IS_ENABLED(CONFIG_IPV6)
1074 if (family == AF_INET6)
1075 size = sizeof(struct in6_addr);
1076#endif
1077 hlist_for_each_entry_rcu(key, &md5sig->head, node,
1078 lockdep_sock_is_held(sk)) {
1079 if (key->family != family)
1080 continue;
1081 if (key->l3index && key->l3index != l3index)
1082 continue;
1083 if (!memcmp(&key->addr, addr, size) &&
1084 key->prefixlen == prefixlen)
1085 return key;
1086 }
1087 return NULL;
1088}
1089
1090struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1091 const struct sock *addr_sk)
1092{
1093 const union tcp_md5_addr *addr;
1094 int l3index;
1095
1096 l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1097 addr_sk->sk_bound_dev_if);
1098 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1099 return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1100}
1101EXPORT_SYMBOL(tcp_v4_md5_lookup);
1102
1103/* This can be called on a newly created socket, from other files */
1104int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1105 int family, u8 prefixlen, int l3index,
1106 const u8 *newkey, u8 newkeylen, gfp_t gfp)
1107{
1108 /* Add Key to the list */
1109 struct tcp_md5sig_key *key;
1110 struct tcp_sock *tp = tcp_sk(sk);
1111 struct tcp_md5sig_info *md5sig;
1112
1113 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index);
1114 if (key) {
1115 /* Pre-existing entry - just update that one.
1116 * Note that the key might be used concurrently.
1117 * data_race() is telling kcsan that we do not care of
1118 * key mismatches, since changing MD5 key on live flows
1119 * can lead to packet drops.
1120 */
1121 data_race(memcpy(key->key, newkey, newkeylen));
1122
1123 /* Pairs with READ_ONCE() in tcp_md5_hash_key().
1124 * Also note that a reader could catch new key->keylen value
1125 * but old key->key[], this is the reason we use __GFP_ZERO
1126 * at sock_kmalloc() time below these lines.
1127 */
1128 WRITE_ONCE(key->keylen, newkeylen);
1129
1130 return 0;
1131 }
1132
1133 md5sig = rcu_dereference_protected(tp->md5sig_info,
1134 lockdep_sock_is_held(sk));
1135 if (!md5sig) {
1136 md5sig = kmalloc(sizeof(*md5sig), gfp);
1137 if (!md5sig)
1138 return -ENOMEM;
1139
1140 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1141 INIT_HLIST_HEAD(&md5sig->head);
1142 rcu_assign_pointer(tp->md5sig_info, md5sig);
1143 }
1144
1145 key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1146 if (!key)
1147 return -ENOMEM;
1148 if (!tcp_alloc_md5sig_pool()) {
1149 sock_kfree_s(sk, key, sizeof(*key));
1150 return -ENOMEM;
1151 }
1152
1153 memcpy(key->key, newkey, newkeylen);
1154 key->keylen = newkeylen;
1155 key->family = family;
1156 key->prefixlen = prefixlen;
1157 key->l3index = l3index;
1158 memcpy(&key->addr, addr,
1159 (family == AF_INET6) ? sizeof(struct in6_addr) :
1160 sizeof(struct in_addr));
1161 hlist_add_head_rcu(&key->node, &md5sig->head);
1162 return 0;
1163}
1164EXPORT_SYMBOL(tcp_md5_do_add);
1165
1166int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1167 u8 prefixlen, int l3index)
1168{
1169 struct tcp_md5sig_key *key;
1170
1171 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index);
1172 if (!key)
1173 return -ENOENT;
1174 hlist_del_rcu(&key->node);
1175 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1176 kfree_rcu(key, rcu);
1177 return 0;
1178}
1179EXPORT_SYMBOL(tcp_md5_do_del);
1180
1181static void tcp_clear_md5_list(struct sock *sk)
1182{
1183 struct tcp_sock *tp = tcp_sk(sk);
1184 struct tcp_md5sig_key *key;
1185 struct hlist_node *n;
1186 struct tcp_md5sig_info *md5sig;
1187
1188 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1189
1190 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1191 hlist_del_rcu(&key->node);
1192 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1193 kfree_rcu(key, rcu);
1194 }
1195}
1196
1197static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1198 sockptr_t optval, int optlen)
1199{
1200 struct tcp_md5sig cmd;
1201 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1202 const union tcp_md5_addr *addr;
1203 u8 prefixlen = 32;
1204 int l3index = 0;
1205
1206 if (optlen < sizeof(cmd))
1207 return -EINVAL;
1208
1209 if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1210 return -EFAULT;
1211
1212 if (sin->sin_family != AF_INET)
1213 return -EINVAL;
1214
1215 if (optname == TCP_MD5SIG_EXT &&
1216 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1217 prefixlen = cmd.tcpm_prefixlen;
1218 if (prefixlen > 32)
1219 return -EINVAL;
1220 }
1221
1222 if (optname == TCP_MD5SIG_EXT &&
1223 cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1224 struct net_device *dev;
1225
1226 rcu_read_lock();
1227 dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1228 if (dev && netif_is_l3_master(dev))
1229 l3index = dev->ifindex;
1230
1231 rcu_read_unlock();
1232
1233 /* ok to reference set/not set outside of rcu;
1234 * right now device MUST be an L3 master
1235 */
1236 if (!dev || !l3index)
1237 return -EINVAL;
1238 }
1239
1240 addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1241
1242 if (!cmd.tcpm_keylen)
1243 return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index);
1244
1245 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1246 return -EINVAL;
1247
1248 return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index,
1249 cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
1250}
1251
1252static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1253 __be32 daddr, __be32 saddr,
1254 const struct tcphdr *th, int nbytes)
1255{
1256 struct tcp4_pseudohdr *bp;
1257 struct scatterlist sg;
1258 struct tcphdr *_th;
1259
1260 bp = hp->scratch;
1261 bp->saddr = saddr;
1262 bp->daddr = daddr;
1263 bp->pad = 0;
1264 bp->protocol = IPPROTO_TCP;
1265 bp->len = cpu_to_be16(nbytes);
1266
1267 _th = (struct tcphdr *)(bp + 1);
1268 memcpy(_th, th, sizeof(*th));
1269 _th->check = 0;
1270
1271 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1272 ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1273 sizeof(*bp) + sizeof(*th));
1274 return crypto_ahash_update(hp->md5_req);
1275}
1276
1277static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1278 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1279{
1280 struct tcp_md5sig_pool *hp;
1281 struct ahash_request *req;
1282
1283 hp = tcp_get_md5sig_pool();
1284 if (!hp)
1285 goto clear_hash_noput;
1286 req = hp->md5_req;
1287
1288 if (crypto_ahash_init(req))
1289 goto clear_hash;
1290 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1291 goto clear_hash;
1292 if (tcp_md5_hash_key(hp, key))
1293 goto clear_hash;
1294 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1295 if (crypto_ahash_final(req))
1296 goto clear_hash;
1297
1298 tcp_put_md5sig_pool();
1299 return 0;
1300
1301clear_hash:
1302 tcp_put_md5sig_pool();
1303clear_hash_noput:
1304 memset(md5_hash, 0, 16);
1305 return 1;
1306}
1307
1308int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1309 const struct sock *sk,
1310 const struct sk_buff *skb)
1311{
1312 struct tcp_md5sig_pool *hp;
1313 struct ahash_request *req;
1314 const struct tcphdr *th = tcp_hdr(skb);
1315 __be32 saddr, daddr;
1316
1317 if (sk) { /* valid for establish/request sockets */
1318 saddr = sk->sk_rcv_saddr;
1319 daddr = sk->sk_daddr;
1320 } else {
1321 const struct iphdr *iph = ip_hdr(skb);
1322 saddr = iph->saddr;
1323 daddr = iph->daddr;
1324 }
1325
1326 hp = tcp_get_md5sig_pool();
1327 if (!hp)
1328 goto clear_hash_noput;
1329 req = hp->md5_req;
1330
1331 if (crypto_ahash_init(req))
1332 goto clear_hash;
1333
1334 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1335 goto clear_hash;
1336 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1337 goto clear_hash;
1338 if (tcp_md5_hash_key(hp, key))
1339 goto clear_hash;
1340 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1341 if (crypto_ahash_final(req))
1342 goto clear_hash;
1343
1344 tcp_put_md5sig_pool();
1345 return 0;
1346
1347clear_hash:
1348 tcp_put_md5sig_pool();
1349clear_hash_noput:
1350 memset(md5_hash, 0, 16);
1351 return 1;
1352}
1353EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1354
1355#endif
1356
1357/* Called with rcu_read_lock() */
1358static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1359 const struct sk_buff *skb,
1360 int dif, int sdif)
1361{
1362#ifdef CONFIG_TCP_MD5SIG
1363 /*
1364 * This gets called for each TCP segment that arrives
1365 * so we want to be efficient.
1366 * We have 3 drop cases:
1367 * o No MD5 hash and one expected.
1368 * o MD5 hash and we're not expecting one.
1369 * o MD5 hash and its wrong.
1370 */
1371 const __u8 *hash_location = NULL;
1372 struct tcp_md5sig_key *hash_expected;
1373 const struct iphdr *iph = ip_hdr(skb);
1374 const struct tcphdr *th = tcp_hdr(skb);
1375 const union tcp_md5_addr *addr;
1376 unsigned char newhash[16];
1377 int genhash, l3index;
1378
1379 /* sdif set, means packet ingressed via a device
1380 * in an L3 domain and dif is set to the l3mdev
1381 */
1382 l3index = sdif ? dif : 0;
1383
1384 addr = (union tcp_md5_addr *)&iph->saddr;
1385 hash_expected = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1386 hash_location = tcp_parse_md5sig_option(th);
1387
1388 /* We've parsed the options - do we have a hash? */
1389 if (!hash_expected && !hash_location)
1390 return false;
1391
1392 if (hash_expected && !hash_location) {
1393 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1394 return true;
1395 }
1396
1397 if (!hash_expected && hash_location) {
1398 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1399 return true;
1400 }
1401
1402 /* Okay, so this is hash_expected and hash_location -
1403 * so we need to calculate the checksum.
1404 */
1405 genhash = tcp_v4_md5_hash_skb(newhash,
1406 hash_expected,
1407 NULL, skb);
1408
1409 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1410 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
1411 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
1412 &iph->saddr, ntohs(th->source),
1413 &iph->daddr, ntohs(th->dest),
1414 genhash ? " tcp_v4_calc_md5_hash failed"
1415 : "", l3index);
1416 return true;
1417 }
1418 return false;
1419#endif
1420 return false;
1421}
1422
1423static void tcp_v4_init_req(struct request_sock *req,
1424 const struct sock *sk_listener,
1425 struct sk_buff *skb)
1426{
1427 struct inet_request_sock *ireq = inet_rsk(req);
1428 struct net *net = sock_net(sk_listener);
1429
1430 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1431 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1432 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1433}
1434
1435static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1436 struct flowi *fl,
1437 const struct request_sock *req)
1438{
1439 return inet_csk_route_req(sk, &fl->u.ip4, req);
1440}
1441
1442struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1443 .family = PF_INET,
1444 .obj_size = sizeof(struct tcp_request_sock),
1445 .rtx_syn_ack = tcp_rtx_synack,
1446 .send_ack = tcp_v4_reqsk_send_ack,
1447 .destructor = tcp_v4_reqsk_destructor,
1448 .send_reset = tcp_v4_send_reset,
1449 .syn_ack_timeout = tcp_syn_ack_timeout,
1450};
1451
1452const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1453 .mss_clamp = TCP_MSS_DEFAULT,
1454#ifdef CONFIG_TCP_MD5SIG
1455 .req_md5_lookup = tcp_v4_md5_lookup,
1456 .calc_md5_hash = tcp_v4_md5_hash_skb,
1457#endif
1458 .init_req = tcp_v4_init_req,
1459#ifdef CONFIG_SYN_COOKIES
1460 .cookie_init_seq = cookie_v4_init_sequence,
1461#endif
1462 .route_req = tcp_v4_route_req,
1463 .init_seq = tcp_v4_init_seq,
1464 .init_ts_off = tcp_v4_init_ts_off,
1465 .send_synack = tcp_v4_send_synack,
1466};
1467
1468int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1469{
1470 /* Never answer to SYNs send to broadcast or multicast */
1471 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1472 goto drop;
1473
1474 return tcp_conn_request(&tcp_request_sock_ops,
1475 &tcp_request_sock_ipv4_ops, sk, skb);
1476
1477drop:
1478 tcp_listendrop(sk);
1479 return 0;
1480}
1481EXPORT_SYMBOL(tcp_v4_conn_request);
1482
1483
1484/*
1485 * The three way handshake has completed - we got a valid synack -
1486 * now create the new socket.
1487 */
1488struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1489 struct request_sock *req,
1490 struct dst_entry *dst,
1491 struct request_sock *req_unhash,
1492 bool *own_req)
1493{
1494 struct inet_request_sock *ireq;
1495 struct inet_sock *newinet;
1496 struct tcp_sock *newtp;
1497 struct sock *newsk;
1498#ifdef CONFIG_TCP_MD5SIG
1499 const union tcp_md5_addr *addr;
1500 struct tcp_md5sig_key *key;
1501 int l3index;
1502#endif
1503 struct ip_options_rcu *inet_opt;
1504
1505 if (sk_acceptq_is_full(sk))
1506 goto exit_overflow;
1507
1508 newsk = tcp_create_openreq_child(sk, req, skb);
1509 if (!newsk)
1510 goto exit_nonewsk;
1511
1512 newsk->sk_gso_type = SKB_GSO_TCPV4;
1513 inet_sk_rx_dst_set(newsk, skb);
1514
1515 newtp = tcp_sk(newsk);
1516 newinet = inet_sk(newsk);
1517 ireq = inet_rsk(req);
1518 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1519 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1520 newsk->sk_bound_dev_if = ireq->ir_iif;
1521 newinet->inet_saddr = ireq->ir_loc_addr;
1522 inet_opt = rcu_dereference(ireq->ireq_opt);
1523 RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1524 newinet->mc_index = inet_iif(skb);
1525 newinet->mc_ttl = ip_hdr(skb)->ttl;
1526 newinet->rcv_tos = ip_hdr(skb)->tos;
1527 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1528 if (inet_opt)
1529 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1530 newinet->inet_id = prandom_u32();
1531
1532 if (!dst) {
1533 dst = inet_csk_route_child_sock(sk, newsk, req);
1534 if (!dst)
1535 goto put_and_exit;
1536 } else {
1537 /* syncookie case : see end of cookie_v4_check() */
1538 }
1539 sk_setup_caps(newsk, dst);
1540
1541 tcp_ca_openreq_child(newsk, dst);
1542
1543 tcp_sync_mss(newsk, dst_mtu(dst));
1544 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1545
1546 tcp_initialize_rcv_mss(newsk);
1547
1548#ifdef CONFIG_TCP_MD5SIG
1549 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1550 /* Copy over the MD5 key from the original socket */
1551 addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1552 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1553 if (key) {
1554 /*
1555 * We're using one, so create a matching key
1556 * on the newsk structure. If we fail to get
1557 * memory, then we end up not copying the key
1558 * across. Shucks.
1559 */
1560 tcp_md5_do_add(newsk, addr, AF_INET, 32, l3index,
1561 key->key, key->keylen, GFP_ATOMIC);
1562 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1563 }
1564#endif
1565
1566 if (__inet_inherit_port(sk, newsk) < 0)
1567 goto put_and_exit;
1568 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1569 if (likely(*own_req)) {
1570 tcp_move_syn(newtp, req);
1571 ireq->ireq_opt = NULL;
1572 } else {
1573 newinet->inet_opt = NULL;
1574 }
1575 return newsk;
1576
1577exit_overflow:
1578 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1579exit_nonewsk:
1580 dst_release(dst);
1581exit:
1582 tcp_listendrop(sk);
1583 return NULL;
1584put_and_exit:
1585 newinet->inet_opt = NULL;
1586 inet_csk_prepare_forced_close(newsk);
1587 tcp_done(newsk);
1588 goto exit;
1589}
1590EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1591
1592static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1593{
1594#ifdef CONFIG_SYN_COOKIES
1595 const struct tcphdr *th = tcp_hdr(skb);
1596
1597 if (!th->syn)
1598 sk = cookie_v4_check(sk, skb);
1599#endif
1600 return sk;
1601}
1602
1603u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1604 struct tcphdr *th, u32 *cookie)
1605{
1606 u16 mss = 0;
1607#ifdef CONFIG_SYN_COOKIES
1608 mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1609 &tcp_request_sock_ipv4_ops, sk, th);
1610 if (mss) {
1611 *cookie = __cookie_v4_init_sequence(iph, th, &mss);
1612 tcp_synq_overflow(sk);
1613 }
1614#endif
1615 return mss;
1616}
1617
1618/* The socket must have it's spinlock held when we get
1619 * here, unless it is a TCP_LISTEN socket.
1620 *
1621 * We have a potential double-lock case here, so even when
1622 * doing backlog processing we use the BH locking scheme.
1623 * This is because we cannot sleep with the original spinlock
1624 * held.
1625 */
1626int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1627{
1628 struct sock *rsk;
1629
1630 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1631 struct dst_entry *dst = sk->sk_rx_dst;
1632
1633 sock_rps_save_rxhash(sk, skb);
1634 sk_mark_napi_id(sk, skb);
1635 if (dst) {
1636 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1637 !dst->ops->check(dst, 0)) {
1638 dst_release(dst);
1639 sk->sk_rx_dst = NULL;
1640 }
1641 }
1642 tcp_rcv_established(sk, skb);
1643 return 0;
1644 }
1645
1646 if (tcp_checksum_complete(skb))
1647 goto csum_err;
1648
1649 if (sk->sk_state == TCP_LISTEN) {
1650 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1651
1652 if (!nsk)
1653 goto discard;
1654 if (nsk != sk) {
1655 if (tcp_child_process(sk, nsk, skb)) {
1656 rsk = nsk;
1657 goto reset;
1658 }
1659 return 0;
1660 }
1661 } else
1662 sock_rps_save_rxhash(sk, skb);
1663
1664 if (tcp_rcv_state_process(sk, skb)) {
1665 rsk = sk;
1666 goto reset;
1667 }
1668 return 0;
1669
1670reset:
1671 tcp_v4_send_reset(rsk, skb);
1672discard:
1673 kfree_skb(skb);
1674 /* Be careful here. If this function gets more complicated and
1675 * gcc suffers from register pressure on the x86, sk (in %ebx)
1676 * might be destroyed here. This current version compiles correctly,
1677 * but you have been warned.
1678 */
1679 return 0;
1680
1681csum_err:
1682 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1683 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1684 goto discard;
1685}
1686EXPORT_SYMBOL(tcp_v4_do_rcv);
1687
1688int tcp_v4_early_demux(struct sk_buff *skb)
1689{
1690 const struct iphdr *iph;
1691 const struct tcphdr *th;
1692 struct sock *sk;
1693
1694 if (skb->pkt_type != PACKET_HOST)
1695 return 0;
1696
1697 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1698 return 0;
1699
1700 iph = ip_hdr(skb);
1701 th = tcp_hdr(skb);
1702
1703 if (th->doff < sizeof(struct tcphdr) / 4)
1704 return 0;
1705
1706 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1707 iph->saddr, th->source,
1708 iph->daddr, ntohs(th->dest),
1709 skb->skb_iif, inet_sdif(skb));
1710 if (sk) {
1711 skb->sk = sk;
1712 skb->destructor = sock_edemux;
1713 if (sk_fullsock(sk)) {
1714 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1715
1716 if (dst)
1717 dst = dst_check(dst, 0);
1718 if (dst &&
1719 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1720 skb_dst_set_noref(skb, dst);
1721 }
1722 }
1723 return 0;
1724}
1725
1726bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb)
1727{
1728 u32 limit = READ_ONCE(sk->sk_rcvbuf) + READ_ONCE(sk->sk_sndbuf);
1729 struct skb_shared_info *shinfo;
1730 const struct tcphdr *th;
1731 struct tcphdr *thtail;
1732 struct sk_buff *tail;
1733 unsigned int hdrlen;
1734 bool fragstolen;
1735 u32 gso_segs;
1736 int delta;
1737
1738 /* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1739 * we can fix skb->truesize to its real value to avoid future drops.
1740 * This is valid because skb is not yet charged to the socket.
1741 * It has been noticed pure SACK packets were sometimes dropped
1742 * (if cooked by drivers without copybreak feature).
1743 */
1744 skb_condense(skb);
1745
1746 skb_dst_drop(skb);
1747
1748 if (unlikely(tcp_checksum_complete(skb))) {
1749 bh_unlock_sock(sk);
1750 __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1751 __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1752 return true;
1753 }
1754
1755 /* Attempt coalescing to last skb in backlog, even if we are
1756 * above the limits.
1757 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1758 */
1759 th = (const struct tcphdr *)skb->data;
1760 hdrlen = th->doff * 4;
1761 shinfo = skb_shinfo(skb);
1762
1763 if (!shinfo->gso_size)
1764 shinfo->gso_size = skb->len - hdrlen;
1765
1766 if (!shinfo->gso_segs)
1767 shinfo->gso_segs = 1;
1768
1769 tail = sk->sk_backlog.tail;
1770 if (!tail)
1771 goto no_coalesce;
1772 thtail = (struct tcphdr *)tail->data;
1773
1774 if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1775 TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1776 ((TCP_SKB_CB(tail)->tcp_flags |
1777 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1778 !((TCP_SKB_CB(tail)->tcp_flags &
1779 TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1780 ((TCP_SKB_CB(tail)->tcp_flags ^
1781 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1782#ifdef CONFIG_TLS_DEVICE
1783 tail->decrypted != skb->decrypted ||
1784#endif
1785 thtail->doff != th->doff ||
1786 memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1787 goto no_coalesce;
1788
1789 __skb_pull(skb, hdrlen);
1790 if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1791 TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1792
1793 if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1794 TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1795 thtail->window = th->window;
1796 }
1797
1798 /* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1799 * thtail->fin, so that the fast path in tcp_rcv_established()
1800 * is not entered if we append a packet with a FIN.
1801 * SYN, RST, URG are not present.
1802 * ACK is set on both packets.
1803 * PSH : we do not really care in TCP stack,
1804 * at least for 'GRO' packets.
1805 */
1806 thtail->fin |= th->fin;
1807 TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1808
1809 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1810 TCP_SKB_CB(tail)->has_rxtstamp = true;
1811 tail->tstamp = skb->tstamp;
1812 skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1813 }
1814
1815 /* Not as strict as GRO. We only need to carry mss max value */
1816 skb_shinfo(tail)->gso_size = max(shinfo->gso_size,
1817 skb_shinfo(tail)->gso_size);
1818
1819 gso_segs = skb_shinfo(tail)->gso_segs + shinfo->gso_segs;
1820 skb_shinfo(tail)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
1821
1822 sk->sk_backlog.len += delta;
1823 __NET_INC_STATS(sock_net(sk),
1824 LINUX_MIB_TCPBACKLOGCOALESCE);
1825 kfree_skb_partial(skb, fragstolen);
1826 return false;
1827 }
1828 __skb_push(skb, hdrlen);
1829
1830no_coalesce:
1831 /* Only socket owner can try to collapse/prune rx queues
1832 * to reduce memory overhead, so add a little headroom here.
1833 * Few sockets backlog are possibly concurrently non empty.
1834 */
1835 limit += 64*1024;
1836
1837 if (unlikely(sk_add_backlog(sk, skb, limit))) {
1838 bh_unlock_sock(sk);
1839 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1840 return true;
1841 }
1842 return false;
1843}
1844EXPORT_SYMBOL(tcp_add_backlog);
1845
1846int tcp_filter(struct sock *sk, struct sk_buff *skb)
1847{
1848 struct tcphdr *th = (struct tcphdr *)skb->data;
1849
1850 return sk_filter_trim_cap(sk, skb, th->doff * 4);
1851}
1852EXPORT_SYMBOL(tcp_filter);
1853
1854static void tcp_v4_restore_cb(struct sk_buff *skb)
1855{
1856 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1857 sizeof(struct inet_skb_parm));
1858}
1859
1860static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1861 const struct tcphdr *th)
1862{
1863 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1864 * barrier() makes sure compiler wont play fool^Waliasing games.
1865 */
1866 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1867 sizeof(struct inet_skb_parm));
1868 barrier();
1869
1870 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1871 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1872 skb->len - th->doff * 4);
1873 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1874 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1875 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1876 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1877 TCP_SKB_CB(skb)->sacked = 0;
1878 TCP_SKB_CB(skb)->has_rxtstamp =
1879 skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1880}
1881
1882/*
1883 * From tcp_input.c
1884 */
1885
1886int tcp_v4_rcv(struct sk_buff *skb)
1887{
1888 struct net *net = dev_net(skb->dev);
1889 struct sk_buff *skb_to_free;
1890 int sdif = inet_sdif(skb);
1891 int dif = inet_iif(skb);
1892 const struct iphdr *iph;
1893 const struct tcphdr *th;
1894 bool refcounted;
1895 struct sock *sk;
1896 int ret;
1897
1898 if (skb->pkt_type != PACKET_HOST)
1899 goto discard_it;
1900
1901 /* Count it even if it's bad */
1902 __TCP_INC_STATS(net, TCP_MIB_INSEGS);
1903
1904 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1905 goto discard_it;
1906
1907 th = (const struct tcphdr *)skb->data;
1908
1909 if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
1910 goto bad_packet;
1911 if (!pskb_may_pull(skb, th->doff * 4))
1912 goto discard_it;
1913
1914 /* An explanation is required here, I think.
1915 * Packet length and doff are validated by header prediction,
1916 * provided case of th->doff==0 is eliminated.
1917 * So, we defer the checks. */
1918
1919 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1920 goto csum_error;
1921
1922 th = (const struct tcphdr *)skb->data;
1923 iph = ip_hdr(skb);
1924lookup:
1925 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1926 th->dest, sdif, &refcounted);
1927 if (!sk)
1928 goto no_tcp_socket;
1929
1930process:
1931 if (sk->sk_state == TCP_TIME_WAIT)
1932 goto do_time_wait;
1933
1934 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1935 struct request_sock *req = inet_reqsk(sk);
1936 bool req_stolen = false;
1937 struct sock *nsk;
1938
1939 sk = req->rsk_listener;
1940 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb, dif, sdif))) {
1941 sk_drops_add(sk, skb);
1942 reqsk_put(req);
1943 goto discard_it;
1944 }
1945 if (tcp_checksum_complete(skb)) {
1946 reqsk_put(req);
1947 goto csum_error;
1948 }
1949 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1950 inet_csk_reqsk_queue_drop_and_put(sk, req);
1951 goto lookup;
1952 }
1953 /* We own a reference on the listener, increase it again
1954 * as we might lose it too soon.
1955 */
1956 sock_hold(sk);
1957 refcounted = true;
1958 nsk = NULL;
1959 if (!tcp_filter(sk, skb)) {
1960 th = (const struct tcphdr *)skb->data;
1961 iph = ip_hdr(skb);
1962 tcp_v4_fill_cb(skb, iph, th);
1963 nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
1964 }
1965 if (!nsk) {
1966 reqsk_put(req);
1967 if (req_stolen) {
1968 /* Another cpu got exclusive access to req
1969 * and created a full blown socket.
1970 * Try to feed this packet to this socket
1971 * instead of discarding it.
1972 */
1973 tcp_v4_restore_cb(skb);
1974 sock_put(sk);
1975 goto lookup;
1976 }
1977 goto discard_and_relse;
1978 }
1979 if (nsk == sk) {
1980 reqsk_put(req);
1981 tcp_v4_restore_cb(skb);
1982 } else if (tcp_child_process(sk, nsk, skb)) {
1983 tcp_v4_send_reset(nsk, skb);
1984 goto discard_and_relse;
1985 } else {
1986 sock_put(sk);
1987 return 0;
1988 }
1989 }
1990 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1991 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
1992 goto discard_and_relse;
1993 }
1994
1995 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1996 goto discard_and_relse;
1997
1998 if (tcp_v4_inbound_md5_hash(sk, skb, dif, sdif))
1999 goto discard_and_relse;
2000
2001 nf_reset_ct(skb);
2002
2003 if (tcp_filter(sk, skb))
2004 goto discard_and_relse;
2005 th = (const struct tcphdr *)skb->data;
2006 iph = ip_hdr(skb);
2007 tcp_v4_fill_cb(skb, iph, th);
2008
2009 skb->dev = NULL;
2010
2011 if (sk->sk_state == TCP_LISTEN) {
2012 ret = tcp_v4_do_rcv(sk, skb);
2013 goto put_and_return;
2014 }
2015
2016 sk_incoming_cpu_update(sk);
2017
2018 bh_lock_sock_nested(sk);
2019 tcp_segs_in(tcp_sk(sk), skb);
2020 ret = 0;
2021 if (!sock_owned_by_user(sk)) {
2022 skb_to_free = sk->sk_rx_skb_cache;
2023 sk->sk_rx_skb_cache = NULL;
2024 ret = tcp_v4_do_rcv(sk, skb);
2025 } else {
2026 if (tcp_add_backlog(sk, skb))
2027 goto discard_and_relse;
2028 skb_to_free = NULL;
2029 }
2030 bh_unlock_sock(sk);
2031 if (skb_to_free)
2032 __kfree_skb(skb_to_free);
2033
2034put_and_return:
2035 if (refcounted)
2036 sock_put(sk);
2037
2038 return ret;
2039
2040no_tcp_socket:
2041 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2042 goto discard_it;
2043
2044 tcp_v4_fill_cb(skb, iph, th);
2045
2046 if (tcp_checksum_complete(skb)) {
2047csum_error:
2048 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2049bad_packet:
2050 __TCP_INC_STATS(net, TCP_MIB_INERRS);
2051 } else {
2052 tcp_v4_send_reset(NULL, skb);
2053 }
2054
2055discard_it:
2056 /* Discard frame. */
2057 kfree_skb(skb);
2058 return 0;
2059
2060discard_and_relse:
2061 sk_drops_add(sk, skb);
2062 if (refcounted)
2063 sock_put(sk);
2064 goto discard_it;
2065
2066do_time_wait:
2067 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2068 inet_twsk_put(inet_twsk(sk));
2069 goto discard_it;
2070 }
2071
2072 tcp_v4_fill_cb(skb, iph, th);
2073
2074 if (tcp_checksum_complete(skb)) {
2075 inet_twsk_put(inet_twsk(sk));
2076 goto csum_error;
2077 }
2078 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2079 case TCP_TW_SYN: {
2080 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2081 &tcp_hashinfo, skb,
2082 __tcp_hdrlen(th),
2083 iph->saddr, th->source,
2084 iph->daddr, th->dest,
2085 inet_iif(skb),
2086 sdif);
2087 if (sk2) {
2088 inet_twsk_deschedule_put(inet_twsk(sk));
2089 sk = sk2;
2090 tcp_v4_restore_cb(skb);
2091 refcounted = false;
2092 goto process;
2093 }
2094 }
2095 /* to ACK */
2096 fallthrough;
2097 case TCP_TW_ACK:
2098 tcp_v4_timewait_ack(sk, skb);
2099 break;
2100 case TCP_TW_RST:
2101 tcp_v4_send_reset(sk, skb);
2102 inet_twsk_deschedule_put(inet_twsk(sk));
2103 goto discard_it;
2104 case TCP_TW_SUCCESS:;
2105 }
2106 goto discard_it;
2107}
2108
2109static struct timewait_sock_ops tcp_timewait_sock_ops = {
2110 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2111 .twsk_unique = tcp_twsk_unique,
2112 .twsk_destructor= tcp_twsk_destructor,
2113};
2114
2115void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2116{
2117 struct dst_entry *dst = skb_dst(skb);
2118
2119 if (dst && dst_hold_safe(dst)) {
2120 sk->sk_rx_dst = dst;
2121 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2122 }
2123}
2124EXPORT_SYMBOL(inet_sk_rx_dst_set);
2125
2126const struct inet_connection_sock_af_ops ipv4_specific = {
2127 .queue_xmit = ip_queue_xmit,
2128 .send_check = tcp_v4_send_check,
2129 .rebuild_header = inet_sk_rebuild_header,
2130 .sk_rx_dst_set = inet_sk_rx_dst_set,
2131 .conn_request = tcp_v4_conn_request,
2132 .syn_recv_sock = tcp_v4_syn_recv_sock,
2133 .net_header_len = sizeof(struct iphdr),
2134 .setsockopt = ip_setsockopt,
2135 .getsockopt = ip_getsockopt,
2136 .addr2sockaddr = inet_csk_addr2sockaddr,
2137 .sockaddr_len = sizeof(struct sockaddr_in),
2138 .mtu_reduced = tcp_v4_mtu_reduced,
2139};
2140EXPORT_SYMBOL(ipv4_specific);
2141
2142#ifdef CONFIG_TCP_MD5SIG
2143static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2144 .md5_lookup = tcp_v4_md5_lookup,
2145 .calc_md5_hash = tcp_v4_md5_hash_skb,
2146 .md5_parse = tcp_v4_parse_md5_keys,
2147};
2148#endif
2149
2150/* NOTE: A lot of things set to zero explicitly by call to
2151 * sk_alloc() so need not be done here.
2152 */
2153static int tcp_v4_init_sock(struct sock *sk)
2154{
2155 struct inet_connection_sock *icsk = inet_csk(sk);
2156
2157 tcp_init_sock(sk);
2158
2159 icsk->icsk_af_ops = &ipv4_specific;
2160
2161#ifdef CONFIG_TCP_MD5SIG
2162 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2163#endif
2164
2165 return 0;
2166}
2167
2168void tcp_v4_destroy_sock(struct sock *sk)
2169{
2170 struct tcp_sock *tp = tcp_sk(sk);
2171
2172 trace_tcp_destroy_sock(sk);
2173
2174 tcp_clear_xmit_timers(sk);
2175
2176 tcp_cleanup_congestion_control(sk);
2177
2178 tcp_cleanup_ulp(sk);
2179
2180 /* Cleanup up the write buffer. */
2181 tcp_write_queue_purge(sk);
2182
2183 /* Check if we want to disable active TFO */
2184 tcp_fastopen_active_disable_ofo_check(sk);
2185
2186 /* Cleans up our, hopefully empty, out_of_order_queue. */
2187 skb_rbtree_purge(&tp->out_of_order_queue);
2188
2189#ifdef CONFIG_TCP_MD5SIG
2190 /* Clean up the MD5 key list, if any */
2191 if (tp->md5sig_info) {
2192 tcp_clear_md5_list(sk);
2193 kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2194 tp->md5sig_info = NULL;
2195 }
2196#endif
2197
2198 /* Clean up a referenced TCP bind bucket. */
2199 if (inet_csk(sk)->icsk_bind_hash)
2200 inet_put_port(sk);
2201
2202 BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2203
2204 /* If socket is aborted during connect operation */
2205 tcp_free_fastopen_req(tp);
2206 tcp_fastopen_destroy_cipher(sk);
2207 tcp_saved_syn_free(tp);
2208
2209 sk_sockets_allocated_dec(sk);
2210}
2211EXPORT_SYMBOL(tcp_v4_destroy_sock);
2212
2213#ifdef CONFIG_PROC_FS
2214/* Proc filesystem TCP sock list dumping. */
2215
2216/*
2217 * Get next listener socket follow cur. If cur is NULL, get first socket
2218 * starting from bucket given in st->bucket; when st->bucket is zero the
2219 * very first socket in the hash table is returned.
2220 */
2221static void *listening_get_next(struct seq_file *seq, void *cur)
2222{
2223 struct tcp_seq_afinfo *afinfo;
2224 struct tcp_iter_state *st = seq->private;
2225 struct net *net = seq_file_net(seq);
2226 struct inet_listen_hashbucket *ilb;
2227 struct hlist_nulls_node *node;
2228 struct sock *sk = cur;
2229
2230 if (st->bpf_seq_afinfo)
2231 afinfo = st->bpf_seq_afinfo;
2232 else
2233 afinfo = PDE_DATA(file_inode(seq->file));
2234
2235 if (!sk) {
2236get_head:
2237 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2238 spin_lock(&ilb->lock);
2239 sk = sk_nulls_head(&ilb->nulls_head);
2240 st->offset = 0;
2241 goto get_sk;
2242 }
2243 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2244 ++st->num;
2245 ++st->offset;
2246
2247 sk = sk_nulls_next(sk);
2248get_sk:
2249 sk_nulls_for_each_from(sk, node) {
2250 if (!net_eq(sock_net(sk), net))
2251 continue;
2252 if (afinfo->family == AF_UNSPEC ||
2253 sk->sk_family == afinfo->family)
2254 return sk;
2255 }
2256 spin_unlock(&ilb->lock);
2257 st->offset = 0;
2258 if (++st->bucket < INET_LHTABLE_SIZE)
2259 goto get_head;
2260 return NULL;
2261}
2262
2263static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2264{
2265 struct tcp_iter_state *st = seq->private;
2266 void *rc;
2267
2268 st->bucket = 0;
2269 st->offset = 0;
2270 rc = listening_get_next(seq, NULL);
2271
2272 while (rc && *pos) {
2273 rc = listening_get_next(seq, rc);
2274 --*pos;
2275 }
2276 return rc;
2277}
2278
2279static inline bool empty_bucket(const struct tcp_iter_state *st)
2280{
2281 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2282}
2283
2284/*
2285 * Get first established socket starting from bucket given in st->bucket.
2286 * If st->bucket is zero, the very first socket in the hash is returned.
2287 */
2288static void *established_get_first(struct seq_file *seq)
2289{
2290 struct tcp_seq_afinfo *afinfo;
2291 struct tcp_iter_state *st = seq->private;
2292 struct net *net = seq_file_net(seq);
2293 void *rc = NULL;
2294
2295 if (st->bpf_seq_afinfo)
2296 afinfo = st->bpf_seq_afinfo;
2297 else
2298 afinfo = PDE_DATA(file_inode(seq->file));
2299
2300 st->offset = 0;
2301 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2302 struct sock *sk;
2303 struct hlist_nulls_node *node;
2304 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2305
2306 /* Lockless fast path for the common case of empty buckets */
2307 if (empty_bucket(st))
2308 continue;
2309
2310 spin_lock_bh(lock);
2311 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2312 if ((afinfo->family != AF_UNSPEC &&
2313 sk->sk_family != afinfo->family) ||
2314 !net_eq(sock_net(sk), net)) {
2315 continue;
2316 }
2317 rc = sk;
2318 goto out;
2319 }
2320 spin_unlock_bh(lock);
2321 }
2322out:
2323 return rc;
2324}
2325
2326static void *established_get_next(struct seq_file *seq, void *cur)
2327{
2328 struct tcp_seq_afinfo *afinfo;
2329 struct sock *sk = cur;
2330 struct hlist_nulls_node *node;
2331 struct tcp_iter_state *st = seq->private;
2332 struct net *net = seq_file_net(seq);
2333
2334 if (st->bpf_seq_afinfo)
2335 afinfo = st->bpf_seq_afinfo;
2336 else
2337 afinfo = PDE_DATA(file_inode(seq->file));
2338
2339 ++st->num;
2340 ++st->offset;
2341
2342 sk = sk_nulls_next(sk);
2343
2344 sk_nulls_for_each_from(sk, node) {
2345 if ((afinfo->family == AF_UNSPEC ||
2346 sk->sk_family == afinfo->family) &&
2347 net_eq(sock_net(sk), net))
2348 return sk;
2349 }
2350
2351 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2352 ++st->bucket;
2353 return established_get_first(seq);
2354}
2355
2356static void *established_get_idx(struct seq_file *seq, loff_t pos)
2357{
2358 struct tcp_iter_state *st = seq->private;
2359 void *rc;
2360
2361 st->bucket = 0;
2362 rc = established_get_first(seq);
2363
2364 while (rc && pos) {
2365 rc = established_get_next(seq, rc);
2366 --pos;
2367 }
2368 return rc;
2369}
2370
2371static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2372{
2373 void *rc;
2374 struct tcp_iter_state *st = seq->private;
2375
2376 st->state = TCP_SEQ_STATE_LISTENING;
2377 rc = listening_get_idx(seq, &pos);
2378
2379 if (!rc) {
2380 st->state = TCP_SEQ_STATE_ESTABLISHED;
2381 rc = established_get_idx(seq, pos);
2382 }
2383
2384 return rc;
2385}
2386
2387static void *tcp_seek_last_pos(struct seq_file *seq)
2388{
2389 struct tcp_iter_state *st = seq->private;
2390 int offset = st->offset;
2391 int orig_num = st->num;
2392 void *rc = NULL;
2393
2394 switch (st->state) {
2395 case TCP_SEQ_STATE_LISTENING:
2396 if (st->bucket >= INET_LHTABLE_SIZE)
2397 break;
2398 st->state = TCP_SEQ_STATE_LISTENING;
2399 rc = listening_get_next(seq, NULL);
2400 while (offset-- && rc)
2401 rc = listening_get_next(seq, rc);
2402 if (rc)
2403 break;
2404 st->bucket = 0;
2405 st->state = TCP_SEQ_STATE_ESTABLISHED;
2406 fallthrough;
2407 case TCP_SEQ_STATE_ESTABLISHED:
2408 if (st->bucket > tcp_hashinfo.ehash_mask)
2409 break;
2410 rc = established_get_first(seq);
2411 while (offset-- && rc)
2412 rc = established_get_next(seq, rc);
2413 }
2414
2415 st->num = orig_num;
2416
2417 return rc;
2418}
2419
2420void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2421{
2422 struct tcp_iter_state *st = seq->private;
2423 void *rc;
2424
2425 if (*pos && *pos == st->last_pos) {
2426 rc = tcp_seek_last_pos(seq);
2427 if (rc)
2428 goto out;
2429 }
2430
2431 st->state = TCP_SEQ_STATE_LISTENING;
2432 st->num = 0;
2433 st->bucket = 0;
2434 st->offset = 0;
2435 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2436
2437out:
2438 st->last_pos = *pos;
2439 return rc;
2440}
2441EXPORT_SYMBOL(tcp_seq_start);
2442
2443void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2444{
2445 struct tcp_iter_state *st = seq->private;
2446 void *rc = NULL;
2447
2448 if (v == SEQ_START_TOKEN) {
2449 rc = tcp_get_idx(seq, 0);
2450 goto out;
2451 }
2452
2453 switch (st->state) {
2454 case TCP_SEQ_STATE_LISTENING:
2455 rc = listening_get_next(seq, v);
2456 if (!rc) {
2457 st->state = TCP_SEQ_STATE_ESTABLISHED;
2458 st->bucket = 0;
2459 st->offset = 0;
2460 rc = established_get_first(seq);
2461 }
2462 break;
2463 case TCP_SEQ_STATE_ESTABLISHED:
2464 rc = established_get_next(seq, v);
2465 break;
2466 }
2467out:
2468 ++*pos;
2469 st->last_pos = *pos;
2470 return rc;
2471}
2472EXPORT_SYMBOL(tcp_seq_next);
2473
2474void tcp_seq_stop(struct seq_file *seq, void *v)
2475{
2476 struct tcp_iter_state *st = seq->private;
2477
2478 switch (st->state) {
2479 case TCP_SEQ_STATE_LISTENING:
2480 if (v != SEQ_START_TOKEN)
2481 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock);
2482 break;
2483 case TCP_SEQ_STATE_ESTABLISHED:
2484 if (v)
2485 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2486 break;
2487 }
2488}
2489EXPORT_SYMBOL(tcp_seq_stop);
2490
2491static void get_openreq4(const struct request_sock *req,
2492 struct seq_file *f, int i)
2493{
2494 const struct inet_request_sock *ireq = inet_rsk(req);
2495 long delta = req->rsk_timer.expires - jiffies;
2496
2497 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2498 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2499 i,
2500 ireq->ir_loc_addr,
2501 ireq->ir_num,
2502 ireq->ir_rmt_addr,
2503 ntohs(ireq->ir_rmt_port),
2504 TCP_SYN_RECV,
2505 0, 0, /* could print option size, but that is af dependent. */
2506 1, /* timers active (only the expire timer) */
2507 jiffies_delta_to_clock_t(delta),
2508 req->num_timeout,
2509 from_kuid_munged(seq_user_ns(f),
2510 sock_i_uid(req->rsk_listener)),
2511 0, /* non standard timer */
2512 0, /* open_requests have no inode */
2513 0,
2514 req);
2515}
2516
2517static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2518{
2519 int timer_active;
2520 unsigned long timer_expires;
2521 const struct tcp_sock *tp = tcp_sk(sk);
2522 const struct inet_connection_sock *icsk = inet_csk(sk);
2523 const struct inet_sock *inet = inet_sk(sk);
2524 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2525 __be32 dest = inet->inet_daddr;
2526 __be32 src = inet->inet_rcv_saddr;
2527 __u16 destp = ntohs(inet->inet_dport);
2528 __u16 srcp = ntohs(inet->inet_sport);
2529 int rx_queue;
2530 int state;
2531
2532 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2533 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2534 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2535 timer_active = 1;
2536 timer_expires = icsk->icsk_timeout;
2537 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2538 timer_active = 4;
2539 timer_expires = icsk->icsk_timeout;
2540 } else if (timer_pending(&sk->sk_timer)) {
2541 timer_active = 2;
2542 timer_expires = sk->sk_timer.expires;
2543 } else {
2544 timer_active = 0;
2545 timer_expires = jiffies;
2546 }
2547
2548 state = inet_sk_state_load(sk);
2549 if (state == TCP_LISTEN)
2550 rx_queue = READ_ONCE(sk->sk_ack_backlog);
2551 else
2552 /* Because we don't lock the socket,
2553 * we might find a transient negative value.
2554 */
2555 rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2556 READ_ONCE(tp->copied_seq), 0);
2557
2558 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2559 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2560 i, src, srcp, dest, destp, state,
2561 READ_ONCE(tp->write_seq) - tp->snd_una,
2562 rx_queue,
2563 timer_active,
2564 jiffies_delta_to_clock_t(timer_expires - jiffies),
2565 icsk->icsk_retransmits,
2566 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2567 icsk->icsk_probes_out,
2568 sock_i_ino(sk),
2569 refcount_read(&sk->sk_refcnt), sk,
2570 jiffies_to_clock_t(icsk->icsk_rto),
2571 jiffies_to_clock_t(icsk->icsk_ack.ato),
2572 (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2573 tp->snd_cwnd,
2574 state == TCP_LISTEN ?
2575 fastopenq->max_qlen :
2576 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2577}
2578
2579static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2580 struct seq_file *f, int i)
2581{
2582 long delta = tw->tw_timer.expires - jiffies;
2583 __be32 dest, src;
2584 __u16 destp, srcp;
2585
2586 dest = tw->tw_daddr;
2587 src = tw->tw_rcv_saddr;
2588 destp = ntohs(tw->tw_dport);
2589 srcp = ntohs(tw->tw_sport);
2590
2591 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2592 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2593 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2594 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2595 refcount_read(&tw->tw_refcnt), tw);
2596}
2597
2598#define TMPSZ 150
2599
2600static int tcp4_seq_show(struct seq_file *seq, void *v)
2601{
2602 struct tcp_iter_state *st;
2603 struct sock *sk = v;
2604
2605 seq_setwidth(seq, TMPSZ - 1);
2606 if (v == SEQ_START_TOKEN) {
2607 seq_puts(seq, " sl local_address rem_address st tx_queue "
2608 "rx_queue tr tm->when retrnsmt uid timeout "
2609 "inode");
2610 goto out;
2611 }
2612 st = seq->private;
2613
2614 if (sk->sk_state == TCP_TIME_WAIT)
2615 get_timewait4_sock(v, seq, st->num);
2616 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2617 get_openreq4(v, seq, st->num);
2618 else
2619 get_tcp4_sock(v, seq, st->num);
2620out:
2621 seq_pad(seq, '\n');
2622 return 0;
2623}
2624
2625#ifdef CONFIG_BPF_SYSCALL
2626struct bpf_iter__tcp {
2627 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2628 __bpf_md_ptr(struct sock_common *, sk_common);
2629 uid_t uid __aligned(8);
2630};
2631
2632static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2633 struct sock_common *sk_common, uid_t uid)
2634{
2635 struct bpf_iter__tcp ctx;
2636
2637 meta->seq_num--; /* skip SEQ_START_TOKEN */
2638 ctx.meta = meta;
2639 ctx.sk_common = sk_common;
2640 ctx.uid = uid;
2641 return bpf_iter_run_prog(prog, &ctx);
2642}
2643
2644static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2645{
2646 struct bpf_iter_meta meta;
2647 struct bpf_prog *prog;
2648 struct sock *sk = v;
2649 uid_t uid;
2650
2651 if (v == SEQ_START_TOKEN)
2652 return 0;
2653
2654 if (sk->sk_state == TCP_TIME_WAIT) {
2655 uid = 0;
2656 } else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2657 const struct request_sock *req = v;
2658
2659 uid = from_kuid_munged(seq_user_ns(seq),
2660 sock_i_uid(req->rsk_listener));
2661 } else {
2662 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
2663 }
2664
2665 meta.seq = seq;
2666 prog = bpf_iter_get_info(&meta, false);
2667 return tcp_prog_seq_show(prog, &meta, v, uid);
2668}
2669
2670static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
2671{
2672 struct bpf_iter_meta meta;
2673 struct bpf_prog *prog;
2674
2675 if (!v) {
2676 meta.seq = seq;
2677 prog = bpf_iter_get_info(&meta, true);
2678 if (prog)
2679 (void)tcp_prog_seq_show(prog, &meta, v, 0);
2680 }
2681
2682 tcp_seq_stop(seq, v);
2683}
2684
2685static const struct seq_operations bpf_iter_tcp_seq_ops = {
2686 .show = bpf_iter_tcp_seq_show,
2687 .start = tcp_seq_start,
2688 .next = tcp_seq_next,
2689 .stop = bpf_iter_tcp_seq_stop,
2690};
2691#endif
2692
2693static const struct seq_operations tcp4_seq_ops = {
2694 .show = tcp4_seq_show,
2695 .start = tcp_seq_start,
2696 .next = tcp_seq_next,
2697 .stop = tcp_seq_stop,
2698};
2699
2700static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2701 .family = AF_INET,
2702};
2703
2704static int __net_init tcp4_proc_init_net(struct net *net)
2705{
2706 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
2707 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
2708 return -ENOMEM;
2709 return 0;
2710}
2711
2712static void __net_exit tcp4_proc_exit_net(struct net *net)
2713{
2714 remove_proc_entry("tcp", net->proc_net);
2715}
2716
2717static struct pernet_operations tcp4_net_ops = {
2718 .init = tcp4_proc_init_net,
2719 .exit = tcp4_proc_exit_net,
2720};
2721
2722int __init tcp4_proc_init(void)
2723{
2724 return register_pernet_subsys(&tcp4_net_ops);
2725}
2726
2727void tcp4_proc_exit(void)
2728{
2729 unregister_pernet_subsys(&tcp4_net_ops);
2730}
2731#endif /* CONFIG_PROC_FS */
2732
2733struct proto tcp_prot = {
2734 .name = "TCP",
2735 .owner = THIS_MODULE,
2736 .close = tcp_close,
2737 .pre_connect = tcp_v4_pre_connect,
2738 .connect = tcp_v4_connect,
2739 .disconnect = tcp_disconnect,
2740 .accept = inet_csk_accept,
2741 .ioctl = tcp_ioctl,
2742 .init = tcp_v4_init_sock,
2743 .destroy = tcp_v4_destroy_sock,
2744 .shutdown = tcp_shutdown,
2745 .setsockopt = tcp_setsockopt,
2746 .getsockopt = tcp_getsockopt,
2747 .keepalive = tcp_set_keepalive,
2748 .recvmsg = tcp_recvmsg,
2749 .sendmsg = tcp_sendmsg,
2750 .sendpage = tcp_sendpage,
2751 .backlog_rcv = tcp_v4_do_rcv,
2752 .release_cb = tcp_release_cb,
2753 .hash = inet_hash,
2754 .unhash = inet_unhash,
2755 .get_port = inet_csk_get_port,
2756 .enter_memory_pressure = tcp_enter_memory_pressure,
2757 .leave_memory_pressure = tcp_leave_memory_pressure,
2758 .stream_memory_free = tcp_stream_memory_free,
2759 .sockets_allocated = &tcp_sockets_allocated,
2760 .orphan_count = &tcp_orphan_count,
2761 .memory_allocated = &tcp_memory_allocated,
2762 .memory_pressure = &tcp_memory_pressure,
2763 .sysctl_mem = sysctl_tcp_mem,
2764 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
2765 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
2766 .max_header = MAX_TCP_HEADER,
2767 .obj_size = sizeof(struct tcp_sock),
2768 .slab_flags = SLAB_TYPESAFE_BY_RCU,
2769 .twsk_prot = &tcp_timewait_sock_ops,
2770 .rsk_prot = &tcp_request_sock_ops,
2771 .h.hashinfo = &tcp_hashinfo,
2772 .no_autobind = true,
2773 .diag_destroy = tcp_abort,
2774};
2775EXPORT_SYMBOL(tcp_prot);
2776
2777static void __net_exit tcp_sk_exit(struct net *net)
2778{
2779 int cpu;
2780
2781 if (net->ipv4.tcp_congestion_control)
2782 bpf_module_put(net->ipv4.tcp_congestion_control,
2783 net->ipv4.tcp_congestion_control->owner);
2784
2785 for_each_possible_cpu(cpu)
2786 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2787 free_percpu(net->ipv4.tcp_sk);
2788}
2789
2790static int __net_init tcp_sk_init(struct net *net)
2791{
2792 int res, cpu, cnt;
2793
2794 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2795 if (!net->ipv4.tcp_sk)
2796 return -ENOMEM;
2797
2798 for_each_possible_cpu(cpu) {
2799 struct sock *sk;
2800
2801 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2802 IPPROTO_TCP, net);
2803 if (res)
2804 goto fail;
2805 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2806
2807 /* Please enforce IP_DF and IPID==0 for RST and
2808 * ACK sent in SYN-RECV and TIME-WAIT state.
2809 */
2810 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
2811
2812 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2813 }
2814
2815 net->ipv4.sysctl_tcp_ecn = 2;
2816 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2817
2818 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2819 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
2820 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2821 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2822 net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
2823
2824 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2825 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2826 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2827
2828 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2829 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2830 net->ipv4.sysctl_tcp_syncookies = 1;
2831 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2832 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2833 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2834 net->ipv4.sysctl_tcp_orphan_retries = 0;
2835 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2836 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2837 net->ipv4.sysctl_tcp_tw_reuse = 2;
2838 net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
2839
2840 cnt = tcp_hashinfo.ehash_mask + 1;
2841 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
2842 net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo;
2843
2844 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 128);
2845 net->ipv4.sysctl_tcp_sack = 1;
2846 net->ipv4.sysctl_tcp_window_scaling = 1;
2847 net->ipv4.sysctl_tcp_timestamps = 1;
2848 net->ipv4.sysctl_tcp_early_retrans = 3;
2849 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
2850 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */
2851 net->ipv4.sysctl_tcp_retrans_collapse = 1;
2852 net->ipv4.sysctl_tcp_max_reordering = 300;
2853 net->ipv4.sysctl_tcp_dsack = 1;
2854 net->ipv4.sysctl_tcp_app_win = 31;
2855 net->ipv4.sysctl_tcp_adv_win_scale = 1;
2856 net->ipv4.sysctl_tcp_frto = 2;
2857 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
2858 /* This limits the percentage of the congestion window which we
2859 * will allow a single TSO frame to consume. Building TSO frames
2860 * which are too large can cause TCP streams to be bursty.
2861 */
2862 net->ipv4.sysctl_tcp_tso_win_divisor = 3;
2863 /* Default TSQ limit of 16 TSO segments */
2864 net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
2865 /* rfc5961 challenge ack rate limiting */
2866 net->ipv4.sysctl_tcp_challenge_ack_limit = 1000;
2867 net->ipv4.sysctl_tcp_min_tso_segs = 2;
2868 net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
2869 net->ipv4.sysctl_tcp_autocorking = 1;
2870 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
2871 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
2872 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
2873 if (net != &init_net) {
2874 memcpy(net->ipv4.sysctl_tcp_rmem,
2875 init_net.ipv4.sysctl_tcp_rmem,
2876 sizeof(init_net.ipv4.sysctl_tcp_rmem));
2877 memcpy(net->ipv4.sysctl_tcp_wmem,
2878 init_net.ipv4.sysctl_tcp_wmem,
2879 sizeof(init_net.ipv4.sysctl_tcp_wmem));
2880 }
2881 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
2882 net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
2883 net->ipv4.sysctl_tcp_comp_sack_nr = 44;
2884 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
2885 spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock);
2886 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60;
2887 atomic_set(&net->ipv4.tfo_active_disable_times, 0);
2888
2889 /* Reno is always built in */
2890 if (!net_eq(net, &init_net) &&
2891 bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
2892 init_net.ipv4.tcp_congestion_control->owner))
2893 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
2894 else
2895 net->ipv4.tcp_congestion_control = &tcp_reno;
2896
2897 return 0;
2898fail:
2899 tcp_sk_exit(net);
2900
2901 return res;
2902}
2903
2904static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2905{
2906 struct net *net;
2907
2908 inet_twsk_purge(&tcp_hashinfo, AF_INET);
2909
2910 list_for_each_entry(net, net_exit_list, exit_list)
2911 tcp_fastopen_ctx_destroy(net);
2912}
2913
2914static struct pernet_operations __net_initdata tcp_sk_ops = {
2915 .init = tcp_sk_init,
2916 .exit = tcp_sk_exit,
2917 .exit_batch = tcp_sk_exit_batch,
2918};
2919
2920#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
2921DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
2922 struct sock_common *sk_common, uid_t uid)
2923
2924static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
2925{
2926 struct tcp_iter_state *st = priv_data;
2927 struct tcp_seq_afinfo *afinfo;
2928 int ret;
2929
2930 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
2931 if (!afinfo)
2932 return -ENOMEM;
2933
2934 afinfo->family = AF_UNSPEC;
2935 st->bpf_seq_afinfo = afinfo;
2936 ret = bpf_iter_init_seq_net(priv_data, aux);
2937 if (ret)
2938 kfree(afinfo);
2939 return ret;
2940}
2941
2942static void bpf_iter_fini_tcp(void *priv_data)
2943{
2944 struct tcp_iter_state *st = priv_data;
2945
2946 kfree(st->bpf_seq_afinfo);
2947 bpf_iter_fini_seq_net(priv_data);
2948}
2949
2950static const struct bpf_iter_seq_info tcp_seq_info = {
2951 .seq_ops = &bpf_iter_tcp_seq_ops,
2952 .init_seq_private = bpf_iter_init_tcp,
2953 .fini_seq_private = bpf_iter_fini_tcp,
2954 .seq_priv_size = sizeof(struct tcp_iter_state),
2955};
2956
2957static struct bpf_iter_reg tcp_reg_info = {
2958 .target = "tcp",
2959 .ctx_arg_info_size = 1,
2960 .ctx_arg_info = {
2961 { offsetof(struct bpf_iter__tcp, sk_common),
2962 PTR_TO_BTF_ID_OR_NULL },
2963 },
2964 .seq_info = &tcp_seq_info,
2965};
2966
2967static void __init bpf_iter_register(void)
2968{
2969 tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
2970 if (bpf_iter_reg_target(&tcp_reg_info))
2971 pr_warn("Warning: could not register bpf iterator tcp\n");
2972}
2973
2974#endif
2975
2976void __init tcp_v4_init(void)
2977{
2978 if (register_pernet_subsys(&tcp_sk_ops))
2979 panic("Failed to create the TCP control socket.\n");
2980
2981#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
2982 bpf_iter_register();
2983#endif
2984}
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24/*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54#include <linux/bottom_half.h>
55#include <linux/types.h>
56#include <linux/fcntl.h>
57#include <linux/module.h>
58#include <linux/random.h>
59#include <linux/cache.h>
60#include <linux/jhash.h>
61#include <linux/init.h>
62#include <linux/times.h>
63#include <linux/slab.h>
64
65#include <net/net_namespace.h>
66#include <net/icmp.h>
67#include <net/inet_hashtables.h>
68#include <net/tcp.h>
69#include <net/transp_v6.h>
70#include <net/ipv6.h>
71#include <net/inet_common.h>
72#include <net/timewait_sock.h>
73#include <net/xfrm.h>
74#include <net/netdma.h>
75#include <net/secure_seq.h>
76
77#include <linux/inet.h>
78#include <linux/ipv6.h>
79#include <linux/stddef.h>
80#include <linux/proc_fs.h>
81#include <linux/seq_file.h>
82
83#include <linux/crypto.h>
84#include <linux/scatterlist.h>
85
86int sysctl_tcp_tw_reuse __read_mostly;
87int sysctl_tcp_low_latency __read_mostly;
88EXPORT_SYMBOL(sysctl_tcp_low_latency);
89
90
91#ifdef CONFIG_TCP_MD5SIG
92static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
93 __be32 addr);
94static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, struct tcphdr *th);
96#else
97static inline
98struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
99{
100 return NULL;
101}
102#endif
103
104struct inet_hashinfo tcp_hashinfo;
105EXPORT_SYMBOL(tcp_hashinfo);
106
107static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
108{
109 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
110 ip_hdr(skb)->saddr,
111 tcp_hdr(skb)->dest,
112 tcp_hdr(skb)->source);
113}
114
115int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
116{
117 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
118 struct tcp_sock *tp = tcp_sk(sk);
119
120 /* With PAWS, it is safe from the viewpoint
121 of data integrity. Even without PAWS it is safe provided sequence
122 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
123
124 Actually, the idea is close to VJ's one, only timestamp cache is
125 held not per host, but per port pair and TW bucket is used as state
126 holder.
127
128 If TW bucket has been already destroyed we fall back to VJ's scheme
129 and use initial timestamp retrieved from peer table.
130 */
131 if (tcptw->tw_ts_recent_stamp &&
132 (twp == NULL || (sysctl_tcp_tw_reuse &&
133 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
134 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
135 if (tp->write_seq == 0)
136 tp->write_seq = 1;
137 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
138 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
139 sock_hold(sktw);
140 return 1;
141 }
142
143 return 0;
144}
145EXPORT_SYMBOL_GPL(tcp_twsk_unique);
146
147/* This will initiate an outgoing connection. */
148int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
149{
150 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151 struct inet_sock *inet = inet_sk(sk);
152 struct tcp_sock *tp = tcp_sk(sk);
153 __be16 orig_sport, orig_dport;
154 __be32 daddr, nexthop;
155 struct flowi4 *fl4;
156 struct rtable *rt;
157 int err;
158 struct ip_options_rcu *inet_opt;
159
160 if (addr_len < sizeof(struct sockaddr_in))
161 return -EINVAL;
162
163 if (usin->sin_family != AF_INET)
164 return -EAFNOSUPPORT;
165
166 nexthop = daddr = usin->sin_addr.s_addr;
167 inet_opt = rcu_dereference_protected(inet->inet_opt,
168 sock_owned_by_user(sk));
169 if (inet_opt && inet_opt->opt.srr) {
170 if (!daddr)
171 return -EINVAL;
172 nexthop = inet_opt->opt.faddr;
173 }
174
175 orig_sport = inet->inet_sport;
176 orig_dport = usin->sin_port;
177 fl4 = &inet->cork.fl.u.ip4;
178 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
179 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
180 IPPROTO_TCP,
181 orig_sport, orig_dport, sk, true);
182 if (IS_ERR(rt)) {
183 err = PTR_ERR(rt);
184 if (err == -ENETUNREACH)
185 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
186 return err;
187 }
188
189 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
190 ip_rt_put(rt);
191 return -ENETUNREACH;
192 }
193
194 if (!inet_opt || !inet_opt->opt.srr)
195 daddr = fl4->daddr;
196
197 if (!inet->inet_saddr)
198 inet->inet_saddr = fl4->saddr;
199 inet->inet_rcv_saddr = inet->inet_saddr;
200
201 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
202 /* Reset inherited state */
203 tp->rx_opt.ts_recent = 0;
204 tp->rx_opt.ts_recent_stamp = 0;
205 tp->write_seq = 0;
206 }
207
208 if (tcp_death_row.sysctl_tw_recycle &&
209 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
210 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
211 /*
212 * VJ's idea. We save last timestamp seen from
213 * the destination in peer table, when entering state
214 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
215 * when trying new connection.
216 */
217 if (peer) {
218 inet_peer_refcheck(peer);
219 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
220 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
221 tp->rx_opt.ts_recent = peer->tcp_ts;
222 }
223 }
224 }
225
226 inet->inet_dport = usin->sin_port;
227 inet->inet_daddr = daddr;
228
229 inet_csk(sk)->icsk_ext_hdr_len = 0;
230 if (inet_opt)
231 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
232
233 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
234
235 /* Socket identity is still unknown (sport may be zero).
236 * However we set state to SYN-SENT and not releasing socket
237 * lock select source port, enter ourselves into the hash tables and
238 * complete initialization after this.
239 */
240 tcp_set_state(sk, TCP_SYN_SENT);
241 err = inet_hash_connect(&tcp_death_row, sk);
242 if (err)
243 goto failure;
244
245 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
246 inet->inet_sport, inet->inet_dport, sk);
247 if (IS_ERR(rt)) {
248 err = PTR_ERR(rt);
249 rt = NULL;
250 goto failure;
251 }
252 /* OK, now commit destination to socket. */
253 sk->sk_gso_type = SKB_GSO_TCPV4;
254 sk_setup_caps(sk, &rt->dst);
255
256 if (!tp->write_seq)
257 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
258 inet->inet_daddr,
259 inet->inet_sport,
260 usin->sin_port);
261
262 inet->inet_id = tp->write_seq ^ jiffies;
263
264 err = tcp_connect(sk);
265 rt = NULL;
266 if (err)
267 goto failure;
268
269 return 0;
270
271failure:
272 /*
273 * This unhashes the socket and releases the local port,
274 * if necessary.
275 */
276 tcp_set_state(sk, TCP_CLOSE);
277 ip_rt_put(rt);
278 sk->sk_route_caps = 0;
279 inet->inet_dport = 0;
280 return err;
281}
282EXPORT_SYMBOL(tcp_v4_connect);
283
284/*
285 * This routine does path mtu discovery as defined in RFC1191.
286 */
287static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
288{
289 struct dst_entry *dst;
290 struct inet_sock *inet = inet_sk(sk);
291
292 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
293 * send out by Linux are always <576bytes so they should go through
294 * unfragmented).
295 */
296 if (sk->sk_state == TCP_LISTEN)
297 return;
298
299 /* We don't check in the destentry if pmtu discovery is forbidden
300 * on this route. We just assume that no packet_to_big packets
301 * are send back when pmtu discovery is not active.
302 * There is a small race when the user changes this flag in the
303 * route, but I think that's acceptable.
304 */
305 if ((dst = __sk_dst_check(sk, 0)) == NULL)
306 return;
307
308 dst->ops->update_pmtu(dst, mtu);
309
310 /* Something is about to be wrong... Remember soft error
311 * for the case, if this connection will not able to recover.
312 */
313 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
314 sk->sk_err_soft = EMSGSIZE;
315
316 mtu = dst_mtu(dst);
317
318 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
319 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
320 tcp_sync_mss(sk, mtu);
321
322 /* Resend the TCP packet because it's
323 * clear that the old packet has been
324 * dropped. This is the new "fast" path mtu
325 * discovery.
326 */
327 tcp_simple_retransmit(sk);
328 } /* else let the usual retransmit timer handle it */
329}
330
331/*
332 * This routine is called by the ICMP module when it gets some
333 * sort of error condition. If err < 0 then the socket should
334 * be closed and the error returned to the user. If err > 0
335 * it's just the icmp type << 8 | icmp code. After adjustment
336 * header points to the first 8 bytes of the tcp header. We need
337 * to find the appropriate port.
338 *
339 * The locking strategy used here is very "optimistic". When
340 * someone else accesses the socket the ICMP is just dropped
341 * and for some paths there is no check at all.
342 * A more general error queue to queue errors for later handling
343 * is probably better.
344 *
345 */
346
347void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
348{
349 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
350 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
351 struct inet_connection_sock *icsk;
352 struct tcp_sock *tp;
353 struct inet_sock *inet;
354 const int type = icmp_hdr(icmp_skb)->type;
355 const int code = icmp_hdr(icmp_skb)->code;
356 struct sock *sk;
357 struct sk_buff *skb;
358 __u32 seq;
359 __u32 remaining;
360 int err;
361 struct net *net = dev_net(icmp_skb->dev);
362
363 if (icmp_skb->len < (iph->ihl << 2) + 8) {
364 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
365 return;
366 }
367
368 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
369 iph->saddr, th->source, inet_iif(icmp_skb));
370 if (!sk) {
371 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372 return;
373 }
374 if (sk->sk_state == TCP_TIME_WAIT) {
375 inet_twsk_put(inet_twsk(sk));
376 return;
377 }
378
379 bh_lock_sock(sk);
380 /* If too many ICMPs get dropped on busy
381 * servers this needs to be solved differently.
382 */
383 if (sock_owned_by_user(sk))
384 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
385
386 if (sk->sk_state == TCP_CLOSE)
387 goto out;
388
389 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
390 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
391 goto out;
392 }
393
394 icsk = inet_csk(sk);
395 tp = tcp_sk(sk);
396 seq = ntohl(th->seq);
397 if (sk->sk_state != TCP_LISTEN &&
398 !between(seq, tp->snd_una, tp->snd_nxt)) {
399 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
400 goto out;
401 }
402
403 switch (type) {
404 case ICMP_SOURCE_QUENCH:
405 /* Just silently ignore these. */
406 goto out;
407 case ICMP_PARAMETERPROB:
408 err = EPROTO;
409 break;
410 case ICMP_DEST_UNREACH:
411 if (code > NR_ICMP_UNREACH)
412 goto out;
413
414 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
415 if (!sock_owned_by_user(sk))
416 do_pmtu_discovery(sk, iph, info);
417 goto out;
418 }
419
420 err = icmp_err_convert[code].errno;
421 /* check if icmp_skb allows revert of backoff
422 * (see draft-zimmermann-tcp-lcd) */
423 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
424 break;
425 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
426 !icsk->icsk_backoff)
427 break;
428
429 if (sock_owned_by_user(sk))
430 break;
431
432 icsk->icsk_backoff--;
433 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
434 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
435 tcp_bound_rto(sk);
436
437 skb = tcp_write_queue_head(sk);
438 BUG_ON(!skb);
439
440 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
441 tcp_time_stamp - TCP_SKB_CB(skb)->when);
442
443 if (remaining) {
444 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
445 remaining, TCP_RTO_MAX);
446 } else {
447 /* RTO revert clocked out retransmission.
448 * Will retransmit now */
449 tcp_retransmit_timer(sk);
450 }
451
452 break;
453 case ICMP_TIME_EXCEEDED:
454 err = EHOSTUNREACH;
455 break;
456 default:
457 goto out;
458 }
459
460 switch (sk->sk_state) {
461 struct request_sock *req, **prev;
462 case TCP_LISTEN:
463 if (sock_owned_by_user(sk))
464 goto out;
465
466 req = inet_csk_search_req(sk, &prev, th->dest,
467 iph->daddr, iph->saddr);
468 if (!req)
469 goto out;
470
471 /* ICMPs are not backlogged, hence we cannot get
472 an established socket here.
473 */
474 WARN_ON(req->sk);
475
476 if (seq != tcp_rsk(req)->snt_isn) {
477 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
478 goto out;
479 }
480
481 /*
482 * Still in SYN_RECV, just remove it silently.
483 * There is no good way to pass the error to the newly
484 * created socket, and POSIX does not want network
485 * errors returned from accept().
486 */
487 inet_csk_reqsk_queue_drop(sk, req, prev);
488 goto out;
489
490 case TCP_SYN_SENT:
491 case TCP_SYN_RECV: /* Cannot happen.
492 It can f.e. if SYNs crossed.
493 */
494 if (!sock_owned_by_user(sk)) {
495 sk->sk_err = err;
496
497 sk->sk_error_report(sk);
498
499 tcp_done(sk);
500 } else {
501 sk->sk_err_soft = err;
502 }
503 goto out;
504 }
505
506 /* If we've already connected we will keep trying
507 * until we time out, or the user gives up.
508 *
509 * rfc1122 4.2.3.9 allows to consider as hard errors
510 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
511 * but it is obsoleted by pmtu discovery).
512 *
513 * Note, that in modern internet, where routing is unreliable
514 * and in each dark corner broken firewalls sit, sending random
515 * errors ordered by their masters even this two messages finally lose
516 * their original sense (even Linux sends invalid PORT_UNREACHs)
517 *
518 * Now we are in compliance with RFCs.
519 * --ANK (980905)
520 */
521
522 inet = inet_sk(sk);
523 if (!sock_owned_by_user(sk) && inet->recverr) {
524 sk->sk_err = err;
525 sk->sk_error_report(sk);
526 } else { /* Only an error on timeout */
527 sk->sk_err_soft = err;
528 }
529
530out:
531 bh_unlock_sock(sk);
532 sock_put(sk);
533}
534
535static void __tcp_v4_send_check(struct sk_buff *skb,
536 __be32 saddr, __be32 daddr)
537{
538 struct tcphdr *th = tcp_hdr(skb);
539
540 if (skb->ip_summed == CHECKSUM_PARTIAL) {
541 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
542 skb->csum_start = skb_transport_header(skb) - skb->head;
543 skb->csum_offset = offsetof(struct tcphdr, check);
544 } else {
545 th->check = tcp_v4_check(skb->len, saddr, daddr,
546 csum_partial(th,
547 th->doff << 2,
548 skb->csum));
549 }
550}
551
552/* This routine computes an IPv4 TCP checksum. */
553void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
554{
555 struct inet_sock *inet = inet_sk(sk);
556
557 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
558}
559EXPORT_SYMBOL(tcp_v4_send_check);
560
561int tcp_v4_gso_send_check(struct sk_buff *skb)
562{
563 const struct iphdr *iph;
564 struct tcphdr *th;
565
566 if (!pskb_may_pull(skb, sizeof(*th)))
567 return -EINVAL;
568
569 iph = ip_hdr(skb);
570 th = tcp_hdr(skb);
571
572 th->check = 0;
573 skb->ip_summed = CHECKSUM_PARTIAL;
574 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
575 return 0;
576}
577
578/*
579 * This routine will send an RST to the other tcp.
580 *
581 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
582 * for reset.
583 * Answer: if a packet caused RST, it is not for a socket
584 * existing in our system, if it is matched to a socket,
585 * it is just duplicate segment or bug in other side's TCP.
586 * So that we build reply only basing on parameters
587 * arrived with segment.
588 * Exception: precedence violation. We do not implement it in any case.
589 */
590
591static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
592{
593 struct tcphdr *th = tcp_hdr(skb);
594 struct {
595 struct tcphdr th;
596#ifdef CONFIG_TCP_MD5SIG
597 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
598#endif
599 } rep;
600 struct ip_reply_arg arg;
601#ifdef CONFIG_TCP_MD5SIG
602 struct tcp_md5sig_key *key;
603#endif
604 struct net *net;
605
606 /* Never send a reset in response to a reset. */
607 if (th->rst)
608 return;
609
610 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
611 return;
612
613 /* Swap the send and the receive. */
614 memset(&rep, 0, sizeof(rep));
615 rep.th.dest = th->source;
616 rep.th.source = th->dest;
617 rep.th.doff = sizeof(struct tcphdr) / 4;
618 rep.th.rst = 1;
619
620 if (th->ack) {
621 rep.th.seq = th->ack_seq;
622 } else {
623 rep.th.ack = 1;
624 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
625 skb->len - (th->doff << 2));
626 }
627
628 memset(&arg, 0, sizeof(arg));
629 arg.iov[0].iov_base = (unsigned char *)&rep;
630 arg.iov[0].iov_len = sizeof(rep.th);
631
632#ifdef CONFIG_TCP_MD5SIG
633 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
634 if (key) {
635 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
636 (TCPOPT_NOP << 16) |
637 (TCPOPT_MD5SIG << 8) |
638 TCPOLEN_MD5SIG);
639 /* Update length and the length the header thinks exists */
640 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
641 rep.th.doff = arg.iov[0].iov_len / 4;
642
643 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
644 key, ip_hdr(skb)->saddr,
645 ip_hdr(skb)->daddr, &rep.th);
646 }
647#endif
648 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
649 ip_hdr(skb)->saddr, /* XXX */
650 arg.iov[0].iov_len, IPPROTO_TCP, 0);
651 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
652 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
653
654 net = dev_net(skb_dst(skb)->dev);
655 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
656 &arg, arg.iov[0].iov_len);
657
658 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
659 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
660}
661
662/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
663 outside socket context is ugly, certainly. What can I do?
664 */
665
666static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
667 u32 win, u32 ts, int oif,
668 struct tcp_md5sig_key *key,
669 int reply_flags)
670{
671 struct tcphdr *th = tcp_hdr(skb);
672 struct {
673 struct tcphdr th;
674 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
675#ifdef CONFIG_TCP_MD5SIG
676 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
677#endif
678 ];
679 } rep;
680 struct ip_reply_arg arg;
681 struct net *net = dev_net(skb_dst(skb)->dev);
682
683 memset(&rep.th, 0, sizeof(struct tcphdr));
684 memset(&arg, 0, sizeof(arg));
685
686 arg.iov[0].iov_base = (unsigned char *)&rep;
687 arg.iov[0].iov_len = sizeof(rep.th);
688 if (ts) {
689 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
690 (TCPOPT_TIMESTAMP << 8) |
691 TCPOLEN_TIMESTAMP);
692 rep.opt[1] = htonl(tcp_time_stamp);
693 rep.opt[2] = htonl(ts);
694 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
695 }
696
697 /* Swap the send and the receive. */
698 rep.th.dest = th->source;
699 rep.th.source = th->dest;
700 rep.th.doff = arg.iov[0].iov_len / 4;
701 rep.th.seq = htonl(seq);
702 rep.th.ack_seq = htonl(ack);
703 rep.th.ack = 1;
704 rep.th.window = htons(win);
705
706#ifdef CONFIG_TCP_MD5SIG
707 if (key) {
708 int offset = (ts) ? 3 : 0;
709
710 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
711 (TCPOPT_NOP << 16) |
712 (TCPOPT_MD5SIG << 8) |
713 TCPOLEN_MD5SIG);
714 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
715 rep.th.doff = arg.iov[0].iov_len/4;
716
717 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
718 key, ip_hdr(skb)->saddr,
719 ip_hdr(skb)->daddr, &rep.th);
720 }
721#endif
722 arg.flags = reply_flags;
723 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
724 ip_hdr(skb)->saddr, /* XXX */
725 arg.iov[0].iov_len, IPPROTO_TCP, 0);
726 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
727 if (oif)
728 arg.bound_dev_if = oif;
729
730 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
731 &arg, arg.iov[0].iov_len);
732
733 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
734}
735
736static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
737{
738 struct inet_timewait_sock *tw = inet_twsk(sk);
739 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
740
741 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
742 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
743 tcptw->tw_ts_recent,
744 tw->tw_bound_dev_if,
745 tcp_twsk_md5_key(tcptw),
746 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
747 );
748
749 inet_twsk_put(tw);
750}
751
752static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
753 struct request_sock *req)
754{
755 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
756 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
757 req->ts_recent,
758 0,
759 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
760 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
761}
762
763/*
764 * Send a SYN-ACK after having received a SYN.
765 * This still operates on a request_sock only, not on a big
766 * socket.
767 */
768static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
769 struct request_sock *req,
770 struct request_values *rvp)
771{
772 const struct inet_request_sock *ireq = inet_rsk(req);
773 struct flowi4 fl4;
774 int err = -1;
775 struct sk_buff * skb;
776
777 /* First, grab a route. */
778 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
779 return -1;
780
781 skb = tcp_make_synack(sk, dst, req, rvp);
782
783 if (skb) {
784 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
785
786 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
787 ireq->rmt_addr,
788 ireq->opt);
789 err = net_xmit_eval(err);
790 }
791
792 dst_release(dst);
793 return err;
794}
795
796static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
797 struct request_values *rvp)
798{
799 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
800 return tcp_v4_send_synack(sk, NULL, req, rvp);
801}
802
803/*
804 * IPv4 request_sock destructor.
805 */
806static void tcp_v4_reqsk_destructor(struct request_sock *req)
807{
808 kfree(inet_rsk(req)->opt);
809}
810
811/*
812 * Return 1 if a syncookie should be sent
813 */
814int tcp_syn_flood_action(struct sock *sk,
815 const struct sk_buff *skb,
816 const char *proto)
817{
818 const char *msg = "Dropping request";
819 int want_cookie = 0;
820 struct listen_sock *lopt;
821
822
823
824#ifdef CONFIG_SYN_COOKIES
825 if (sysctl_tcp_syncookies) {
826 msg = "Sending cookies";
827 want_cookie = 1;
828 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
829 } else
830#endif
831 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
832
833 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
834 if (!lopt->synflood_warned) {
835 lopt->synflood_warned = 1;
836 pr_info("%s: Possible SYN flooding on port %d. %s. "
837 " Check SNMP counters.\n",
838 proto, ntohs(tcp_hdr(skb)->dest), msg);
839 }
840 return want_cookie;
841}
842EXPORT_SYMBOL(tcp_syn_flood_action);
843
844/*
845 * Save and compile IPv4 options into the request_sock if needed.
846 */
847static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
848 struct sk_buff *skb)
849{
850 const struct ip_options *opt = &(IPCB(skb)->opt);
851 struct ip_options_rcu *dopt = NULL;
852
853 if (opt && opt->optlen) {
854 int opt_size = sizeof(*dopt) + opt->optlen;
855
856 dopt = kmalloc(opt_size, GFP_ATOMIC);
857 if (dopt) {
858 if (ip_options_echo(&dopt->opt, skb)) {
859 kfree(dopt);
860 dopt = NULL;
861 }
862 }
863 }
864 return dopt;
865}
866
867#ifdef CONFIG_TCP_MD5SIG
868/*
869 * RFC2385 MD5 checksumming requires a mapping of
870 * IP address->MD5 Key.
871 * We need to maintain these in the sk structure.
872 */
873
874/* Find the Key structure for an address. */
875static struct tcp_md5sig_key *
876 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
877{
878 struct tcp_sock *tp = tcp_sk(sk);
879 int i;
880
881 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
882 return NULL;
883 for (i = 0; i < tp->md5sig_info->entries4; i++) {
884 if (tp->md5sig_info->keys4[i].addr == addr)
885 return &tp->md5sig_info->keys4[i].base;
886 }
887 return NULL;
888}
889
890struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
891 struct sock *addr_sk)
892{
893 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
894}
895EXPORT_SYMBOL(tcp_v4_md5_lookup);
896
897static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
898 struct request_sock *req)
899{
900 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
901}
902
903/* This can be called on a newly created socket, from other files */
904int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
905 u8 *newkey, u8 newkeylen)
906{
907 /* Add Key to the list */
908 struct tcp_md5sig_key *key;
909 struct tcp_sock *tp = tcp_sk(sk);
910 struct tcp4_md5sig_key *keys;
911
912 key = tcp_v4_md5_do_lookup(sk, addr);
913 if (key) {
914 /* Pre-existing entry - just update that one. */
915 kfree(key->key);
916 key->key = newkey;
917 key->keylen = newkeylen;
918 } else {
919 struct tcp_md5sig_info *md5sig;
920
921 if (!tp->md5sig_info) {
922 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
923 GFP_ATOMIC);
924 if (!tp->md5sig_info) {
925 kfree(newkey);
926 return -ENOMEM;
927 }
928 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
929 }
930
931 md5sig = tp->md5sig_info;
932 if (md5sig->entries4 == 0 &&
933 tcp_alloc_md5sig_pool(sk) == NULL) {
934 kfree(newkey);
935 return -ENOMEM;
936 }
937
938 if (md5sig->alloced4 == md5sig->entries4) {
939 keys = kmalloc((sizeof(*keys) *
940 (md5sig->entries4 + 1)), GFP_ATOMIC);
941 if (!keys) {
942 kfree(newkey);
943 if (md5sig->entries4 == 0)
944 tcp_free_md5sig_pool();
945 return -ENOMEM;
946 }
947
948 if (md5sig->entries4)
949 memcpy(keys, md5sig->keys4,
950 sizeof(*keys) * md5sig->entries4);
951
952 /* Free old key list, and reference new one */
953 kfree(md5sig->keys4);
954 md5sig->keys4 = keys;
955 md5sig->alloced4++;
956 }
957 md5sig->entries4++;
958 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
959 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
960 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
961 }
962 return 0;
963}
964EXPORT_SYMBOL(tcp_v4_md5_do_add);
965
966static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
967 u8 *newkey, u8 newkeylen)
968{
969 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
970 newkey, newkeylen);
971}
972
973int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
974{
975 struct tcp_sock *tp = tcp_sk(sk);
976 int i;
977
978 for (i = 0; i < tp->md5sig_info->entries4; i++) {
979 if (tp->md5sig_info->keys4[i].addr == addr) {
980 /* Free the key */
981 kfree(tp->md5sig_info->keys4[i].base.key);
982 tp->md5sig_info->entries4--;
983
984 if (tp->md5sig_info->entries4 == 0) {
985 kfree(tp->md5sig_info->keys4);
986 tp->md5sig_info->keys4 = NULL;
987 tp->md5sig_info->alloced4 = 0;
988 tcp_free_md5sig_pool();
989 } else if (tp->md5sig_info->entries4 != i) {
990 /* Need to do some manipulation */
991 memmove(&tp->md5sig_info->keys4[i],
992 &tp->md5sig_info->keys4[i+1],
993 (tp->md5sig_info->entries4 - i) *
994 sizeof(struct tcp4_md5sig_key));
995 }
996 return 0;
997 }
998 }
999 return -ENOENT;
1000}
1001EXPORT_SYMBOL(tcp_v4_md5_do_del);
1002
1003static void tcp_v4_clear_md5_list(struct sock *sk)
1004{
1005 struct tcp_sock *tp = tcp_sk(sk);
1006
1007 /* Free each key, then the set of key keys,
1008 * the crypto element, and then decrement our
1009 * hold on the last resort crypto.
1010 */
1011 if (tp->md5sig_info->entries4) {
1012 int i;
1013 for (i = 0; i < tp->md5sig_info->entries4; i++)
1014 kfree(tp->md5sig_info->keys4[i].base.key);
1015 tp->md5sig_info->entries4 = 0;
1016 tcp_free_md5sig_pool();
1017 }
1018 if (tp->md5sig_info->keys4) {
1019 kfree(tp->md5sig_info->keys4);
1020 tp->md5sig_info->keys4 = NULL;
1021 tp->md5sig_info->alloced4 = 0;
1022 }
1023}
1024
1025static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1026 int optlen)
1027{
1028 struct tcp_md5sig cmd;
1029 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1030 u8 *newkey;
1031
1032 if (optlen < sizeof(cmd))
1033 return -EINVAL;
1034
1035 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1036 return -EFAULT;
1037
1038 if (sin->sin_family != AF_INET)
1039 return -EINVAL;
1040
1041 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1042 if (!tcp_sk(sk)->md5sig_info)
1043 return -ENOENT;
1044 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1045 }
1046
1047 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1048 return -EINVAL;
1049
1050 if (!tcp_sk(sk)->md5sig_info) {
1051 struct tcp_sock *tp = tcp_sk(sk);
1052 struct tcp_md5sig_info *p;
1053
1054 p = kzalloc(sizeof(*p), sk->sk_allocation);
1055 if (!p)
1056 return -EINVAL;
1057
1058 tp->md5sig_info = p;
1059 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1060 }
1061
1062 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1063 if (!newkey)
1064 return -ENOMEM;
1065 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1066 newkey, cmd.tcpm_keylen);
1067}
1068
1069static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1070 __be32 daddr, __be32 saddr, int nbytes)
1071{
1072 struct tcp4_pseudohdr *bp;
1073 struct scatterlist sg;
1074
1075 bp = &hp->md5_blk.ip4;
1076
1077 /*
1078 * 1. the TCP pseudo-header (in the order: source IP address,
1079 * destination IP address, zero-padded protocol number, and
1080 * segment length)
1081 */
1082 bp->saddr = saddr;
1083 bp->daddr = daddr;
1084 bp->pad = 0;
1085 bp->protocol = IPPROTO_TCP;
1086 bp->len = cpu_to_be16(nbytes);
1087
1088 sg_init_one(&sg, bp, sizeof(*bp));
1089 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1090}
1091
1092static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1093 __be32 daddr, __be32 saddr, struct tcphdr *th)
1094{
1095 struct tcp_md5sig_pool *hp;
1096 struct hash_desc *desc;
1097
1098 hp = tcp_get_md5sig_pool();
1099 if (!hp)
1100 goto clear_hash_noput;
1101 desc = &hp->md5_desc;
1102
1103 if (crypto_hash_init(desc))
1104 goto clear_hash;
1105 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1106 goto clear_hash;
1107 if (tcp_md5_hash_header(hp, th))
1108 goto clear_hash;
1109 if (tcp_md5_hash_key(hp, key))
1110 goto clear_hash;
1111 if (crypto_hash_final(desc, md5_hash))
1112 goto clear_hash;
1113
1114 tcp_put_md5sig_pool();
1115 return 0;
1116
1117clear_hash:
1118 tcp_put_md5sig_pool();
1119clear_hash_noput:
1120 memset(md5_hash, 0, 16);
1121 return 1;
1122}
1123
1124int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1125 struct sock *sk, struct request_sock *req,
1126 struct sk_buff *skb)
1127{
1128 struct tcp_md5sig_pool *hp;
1129 struct hash_desc *desc;
1130 struct tcphdr *th = tcp_hdr(skb);
1131 __be32 saddr, daddr;
1132
1133 if (sk) {
1134 saddr = inet_sk(sk)->inet_saddr;
1135 daddr = inet_sk(sk)->inet_daddr;
1136 } else if (req) {
1137 saddr = inet_rsk(req)->loc_addr;
1138 daddr = inet_rsk(req)->rmt_addr;
1139 } else {
1140 const struct iphdr *iph = ip_hdr(skb);
1141 saddr = iph->saddr;
1142 daddr = iph->daddr;
1143 }
1144
1145 hp = tcp_get_md5sig_pool();
1146 if (!hp)
1147 goto clear_hash_noput;
1148 desc = &hp->md5_desc;
1149
1150 if (crypto_hash_init(desc))
1151 goto clear_hash;
1152
1153 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1154 goto clear_hash;
1155 if (tcp_md5_hash_header(hp, th))
1156 goto clear_hash;
1157 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1158 goto clear_hash;
1159 if (tcp_md5_hash_key(hp, key))
1160 goto clear_hash;
1161 if (crypto_hash_final(desc, md5_hash))
1162 goto clear_hash;
1163
1164 tcp_put_md5sig_pool();
1165 return 0;
1166
1167clear_hash:
1168 tcp_put_md5sig_pool();
1169clear_hash_noput:
1170 memset(md5_hash, 0, 16);
1171 return 1;
1172}
1173EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1174
1175static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1176{
1177 /*
1178 * This gets called for each TCP segment that arrives
1179 * so we want to be efficient.
1180 * We have 3 drop cases:
1181 * o No MD5 hash and one expected.
1182 * o MD5 hash and we're not expecting one.
1183 * o MD5 hash and its wrong.
1184 */
1185 __u8 *hash_location = NULL;
1186 struct tcp_md5sig_key *hash_expected;
1187 const struct iphdr *iph = ip_hdr(skb);
1188 struct tcphdr *th = tcp_hdr(skb);
1189 int genhash;
1190 unsigned char newhash[16];
1191
1192 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1193 hash_location = tcp_parse_md5sig_option(th);
1194
1195 /* We've parsed the options - do we have a hash? */
1196 if (!hash_expected && !hash_location)
1197 return 0;
1198
1199 if (hash_expected && !hash_location) {
1200 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1201 return 1;
1202 }
1203
1204 if (!hash_expected && hash_location) {
1205 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1206 return 1;
1207 }
1208
1209 /* Okay, so this is hash_expected and hash_location -
1210 * so we need to calculate the checksum.
1211 */
1212 genhash = tcp_v4_md5_hash_skb(newhash,
1213 hash_expected,
1214 NULL, NULL, skb);
1215
1216 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1217 if (net_ratelimit()) {
1218 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1219 &iph->saddr, ntohs(th->source),
1220 &iph->daddr, ntohs(th->dest),
1221 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1222 }
1223 return 1;
1224 }
1225 return 0;
1226}
1227
1228#endif
1229
1230struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1231 .family = PF_INET,
1232 .obj_size = sizeof(struct tcp_request_sock),
1233 .rtx_syn_ack = tcp_v4_rtx_synack,
1234 .send_ack = tcp_v4_reqsk_send_ack,
1235 .destructor = tcp_v4_reqsk_destructor,
1236 .send_reset = tcp_v4_send_reset,
1237 .syn_ack_timeout = tcp_syn_ack_timeout,
1238};
1239
1240#ifdef CONFIG_TCP_MD5SIG
1241static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1242 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1243 .calc_md5_hash = tcp_v4_md5_hash_skb,
1244};
1245#endif
1246
1247int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1248{
1249 struct tcp_extend_values tmp_ext;
1250 struct tcp_options_received tmp_opt;
1251 u8 *hash_location;
1252 struct request_sock *req;
1253 struct inet_request_sock *ireq;
1254 struct tcp_sock *tp = tcp_sk(sk);
1255 struct dst_entry *dst = NULL;
1256 __be32 saddr = ip_hdr(skb)->saddr;
1257 __be32 daddr = ip_hdr(skb)->daddr;
1258 __u32 isn = TCP_SKB_CB(skb)->when;
1259 int want_cookie = 0;
1260
1261 /* Never answer to SYNs send to broadcast or multicast */
1262 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1263 goto drop;
1264
1265 /* TW buckets are converted to open requests without
1266 * limitations, they conserve resources and peer is
1267 * evidently real one.
1268 */
1269 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1270 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1271 if (!want_cookie)
1272 goto drop;
1273 }
1274
1275 /* Accept backlog is full. If we have already queued enough
1276 * of warm entries in syn queue, drop request. It is better than
1277 * clogging syn queue with openreqs with exponentially increasing
1278 * timeout.
1279 */
1280 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1281 goto drop;
1282
1283 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1284 if (!req)
1285 goto drop;
1286
1287#ifdef CONFIG_TCP_MD5SIG
1288 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1289#endif
1290
1291 tcp_clear_options(&tmp_opt);
1292 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1293 tmp_opt.user_mss = tp->rx_opt.user_mss;
1294 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1295
1296 if (tmp_opt.cookie_plus > 0 &&
1297 tmp_opt.saw_tstamp &&
1298 !tp->rx_opt.cookie_out_never &&
1299 (sysctl_tcp_cookie_size > 0 ||
1300 (tp->cookie_values != NULL &&
1301 tp->cookie_values->cookie_desired > 0))) {
1302 u8 *c;
1303 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1304 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1305
1306 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1307 goto drop_and_release;
1308
1309 /* Secret recipe starts with IP addresses */
1310 *mess++ ^= (__force u32)daddr;
1311 *mess++ ^= (__force u32)saddr;
1312
1313 /* plus variable length Initiator Cookie */
1314 c = (u8 *)mess;
1315 while (l-- > 0)
1316 *c++ ^= *hash_location++;
1317
1318 want_cookie = 0; /* not our kind of cookie */
1319 tmp_ext.cookie_out_never = 0; /* false */
1320 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1321 } else if (!tp->rx_opt.cookie_in_always) {
1322 /* redundant indications, but ensure initialization. */
1323 tmp_ext.cookie_out_never = 1; /* true */
1324 tmp_ext.cookie_plus = 0;
1325 } else {
1326 goto drop_and_release;
1327 }
1328 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1329
1330 if (want_cookie && !tmp_opt.saw_tstamp)
1331 tcp_clear_options(&tmp_opt);
1332
1333 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1334 tcp_openreq_init(req, &tmp_opt, skb);
1335
1336 ireq = inet_rsk(req);
1337 ireq->loc_addr = daddr;
1338 ireq->rmt_addr = saddr;
1339 ireq->no_srccheck = inet_sk(sk)->transparent;
1340 ireq->opt = tcp_v4_save_options(sk, skb);
1341
1342 if (security_inet_conn_request(sk, skb, req))
1343 goto drop_and_free;
1344
1345 if (!want_cookie || tmp_opt.tstamp_ok)
1346 TCP_ECN_create_request(req, tcp_hdr(skb));
1347
1348 if (want_cookie) {
1349 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1350 req->cookie_ts = tmp_opt.tstamp_ok;
1351 } else if (!isn) {
1352 struct inet_peer *peer = NULL;
1353 struct flowi4 fl4;
1354
1355 /* VJ's idea. We save last timestamp seen
1356 * from the destination in peer table, when entering
1357 * state TIME-WAIT, and check against it before
1358 * accepting new connection request.
1359 *
1360 * If "isn" is not zero, this request hit alive
1361 * timewait bucket, so that all the necessary checks
1362 * are made in the function processing timewait state.
1363 */
1364 if (tmp_opt.saw_tstamp &&
1365 tcp_death_row.sysctl_tw_recycle &&
1366 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1367 fl4.daddr == saddr &&
1368 (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1369 inet_peer_refcheck(peer);
1370 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1371 (s32)(peer->tcp_ts - req->ts_recent) >
1372 TCP_PAWS_WINDOW) {
1373 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1374 goto drop_and_release;
1375 }
1376 }
1377 /* Kill the following clause, if you dislike this way. */
1378 else if (!sysctl_tcp_syncookies &&
1379 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1380 (sysctl_max_syn_backlog >> 2)) &&
1381 (!peer || !peer->tcp_ts_stamp) &&
1382 (!dst || !dst_metric(dst, RTAX_RTT))) {
1383 /* Without syncookies last quarter of
1384 * backlog is filled with destinations,
1385 * proven to be alive.
1386 * It means that we continue to communicate
1387 * to destinations, already remembered
1388 * to the moment of synflood.
1389 */
1390 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1391 &saddr, ntohs(tcp_hdr(skb)->source));
1392 goto drop_and_release;
1393 }
1394
1395 isn = tcp_v4_init_sequence(skb);
1396 }
1397 tcp_rsk(req)->snt_isn = isn;
1398 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1399
1400 if (tcp_v4_send_synack(sk, dst, req,
1401 (struct request_values *)&tmp_ext) ||
1402 want_cookie)
1403 goto drop_and_free;
1404
1405 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1406 return 0;
1407
1408drop_and_release:
1409 dst_release(dst);
1410drop_and_free:
1411 reqsk_free(req);
1412drop:
1413 return 0;
1414}
1415EXPORT_SYMBOL(tcp_v4_conn_request);
1416
1417
1418/*
1419 * The three way handshake has completed - we got a valid synack -
1420 * now create the new socket.
1421 */
1422struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1423 struct request_sock *req,
1424 struct dst_entry *dst)
1425{
1426 struct inet_request_sock *ireq;
1427 struct inet_sock *newinet;
1428 struct tcp_sock *newtp;
1429 struct sock *newsk;
1430#ifdef CONFIG_TCP_MD5SIG
1431 struct tcp_md5sig_key *key;
1432#endif
1433 struct ip_options_rcu *inet_opt;
1434
1435 if (sk_acceptq_is_full(sk))
1436 goto exit_overflow;
1437
1438 newsk = tcp_create_openreq_child(sk, req, skb);
1439 if (!newsk)
1440 goto exit_nonewsk;
1441
1442 newsk->sk_gso_type = SKB_GSO_TCPV4;
1443
1444 newtp = tcp_sk(newsk);
1445 newinet = inet_sk(newsk);
1446 ireq = inet_rsk(req);
1447 newinet->inet_daddr = ireq->rmt_addr;
1448 newinet->inet_rcv_saddr = ireq->loc_addr;
1449 newinet->inet_saddr = ireq->loc_addr;
1450 inet_opt = ireq->opt;
1451 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1452 ireq->opt = NULL;
1453 newinet->mc_index = inet_iif(skb);
1454 newinet->mc_ttl = ip_hdr(skb)->ttl;
1455 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1456 if (inet_opt)
1457 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1458 newinet->inet_id = newtp->write_seq ^ jiffies;
1459
1460 if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1461 goto put_and_exit;
1462
1463 sk_setup_caps(newsk, dst);
1464
1465 tcp_mtup_init(newsk);
1466 tcp_sync_mss(newsk, dst_mtu(dst));
1467 newtp->advmss = dst_metric_advmss(dst);
1468 if (tcp_sk(sk)->rx_opt.user_mss &&
1469 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1470 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1471
1472 tcp_initialize_rcv_mss(newsk);
1473 if (tcp_rsk(req)->snt_synack)
1474 tcp_valid_rtt_meas(newsk,
1475 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1476 newtp->total_retrans = req->retrans;
1477
1478#ifdef CONFIG_TCP_MD5SIG
1479 /* Copy over the MD5 key from the original socket */
1480 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1481 if (key != NULL) {
1482 /*
1483 * We're using one, so create a matching key
1484 * on the newsk structure. If we fail to get
1485 * memory, then we end up not copying the key
1486 * across. Shucks.
1487 */
1488 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1489 if (newkey != NULL)
1490 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1491 newkey, key->keylen);
1492 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1493 }
1494#endif
1495
1496 if (__inet_inherit_port(sk, newsk) < 0)
1497 goto put_and_exit;
1498 __inet_hash_nolisten(newsk, NULL);
1499
1500 return newsk;
1501
1502exit_overflow:
1503 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1504exit_nonewsk:
1505 dst_release(dst);
1506exit:
1507 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1508 return NULL;
1509put_and_exit:
1510 sock_put(newsk);
1511 goto exit;
1512}
1513EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1514
1515static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1516{
1517 struct tcphdr *th = tcp_hdr(skb);
1518 const struct iphdr *iph = ip_hdr(skb);
1519 struct sock *nsk;
1520 struct request_sock **prev;
1521 /* Find possible connection requests. */
1522 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1523 iph->saddr, iph->daddr);
1524 if (req)
1525 return tcp_check_req(sk, skb, req, prev);
1526
1527 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1528 th->source, iph->daddr, th->dest, inet_iif(skb));
1529
1530 if (nsk) {
1531 if (nsk->sk_state != TCP_TIME_WAIT) {
1532 bh_lock_sock(nsk);
1533 return nsk;
1534 }
1535 inet_twsk_put(inet_twsk(nsk));
1536 return NULL;
1537 }
1538
1539#ifdef CONFIG_SYN_COOKIES
1540 if (!th->syn)
1541 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1542#endif
1543 return sk;
1544}
1545
1546static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1547{
1548 const struct iphdr *iph = ip_hdr(skb);
1549
1550 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1551 if (!tcp_v4_check(skb->len, iph->saddr,
1552 iph->daddr, skb->csum)) {
1553 skb->ip_summed = CHECKSUM_UNNECESSARY;
1554 return 0;
1555 }
1556 }
1557
1558 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1559 skb->len, IPPROTO_TCP, 0);
1560
1561 if (skb->len <= 76) {
1562 return __skb_checksum_complete(skb);
1563 }
1564 return 0;
1565}
1566
1567
1568/* The socket must have it's spinlock held when we get
1569 * here.
1570 *
1571 * We have a potential double-lock case here, so even when
1572 * doing backlog processing we use the BH locking scheme.
1573 * This is because we cannot sleep with the original spinlock
1574 * held.
1575 */
1576int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1577{
1578 struct sock *rsk;
1579#ifdef CONFIG_TCP_MD5SIG
1580 /*
1581 * We really want to reject the packet as early as possible
1582 * if:
1583 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1584 * o There is an MD5 option and we're not expecting one
1585 */
1586 if (tcp_v4_inbound_md5_hash(sk, skb))
1587 goto discard;
1588#endif
1589
1590 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1591 sock_rps_save_rxhash(sk, skb->rxhash);
1592 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1593 rsk = sk;
1594 goto reset;
1595 }
1596 return 0;
1597 }
1598
1599 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1600 goto csum_err;
1601
1602 if (sk->sk_state == TCP_LISTEN) {
1603 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1604 if (!nsk)
1605 goto discard;
1606
1607 if (nsk != sk) {
1608 sock_rps_save_rxhash(nsk, skb->rxhash);
1609 if (tcp_child_process(sk, nsk, skb)) {
1610 rsk = nsk;
1611 goto reset;
1612 }
1613 return 0;
1614 }
1615 } else
1616 sock_rps_save_rxhash(sk, skb->rxhash);
1617
1618 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1619 rsk = sk;
1620 goto reset;
1621 }
1622 return 0;
1623
1624reset:
1625 tcp_v4_send_reset(rsk, skb);
1626discard:
1627 kfree_skb(skb);
1628 /* Be careful here. If this function gets more complicated and
1629 * gcc suffers from register pressure on the x86, sk (in %ebx)
1630 * might be destroyed here. This current version compiles correctly,
1631 * but you have been warned.
1632 */
1633 return 0;
1634
1635csum_err:
1636 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1637 goto discard;
1638}
1639EXPORT_SYMBOL(tcp_v4_do_rcv);
1640
1641/*
1642 * From tcp_input.c
1643 */
1644
1645int tcp_v4_rcv(struct sk_buff *skb)
1646{
1647 const struct iphdr *iph;
1648 struct tcphdr *th;
1649 struct sock *sk;
1650 int ret;
1651 struct net *net = dev_net(skb->dev);
1652
1653 if (skb->pkt_type != PACKET_HOST)
1654 goto discard_it;
1655
1656 /* Count it even if it's bad */
1657 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1658
1659 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1660 goto discard_it;
1661
1662 th = tcp_hdr(skb);
1663
1664 if (th->doff < sizeof(struct tcphdr) / 4)
1665 goto bad_packet;
1666 if (!pskb_may_pull(skb, th->doff * 4))
1667 goto discard_it;
1668
1669 /* An explanation is required here, I think.
1670 * Packet length and doff are validated by header prediction,
1671 * provided case of th->doff==0 is eliminated.
1672 * So, we defer the checks. */
1673 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1674 goto bad_packet;
1675
1676 th = tcp_hdr(skb);
1677 iph = ip_hdr(skb);
1678 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1679 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1680 skb->len - th->doff * 4);
1681 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1682 TCP_SKB_CB(skb)->when = 0;
1683 TCP_SKB_CB(skb)->flags = iph->tos;
1684 TCP_SKB_CB(skb)->sacked = 0;
1685
1686 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1687 if (!sk)
1688 goto no_tcp_socket;
1689
1690process:
1691 if (sk->sk_state == TCP_TIME_WAIT)
1692 goto do_time_wait;
1693
1694 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1695 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1696 goto discard_and_relse;
1697 }
1698
1699 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1700 goto discard_and_relse;
1701 nf_reset(skb);
1702
1703 if (sk_filter(sk, skb))
1704 goto discard_and_relse;
1705
1706 skb->dev = NULL;
1707
1708 bh_lock_sock_nested(sk);
1709 ret = 0;
1710 if (!sock_owned_by_user(sk)) {
1711#ifdef CONFIG_NET_DMA
1712 struct tcp_sock *tp = tcp_sk(sk);
1713 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1714 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1715 if (tp->ucopy.dma_chan)
1716 ret = tcp_v4_do_rcv(sk, skb);
1717 else
1718#endif
1719 {
1720 if (!tcp_prequeue(sk, skb))
1721 ret = tcp_v4_do_rcv(sk, skb);
1722 }
1723 } else if (unlikely(sk_add_backlog(sk, skb))) {
1724 bh_unlock_sock(sk);
1725 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1726 goto discard_and_relse;
1727 }
1728 bh_unlock_sock(sk);
1729
1730 sock_put(sk);
1731
1732 return ret;
1733
1734no_tcp_socket:
1735 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1736 goto discard_it;
1737
1738 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1739bad_packet:
1740 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1741 } else {
1742 tcp_v4_send_reset(NULL, skb);
1743 }
1744
1745discard_it:
1746 /* Discard frame. */
1747 kfree_skb(skb);
1748 return 0;
1749
1750discard_and_relse:
1751 sock_put(sk);
1752 goto discard_it;
1753
1754do_time_wait:
1755 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1756 inet_twsk_put(inet_twsk(sk));
1757 goto discard_it;
1758 }
1759
1760 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1761 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1762 inet_twsk_put(inet_twsk(sk));
1763 goto discard_it;
1764 }
1765 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1766 case TCP_TW_SYN: {
1767 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1768 &tcp_hashinfo,
1769 iph->daddr, th->dest,
1770 inet_iif(skb));
1771 if (sk2) {
1772 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1773 inet_twsk_put(inet_twsk(sk));
1774 sk = sk2;
1775 goto process;
1776 }
1777 /* Fall through to ACK */
1778 }
1779 case TCP_TW_ACK:
1780 tcp_v4_timewait_ack(sk, skb);
1781 break;
1782 case TCP_TW_RST:
1783 goto no_tcp_socket;
1784 case TCP_TW_SUCCESS:;
1785 }
1786 goto discard_it;
1787}
1788
1789struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1790{
1791 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1792 struct inet_sock *inet = inet_sk(sk);
1793 struct inet_peer *peer;
1794
1795 if (!rt ||
1796 inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1797 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1798 *release_it = true;
1799 } else {
1800 if (!rt->peer)
1801 rt_bind_peer(rt, inet->inet_daddr, 1);
1802 peer = rt->peer;
1803 *release_it = false;
1804 }
1805
1806 return peer;
1807}
1808EXPORT_SYMBOL(tcp_v4_get_peer);
1809
1810void *tcp_v4_tw_get_peer(struct sock *sk)
1811{
1812 struct inet_timewait_sock *tw = inet_twsk(sk);
1813
1814 return inet_getpeer_v4(tw->tw_daddr, 1);
1815}
1816EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1817
1818static struct timewait_sock_ops tcp_timewait_sock_ops = {
1819 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1820 .twsk_unique = tcp_twsk_unique,
1821 .twsk_destructor= tcp_twsk_destructor,
1822 .twsk_getpeer = tcp_v4_tw_get_peer,
1823};
1824
1825const struct inet_connection_sock_af_ops ipv4_specific = {
1826 .queue_xmit = ip_queue_xmit,
1827 .send_check = tcp_v4_send_check,
1828 .rebuild_header = inet_sk_rebuild_header,
1829 .conn_request = tcp_v4_conn_request,
1830 .syn_recv_sock = tcp_v4_syn_recv_sock,
1831 .get_peer = tcp_v4_get_peer,
1832 .net_header_len = sizeof(struct iphdr),
1833 .setsockopt = ip_setsockopt,
1834 .getsockopt = ip_getsockopt,
1835 .addr2sockaddr = inet_csk_addr2sockaddr,
1836 .sockaddr_len = sizeof(struct sockaddr_in),
1837 .bind_conflict = inet_csk_bind_conflict,
1838#ifdef CONFIG_COMPAT
1839 .compat_setsockopt = compat_ip_setsockopt,
1840 .compat_getsockopt = compat_ip_getsockopt,
1841#endif
1842};
1843EXPORT_SYMBOL(ipv4_specific);
1844
1845#ifdef CONFIG_TCP_MD5SIG
1846static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1847 .md5_lookup = tcp_v4_md5_lookup,
1848 .calc_md5_hash = tcp_v4_md5_hash_skb,
1849 .md5_add = tcp_v4_md5_add_func,
1850 .md5_parse = tcp_v4_parse_md5_keys,
1851};
1852#endif
1853
1854/* NOTE: A lot of things set to zero explicitly by call to
1855 * sk_alloc() so need not be done here.
1856 */
1857static int tcp_v4_init_sock(struct sock *sk)
1858{
1859 struct inet_connection_sock *icsk = inet_csk(sk);
1860 struct tcp_sock *tp = tcp_sk(sk);
1861
1862 skb_queue_head_init(&tp->out_of_order_queue);
1863 tcp_init_xmit_timers(sk);
1864 tcp_prequeue_init(tp);
1865
1866 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1867 tp->mdev = TCP_TIMEOUT_INIT;
1868
1869 /* So many TCP implementations out there (incorrectly) count the
1870 * initial SYN frame in their delayed-ACK and congestion control
1871 * algorithms that we must have the following bandaid to talk
1872 * efficiently to them. -DaveM
1873 */
1874 tp->snd_cwnd = TCP_INIT_CWND;
1875
1876 /* See draft-stevens-tcpca-spec-01 for discussion of the
1877 * initialization of these values.
1878 */
1879 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1880 tp->snd_cwnd_clamp = ~0;
1881 tp->mss_cache = TCP_MSS_DEFAULT;
1882
1883 tp->reordering = sysctl_tcp_reordering;
1884 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1885
1886 sk->sk_state = TCP_CLOSE;
1887
1888 sk->sk_write_space = sk_stream_write_space;
1889 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1890
1891 icsk->icsk_af_ops = &ipv4_specific;
1892 icsk->icsk_sync_mss = tcp_sync_mss;
1893#ifdef CONFIG_TCP_MD5SIG
1894 tp->af_specific = &tcp_sock_ipv4_specific;
1895#endif
1896
1897 /* TCP Cookie Transactions */
1898 if (sysctl_tcp_cookie_size > 0) {
1899 /* Default, cookies without s_data_payload. */
1900 tp->cookie_values =
1901 kzalloc(sizeof(*tp->cookie_values),
1902 sk->sk_allocation);
1903 if (tp->cookie_values != NULL)
1904 kref_init(&tp->cookie_values->kref);
1905 }
1906 /* Presumed zeroed, in order of appearance:
1907 * cookie_in_always, cookie_out_never,
1908 * s_data_constant, s_data_in, s_data_out
1909 */
1910 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1911 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1912
1913 local_bh_disable();
1914 percpu_counter_inc(&tcp_sockets_allocated);
1915 local_bh_enable();
1916
1917 return 0;
1918}
1919
1920void tcp_v4_destroy_sock(struct sock *sk)
1921{
1922 struct tcp_sock *tp = tcp_sk(sk);
1923
1924 tcp_clear_xmit_timers(sk);
1925
1926 tcp_cleanup_congestion_control(sk);
1927
1928 /* Cleanup up the write buffer. */
1929 tcp_write_queue_purge(sk);
1930
1931 /* Cleans up our, hopefully empty, out_of_order_queue. */
1932 __skb_queue_purge(&tp->out_of_order_queue);
1933
1934#ifdef CONFIG_TCP_MD5SIG
1935 /* Clean up the MD5 key list, if any */
1936 if (tp->md5sig_info) {
1937 tcp_v4_clear_md5_list(sk);
1938 kfree(tp->md5sig_info);
1939 tp->md5sig_info = NULL;
1940 }
1941#endif
1942
1943#ifdef CONFIG_NET_DMA
1944 /* Cleans up our sk_async_wait_queue */
1945 __skb_queue_purge(&sk->sk_async_wait_queue);
1946#endif
1947
1948 /* Clean prequeue, it must be empty really */
1949 __skb_queue_purge(&tp->ucopy.prequeue);
1950
1951 /* Clean up a referenced TCP bind bucket. */
1952 if (inet_csk(sk)->icsk_bind_hash)
1953 inet_put_port(sk);
1954
1955 /*
1956 * If sendmsg cached page exists, toss it.
1957 */
1958 if (sk->sk_sndmsg_page) {
1959 __free_page(sk->sk_sndmsg_page);
1960 sk->sk_sndmsg_page = NULL;
1961 }
1962
1963 /* TCP Cookie Transactions */
1964 if (tp->cookie_values != NULL) {
1965 kref_put(&tp->cookie_values->kref,
1966 tcp_cookie_values_release);
1967 tp->cookie_values = NULL;
1968 }
1969
1970 percpu_counter_dec(&tcp_sockets_allocated);
1971}
1972EXPORT_SYMBOL(tcp_v4_destroy_sock);
1973
1974#ifdef CONFIG_PROC_FS
1975/* Proc filesystem TCP sock list dumping. */
1976
1977static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1978{
1979 return hlist_nulls_empty(head) ? NULL :
1980 list_entry(head->first, struct inet_timewait_sock, tw_node);
1981}
1982
1983static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1984{
1985 return !is_a_nulls(tw->tw_node.next) ?
1986 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1987}
1988
1989/*
1990 * Get next listener socket follow cur. If cur is NULL, get first socket
1991 * starting from bucket given in st->bucket; when st->bucket is zero the
1992 * very first socket in the hash table is returned.
1993 */
1994static void *listening_get_next(struct seq_file *seq, void *cur)
1995{
1996 struct inet_connection_sock *icsk;
1997 struct hlist_nulls_node *node;
1998 struct sock *sk = cur;
1999 struct inet_listen_hashbucket *ilb;
2000 struct tcp_iter_state *st = seq->private;
2001 struct net *net = seq_file_net(seq);
2002
2003 if (!sk) {
2004 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2005 spin_lock_bh(&ilb->lock);
2006 sk = sk_nulls_head(&ilb->head);
2007 st->offset = 0;
2008 goto get_sk;
2009 }
2010 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2011 ++st->num;
2012 ++st->offset;
2013
2014 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2015 struct request_sock *req = cur;
2016
2017 icsk = inet_csk(st->syn_wait_sk);
2018 req = req->dl_next;
2019 while (1) {
2020 while (req) {
2021 if (req->rsk_ops->family == st->family) {
2022 cur = req;
2023 goto out;
2024 }
2025 req = req->dl_next;
2026 }
2027 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2028 break;
2029get_req:
2030 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2031 }
2032 sk = sk_nulls_next(st->syn_wait_sk);
2033 st->state = TCP_SEQ_STATE_LISTENING;
2034 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2035 } else {
2036 icsk = inet_csk(sk);
2037 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2038 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2039 goto start_req;
2040 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2041 sk = sk_nulls_next(sk);
2042 }
2043get_sk:
2044 sk_nulls_for_each_from(sk, node) {
2045 if (!net_eq(sock_net(sk), net))
2046 continue;
2047 if (sk->sk_family == st->family) {
2048 cur = sk;
2049 goto out;
2050 }
2051 icsk = inet_csk(sk);
2052 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2053 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2054start_req:
2055 st->uid = sock_i_uid(sk);
2056 st->syn_wait_sk = sk;
2057 st->state = TCP_SEQ_STATE_OPENREQ;
2058 st->sbucket = 0;
2059 goto get_req;
2060 }
2061 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2062 }
2063 spin_unlock_bh(&ilb->lock);
2064 st->offset = 0;
2065 if (++st->bucket < INET_LHTABLE_SIZE) {
2066 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2067 spin_lock_bh(&ilb->lock);
2068 sk = sk_nulls_head(&ilb->head);
2069 goto get_sk;
2070 }
2071 cur = NULL;
2072out:
2073 return cur;
2074}
2075
2076static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2077{
2078 struct tcp_iter_state *st = seq->private;
2079 void *rc;
2080
2081 st->bucket = 0;
2082 st->offset = 0;
2083 rc = listening_get_next(seq, NULL);
2084
2085 while (rc && *pos) {
2086 rc = listening_get_next(seq, rc);
2087 --*pos;
2088 }
2089 return rc;
2090}
2091
2092static inline int empty_bucket(struct tcp_iter_state *st)
2093{
2094 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2095 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2096}
2097
2098/*
2099 * Get first established socket starting from bucket given in st->bucket.
2100 * If st->bucket is zero, the very first socket in the hash is returned.
2101 */
2102static void *established_get_first(struct seq_file *seq)
2103{
2104 struct tcp_iter_state *st = seq->private;
2105 struct net *net = seq_file_net(seq);
2106 void *rc = NULL;
2107
2108 st->offset = 0;
2109 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2110 struct sock *sk;
2111 struct hlist_nulls_node *node;
2112 struct inet_timewait_sock *tw;
2113 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2114
2115 /* Lockless fast path for the common case of empty buckets */
2116 if (empty_bucket(st))
2117 continue;
2118
2119 spin_lock_bh(lock);
2120 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2121 if (sk->sk_family != st->family ||
2122 !net_eq(sock_net(sk), net)) {
2123 continue;
2124 }
2125 rc = sk;
2126 goto out;
2127 }
2128 st->state = TCP_SEQ_STATE_TIME_WAIT;
2129 inet_twsk_for_each(tw, node,
2130 &tcp_hashinfo.ehash[st->bucket].twchain) {
2131 if (tw->tw_family != st->family ||
2132 !net_eq(twsk_net(tw), net)) {
2133 continue;
2134 }
2135 rc = tw;
2136 goto out;
2137 }
2138 spin_unlock_bh(lock);
2139 st->state = TCP_SEQ_STATE_ESTABLISHED;
2140 }
2141out:
2142 return rc;
2143}
2144
2145static void *established_get_next(struct seq_file *seq, void *cur)
2146{
2147 struct sock *sk = cur;
2148 struct inet_timewait_sock *tw;
2149 struct hlist_nulls_node *node;
2150 struct tcp_iter_state *st = seq->private;
2151 struct net *net = seq_file_net(seq);
2152
2153 ++st->num;
2154 ++st->offset;
2155
2156 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2157 tw = cur;
2158 tw = tw_next(tw);
2159get_tw:
2160 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2161 tw = tw_next(tw);
2162 }
2163 if (tw) {
2164 cur = tw;
2165 goto out;
2166 }
2167 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2168 st->state = TCP_SEQ_STATE_ESTABLISHED;
2169
2170 /* Look for next non empty bucket */
2171 st->offset = 0;
2172 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2173 empty_bucket(st))
2174 ;
2175 if (st->bucket > tcp_hashinfo.ehash_mask)
2176 return NULL;
2177
2178 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2179 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2180 } else
2181 sk = sk_nulls_next(sk);
2182
2183 sk_nulls_for_each_from(sk, node) {
2184 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2185 goto found;
2186 }
2187
2188 st->state = TCP_SEQ_STATE_TIME_WAIT;
2189 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2190 goto get_tw;
2191found:
2192 cur = sk;
2193out:
2194 return cur;
2195}
2196
2197static void *established_get_idx(struct seq_file *seq, loff_t pos)
2198{
2199 struct tcp_iter_state *st = seq->private;
2200 void *rc;
2201
2202 st->bucket = 0;
2203 rc = established_get_first(seq);
2204
2205 while (rc && pos) {
2206 rc = established_get_next(seq, rc);
2207 --pos;
2208 }
2209 return rc;
2210}
2211
2212static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2213{
2214 void *rc;
2215 struct tcp_iter_state *st = seq->private;
2216
2217 st->state = TCP_SEQ_STATE_LISTENING;
2218 rc = listening_get_idx(seq, &pos);
2219
2220 if (!rc) {
2221 st->state = TCP_SEQ_STATE_ESTABLISHED;
2222 rc = established_get_idx(seq, pos);
2223 }
2224
2225 return rc;
2226}
2227
2228static void *tcp_seek_last_pos(struct seq_file *seq)
2229{
2230 struct tcp_iter_state *st = seq->private;
2231 int offset = st->offset;
2232 int orig_num = st->num;
2233 void *rc = NULL;
2234
2235 switch (st->state) {
2236 case TCP_SEQ_STATE_OPENREQ:
2237 case TCP_SEQ_STATE_LISTENING:
2238 if (st->bucket >= INET_LHTABLE_SIZE)
2239 break;
2240 st->state = TCP_SEQ_STATE_LISTENING;
2241 rc = listening_get_next(seq, NULL);
2242 while (offset-- && rc)
2243 rc = listening_get_next(seq, rc);
2244 if (rc)
2245 break;
2246 st->bucket = 0;
2247 /* Fallthrough */
2248 case TCP_SEQ_STATE_ESTABLISHED:
2249 case TCP_SEQ_STATE_TIME_WAIT:
2250 st->state = TCP_SEQ_STATE_ESTABLISHED;
2251 if (st->bucket > tcp_hashinfo.ehash_mask)
2252 break;
2253 rc = established_get_first(seq);
2254 while (offset-- && rc)
2255 rc = established_get_next(seq, rc);
2256 }
2257
2258 st->num = orig_num;
2259
2260 return rc;
2261}
2262
2263static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2264{
2265 struct tcp_iter_state *st = seq->private;
2266 void *rc;
2267
2268 if (*pos && *pos == st->last_pos) {
2269 rc = tcp_seek_last_pos(seq);
2270 if (rc)
2271 goto out;
2272 }
2273
2274 st->state = TCP_SEQ_STATE_LISTENING;
2275 st->num = 0;
2276 st->bucket = 0;
2277 st->offset = 0;
2278 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2279
2280out:
2281 st->last_pos = *pos;
2282 return rc;
2283}
2284
2285static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2286{
2287 struct tcp_iter_state *st = seq->private;
2288 void *rc = NULL;
2289
2290 if (v == SEQ_START_TOKEN) {
2291 rc = tcp_get_idx(seq, 0);
2292 goto out;
2293 }
2294
2295 switch (st->state) {
2296 case TCP_SEQ_STATE_OPENREQ:
2297 case TCP_SEQ_STATE_LISTENING:
2298 rc = listening_get_next(seq, v);
2299 if (!rc) {
2300 st->state = TCP_SEQ_STATE_ESTABLISHED;
2301 st->bucket = 0;
2302 st->offset = 0;
2303 rc = established_get_first(seq);
2304 }
2305 break;
2306 case TCP_SEQ_STATE_ESTABLISHED:
2307 case TCP_SEQ_STATE_TIME_WAIT:
2308 rc = established_get_next(seq, v);
2309 break;
2310 }
2311out:
2312 ++*pos;
2313 st->last_pos = *pos;
2314 return rc;
2315}
2316
2317static void tcp_seq_stop(struct seq_file *seq, void *v)
2318{
2319 struct tcp_iter_state *st = seq->private;
2320
2321 switch (st->state) {
2322 case TCP_SEQ_STATE_OPENREQ:
2323 if (v) {
2324 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2325 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2326 }
2327 case TCP_SEQ_STATE_LISTENING:
2328 if (v != SEQ_START_TOKEN)
2329 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2330 break;
2331 case TCP_SEQ_STATE_TIME_WAIT:
2332 case TCP_SEQ_STATE_ESTABLISHED:
2333 if (v)
2334 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2335 break;
2336 }
2337}
2338
2339static int tcp_seq_open(struct inode *inode, struct file *file)
2340{
2341 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2342 struct tcp_iter_state *s;
2343 int err;
2344
2345 err = seq_open_net(inode, file, &afinfo->seq_ops,
2346 sizeof(struct tcp_iter_state));
2347 if (err < 0)
2348 return err;
2349
2350 s = ((struct seq_file *)file->private_data)->private;
2351 s->family = afinfo->family;
2352 s->last_pos = 0;
2353 return 0;
2354}
2355
2356int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2357{
2358 int rc = 0;
2359 struct proc_dir_entry *p;
2360
2361 afinfo->seq_fops.open = tcp_seq_open;
2362 afinfo->seq_fops.read = seq_read;
2363 afinfo->seq_fops.llseek = seq_lseek;
2364 afinfo->seq_fops.release = seq_release_net;
2365
2366 afinfo->seq_ops.start = tcp_seq_start;
2367 afinfo->seq_ops.next = tcp_seq_next;
2368 afinfo->seq_ops.stop = tcp_seq_stop;
2369
2370 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2371 &afinfo->seq_fops, afinfo);
2372 if (!p)
2373 rc = -ENOMEM;
2374 return rc;
2375}
2376EXPORT_SYMBOL(tcp_proc_register);
2377
2378void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2379{
2380 proc_net_remove(net, afinfo->name);
2381}
2382EXPORT_SYMBOL(tcp_proc_unregister);
2383
2384static void get_openreq4(struct sock *sk, struct request_sock *req,
2385 struct seq_file *f, int i, int uid, int *len)
2386{
2387 const struct inet_request_sock *ireq = inet_rsk(req);
2388 int ttd = req->expires - jiffies;
2389
2390 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2391 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2392 i,
2393 ireq->loc_addr,
2394 ntohs(inet_sk(sk)->inet_sport),
2395 ireq->rmt_addr,
2396 ntohs(ireq->rmt_port),
2397 TCP_SYN_RECV,
2398 0, 0, /* could print option size, but that is af dependent. */
2399 1, /* timers active (only the expire timer) */
2400 jiffies_to_clock_t(ttd),
2401 req->retrans,
2402 uid,
2403 0, /* non standard timer */
2404 0, /* open_requests have no inode */
2405 atomic_read(&sk->sk_refcnt),
2406 req,
2407 len);
2408}
2409
2410static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2411{
2412 int timer_active;
2413 unsigned long timer_expires;
2414 struct tcp_sock *tp = tcp_sk(sk);
2415 const struct inet_connection_sock *icsk = inet_csk(sk);
2416 struct inet_sock *inet = inet_sk(sk);
2417 __be32 dest = inet->inet_daddr;
2418 __be32 src = inet->inet_rcv_saddr;
2419 __u16 destp = ntohs(inet->inet_dport);
2420 __u16 srcp = ntohs(inet->inet_sport);
2421 int rx_queue;
2422
2423 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2424 timer_active = 1;
2425 timer_expires = icsk->icsk_timeout;
2426 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2427 timer_active = 4;
2428 timer_expires = icsk->icsk_timeout;
2429 } else if (timer_pending(&sk->sk_timer)) {
2430 timer_active = 2;
2431 timer_expires = sk->sk_timer.expires;
2432 } else {
2433 timer_active = 0;
2434 timer_expires = jiffies;
2435 }
2436
2437 if (sk->sk_state == TCP_LISTEN)
2438 rx_queue = sk->sk_ack_backlog;
2439 else
2440 /*
2441 * because we dont lock socket, we might find a transient negative value
2442 */
2443 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2444
2445 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2446 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2447 i, src, srcp, dest, destp, sk->sk_state,
2448 tp->write_seq - tp->snd_una,
2449 rx_queue,
2450 timer_active,
2451 jiffies_to_clock_t(timer_expires - jiffies),
2452 icsk->icsk_retransmits,
2453 sock_i_uid(sk),
2454 icsk->icsk_probes_out,
2455 sock_i_ino(sk),
2456 atomic_read(&sk->sk_refcnt), sk,
2457 jiffies_to_clock_t(icsk->icsk_rto),
2458 jiffies_to_clock_t(icsk->icsk_ack.ato),
2459 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2460 tp->snd_cwnd,
2461 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2462 len);
2463}
2464
2465static void get_timewait4_sock(struct inet_timewait_sock *tw,
2466 struct seq_file *f, int i, int *len)
2467{
2468 __be32 dest, src;
2469 __u16 destp, srcp;
2470 int ttd = tw->tw_ttd - jiffies;
2471
2472 if (ttd < 0)
2473 ttd = 0;
2474
2475 dest = tw->tw_daddr;
2476 src = tw->tw_rcv_saddr;
2477 destp = ntohs(tw->tw_dport);
2478 srcp = ntohs(tw->tw_sport);
2479
2480 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2481 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2482 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2483 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2484 atomic_read(&tw->tw_refcnt), tw, len);
2485}
2486
2487#define TMPSZ 150
2488
2489static int tcp4_seq_show(struct seq_file *seq, void *v)
2490{
2491 struct tcp_iter_state *st;
2492 int len;
2493
2494 if (v == SEQ_START_TOKEN) {
2495 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2496 " sl local_address rem_address st tx_queue "
2497 "rx_queue tr tm->when retrnsmt uid timeout "
2498 "inode");
2499 goto out;
2500 }
2501 st = seq->private;
2502
2503 switch (st->state) {
2504 case TCP_SEQ_STATE_LISTENING:
2505 case TCP_SEQ_STATE_ESTABLISHED:
2506 get_tcp4_sock(v, seq, st->num, &len);
2507 break;
2508 case TCP_SEQ_STATE_OPENREQ:
2509 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2510 break;
2511 case TCP_SEQ_STATE_TIME_WAIT:
2512 get_timewait4_sock(v, seq, st->num, &len);
2513 break;
2514 }
2515 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2516out:
2517 return 0;
2518}
2519
2520static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2521 .name = "tcp",
2522 .family = AF_INET,
2523 .seq_fops = {
2524 .owner = THIS_MODULE,
2525 },
2526 .seq_ops = {
2527 .show = tcp4_seq_show,
2528 },
2529};
2530
2531static int __net_init tcp4_proc_init_net(struct net *net)
2532{
2533 return tcp_proc_register(net, &tcp4_seq_afinfo);
2534}
2535
2536static void __net_exit tcp4_proc_exit_net(struct net *net)
2537{
2538 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2539}
2540
2541static struct pernet_operations tcp4_net_ops = {
2542 .init = tcp4_proc_init_net,
2543 .exit = tcp4_proc_exit_net,
2544};
2545
2546int __init tcp4_proc_init(void)
2547{
2548 return register_pernet_subsys(&tcp4_net_ops);
2549}
2550
2551void tcp4_proc_exit(void)
2552{
2553 unregister_pernet_subsys(&tcp4_net_ops);
2554}
2555#endif /* CONFIG_PROC_FS */
2556
2557struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2558{
2559 const struct iphdr *iph = skb_gro_network_header(skb);
2560
2561 switch (skb->ip_summed) {
2562 case CHECKSUM_COMPLETE:
2563 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2564 skb->csum)) {
2565 skb->ip_summed = CHECKSUM_UNNECESSARY;
2566 break;
2567 }
2568
2569 /* fall through */
2570 case CHECKSUM_NONE:
2571 NAPI_GRO_CB(skb)->flush = 1;
2572 return NULL;
2573 }
2574
2575 return tcp_gro_receive(head, skb);
2576}
2577
2578int tcp4_gro_complete(struct sk_buff *skb)
2579{
2580 const struct iphdr *iph = ip_hdr(skb);
2581 struct tcphdr *th = tcp_hdr(skb);
2582
2583 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2584 iph->saddr, iph->daddr, 0);
2585 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2586
2587 return tcp_gro_complete(skb);
2588}
2589
2590struct proto tcp_prot = {
2591 .name = "TCP",
2592 .owner = THIS_MODULE,
2593 .close = tcp_close,
2594 .connect = tcp_v4_connect,
2595 .disconnect = tcp_disconnect,
2596 .accept = inet_csk_accept,
2597 .ioctl = tcp_ioctl,
2598 .init = tcp_v4_init_sock,
2599 .destroy = tcp_v4_destroy_sock,
2600 .shutdown = tcp_shutdown,
2601 .setsockopt = tcp_setsockopt,
2602 .getsockopt = tcp_getsockopt,
2603 .recvmsg = tcp_recvmsg,
2604 .sendmsg = tcp_sendmsg,
2605 .sendpage = tcp_sendpage,
2606 .backlog_rcv = tcp_v4_do_rcv,
2607 .hash = inet_hash,
2608 .unhash = inet_unhash,
2609 .get_port = inet_csk_get_port,
2610 .enter_memory_pressure = tcp_enter_memory_pressure,
2611 .sockets_allocated = &tcp_sockets_allocated,
2612 .orphan_count = &tcp_orphan_count,
2613 .memory_allocated = &tcp_memory_allocated,
2614 .memory_pressure = &tcp_memory_pressure,
2615 .sysctl_mem = sysctl_tcp_mem,
2616 .sysctl_wmem = sysctl_tcp_wmem,
2617 .sysctl_rmem = sysctl_tcp_rmem,
2618 .max_header = MAX_TCP_HEADER,
2619 .obj_size = sizeof(struct tcp_sock),
2620 .slab_flags = SLAB_DESTROY_BY_RCU,
2621 .twsk_prot = &tcp_timewait_sock_ops,
2622 .rsk_prot = &tcp_request_sock_ops,
2623 .h.hashinfo = &tcp_hashinfo,
2624 .no_autobind = true,
2625#ifdef CONFIG_COMPAT
2626 .compat_setsockopt = compat_tcp_setsockopt,
2627 .compat_getsockopt = compat_tcp_getsockopt,
2628#endif
2629};
2630EXPORT_SYMBOL(tcp_prot);
2631
2632
2633static int __net_init tcp_sk_init(struct net *net)
2634{
2635 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2636 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2637}
2638
2639static void __net_exit tcp_sk_exit(struct net *net)
2640{
2641 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2642}
2643
2644static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2645{
2646 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2647}
2648
2649static struct pernet_operations __net_initdata tcp_sk_ops = {
2650 .init = tcp_sk_init,
2651 .exit = tcp_sk_exit,
2652 .exit_batch = tcp_sk_exit_batch,
2653};
2654
2655void __init tcp_v4_init(void)
2656{
2657 inet_hashinfo_init(&tcp_hashinfo);
2658 if (register_pernet_subsys(&tcp_sk_ops))
2659 panic("Failed to create the TCP control socket.\n");
2660}