Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pagewalk.h>
  42#include <linux/pfn_t.h>
  43#include <linux/memremap.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/balloon_compaction.h>
  46#include <linux/mmu_notifier.h>
  47#include <linux/page_idle.h>
  48#include <linux/page_owner.h>
  49#include <linux/sched/mm.h>
  50#include <linux/ptrace.h>
  51#include <linux/oom.h>
  52
  53#include <asm/tlbflush.h>
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/migrate.h>
  57
  58#include "internal.h"
  59
  60/*
  61 * migrate_prep() needs to be called before we start compiling a list of pages
  62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  63 * undesirable, use migrate_prep_local()
  64 */
  65int migrate_prep(void)
  66{
  67	/*
  68	 * Clear the LRU lists so pages can be isolated.
  69	 * Note that pages may be moved off the LRU after we have
  70	 * drained them. Those pages will fail to migrate like other
  71	 * pages that may be busy.
  72	 */
  73	lru_add_drain_all();
  74
  75	return 0;
  76}
  77
  78/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  79int migrate_prep_local(void)
  80{
  81	lru_add_drain();
  82
  83	return 0;
  84}
  85
  86int isolate_movable_page(struct page *page, isolate_mode_t mode)
  87{
  88	struct address_space *mapping;
  89
  90	/*
  91	 * Avoid burning cycles with pages that are yet under __free_pages(),
  92	 * or just got freed under us.
  93	 *
  94	 * In case we 'win' a race for a movable page being freed under us and
  95	 * raise its refcount preventing __free_pages() from doing its job
  96	 * the put_page() at the end of this block will take care of
  97	 * release this page, thus avoiding a nasty leakage.
  98	 */
  99	if (unlikely(!get_page_unless_zero(page)))
 100		goto out;
 101
 102	/*
 103	 * Check PageMovable before holding a PG_lock because page's owner
 104	 * assumes anybody doesn't touch PG_lock of newly allocated page
 105	 * so unconditionally grabbing the lock ruins page's owner side.
 106	 */
 107	if (unlikely(!__PageMovable(page)))
 108		goto out_putpage;
 109	/*
 110	 * As movable pages are not isolated from LRU lists, concurrent
 111	 * compaction threads can race against page migration functions
 112	 * as well as race against the releasing a page.
 113	 *
 114	 * In order to avoid having an already isolated movable page
 115	 * being (wrongly) re-isolated while it is under migration,
 116	 * or to avoid attempting to isolate pages being released,
 117	 * lets be sure we have the page lock
 118	 * before proceeding with the movable page isolation steps.
 119	 */
 120	if (unlikely(!trylock_page(page)))
 121		goto out_putpage;
 122
 123	if (!PageMovable(page) || PageIsolated(page))
 124		goto out_no_isolated;
 125
 126	mapping = page_mapping(page);
 127	VM_BUG_ON_PAGE(!mapping, page);
 128
 129	if (!mapping->a_ops->isolate_page(page, mode))
 130		goto out_no_isolated;
 131
 132	/* Driver shouldn't use PG_isolated bit of page->flags */
 133	WARN_ON_ONCE(PageIsolated(page));
 134	__SetPageIsolated(page);
 135	unlock_page(page);
 136
 137	return 0;
 138
 139out_no_isolated:
 140	unlock_page(page);
 141out_putpage:
 142	put_page(page);
 143out:
 144	return -EBUSY;
 145}
 146
 147/* It should be called on page which is PG_movable */
 148void putback_movable_page(struct page *page)
 149{
 150	struct address_space *mapping;
 151
 152	VM_BUG_ON_PAGE(!PageLocked(page), page);
 153	VM_BUG_ON_PAGE(!PageMovable(page), page);
 154	VM_BUG_ON_PAGE(!PageIsolated(page), page);
 155
 156	mapping = page_mapping(page);
 157	mapping->a_ops->putback_page(page);
 158	__ClearPageIsolated(page);
 159}
 160
 161/*
 162 * Put previously isolated pages back onto the appropriate lists
 163 * from where they were once taken off for compaction/migration.
 164 *
 165 * This function shall be used whenever the isolated pageset has been
 166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 167 * and isolate_huge_page().
 168 */
 169void putback_movable_pages(struct list_head *l)
 170{
 171	struct page *page;
 172	struct page *page2;
 173
 174	list_for_each_entry_safe(page, page2, l, lru) {
 175		if (unlikely(PageHuge(page))) {
 176			putback_active_hugepage(page);
 177			continue;
 178		}
 179		list_del(&page->lru);
 180		/*
 181		 * We isolated non-lru movable page so here we can use
 182		 * __PageMovable because LRU page's mapping cannot have
 183		 * PAGE_MAPPING_MOVABLE.
 184		 */
 185		if (unlikely(__PageMovable(page))) {
 186			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 187			lock_page(page);
 188			if (PageMovable(page))
 189				putback_movable_page(page);
 190			else
 191				__ClearPageIsolated(page);
 192			unlock_page(page);
 193			put_page(page);
 194		} else {
 195			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 196					page_is_file_lru(page), -thp_nr_pages(page));
 197			putback_lru_page(page);
 198		}
 199	}
 200}
 201
 202/*
 203 * Restore a potential migration pte to a working pte entry
 204 */
 205static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 206				 unsigned long addr, void *old)
 207{
 208	struct page_vma_mapped_walk pvmw = {
 209		.page = old,
 210		.vma = vma,
 211		.address = addr,
 212		.flags = PVMW_SYNC | PVMW_MIGRATION,
 213	};
 214	struct page *new;
 215	pte_t pte;
 216	swp_entry_t entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217
 218	VM_BUG_ON_PAGE(PageTail(page), page);
 219	while (page_vma_mapped_walk(&pvmw)) {
 220		if (PageKsm(page))
 221			new = page;
 222		else
 223			new = page - pvmw.page->index +
 224				linear_page_index(vma, pvmw.address);
 225
 226#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 227		/* PMD-mapped THP migration entry */
 228		if (!pvmw.pte) {
 229			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 230			remove_migration_pmd(&pvmw, new);
 231			continue;
 232		}
 233#endif
 234
 235		get_page(new);
 236		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 237		if (pte_swp_soft_dirty(*pvmw.pte))
 238			pte = pte_mksoft_dirty(pte);
 239
 240		/*
 241		 * Recheck VMA as permissions can change since migration started
 
 242		 */
 243		entry = pte_to_swp_entry(*pvmw.pte);
 244		if (is_write_migration_entry(entry))
 245			pte = maybe_mkwrite(pte, vma);
 246		else if (pte_swp_uffd_wp(*pvmw.pte))
 247			pte = pte_mkuffd_wp(pte);
 248
 249		if (unlikely(is_device_private_page(new))) {
 250			entry = make_device_private_entry(new, pte_write(pte));
 251			pte = swp_entry_to_pte(entry);
 252			if (pte_swp_soft_dirty(*pvmw.pte))
 253				pte = pte_swp_mksoft_dirty(pte);
 254			if (pte_swp_uffd_wp(*pvmw.pte))
 255				pte = pte_swp_mkuffd_wp(pte);
 256		}
 257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258#ifdef CONFIG_HUGETLB_PAGE
 259		if (PageHuge(new)) {
 260			pte = pte_mkhuge(pte);
 261			pte = arch_make_huge_pte(pte, vma, new, 0);
 262			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 263			if (PageAnon(new))
 264				hugepage_add_anon_rmap(new, vma, pvmw.address);
 265			else
 266				page_dup_rmap(new, true);
 267		} else
 268#endif
 269		{
 270			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 271
 272			if (PageAnon(new))
 273				page_add_anon_rmap(new, vma, pvmw.address, false);
 274			else
 275				page_add_file_rmap(new, false);
 276		}
 277		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 278			mlock_vma_page(new);
 
 
 279
 280		if (PageTransHuge(page) && PageMlocked(page))
 281			clear_page_mlock(page);
 
 
 
 
 
 282
 283		/* No need to invalidate - it was non-present before */
 284		update_mmu_cache(vma, pvmw.address, pvmw.pte);
 285	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286
 287	return true;
 
 
 
 
 
 
 
 288}
 289
 290/*
 291 * Get rid of all migration entries and replace them by
 292 * references to the indicated page.
 293 */
 294void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 295{
 296	struct rmap_walk_control rwc = {
 297		.rmap_one = remove_migration_pte,
 298		.arg = old,
 
 299	};
 300
 301	if (locked)
 302		rmap_walk_locked(new, &rwc);
 303	else
 304		rmap_walk(new, &rwc);
 305}
 306
 307/*
 308 * Something used the pte of a page under migration. We need to
 309 * get to the page and wait until migration is finished.
 310 * When we return from this function the fault will be retried.
 311 */
 312void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 313				spinlock_t *ptl)
 314{
 315	pte_t pte;
 316	swp_entry_t entry;
 317	struct page *page;
 318
 319	spin_lock(ptl);
 320	pte = *ptep;
 321	if (!is_swap_pte(pte))
 322		goto out;
 323
 324	entry = pte_to_swp_entry(pte);
 325	if (!is_migration_entry(entry))
 326		goto out;
 327
 328	page = migration_entry_to_page(entry);
 329
 330	/*
 331	 * Once page cache replacement of page migration started, page_count
 332	 * is zero; but we must not call put_and_wait_on_page_locked() without
 333	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
 
 
 334	 */
 335	if (!get_page_unless_zero(page))
 336		goto out;
 337	pte_unmap_unlock(ptep, ptl);
 338	put_and_wait_on_page_locked(page);
 
 339	return;
 340out:
 341	pte_unmap_unlock(ptep, ptl);
 342}
 343
 344void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 345				unsigned long address)
 346{
 347	spinlock_t *ptl = pte_lockptr(mm, pmd);
 348	pte_t *ptep = pte_offset_map(pmd, address);
 349	__migration_entry_wait(mm, ptep, ptl);
 350}
 351
 352void migration_entry_wait_huge(struct vm_area_struct *vma,
 353		struct mm_struct *mm, pte_t *pte)
 354{
 355	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 356	__migration_entry_wait(mm, pte, ptl);
 357}
 358
 359#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 360void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 
 
 361{
 362	spinlock_t *ptl;
 363	struct page *page;
 364
 365	ptl = pmd_lock(mm, pmd);
 366	if (!is_pmd_migration_entry(*pmd))
 367		goto unlock;
 368	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
 369	if (!get_page_unless_zero(page))
 370		goto unlock;
 371	spin_unlock(ptl);
 372	put_and_wait_on_page_locked(page);
 373	return;
 374unlock:
 375	spin_unlock(ptl);
 376}
 377#endif
 378
 379static int expected_page_refs(struct address_space *mapping, struct page *page)
 380{
 381	int expected_count = 1;
 382
 383	/*
 384	 * Device public or private pages have an extra refcount as they are
 385	 * ZONE_DEVICE pages.
 386	 */
 387	expected_count += is_device_private_page(page);
 388	if (mapping)
 389		expected_count += thp_nr_pages(page) + page_has_private(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390
 391	return expected_count;
 
 
 392}
 
 
 
 
 
 
 
 393
 394/*
 395 * Replace the page in the mapping.
 396 *
 397 * The number of remaining references must be:
 398 * 1 for anonymous pages without a mapping
 399 * 2 for pages with a mapping
 400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 401 */
 402int migrate_page_move_mapping(struct address_space *mapping,
 403		struct page *newpage, struct page *page, int extra_count)
 
 
 404{
 405	XA_STATE(xas, &mapping->i_pages, page_index(page));
 406	struct zone *oldzone, *newzone;
 407	int dirty;
 408	int expected_count = expected_page_refs(mapping, page) + extra_count;
 409
 410	if (!mapping) {
 411		/* Anonymous page without mapping */
 412		if (page_count(page) != expected_count)
 413			return -EAGAIN;
 414
 415		/* No turning back from here */
 416		newpage->index = page->index;
 417		newpage->mapping = page->mapping;
 418		if (PageSwapBacked(page))
 419			__SetPageSwapBacked(newpage);
 420
 421		return MIGRATEPAGE_SUCCESS;
 422	}
 423
 424	oldzone = page_zone(page);
 425	newzone = page_zone(newpage);
 426
 427	xas_lock_irq(&xas);
 428	if (page_count(page) != expected_count || xas_load(&xas) != page) {
 429		xas_unlock_irq(&xas);
 
 
 
 
 430		return -EAGAIN;
 431	}
 432
 433	if (!page_ref_freeze(page, expected_count)) {
 434		xas_unlock_irq(&xas);
 435		return -EAGAIN;
 436	}
 437
 438	/*
 439	 * Now we know that no one else is looking at the page:
 440	 * no turning back from here.
 441	 */
 442	newpage->index = page->index;
 443	newpage->mapping = page->mapping;
 444	page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */
 445	if (PageSwapBacked(page)) {
 446		__SetPageSwapBacked(newpage);
 447		if (PageSwapCache(page)) {
 448			SetPageSwapCache(newpage);
 449			set_page_private(newpage, page_private(page));
 450		}
 451	} else {
 452		VM_BUG_ON_PAGE(PageSwapCache(page), page);
 453	}
 454
 455	/* Move dirty while page refs frozen and newpage not yet exposed */
 456	dirty = PageDirty(page);
 457	if (dirty) {
 458		ClearPageDirty(page);
 459		SetPageDirty(newpage);
 
 
 460	}
 461
 462	xas_store(&xas, newpage);
 463	if (PageTransHuge(page)) {
 464		int i;
 465
 466		for (i = 1; i < HPAGE_PMD_NR; i++) {
 467			xas_next(&xas);
 468			xas_store(&xas, newpage);
 469		}
 470	}
 471
 472	/*
 473	 * Drop cache reference from old page by unfreezing
 474	 * to one less reference.
 475	 * We know this isn't the last reference.
 476	 */
 477	page_ref_unfreeze(page, expected_count - thp_nr_pages(page));
 478
 479	xas_unlock(&xas);
 480	/* Leave irq disabled to prevent preemption while updating stats */
 481
 482	/*
 483	 * If moved to a different zone then also account
 484	 * the page for that zone. Other VM counters will be
 485	 * taken care of when we establish references to the
 486	 * new page and drop references to the old page.
 487	 *
 488	 * Note that anonymous pages are accounted for
 489	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 490	 * are mapped to swap space.
 491	 */
 492	if (newzone != oldzone) {
 493		struct lruvec *old_lruvec, *new_lruvec;
 494		struct mem_cgroup *memcg;
 495
 496		memcg = page_memcg(page);
 497		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
 498		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
 499
 500		__dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
 501		__inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
 502		if (PageSwapBacked(page) && !PageSwapCache(page)) {
 503			__dec_lruvec_state(old_lruvec, NR_SHMEM);
 504			__inc_lruvec_state(new_lruvec, NR_SHMEM);
 505		}
 506		if (dirty && mapping_cap_account_dirty(mapping)) {
 507			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 508			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 509			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 510			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 511		}
 512	}
 513	local_irq_enable();
 514
 515	return MIGRATEPAGE_SUCCESS;
 516}
 517EXPORT_SYMBOL(migrate_page_move_mapping);
 518
 519/*
 520 * The expected number of remaining references is the same as that
 521 * of migrate_page_move_mapping().
 522 */
 523int migrate_huge_page_move_mapping(struct address_space *mapping,
 524				   struct page *newpage, struct page *page)
 525{
 526	XA_STATE(xas, &mapping->i_pages, page_index(page));
 527	int expected_count;
 
 
 
 
 
 
 
 
 
 
 
 
 528
 529	xas_lock_irq(&xas);
 530	expected_count = 2 + page_has_private(page);
 531	if (page_count(page) != expected_count || xas_load(&xas) != page) {
 532		xas_unlock_irq(&xas);
 
 533		return -EAGAIN;
 534	}
 535
 536	if (!page_ref_freeze(page, expected_count)) {
 537		xas_unlock_irq(&xas);
 538		return -EAGAIN;
 539	}
 540
 541	newpage->index = page->index;
 542	newpage->mapping = page->mapping;
 543
 544	get_page(newpage);
 545
 546	xas_store(&xas, newpage);
 547
 548	page_ref_unfreeze(page, expected_count - 1);
 549
 550	xas_unlock_irq(&xas);
 551
 
 552	return MIGRATEPAGE_SUCCESS;
 553}
 554
 555/*
 556 * Gigantic pages are so large that we do not guarantee that page++ pointer
 557 * arithmetic will work across the entire page.  We need something more
 558 * specialized.
 559 */
 560static void __copy_gigantic_page(struct page *dst, struct page *src,
 561				int nr_pages)
 562{
 563	int i;
 564	struct page *dst_base = dst;
 565	struct page *src_base = src;
 566
 567	for (i = 0; i < nr_pages; ) {
 568		cond_resched();
 569		copy_highpage(dst, src);
 570
 571		i++;
 572		dst = mem_map_next(dst, dst_base, i);
 573		src = mem_map_next(src, src_base, i);
 574	}
 575}
 576
 577static void copy_huge_page(struct page *dst, struct page *src)
 578{
 579	int i;
 580	int nr_pages;
 581
 582	if (PageHuge(src)) {
 583		/* hugetlbfs page */
 584		struct hstate *h = page_hstate(src);
 585		nr_pages = pages_per_huge_page(h);
 586
 587		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 588			__copy_gigantic_page(dst, src, nr_pages);
 589			return;
 590		}
 591	} else {
 592		/* thp page */
 593		BUG_ON(!PageTransHuge(src));
 594		nr_pages = thp_nr_pages(src);
 595	}
 596
 597	for (i = 0; i < nr_pages; i++) {
 598		cond_resched();
 599		copy_highpage(dst + i, src + i);
 600	}
 601}
 602
 603/*
 604 * Copy the page to its new location
 605 */
 606void migrate_page_states(struct page *newpage, struct page *page)
 607{
 608	int cpupid;
 609
 
 
 
 
 
 610	if (PageError(page))
 611		SetPageError(newpage);
 612	if (PageReferenced(page))
 613		SetPageReferenced(newpage);
 614	if (PageUptodate(page))
 615		SetPageUptodate(newpage);
 616	if (TestClearPageActive(page)) {
 617		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 618		SetPageActive(newpage);
 619	} else if (TestClearPageUnevictable(page))
 620		SetPageUnevictable(newpage);
 621	if (PageWorkingset(page))
 622		SetPageWorkingset(newpage);
 623	if (PageChecked(page))
 624		SetPageChecked(newpage);
 625	if (PageMappedToDisk(page))
 626		SetPageMappedToDisk(newpage);
 627
 628	/* Move dirty on pages not done by migrate_page_move_mapping() */
 629	if (PageDirty(page))
 630		SetPageDirty(newpage);
 631
 632	if (page_is_young(page))
 633		set_page_young(newpage);
 634	if (page_is_idle(page))
 635		set_page_idle(newpage);
 
 
 
 
 
 
 636
 637	/*
 638	 * Copy NUMA information to the new page, to prevent over-eager
 639	 * future migrations of this same page.
 640	 */
 641	cpupid = page_cpupid_xchg_last(page, -1);
 642	page_cpupid_xchg_last(newpage, cpupid);
 643
 
 644	ksm_migrate_page(newpage, page);
 645	/*
 646	 * Please do not reorder this without considering how mm/ksm.c's
 647	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 648	 */
 649	if (PageSwapCache(page))
 650		ClearPageSwapCache(page);
 651	ClearPagePrivate(page);
 652	set_page_private(page, 0);
 653
 654	/*
 655	 * If any waiters have accumulated on the new page then
 656	 * wake them up.
 657	 */
 658	if (PageWriteback(newpage))
 659		end_page_writeback(newpage);
 660
 661	/*
 662	 * PG_readahead shares the same bit with PG_reclaim.  The above
 663	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
 664	 * bit after that.
 665	 */
 666	if (PageReadahead(page))
 667		SetPageReadahead(newpage);
 668
 669	copy_page_owner(page, newpage);
 670
 671	if (!PageHuge(page))
 672		mem_cgroup_migrate(page, newpage);
 673}
 674EXPORT_SYMBOL(migrate_page_states);
 675
 676void migrate_page_copy(struct page *newpage, struct page *page)
 677{
 678	if (PageHuge(page) || PageTransHuge(page))
 679		copy_huge_page(newpage, page);
 680	else
 681		copy_highpage(newpage, page);
 682
 683	migrate_page_states(newpage, page);
 684}
 685EXPORT_SYMBOL(migrate_page_copy);
 686
 687/************************************************************
 688 *                    Migration functions
 689 ***********************************************************/
 690
 691/*
 692 * Common logic to directly migrate a single LRU page suitable for
 693 * pages that do not use PagePrivate/PagePrivate2.
 694 *
 695 * Pages are locked upon entry and exit.
 696 */
 697int migrate_page(struct address_space *mapping,
 698		struct page *newpage, struct page *page,
 699		enum migrate_mode mode)
 700{
 701	int rc;
 702
 703	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 704
 705	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 706
 707	if (rc != MIGRATEPAGE_SUCCESS)
 708		return rc;
 709
 710	if (mode != MIGRATE_SYNC_NO_COPY)
 711		migrate_page_copy(newpage, page);
 712	else
 713		migrate_page_states(newpage, page);
 714	return MIGRATEPAGE_SUCCESS;
 715}
 716EXPORT_SYMBOL(migrate_page);
 717
 718#ifdef CONFIG_BLOCK
 719/* Returns true if all buffers are successfully locked */
 720static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 721							enum migrate_mode mode)
 722{
 723	struct buffer_head *bh = head;
 724
 725	/* Simple case, sync compaction */
 726	if (mode != MIGRATE_ASYNC) {
 727		do {
 728			lock_buffer(bh);
 729			bh = bh->b_this_page;
 730
 731		} while (bh != head);
 732
 733		return true;
 734	}
 735
 736	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 737	do {
 738		if (!trylock_buffer(bh)) {
 739			/*
 740			 * We failed to lock the buffer and cannot stall in
 741			 * async migration. Release the taken locks
 742			 */
 743			struct buffer_head *failed_bh = bh;
 744			bh = head;
 745			while (bh != failed_bh) {
 746				unlock_buffer(bh);
 747				bh = bh->b_this_page;
 748			}
 749			return false;
 750		}
 751
 752		bh = bh->b_this_page;
 753	} while (bh != head);
 754	return true;
 755}
 756
 757static int __buffer_migrate_page(struct address_space *mapping,
 758		struct page *newpage, struct page *page, enum migrate_mode mode,
 759		bool check_refs)
 760{
 761	struct buffer_head *bh, *head;
 762	int rc;
 763	int expected_count;
 764
 765	if (!page_has_buffers(page))
 766		return migrate_page(mapping, newpage, page, mode);
 767
 768	/* Check whether page does not have extra refs before we do more work */
 769	expected_count = expected_page_refs(mapping, page);
 770	if (page_count(page) != expected_count)
 771		return -EAGAIN;
 772
 773	head = page_buffers(page);
 774	if (!buffer_migrate_lock_buffers(head, mode))
 775		return -EAGAIN;
 776
 777	if (check_refs) {
 778		bool busy;
 779		bool invalidated = false;
 780
 781recheck_buffers:
 782		busy = false;
 783		spin_lock(&mapping->private_lock);
 784		bh = head;
 785		do {
 786			if (atomic_read(&bh->b_count)) {
 787				busy = true;
 788				break;
 789			}
 790			bh = bh->b_this_page;
 791		} while (bh != head);
 792		if (busy) {
 793			if (invalidated) {
 794				rc = -EAGAIN;
 795				goto unlock_buffers;
 796			}
 797			spin_unlock(&mapping->private_lock);
 798			invalidate_bh_lrus();
 799			invalidated = true;
 800			goto recheck_buffers;
 801		}
 802	}
 803
 804	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 805	if (rc != MIGRATEPAGE_SUCCESS)
 806		goto unlock_buffers;
 
 
 
 
 
 
 
 
 807
 808	attach_page_private(newpage, detach_page_private(page));
 
 
 
 
 809
 810	bh = head;
 811	do {
 812		set_bh_page(bh, newpage, bh_offset(bh));
 813		bh = bh->b_this_page;
 814
 815	} while (bh != head);
 816
 817	if (mode != MIGRATE_SYNC_NO_COPY)
 818		migrate_page_copy(newpage, page);
 819	else
 820		migrate_page_states(newpage, page);
 821
 822	rc = MIGRATEPAGE_SUCCESS;
 823unlock_buffers:
 824	if (check_refs)
 825		spin_unlock(&mapping->private_lock);
 826	bh = head;
 827	do {
 828		unlock_buffer(bh);
 
 829		bh = bh->b_this_page;
 830
 831	} while (bh != head);
 832
 833	return rc;
 834}
 835
 836/*
 837 * Migration function for pages with buffers. This function can only be used
 838 * if the underlying filesystem guarantees that no other references to "page"
 839 * exist. For example attached buffer heads are accessed only under page lock.
 840 */
 841int buffer_migrate_page(struct address_space *mapping,
 842		struct page *newpage, struct page *page, enum migrate_mode mode)
 843{
 844	return __buffer_migrate_page(mapping, newpage, page, mode, false);
 845}
 846EXPORT_SYMBOL(buffer_migrate_page);
 847
 848/*
 849 * Same as above except that this variant is more careful and checks that there
 850 * are also no buffer head references. This function is the right one for
 851 * mappings where buffer heads are directly looked up and referenced (such as
 852 * block device mappings).
 853 */
 854int buffer_migrate_page_norefs(struct address_space *mapping,
 855		struct page *newpage, struct page *page, enum migrate_mode mode)
 856{
 857	return __buffer_migrate_page(mapping, newpage, page, mode, true);
 858}
 859#endif
 860
 861/*
 862 * Writeback a page to clean the dirty state
 863 */
 864static int writeout(struct address_space *mapping, struct page *page)
 865{
 866	struct writeback_control wbc = {
 867		.sync_mode = WB_SYNC_NONE,
 868		.nr_to_write = 1,
 869		.range_start = 0,
 870		.range_end = LLONG_MAX,
 871		.for_reclaim = 1
 872	};
 873	int rc;
 874
 875	if (!mapping->a_ops->writepage)
 876		/* No write method for the address space */
 877		return -EINVAL;
 878
 879	if (!clear_page_dirty_for_io(page))
 880		/* Someone else already triggered a write */
 881		return -EAGAIN;
 882
 883	/*
 884	 * A dirty page may imply that the underlying filesystem has
 885	 * the page on some queue. So the page must be clean for
 886	 * migration. Writeout may mean we loose the lock and the
 887	 * page state is no longer what we checked for earlier.
 888	 * At this point we know that the migration attempt cannot
 889	 * be successful.
 890	 */
 891	remove_migration_ptes(page, page, false);
 892
 893	rc = mapping->a_ops->writepage(page, &wbc);
 894
 895	if (rc != AOP_WRITEPAGE_ACTIVATE)
 896		/* unlocked. Relock */
 897		lock_page(page);
 898
 899	return (rc < 0) ? -EIO : -EAGAIN;
 900}
 901
 902/*
 903 * Default handling if a filesystem does not provide a migration function.
 904 */
 905static int fallback_migrate_page(struct address_space *mapping,
 906	struct page *newpage, struct page *page, enum migrate_mode mode)
 907{
 908	if (PageDirty(page)) {
 909		/* Only writeback pages in full synchronous migration */
 910		switch (mode) {
 911		case MIGRATE_SYNC:
 912		case MIGRATE_SYNC_NO_COPY:
 913			break;
 914		default:
 915			return -EBUSY;
 916		}
 917		return writeout(mapping, page);
 918	}
 919
 920	/*
 921	 * Buffers may be managed in a filesystem specific way.
 922	 * We must have no buffers or drop them.
 923	 */
 924	if (page_has_private(page) &&
 925	    !try_to_release_page(page, GFP_KERNEL))
 926		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 927
 928	return migrate_page(mapping, newpage, page, mode);
 929}
 930
 931/*
 932 * Move a page to a newly allocated page
 933 * The page is locked and all ptes have been successfully removed.
 934 *
 935 * The new page will have replaced the old page if this function
 936 * is successful.
 937 *
 938 * Return value:
 939 *   < 0 - error code
 940 *  MIGRATEPAGE_SUCCESS - success
 941 */
 942static int move_to_new_page(struct page *newpage, struct page *page,
 943				enum migrate_mode mode)
 944{
 945	struct address_space *mapping;
 946	int rc = -EAGAIN;
 947	bool is_lru = !__PageMovable(page);
 948
 949	VM_BUG_ON_PAGE(!PageLocked(page), page);
 950	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 951
 952	mapping = page_mapping(page);
 953
 954	if (likely(is_lru)) {
 955		if (!mapping)
 956			rc = migrate_page(mapping, newpage, page, mode);
 957		else if (mapping->a_ops->migratepage)
 958			/*
 959			 * Most pages have a mapping and most filesystems
 960			 * provide a migratepage callback. Anonymous pages
 961			 * are part of swap space which also has its own
 962			 * migratepage callback. This is the most common path
 963			 * for page migration.
 964			 */
 965			rc = mapping->a_ops->migratepage(mapping, newpage,
 966							page, mode);
 967		else
 968			rc = fallback_migrate_page(mapping, newpage,
 969							page, mode);
 970	} else {
 971		/*
 972		 * In case of non-lru page, it could be released after
 973		 * isolation step. In that case, we shouldn't try migration.
 974		 */
 975		VM_BUG_ON_PAGE(!PageIsolated(page), page);
 976		if (!PageMovable(page)) {
 977			rc = MIGRATEPAGE_SUCCESS;
 978			__ClearPageIsolated(page);
 979			goto out;
 980		}
 981
 982		rc = mapping->a_ops->migratepage(mapping, newpage,
 983						page, mode);
 984		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 985			!PageIsolated(page));
 986	}
 987
 988	/*
 989	 * When successful, old pagecache page->mapping must be cleared before
 990	 * page is freed; but stats require that PageAnon be left as PageAnon.
 
 991	 */
 992	if (rc == MIGRATEPAGE_SUCCESS) {
 993		if (__PageMovable(page)) {
 994			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 995
 996			/*
 997			 * We clear PG_movable under page_lock so any compactor
 998			 * cannot try to migrate this page.
 999			 */
1000			__ClearPageIsolated(page);
1001		}
1002
 
 
 
 
1003		/*
1004		 * Anonymous and movable page->mapping will be cleared by
1005		 * free_pages_prepare so don't reset it here for keeping
1006		 * the type to work PageAnon, for example.
 
1007		 */
1008		if (!PageMappingFlags(page))
1009			page->mapping = NULL;
1010
1011		if (likely(!is_zone_device_page(newpage)))
1012			flush_dcache_page(newpage);
1013
 
 
 
 
 
 
1014	}
1015out:
 
 
1016	return rc;
1017}
1018
1019static int __unmap_and_move(struct page *page, struct page *newpage,
1020				int force, enum migrate_mode mode)
1021{
1022	int rc = -EAGAIN;
1023	int page_was_mapped = 0;
 
1024	struct anon_vma *anon_vma = NULL;
1025	bool is_lru = !__PageMovable(page);
1026
1027	if (!trylock_page(page)) {
1028		if (!force || mode == MIGRATE_ASYNC)
1029			goto out;
1030
1031		/*
1032		 * It's not safe for direct compaction to call lock_page.
1033		 * For example, during page readahead pages are added locked
1034		 * to the LRU. Later, when the IO completes the pages are
1035		 * marked uptodate and unlocked. However, the queueing
1036		 * could be merging multiple pages for one bio (e.g.
1037		 * mpage_readahead). If an allocation happens for the
1038		 * second or third page, the process can end up locking
1039		 * the same page twice and deadlocking. Rather than
1040		 * trying to be clever about what pages can be locked,
1041		 * avoid the use of lock_page for direct compaction
1042		 * altogether.
1043		 */
1044		if (current->flags & PF_MEMALLOC)
1045			goto out;
1046
1047		lock_page(page);
1048	}
1049
 
 
 
1050	if (PageWriteback(page)) {
1051		/*
1052		 * Only in the case of a full synchronous migration is it
1053		 * necessary to wait for PageWriteback. In the async case,
1054		 * the retry loop is too short and in the sync-light case,
1055		 * the overhead of stalling is too much
1056		 */
1057		switch (mode) {
1058		case MIGRATE_SYNC:
1059		case MIGRATE_SYNC_NO_COPY:
1060			break;
1061		default:
1062			rc = -EBUSY;
1063			goto out_unlock;
1064		}
1065		if (!force)
1066			goto out_unlock;
1067		wait_on_page_writeback(page);
1068	}
1069
1070	/*
1071	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1072	 * we cannot notice that anon_vma is freed while we migrates a page.
1073	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1074	 * of migration. File cache pages are no problem because of page_lock()
1075	 * File Caches may use write_page() or lock_page() in migration, then,
1076	 * just care Anon page here.
1077	 *
1078	 * Only page_get_anon_vma() understands the subtleties of
1079	 * getting a hold on an anon_vma from outside one of its mms.
1080	 * But if we cannot get anon_vma, then we won't need it anyway,
1081	 * because that implies that the anon page is no longer mapped
1082	 * (and cannot be remapped so long as we hold the page lock).
1083	 */
1084	if (PageAnon(page) && !PageKsm(page))
 
 
 
 
1085		anon_vma = page_get_anon_vma(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086
1087	/*
1088	 * Block others from accessing the new page when we get around to
1089	 * establishing additional references. We are usually the only one
1090	 * holding a reference to newpage at this point. We used to have a BUG
1091	 * here if trylock_page(newpage) fails, but would like to allow for
1092	 * cases where there might be a race with the previous use of newpage.
1093	 * This is much like races on refcount of oldpage: just don't BUG().
1094	 */
1095	if (unlikely(!trylock_page(newpage)))
1096		goto out_unlock;
1097
1098	if (unlikely(!is_lru)) {
1099		rc = move_to_new_page(newpage, page, mode);
1100		goto out_unlock_both;
1101	}
1102
1103	/*
1104	 * Corner case handling:
1105	 * 1. When a new swap-cache page is read into, it is added to the LRU
1106	 * and treated as swapcache but it has no rmap yet.
1107	 * Calling try_to_unmap() against a page->mapping==NULL page will
1108	 * trigger a BUG.  So handle it here.
1109	 * 2. An orphaned page (see truncate_complete_page) might have
1110	 * fs-private metadata. The page can be picked up due to memory
1111	 * offlining.  Everywhere else except page reclaim, the page is
1112	 * invisible to the vm, so the page can not be migrated.  So try to
1113	 * free the metadata, so the page can be freed.
1114	 */
1115	if (!page->mapping) {
1116		VM_BUG_ON_PAGE(PageAnon(page), page);
1117		if (page_has_private(page)) {
1118			try_to_free_buffers(page);
1119			goto out_unlock_both;
1120		}
1121	} else if (page_mapped(page)) {
1122		/* Establish migration ptes */
1123		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1124				page);
1125		try_to_unmap(page,
1126			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1127		page_was_mapped = 1;
1128	}
1129
 
 
 
 
1130	if (!page_mapped(page))
1131		rc = move_to_new_page(newpage, page, mode);
1132
1133	if (page_was_mapped)
1134		remove_migration_ptes(page,
1135			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1136
1137out_unlock_both:
1138	unlock_page(newpage);
1139out_unlock:
1140	/* Drop an anon_vma reference if we took one */
1141	if (anon_vma)
1142		put_anon_vma(anon_vma);
 
 
 
 
 
1143	unlock_page(page);
1144out:
1145	/*
1146	 * If migration is successful, decrease refcount of the newpage
1147	 * which will not free the page because new page owner increased
1148	 * refcounter. As well, if it is LRU page, add the page to LRU
1149	 * list in here. Use the old state of the isolated source page to
1150	 * determine if we migrated a LRU page. newpage was already unlocked
1151	 * and possibly modified by its owner - don't rely on the page
1152	 * state.
1153	 */
1154	if (rc == MIGRATEPAGE_SUCCESS) {
1155		if (unlikely(!is_lru))
1156			put_page(newpage);
1157		else
1158			putback_lru_page(newpage);
1159	}
1160
1161	return rc;
1162}
1163
1164/*
1165 * Obtain the lock on page, remove all ptes and migrate the page
1166 * to the newly allocated page in newpage.
1167 */
1168static int unmap_and_move(new_page_t get_new_page,
1169				   free_page_t put_new_page,
1170				   unsigned long private, struct page *page,
1171				   int force, enum migrate_mode mode,
1172				   enum migrate_reason reason)
1173{
1174	int rc = MIGRATEPAGE_SUCCESS;
1175	struct page *newpage = NULL;
 
1176
1177	if (!thp_migration_supported() && PageTransHuge(page))
1178		return -ENOMEM;
1179
1180	if (page_count(page) == 1) {
1181		/* page was freed from under us. So we are done. */
1182		ClearPageActive(page);
1183		ClearPageUnevictable(page);
1184		if (unlikely(__PageMovable(page))) {
1185			lock_page(page);
1186			if (!PageMovable(page))
1187				__ClearPageIsolated(page);
1188			unlock_page(page);
1189		}
1190		goto out;
1191	}
1192
1193	newpage = get_new_page(page, private);
1194	if (!newpage)
1195		return -ENOMEM;
1196
1197	rc = __unmap_and_move(page, newpage, force, mode);
1198	if (rc == MIGRATEPAGE_SUCCESS)
1199		set_page_owner_migrate_reason(newpage, reason);
1200
 
 
 
 
 
 
 
 
 
 
 
1201out:
1202	if (rc != -EAGAIN) {
1203		/*
1204		 * A page that has been migrated has all references
1205		 * removed and will be freed. A page that has not been
1206		 * migrated will have kept its references and be restored.
 
1207		 */
1208		list_del(&page->lru);
1209
1210		/*
1211		 * Compaction can migrate also non-LRU pages which are
1212		 * not accounted to NR_ISOLATED_*. They can be recognized
1213		 * as __PageMovable
1214		 */
1215		if (likely(!__PageMovable(page)))
1216			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1217					page_is_file_lru(page), -thp_nr_pages(page));
1218	}
1219
1220	/*
1221	 * If migration is successful, releases reference grabbed during
1222	 * isolation. Otherwise, restore the page to right list unless
1223	 * we want to retry.
1224	 */
1225	if (rc == MIGRATEPAGE_SUCCESS) {
1226		put_page(page);
1227		if (reason == MR_MEMORY_FAILURE) {
1228			/*
1229			 * Set PG_HWPoison on just freed page
1230			 * intentionally. Although it's rather weird,
1231			 * it's how HWPoison flag works at the moment.
1232			 */
1233			if (set_hwpoison_free_buddy_page(page))
1234				num_poisoned_pages_inc();
1235		}
1236	} else {
1237		if (rc != -EAGAIN) {
1238			if (likely(!__PageMovable(page))) {
1239				putback_lru_page(page);
1240				goto put_new;
1241			}
1242
1243			lock_page(page);
1244			if (PageMovable(page))
1245				putback_movable_page(page);
1246			else
1247				__ClearPageIsolated(page);
1248			unlock_page(page);
1249			put_page(page);
1250		}
1251put_new:
1252		if (put_new_page)
1253			put_new_page(newpage, private);
1254		else
1255			put_page(newpage);
1256	}
1257
1258	return rc;
1259}
1260
1261/*
1262 * Counterpart of unmap_and_move_page() for hugepage migration.
1263 *
1264 * This function doesn't wait the completion of hugepage I/O
1265 * because there is no race between I/O and migration for hugepage.
1266 * Note that currently hugepage I/O occurs only in direct I/O
1267 * where no lock is held and PG_writeback is irrelevant,
1268 * and writeback status of all subpages are counted in the reference
1269 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1270 * under direct I/O, the reference of the head page is 512 and a bit more.)
1271 * This means that when we try to migrate hugepage whose subpages are
1272 * doing direct I/O, some references remain after try_to_unmap() and
1273 * hugepage migration fails without data corruption.
1274 *
1275 * There is also no race when direct I/O is issued on the page under migration,
1276 * because then pte is replaced with migration swap entry and direct I/O code
1277 * will wait in the page fault for migration to complete.
1278 */
1279static int unmap_and_move_huge_page(new_page_t get_new_page,
1280				free_page_t put_new_page, unsigned long private,
1281				struct page *hpage, int force,
1282				enum migrate_mode mode, int reason)
1283{
1284	int rc = -EAGAIN;
1285	int page_was_mapped = 0;
1286	struct page *new_hpage;
1287	struct anon_vma *anon_vma = NULL;
1288	struct address_space *mapping = NULL;
1289
1290	/*
1291	 * Migratability of hugepages depends on architectures and their size.
1292	 * This check is necessary because some callers of hugepage migration
1293	 * like soft offline and memory hotremove don't walk through page
1294	 * tables or check whether the hugepage is pmd-based or not before
1295	 * kicking migration.
1296	 */
1297	if (!hugepage_migration_supported(page_hstate(hpage))) {
1298		putback_active_hugepage(hpage);
1299		return -ENOSYS;
1300	}
1301
1302	new_hpage = get_new_page(hpage, private);
1303	if (!new_hpage)
1304		return -ENOMEM;
1305
 
 
1306	if (!trylock_page(hpage)) {
1307		if (!force)
1308			goto out;
1309		switch (mode) {
1310		case MIGRATE_SYNC:
1311		case MIGRATE_SYNC_NO_COPY:
1312			break;
1313		default:
1314			goto out;
1315		}
1316		lock_page(hpage);
1317	}
1318
1319	/*
1320	 * Check for pages which are in the process of being freed.  Without
1321	 * page_mapping() set, hugetlbfs specific move page routine will not
1322	 * be called and we could leak usage counts for subpools.
1323	 */
1324	if (page_private(hpage) && !page_mapping(hpage)) {
1325		rc = -EBUSY;
1326		goto out_unlock;
1327	}
1328
1329	if (PageAnon(hpage))
1330		anon_vma = page_get_anon_vma(hpage);
1331
1332	if (unlikely(!trylock_page(new_hpage)))
1333		goto put_anon;
1334
1335	if (page_mapped(hpage)) {
1336		/*
1337		 * try_to_unmap could potentially call huge_pmd_unshare.
1338		 * Because of this, take semaphore in write mode here and
1339		 * set TTU_RMAP_LOCKED to let lower levels know we have
1340		 * taken the lock.
1341		 */
1342		mapping = hugetlb_page_mapping_lock_write(hpage);
1343		if (unlikely(!mapping))
1344			goto unlock_put_anon;
1345
1346		try_to_unmap(hpage,
1347			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1348			TTU_RMAP_LOCKED);
1349		page_was_mapped = 1;
1350		/*
1351		 * Leave mapping locked until after subsequent call to
1352		 * remove_migration_ptes()
1353		 */
1354	}
1355
1356	if (!page_mapped(hpage))
1357		rc = move_to_new_page(new_hpage, hpage, mode);
1358
1359	if (page_was_mapped) {
1360		remove_migration_ptes(hpage,
1361			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1362		i_mmap_unlock_write(mapping);
1363	}
1364
1365unlock_put_anon:
1366	unlock_page(new_hpage);
1367
1368put_anon:
1369	if (anon_vma)
1370		put_anon_vma(anon_vma);
1371
1372	if (rc == MIGRATEPAGE_SUCCESS) {
1373		move_hugetlb_state(hpage, new_hpage, reason);
1374		put_new_page = NULL;
1375	}
1376
1377out_unlock:
1378	unlock_page(hpage);
1379out:
1380	if (rc != -EAGAIN)
1381		putback_active_hugepage(hpage);
1382
1383	/*
1384	 * If migration was not successful and there's a freeing callback, use
1385	 * it.  Otherwise, put_page() will drop the reference grabbed during
1386	 * isolation.
1387	 */
1388	if (put_new_page)
1389		put_new_page(new_hpage, private);
1390	else
1391		putback_active_hugepage(new_hpage);
1392
1393	return rc;
1394}
1395
1396/*
1397 * migrate_pages - migrate the pages specified in a list, to the free pages
1398 *		   supplied as the target for the page migration
1399 *
1400 * @from:		The list of pages to be migrated.
1401 * @get_new_page:	The function used to allocate free pages to be used
1402 *			as the target of the page migration.
1403 * @put_new_page:	The function used to free target pages if migration
1404 *			fails, or NULL if no special handling is necessary.
1405 * @private:		Private data to be passed on to get_new_page()
1406 * @mode:		The migration mode that specifies the constraints for
1407 *			page migration, if any.
1408 * @reason:		The reason for page migration.
1409 *
1410 * The function returns after 10 attempts or if no pages are movable any more
1411 * because the list has become empty or no retryable pages exist any more.
1412 * The caller should call putback_movable_pages() to return pages to the LRU
1413 * or free list only if ret != 0.
1414 *
1415 * Returns the number of pages that were not migrated, or an error code.
1416 */
1417int migrate_pages(struct list_head *from, new_page_t get_new_page,
1418		free_page_t put_new_page, unsigned long private,
1419		enum migrate_mode mode, int reason)
1420{
1421	int retry = 1;
1422	int thp_retry = 1;
1423	int nr_failed = 0;
1424	int nr_succeeded = 0;
1425	int nr_thp_succeeded = 0;
1426	int nr_thp_failed = 0;
1427	int nr_thp_split = 0;
1428	int pass = 0;
1429	bool is_thp = false;
1430	struct page *page;
1431	struct page *page2;
1432	int swapwrite = current->flags & PF_SWAPWRITE;
1433	int rc, nr_subpages;
1434
1435	if (!swapwrite)
1436		current->flags |= PF_SWAPWRITE;
1437
1438	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1439		retry = 0;
1440		thp_retry = 0;
1441
1442		list_for_each_entry_safe(page, page2, from, lru) {
1443retry:
1444			/*
1445			 * THP statistics is based on the source huge page.
1446			 * Capture required information that might get lost
1447			 * during migration.
1448			 */
1449			is_thp = PageTransHuge(page) && !PageHuge(page);
1450			nr_subpages = thp_nr_pages(page);
1451			cond_resched();
1452
1453			if (PageHuge(page))
1454				rc = unmap_and_move_huge_page(get_new_page,
1455						put_new_page, private, page,
1456						pass > 2, mode, reason);
1457			else
1458				rc = unmap_and_move(get_new_page, put_new_page,
1459						private, page, pass > 2, mode,
1460						reason);
1461
1462			switch(rc) {
1463			case -ENOMEM:
1464				/*
1465				 * THP migration might be unsupported or the
1466				 * allocation could've failed so we should
1467				 * retry on the same page with the THP split
1468				 * to base pages.
1469				 *
1470				 * Head page is retried immediately and tail
1471				 * pages are added to the tail of the list so
1472				 * we encounter them after the rest of the list
1473				 * is processed.
1474				 */
1475				if (is_thp) {
1476					lock_page(page);
1477					rc = split_huge_page_to_list(page, from);
1478					unlock_page(page);
1479					if (!rc) {
1480						list_safe_reset_next(page, page2, lru);
1481						nr_thp_split++;
1482						goto retry;
1483					}
1484
1485					nr_thp_failed++;
1486					nr_failed += nr_subpages;
1487					goto out;
1488				}
1489				nr_failed++;
1490				goto out;
1491			case -EAGAIN:
1492				if (is_thp) {
1493					thp_retry++;
1494					break;
1495				}
1496				retry++;
1497				break;
1498			case MIGRATEPAGE_SUCCESS:
1499				if (is_thp) {
1500					nr_thp_succeeded++;
1501					nr_succeeded += nr_subpages;
1502					break;
1503				}
1504				nr_succeeded++;
1505				break;
1506			default:
1507				/*
1508				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1509				 * unlike -EAGAIN case, the failed page is
1510				 * removed from migration page list and not
1511				 * retried in the next outer loop.
1512				 */
1513				if (is_thp) {
1514					nr_thp_failed++;
1515					nr_failed += nr_subpages;
1516					break;
1517				}
1518				nr_failed++;
1519				break;
1520			}
1521		}
1522	}
1523	nr_failed += retry + thp_retry;
1524	nr_thp_failed += thp_retry;
1525	rc = nr_failed;
1526out:
1527	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1528	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1529	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1530	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1531	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1532	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1533			       nr_thp_failed, nr_thp_split, mode, reason);
1534
1535	if (!swapwrite)
1536		current->flags &= ~PF_SWAPWRITE;
1537
1538	return rc;
1539}
1540
1541struct page *alloc_migration_target(struct page *page, unsigned long private)
1542{
1543	struct migration_target_control *mtc;
1544	gfp_t gfp_mask;
1545	unsigned int order = 0;
1546	struct page *new_page = NULL;
1547	int nid;
1548	int zidx;
1549
1550	mtc = (struct migration_target_control *)private;
1551	gfp_mask = mtc->gfp_mask;
1552	nid = mtc->nid;
1553	if (nid == NUMA_NO_NODE)
1554		nid = page_to_nid(page);
1555
1556	if (PageHuge(page)) {
1557		struct hstate *h = page_hstate(compound_head(page));
1558
1559		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1560		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1561	}
1562
1563	if (PageTransHuge(page)) {
1564		/*
1565		 * clear __GFP_RECLAIM to make the migration callback
1566		 * consistent with regular THP allocations.
1567		 */
1568		gfp_mask &= ~__GFP_RECLAIM;
1569		gfp_mask |= GFP_TRANSHUGE;
1570		order = HPAGE_PMD_ORDER;
1571	}
1572	zidx = zone_idx(page_zone(page));
1573	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1574		gfp_mask |= __GFP_HIGHMEM;
1575
1576	new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1577
1578	if (new_page && PageTransHuge(new_page))
1579		prep_transhuge_page(new_page);
1580
1581	return new_page;
1582}
1583
1584#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
1585
1586static int store_status(int __user *status, int start, int value, int nr)
 
1587{
1588	while (nr-- > 0) {
1589		if (put_user(value, status + start))
1590			return -EFAULT;
1591		start++;
1592	}
1593
1594	return 0;
1595}
1596
1597static int do_move_pages_to_node(struct mm_struct *mm,
1598		struct list_head *pagelist, int node)
1599{
1600	int err;
1601	struct migration_target_control mtc = {
1602		.nid = node,
1603		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1604	};
1605
1606	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1607			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1608	if (err)
1609		putback_movable_pages(pagelist);
1610	return err;
 
 
 
1611}
1612
1613/*
1614 * Resolves the given address to a struct page, isolates it from the LRU and
1615 * puts it to the given pagelist.
1616 * Returns:
1617 *     errno - if the page cannot be found/isolated
1618 *     0 - when it doesn't have to be migrated because it is already on the
1619 *         target node
1620 *     1 - when it has been queued
1621 */
1622static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1623		int node, struct list_head *pagelist, bool migrate_all)
 
1624{
1625	struct vm_area_struct *vma;
1626	struct page *page;
1627	unsigned int follflags;
1628	int err;
 
 
1629
1630	mmap_read_lock(mm);
1631	err = -EFAULT;
1632	vma = find_vma(mm, addr);
1633	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1634		goto out;
1635
1636	/* FOLL_DUMP to ignore special (like zero) pages */
1637	follflags = FOLL_GET | FOLL_DUMP;
1638	page = follow_page(vma, addr, follflags);
1639
1640	err = PTR_ERR(page);
1641	if (IS_ERR(page))
1642		goto out;
 
 
 
1643
1644	err = -ENOENT;
1645	if (!page)
1646		goto out;
 
1647
1648	err = 0;
1649	if (page_to_nid(page) == node)
1650		goto out_putpage;
1651
1652	err = -EACCES;
1653	if (page_mapcount(page) > 1 && !migrate_all)
1654		goto out_putpage;
1655
1656	if (PageHuge(page)) {
1657		if (PageHead(page)) {
1658			isolate_huge_page(page, pagelist);
1659			err = 1;
1660		}
1661	} else {
1662		struct page *head;
1663
1664		head = compound_head(page);
1665		err = isolate_lru_page(head);
1666		if (err)
1667			goto out_putpage;
1668
1669		err = 1;
1670		list_add_tail(&head->lru, pagelist);
1671		mod_node_page_state(page_pgdat(head),
1672			NR_ISOLATED_ANON + page_is_file_lru(head),
1673			thp_nr_pages(head));
1674	}
1675out_putpage:
1676	/*
1677	 * Either remove the duplicate refcount from
1678	 * isolate_lru_page() or drop the page ref if it was
1679	 * not isolated.
1680	 */
1681	put_page(page);
1682out:
1683	mmap_read_unlock(mm);
1684	return err;
1685}
1686
1687static int move_pages_and_store_status(struct mm_struct *mm, int node,
1688		struct list_head *pagelist, int __user *status,
1689		int start, int i, unsigned long nr_pages)
1690{
1691	int err;
1692
1693	if (list_empty(pagelist))
1694		return 0;
 
 
 
1695
1696	err = do_move_pages_to_node(mm, pagelist, node);
1697	if (err) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1698		/*
1699		 * Positive err means the number of failed
1700		 * pages to migrate.  Since we are going to
1701		 * abort and return the number of non-migrated
1702		 * pages, so need to incude the rest of the
1703		 * nr_pages that have not been attempted as
1704		 * well.
1705		 */
1706		if (err > 0)
1707			err += nr_pages - i - 1;
1708		return err;
 
 
 
 
 
 
 
 
1709	}
1710	return store_status(status, start, node, i - start);
 
 
1711}
1712
1713/*
1714 * Migrate an array of page address onto an array of nodes and fill
1715 * the corresponding array of status.
1716 */
1717static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1718			 unsigned long nr_pages,
1719			 const void __user * __user *pages,
1720			 const int __user *nodes,
1721			 int __user *status, int flags)
1722{
1723	int current_node = NUMA_NO_NODE;
1724	LIST_HEAD(pagelist);
1725	int start, i;
1726	int err = 0, err1;
 
 
 
 
 
1727
1728	migrate_prep();
1729
1730	for (i = start = 0; i < nr_pages; i++) {
1731		const void __user *p;
1732		unsigned long addr;
1733		int node;
 
1734
1735		err = -EFAULT;
1736		if (get_user(p, pages + i))
1737			goto out_flush;
1738		if (get_user(node, nodes + i))
1739			goto out_flush;
1740		addr = (unsigned long)untagged_addr(p);
1741
1742		err = -ENODEV;
1743		if (node < 0 || node >= MAX_NUMNODES)
1744			goto out_flush;
1745		if (!node_state(node, N_MEMORY))
1746			goto out_flush;
1747
1748		err = -EACCES;
1749		if (!node_isset(node, task_nodes))
1750			goto out_flush;
1751
1752		if (current_node == NUMA_NO_NODE) {
1753			current_node = node;
1754			start = i;
1755		} else if (node != current_node) {
1756			err = move_pages_and_store_status(mm, current_node,
1757					&pagelist, status, start, i, nr_pages);
1758			if (err)
1759				goto out;
1760			start = i;
1761			current_node = node;
1762		}
1763
1764		/*
1765		 * Errors in the page lookup or isolation are not fatal and we simply
1766		 * report them via status
1767		 */
1768		err = add_page_for_migration(mm, addr, current_node,
1769				&pagelist, flags & MPOL_MF_MOVE_ALL);
1770
1771		if (err > 0) {
1772			/* The page is successfully queued for migration */
1773			continue;
 
 
 
 
 
 
 
 
 
 
 
 
1774		}
1775
1776		/*
1777		 * If the page is already on the target node (!err), store the
1778		 * node, otherwise, store the err.
1779		 */
1780		err = store_status(status, i, err ? : current_node, 1);
1781		if (err)
1782			goto out_flush;
1783
1784		err = move_pages_and_store_status(mm, current_node, &pagelist,
1785				status, start, i, nr_pages);
1786		if (err)
1787			goto out;
1788		current_node = NUMA_NO_NODE;
 
 
 
 
 
 
 
1789	}
1790out_flush:
1791	/* Make sure we do not overwrite the existing error */
1792	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1793				status, start, i, nr_pages);
1794	if (err >= 0)
1795		err = err1;
1796out:
1797	return err;
1798}
1799
1800/*
1801 * Determine the nodes of an array of pages and store it in an array of status.
1802 */
1803static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1804				const void __user **pages, int *status)
1805{
1806	unsigned long i;
1807
1808	mmap_read_lock(mm);
1809
1810	for (i = 0; i < nr_pages; i++) {
1811		unsigned long addr = (unsigned long)(*pages);
1812		struct vm_area_struct *vma;
1813		struct page *page;
1814		int err = -EFAULT;
1815
1816		vma = find_vma(mm, addr);
1817		if (!vma || addr < vma->vm_start)
1818			goto set_status;
1819
1820		/* FOLL_DUMP to ignore special (like zero) pages */
1821		page = follow_page(vma, addr, FOLL_DUMP);
1822
1823		err = PTR_ERR(page);
1824		if (IS_ERR(page))
1825			goto set_status;
1826
1827		err = page ? page_to_nid(page) : -ENOENT;
 
 
 
 
 
1828set_status:
1829		*status = err;
1830
1831		pages++;
1832		status++;
1833	}
1834
1835	mmap_read_unlock(mm);
1836}
1837
1838/*
1839 * Determine the nodes of a user array of pages and store it in
1840 * a user array of status.
1841 */
1842static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1843			 const void __user * __user *pages,
1844			 int __user *status)
1845{
1846#define DO_PAGES_STAT_CHUNK_NR 16
1847	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1848	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1849
1850	while (nr_pages) {
1851		unsigned long chunk_nr;
1852
1853		chunk_nr = nr_pages;
1854		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1855			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1856
1857		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1858			break;
1859
1860		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1861
1862		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1863			break;
1864
1865		pages += chunk_nr;
1866		status += chunk_nr;
1867		nr_pages -= chunk_nr;
1868	}
1869	return nr_pages ? -EFAULT : 0;
1870}
1871
1872/*
1873 * Move a list of pages in the address space of the currently executing
1874 * process.
1875 */
1876static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1877			     const void __user * __user *pages,
1878			     const int __user *nodes,
1879			     int __user *status, int flags)
1880{
 
1881	struct task_struct *task;
1882	struct mm_struct *mm;
1883	int err;
1884	nodemask_t task_nodes;
1885
1886	/* Check flags */
1887	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1888		return -EINVAL;
1889
1890	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1891		return -EPERM;
1892
1893	/* Find the mm_struct */
1894	rcu_read_lock();
1895	task = pid ? find_task_by_vpid(pid) : current;
1896	if (!task) {
1897		rcu_read_unlock();
1898		return -ESRCH;
1899	}
1900	get_task_struct(task);
1901
1902	/*
1903	 * Check if this process has the right to modify the specified
1904	 * process. Use the regular "ptrace_may_access()" checks.
1905	 */
1906	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 
 
 
 
 
1907		rcu_read_unlock();
1908		err = -EPERM;
1909		goto out;
1910	}
1911	rcu_read_unlock();
1912
1913 	err = security_task_movememory(task);
1914 	if (err)
1915		goto out;
1916
1917	task_nodes = cpuset_mems_allowed(task);
1918	mm = get_task_mm(task);
1919	put_task_struct(task);
1920
1921	if (!mm)
1922		return -EINVAL;
1923
1924	if (nodes)
1925		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1926				    nodes, status, flags);
1927	else
1928		err = do_pages_stat(mm, nr_pages, pages, status);
1929
1930	mmput(mm);
1931	return err;
1932
1933out:
1934	put_task_struct(task);
1935	return err;
1936}
1937
1938SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1939		const void __user * __user *, pages,
1940		const int __user *, nodes,
1941		int __user *, status, int, flags)
1942{
1943	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1944}
1945
1946#ifdef CONFIG_COMPAT
1947COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1948		       compat_uptr_t __user *, pages32,
1949		       const int __user *, nodes,
1950		       int __user *, status,
1951		       int, flags)
1952{
1953	const void __user * __user *pages;
1954	int i;
1955
1956	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1957	for (i = 0; i < nr_pages; i++) {
1958		compat_uptr_t p;
1959
1960		if (get_user(p, pages32 + i) ||
1961			put_user(compat_ptr(p), pages + i))
1962			return -EFAULT;
1963	}
1964	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1965}
1966#endif /* CONFIG_COMPAT */
1967
1968#ifdef CONFIG_NUMA_BALANCING
1969/*
1970 * Returns true if this is a safe migration target node for misplaced NUMA
1971 * pages. Currently it only checks the watermarks which crude
1972 */
1973static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1974				   unsigned long nr_migrate_pages)
1975{
1976	int z;
1977
1978	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1979		struct zone *zone = pgdat->node_zones + z;
1980
1981		if (!populated_zone(zone))
1982			continue;
1983
 
 
 
1984		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1985		if (!zone_watermark_ok(zone, 0,
1986				       high_wmark_pages(zone) +
1987				       nr_migrate_pages,
1988				       ZONE_MOVABLE, 0))
1989			continue;
1990		return true;
1991	}
1992	return false;
1993}
1994
1995static struct page *alloc_misplaced_dst_page(struct page *page,
1996					   unsigned long data)
 
1997{
1998	int nid = (int) data;
1999	struct page *newpage;
2000
2001	newpage = __alloc_pages_node(nid,
2002					 (GFP_HIGHUSER_MOVABLE |
2003					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2004					  __GFP_NORETRY | __GFP_NOWARN) &
2005					 ~__GFP_RECLAIM, 0);
2006
2007	return newpage;
2008}
2009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2010static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2011{
2012	int page_lru;
2013
2014	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2015
2016	/* Avoid migrating to a node that is nearly full */
2017	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2018		return 0;
2019
2020	if (isolate_lru_page(page))
2021		return 0;
2022
2023	/*
2024	 * migrate_misplaced_transhuge_page() skips page migration's usual
2025	 * check on page_count(), so we must do it here, now that the page
2026	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2027	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2028	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2029	 */
2030	if (PageTransHuge(page) && page_count(page) != 3) {
2031		putback_lru_page(page);
2032		return 0;
2033	}
2034
2035	page_lru = page_is_file_lru(page);
2036	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2037				thp_nr_pages(page));
2038
2039	/*
2040	 * Isolating the page has taken another reference, so the
2041	 * caller's reference can be safely dropped without the page
2042	 * disappearing underneath us during migration.
2043	 */
2044	put_page(page);
2045	return 1;
2046}
2047
2048bool pmd_trans_migrating(pmd_t pmd)
2049{
2050	struct page *page = pmd_page(pmd);
2051	return PageLocked(page);
2052}
2053
 
 
 
 
 
 
2054/*
2055 * Attempt to migrate a misplaced page to the specified destination
2056 * node. Caller is expected to have an elevated reference count on
2057 * the page that will be dropped by this function before returning.
2058 */
2059int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2060			   int node)
2061{
2062	pg_data_t *pgdat = NODE_DATA(node);
2063	int isolated;
2064	int nr_remaining;
2065	LIST_HEAD(migratepages);
2066
2067	/*
2068	 * Don't migrate file pages that are mapped in multiple processes
2069	 * with execute permissions as they are probably shared libraries.
2070	 */
2071	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2072	    (vma->vm_flags & VM_EXEC))
2073		goto out;
2074
2075	/*
2076	 * Also do not migrate dirty pages as not all filesystems can move
2077	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
 
2078	 */
2079	if (page_is_file_lru(page) && PageDirty(page))
2080		goto out;
2081
2082	isolated = numamigrate_isolate_page(pgdat, page);
2083	if (!isolated)
2084		goto out;
2085
2086	list_add(&page->lru, &migratepages);
2087	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2088				     NULL, node, MIGRATE_ASYNC,
2089				     MR_NUMA_MISPLACED);
2090	if (nr_remaining) {
2091		if (!list_empty(&migratepages)) {
2092			list_del(&page->lru);
2093			dec_node_page_state(page, NR_ISOLATED_ANON +
2094					page_is_file_lru(page));
2095			putback_lru_page(page);
2096		}
2097		isolated = 0;
2098	} else
2099		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2100	BUG_ON(!list_empty(&migratepages));
2101	return isolated;
2102
2103out:
2104	put_page(page);
2105	return 0;
2106}
2107#endif /* CONFIG_NUMA_BALANCING */
2108
2109#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2110/*
2111 * Migrates a THP to a given target node. page must be locked and is unlocked
2112 * before returning.
2113 */
2114int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2115				struct vm_area_struct *vma,
2116				pmd_t *pmd, pmd_t entry,
2117				unsigned long address,
2118				struct page *page, int node)
2119{
2120	spinlock_t *ptl;
2121	pg_data_t *pgdat = NODE_DATA(node);
2122	int isolated = 0;
2123	struct page *new_page = NULL;
2124	int page_lru = page_is_file_lru(page);
2125	unsigned long start = address & HPAGE_PMD_MASK;
 
 
 
 
 
 
 
 
 
 
 
2126
2127	new_page = alloc_pages_node(node,
2128		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2129		HPAGE_PMD_ORDER);
2130	if (!new_page)
2131		goto out_fail;
2132	prep_transhuge_page(new_page);
2133
2134	isolated = numamigrate_isolate_page(pgdat, page);
2135	if (!isolated) {
2136		put_page(new_page);
2137		goto out_fail;
2138	}
2139
 
 
 
2140	/* Prepare a page as a migration target */
2141	__SetPageLocked(new_page);
2142	if (PageSwapBacked(page))
2143		__SetPageSwapBacked(new_page);
2144
2145	/* anon mapping, we can simply copy page->mapping to the new page: */
2146	new_page->mapping = page->mapping;
2147	new_page->index = page->index;
2148	/* flush the cache before copying using the kernel virtual address */
2149	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2150	migrate_page_copy(new_page, page);
2151	WARN_ON(PageLRU(new_page));
2152
2153	/* Recheck the target PMD */
 
2154	ptl = pmd_lock(mm, pmd);
2155	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
 
2156		spin_unlock(ptl);
 
2157
2158		/* Reverse changes made by migrate_page_copy() */
2159		if (TestClearPageActive(new_page))
2160			SetPageActive(page);
2161		if (TestClearPageUnevictable(new_page))
2162			SetPageUnevictable(page);
 
2163
2164		unlock_page(new_page);
2165		put_page(new_page);		/* Free it */
2166
2167		/* Retake the callers reference and putback on LRU */
2168		get_page(page);
2169		putback_lru_page(page);
2170		mod_node_page_state(page_pgdat(page),
2171			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2172
2173		goto out_unlock;
2174	}
2175
2176	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
2177	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2178
2179	/*
2180	 * Overwrite the old entry under pagetable lock and establish
2181	 * the new PTE. Any parallel GUP will either observe the old
2182	 * page blocking on the page lock, block on the page table
2183	 * lock or observe the new page. The SetPageUptodate on the
2184	 * new page and page_add_new_anon_rmap guarantee the copy is
2185	 * visible before the pagetable update.
2186	 */
2187	page_add_anon_rmap(new_page, vma, start, true);
2188	/*
2189	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2190	 * has already been flushed globally.  So no TLB can be currently
2191	 * caching this non present pmd mapping.  There's no need to clear the
2192	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2193	 * set_pmd_at().  Clearing the pmd here would introduce a race
2194	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2195	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2196	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2197	 * pmd.
2198	 */
2199	set_pmd_at(mm, start, pmd, entry);
2200	update_mmu_cache_pmd(vma, address, &entry);
2201
2202	page_ref_unfreeze(page, 2);
2203	mlock_migrate_page(new_page, page);
2204	page_remove_rmap(page, true);
2205	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
 
 
 
2206
2207	spin_unlock(ptl);
2208
2209	/* Take an "isolate" reference and put new page on the LRU. */
2210	get_page(new_page);
2211	putback_lru_page(new_page);
 
 
 
 
 
2212
2213	unlock_page(new_page);
2214	unlock_page(page);
2215	put_page(page);			/* Drop the rmap reference */
2216	put_page(page);			/* Drop the LRU isolation reference */
2217
2218	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2219	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2220
2221	mod_node_page_state(page_pgdat(page),
2222			NR_ISOLATED_ANON + page_lru,
2223			-HPAGE_PMD_NR);
2224	return isolated;
2225
2226out_fail:
2227	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
 
2228	ptl = pmd_lock(mm, pmd);
2229	if (pmd_same(*pmd, entry)) {
2230		entry = pmd_modify(entry, vma->vm_page_prot);
2231		set_pmd_at(mm, start, pmd, entry);
2232		update_mmu_cache_pmd(vma, address, &entry);
2233	}
2234	spin_unlock(ptl);
2235
2236out_unlock:
2237	unlock_page(page);
2238	put_page(page);
2239	return 0;
2240}
2241#endif /* CONFIG_NUMA_BALANCING */
2242
2243#endif /* CONFIG_NUMA */
2244
2245#ifdef CONFIG_DEVICE_PRIVATE
2246static int migrate_vma_collect_hole(unsigned long start,
2247				    unsigned long end,
2248				    __always_unused int depth,
2249				    struct mm_walk *walk)
2250{
2251	struct migrate_vma *migrate = walk->private;
2252	unsigned long addr;
2253
2254	/* Only allow populating anonymous memory. */
2255	if (!vma_is_anonymous(walk->vma)) {
2256		for (addr = start; addr < end; addr += PAGE_SIZE) {
2257			migrate->src[migrate->npages] = 0;
2258			migrate->dst[migrate->npages] = 0;
2259			migrate->npages++;
2260		}
2261		return 0;
2262	}
2263
2264	for (addr = start; addr < end; addr += PAGE_SIZE) {
2265		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2266		migrate->dst[migrate->npages] = 0;
2267		migrate->npages++;
2268		migrate->cpages++;
2269	}
2270
2271	return 0;
2272}
2273
2274static int migrate_vma_collect_skip(unsigned long start,
2275				    unsigned long end,
2276				    struct mm_walk *walk)
2277{
2278	struct migrate_vma *migrate = walk->private;
2279	unsigned long addr;
2280
2281	for (addr = start; addr < end; addr += PAGE_SIZE) {
2282		migrate->dst[migrate->npages] = 0;
2283		migrate->src[migrate->npages++] = 0;
2284	}
2285
2286	return 0;
2287}
2288
2289static int migrate_vma_collect_pmd(pmd_t *pmdp,
2290				   unsigned long start,
2291				   unsigned long end,
2292				   struct mm_walk *walk)
2293{
2294	struct migrate_vma *migrate = walk->private;
2295	struct vm_area_struct *vma = walk->vma;
2296	struct mm_struct *mm = vma->vm_mm;
2297	unsigned long addr = start, unmapped = 0;
2298	spinlock_t *ptl;
2299	pte_t *ptep;
2300
2301again:
2302	if (pmd_none(*pmdp))
2303		return migrate_vma_collect_hole(start, end, -1, walk);
2304
2305	if (pmd_trans_huge(*pmdp)) {
2306		struct page *page;
2307
2308		ptl = pmd_lock(mm, pmdp);
2309		if (unlikely(!pmd_trans_huge(*pmdp))) {
2310			spin_unlock(ptl);
2311			goto again;
2312		}
2313
2314		page = pmd_page(*pmdp);
2315		if (is_huge_zero_page(page)) {
2316			spin_unlock(ptl);
2317			split_huge_pmd(vma, pmdp, addr);
2318			if (pmd_trans_unstable(pmdp))
2319				return migrate_vma_collect_skip(start, end,
2320								walk);
2321		} else {
2322			int ret;
2323
2324			get_page(page);
2325			spin_unlock(ptl);
2326			if (unlikely(!trylock_page(page)))
2327				return migrate_vma_collect_skip(start, end,
2328								walk);
2329			ret = split_huge_page(page);
2330			unlock_page(page);
2331			put_page(page);
2332			if (ret)
2333				return migrate_vma_collect_skip(start, end,
2334								walk);
2335			if (pmd_none(*pmdp))
2336				return migrate_vma_collect_hole(start, end, -1,
2337								walk);
2338		}
2339	}
2340
2341	if (unlikely(pmd_bad(*pmdp)))
2342		return migrate_vma_collect_skip(start, end, walk);
2343
2344	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2345	arch_enter_lazy_mmu_mode();
2346
2347	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2348		unsigned long mpfn = 0, pfn;
2349		struct page *page;
2350		swp_entry_t entry;
2351		pte_t pte;
2352
2353		pte = *ptep;
2354
2355		if (pte_none(pte)) {
2356			if (vma_is_anonymous(vma)) {
2357				mpfn = MIGRATE_PFN_MIGRATE;
2358				migrate->cpages++;
2359			}
2360			goto next;
2361		}
2362
2363		if (!pte_present(pte)) {
2364			/*
2365			 * Only care about unaddressable device page special
2366			 * page table entry. Other special swap entries are not
2367			 * migratable, and we ignore regular swapped page.
2368			 */
2369			entry = pte_to_swp_entry(pte);
2370			if (!is_device_private_entry(entry))
2371				goto next;
2372
2373			page = device_private_entry_to_page(entry);
2374			if (!(migrate->flags &
2375				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2376			    page->pgmap->owner != migrate->pgmap_owner)
2377				goto next;
2378
2379			mpfn = migrate_pfn(page_to_pfn(page)) |
2380					MIGRATE_PFN_MIGRATE;
2381			if (is_write_device_private_entry(entry))
2382				mpfn |= MIGRATE_PFN_WRITE;
2383		} else {
2384			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2385				goto next;
2386			pfn = pte_pfn(pte);
2387			if (is_zero_pfn(pfn)) {
2388				mpfn = MIGRATE_PFN_MIGRATE;
2389				migrate->cpages++;
2390				goto next;
2391			}
2392			page = vm_normal_page(migrate->vma, addr, pte);
2393			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2394			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2395		}
2396
2397		/* FIXME support THP */
2398		if (!page || !page->mapping || PageTransCompound(page)) {
2399			mpfn = 0;
2400			goto next;
2401		}
2402
2403		/*
2404		 * By getting a reference on the page we pin it and that blocks
2405		 * any kind of migration. Side effect is that it "freezes" the
2406		 * pte.
2407		 *
2408		 * We drop this reference after isolating the page from the lru
2409		 * for non device page (device page are not on the lru and thus
2410		 * can't be dropped from it).
2411		 */
2412		get_page(page);
2413		migrate->cpages++;
2414
2415		/*
2416		 * Optimize for the common case where page is only mapped once
2417		 * in one process. If we can lock the page, then we can safely
2418		 * set up a special migration page table entry now.
2419		 */
2420		if (trylock_page(page)) {
2421			pte_t swp_pte;
2422
2423			mpfn |= MIGRATE_PFN_LOCKED;
2424			ptep_get_and_clear(mm, addr, ptep);
2425
2426			/* Setup special migration page table entry */
2427			entry = make_migration_entry(page, mpfn &
2428						     MIGRATE_PFN_WRITE);
2429			swp_pte = swp_entry_to_pte(entry);
2430			if (pte_present(pte)) {
2431				if (pte_soft_dirty(pte))
2432					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2433				if (pte_uffd_wp(pte))
2434					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2435			} else {
2436				if (pte_swp_soft_dirty(pte))
2437					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2438				if (pte_swp_uffd_wp(pte))
2439					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2440			}
2441			set_pte_at(mm, addr, ptep, swp_pte);
2442
2443			/*
2444			 * This is like regular unmap: we remove the rmap and
2445			 * drop page refcount. Page won't be freed, as we took
2446			 * a reference just above.
2447			 */
2448			page_remove_rmap(page, false);
2449			put_page(page);
2450
2451			if (pte_present(pte))
2452				unmapped++;
2453		}
2454
2455next:
2456		migrate->dst[migrate->npages] = 0;
2457		migrate->src[migrate->npages++] = mpfn;
2458	}
2459	arch_leave_lazy_mmu_mode();
2460	pte_unmap_unlock(ptep - 1, ptl);
2461
2462	/* Only flush the TLB if we actually modified any entries */
2463	if (unmapped)
2464		flush_tlb_range(walk->vma, start, end);
2465
2466	return 0;
2467}
2468
2469static const struct mm_walk_ops migrate_vma_walk_ops = {
2470	.pmd_entry		= migrate_vma_collect_pmd,
2471	.pte_hole		= migrate_vma_collect_hole,
2472};
2473
2474/*
2475 * migrate_vma_collect() - collect pages over a range of virtual addresses
2476 * @migrate: migrate struct containing all migration information
2477 *
2478 * This will walk the CPU page table. For each virtual address backed by a
2479 * valid page, it updates the src array and takes a reference on the page, in
2480 * order to pin the page until we lock it and unmap it.
2481 */
2482static void migrate_vma_collect(struct migrate_vma *migrate)
2483{
2484	struct mmu_notifier_range range;
2485
2486	/*
2487	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2488	 * that the registered device driver can skip invalidating device
2489	 * private page mappings that won't be migrated.
2490	 */
2491	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2492		migrate->vma->vm_mm, migrate->start, migrate->end,
2493		migrate->pgmap_owner);
2494	mmu_notifier_invalidate_range_start(&range);
2495
2496	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2497			&migrate_vma_walk_ops, migrate);
2498
2499	mmu_notifier_invalidate_range_end(&range);
2500	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2501}
2502
2503/*
2504 * migrate_vma_check_page() - check if page is pinned or not
2505 * @page: struct page to check
2506 *
2507 * Pinned pages cannot be migrated. This is the same test as in
2508 * migrate_page_move_mapping(), except that here we allow migration of a
2509 * ZONE_DEVICE page.
2510 */
2511static bool migrate_vma_check_page(struct page *page)
2512{
2513	/*
2514	 * One extra ref because caller holds an extra reference, either from
2515	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2516	 * a device page.
2517	 */
2518	int extra = 1;
2519
2520	/*
2521	 * FIXME support THP (transparent huge page), it is bit more complex to
2522	 * check them than regular pages, because they can be mapped with a pmd
2523	 * or with a pte (split pte mapping).
2524	 */
2525	if (PageCompound(page))
2526		return false;
2527
2528	/* Page from ZONE_DEVICE have one extra reference */
2529	if (is_zone_device_page(page)) {
2530		/*
2531		 * Private page can never be pin as they have no valid pte and
2532		 * GUP will fail for those. Yet if there is a pending migration
2533		 * a thread might try to wait on the pte migration entry and
2534		 * will bump the page reference count. Sadly there is no way to
2535		 * differentiate a regular pin from migration wait. Hence to
2536		 * avoid 2 racing thread trying to migrate back to CPU to enter
2537		 * infinite loop (one stoping migration because the other is
2538		 * waiting on pte migration entry). We always return true here.
2539		 *
2540		 * FIXME proper solution is to rework migration_entry_wait() so
2541		 * it does not need to take a reference on page.
2542		 */
2543		return is_device_private_page(page);
2544	}
2545
2546	/* For file back page */
2547	if (page_mapping(page))
2548		extra += 1 + page_has_private(page);
2549
2550	if ((page_count(page) - extra) > page_mapcount(page))
2551		return false;
2552
2553	return true;
2554}
2555
2556/*
2557 * migrate_vma_prepare() - lock pages and isolate them from the lru
2558 * @migrate: migrate struct containing all migration information
2559 *
2560 * This locks pages that have been collected by migrate_vma_collect(). Once each
2561 * page is locked it is isolated from the lru (for non-device pages). Finally,
2562 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2563 * migrated by concurrent kernel threads.
2564 */
2565static void migrate_vma_prepare(struct migrate_vma *migrate)
2566{
2567	const unsigned long npages = migrate->npages;
2568	const unsigned long start = migrate->start;
2569	unsigned long addr, i, restore = 0;
2570	bool allow_drain = true;
2571
2572	lru_add_drain();
2573
2574	for (i = 0; (i < npages) && migrate->cpages; i++) {
2575		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2576		bool remap = true;
2577
2578		if (!page)
2579			continue;
2580
2581		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2582			/*
2583			 * Because we are migrating several pages there can be
2584			 * a deadlock between 2 concurrent migration where each
2585			 * are waiting on each other page lock.
2586			 *
2587			 * Make migrate_vma() a best effort thing and backoff
2588			 * for any page we can not lock right away.
2589			 */
2590			if (!trylock_page(page)) {
2591				migrate->src[i] = 0;
2592				migrate->cpages--;
2593				put_page(page);
2594				continue;
2595			}
2596			remap = false;
2597			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2598		}
2599
2600		/* ZONE_DEVICE pages are not on LRU */
2601		if (!is_zone_device_page(page)) {
2602			if (!PageLRU(page) && allow_drain) {
2603				/* Drain CPU's pagevec */
2604				lru_add_drain_all();
2605				allow_drain = false;
2606			}
2607
2608			if (isolate_lru_page(page)) {
2609				if (remap) {
2610					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2611					migrate->cpages--;
2612					restore++;
2613				} else {
2614					migrate->src[i] = 0;
2615					unlock_page(page);
2616					migrate->cpages--;
2617					put_page(page);
2618				}
2619				continue;
2620			}
2621
2622			/* Drop the reference we took in collect */
2623			put_page(page);
2624		}
2625
2626		if (!migrate_vma_check_page(page)) {
2627			if (remap) {
2628				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2629				migrate->cpages--;
2630				restore++;
2631
2632				if (!is_zone_device_page(page)) {
2633					get_page(page);
2634					putback_lru_page(page);
2635				}
2636			} else {
2637				migrate->src[i] = 0;
2638				unlock_page(page);
2639				migrate->cpages--;
2640
2641				if (!is_zone_device_page(page))
2642					putback_lru_page(page);
2643				else
2644					put_page(page);
2645			}
2646		}
2647	}
2648
2649	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2650		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2651
2652		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2653			continue;
2654
2655		remove_migration_pte(page, migrate->vma, addr, page);
2656
2657		migrate->src[i] = 0;
2658		unlock_page(page);
2659		put_page(page);
2660		restore--;
2661	}
2662}
2663
2664/*
2665 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2666 * @migrate: migrate struct containing all migration information
2667 *
2668 * Replace page mapping (CPU page table pte) with a special migration pte entry
2669 * and check again if it has been pinned. Pinned pages are restored because we
2670 * cannot migrate them.
2671 *
2672 * This is the last step before we call the device driver callback to allocate
2673 * destination memory and copy contents of original page over to new page.
2674 */
2675static void migrate_vma_unmap(struct migrate_vma *migrate)
2676{
2677	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2678	const unsigned long npages = migrate->npages;
2679	const unsigned long start = migrate->start;
2680	unsigned long addr, i, restore = 0;
2681
2682	for (i = 0; i < npages; i++) {
2683		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2684
2685		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2686			continue;
2687
2688		if (page_mapped(page)) {
2689			try_to_unmap(page, flags);
2690			if (page_mapped(page))
2691				goto restore;
2692		}
2693
2694		if (migrate_vma_check_page(page))
2695			continue;
2696
2697restore:
2698		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2699		migrate->cpages--;
2700		restore++;
2701	}
2702
2703	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2704		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2705
2706		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2707			continue;
2708
2709		remove_migration_ptes(page, page, false);
2710
2711		migrate->src[i] = 0;
2712		unlock_page(page);
2713		restore--;
2714
2715		if (is_zone_device_page(page))
2716			put_page(page);
2717		else
2718			putback_lru_page(page);
2719	}
2720}
2721
2722/**
2723 * migrate_vma_setup() - prepare to migrate a range of memory
2724 * @args: contains the vma, start, and pfns arrays for the migration
2725 *
2726 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2727 * without an error.
2728 *
2729 * Prepare to migrate a range of memory virtual address range by collecting all
2730 * the pages backing each virtual address in the range, saving them inside the
2731 * src array.  Then lock those pages and unmap them. Once the pages are locked
2732 * and unmapped, check whether each page is pinned or not.  Pages that aren't
2733 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2734 * corresponding src array entry.  Then restores any pages that are pinned, by
2735 * remapping and unlocking those pages.
2736 *
2737 * The caller should then allocate destination memory and copy source memory to
2738 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2739 * flag set).  Once these are allocated and copied, the caller must update each
2740 * corresponding entry in the dst array with the pfn value of the destination
2741 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2742 * (destination pages must have their struct pages locked, via lock_page()).
2743 *
2744 * Note that the caller does not have to migrate all the pages that are marked
2745 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2746 * device memory to system memory.  If the caller cannot migrate a device page
2747 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2748 * consequences for the userspace process, so it must be avoided if at all
2749 * possible.
2750 *
2751 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2752 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2753 * allowing the caller to allocate device memory for those unback virtual
2754 * address.  For this the caller simply has to allocate device memory and
2755 * properly set the destination entry like for regular migration.  Note that
2756 * this can still fails and thus inside the device driver must check if the
2757 * migration was successful for those entries after calling migrate_vma_pages()
2758 * just like for regular migration.
2759 *
2760 * After that, the callers must call migrate_vma_pages() to go over each entry
2761 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2762 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2763 * then migrate_vma_pages() to migrate struct page information from the source
2764 * struct page to the destination struct page.  If it fails to migrate the
2765 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2766 * src array.
2767 *
2768 * At this point all successfully migrated pages have an entry in the src
2769 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2770 * array entry with MIGRATE_PFN_VALID flag set.
2771 *
2772 * Once migrate_vma_pages() returns the caller may inspect which pages were
2773 * successfully migrated, and which were not.  Successfully migrated pages will
2774 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2775 *
2776 * It is safe to update device page table after migrate_vma_pages() because
2777 * both destination and source page are still locked, and the mmap_lock is held
2778 * in read mode (hence no one can unmap the range being migrated).
2779 *
2780 * Once the caller is done cleaning up things and updating its page table (if it
2781 * chose to do so, this is not an obligation) it finally calls
2782 * migrate_vma_finalize() to update the CPU page table to point to new pages
2783 * for successfully migrated pages or otherwise restore the CPU page table to
2784 * point to the original source pages.
2785 */
2786int migrate_vma_setup(struct migrate_vma *args)
2787{
2788	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2789
2790	args->start &= PAGE_MASK;
2791	args->end &= PAGE_MASK;
2792	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2793	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2794		return -EINVAL;
2795	if (nr_pages <= 0)
2796		return -EINVAL;
2797	if (args->start < args->vma->vm_start ||
2798	    args->start >= args->vma->vm_end)
2799		return -EINVAL;
2800	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2801		return -EINVAL;
2802	if (!args->src || !args->dst)
2803		return -EINVAL;
2804
2805	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2806	args->cpages = 0;
2807	args->npages = 0;
2808
2809	migrate_vma_collect(args);
2810
2811	if (args->cpages)
2812		migrate_vma_prepare(args);
2813	if (args->cpages)
2814		migrate_vma_unmap(args);
2815
2816	/*
2817	 * At this point pages are locked and unmapped, and thus they have
2818	 * stable content and can safely be copied to destination memory that
2819	 * is allocated by the drivers.
2820	 */
2821	return 0;
2822
2823}
2824EXPORT_SYMBOL(migrate_vma_setup);
2825
2826/*
2827 * This code closely matches the code in:
2828 *   __handle_mm_fault()
2829 *     handle_pte_fault()
2830 *       do_anonymous_page()
2831 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2832 * private page.
2833 */
2834static void migrate_vma_insert_page(struct migrate_vma *migrate,
2835				    unsigned long addr,
2836				    struct page *page,
2837				    unsigned long *src,
2838				    unsigned long *dst)
2839{
2840	struct vm_area_struct *vma = migrate->vma;
2841	struct mm_struct *mm = vma->vm_mm;
2842	bool flush = false;
2843	spinlock_t *ptl;
2844	pte_t entry;
2845	pgd_t *pgdp;
2846	p4d_t *p4dp;
2847	pud_t *pudp;
2848	pmd_t *pmdp;
2849	pte_t *ptep;
2850
2851	/* Only allow populating anonymous memory */
2852	if (!vma_is_anonymous(vma))
2853		goto abort;
2854
2855	pgdp = pgd_offset(mm, addr);
2856	p4dp = p4d_alloc(mm, pgdp, addr);
2857	if (!p4dp)
2858		goto abort;
2859	pudp = pud_alloc(mm, p4dp, addr);
2860	if (!pudp)
2861		goto abort;
2862	pmdp = pmd_alloc(mm, pudp, addr);
2863	if (!pmdp)
2864		goto abort;
2865
2866	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2867		goto abort;
2868
2869	/*
2870	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2871	 * pte_offset_map() on pmds where a huge pmd might be created
2872	 * from a different thread.
2873	 *
2874	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2875	 * parallel threads are excluded by other means.
2876	 *
2877	 * Here we only have mmap_read_lock(mm).
2878	 */
2879	if (pte_alloc(mm, pmdp))
2880		goto abort;
2881
2882	/* See the comment in pte_alloc_one_map() */
2883	if (unlikely(pmd_trans_unstable(pmdp)))
2884		goto abort;
2885
2886	if (unlikely(anon_vma_prepare(vma)))
2887		goto abort;
2888	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2889		goto abort;
2890
2891	/*
2892	 * The memory barrier inside __SetPageUptodate makes sure that
2893	 * preceding stores to the page contents become visible before
2894	 * the set_pte_at() write.
2895	 */
2896	__SetPageUptodate(page);
2897
2898	if (is_zone_device_page(page)) {
2899		if (is_device_private_page(page)) {
2900			swp_entry_t swp_entry;
2901
2902			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2903			entry = swp_entry_to_pte(swp_entry);
2904		}
2905	} else {
2906		entry = mk_pte(page, vma->vm_page_prot);
2907		if (vma->vm_flags & VM_WRITE)
2908			entry = pte_mkwrite(pte_mkdirty(entry));
2909	}
2910
2911	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2912
2913	if (check_stable_address_space(mm))
2914		goto unlock_abort;
2915
2916	if (pte_present(*ptep)) {
2917		unsigned long pfn = pte_pfn(*ptep);
2918
2919		if (!is_zero_pfn(pfn))
2920			goto unlock_abort;
2921		flush = true;
2922	} else if (!pte_none(*ptep))
2923		goto unlock_abort;
2924
2925	/*
2926	 * Check for userfaultfd but do not deliver the fault. Instead,
2927	 * just back off.
2928	 */
2929	if (userfaultfd_missing(vma))
2930		goto unlock_abort;
2931
2932	inc_mm_counter(mm, MM_ANONPAGES);
2933	page_add_new_anon_rmap(page, vma, addr, false);
2934	if (!is_zone_device_page(page))
2935		lru_cache_add_inactive_or_unevictable(page, vma);
2936	get_page(page);
2937
2938	if (flush) {
2939		flush_cache_page(vma, addr, pte_pfn(*ptep));
2940		ptep_clear_flush_notify(vma, addr, ptep);
2941		set_pte_at_notify(mm, addr, ptep, entry);
2942		update_mmu_cache(vma, addr, ptep);
2943	} else {
2944		/* No need to invalidate - it was non-present before */
2945		set_pte_at(mm, addr, ptep, entry);
2946		update_mmu_cache(vma, addr, ptep);
2947	}
2948
2949	pte_unmap_unlock(ptep, ptl);
2950	*src = MIGRATE_PFN_MIGRATE;
2951	return;
2952
2953unlock_abort:
2954	pte_unmap_unlock(ptep, ptl);
2955abort:
2956	*src &= ~MIGRATE_PFN_MIGRATE;
2957}
2958
2959/**
2960 * migrate_vma_pages() - migrate meta-data from src page to dst page
2961 * @migrate: migrate struct containing all migration information
2962 *
2963 * This migrates struct page meta-data from source struct page to destination
2964 * struct page. This effectively finishes the migration from source page to the
2965 * destination page.
2966 */
2967void migrate_vma_pages(struct migrate_vma *migrate)
2968{
2969	const unsigned long npages = migrate->npages;
2970	const unsigned long start = migrate->start;
2971	struct mmu_notifier_range range;
2972	unsigned long addr, i;
2973	bool notified = false;
2974
2975	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2976		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2977		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2978		struct address_space *mapping;
2979		int r;
2980
2981		if (!newpage) {
2982			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2983			continue;
2984		}
2985
2986		if (!page) {
2987			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2988				continue;
2989			if (!notified) {
2990				notified = true;
2991
2992				mmu_notifier_range_init(&range,
2993							MMU_NOTIFY_CLEAR, 0,
2994							NULL,
2995							migrate->vma->vm_mm,
2996							addr, migrate->end);
2997				mmu_notifier_invalidate_range_start(&range);
2998			}
2999			migrate_vma_insert_page(migrate, addr, newpage,
3000						&migrate->src[i],
3001						&migrate->dst[i]);
3002			continue;
3003		}
3004
3005		mapping = page_mapping(page);
3006
3007		if (is_zone_device_page(newpage)) {
3008			if (is_device_private_page(newpage)) {
3009				/*
3010				 * For now only support private anonymous when
3011				 * migrating to un-addressable device memory.
3012				 */
3013				if (mapping) {
3014					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3015					continue;
3016				}
3017			} else {
3018				/*
3019				 * Other types of ZONE_DEVICE page are not
3020				 * supported.
3021				 */
3022				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3023				continue;
3024			}
3025		}
3026
3027		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3028		if (r != MIGRATEPAGE_SUCCESS)
3029			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3030	}
3031
3032	/*
3033	 * No need to double call mmu_notifier->invalidate_range() callback as
3034	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3035	 * did already call it.
3036	 */
3037	if (notified)
3038		mmu_notifier_invalidate_range_only_end(&range);
3039}
3040EXPORT_SYMBOL(migrate_vma_pages);
3041
3042/**
3043 * migrate_vma_finalize() - restore CPU page table entry
3044 * @migrate: migrate struct containing all migration information
3045 *
3046 * This replaces the special migration pte entry with either a mapping to the
3047 * new page if migration was successful for that page, or to the original page
3048 * otherwise.
3049 *
3050 * This also unlocks the pages and puts them back on the lru, or drops the extra
3051 * refcount, for device pages.
3052 */
3053void migrate_vma_finalize(struct migrate_vma *migrate)
3054{
3055	const unsigned long npages = migrate->npages;
3056	unsigned long i;
3057
3058	for (i = 0; i < npages; i++) {
3059		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3060		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3061
3062		if (!page) {
3063			if (newpage) {
3064				unlock_page(newpage);
3065				put_page(newpage);
3066			}
3067			continue;
3068		}
3069
3070		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3071			if (newpage) {
3072				unlock_page(newpage);
3073				put_page(newpage);
3074			}
3075			newpage = page;
3076		}
3077
3078		remove_migration_ptes(page, newpage, false);
3079		unlock_page(page);
3080		migrate->cpages--;
3081
3082		if (is_zone_device_page(page))
3083			put_page(page);
3084		else
3085			putback_lru_page(page);
3086
3087		if (newpage != page) {
3088			unlock_page(newpage);
3089			if (is_zone_device_page(newpage))
3090				put_page(newpage);
3091			else
3092				putback_lru_page(newpage);
3093		}
3094	}
3095}
3096EXPORT_SYMBOL(migrate_vma_finalize);
3097#endif /* CONFIG_DEVICE_PRIVATE */
v3.15
 
   1/*
   2 * Memory Migration functionality - linux/mm/migration.c
   3 *
   4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   5 *
   6 * Page migration was first developed in the context of the memory hotplug
   7 * project. The main authors of the migration code are:
   8 *
   9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  10 * Hirokazu Takahashi <taka@valinux.co.jp>
  11 * Dave Hansen <haveblue@us.ibm.com>
  12 * Christoph Lameter
  13 */
  14
  15#include <linux/migrate.h>
  16#include <linux/export.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/pagemap.h>
  20#include <linux/buffer_head.h>
  21#include <linux/mm_inline.h>
  22#include <linux/nsproxy.h>
  23#include <linux/pagevec.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/memcontrol.h>
 
  34#include <linux/syscalls.h>
 
  35#include <linux/hugetlb.h>
  36#include <linux/hugetlb_cgroup.h>
  37#include <linux/gfp.h>
 
 
 
 
  38#include <linux/balloon_compaction.h>
  39#include <linux/mmu_notifier.h>
 
 
 
 
 
  40
  41#include <asm/tlbflush.h>
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/migrate.h>
  45
  46#include "internal.h"
  47
  48/*
  49 * migrate_prep() needs to be called before we start compiling a list of pages
  50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  51 * undesirable, use migrate_prep_local()
  52 */
  53int migrate_prep(void)
  54{
  55	/*
  56	 * Clear the LRU lists so pages can be isolated.
  57	 * Note that pages may be moved off the LRU after we have
  58	 * drained them. Those pages will fail to migrate like other
  59	 * pages that may be busy.
  60	 */
  61	lru_add_drain_all();
  62
  63	return 0;
  64}
  65
  66/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  67int migrate_prep_local(void)
  68{
  69	lru_add_drain();
  70
  71	return 0;
  72}
  73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74/*
  75 * Put previously isolated pages back onto the appropriate lists
  76 * from where they were once taken off for compaction/migration.
  77 *
  78 * This function shall be used whenever the isolated pageset has been
  79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
  80 * and isolate_huge_page().
  81 */
  82void putback_movable_pages(struct list_head *l)
  83{
  84	struct page *page;
  85	struct page *page2;
  86
  87	list_for_each_entry_safe(page, page2, l, lru) {
  88		if (unlikely(PageHuge(page))) {
  89			putback_active_hugepage(page);
  90			continue;
  91		}
  92		list_del(&page->lru);
  93		dec_zone_page_state(page, NR_ISOLATED_ANON +
  94				page_is_file_cache(page));
  95		if (unlikely(isolated_balloon_page(page)))
  96			balloon_page_putback(page);
  97		else
 
 
 
 
 
 
 
 
 
 
 
 
  98			putback_lru_page(page);
 
  99	}
 100}
 101
 102/*
 103 * Restore a potential migration pte to a working pte entry
 104 */
 105static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
 106				 unsigned long addr, void *old)
 107{
 108	struct mm_struct *mm = vma->vm_mm;
 
 
 
 
 
 
 
 109	swp_entry_t entry;
 110 	pmd_t *pmd;
 111	pte_t *ptep, pte;
 112 	spinlock_t *ptl;
 113
 114	if (unlikely(PageHuge(new))) {
 115		ptep = huge_pte_offset(mm, addr);
 116		if (!ptep)
 117			goto out;
 118		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
 119	} else {
 120		pmd = mm_find_pmd(mm, addr);
 121		if (!pmd)
 122			goto out;
 123		if (pmd_trans_huge(*pmd))
 124			goto out;
 125
 126		ptep = pte_offset_map(pmd, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127
 128		/*
 129		 * Peek to check is_swap_pte() before taking ptlock?  No, we
 130		 * can race mremap's move_ptes(), which skips anon_vma lock.
 131		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132
 133		ptl = pte_lockptr(mm, pmd);
 134	}
 135
 136 	spin_lock(ptl);
 137	pte = *ptep;
 138	if (!is_swap_pte(pte))
 139		goto unlock;
 140
 141	entry = pte_to_swp_entry(pte);
 142
 143	if (!is_migration_entry(entry) ||
 144	    migration_entry_to_page(entry) != old)
 145		goto unlock;
 146
 147	get_page(new);
 148	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
 149	if (pte_swp_soft_dirty(*ptep))
 150		pte = pte_mksoft_dirty(pte);
 151	if (is_write_migration_entry(entry))
 152		pte = pte_mkwrite(pte);
 153#ifdef CONFIG_HUGETLB_PAGE
 154	if (PageHuge(new)) {
 155		pte = pte_mkhuge(pte);
 156		pte = arch_make_huge_pte(pte, vma, new, 0);
 157	}
 
 
 
 
 
 158#endif
 159	flush_dcache_page(new);
 160	set_pte_at(mm, addr, ptep, pte);
 161
 162	if (PageHuge(new)) {
 163		if (PageAnon(new))
 164			hugepage_add_anon_rmap(new, vma, addr);
 165		else
 166			page_dup_rmap(new);
 167	} else if (PageAnon(new))
 168		page_add_anon_rmap(new, vma, addr);
 169	else
 170		page_add_file_rmap(new);
 171
 172	/* No need to invalidate - it was non-present before */
 173	update_mmu_cache(vma, addr, ptep);
 174unlock:
 175	pte_unmap_unlock(ptep, ptl);
 176out:
 177	return SWAP_AGAIN;
 178}
 179
 180/*
 181 * Congratulations to trinity for discovering this bug.
 182 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
 183 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
 184 * replace the specified range by file ptes throughout (maybe populated after).
 185 * If page migration finds a page within that range, while it's still located
 186 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
 187 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
 188 * But if the migrating page is in a part of the vma outside the range to be
 189 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
 190 * deal with it.  Fortunately, this part of the vma is of course still linear,
 191 * so we just need to use linear location on the nonlinear list.
 192 */
 193static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
 194		struct address_space *mapping, void *arg)
 195{
 196	struct vm_area_struct *vma;
 197	/* hugetlbfs does not support remap_pages, so no huge pgoff worries */
 198	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 199	unsigned long addr;
 200
 201	list_for_each_entry(vma,
 202		&mapping->i_mmap_nonlinear, shared.nonlinear) {
 203
 204		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 205		if (addr >= vma->vm_start && addr < vma->vm_end)
 206			remove_migration_pte(page, vma, addr, arg);
 207	}
 208	return SWAP_AGAIN;
 209}
 210
 211/*
 212 * Get rid of all migration entries and replace them by
 213 * references to the indicated page.
 214 */
 215static void remove_migration_ptes(struct page *old, struct page *new)
 216{
 217	struct rmap_walk_control rwc = {
 218		.rmap_one = remove_migration_pte,
 219		.arg = old,
 220		.file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
 221	};
 222
 223	rmap_walk(new, &rwc);
 
 
 
 224}
 225
 226/*
 227 * Something used the pte of a page under migration. We need to
 228 * get to the page and wait until migration is finished.
 229 * When we return from this function the fault will be retried.
 230 */
 231static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 232				spinlock_t *ptl)
 233{
 234	pte_t pte;
 235	swp_entry_t entry;
 236	struct page *page;
 237
 238	spin_lock(ptl);
 239	pte = *ptep;
 240	if (!is_swap_pte(pte))
 241		goto out;
 242
 243	entry = pte_to_swp_entry(pte);
 244	if (!is_migration_entry(entry))
 245		goto out;
 246
 247	page = migration_entry_to_page(entry);
 248
 249	/*
 250	 * Once radix-tree replacement of page migration started, page_count
 251	 * *must* be zero. And, we don't want to call wait_on_page_locked()
 252	 * against a page without get_page().
 253	 * So, we use get_page_unless_zero(), here. Even failed, page fault
 254	 * will occur again.
 255	 */
 256	if (!get_page_unless_zero(page))
 257		goto out;
 258	pte_unmap_unlock(ptep, ptl);
 259	wait_on_page_locked(page);
 260	put_page(page);
 261	return;
 262out:
 263	pte_unmap_unlock(ptep, ptl);
 264}
 265
 266void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 267				unsigned long address)
 268{
 269	spinlock_t *ptl = pte_lockptr(mm, pmd);
 270	pte_t *ptep = pte_offset_map(pmd, address);
 271	__migration_entry_wait(mm, ptep, ptl);
 272}
 273
 274void migration_entry_wait_huge(struct vm_area_struct *vma,
 275		struct mm_struct *mm, pte_t *pte)
 276{
 277	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 278	__migration_entry_wait(mm, pte, ptl);
 279}
 280
 281#ifdef CONFIG_BLOCK
 282/* Returns true if all buffers are successfully locked */
 283static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 284							enum migrate_mode mode)
 285{
 286	struct buffer_head *bh = head;
 
 287
 288	/* Simple case, sync compaction */
 289	if (mode != MIGRATE_ASYNC) {
 290		do {
 291			get_bh(bh);
 292			lock_buffer(bh);
 293			bh = bh->b_this_page;
 
 
 
 
 
 
 
 294
 295		} while (bh != head);
 
 
 296
 297		return true;
 298	}
 299
 300	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 301	do {
 302		get_bh(bh);
 303		if (!trylock_buffer(bh)) {
 304			/*
 305			 * We failed to lock the buffer and cannot stall in
 306			 * async migration. Release the taken locks
 307			 */
 308			struct buffer_head *failed_bh = bh;
 309			put_bh(failed_bh);
 310			bh = head;
 311			while (bh != failed_bh) {
 312				unlock_buffer(bh);
 313				put_bh(bh);
 314				bh = bh->b_this_page;
 315			}
 316			return false;
 317		}
 318
 319		bh = bh->b_this_page;
 320	} while (bh != head);
 321	return true;
 322}
 323#else
 324static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 325							enum migrate_mode mode)
 326{
 327	return true;
 328}
 329#endif /* CONFIG_BLOCK */
 330
 331/*
 332 * Replace the page in the mapping.
 333 *
 334 * The number of remaining references must be:
 335 * 1 for anonymous pages without a mapping
 336 * 2 for pages with a mapping
 337 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 338 */
 339int migrate_page_move_mapping(struct address_space *mapping,
 340		struct page *newpage, struct page *page,
 341		struct buffer_head *head, enum migrate_mode mode,
 342		int extra_count)
 343{
 344	int expected_count = 1 + extra_count;
 345	void **pslot;
 
 
 346
 347	if (!mapping) {
 348		/* Anonymous page without mapping */
 349		if (page_count(page) != expected_count)
 350			return -EAGAIN;
 
 
 
 
 
 
 
 351		return MIGRATEPAGE_SUCCESS;
 352	}
 353
 354	spin_lock_irq(&mapping->tree_lock);
 
 355
 356	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 357 					page_index(page));
 358
 359	expected_count += 1 + page_has_private(page);
 360	if (page_count(page) != expected_count ||
 361		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 362		spin_unlock_irq(&mapping->tree_lock);
 363		return -EAGAIN;
 364	}
 365
 366	if (!page_freeze_refs(page, expected_count)) {
 367		spin_unlock_irq(&mapping->tree_lock);
 368		return -EAGAIN;
 369	}
 370
 371	/*
 372	 * In the async migration case of moving a page with buffers, lock the
 373	 * buffers using trylock before the mapping is moved. If the mapping
 374	 * was moved, we later failed to lock the buffers and could not move
 375	 * the mapping back due to an elevated page count, we would have to
 376	 * block waiting on other references to be dropped.
 377	 */
 378	if (mode == MIGRATE_ASYNC && head &&
 379			!buffer_migrate_lock_buffers(head, mode)) {
 380		page_unfreeze_refs(page, expected_count);
 381		spin_unlock_irq(&mapping->tree_lock);
 382		return -EAGAIN;
 
 
 
 383	}
 384
 385	/*
 386	 * Now we know that no one else is looking at the page.
 387	 */
 388	get_page(newpage);	/* add cache reference */
 389	if (PageSwapCache(page)) {
 390		SetPageSwapCache(newpage);
 391		set_page_private(newpage, page_private(page));
 392	}
 393
 394	radix_tree_replace_slot(pslot, newpage);
 
 
 
 
 
 
 
 
 395
 396	/*
 397	 * Drop cache reference from old page by unfreezing
 398	 * to one less reference.
 399	 * We know this isn't the last reference.
 400	 */
 401	page_unfreeze_refs(page, expected_count - 1);
 
 
 
 402
 403	/*
 404	 * If moved to a different zone then also account
 405	 * the page for that zone. Other VM counters will be
 406	 * taken care of when we establish references to the
 407	 * new page and drop references to the old page.
 408	 *
 409	 * Note that anonymous pages are accounted for
 410	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
 411	 * are mapped to swap space.
 412	 */
 413	__dec_zone_page_state(page, NR_FILE_PAGES);
 414	__inc_zone_page_state(newpage, NR_FILE_PAGES);
 415	if (!PageSwapCache(page) && PageSwapBacked(page)) {
 416		__dec_zone_page_state(page, NR_SHMEM);
 417		__inc_zone_page_state(newpage, NR_SHMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 418	}
 419	spin_unlock_irq(&mapping->tree_lock);
 420
 421	return MIGRATEPAGE_SUCCESS;
 422}
 
 423
 424/*
 425 * The expected number of remaining references is the same as that
 426 * of migrate_page_move_mapping().
 427 */
 428int migrate_huge_page_move_mapping(struct address_space *mapping,
 429				   struct page *newpage, struct page *page)
 430{
 
 431	int expected_count;
 432	void **pslot;
 433
 434	if (!mapping) {
 435		if (page_count(page) != 1)
 436			return -EAGAIN;
 437		return MIGRATEPAGE_SUCCESS;
 438	}
 439
 440	spin_lock_irq(&mapping->tree_lock);
 441
 442	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 443					page_index(page));
 444
 
 445	expected_count = 2 + page_has_private(page);
 446	if (page_count(page) != expected_count ||
 447		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 448		spin_unlock_irq(&mapping->tree_lock);
 449		return -EAGAIN;
 450	}
 451
 452	if (!page_freeze_refs(page, expected_count)) {
 453		spin_unlock_irq(&mapping->tree_lock);
 454		return -EAGAIN;
 455	}
 456
 
 
 
 457	get_page(newpage);
 458
 459	radix_tree_replace_slot(pslot, newpage);
 460
 461	page_unfreeze_refs(page, expected_count - 1);
 
 
 462
 463	spin_unlock_irq(&mapping->tree_lock);
 464	return MIGRATEPAGE_SUCCESS;
 465}
 466
 467/*
 468 * Gigantic pages are so large that we do not guarantee that page++ pointer
 469 * arithmetic will work across the entire page.  We need something more
 470 * specialized.
 471 */
 472static void __copy_gigantic_page(struct page *dst, struct page *src,
 473				int nr_pages)
 474{
 475	int i;
 476	struct page *dst_base = dst;
 477	struct page *src_base = src;
 478
 479	for (i = 0; i < nr_pages; ) {
 480		cond_resched();
 481		copy_highpage(dst, src);
 482
 483		i++;
 484		dst = mem_map_next(dst, dst_base, i);
 485		src = mem_map_next(src, src_base, i);
 486	}
 487}
 488
 489static void copy_huge_page(struct page *dst, struct page *src)
 490{
 491	int i;
 492	int nr_pages;
 493
 494	if (PageHuge(src)) {
 495		/* hugetlbfs page */
 496		struct hstate *h = page_hstate(src);
 497		nr_pages = pages_per_huge_page(h);
 498
 499		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 500			__copy_gigantic_page(dst, src, nr_pages);
 501			return;
 502		}
 503	} else {
 504		/* thp page */
 505		BUG_ON(!PageTransHuge(src));
 506		nr_pages = hpage_nr_pages(src);
 507	}
 508
 509	for (i = 0; i < nr_pages; i++) {
 510		cond_resched();
 511		copy_highpage(dst + i, src + i);
 512	}
 513}
 514
 515/*
 516 * Copy the page to its new location
 517 */
 518void migrate_page_copy(struct page *newpage, struct page *page)
 519{
 520	int cpupid;
 521
 522	if (PageHuge(page) || PageTransHuge(page))
 523		copy_huge_page(newpage, page);
 524	else
 525		copy_highpage(newpage, page);
 526
 527	if (PageError(page))
 528		SetPageError(newpage);
 529	if (PageReferenced(page))
 530		SetPageReferenced(newpage);
 531	if (PageUptodate(page))
 532		SetPageUptodate(newpage);
 533	if (TestClearPageActive(page)) {
 534		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 535		SetPageActive(newpage);
 536	} else if (TestClearPageUnevictable(page))
 537		SetPageUnevictable(newpage);
 
 
 538	if (PageChecked(page))
 539		SetPageChecked(newpage);
 540	if (PageMappedToDisk(page))
 541		SetPageMappedToDisk(newpage);
 542
 543	if (PageDirty(page)) {
 544		clear_page_dirty_for_io(page);
 545		/*
 546		 * Want to mark the page and the radix tree as dirty, and
 547		 * redo the accounting that clear_page_dirty_for_io undid,
 548		 * but we can't use set_page_dirty because that function
 549		 * is actually a signal that all of the page has become dirty.
 550		 * Whereas only part of our page may be dirty.
 551		 */
 552		if (PageSwapBacked(page))
 553			SetPageDirty(newpage);
 554		else
 555			__set_page_dirty_nobuffers(newpage);
 556 	}
 557
 558	/*
 559	 * Copy NUMA information to the new page, to prevent over-eager
 560	 * future migrations of this same page.
 561	 */
 562	cpupid = page_cpupid_xchg_last(page, -1);
 563	page_cpupid_xchg_last(newpage, cpupid);
 564
 565	mlock_migrate_page(newpage, page);
 566	ksm_migrate_page(newpage, page);
 567	/*
 568	 * Please do not reorder this without considering how mm/ksm.c's
 569	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 570	 */
 571	ClearPageSwapCache(page);
 
 572	ClearPagePrivate(page);
 573	set_page_private(page, 0);
 574
 575	/*
 576	 * If any waiters have accumulated on the new page then
 577	 * wake them up.
 578	 */
 579	if (PageWriteback(newpage))
 580		end_page_writeback(newpage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 581}
 
 
 
 
 
 
 
 
 
 
 
 
 582
 583/************************************************************
 584 *                    Migration functions
 585 ***********************************************************/
 586
 587/*
 588 * Common logic to directly migrate a single page suitable for
 589 * pages that do not use PagePrivate/PagePrivate2.
 590 *
 591 * Pages are locked upon entry and exit.
 592 */
 593int migrate_page(struct address_space *mapping,
 594		struct page *newpage, struct page *page,
 595		enum migrate_mode mode)
 596{
 597	int rc;
 598
 599	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 600
 601	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 602
 603	if (rc != MIGRATEPAGE_SUCCESS)
 604		return rc;
 605
 606	migrate_page_copy(newpage, page);
 
 
 
 607	return MIGRATEPAGE_SUCCESS;
 608}
 609EXPORT_SYMBOL(migrate_page);
 610
 611#ifdef CONFIG_BLOCK
 612/*
 613 * Migration function for pages with buffers. This function can only be used
 614 * if the underlying filesystem guarantees that no other references to "page"
 615 * exist.
 616 */
 617int buffer_migrate_page(struct address_space *mapping,
 618		struct page *newpage, struct page *page, enum migrate_mode mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619{
 620	struct buffer_head *bh, *head;
 621	int rc;
 
 622
 623	if (!page_has_buffers(page))
 624		return migrate_page(mapping, newpage, page, mode);
 625
 
 
 
 
 
 626	head = page_buffers(page);
 
 
 627
 628	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629
 
 630	if (rc != MIGRATEPAGE_SUCCESS)
 631		return rc;
 632
 633	/*
 634	 * In the async case, migrate_page_move_mapping locked the buffers
 635	 * with an IRQ-safe spinlock held. In the sync case, the buffers
 636	 * need to be locked now
 637	 */
 638	if (mode != MIGRATE_ASYNC)
 639		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 640
 641	ClearPagePrivate(page);
 642	set_page_private(newpage, page_private(page));
 643	set_page_private(page, 0);
 644	put_page(page);
 645	get_page(newpage);
 646
 647	bh = head;
 648	do {
 649		set_bh_page(bh, newpage, bh_offset(bh));
 650		bh = bh->b_this_page;
 651
 652	} while (bh != head);
 653
 654	SetPagePrivate(newpage);
 655
 656	migrate_page_copy(newpage, page);
 
 657
 
 
 
 
 658	bh = head;
 659	do {
 660		unlock_buffer(bh);
 661 		put_bh(bh);
 662		bh = bh->b_this_page;
 663
 664	} while (bh != head);
 665
 666	return MIGRATEPAGE_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 667}
 668EXPORT_SYMBOL(buffer_migrate_page);
 
 
 
 
 
 
 
 
 
 
 
 
 669#endif
 670
 671/*
 672 * Writeback a page to clean the dirty state
 673 */
 674static int writeout(struct address_space *mapping, struct page *page)
 675{
 676	struct writeback_control wbc = {
 677		.sync_mode = WB_SYNC_NONE,
 678		.nr_to_write = 1,
 679		.range_start = 0,
 680		.range_end = LLONG_MAX,
 681		.for_reclaim = 1
 682	};
 683	int rc;
 684
 685	if (!mapping->a_ops->writepage)
 686		/* No write method for the address space */
 687		return -EINVAL;
 688
 689	if (!clear_page_dirty_for_io(page))
 690		/* Someone else already triggered a write */
 691		return -EAGAIN;
 692
 693	/*
 694	 * A dirty page may imply that the underlying filesystem has
 695	 * the page on some queue. So the page must be clean for
 696	 * migration. Writeout may mean we loose the lock and the
 697	 * page state is no longer what we checked for earlier.
 698	 * At this point we know that the migration attempt cannot
 699	 * be successful.
 700	 */
 701	remove_migration_ptes(page, page);
 702
 703	rc = mapping->a_ops->writepage(page, &wbc);
 704
 705	if (rc != AOP_WRITEPAGE_ACTIVATE)
 706		/* unlocked. Relock */
 707		lock_page(page);
 708
 709	return (rc < 0) ? -EIO : -EAGAIN;
 710}
 711
 712/*
 713 * Default handling if a filesystem does not provide a migration function.
 714 */
 715static int fallback_migrate_page(struct address_space *mapping,
 716	struct page *newpage, struct page *page, enum migrate_mode mode)
 717{
 718	if (PageDirty(page)) {
 719		/* Only writeback pages in full synchronous migration */
 720		if (mode != MIGRATE_SYNC)
 
 
 
 
 721			return -EBUSY;
 
 722		return writeout(mapping, page);
 723	}
 724
 725	/*
 726	 * Buffers may be managed in a filesystem specific way.
 727	 * We must have no buffers or drop them.
 728	 */
 729	if (page_has_private(page) &&
 730	    !try_to_release_page(page, GFP_KERNEL))
 731		return -EAGAIN;
 732
 733	return migrate_page(mapping, newpage, page, mode);
 734}
 735
 736/*
 737 * Move a page to a newly allocated page
 738 * The page is locked and all ptes have been successfully removed.
 739 *
 740 * The new page will have replaced the old page if this function
 741 * is successful.
 742 *
 743 * Return value:
 744 *   < 0 - error code
 745 *  MIGRATEPAGE_SUCCESS - success
 746 */
 747static int move_to_new_page(struct page *newpage, struct page *page,
 748				int remap_swapcache, enum migrate_mode mode)
 749{
 750	struct address_space *mapping;
 751	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752
 753	/*
 754	 * Block others from accessing the page when we get around to
 755	 * establishing additional references. We are the only one
 756	 * holding a reference to the new page at this point.
 757	 */
 758	if (!trylock_page(newpage))
 759		BUG();
 
 760
 761	/* Prepare mapping for the new page.*/
 762	newpage->index = page->index;
 763	newpage->mapping = page->mapping;
 764	if (PageSwapBacked(page))
 765		SetPageSwapBacked(newpage);
 
 766
 767	mapping = page_mapping(page);
 768	if (!mapping)
 769		rc = migrate_page(mapping, newpage, page, mode);
 770	else if (mapping->a_ops->migratepage)
 771		/*
 772		 * Most pages have a mapping and most filesystems provide a
 773		 * migratepage callback. Anonymous pages are part of swap
 774		 * space which also has its own migratepage callback. This
 775		 * is the most common path for page migration.
 776		 */
 777		rc = mapping->a_ops->migratepage(mapping,
 778						newpage, page, mode);
 779	else
 780		rc = fallback_migrate_page(mapping, newpage, page, mode);
 
 781
 782	if (rc != MIGRATEPAGE_SUCCESS) {
 783		newpage->mapping = NULL;
 784	} else {
 785		if (remap_swapcache)
 786			remove_migration_ptes(page, newpage);
 787		page->mapping = NULL;
 788	}
 789
 790	unlock_page(newpage);
 791
 792	return rc;
 793}
 794
 795static int __unmap_and_move(struct page *page, struct page *newpage,
 796				int force, enum migrate_mode mode)
 797{
 798	int rc = -EAGAIN;
 799	int remap_swapcache = 1;
 800	struct mem_cgroup *mem;
 801	struct anon_vma *anon_vma = NULL;
 
 802
 803	if (!trylock_page(page)) {
 804		if (!force || mode == MIGRATE_ASYNC)
 805			goto out;
 806
 807		/*
 808		 * It's not safe for direct compaction to call lock_page.
 809		 * For example, during page readahead pages are added locked
 810		 * to the LRU. Later, when the IO completes the pages are
 811		 * marked uptodate and unlocked. However, the queueing
 812		 * could be merging multiple pages for one bio (e.g.
 813		 * mpage_readpages). If an allocation happens for the
 814		 * second or third page, the process can end up locking
 815		 * the same page twice and deadlocking. Rather than
 816		 * trying to be clever about what pages can be locked,
 817		 * avoid the use of lock_page for direct compaction
 818		 * altogether.
 819		 */
 820		if (current->flags & PF_MEMALLOC)
 821			goto out;
 822
 823		lock_page(page);
 824	}
 825
 826	/* charge against new page */
 827	mem_cgroup_prepare_migration(page, newpage, &mem);
 828
 829	if (PageWriteback(page)) {
 830		/*
 831		 * Only in the case of a full synchronous migration is it
 832		 * necessary to wait for PageWriteback. In the async case,
 833		 * the retry loop is too short and in the sync-light case,
 834		 * the overhead of stalling is too much
 835		 */
 836		if (mode != MIGRATE_SYNC) {
 
 
 
 
 837			rc = -EBUSY;
 838			goto uncharge;
 839		}
 840		if (!force)
 841			goto uncharge;
 842		wait_on_page_writeback(page);
 843	}
 
 844	/*
 845	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 846	 * we cannot notice that anon_vma is freed while we migrates a page.
 847	 * This get_anon_vma() delays freeing anon_vma pointer until the end
 848	 * of migration. File cache pages are no problem because of page_lock()
 849	 * File Caches may use write_page() or lock_page() in migration, then,
 850	 * just care Anon page here.
 
 
 
 
 
 
 851	 */
 852	if (PageAnon(page) && !PageKsm(page)) {
 853		/*
 854		 * Only page_lock_anon_vma_read() understands the subtleties of
 855		 * getting a hold on an anon_vma from outside one of its mms.
 856		 */
 857		anon_vma = page_get_anon_vma(page);
 858		if (anon_vma) {
 859			/*
 860			 * Anon page
 861			 */
 862		} else if (PageSwapCache(page)) {
 863			/*
 864			 * We cannot be sure that the anon_vma of an unmapped
 865			 * swapcache page is safe to use because we don't
 866			 * know in advance if the VMA that this page belonged
 867			 * to still exists. If the VMA and others sharing the
 868			 * data have been freed, then the anon_vma could
 869			 * already be invalid.
 870			 *
 871			 * To avoid this possibility, swapcache pages get
 872			 * migrated but are not remapped when migration
 873			 * completes
 874			 */
 875			remap_swapcache = 0;
 876		} else {
 877			goto uncharge;
 878		}
 879	}
 880
 881	if (unlikely(balloon_page_movable(page))) {
 882		/*
 883		 * A ballooned page does not need any special attention from
 884		 * physical to virtual reverse mapping procedures.
 885		 * Skip any attempt to unmap PTEs or to remap swap cache,
 886		 * in order to avoid burning cycles at rmap level, and perform
 887		 * the page migration right away (proteced by page lock).
 888		 */
 889		rc = balloon_page_migrate(newpage, page, mode);
 890		goto uncharge;
 
 
 
 
 891	}
 892
 893	/*
 894	 * Corner case handling:
 895	 * 1. When a new swap-cache page is read into, it is added to the LRU
 896	 * and treated as swapcache but it has no rmap yet.
 897	 * Calling try_to_unmap() against a page->mapping==NULL page will
 898	 * trigger a BUG.  So handle it here.
 899	 * 2. An orphaned page (see truncate_complete_page) might have
 900	 * fs-private metadata. The page can be picked up due to memory
 901	 * offlining.  Everywhere else except page reclaim, the page is
 902	 * invisible to the vm, so the page can not be migrated.  So try to
 903	 * free the metadata, so the page can be freed.
 904	 */
 905	if (!page->mapping) {
 906		VM_BUG_ON_PAGE(PageAnon(page), page);
 907		if (page_has_private(page)) {
 908			try_to_free_buffers(page);
 909			goto uncharge;
 910		}
 911		goto skip_unmap;
 
 
 
 
 
 
 912	}
 913
 914	/* Establish migration ptes or remove ptes */
 915	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 916
 917skip_unmap:
 918	if (!page_mapped(page))
 919		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
 920
 921	if (rc && remap_swapcache)
 922		remove_migration_ptes(page, page);
 
 923
 
 
 
 924	/* Drop an anon_vma reference if we took one */
 925	if (anon_vma)
 926		put_anon_vma(anon_vma);
 927
 928uncharge:
 929	mem_cgroup_end_migration(mem, page, newpage,
 930				 (rc == MIGRATEPAGE_SUCCESS ||
 931				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
 932	unlock_page(page);
 933out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934	return rc;
 935}
 936
 937/*
 938 * Obtain the lock on page, remove all ptes and migrate the page
 939 * to the newly allocated page in newpage.
 940 */
 941static int unmap_and_move(new_page_t get_new_page, unsigned long private,
 942			struct page *page, int force, enum migrate_mode mode)
 
 
 
 943{
 944	int rc = 0;
 945	int *result = NULL;
 946	struct page *newpage = get_new_page(page, private, &result);
 947
 948	if (!newpage)
 949		return -ENOMEM;
 950
 951	if (page_count(page) == 1) {
 952		/* page was freed from under us. So we are done. */
 
 
 
 
 
 
 
 
 953		goto out;
 954	}
 955
 956	if (unlikely(PageTransHuge(page)))
 957		if (unlikely(split_huge_page(page)))
 958			goto out;
 959
 960	rc = __unmap_and_move(page, newpage, force, mode);
 
 
 961
 962	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
 963		/*
 964		 * A ballooned page has been migrated already.
 965		 * Now, it's the time to wrap-up counters,
 966		 * handle the page back to Buddy and return.
 967		 */
 968		dec_zone_page_state(page, NR_ISOLATED_ANON +
 969				    page_is_file_cache(page));
 970		balloon_page_free(page);
 971		return MIGRATEPAGE_SUCCESS;
 972	}
 973out:
 974	if (rc != -EAGAIN) {
 975		/*
 976		 * A page that has been migrated has all references
 977		 * removed and will be freed. A page that has not been
 978		 * migrated will have kepts its references and be
 979		 * restored.
 980		 */
 981		list_del(&page->lru);
 982		dec_zone_page_state(page, NR_ISOLATED_ANON +
 983				page_is_file_cache(page));
 984		putback_lru_page(page);
 
 
 
 
 
 
 985	}
 
 986	/*
 987	 * Move the new page to the LRU. If migration was not successful
 988	 * then this will free the page.
 
 989	 */
 990	putback_lru_page(newpage);
 991	if (result) {
 992		if (rc)
 993			*result = rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994		else
 995			*result = page_to_nid(newpage);
 996	}
 
 997	return rc;
 998}
 999
1000/*
1001 * Counterpart of unmap_and_move_page() for hugepage migration.
1002 *
1003 * This function doesn't wait the completion of hugepage I/O
1004 * because there is no race between I/O and migration for hugepage.
1005 * Note that currently hugepage I/O occurs only in direct I/O
1006 * where no lock is held and PG_writeback is irrelevant,
1007 * and writeback status of all subpages are counted in the reference
1008 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1009 * under direct I/O, the reference of the head page is 512 and a bit more.)
1010 * This means that when we try to migrate hugepage whose subpages are
1011 * doing direct I/O, some references remain after try_to_unmap() and
1012 * hugepage migration fails without data corruption.
1013 *
1014 * There is also no race when direct I/O is issued on the page under migration,
1015 * because then pte is replaced with migration swap entry and direct I/O code
1016 * will wait in the page fault for migration to complete.
1017 */
1018static int unmap_and_move_huge_page(new_page_t get_new_page,
1019				unsigned long private, struct page *hpage,
1020				int force, enum migrate_mode mode)
 
1021{
1022	int rc = 0;
1023	int *result = NULL;
1024	struct page *new_hpage;
1025	struct anon_vma *anon_vma = NULL;
 
1026
1027	/*
1028	 * Movability of hugepages depends on architectures and hugepage size.
1029	 * This check is necessary because some callers of hugepage migration
1030	 * like soft offline and memory hotremove don't walk through page
1031	 * tables or check whether the hugepage is pmd-based or not before
1032	 * kicking migration.
1033	 */
1034	if (!hugepage_migration_support(page_hstate(hpage))) {
1035		putback_active_hugepage(hpage);
1036		return -ENOSYS;
1037	}
1038
1039	new_hpage = get_new_page(hpage, private, &result);
1040	if (!new_hpage)
1041		return -ENOMEM;
1042
1043	rc = -EAGAIN;
1044
1045	if (!trylock_page(hpage)) {
1046		if (!force || mode != MIGRATE_SYNC)
 
 
 
 
 
 
1047			goto out;
 
1048		lock_page(hpage);
1049	}
1050
 
 
 
 
 
 
 
 
 
 
1051	if (PageAnon(hpage))
1052		anon_vma = page_get_anon_vma(hpage);
1053
1054	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055
1056	if (!page_mapped(hpage))
1057		rc = move_to_new_page(new_hpage, hpage, 1, mode);
1058
1059	if (rc)
1060		remove_migration_ptes(hpage, hpage);
 
 
 
1061
 
 
 
 
1062	if (anon_vma)
1063		put_anon_vma(anon_vma);
1064
1065	if (!rc)
1066		hugetlb_cgroup_migrate(hpage, new_hpage);
 
 
1067
 
1068	unlock_page(hpage);
1069out:
1070	if (rc != -EAGAIN)
1071		putback_active_hugepage(hpage);
1072	put_page(new_hpage);
1073	if (result) {
1074		if (rc)
1075			*result = rc;
1076		else
1077			*result = page_to_nid(new_hpage);
1078	}
 
 
 
 
1079	return rc;
1080}
1081
1082/*
1083 * migrate_pages - migrate the pages specified in a list, to the free pages
1084 *		   supplied as the target for the page migration
1085 *
1086 * @from:		The list of pages to be migrated.
1087 * @get_new_page:	The function used to allocate free pages to be used
1088 *			as the target of the page migration.
 
 
1089 * @private:		Private data to be passed on to get_new_page()
1090 * @mode:		The migration mode that specifies the constraints for
1091 *			page migration, if any.
1092 * @reason:		The reason for page migration.
1093 *
1094 * The function returns after 10 attempts or if no pages are movable any more
1095 * because the list has become empty or no retryable pages exist any more.
1096 * The caller should call putback_lru_pages() to return pages to the LRU
1097 * or free list only if ret != 0.
1098 *
1099 * Returns the number of pages that were not migrated, or an error code.
1100 */
1101int migrate_pages(struct list_head *from, new_page_t get_new_page,
1102		unsigned long private, enum migrate_mode mode, int reason)
 
1103{
1104	int retry = 1;
 
1105	int nr_failed = 0;
1106	int nr_succeeded = 0;
 
 
 
1107	int pass = 0;
 
1108	struct page *page;
1109	struct page *page2;
1110	int swapwrite = current->flags & PF_SWAPWRITE;
1111	int rc;
1112
1113	if (!swapwrite)
1114		current->flags |= PF_SWAPWRITE;
1115
1116	for(pass = 0; pass < 10 && retry; pass++) {
1117		retry = 0;
 
1118
1119		list_for_each_entry_safe(page, page2, from, lru) {
 
 
 
 
 
 
 
 
1120			cond_resched();
1121
1122			if (PageHuge(page))
1123				rc = unmap_and_move_huge_page(get_new_page,
1124						private, page, pass > 2, mode);
 
1125			else
1126				rc = unmap_and_move(get_new_page, private,
1127						page, pass > 2, mode);
 
1128
1129			switch(rc) {
1130			case -ENOMEM:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1131				goto out;
1132			case -EAGAIN:
 
 
 
 
1133				retry++;
1134				break;
1135			case MIGRATEPAGE_SUCCESS:
 
 
 
 
 
1136				nr_succeeded++;
1137				break;
1138			default:
1139				/*
1140				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1141				 * unlike -EAGAIN case, the failed page is
1142				 * removed from migration page list and not
1143				 * retried in the next outer loop.
1144				 */
 
 
 
 
 
1145				nr_failed++;
1146				break;
1147			}
1148		}
1149	}
1150	rc = nr_failed + retry;
 
 
1151out:
1152	if (nr_succeeded)
1153		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1154	if (nr_failed)
1155		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1156	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
 
 
1157
1158	if (!swapwrite)
1159		current->flags &= ~PF_SWAPWRITE;
1160
1161	return rc;
1162}
1163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164#ifdef CONFIG_NUMA
1165/*
1166 * Move a list of individual pages
1167 */
1168struct page_to_node {
1169	unsigned long addr;
1170	struct page *page;
1171	int node;
1172	int status;
1173};
1174
1175static struct page *new_page_node(struct page *p, unsigned long private,
1176		int **result)
1177{
1178	struct page_to_node *pm = (struct page_to_node *)private;
 
 
 
 
1179
1180	while (pm->node != MAX_NUMNODES && pm->page != p)
1181		pm++;
1182
1183	if (pm->node == MAX_NUMNODES)
1184		return NULL;
 
 
 
 
 
 
1185
1186	*result = &pm->status;
1187
1188	if (PageHuge(p))
1189		return alloc_huge_page_node(page_hstate(compound_head(p)),
1190					pm->node);
1191	else
1192		return alloc_pages_exact_node(pm->node,
1193				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1194}
1195
1196/*
1197 * Move a set of pages as indicated in the pm array. The addr
1198 * field must be set to the virtual address of the page to be moved
1199 * and the node number must contain a valid target node.
1200 * The pm array ends with node = MAX_NUMNODES.
 
 
 
1201 */
1202static int do_move_page_to_node_array(struct mm_struct *mm,
1203				      struct page_to_node *pm,
1204				      int migrate_all)
1205{
 
 
 
1206	int err;
1207	struct page_to_node *pp;
1208	LIST_HEAD(pagelist);
1209
1210	down_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
1211
1212	/*
1213	 * Build a list of pages to migrate
1214	 */
1215	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1216		struct vm_area_struct *vma;
1217		struct page *page;
1218
1219		err = -EFAULT;
1220		vma = find_vma(mm, pp->addr);
1221		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1222			goto set_status;
1223
1224		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
 
 
1225
1226		err = PTR_ERR(page);
1227		if (IS_ERR(page))
1228			goto set_status;
 
 
 
 
 
 
 
 
1229
1230		err = -ENOENT;
1231		if (!page)
1232			goto set_status;
 
1233
1234		/* Use PageReserved to check for zero page */
1235		if (PageReserved(page))
1236			goto put_and_set;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237
1238		pp->page = page;
1239		err = page_to_nid(page);
 
 
 
1240
1241		if (err == pp->node)
1242			/*
1243			 * Node already in the right place
1244			 */
1245			goto put_and_set;
1246
1247		err = -EACCES;
1248		if (page_mapcount(page) > 1 &&
1249				!migrate_all)
1250			goto put_and_set;
1251
1252		if (PageHuge(page)) {
1253			isolate_huge_page(page, &pagelist);
1254			goto put_and_set;
1255		}
1256
1257		err = isolate_lru_page(page);
1258		if (!err) {
1259			list_add_tail(&page->lru, &pagelist);
1260			inc_zone_page_state(page, NR_ISOLATED_ANON +
1261					    page_is_file_cache(page));
1262		}
1263put_and_set:
1264		/*
1265		 * Either remove the duplicate refcount from
1266		 * isolate_lru_page() or drop the page ref if it was
1267		 * not isolated.
 
 
 
1268		 */
1269		put_page(page);
1270set_status:
1271		pp->status = err;
1272	}
1273
1274	err = 0;
1275	if (!list_empty(&pagelist)) {
1276		err = migrate_pages(&pagelist, new_page_node,
1277				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1278		if (err)
1279			putback_movable_pages(&pagelist);
1280	}
1281
1282	up_read(&mm->mmap_sem);
1283	return err;
1284}
1285
1286/*
1287 * Migrate an array of page address onto an array of nodes and fill
1288 * the corresponding array of status.
1289 */
1290static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1291			 unsigned long nr_pages,
1292			 const void __user * __user *pages,
1293			 const int __user *nodes,
1294			 int __user *status, int flags)
1295{
1296	struct page_to_node *pm;
1297	unsigned long chunk_nr_pages;
1298	unsigned long chunk_start;
1299	int err;
1300
1301	err = -ENOMEM;
1302	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1303	if (!pm)
1304		goto out;
1305
1306	migrate_prep();
1307
1308	/*
1309	 * Store a chunk of page_to_node array in a page,
1310	 * but keep the last one as a marker
1311	 */
1312	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1313
1314	for (chunk_start = 0;
1315	     chunk_start < nr_pages;
1316	     chunk_start += chunk_nr_pages) {
1317		int j;
 
 
 
 
 
 
 
 
1318
1319		if (chunk_start + chunk_nr_pages > nr_pages)
1320			chunk_nr_pages = nr_pages - chunk_start;
 
1321
1322		/* fill the chunk pm with addrs and nodes from user-space */
1323		for (j = 0; j < chunk_nr_pages; j++) {
1324			const void __user *p;
1325			int node;
 
 
 
 
 
 
 
1326
1327			err = -EFAULT;
1328			if (get_user(p, pages + j + chunk_start))
1329				goto out_pm;
1330			pm[j].addr = (unsigned long) p;
 
 
1331
1332			if (get_user(node, nodes + j + chunk_start))
1333				goto out_pm;
1334
1335			err = -ENODEV;
1336			if (node < 0 || node >= MAX_NUMNODES)
1337				goto out_pm;
1338
1339			if (!node_state(node, N_MEMORY))
1340				goto out_pm;
1341
1342			err = -EACCES;
1343			if (!node_isset(node, task_nodes))
1344				goto out_pm;
1345
1346			pm[j].node = node;
1347		}
1348
1349		/* End marker for this chunk */
1350		pm[chunk_nr_pages].node = MAX_NUMNODES;
 
 
 
 
 
1351
1352		/* Migrate this chunk */
1353		err = do_move_page_to_node_array(mm, pm,
1354						 flags & MPOL_MF_MOVE_ALL);
1355		if (err < 0)
1356			goto out_pm;
1357
1358		/* Return status information */
1359		for (j = 0; j < chunk_nr_pages; j++)
1360			if (put_user(pm[j].status, status + j + chunk_start)) {
1361				err = -EFAULT;
1362				goto out_pm;
1363			}
1364	}
1365	err = 0;
1366
1367out_pm:
1368	free_page((unsigned long)pm);
 
 
1369out:
1370	return err;
1371}
1372
1373/*
1374 * Determine the nodes of an array of pages and store it in an array of status.
1375 */
1376static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1377				const void __user **pages, int *status)
1378{
1379	unsigned long i;
1380
1381	down_read(&mm->mmap_sem);
1382
1383	for (i = 0; i < nr_pages; i++) {
1384		unsigned long addr = (unsigned long)(*pages);
1385		struct vm_area_struct *vma;
1386		struct page *page;
1387		int err = -EFAULT;
1388
1389		vma = find_vma(mm, addr);
1390		if (!vma || addr < vma->vm_start)
1391			goto set_status;
1392
1393		page = follow_page(vma, addr, 0);
 
1394
1395		err = PTR_ERR(page);
1396		if (IS_ERR(page))
1397			goto set_status;
1398
1399		err = -ENOENT;
1400		/* Use PageReserved to check for zero page */
1401		if (!page || PageReserved(page))
1402			goto set_status;
1403
1404		err = page_to_nid(page);
1405set_status:
1406		*status = err;
1407
1408		pages++;
1409		status++;
1410	}
1411
1412	up_read(&mm->mmap_sem);
1413}
1414
1415/*
1416 * Determine the nodes of a user array of pages and store it in
1417 * a user array of status.
1418 */
1419static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1420			 const void __user * __user *pages,
1421			 int __user *status)
1422{
1423#define DO_PAGES_STAT_CHUNK_NR 16
1424	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1425	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1426
1427	while (nr_pages) {
1428		unsigned long chunk_nr;
1429
1430		chunk_nr = nr_pages;
1431		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1432			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1433
1434		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1435			break;
1436
1437		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1438
1439		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1440			break;
1441
1442		pages += chunk_nr;
1443		status += chunk_nr;
1444		nr_pages -= chunk_nr;
1445	}
1446	return nr_pages ? -EFAULT : 0;
1447}
1448
1449/*
1450 * Move a list of pages in the address space of the currently executing
1451 * process.
1452 */
1453SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1454		const void __user * __user *, pages,
1455		const int __user *, nodes,
1456		int __user *, status, int, flags)
1457{
1458	const struct cred *cred = current_cred(), *tcred;
1459	struct task_struct *task;
1460	struct mm_struct *mm;
1461	int err;
1462	nodemask_t task_nodes;
1463
1464	/* Check flags */
1465	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1466		return -EINVAL;
1467
1468	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1469		return -EPERM;
1470
1471	/* Find the mm_struct */
1472	rcu_read_lock();
1473	task = pid ? find_task_by_vpid(pid) : current;
1474	if (!task) {
1475		rcu_read_unlock();
1476		return -ESRCH;
1477	}
1478	get_task_struct(task);
1479
1480	/*
1481	 * Check if this process has the right to modify the specified
1482	 * process. The right exists if the process has administrative
1483	 * capabilities, superuser privileges or the same
1484	 * userid as the target process.
1485	 */
1486	tcred = __task_cred(task);
1487	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1488	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1489	    !capable(CAP_SYS_NICE)) {
1490		rcu_read_unlock();
1491		err = -EPERM;
1492		goto out;
1493	}
1494	rcu_read_unlock();
1495
1496 	err = security_task_movememory(task);
1497 	if (err)
1498		goto out;
1499
1500	task_nodes = cpuset_mems_allowed(task);
1501	mm = get_task_mm(task);
1502	put_task_struct(task);
1503
1504	if (!mm)
1505		return -EINVAL;
1506
1507	if (nodes)
1508		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1509				    nodes, status, flags);
1510	else
1511		err = do_pages_stat(mm, nr_pages, pages, status);
1512
1513	mmput(mm);
1514	return err;
1515
1516out:
1517	put_task_struct(task);
1518	return err;
1519}
1520
1521/*
1522 * Call migration functions in the vma_ops that may prepare
1523 * memory in a vm for migration. migration functions may perform
1524 * the migration for vmas that do not have an underlying page struct.
1525 */
1526int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1527	const nodemask_t *from, unsigned long flags)
1528{
1529 	struct vm_area_struct *vma;
1530 	int err = 0;
1531
1532	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1533 		if (vma->vm_ops && vma->vm_ops->migrate) {
1534 			err = vma->vm_ops->migrate(vma, to, from, flags);
1535 			if (err)
1536 				break;
1537 		}
1538 	}
1539 	return err;
 
 
 
 
 
 
 
 
1540}
 
1541
1542#ifdef CONFIG_NUMA_BALANCING
1543/*
1544 * Returns true if this is a safe migration target node for misplaced NUMA
1545 * pages. Currently it only checks the watermarks which crude
1546 */
1547static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1548				   unsigned long nr_migrate_pages)
1549{
1550	int z;
 
1551	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1552		struct zone *zone = pgdat->node_zones + z;
1553
1554		if (!populated_zone(zone))
1555			continue;
1556
1557		if (!zone_reclaimable(zone))
1558			continue;
1559
1560		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1561		if (!zone_watermark_ok(zone, 0,
1562				       high_wmark_pages(zone) +
1563				       nr_migrate_pages,
1564				       0, 0))
1565			continue;
1566		return true;
1567	}
1568	return false;
1569}
1570
1571static struct page *alloc_misplaced_dst_page(struct page *page,
1572					   unsigned long data,
1573					   int **result)
1574{
1575	int nid = (int) data;
1576	struct page *newpage;
1577
1578	newpage = alloc_pages_exact_node(nid,
1579					 (GFP_HIGHUSER_MOVABLE |
1580					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1581					  __GFP_NORETRY | __GFP_NOWARN) &
1582					 ~GFP_IOFS, 0);
1583
1584	return newpage;
1585}
1586
1587/*
1588 * page migration rate limiting control.
1589 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1590 * window of time. Default here says do not migrate more than 1280M per second.
1591 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1592 * as it is faults that reset the window, pte updates will happen unconditionally
1593 * if there has not been a fault since @pteupdate_interval_millisecs after the
1594 * throttle window closed.
1595 */
1596static unsigned int migrate_interval_millisecs __read_mostly = 100;
1597static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1598static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1599
1600/* Returns true if NUMA migration is currently rate limited */
1601bool migrate_ratelimited(int node)
1602{
1603	pg_data_t *pgdat = NODE_DATA(node);
1604
1605	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1606				msecs_to_jiffies(pteupdate_interval_millisecs)))
1607		return false;
1608
1609	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1610		return false;
1611
1612	return true;
1613}
1614
1615/* Returns true if the node is migrate rate-limited after the update */
1616static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1617					unsigned long nr_pages)
1618{
1619	/*
1620	 * Rate-limit the amount of data that is being migrated to a node.
1621	 * Optimal placement is no good if the memory bus is saturated and
1622	 * all the time is being spent migrating!
1623	 */
1624	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1625		spin_lock(&pgdat->numabalancing_migrate_lock);
1626		pgdat->numabalancing_migrate_nr_pages = 0;
1627		pgdat->numabalancing_migrate_next_window = jiffies +
1628			msecs_to_jiffies(migrate_interval_millisecs);
1629		spin_unlock(&pgdat->numabalancing_migrate_lock);
1630	}
1631	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1632		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1633								nr_pages);
1634		return true;
1635	}
1636
1637	/*
1638	 * This is an unlocked non-atomic update so errors are possible.
1639	 * The consequences are failing to migrate when we potentiall should
1640	 * have which is not severe enough to warrant locking. If it is ever
1641	 * a problem, it can be converted to a per-cpu counter.
1642	 */
1643	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1644	return false;
1645}
1646
1647static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1648{
1649	int page_lru;
1650
1651	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1652
1653	/* Avoid migrating to a node that is nearly full */
1654	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1655		return 0;
1656
1657	if (isolate_lru_page(page))
1658		return 0;
1659
1660	/*
1661	 * migrate_misplaced_transhuge_page() skips page migration's usual
1662	 * check on page_count(), so we must do it here, now that the page
1663	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1664	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1665	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1666	 */
1667	if (PageTransHuge(page) && page_count(page) != 3) {
1668		putback_lru_page(page);
1669		return 0;
1670	}
1671
1672	page_lru = page_is_file_cache(page);
1673	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1674				hpage_nr_pages(page));
1675
1676	/*
1677	 * Isolating the page has taken another reference, so the
1678	 * caller's reference can be safely dropped without the page
1679	 * disappearing underneath us during migration.
1680	 */
1681	put_page(page);
1682	return 1;
1683}
1684
1685bool pmd_trans_migrating(pmd_t pmd)
1686{
1687	struct page *page = pmd_page(pmd);
1688	return PageLocked(page);
1689}
1690
1691void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1692{
1693	struct page *page = pmd_page(*pmd);
1694	wait_on_page_locked(page);
1695}
1696
1697/*
1698 * Attempt to migrate a misplaced page to the specified destination
1699 * node. Caller is expected to have an elevated reference count on
1700 * the page that will be dropped by this function before returning.
1701 */
1702int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1703			   int node)
1704{
1705	pg_data_t *pgdat = NODE_DATA(node);
1706	int isolated;
1707	int nr_remaining;
1708	LIST_HEAD(migratepages);
1709
1710	/*
1711	 * Don't migrate file pages that are mapped in multiple processes
1712	 * with execute permissions as they are probably shared libraries.
1713	 */
1714	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1715	    (vma->vm_flags & VM_EXEC))
1716		goto out;
1717
1718	/*
1719	 * Rate-limit the amount of data that is being migrated to a node.
1720	 * Optimal placement is no good if the memory bus is saturated and
1721	 * all the time is being spent migrating!
1722	 */
1723	if (numamigrate_update_ratelimit(pgdat, 1))
1724		goto out;
1725
1726	isolated = numamigrate_isolate_page(pgdat, page);
1727	if (!isolated)
1728		goto out;
1729
1730	list_add(&page->lru, &migratepages);
1731	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1732				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
 
1733	if (nr_remaining) {
1734		if (!list_empty(&migratepages)) {
1735			list_del(&page->lru);
1736			dec_zone_page_state(page, NR_ISOLATED_ANON +
1737					page_is_file_cache(page));
1738			putback_lru_page(page);
1739		}
1740		isolated = 0;
1741	} else
1742		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1743	BUG_ON(!list_empty(&migratepages));
1744	return isolated;
1745
1746out:
1747	put_page(page);
1748	return 0;
1749}
1750#endif /* CONFIG_NUMA_BALANCING */
1751
1752#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1753/*
1754 * Migrates a THP to a given target node. page must be locked and is unlocked
1755 * before returning.
1756 */
1757int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1758				struct vm_area_struct *vma,
1759				pmd_t *pmd, pmd_t entry,
1760				unsigned long address,
1761				struct page *page, int node)
1762{
1763	spinlock_t *ptl;
1764	pg_data_t *pgdat = NODE_DATA(node);
1765	int isolated = 0;
1766	struct page *new_page = NULL;
1767	struct mem_cgroup *memcg = NULL;
1768	int page_lru = page_is_file_cache(page);
1769	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1770	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1771	pmd_t orig_entry;
1772
1773	/*
1774	 * Rate-limit the amount of data that is being migrated to a node.
1775	 * Optimal placement is no good if the memory bus is saturated and
1776	 * all the time is being spent migrating!
1777	 */
1778	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1779		goto out_dropref;
1780
1781	new_page = alloc_pages_node(node,
1782		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1783		HPAGE_PMD_ORDER);
1784	if (!new_page)
1785		goto out_fail;
 
1786
1787	isolated = numamigrate_isolate_page(pgdat, page);
1788	if (!isolated) {
1789		put_page(new_page);
1790		goto out_fail;
1791	}
1792
1793	if (mm_tlb_flush_pending(mm))
1794		flush_tlb_range(vma, mmun_start, mmun_end);
1795
1796	/* Prepare a page as a migration target */
1797	__set_page_locked(new_page);
1798	SetPageSwapBacked(new_page);
 
1799
1800	/* anon mapping, we can simply copy page->mapping to the new page: */
1801	new_page->mapping = page->mapping;
1802	new_page->index = page->index;
 
 
1803	migrate_page_copy(new_page, page);
1804	WARN_ON(PageLRU(new_page));
1805
1806	/* Recheck the target PMD */
1807	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1808	ptl = pmd_lock(mm, pmd);
1809	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1810fail_putback:
1811		spin_unlock(ptl);
1812		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1813
1814		/* Reverse changes made by migrate_page_copy() */
1815		if (TestClearPageActive(new_page))
1816			SetPageActive(page);
1817		if (TestClearPageUnevictable(new_page))
1818			SetPageUnevictable(page);
1819		mlock_migrate_page(page, new_page);
1820
1821		unlock_page(new_page);
1822		put_page(new_page);		/* Free it */
1823
1824		/* Retake the callers reference and putback on LRU */
1825		get_page(page);
1826		putback_lru_page(page);
1827		mod_zone_page_state(page_zone(page),
1828			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1829
1830		goto out_unlock;
1831	}
1832
1833	/*
1834	 * Traditional migration needs to prepare the memcg charge
1835	 * transaction early to prevent the old page from being
1836	 * uncharged when installing migration entries.  Here we can
1837	 * save the potential rollback and start the charge transfer
1838	 * only when migration is already known to end successfully.
1839	 */
1840	mem_cgroup_prepare_migration(page, new_page, &memcg);
1841
1842	orig_entry = *pmd;
1843	entry = mk_pmd(new_page, vma->vm_page_prot);
1844	entry = pmd_mkhuge(entry);
1845	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1846
1847	/*
1848	 * Clear the old entry under pagetable lock and establish the new PTE.
1849	 * Any parallel GUP will either observe the old page blocking on the
1850	 * page lock, block on the page table lock or observe the new page.
1851	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1852	 * guarantee the copy is visible before the pagetable update.
1853	 */
1854	flush_cache_range(vma, mmun_start, mmun_end);
1855	page_add_new_anon_rmap(new_page, vma, mmun_start);
1856	pmdp_clear_flush(vma, mmun_start, pmd);
1857	set_pmd_at(mm, mmun_start, pmd, entry);
1858	flush_tlb_range(vma, mmun_start, mmun_end);
 
 
 
 
 
 
 
 
 
1859	update_mmu_cache_pmd(vma, address, &entry);
1860
1861	if (page_count(page) != 2) {
1862		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1863		flush_tlb_range(vma, mmun_start, mmun_end);
1864		update_mmu_cache_pmd(vma, address, &entry);
1865		page_remove_rmap(new_page);
1866		goto fail_putback;
1867	}
1868
1869	page_remove_rmap(page);
1870
1871	/*
1872	 * Finish the charge transaction under the page table lock to
1873	 * prevent split_huge_page() from dividing up the charge
1874	 * before it's fully transferred to the new page.
1875	 */
1876	mem_cgroup_end_migration(memcg, page, new_page, true);
1877	spin_unlock(ptl);
1878	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1879
1880	unlock_page(new_page);
1881	unlock_page(page);
1882	put_page(page);			/* Drop the rmap reference */
1883	put_page(page);			/* Drop the LRU isolation reference */
1884
1885	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1886	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1887
1888	mod_zone_page_state(page_zone(page),
1889			NR_ISOLATED_ANON + page_lru,
1890			-HPAGE_PMD_NR);
1891	return isolated;
1892
1893out_fail:
1894	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1895out_dropref:
1896	ptl = pmd_lock(mm, pmd);
1897	if (pmd_same(*pmd, entry)) {
1898		entry = pmd_mknonnuma(entry);
1899		set_pmd_at(mm, mmun_start, pmd, entry);
1900		update_mmu_cache_pmd(vma, address, &entry);
1901	}
1902	spin_unlock(ptl);
1903
1904out_unlock:
1905	unlock_page(page);
1906	put_page(page);
1907	return 0;
1908}
1909#endif /* CONFIG_NUMA_BALANCING */
1910
1911#endif /* CONFIG_NUMA */