Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/pagewalk.h>
   3#include <linux/vmacache.h>
   4#include <linux/hugetlb.h>
   5#include <linux/huge_mm.h>
   6#include <linux/mount.h>
   7#include <linux/seq_file.h>
   8#include <linux/highmem.h>
   9#include <linux/ptrace.h>
  10#include <linux/slab.h>
  11#include <linux/pagemap.h>
  12#include <linux/mempolicy.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
  15#include <linux/sched/mm.h>
  16#include <linux/swapops.h>
  17#include <linux/mmu_notifier.h>
  18#include <linux/page_idle.h>
  19#include <linux/shmem_fs.h>
  20#include <linux/uaccess.h>
  21#include <linux/pkeys.h>
  22
  23#include <asm/elf.h>
  24#include <asm/tlb.h>
  25#include <asm/tlbflush.h>
  26#include "internal.h"
  27
  28#define SEQ_PUT_DEC(str, val) \
  29		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
  30void task_mem(struct seq_file *m, struct mm_struct *mm)
  31{
  32	unsigned long text, lib, swap, anon, file, shmem;
  33	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  34
  35	anon = get_mm_counter(mm, MM_ANONPAGES);
  36	file = get_mm_counter(mm, MM_FILEPAGES);
  37	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  38
  39	/*
  40	 * Note: to minimize their overhead, mm maintains hiwater_vm and
  41	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
  42	 * collector of these hiwater stats must therefore get total_vm
  43	 * and rss too, which will usually be the higher.  Barriers? not
  44	 * worth the effort, such snapshots can always be inconsistent.
  45	 */
  46	hiwater_vm = total_vm = mm->total_vm;
  47	if (hiwater_vm < mm->hiwater_vm)
  48		hiwater_vm = mm->hiwater_vm;
  49	hiwater_rss = total_rss = anon + file + shmem;
  50	if (hiwater_rss < mm->hiwater_rss)
  51		hiwater_rss = mm->hiwater_rss;
  52
  53	/* split executable areas between text and lib */
  54	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
  55	text = min(text, mm->exec_vm << PAGE_SHIFT);
  56	lib = (mm->exec_vm << PAGE_SHIFT) - text;
  57
  58	swap = get_mm_counter(mm, MM_SWAPENTS);
  59	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
  60	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
  61	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
  62	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
  63	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
  64	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
  65	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
  66	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
  67	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
  68	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
  69	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
  70	seq_put_decimal_ull_width(m,
  71		    " kB\nVmExe:\t", text >> 10, 8);
  72	seq_put_decimal_ull_width(m,
  73		    " kB\nVmLib:\t", lib >> 10, 8);
  74	seq_put_decimal_ull_width(m,
  75		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
  76	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
  77	seq_puts(m, " kB\n");
  78	hugetlb_report_usage(m, mm);
 
 
 
 
  79}
  80#undef SEQ_PUT_DEC
  81
  82unsigned long task_vsize(struct mm_struct *mm)
  83{
  84	return PAGE_SIZE * mm->total_vm;
  85}
  86
  87unsigned long task_statm(struct mm_struct *mm,
  88			 unsigned long *shared, unsigned long *text,
  89			 unsigned long *data, unsigned long *resident)
  90{
  91	*shared = get_mm_counter(mm, MM_FILEPAGES) +
  92			get_mm_counter(mm, MM_SHMEMPAGES);
  93	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  94								>> PAGE_SHIFT;
  95	*data = mm->data_vm + mm->stack_vm;
  96	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  97	return mm->total_vm;
  98}
  99
 100#ifdef CONFIG_NUMA
 101/*
 102 * Save get_task_policy() for show_numa_map().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103 */
 104static void hold_task_mempolicy(struct proc_maps_private *priv)
 105{
 106	struct task_struct *task = priv->task;
 107
 108	task_lock(task);
 109	priv->task_mempolicy = get_task_policy(task);
 110	mpol_get(priv->task_mempolicy);
 111	task_unlock(task);
 112}
 113static void release_task_mempolicy(struct proc_maps_private *priv)
 114{
 115	mpol_put(priv->task_mempolicy);
 116}
 117#else
 118static void hold_task_mempolicy(struct proc_maps_private *priv)
 119{
 120}
 121static void release_task_mempolicy(struct proc_maps_private *priv)
 122{
 123}
 124#endif
 125
 126static void *m_start(struct seq_file *m, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 127{
 128	struct proc_maps_private *priv = m->private;
 129	unsigned long last_addr = *ppos;
 130	struct mm_struct *mm;
 131	struct vm_area_struct *vma;
 
 
 
 
 
 
 
 
 
 
 
 
 132
 133	/* See m_next(). Zero at the start or after lseek. */
 134	if (last_addr == -1UL)
 135		return NULL;
 136
 137	priv->task = get_proc_task(priv->inode);
 138	if (!priv->task)
 139		return ERR_PTR(-ESRCH);
 140
 141	mm = priv->mm;
 142	if (!mm || !mmget_not_zero(mm)) {
 143		put_task_struct(priv->task);
 144		priv->task = NULL;
 145		return NULL;
 
 
 
 
 
 
 
 
 146	}
 147
 148	if (mmap_read_lock_killable(mm)) {
 149		mmput(mm);
 150		put_task_struct(priv->task);
 151		priv->task = NULL;
 152		return ERR_PTR(-EINTR);
 
 
 
 
 
 153	}
 154
 155	hold_task_mempolicy(priv);
 156	priv->tail_vma = get_gate_vma(mm);
 157
 158	vma = find_vma(mm, last_addr);
 159	if (vma)
 160		return vma;
 161
 162	return priv->tail_vma;
 
 
 
 
 
 163}
 164
 165static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
 166{
 167	struct proc_maps_private *priv = m->private;
 168	struct vm_area_struct *next, *vma = v;
 169
 170	if (vma == priv->tail_vma)
 171		next = NULL;
 172	else if (vma->vm_next)
 173		next = vma->vm_next;
 174	else
 175		next = priv->tail_vma;
 176
 177	*ppos = next ? next->vm_start : -1UL;
 178
 179	return next;
 
 
 
 
 180}
 181
 182static void m_stop(struct seq_file *m, void *v)
 183{
 184	struct proc_maps_private *priv = m->private;
 185	struct mm_struct *mm = priv->mm;
 186
 187	if (!priv->task)
 188		return;
 189
 190	release_task_mempolicy(priv);
 191	mmap_read_unlock(mm);
 192	mmput(mm);
 193	put_task_struct(priv->task);
 194	priv->task = NULL;
 195}
 196
 197static int proc_maps_open(struct inode *inode, struct file *file,
 198			const struct seq_operations *ops, int psize)
 199{
 200	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
 201
 202	if (!priv)
 203		return -ENOMEM;
 204
 205	priv->inode = inode;
 206	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
 207	if (IS_ERR(priv->mm)) {
 208		int err = PTR_ERR(priv->mm);
 209
 210		seq_release_private(inode, file);
 211		return err;
 212	}
 213
 214	return 0;
 215}
 216
 217static int proc_map_release(struct inode *inode, struct file *file)
 218{
 219	struct seq_file *seq = file->private_data;
 220	struct proc_maps_private *priv = seq->private;
 221
 222	if (priv->mm)
 223		mmdrop(priv->mm);
 224
 225	return seq_release_private(inode, file);
 
 
 
 226}
 227
 228static int do_maps_open(struct inode *inode, struct file *file,
 229			const struct seq_operations *ops)
 230{
 231	return proc_maps_open(inode, file, ops,
 232				sizeof(struct proc_maps_private));
 233}
 234
 235/*
 236 * Indicate if the VMA is a stack for the given task; for
 237 * /proc/PID/maps that is the stack of the main task.
 238 */
 239static int is_stack(struct vm_area_struct *vma)
 240{
 241	/*
 242	 * We make no effort to guess what a given thread considers to be
 243	 * its "stack".  It's not even well-defined for programs written
 244	 * languages like Go.
 245	 */
 246	return vma->vm_start <= vma->vm_mm->start_stack &&
 247		vma->vm_end >= vma->vm_mm->start_stack;
 248}
 249
 250static void show_vma_header_prefix(struct seq_file *m,
 251				   unsigned long start, unsigned long end,
 252				   vm_flags_t flags, unsigned long long pgoff,
 253				   dev_t dev, unsigned long ino)
 254{
 255	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
 256	seq_put_hex_ll(m, NULL, start, 8);
 257	seq_put_hex_ll(m, "-", end, 8);
 258	seq_putc(m, ' ');
 259	seq_putc(m, flags & VM_READ ? 'r' : '-');
 260	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
 261	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
 262	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
 263	seq_put_hex_ll(m, " ", pgoff, 8);
 264	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
 265	seq_put_hex_ll(m, ":", MINOR(dev), 2);
 266	seq_put_decimal_ull(m, " ", ino);
 267	seq_putc(m, ' ');
 268}
 269
 270static void
 271show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
 272{
 273	struct mm_struct *mm = vma->vm_mm;
 274	struct file *file = vma->vm_file;
 
 
 275	vm_flags_t flags = vma->vm_flags;
 276	unsigned long ino = 0;
 277	unsigned long long pgoff = 0;
 278	unsigned long start, end;
 279	dev_t dev = 0;
 280	const char *name = NULL;
 281
 282	if (file) {
 283		struct inode *inode = file_inode(vma->vm_file);
 284		dev = inode->i_sb->s_dev;
 285		ino = inode->i_ino;
 286		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 287	}
 288
 
 289	start = vma->vm_start;
 
 
 290	end = vma->vm_end;
 291	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
 
 
 
 
 
 
 
 
 
 
 
 
 292
 293	/*
 294	 * Print the dentry name for named mappings, and a
 295	 * special [heap] marker for the heap:
 296	 */
 297	if (file) {
 298		seq_pad(m, ' ');
 299		seq_file_path(m, file, "\n");
 300		goto done;
 301	}
 302
 303	if (vma->vm_ops && vma->vm_ops->name) {
 304		name = vma->vm_ops->name(vma);
 305		if (name)
 306			goto done;
 307	}
 308
 309	name = arch_vma_name(vma);
 310	if (!name) {
 
 
 311		if (!mm) {
 312			name = "[vdso]";
 313			goto done;
 314		}
 315
 316		if (vma->vm_start <= mm->brk &&
 317		    vma->vm_end >= mm->start_brk) {
 318			name = "[heap]";
 319			goto done;
 320		}
 321
 322		if (is_stack(vma))
 323			name = "[stack]";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324	}
 325
 326done:
 327	if (name) {
 328		seq_pad(m, ' ');
 329		seq_puts(m, name);
 330	}
 331	seq_putc(m, '\n');
 332}
 333
 334static int show_map(struct seq_file *m, void *v)
 335{
 336	show_map_vma(m, v);
 
 
 
 
 
 
 
 
 337	return 0;
 338}
 339
 
 
 
 
 
 
 
 
 
 
 340static const struct seq_operations proc_pid_maps_op = {
 341	.start	= m_start,
 342	.next	= m_next,
 343	.stop	= m_stop,
 344	.show	= show_map
 
 
 
 
 
 
 
 345};
 346
 347static int pid_maps_open(struct inode *inode, struct file *file)
 348{
 349	return do_maps_open(inode, file, &proc_pid_maps_op);
 350}
 351
 
 
 
 
 
 352const struct file_operations proc_pid_maps_operations = {
 353	.open		= pid_maps_open,
 354	.read		= seq_read,
 355	.llseek		= seq_lseek,
 356	.release	= proc_map_release,
 
 
 
 
 
 
 
 357};
 358
 359/*
 360 * Proportional Set Size(PSS): my share of RSS.
 361 *
 362 * PSS of a process is the count of pages it has in memory, where each
 363 * page is divided by the number of processes sharing it.  So if a
 364 * process has 1000 pages all to itself, and 1000 shared with one other
 365 * process, its PSS will be 1500.
 366 *
 367 * To keep (accumulated) division errors low, we adopt a 64bit
 368 * fixed-point pss counter to minimize division errors. So (pss >>
 369 * PSS_SHIFT) would be the real byte count.
 370 *
 371 * A shift of 12 before division means (assuming 4K page size):
 372 * 	- 1M 3-user-pages add up to 8KB errors;
 373 * 	- supports mapcount up to 2^24, or 16M;
 374 * 	- supports PSS up to 2^52 bytes, or 4PB.
 375 */
 376#define PSS_SHIFT 12
 377
 378#ifdef CONFIG_PROC_PAGE_MONITOR
 379struct mem_size_stats {
 
 380	unsigned long resident;
 381	unsigned long shared_clean;
 382	unsigned long shared_dirty;
 383	unsigned long private_clean;
 384	unsigned long private_dirty;
 385	unsigned long referenced;
 386	unsigned long anonymous;
 387	unsigned long lazyfree;
 388	unsigned long anonymous_thp;
 389	unsigned long shmem_thp;
 390	unsigned long file_thp;
 391	unsigned long swap;
 392	unsigned long shared_hugetlb;
 393	unsigned long private_hugetlb;
 394	u64 pss;
 395	u64 pss_anon;
 396	u64 pss_file;
 397	u64 pss_shmem;
 398	u64 pss_locked;
 399	u64 swap_pss;
 400	bool check_shmem_swap;
 401};
 402
 403static void smaps_page_accumulate(struct mem_size_stats *mss,
 404		struct page *page, unsigned long size, unsigned long pss,
 405		bool dirty, bool locked, bool private)
 406{
 407	mss->pss += pss;
 408
 409	if (PageAnon(page))
 410		mss->pss_anon += pss;
 411	else if (PageSwapBacked(page))
 412		mss->pss_shmem += pss;
 413	else
 414		mss->pss_file += pss;
 415
 416	if (locked)
 417		mss->pss_locked += pss;
 418
 419	if (dirty || PageDirty(page)) {
 420		if (private)
 421			mss->private_dirty += size;
 422		else
 423			mss->shared_dirty += size;
 424	} else {
 425		if (private)
 426			mss->private_clean += size;
 427		else
 428			mss->shared_clean += size;
 429	}
 430}
 431
 432static void smaps_account(struct mem_size_stats *mss, struct page *page,
 433		bool compound, bool young, bool dirty, bool locked)
 434{
 435	int i, nr = compound ? compound_nr(page) : 1;
 436	unsigned long size = nr * PAGE_SIZE;
 437
 438	/*
 439	 * First accumulate quantities that depend only on |size| and the type
 440	 * of the compound page.
 441	 */
 442	if (PageAnon(page)) {
 443		mss->anonymous += size;
 444		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
 445			mss->lazyfree += size;
 446	}
 447
 448	mss->resident += size;
 449	/* Accumulate the size in pages that have been accessed. */
 450	if (young || page_is_young(page) || PageReferenced(page))
 451		mss->referenced += size;
 452
 453	/*
 454	 * Then accumulate quantities that may depend on sharing, or that may
 455	 * differ page-by-page.
 456	 *
 457	 * page_count(page) == 1 guarantees the page is mapped exactly once.
 458	 * If any subpage of the compound page mapped with PTE it would elevate
 459	 * page_count().
 460	 */
 461	if (page_count(page) == 1) {
 462		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
 463			locked, true);
 464		return;
 465	}
 466	for (i = 0; i < nr; i++, page++) {
 467		int mapcount = page_mapcount(page);
 468		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
 469		if (mapcount >= 2)
 470			pss /= mapcount;
 471		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
 472				      mapcount < 2);
 473	}
 474}
 475
 476#ifdef CONFIG_SHMEM
 477static int smaps_pte_hole(unsigned long addr, unsigned long end,
 478			  __always_unused int depth, struct mm_walk *walk)
 479{
 480	struct mem_size_stats *mss = walk->private;
 481
 482	mss->swap += shmem_partial_swap_usage(
 483			walk->vma->vm_file->f_mapping, addr, end);
 484
 485	return 0;
 486}
 487#else
 488#define smaps_pte_hole		NULL
 489#endif /* CONFIG_SHMEM */
 490
 491static void smaps_pte_entry(pte_t *pte, unsigned long addr,
 492		struct mm_walk *walk)
 493{
 494	struct mem_size_stats *mss = walk->private;
 495	struct vm_area_struct *vma = walk->vma;
 496	bool locked = !!(vma->vm_flags & VM_LOCKED);
 497	struct page *page = NULL;
 
 498
 499	if (pte_present(*pte)) {
 500		page = vm_normal_page(vma, addr, *pte);
 501	} else if (is_swap_pte(*pte)) {
 502		swp_entry_t swpent = pte_to_swp_entry(*pte);
 503
 504		if (!non_swap_entry(swpent)) {
 505			int mapcount;
 506
 507			mss->swap += PAGE_SIZE;
 508			mapcount = swp_swapcount(swpent);
 509			if (mapcount >= 2) {
 510				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
 511
 512				do_div(pss_delta, mapcount);
 513				mss->swap_pss += pss_delta;
 514			} else {
 515				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
 516			}
 517		} else if (is_migration_entry(swpent))
 518			page = migration_entry_to_page(swpent);
 519		else if (is_device_private_entry(swpent))
 520			page = device_private_entry_to_page(swpent);
 521	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
 522							&& pte_none(*pte))) {
 523		page = find_get_entry(vma->vm_file->f_mapping,
 524						linear_page_index(vma, addr));
 525		if (!page)
 526			return;
 527
 528		if (xa_is_value(page))
 529			mss->swap += PAGE_SIZE;
 530		else
 531			put_page(page);
 532
 533		return;
 534	}
 535
 536	if (!page)
 537		return;
 538
 539	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
 540}
 541
 542#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 543static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 544		struct mm_walk *walk)
 545{
 546	struct mem_size_stats *mss = walk->private;
 547	struct vm_area_struct *vma = walk->vma;
 548	bool locked = !!(vma->vm_flags & VM_LOCKED);
 549	struct page *page = NULL;
 550
 551	if (pmd_present(*pmd)) {
 552		/* FOLL_DUMP will return -EFAULT on huge zero page */
 553		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
 554	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
 555		swp_entry_t entry = pmd_to_swp_entry(*pmd);
 556
 557		if (is_migration_entry(entry))
 558			page = migration_entry_to_page(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559	}
 560	if (IS_ERR_OR_NULL(page))
 561		return;
 562	if (PageAnon(page))
 563		mss->anonymous_thp += HPAGE_PMD_SIZE;
 564	else if (PageSwapBacked(page))
 565		mss->shmem_thp += HPAGE_PMD_SIZE;
 566	else if (is_zone_device_page(page))
 567		/* pass */;
 568	else
 569		mss->file_thp += HPAGE_PMD_SIZE;
 570	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
 571}
 572#else
 573static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 574		struct mm_walk *walk)
 575{
 576}
 577#endif
 578
 579static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 580			   struct mm_walk *walk)
 581{
 582	struct vm_area_struct *vma = walk->vma;
 
 583	pte_t *pte;
 584	spinlock_t *ptl;
 585
 586	ptl = pmd_trans_huge_lock(pmd, vma);
 587	if (ptl) {
 588		smaps_pmd_entry(pmd, addr, walk);
 589		spin_unlock(ptl);
 590		goto out;
 
 591	}
 592
 593	if (pmd_trans_unstable(pmd))
 594		goto out;
 595	/*
 596	 * The mmap_lock held all the way back in m_start() is what
 597	 * keeps khugepaged out of here and from collapsing things
 598	 * in here.
 599	 */
 600	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 601	for (; addr != end; pte++, addr += PAGE_SIZE)
 602		smaps_pte_entry(pte, addr, walk);
 603	pte_unmap_unlock(pte - 1, ptl);
 604out:
 605	cond_resched();
 606	return 0;
 607}
 608
 609static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
 610{
 611	/*
 612	 * Don't forget to update Documentation/ on changes.
 613	 */
 614	static const char mnemonics[BITS_PER_LONG][2] = {
 615		/*
 616		 * In case if we meet a flag we don't know about.
 617		 */
 618		[0 ... (BITS_PER_LONG-1)] = "??",
 619
 620		[ilog2(VM_READ)]	= "rd",
 621		[ilog2(VM_WRITE)]	= "wr",
 622		[ilog2(VM_EXEC)]	= "ex",
 623		[ilog2(VM_SHARED)]	= "sh",
 624		[ilog2(VM_MAYREAD)]	= "mr",
 625		[ilog2(VM_MAYWRITE)]	= "mw",
 626		[ilog2(VM_MAYEXEC)]	= "me",
 627		[ilog2(VM_MAYSHARE)]	= "ms",
 628		[ilog2(VM_GROWSDOWN)]	= "gd",
 629		[ilog2(VM_PFNMAP)]	= "pf",
 630		[ilog2(VM_DENYWRITE)]	= "dw",
 631		[ilog2(VM_LOCKED)]	= "lo",
 632		[ilog2(VM_IO)]		= "io",
 633		[ilog2(VM_SEQ_READ)]	= "sr",
 634		[ilog2(VM_RAND_READ)]	= "rr",
 635		[ilog2(VM_DONTCOPY)]	= "dc",
 636		[ilog2(VM_DONTEXPAND)]	= "de",
 637		[ilog2(VM_ACCOUNT)]	= "ac",
 638		[ilog2(VM_NORESERVE)]	= "nr",
 639		[ilog2(VM_HUGETLB)]	= "ht",
 640		[ilog2(VM_SYNC)]	= "sf",
 641		[ilog2(VM_ARCH_1)]	= "ar",
 642		[ilog2(VM_WIPEONFORK)]	= "wf",
 643		[ilog2(VM_DONTDUMP)]	= "dd",
 644#ifdef CONFIG_ARM64_BTI
 645		[ilog2(VM_ARM64_BTI)]	= "bt",
 646#endif
 647#ifdef CONFIG_MEM_SOFT_DIRTY
 648		[ilog2(VM_SOFTDIRTY)]	= "sd",
 649#endif
 650		[ilog2(VM_MIXEDMAP)]	= "mm",
 651		[ilog2(VM_HUGEPAGE)]	= "hg",
 652		[ilog2(VM_NOHUGEPAGE)]	= "nh",
 653		[ilog2(VM_MERGEABLE)]	= "mg",
 654		[ilog2(VM_UFFD_MISSING)]= "um",
 655		[ilog2(VM_UFFD_WP)]	= "uw",
 656#ifdef CONFIG_ARCH_HAS_PKEYS
 657		/* These come out via ProtectionKey: */
 658		[ilog2(VM_PKEY_BIT0)]	= "",
 659		[ilog2(VM_PKEY_BIT1)]	= "",
 660		[ilog2(VM_PKEY_BIT2)]	= "",
 661		[ilog2(VM_PKEY_BIT3)]	= "",
 662#if VM_PKEY_BIT4
 663		[ilog2(VM_PKEY_BIT4)]	= "",
 664#endif
 665#endif /* CONFIG_ARCH_HAS_PKEYS */
 666	};
 667	size_t i;
 668
 669	seq_puts(m, "VmFlags: ");
 670	for (i = 0; i < BITS_PER_LONG; i++) {
 671		if (!mnemonics[i][0])
 672			continue;
 673		if (vma->vm_flags & (1UL << i)) {
 674			seq_putc(m, mnemonics[i][0]);
 675			seq_putc(m, mnemonics[i][1]);
 676			seq_putc(m, ' ');
 677		}
 678	}
 679	seq_putc(m, '\n');
 680}
 681
 682#ifdef CONFIG_HUGETLB_PAGE
 683static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
 684				 unsigned long addr, unsigned long end,
 685				 struct mm_walk *walk)
 686{
 687	struct mem_size_stats *mss = walk->private;
 688	struct vm_area_struct *vma = walk->vma;
 689	struct page *page = NULL;
 690
 691	if (pte_present(*pte)) {
 692		page = vm_normal_page(vma, addr, *pte);
 693	} else if (is_swap_pte(*pte)) {
 694		swp_entry_t swpent = pte_to_swp_entry(*pte);
 695
 696		if (is_migration_entry(swpent))
 697			page = migration_entry_to_page(swpent);
 698		else if (is_device_private_entry(swpent))
 699			page = device_private_entry_to_page(swpent);
 700	}
 701	if (page) {
 702		int mapcount = page_mapcount(page);
 703
 704		if (mapcount >= 2)
 705			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
 706		else
 707			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
 708	}
 709	return 0;
 710}
 711#else
 712#define smaps_hugetlb_range	NULL
 713#endif /* HUGETLB_PAGE */
 714
 715static const struct mm_walk_ops smaps_walk_ops = {
 716	.pmd_entry		= smaps_pte_range,
 717	.hugetlb_entry		= smaps_hugetlb_range,
 718};
 719
 720static const struct mm_walk_ops smaps_shmem_walk_ops = {
 721	.pmd_entry		= smaps_pte_range,
 722	.hugetlb_entry		= smaps_hugetlb_range,
 723	.pte_hole		= smaps_pte_hole,
 724};
 725
 726static void smap_gather_stats(struct vm_area_struct *vma,
 727			     struct mem_size_stats *mss)
 728{
 729#ifdef CONFIG_SHMEM
 730	/* In case of smaps_rollup, reset the value from previous vma */
 731	mss->check_shmem_swap = false;
 732	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
 733		/*
 734		 * For shared or readonly shmem mappings we know that all
 735		 * swapped out pages belong to the shmem object, and we can
 736		 * obtain the swap value much more efficiently. For private
 737		 * writable mappings, we might have COW pages that are
 738		 * not affected by the parent swapped out pages of the shmem
 739		 * object, so we have to distinguish them during the page walk.
 740		 * Unless we know that the shmem object (or the part mapped by
 741		 * our VMA) has no swapped out pages at all.
 742		 */
 743		unsigned long shmem_swapped = shmem_swap_usage(vma);
 744
 745		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
 746					!(vma->vm_flags & VM_WRITE)) {
 747			mss->swap += shmem_swapped;
 748		} else {
 749			mss->check_shmem_swap = true;
 750			walk_page_vma(vma, &smaps_shmem_walk_ops, mss);
 751			return;
 752		}
 753	}
 754#endif
 755	/* mmap_lock is held in m_start */
 756	walk_page_vma(vma, &smaps_walk_ops, mss);
 757}
 758
 759#define SEQ_PUT_DEC(str, val) \
 760		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
 761
 762/* Show the contents common for smaps and smaps_rollup */
 763static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
 764	bool rollup_mode)
 765{
 766	SEQ_PUT_DEC("Rss:            ", mss->resident);
 767	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
 768	if (rollup_mode) {
 769		/*
 770		 * These are meaningful only for smaps_rollup, otherwise two of
 771		 * them are zero, and the other one is the same as Pss.
 772		 */
 773		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
 774			mss->pss_anon >> PSS_SHIFT);
 775		SEQ_PUT_DEC(" kB\nPss_File:       ",
 776			mss->pss_file >> PSS_SHIFT);
 777		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
 778			mss->pss_shmem >> PSS_SHIFT);
 779	}
 780	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
 781	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
 782	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
 783	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
 784	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
 785	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
 786	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
 787	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
 788	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
 789	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
 790	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
 791	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
 792				  mss->private_hugetlb >> 10, 7);
 793	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
 794	SEQ_PUT_DEC(" kB\nSwapPss:        ",
 795					mss->swap_pss >> PSS_SHIFT);
 796	SEQ_PUT_DEC(" kB\nLocked:         ",
 797					mss->pss_locked >> PSS_SHIFT);
 798	seq_puts(m, " kB\n");
 799}
 800
 801static int show_smap(struct seq_file *m, void *v)
 802{
 
 
 803	struct vm_area_struct *vma = v;
 804	struct mem_size_stats mss;
 
 
 
 
 
 805
 806	memset(&mss, 0, sizeof(mss));
 807
 808	smap_gather_stats(vma, &mss);
 809
 810	show_map_vma(m, vma);
 811
 812	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
 813	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
 814	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
 815	seq_puts(m, " kB\n");
 816
 817	__show_smap(m, &mss, false);
 818
 819	seq_printf(m, "THPeligible:    %d\n",
 820		   transparent_hugepage_enabled(vma));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821
 822	if (arch_pkeys_enabled())
 823		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
 824	show_smap_vma_flags(m, vma);
 825
 
 
 
 826	return 0;
 827}
 828
 829static int show_smaps_rollup(struct seq_file *m, void *v)
 830{
 831	struct proc_maps_private *priv = m->private;
 832	struct mem_size_stats mss;
 833	struct mm_struct *mm;
 834	struct vm_area_struct *vma;
 835	unsigned long last_vma_end = 0;
 836	int ret = 0;
 837
 838	priv->task = get_proc_task(priv->inode);
 839	if (!priv->task)
 840		return -ESRCH;
 841
 842	mm = priv->mm;
 843	if (!mm || !mmget_not_zero(mm)) {
 844		ret = -ESRCH;
 845		goto out_put_task;
 846	}
 847
 848	memset(&mss, 0, sizeof(mss));
 849
 850	ret = mmap_read_lock_killable(mm);
 851	if (ret)
 852		goto out_put_mm;
 853
 854	hold_task_mempolicy(priv);
 855
 856	for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
 857		smap_gather_stats(vma, &mss);
 858		last_vma_end = vma->vm_end;
 859	}
 860
 861	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
 862			       last_vma_end, 0, 0, 0, 0);
 863	seq_pad(m, ' ');
 864	seq_puts(m, "[rollup]\n");
 865
 866	__show_smap(m, &mss, true);
 867
 868	release_task_mempolicy(priv);
 869	mmap_read_unlock(mm);
 870
 871out_put_mm:
 872	mmput(mm);
 873out_put_task:
 874	put_task_struct(priv->task);
 875	priv->task = NULL;
 876
 877	return ret;
 
 
 878}
 879#undef SEQ_PUT_DEC
 880
 881static const struct seq_operations proc_pid_smaps_op = {
 882	.start	= m_start,
 883	.next	= m_next,
 884	.stop	= m_stop,
 885	.show	= show_smap
 
 
 
 
 
 
 
 886};
 887
 888static int pid_smaps_open(struct inode *inode, struct file *file)
 889{
 890	return do_maps_open(inode, file, &proc_pid_smaps_op);
 891}
 892
 893static int smaps_rollup_open(struct inode *inode, struct file *file)
 894{
 895	int ret;
 896	struct proc_maps_private *priv;
 897
 898	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
 899	if (!priv)
 900		return -ENOMEM;
 901
 902	ret = single_open(file, show_smaps_rollup, priv);
 903	if (ret)
 904		goto out_free;
 905
 906	priv->inode = inode;
 907	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
 908	if (IS_ERR(priv->mm)) {
 909		ret = PTR_ERR(priv->mm);
 910
 911		single_release(inode, file);
 912		goto out_free;
 913	}
 914
 915	return 0;
 916
 917out_free:
 918	kfree(priv);
 919	return ret;
 920}
 921
 922static int smaps_rollup_release(struct inode *inode, struct file *file)
 923{
 924	struct seq_file *seq = file->private_data;
 925	struct proc_maps_private *priv = seq->private;
 926
 927	if (priv->mm)
 928		mmdrop(priv->mm);
 929
 930	kfree(priv);
 931	return single_release(inode, file);
 932}
 933
 934const struct file_operations proc_pid_smaps_operations = {
 935	.open		= pid_smaps_open,
 936	.read		= seq_read,
 937	.llseek		= seq_lseek,
 938	.release	= proc_map_release,
 939};
 940
 941const struct file_operations proc_pid_smaps_rollup_operations = {
 942	.open		= smaps_rollup_open,
 943	.read		= seq_read,
 944	.llseek		= seq_lseek,
 945	.release	= smaps_rollup_release,
 946};
 947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 948enum clear_refs_types {
 949	CLEAR_REFS_ALL = 1,
 950	CLEAR_REFS_ANON,
 951	CLEAR_REFS_MAPPED,
 952	CLEAR_REFS_SOFT_DIRTY,
 953	CLEAR_REFS_MM_HIWATER_RSS,
 954	CLEAR_REFS_LAST,
 955};
 956
 957struct clear_refs_private {
 
 958	enum clear_refs_types type;
 959};
 960
 961#ifdef CONFIG_MEM_SOFT_DIRTY
 962static inline void clear_soft_dirty(struct vm_area_struct *vma,
 963		unsigned long addr, pte_t *pte)
 964{
 
 965	/*
 966	 * The soft-dirty tracker uses #PF-s to catch writes
 967	 * to pages, so write-protect the pte as well. See the
 968	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
 969	 * of how soft-dirty works.
 970	 */
 971	pte_t ptent = *pte;
 972
 973	if (pte_present(ptent)) {
 974		pte_t old_pte;
 975
 976		old_pte = ptep_modify_prot_start(vma, addr, pte);
 977		ptent = pte_wrprotect(old_pte);
 978		ptent = pte_clear_soft_dirty(ptent);
 979		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
 980	} else if (is_swap_pte(ptent)) {
 981		ptent = pte_swp_clear_soft_dirty(ptent);
 982		set_pte_at(vma->vm_mm, addr, pte, ptent);
 
 983	}
 984}
 985#else
 986static inline void clear_soft_dirty(struct vm_area_struct *vma,
 987		unsigned long addr, pte_t *pte)
 988{
 989}
 990#endif
 991
 992#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
 993static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
 994		unsigned long addr, pmd_t *pmdp)
 995{
 996	pmd_t old, pmd = *pmdp;
 997
 998	if (pmd_present(pmd)) {
 999		/* See comment in change_huge_pmd() */
1000		old = pmdp_invalidate(vma, addr, pmdp);
1001		if (pmd_dirty(old))
1002			pmd = pmd_mkdirty(pmd);
1003		if (pmd_young(old))
1004			pmd = pmd_mkyoung(pmd);
1005
1006		pmd = pmd_wrprotect(pmd);
1007		pmd = pmd_clear_soft_dirty(pmd);
1008
1009		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1010	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1011		pmd = pmd_swp_clear_soft_dirty(pmd);
1012		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1013	}
1014}
1015#else
1016static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1017		unsigned long addr, pmd_t *pmdp)
1018{
1019}
1020#endif
 
1021
1022static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1023				unsigned long end, struct mm_walk *walk)
1024{
1025	struct clear_refs_private *cp = walk->private;
1026	struct vm_area_struct *vma = walk->vma;
1027	pte_t *pte, ptent;
1028	spinlock_t *ptl;
1029	struct page *page;
1030
1031	ptl = pmd_trans_huge_lock(pmd, vma);
1032	if (ptl) {
1033		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1034			clear_soft_dirty_pmd(vma, addr, pmd);
1035			goto out;
1036		}
1037
1038		if (!pmd_present(*pmd))
1039			goto out;
1040
1041		page = pmd_page(*pmd);
1042
1043		/* Clear accessed and referenced bits. */
1044		pmdp_test_and_clear_young(vma, addr, pmd);
1045		test_and_clear_page_young(page);
1046		ClearPageReferenced(page);
1047out:
1048		spin_unlock(ptl);
1049		return 0;
1050	}
1051
1052	if (pmd_trans_unstable(pmd))
1053		return 0;
1054
1055	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1056	for (; addr != end; pte++, addr += PAGE_SIZE) {
1057		ptent = *pte;
1058
1059		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1060			clear_soft_dirty(vma, addr, pte);
1061			continue;
1062		}
1063
1064		if (!pte_present(ptent))
1065			continue;
1066
1067		page = vm_normal_page(vma, addr, ptent);
1068		if (!page)
1069			continue;
1070
1071		/* Clear accessed and referenced bits. */
1072		ptep_test_and_clear_young(vma, addr, pte);
1073		test_and_clear_page_young(page);
1074		ClearPageReferenced(page);
1075	}
1076	pte_unmap_unlock(pte - 1, ptl);
1077	cond_resched();
1078	return 0;
1079}
1080
1081static int clear_refs_test_walk(unsigned long start, unsigned long end,
1082				struct mm_walk *walk)
1083{
1084	struct clear_refs_private *cp = walk->private;
1085	struct vm_area_struct *vma = walk->vma;
1086
1087	if (vma->vm_flags & VM_PFNMAP)
1088		return 1;
1089
1090	/*
1091	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1092	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1093	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1094	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1095	 */
1096	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1097		return 1;
1098	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1099		return 1;
1100	return 0;
1101}
1102
1103static const struct mm_walk_ops clear_refs_walk_ops = {
1104	.pmd_entry		= clear_refs_pte_range,
1105	.test_walk		= clear_refs_test_walk,
1106};
1107
1108static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1109				size_t count, loff_t *ppos)
1110{
1111	struct task_struct *task;
1112	char buffer[PROC_NUMBUF];
1113	struct mm_struct *mm;
1114	struct vm_area_struct *vma;
1115	enum clear_refs_types type;
1116	struct mmu_gather tlb;
1117	int itype;
1118	int rv;
1119
1120	memset(buffer, 0, sizeof(buffer));
1121	if (count > sizeof(buffer) - 1)
1122		count = sizeof(buffer) - 1;
1123	if (copy_from_user(buffer, buf, count))
1124		return -EFAULT;
1125	rv = kstrtoint(strstrip(buffer), 10, &itype);
1126	if (rv < 0)
1127		return rv;
1128	type = (enum clear_refs_types)itype;
1129	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1130		return -EINVAL;
1131
 
 
 
 
 
 
1132	task = get_proc_task(file_inode(file));
1133	if (!task)
1134		return -ESRCH;
1135	mm = get_task_mm(task);
1136	if (mm) {
1137		struct mmu_notifier_range range;
1138		struct clear_refs_private cp = {
1139			.type = type,
1140		};
1141
1142		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1143			if (mmap_write_lock_killable(mm)) {
1144				count = -EINTR;
1145				goto out_mm;
1146			}
1147
 
 
 
 
 
1148			/*
1149			 * Writing 5 to /proc/pid/clear_refs resets the peak
1150			 * resident set size to this mm's current rss value.
 
 
 
 
 
1151			 */
1152			reset_mm_hiwater_rss(mm);
1153			mmap_write_unlock(mm);
1154			goto out_mm;
1155		}
1156
1157		if (mmap_read_lock_killable(mm)) {
1158			count = -EINTR;
1159			goto out_mm;
1160		}
1161		tlb_gather_mmu(&tlb, mm, 0, -1);
1162		if (type == CLEAR_REFS_SOFT_DIRTY) {
1163			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1164				if (!(vma->vm_flags & VM_SOFTDIRTY))
1165					continue;
1166				mmap_read_unlock(mm);
1167				if (mmap_write_lock_killable(mm)) {
1168					count = -EINTR;
1169					goto out_mm;
1170				}
1171				/*
1172				 * Avoid to modify vma->vm_flags
1173				 * without locked ops while the
1174				 * coredump reads the vm_flags.
1175				 */
1176				if (!mmget_still_valid(mm)) {
1177					/*
1178					 * Silently return "count"
1179					 * like if get_task_mm()
1180					 * failed. FIXME: should this
1181					 * function have returned
1182					 * -ESRCH if get_task_mm()
1183					 * failed like if
1184					 * get_proc_task() fails?
1185					 */
1186					mmap_write_unlock(mm);
1187					goto out_mm;
1188				}
1189				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1190					vma->vm_flags &= ~VM_SOFTDIRTY;
1191					vma_set_page_prot(vma);
1192				}
1193				mmap_write_downgrade(mm);
1194				break;
1195			}
1196
1197			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1198						0, NULL, mm, 0, -1UL);
1199			mmu_notifier_invalidate_range_start(&range);
1200		}
1201		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1202				&cp);
1203		if (type == CLEAR_REFS_SOFT_DIRTY)
1204			mmu_notifier_invalidate_range_end(&range);
1205		tlb_finish_mmu(&tlb, 0, -1);
1206		mmap_read_unlock(mm);
1207out_mm:
1208		mmput(mm);
1209	}
1210	put_task_struct(task);
1211
1212	return count;
1213}
1214
1215const struct file_operations proc_clear_refs_operations = {
1216	.write		= clear_refs_write,
1217	.llseek		= noop_llseek,
1218};
1219
1220typedef struct {
1221	u64 pme;
1222} pagemap_entry_t;
1223
1224struct pagemapread {
1225	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1226	pagemap_entry_t *buffer;
1227	bool show_pfn;
1228};
1229
1230#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1231#define PAGEMAP_WALK_MASK	(PMD_MASK)
1232
1233#define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1234#define PM_PFRAME_BITS		55
1235#define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1236#define PM_SOFT_DIRTY		BIT_ULL(55)
1237#define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1238#define PM_FILE			BIT_ULL(61)
1239#define PM_SWAP			BIT_ULL(62)
1240#define PM_PRESENT		BIT_ULL(63)
1241
 
 
 
 
 
 
 
 
 
 
1242#define PM_END_OF_BUFFER    1
1243
1244static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1245{
1246	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1247}
1248
1249static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1250			  struct pagemapread *pm)
1251{
1252	pm->buffer[pm->pos++] = *pme;
1253	if (pm->pos >= pm->len)
1254		return PM_END_OF_BUFFER;
1255	return 0;
1256}
1257
1258static int pagemap_pte_hole(unsigned long start, unsigned long end,
1259			    __always_unused int depth, struct mm_walk *walk)
1260{
1261	struct pagemapread *pm = walk->private;
1262	unsigned long addr = start;
1263	int err = 0;
 
1264
1265	while (addr < end) {
1266		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1267		pagemap_entry_t pme = make_pme(0, 0);
1268		/* End of address space hole, which we mark as non-present. */
1269		unsigned long hole_end;
1270
1271		if (vma)
1272			hole_end = min(end, vma->vm_start);
1273		else
1274			hole_end = end;
1275
1276		for (; addr < hole_end; addr += PAGE_SIZE) {
1277			err = add_to_pagemap(addr, &pme, pm);
1278			if (err)
1279				goto out;
1280		}
1281
1282		if (!vma)
1283			break;
1284
1285		/* Addresses in the VMA. */
1286		if (vma->vm_flags & VM_SOFTDIRTY)
1287			pme = make_pme(0, PM_SOFT_DIRTY);
1288		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1289			err = add_to_pagemap(addr, &pme, pm);
1290			if (err)
1291				goto out;
1292		}
1293	}
1294out:
1295	return err;
1296}
1297
1298static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1299		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1300{
1301	u64 frame = 0, flags = 0;
1302	struct page *page = NULL;
 
1303
1304	if (pte_present(pte)) {
1305		if (pm->show_pfn)
1306			frame = pte_pfn(pte);
1307		flags |= PM_PRESENT;
1308		page = vm_normal_page(vma, addr, pte);
1309		if (pte_soft_dirty(pte))
1310			flags |= PM_SOFT_DIRTY;
1311	} else if (is_swap_pte(pte)) {
1312		swp_entry_t entry;
1313		if (pte_swp_soft_dirty(pte))
1314			flags |= PM_SOFT_DIRTY;
1315		entry = pte_to_swp_entry(pte);
1316		if (pm->show_pfn)
1317			frame = swp_type(entry) |
1318				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1319		flags |= PM_SWAP;
1320		if (is_migration_entry(entry))
1321			page = migration_entry_to_page(entry);
1322
1323		if (is_device_private_entry(entry))
1324			page = device_private_entry_to_page(entry);
 
 
1325	}
1326
1327	if (page && !PageAnon(page))
1328		flags |= PM_FILE;
1329	if (page && page_mapcount(page) == 1)
1330		flags |= PM_MMAP_EXCLUSIVE;
1331	if (vma->vm_flags & VM_SOFTDIRTY)
1332		flags |= PM_SOFT_DIRTY;
1333
1334	return make_pme(frame, flags);
1335}
1336
1337static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338			     struct mm_walk *walk)
1339{
1340	struct vm_area_struct *vma = walk->vma;
1341	struct pagemapread *pm = walk->private;
1342	spinlock_t *ptl;
1343	pte_t *pte, *orig_pte;
1344	int err = 0;
 
1345
1346#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1347	ptl = pmd_trans_huge_lock(pmdp, vma);
1348	if (ptl) {
1349		u64 flags = 0, frame = 0;
1350		pmd_t pmd = *pmdp;
1351		struct page *page = NULL;
1352
1353		if (vma->vm_flags & VM_SOFTDIRTY)
1354			flags |= PM_SOFT_DIRTY;
1355
1356		if (pmd_present(pmd)) {
1357			page = pmd_page(pmd);
1358
1359			flags |= PM_PRESENT;
1360			if (pmd_soft_dirty(pmd))
1361				flags |= PM_SOFT_DIRTY;
1362			if (pm->show_pfn)
1363				frame = pmd_pfn(pmd) +
1364					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1365		}
1366#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1367		else if (is_swap_pmd(pmd)) {
1368			swp_entry_t entry = pmd_to_swp_entry(pmd);
1369			unsigned long offset;
1370
1371			if (pm->show_pfn) {
1372				offset = swp_offset(entry) +
1373					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1374				frame = swp_type(entry) |
1375					(offset << MAX_SWAPFILES_SHIFT);
1376			}
1377			flags |= PM_SWAP;
1378			if (pmd_swp_soft_dirty(pmd))
1379				flags |= PM_SOFT_DIRTY;
1380			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1381			page = migration_entry_to_page(entry);
1382		}
1383#endif
1384
1385		if (page && page_mapcount(page) == 1)
1386			flags |= PM_MMAP_EXCLUSIVE;
 
 
1387
1388		for (; addr != end; addr += PAGE_SIZE) {
1389			pagemap_entry_t pme = make_pme(frame, flags);
1390
 
 
 
1391			err = add_to_pagemap(addr, &pme, pm);
1392			if (err)
1393				break;
1394			if (pm->show_pfn) {
1395				if (flags & PM_PRESENT)
1396					frame++;
1397				else if (flags & PM_SWAP)
1398					frame += (1 << MAX_SWAPFILES_SHIFT);
1399			}
1400		}
1401		spin_unlock(ptl);
1402		return err;
1403	}
1404
1405	if (pmd_trans_unstable(pmdp))
1406		return 0;
1407#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 
1408
1409	/*
1410	 * We can assume that @vma always points to a valid one and @end never
1411	 * goes beyond vma->vm_end.
1412	 */
1413	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1414	for (; addr < end; pte++, addr += PAGE_SIZE) {
1415		pagemap_entry_t pme;
 
 
 
1416
1417		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
 
 
 
 
 
 
 
 
1418		err = add_to_pagemap(addr, &pme, pm);
1419		if (err)
1420			break;
1421	}
1422	pte_unmap_unlock(orig_pte, ptl);
1423
1424	cond_resched();
1425
1426	return err;
1427}
1428
1429#ifdef CONFIG_HUGETLB_PAGE
 
 
 
 
 
 
 
 
 
 
 
 
1430/* This function walks within one hugetlb entry in the single call */
1431static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1432				 unsigned long addr, unsigned long end,
1433				 struct mm_walk *walk)
1434{
1435	struct pagemapread *pm = walk->private;
1436	struct vm_area_struct *vma = walk->vma;
1437	u64 flags = 0, frame = 0;
1438	int err = 0;
1439	pte_t pte;
 
1440
1441	if (vma->vm_flags & VM_SOFTDIRTY)
1442		flags |= PM_SOFT_DIRTY;
1443
1444	pte = huge_ptep_get(ptep);
1445	if (pte_present(pte)) {
1446		struct page *page = pte_page(pte);
1447
1448		if (!PageAnon(page))
1449			flags |= PM_FILE;
1450
1451		if (page_mapcount(page) == 1)
1452			flags |= PM_MMAP_EXCLUSIVE;
1453
1454		flags |= PM_PRESENT;
1455		if (pm->show_pfn)
1456			frame = pte_pfn(pte) +
1457				((addr & ~hmask) >> PAGE_SHIFT);
1458	}
1459
1460	for (; addr != end; addr += PAGE_SIZE) {
1461		pagemap_entry_t pme = make_pme(frame, flags);
1462
1463		err = add_to_pagemap(addr, &pme, pm);
1464		if (err)
1465			return err;
1466		if (pm->show_pfn && (flags & PM_PRESENT))
1467			frame++;
1468	}
1469
1470	cond_resched();
1471
1472	return err;
1473}
1474#else
1475#define pagemap_hugetlb_range	NULL
1476#endif /* HUGETLB_PAGE */
1477
1478static const struct mm_walk_ops pagemap_ops = {
1479	.pmd_entry	= pagemap_pmd_range,
1480	.pte_hole	= pagemap_pte_hole,
1481	.hugetlb_entry	= pagemap_hugetlb_range,
1482};
1483
1484/*
1485 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1486 *
1487 * For each page in the address space, this file contains one 64-bit entry
1488 * consisting of the following:
1489 *
1490 * Bits 0-54  page frame number (PFN) if present
1491 * Bits 0-4   swap type if swapped
1492 * Bits 5-54  swap offset if swapped
1493 * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1494 * Bit  56    page exclusively mapped
1495 * Bits 57-60 zero
1496 * Bit  61    page is file-page or shared-anon
1497 * Bit  62    page swapped
1498 * Bit  63    page present
1499 *
1500 * If the page is not present but in swap, then the PFN contains an
1501 * encoding of the swap file number and the page's offset into the
1502 * swap. Unmapped pages return a null PFN. This allows determining
1503 * precisely which pages are mapped (or in swap) and comparing mapped
1504 * pages between processes.
1505 *
1506 * Efficient users of this interface will use /proc/pid/maps to
1507 * determine which areas of memory are actually mapped and llseek to
1508 * skip over unmapped regions.
1509 */
1510static ssize_t pagemap_read(struct file *file, char __user *buf,
1511			    size_t count, loff_t *ppos)
1512{
1513	struct mm_struct *mm = file->private_data;
 
1514	struct pagemapread pm;
 
 
1515	unsigned long src;
1516	unsigned long svpfn;
1517	unsigned long start_vaddr;
1518	unsigned long end_vaddr;
1519	int ret = 0, copied = 0;
1520
1521	if (!mm || !mmget_not_zero(mm))
1522		goto out;
1523
1524	ret = -EINVAL;
1525	/* file position must be aligned */
1526	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1527		goto out_mm;
1528
1529	ret = 0;
1530	if (!count)
1531		goto out_mm;
1532
1533	/* do not disclose physical addresses: attack vector */
1534	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1535
 
1536	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1537	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1538	ret = -ENOMEM;
1539	if (!pm.buffer)
1540		goto out_mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
1541
1542	src = *ppos;
1543	svpfn = src / PM_ENTRY_BYTES;
1544	start_vaddr = svpfn << PAGE_SHIFT;
1545	end_vaddr = mm->task_size;
1546
1547	/* watch out for wraparound */
1548	if (svpfn > mm->task_size >> PAGE_SHIFT)
1549		start_vaddr = end_vaddr;
1550
1551	/*
1552	 * The odds are that this will stop walking way
1553	 * before end_vaddr, because the length of the
1554	 * user buffer is tracked in "pm", and the walk
1555	 * will stop when we hit the end of the buffer.
1556	 */
1557	ret = 0;
1558	while (count && (start_vaddr < end_vaddr)) {
1559		int len;
1560		unsigned long end;
1561
1562		pm.pos = 0;
1563		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1564		/* overflow ? */
1565		if (end < start_vaddr || end > end_vaddr)
1566			end = end_vaddr;
1567		ret = mmap_read_lock_killable(mm);
1568		if (ret)
1569			goto out_free;
1570		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1571		mmap_read_unlock(mm);
1572		start_vaddr = end;
1573
1574		len = min(count, PM_ENTRY_BYTES * pm.pos);
1575		if (copy_to_user(buf, pm.buffer, len)) {
1576			ret = -EFAULT;
1577			goto out_free;
1578		}
1579		copied += len;
1580		buf += len;
1581		count -= len;
1582	}
1583	*ppos += copied;
1584	if (!ret || ret == PM_END_OF_BUFFER)
1585		ret = copied;
1586
1587out_free:
1588	kfree(pm.buffer);
1589out_mm:
1590	mmput(mm);
 
 
 
 
1591out:
1592	return ret;
1593}
1594
1595static int pagemap_open(struct inode *inode, struct file *file)
1596{
1597	struct mm_struct *mm;
1598
1599	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1600	if (IS_ERR(mm))
1601		return PTR_ERR(mm);
1602	file->private_data = mm;
1603	return 0;
1604}
1605
1606static int pagemap_release(struct inode *inode, struct file *file)
1607{
1608	struct mm_struct *mm = file->private_data;
1609
1610	if (mm)
1611		mmdrop(mm);
1612	return 0;
1613}
1614
1615const struct file_operations proc_pagemap_operations = {
1616	.llseek		= mem_lseek, /* borrow this */
1617	.read		= pagemap_read,
1618	.open		= pagemap_open,
1619	.release	= pagemap_release,
1620};
1621#endif /* CONFIG_PROC_PAGE_MONITOR */
1622
1623#ifdef CONFIG_NUMA
1624
1625struct numa_maps {
 
1626	unsigned long pages;
1627	unsigned long anon;
1628	unsigned long active;
1629	unsigned long writeback;
1630	unsigned long mapcount_max;
1631	unsigned long dirty;
1632	unsigned long swapcache;
1633	unsigned long node[MAX_NUMNODES];
1634};
1635
1636struct numa_maps_private {
1637	struct proc_maps_private proc_maps;
1638	struct numa_maps md;
1639};
1640
1641static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1642			unsigned long nr_pages)
1643{
1644	int count = page_mapcount(page);
1645
1646	md->pages += nr_pages;
1647	if (pte_dirty || PageDirty(page))
1648		md->dirty += nr_pages;
1649
1650	if (PageSwapCache(page))
1651		md->swapcache += nr_pages;
1652
1653	if (PageActive(page) || PageUnevictable(page))
1654		md->active += nr_pages;
1655
1656	if (PageWriteback(page))
1657		md->writeback += nr_pages;
1658
1659	if (PageAnon(page))
1660		md->anon += nr_pages;
1661
1662	if (count > md->mapcount_max)
1663		md->mapcount_max = count;
1664
1665	md->node[page_to_nid(page)] += nr_pages;
1666}
1667
1668static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1669		unsigned long addr)
1670{
1671	struct page *page;
1672	int nid;
1673
1674	if (!pte_present(pte))
1675		return NULL;
1676
1677	page = vm_normal_page(vma, addr, pte);
1678	if (!page)
1679		return NULL;
1680
1681	if (PageReserved(page))
1682		return NULL;
1683
1684	nid = page_to_nid(page);
1685	if (!node_isset(nid, node_states[N_MEMORY]))
1686		return NULL;
1687
1688	return page;
1689}
1690
1691#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1692static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1693					      struct vm_area_struct *vma,
1694					      unsigned long addr)
1695{
1696	struct page *page;
1697	int nid;
1698
1699	if (!pmd_present(pmd))
1700		return NULL;
1701
1702	page = vm_normal_page_pmd(vma, addr, pmd);
1703	if (!page)
1704		return NULL;
1705
1706	if (PageReserved(page))
1707		return NULL;
1708
1709	nid = page_to_nid(page);
1710	if (!node_isset(nid, node_states[N_MEMORY]))
1711		return NULL;
1712
1713	return page;
1714}
1715#endif
1716
1717static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1718		unsigned long end, struct mm_walk *walk)
1719{
1720	struct numa_maps *md = walk->private;
1721	struct vm_area_struct *vma = walk->vma;
1722	spinlock_t *ptl;
1723	pte_t *orig_pte;
1724	pte_t *pte;
1725
1726#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1727	ptl = pmd_trans_huge_lock(pmd, vma);
1728	if (ptl) {
 
1729		struct page *page;
1730
1731		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1732		if (page)
1733			gather_stats(page, md, pmd_dirty(*pmd),
1734				     HPAGE_PMD_SIZE/PAGE_SIZE);
1735		spin_unlock(ptl);
1736		return 0;
1737	}
1738
1739	if (pmd_trans_unstable(pmd))
1740		return 0;
1741#endif
1742	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1743	do {
1744		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1745		if (!page)
1746			continue;
1747		gather_stats(page, md, pte_dirty(*pte), 1);
1748
1749	} while (pte++, addr += PAGE_SIZE, addr != end);
1750	pte_unmap_unlock(orig_pte, ptl);
1751	cond_resched();
1752	return 0;
1753}
1754#ifdef CONFIG_HUGETLB_PAGE
1755static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1756		unsigned long addr, unsigned long end, struct mm_walk *walk)
1757{
1758	pte_t huge_pte = huge_ptep_get(pte);
1759	struct numa_maps *md;
1760	struct page *page;
1761
1762	if (!pte_present(huge_pte))
1763		return 0;
1764
1765	page = pte_page(huge_pte);
1766	if (!page)
1767		return 0;
1768
1769	md = walk->private;
1770	gather_stats(page, md, pte_dirty(huge_pte), 1);
1771	return 0;
1772}
1773
1774#else
1775static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1776		unsigned long addr, unsigned long end, struct mm_walk *walk)
1777{
1778	return 0;
1779}
1780#endif
1781
1782static const struct mm_walk_ops show_numa_ops = {
1783	.hugetlb_entry = gather_hugetlb_stats,
1784	.pmd_entry = gather_pte_stats,
1785};
1786
1787/*
1788 * Display pages allocated per node and memory policy via /proc.
1789 */
1790static int show_numa_map(struct seq_file *m, void *v)
1791{
1792	struct numa_maps_private *numa_priv = m->private;
1793	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1794	struct vm_area_struct *vma = v;
1795	struct numa_maps *md = &numa_priv->md;
1796	struct file *file = vma->vm_file;
 
1797	struct mm_struct *mm = vma->vm_mm;
 
1798	struct mempolicy *pol;
1799	char buffer[64];
1800	int nid;
1801
1802	if (!mm)
1803		return 0;
1804
1805	/* Ensure we start with an empty set of numa_maps statistics. */
1806	memset(md, 0, sizeof(*md));
1807
1808	pol = __get_vma_policy(vma, vma->vm_start);
1809	if (pol) {
1810		mpol_to_str(buffer, sizeof(buffer), pol);
1811		mpol_cond_put(pol);
1812	} else {
1813		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1814	}
 
 
 
1815
1816	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1817
1818	if (file) {
1819		seq_puts(m, " file=");
1820		seq_file_path(m, file, "\n\t= ");
1821	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1822		seq_puts(m, " heap");
1823	} else if (is_stack(vma)) {
1824		seq_puts(m, " stack");
 
 
 
 
 
 
 
 
 
 
 
1825	}
1826
1827	if (is_vm_hugetlb_page(vma))
1828		seq_puts(m, " huge");
1829
1830	/* mmap_lock is held by m_start */
1831	walk_page_vma(vma, &show_numa_ops, md);
1832
1833	if (!md->pages)
1834		goto out;
1835
1836	if (md->anon)
1837		seq_printf(m, " anon=%lu", md->anon);
1838
1839	if (md->dirty)
1840		seq_printf(m, " dirty=%lu", md->dirty);
1841
1842	if (md->pages != md->anon && md->pages != md->dirty)
1843		seq_printf(m, " mapped=%lu", md->pages);
1844
1845	if (md->mapcount_max > 1)
1846		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1847
1848	if (md->swapcache)
1849		seq_printf(m, " swapcache=%lu", md->swapcache);
1850
1851	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1852		seq_printf(m, " active=%lu", md->active);
1853
1854	if (md->writeback)
1855		seq_printf(m, " writeback=%lu", md->writeback);
1856
1857	for_each_node_state(nid, N_MEMORY)
1858		if (md->node[nid])
1859			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1860
1861	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1862out:
1863	seq_putc(m, '\n');
 
 
 
1864	return 0;
1865}
1866
 
 
 
 
 
 
 
 
 
 
1867static const struct seq_operations proc_pid_numa_maps_op = {
1868	.start  = m_start,
1869	.next   = m_next,
1870	.stop   = m_stop,
1871	.show   = show_numa_map,
1872};
1873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874static int pid_numa_maps_open(struct inode *inode, struct file *file)
1875{
1876	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1877				sizeof(struct numa_maps_private));
 
 
 
 
1878}
1879
1880const struct file_operations proc_pid_numa_maps_operations = {
1881	.open		= pid_numa_maps_open,
1882	.read		= seq_read,
1883	.llseek		= seq_lseek,
1884	.release	= proc_map_release,
1885};
1886
 
 
 
 
 
 
1887#endif /* CONFIG_NUMA */
v3.15
   1#include <linux/mm.h>
 
   2#include <linux/vmacache.h>
   3#include <linux/hugetlb.h>
   4#include <linux/huge_mm.h>
   5#include <linux/mount.h>
   6#include <linux/seq_file.h>
   7#include <linux/highmem.h>
   8#include <linux/ptrace.h>
   9#include <linux/slab.h>
  10#include <linux/pagemap.h>
  11#include <linux/mempolicy.h>
  12#include <linux/rmap.h>
  13#include <linux/swap.h>
 
  14#include <linux/swapops.h>
  15#include <linux/mmu_notifier.h>
 
 
 
 
  16
  17#include <asm/elf.h>
  18#include <asm/uaccess.h>
  19#include <asm/tlbflush.h>
  20#include "internal.h"
  21
 
 
  22void task_mem(struct seq_file *m, struct mm_struct *mm)
  23{
  24	unsigned long data, text, lib, swap;
  25	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  26
 
 
 
 
  27	/*
  28	 * Note: to minimize their overhead, mm maintains hiwater_vm and
  29	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
  30	 * collector of these hiwater stats must therefore get total_vm
  31	 * and rss too, which will usually be the higher.  Barriers? not
  32	 * worth the effort, such snapshots can always be inconsistent.
  33	 */
  34	hiwater_vm = total_vm = mm->total_vm;
  35	if (hiwater_vm < mm->hiwater_vm)
  36		hiwater_vm = mm->hiwater_vm;
  37	hiwater_rss = total_rss = get_mm_rss(mm);
  38	if (hiwater_rss < mm->hiwater_rss)
  39		hiwater_rss = mm->hiwater_rss;
  40
  41	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  42	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  43	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
 
 
  44	swap = get_mm_counter(mm, MM_SWAPENTS);
  45	seq_printf(m,
  46		"VmPeak:\t%8lu kB\n"
  47		"VmSize:\t%8lu kB\n"
  48		"VmLck:\t%8lu kB\n"
  49		"VmPin:\t%8lu kB\n"
  50		"VmHWM:\t%8lu kB\n"
  51		"VmRSS:\t%8lu kB\n"
  52		"VmData:\t%8lu kB\n"
  53		"VmStk:\t%8lu kB\n"
  54		"VmExe:\t%8lu kB\n"
  55		"VmLib:\t%8lu kB\n"
  56		"VmPTE:\t%8lu kB\n"
  57		"VmSwap:\t%8lu kB\n",
  58		hiwater_vm << (PAGE_SHIFT-10),
  59		total_vm << (PAGE_SHIFT-10),
  60		mm->locked_vm << (PAGE_SHIFT-10),
  61		mm->pinned_vm << (PAGE_SHIFT-10),
  62		hiwater_rss << (PAGE_SHIFT-10),
  63		total_rss << (PAGE_SHIFT-10),
  64		data << (PAGE_SHIFT-10),
  65		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  66		(PTRS_PER_PTE * sizeof(pte_t) *
  67		 atomic_long_read(&mm->nr_ptes)) >> 10,
  68		swap << (PAGE_SHIFT-10));
  69}
 
  70
  71unsigned long task_vsize(struct mm_struct *mm)
  72{
  73	return PAGE_SIZE * mm->total_vm;
  74}
  75
  76unsigned long task_statm(struct mm_struct *mm,
  77			 unsigned long *shared, unsigned long *text,
  78			 unsigned long *data, unsigned long *resident)
  79{
  80	*shared = get_mm_counter(mm, MM_FILEPAGES);
 
  81	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  82								>> PAGE_SHIFT;
  83	*data = mm->total_vm - mm->shared_vm;
  84	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  85	return mm->total_vm;
  86}
  87
  88#ifdef CONFIG_NUMA
  89/*
  90 * These functions are for numa_maps but called in generic **maps seq_file
  91 * ->start(), ->stop() ops.
  92 *
  93 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
  94 * Each mempolicy object is controlled by reference counting. The problem here
  95 * is how to avoid accessing dead mempolicy object.
  96 *
  97 * Because we're holding mmap_sem while reading seq_file, it's safe to access
  98 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
  99 *
 100 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
 101 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
 102 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
 103 * gurantee the task never exits under us. But taking task_lock() around
 104 * get_vma_plicy() causes lock order problem.
 105 *
 106 * To access task->mempolicy without lock, we hold a reference count of an
 107 * object pointed by task->mempolicy and remember it. This will guarantee
 108 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
 109 */
 110static void hold_task_mempolicy(struct proc_maps_private *priv)
 111{
 112	struct task_struct *task = priv->task;
 113
 114	task_lock(task);
 115	priv->task_mempolicy = task->mempolicy;
 116	mpol_get(priv->task_mempolicy);
 117	task_unlock(task);
 118}
 119static void release_task_mempolicy(struct proc_maps_private *priv)
 120{
 121	mpol_put(priv->task_mempolicy);
 122}
 123#else
 124static void hold_task_mempolicy(struct proc_maps_private *priv)
 125{
 126}
 127static void release_task_mempolicy(struct proc_maps_private *priv)
 128{
 129}
 130#endif
 131
 132static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
 133{
 134	if (vma && vma != priv->tail_vma) {
 135		struct mm_struct *mm = vma->vm_mm;
 136		release_task_mempolicy(priv);
 137		up_read(&mm->mmap_sem);
 138		mmput(mm);
 139	}
 140}
 141
 142static void *m_start(struct seq_file *m, loff_t *pos)
 143{
 144	struct proc_maps_private *priv = m->private;
 145	unsigned long last_addr = m->version;
 146	struct mm_struct *mm;
 147	struct vm_area_struct *vma, *tail_vma = NULL;
 148	loff_t l = *pos;
 149
 150	/* Clear the per syscall fields in priv */
 151	priv->task = NULL;
 152	priv->tail_vma = NULL;
 153
 154	/*
 155	 * We remember last_addr rather than next_addr to hit with
 156	 * vmacache most of the time. We have zero last_addr at
 157	 * the beginning and also after lseek. We will have -1 last_addr
 158	 * after the end of the vmas.
 159	 */
 160
 
 161	if (last_addr == -1UL)
 162		return NULL;
 163
 164	priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
 165	if (!priv->task)
 166		return ERR_PTR(-ESRCH);
 167
 168	mm = mm_access(priv->task, PTRACE_MODE_READ);
 169	if (!mm || IS_ERR(mm))
 170		return mm;
 171	down_read(&mm->mmap_sem);
 172
 173	tail_vma = get_gate_vma(priv->task->mm);
 174	priv->tail_vma = tail_vma;
 175	hold_task_mempolicy(priv);
 176	/* Start with last addr hint */
 177	vma = find_vma(mm, last_addr);
 178	if (last_addr && vma) {
 179		vma = vma->vm_next;
 180		goto out;
 181	}
 182
 183	/*
 184	 * Check the vma index is within the range and do
 185	 * sequential scan until m_index.
 186	 */
 187	vma = NULL;
 188	if ((unsigned long)l < mm->map_count) {
 189		vma = mm->mmap;
 190		while (l-- && vma)
 191			vma = vma->vm_next;
 192		goto out;
 193	}
 194
 195	if (l != mm->map_count)
 196		tail_vma = NULL; /* After gate vma */
 197
 198out:
 199	if (vma)
 200		return vma;
 201
 202	release_task_mempolicy(priv);
 203	/* End of vmas has been reached */
 204	m->version = (tail_vma != NULL)? 0: -1UL;
 205	up_read(&mm->mmap_sem);
 206	mmput(mm);
 207	return tail_vma;
 208}
 209
 210static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 211{
 212	struct proc_maps_private *priv = m->private;
 213	struct vm_area_struct *vma = v;
 214	struct vm_area_struct *tail_vma = priv->tail_vma;
 
 
 
 
 
 
 
 
 215
 216	(*pos)++;
 217	if (vma && (vma != tail_vma) && vma->vm_next)
 218		return vma->vm_next;
 219	vma_stop(priv, vma);
 220	return (vma != tail_vma)? tail_vma: NULL;
 221}
 222
 223static void m_stop(struct seq_file *m, void *v)
 224{
 225	struct proc_maps_private *priv = m->private;
 226	struct vm_area_struct *vma = v;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227
 228	if (!IS_ERR(vma))
 229		vma_stop(priv, vma);
 230	if (priv->task)
 231		put_task_struct(priv->task);
 232}
 233
 234static int do_maps_open(struct inode *inode, struct file *file,
 235			const struct seq_operations *ops)
 236{
 237	struct proc_maps_private *priv;
 238	int ret = -ENOMEM;
 239	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 240	if (priv) {
 241		priv->pid = proc_pid(inode);
 242		ret = seq_open(file, ops);
 243		if (!ret) {
 244			struct seq_file *m = file->private_data;
 245			m->private = priv;
 246		} else {
 247			kfree(priv);
 248		}
 249	}
 250	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251}
 252
 253static void
 254show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
 255{
 256	struct mm_struct *mm = vma->vm_mm;
 257	struct file *file = vma->vm_file;
 258	struct proc_maps_private *priv = m->private;
 259	struct task_struct *task = priv->task;
 260	vm_flags_t flags = vma->vm_flags;
 261	unsigned long ino = 0;
 262	unsigned long long pgoff = 0;
 263	unsigned long start, end;
 264	dev_t dev = 0;
 265	const char *name = NULL;
 266
 267	if (file) {
 268		struct inode *inode = file_inode(vma->vm_file);
 269		dev = inode->i_sb->s_dev;
 270		ino = inode->i_ino;
 271		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 272	}
 273
 274	/* We don't show the stack guard page in /proc/maps */
 275	start = vma->vm_start;
 276	if (stack_guard_page_start(vma, start))
 277		start += PAGE_SIZE;
 278	end = vma->vm_end;
 279	if (stack_guard_page_end(vma, end))
 280		end -= PAGE_SIZE;
 281
 282	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
 283	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
 284			start,
 285			end,
 286			flags & VM_READ ? 'r' : '-',
 287			flags & VM_WRITE ? 'w' : '-',
 288			flags & VM_EXEC ? 'x' : '-',
 289			flags & VM_MAYSHARE ? 's' : 'p',
 290			pgoff,
 291			MAJOR(dev), MINOR(dev), ino);
 292
 293	/*
 294	 * Print the dentry name for named mappings, and a
 295	 * special [heap] marker for the heap:
 296	 */
 297	if (file) {
 298		seq_pad(m, ' ');
 299		seq_path(m, &file->f_path, "\n");
 300		goto done;
 301	}
 302
 
 
 
 
 
 
 303	name = arch_vma_name(vma);
 304	if (!name) {
 305		pid_t tid;
 306
 307		if (!mm) {
 308			name = "[vdso]";
 309			goto done;
 310		}
 311
 312		if (vma->vm_start <= mm->brk &&
 313		    vma->vm_end >= mm->start_brk) {
 314			name = "[heap]";
 315			goto done;
 316		}
 317
 318		tid = vm_is_stack(task, vma, is_pid);
 319
 320		if (tid != 0) {
 321			/*
 322			 * Thread stack in /proc/PID/task/TID/maps or
 323			 * the main process stack.
 324			 */
 325			if (!is_pid || (vma->vm_start <= mm->start_stack &&
 326			    vma->vm_end >= mm->start_stack)) {
 327				name = "[stack]";
 328			} else {
 329				/* Thread stack in /proc/PID/maps */
 330				seq_pad(m, ' ');
 331				seq_printf(m, "[stack:%d]", tid);
 332			}
 333		}
 334	}
 335
 336done:
 337	if (name) {
 338		seq_pad(m, ' ');
 339		seq_puts(m, name);
 340	}
 341	seq_putc(m, '\n');
 342}
 343
 344static int show_map(struct seq_file *m, void *v, int is_pid)
 345{
 346	struct vm_area_struct *vma = v;
 347	struct proc_maps_private *priv = m->private;
 348	struct task_struct *task = priv->task;
 349
 350	show_map_vma(m, vma, is_pid);
 351
 352	if (m->count < m->size)  /* vma is copied successfully */
 353		m->version = (vma != get_gate_vma(task->mm))
 354			? vma->vm_start : 0;
 355	return 0;
 356}
 357
 358static int show_pid_map(struct seq_file *m, void *v)
 359{
 360	return show_map(m, v, 1);
 361}
 362
 363static int show_tid_map(struct seq_file *m, void *v)
 364{
 365	return show_map(m, v, 0);
 366}
 367
 368static const struct seq_operations proc_pid_maps_op = {
 369	.start	= m_start,
 370	.next	= m_next,
 371	.stop	= m_stop,
 372	.show	= show_pid_map
 373};
 374
 375static const struct seq_operations proc_tid_maps_op = {
 376	.start	= m_start,
 377	.next	= m_next,
 378	.stop	= m_stop,
 379	.show	= show_tid_map
 380};
 381
 382static int pid_maps_open(struct inode *inode, struct file *file)
 383{
 384	return do_maps_open(inode, file, &proc_pid_maps_op);
 385}
 386
 387static int tid_maps_open(struct inode *inode, struct file *file)
 388{
 389	return do_maps_open(inode, file, &proc_tid_maps_op);
 390}
 391
 392const struct file_operations proc_pid_maps_operations = {
 393	.open		= pid_maps_open,
 394	.read		= seq_read,
 395	.llseek		= seq_lseek,
 396	.release	= seq_release_private,
 397};
 398
 399const struct file_operations proc_tid_maps_operations = {
 400	.open		= tid_maps_open,
 401	.read		= seq_read,
 402	.llseek		= seq_lseek,
 403	.release	= seq_release_private,
 404};
 405
 406/*
 407 * Proportional Set Size(PSS): my share of RSS.
 408 *
 409 * PSS of a process is the count of pages it has in memory, where each
 410 * page is divided by the number of processes sharing it.  So if a
 411 * process has 1000 pages all to itself, and 1000 shared with one other
 412 * process, its PSS will be 1500.
 413 *
 414 * To keep (accumulated) division errors low, we adopt a 64bit
 415 * fixed-point pss counter to minimize division errors. So (pss >>
 416 * PSS_SHIFT) would be the real byte count.
 417 *
 418 * A shift of 12 before division means (assuming 4K page size):
 419 * 	- 1M 3-user-pages add up to 8KB errors;
 420 * 	- supports mapcount up to 2^24, or 16M;
 421 * 	- supports PSS up to 2^52 bytes, or 4PB.
 422 */
 423#define PSS_SHIFT 12
 424
 425#ifdef CONFIG_PROC_PAGE_MONITOR
 426struct mem_size_stats {
 427	struct vm_area_struct *vma;
 428	unsigned long resident;
 429	unsigned long shared_clean;
 430	unsigned long shared_dirty;
 431	unsigned long private_clean;
 432	unsigned long private_dirty;
 433	unsigned long referenced;
 434	unsigned long anonymous;
 
 435	unsigned long anonymous_thp;
 
 
 436	unsigned long swap;
 437	unsigned long nonlinear;
 
 438	u64 pss;
 
 
 
 
 
 
 439};
 440
 
 
 
 
 
 
 
 
 
 
 
 
 441
 442static void smaps_pte_entry(pte_t ptent, unsigned long addr,
 443		unsigned long ptent_size, struct mm_walk *walk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444{
 445	struct mem_size_stats *mss = walk->private;
 446	struct vm_area_struct *vma = mss->vma;
 447	pgoff_t pgoff = linear_page_index(vma, addr);
 448	struct page *page = NULL;
 449	int mapcount;
 450
 451	if (pte_present(ptent)) {
 452		page = vm_normal_page(vma, addr, ptent);
 453	} else if (is_swap_pte(ptent)) {
 454		swp_entry_t swpent = pte_to_swp_entry(ptent);
 
 
 
 
 
 
 
 
 455
 456		if (!non_swap_entry(swpent))
 457			mss->swap += ptent_size;
 458		else if (is_migration_entry(swpent))
 
 
 
 459			page = migration_entry_to_page(swpent);
 460	} else if (pte_file(ptent)) {
 461		if (pte_to_pgoff(ptent) != pgoff)
 462			mss->nonlinear += ptent_size;
 
 
 
 
 
 
 
 
 
 
 
 
 463	}
 464
 465	if (!page)
 466		return;
 467
 468	if (PageAnon(page))
 469		mss->anonymous += ptent_size;
 
 
 
 
 
 
 
 
 
 470
 471	if (page->index != pgoff)
 472		mss->nonlinear += ptent_size;
 
 
 
 473
 474	mss->resident += ptent_size;
 475	/* Accumulate the size in pages that have been accessed. */
 476	if (pte_young(ptent) || PageReferenced(page))
 477		mss->referenced += ptent_size;
 478	mapcount = page_mapcount(page);
 479	if (mapcount >= 2) {
 480		if (pte_dirty(ptent) || PageDirty(page))
 481			mss->shared_dirty += ptent_size;
 482		else
 483			mss->shared_clean += ptent_size;
 484		mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
 485	} else {
 486		if (pte_dirty(ptent) || PageDirty(page))
 487			mss->private_dirty += ptent_size;
 488		else
 489			mss->private_clean += ptent_size;
 490		mss->pss += (ptent_size << PSS_SHIFT);
 491	}
 
 
 
 
 
 
 
 
 
 
 
 492}
 
 
 
 
 
 
 493
 494static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 495			   struct mm_walk *walk)
 496{
 497	struct mem_size_stats *mss = walk->private;
 498	struct vm_area_struct *vma = mss->vma;
 499	pte_t *pte;
 500	spinlock_t *ptl;
 501
 502	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
 503		smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
 
 504		spin_unlock(ptl);
 505		mss->anonymous_thp += HPAGE_PMD_SIZE;
 506		return 0;
 507	}
 508
 509	if (pmd_trans_unstable(pmd))
 510		return 0;
 511	/*
 512	 * The mmap_sem held all the way back in m_start() is what
 513	 * keeps khugepaged out of here and from collapsing things
 514	 * in here.
 515	 */
 516	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 517	for (; addr != end; pte++, addr += PAGE_SIZE)
 518		smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
 519	pte_unmap_unlock(pte - 1, ptl);
 
 520	cond_resched();
 521	return 0;
 522}
 523
 524static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
 525{
 526	/*
 527	 * Don't forget to update Documentation/ on changes.
 528	 */
 529	static const char mnemonics[BITS_PER_LONG][2] = {
 530		/*
 531		 * In case if we meet a flag we don't know about.
 532		 */
 533		[0 ... (BITS_PER_LONG-1)] = "??",
 534
 535		[ilog2(VM_READ)]	= "rd",
 536		[ilog2(VM_WRITE)]	= "wr",
 537		[ilog2(VM_EXEC)]	= "ex",
 538		[ilog2(VM_SHARED)]	= "sh",
 539		[ilog2(VM_MAYREAD)]	= "mr",
 540		[ilog2(VM_MAYWRITE)]	= "mw",
 541		[ilog2(VM_MAYEXEC)]	= "me",
 542		[ilog2(VM_MAYSHARE)]	= "ms",
 543		[ilog2(VM_GROWSDOWN)]	= "gd",
 544		[ilog2(VM_PFNMAP)]	= "pf",
 545		[ilog2(VM_DENYWRITE)]	= "dw",
 546		[ilog2(VM_LOCKED)]	= "lo",
 547		[ilog2(VM_IO)]		= "io",
 548		[ilog2(VM_SEQ_READ)]	= "sr",
 549		[ilog2(VM_RAND_READ)]	= "rr",
 550		[ilog2(VM_DONTCOPY)]	= "dc",
 551		[ilog2(VM_DONTEXPAND)]	= "de",
 552		[ilog2(VM_ACCOUNT)]	= "ac",
 553		[ilog2(VM_NORESERVE)]	= "nr",
 554		[ilog2(VM_HUGETLB)]	= "ht",
 555		[ilog2(VM_NONLINEAR)]	= "nl",
 556		[ilog2(VM_ARCH_1)]	= "ar",
 
 557		[ilog2(VM_DONTDUMP)]	= "dd",
 
 
 
 558#ifdef CONFIG_MEM_SOFT_DIRTY
 559		[ilog2(VM_SOFTDIRTY)]	= "sd",
 560#endif
 561		[ilog2(VM_MIXEDMAP)]	= "mm",
 562		[ilog2(VM_HUGEPAGE)]	= "hg",
 563		[ilog2(VM_NOHUGEPAGE)]	= "nh",
 564		[ilog2(VM_MERGEABLE)]	= "mg",
 
 
 
 
 
 
 
 
 
 
 
 
 565	};
 566	size_t i;
 567
 568	seq_puts(m, "VmFlags: ");
 569	for (i = 0; i < BITS_PER_LONG; i++) {
 
 
 570		if (vma->vm_flags & (1UL << i)) {
 571			seq_printf(m, "%c%c ",
 572				   mnemonics[i][0], mnemonics[i][1]);
 
 573		}
 574	}
 575	seq_putc(m, '\n');
 576}
 577
 578static int show_smap(struct seq_file *m, void *v, int is_pid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579{
 580	struct proc_maps_private *priv = m->private;
 581	struct task_struct *task = priv->task;
 582	struct vm_area_struct *vma = v;
 583	struct mem_size_stats mss;
 584	struct mm_walk smaps_walk = {
 585		.pmd_entry = smaps_pte_range,
 586		.mm = vma->vm_mm,
 587		.private = &mss,
 588	};
 589
 590	memset(&mss, 0, sizeof mss);
 591	mss.vma = vma;
 592	/* mmap_sem is held in m_start */
 593	if (vma->vm_mm && !is_vm_hugetlb_page(vma))
 594		walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
 595
 596	show_map_vma(m, vma, is_pid);
 597
 598	seq_printf(m,
 599		   "Size:           %8lu kB\n"
 600		   "Rss:            %8lu kB\n"
 601		   "Pss:            %8lu kB\n"
 602		   "Shared_Clean:   %8lu kB\n"
 603		   "Shared_Dirty:   %8lu kB\n"
 604		   "Private_Clean:  %8lu kB\n"
 605		   "Private_Dirty:  %8lu kB\n"
 606		   "Referenced:     %8lu kB\n"
 607		   "Anonymous:      %8lu kB\n"
 608		   "AnonHugePages:  %8lu kB\n"
 609		   "Swap:           %8lu kB\n"
 610		   "KernelPageSize: %8lu kB\n"
 611		   "MMUPageSize:    %8lu kB\n"
 612		   "Locked:         %8lu kB\n",
 613		   (vma->vm_end - vma->vm_start) >> 10,
 614		   mss.resident >> 10,
 615		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
 616		   mss.shared_clean  >> 10,
 617		   mss.shared_dirty  >> 10,
 618		   mss.private_clean >> 10,
 619		   mss.private_dirty >> 10,
 620		   mss.referenced >> 10,
 621		   mss.anonymous >> 10,
 622		   mss.anonymous_thp >> 10,
 623		   mss.swap >> 10,
 624		   vma_kernel_pagesize(vma) >> 10,
 625		   vma_mmu_pagesize(vma) >> 10,
 626		   (vma->vm_flags & VM_LOCKED) ?
 627			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
 628
 629	if (vma->vm_flags & VM_NONLINEAR)
 630		seq_printf(m, "Nonlinear:      %8lu kB\n",
 631				mss.nonlinear >> 10);
 632
 
 
 633	show_smap_vma_flags(m, vma);
 634
 635	if (m->count < m->size)  /* vma is copied successfully */
 636		m->version = (vma != get_gate_vma(task->mm))
 637			? vma->vm_start : 0;
 638	return 0;
 639}
 640
 641static int show_pid_smap(struct seq_file *m, void *v)
 642{
 643	return show_smap(m, v, 1);
 644}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645
 646static int show_tid_smap(struct seq_file *m, void *v)
 647{
 648	return show_smap(m, v, 0);
 649}
 
 650
 651static const struct seq_operations proc_pid_smaps_op = {
 652	.start	= m_start,
 653	.next	= m_next,
 654	.stop	= m_stop,
 655	.show	= show_pid_smap
 656};
 657
 658static const struct seq_operations proc_tid_smaps_op = {
 659	.start	= m_start,
 660	.next	= m_next,
 661	.stop	= m_stop,
 662	.show	= show_tid_smap
 663};
 664
 665static int pid_smaps_open(struct inode *inode, struct file *file)
 666{
 667	return do_maps_open(inode, file, &proc_pid_smaps_op);
 668}
 669
 670static int tid_smaps_open(struct inode *inode, struct file *file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671{
 672	return do_maps_open(inode, file, &proc_tid_smaps_op);
 
 
 
 
 
 
 
 673}
 674
 675const struct file_operations proc_pid_smaps_operations = {
 676	.open		= pid_smaps_open,
 677	.read		= seq_read,
 678	.llseek		= seq_lseek,
 679	.release	= seq_release_private,
 680};
 681
 682const struct file_operations proc_tid_smaps_operations = {
 683	.open		= tid_smaps_open,
 684	.read		= seq_read,
 685	.llseek		= seq_lseek,
 686	.release	= seq_release_private,
 687};
 688
 689/*
 690 * We do not want to have constant page-shift bits sitting in
 691 * pagemap entries and are about to reuse them some time soon.
 692 *
 693 * Here's the "migration strategy":
 694 * 1. when the system boots these bits remain what they are,
 695 *    but a warning about future change is printed in log;
 696 * 2. once anyone clears soft-dirty bits via clear_refs file,
 697 *    these flag is set to denote, that user is aware of the
 698 *    new API and those page-shift bits change their meaning.
 699 *    The respective warning is printed in dmesg;
 700 * 3. In a couple of releases we will remove all the mentions
 701 *    of page-shift in pagemap entries.
 702 */
 703
 704static bool soft_dirty_cleared __read_mostly;
 705
 706enum clear_refs_types {
 707	CLEAR_REFS_ALL = 1,
 708	CLEAR_REFS_ANON,
 709	CLEAR_REFS_MAPPED,
 710	CLEAR_REFS_SOFT_DIRTY,
 
 711	CLEAR_REFS_LAST,
 712};
 713
 714struct clear_refs_private {
 715	struct vm_area_struct *vma;
 716	enum clear_refs_types type;
 717};
 718
 
 719static inline void clear_soft_dirty(struct vm_area_struct *vma,
 720		unsigned long addr, pte_t *pte)
 721{
 722#ifdef CONFIG_MEM_SOFT_DIRTY
 723	/*
 724	 * The soft-dirty tracker uses #PF-s to catch writes
 725	 * to pages, so write-protect the pte as well. See the
 726	 * Documentation/vm/soft-dirty.txt for full description
 727	 * of how soft-dirty works.
 728	 */
 729	pte_t ptent = *pte;
 730
 731	if (pte_present(ptent)) {
 732		ptent = pte_wrprotect(ptent);
 733		ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
 
 
 
 
 734	} else if (is_swap_pte(ptent)) {
 735		ptent = pte_swp_clear_soft_dirty(ptent);
 736	} else if (pte_file(ptent)) {
 737		ptent = pte_file_clear_soft_dirty(ptent);
 738	}
 
 
 
 
 
 
 
 739
 740	if (vma->vm_flags & VM_SOFTDIRTY)
 741		vma->vm_flags &= ~VM_SOFTDIRTY;
 742
 743	set_pte_at(vma->vm_mm, addr, pte, ptent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744#endif
 745}
 746
 747static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
 748				unsigned long end, struct mm_walk *walk)
 749{
 750	struct clear_refs_private *cp = walk->private;
 751	struct vm_area_struct *vma = cp->vma;
 752	pte_t *pte, ptent;
 753	spinlock_t *ptl;
 754	struct page *page;
 755
 756	split_huge_page_pmd(vma, addr, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757	if (pmd_trans_unstable(pmd))
 758		return 0;
 759
 760	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 761	for (; addr != end; pte++, addr += PAGE_SIZE) {
 762		ptent = *pte;
 763
 764		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
 765			clear_soft_dirty(vma, addr, pte);
 766			continue;
 767		}
 768
 769		if (!pte_present(ptent))
 770			continue;
 771
 772		page = vm_normal_page(vma, addr, ptent);
 773		if (!page)
 774			continue;
 775
 776		/* Clear accessed and referenced bits. */
 777		ptep_test_and_clear_young(vma, addr, pte);
 
 778		ClearPageReferenced(page);
 779	}
 780	pte_unmap_unlock(pte - 1, ptl);
 781	cond_resched();
 782	return 0;
 783}
 784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785static ssize_t clear_refs_write(struct file *file, const char __user *buf,
 786				size_t count, loff_t *ppos)
 787{
 788	struct task_struct *task;
 789	char buffer[PROC_NUMBUF];
 790	struct mm_struct *mm;
 791	struct vm_area_struct *vma;
 792	enum clear_refs_types type;
 
 793	int itype;
 794	int rv;
 795
 796	memset(buffer, 0, sizeof(buffer));
 797	if (count > sizeof(buffer) - 1)
 798		count = sizeof(buffer) - 1;
 799	if (copy_from_user(buffer, buf, count))
 800		return -EFAULT;
 801	rv = kstrtoint(strstrip(buffer), 10, &itype);
 802	if (rv < 0)
 803		return rv;
 804	type = (enum clear_refs_types)itype;
 805	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
 806		return -EINVAL;
 807
 808	if (type == CLEAR_REFS_SOFT_DIRTY) {
 809		soft_dirty_cleared = true;
 810		pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
 811				"See the linux/Documentation/vm/pagemap.txt for details.\n");
 812	}
 813
 814	task = get_proc_task(file_inode(file));
 815	if (!task)
 816		return -ESRCH;
 817	mm = get_task_mm(task);
 818	if (mm) {
 
 819		struct clear_refs_private cp = {
 820			.type = type,
 821		};
 822		struct mm_walk clear_refs_walk = {
 823			.pmd_entry = clear_refs_pte_range,
 824			.mm = mm,
 825			.private = &cp,
 826		};
 827		down_read(&mm->mmap_sem);
 828		if (type == CLEAR_REFS_SOFT_DIRTY)
 829			mmu_notifier_invalidate_range_start(mm, 0, -1);
 830		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 831			cp.vma = vma;
 832			if (is_vm_hugetlb_page(vma))
 833				continue;
 834			/*
 835			 * Writing 1 to /proc/pid/clear_refs affects all pages.
 836			 *
 837			 * Writing 2 to /proc/pid/clear_refs only affects
 838			 * Anonymous pages.
 839			 *
 840			 * Writing 3 to /proc/pid/clear_refs only affects file
 841			 * mapped pages.
 842			 */
 843			if (type == CLEAR_REFS_ANON && vma->vm_file)
 844				continue;
 845			if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
 846				continue;
 847			walk_page_range(vma->vm_start, vma->vm_end,
 848					&clear_refs_walk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849		}
 
 
 850		if (type == CLEAR_REFS_SOFT_DIRTY)
 851			mmu_notifier_invalidate_range_end(mm, 0, -1);
 852		flush_tlb_mm(mm);
 853		up_read(&mm->mmap_sem);
 
 854		mmput(mm);
 855	}
 856	put_task_struct(task);
 857
 858	return count;
 859}
 860
 861const struct file_operations proc_clear_refs_operations = {
 862	.write		= clear_refs_write,
 863	.llseek		= noop_llseek,
 864};
 865
 866typedef struct {
 867	u64 pme;
 868} pagemap_entry_t;
 869
 870struct pagemapread {
 871	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
 872	pagemap_entry_t *buffer;
 873	bool v2;
 874};
 875
 876#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
 877#define PAGEMAP_WALK_MASK	(PMD_MASK)
 878
 879#define PM_ENTRY_BYTES      sizeof(pagemap_entry_t)
 880#define PM_STATUS_BITS      3
 881#define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
 882#define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
 883#define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
 884#define PM_PSHIFT_BITS      6
 885#define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
 886#define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
 887#define __PM_PSHIFT(x)      (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
 888#define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
 889#define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
 890/* in "new" pagemap pshift bits are occupied with more status bits */
 891#define PM_STATUS2(v2, x)   (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
 892
 893#define __PM_SOFT_DIRTY      (1LL)
 894#define PM_PRESENT          PM_STATUS(4LL)
 895#define PM_SWAP             PM_STATUS(2LL)
 896#define PM_FILE             PM_STATUS(1LL)
 897#define PM_NOT_PRESENT(v2)  PM_STATUS2(v2, 0)
 898#define PM_END_OF_BUFFER    1
 899
 900static inline pagemap_entry_t make_pme(u64 val)
 901{
 902	return (pagemap_entry_t) { .pme = val };
 903}
 904
 905static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
 906			  struct pagemapread *pm)
 907{
 908	pm->buffer[pm->pos++] = *pme;
 909	if (pm->pos >= pm->len)
 910		return PM_END_OF_BUFFER;
 911	return 0;
 912}
 913
 914static int pagemap_pte_hole(unsigned long start, unsigned long end,
 915				struct mm_walk *walk)
 916{
 917	struct pagemapread *pm = walk->private;
 918	unsigned long addr;
 919	int err = 0;
 920	pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
 921
 922	for (addr = start; addr < end; addr += PAGE_SIZE) {
 923		err = add_to_pagemap(addr, &pme, pm);
 924		if (err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925			break;
 
 
 
 
 
 
 
 
 
 926	}
 
 927	return err;
 928}
 929
 930static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
 931		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
 932{
 933	u64 frame, flags;
 934	struct page *page = NULL;
 935	int flags2 = 0;
 936
 937	if (pte_present(pte)) {
 938		frame = pte_pfn(pte);
 939		flags = PM_PRESENT;
 
 940		page = vm_normal_page(vma, addr, pte);
 941		if (pte_soft_dirty(pte))
 942			flags2 |= __PM_SOFT_DIRTY;
 943	} else if (is_swap_pte(pte)) {
 944		swp_entry_t entry;
 945		if (pte_swp_soft_dirty(pte))
 946			flags2 |= __PM_SOFT_DIRTY;
 947		entry = pte_to_swp_entry(pte);
 948		frame = swp_type(entry) |
 949			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
 950		flags = PM_SWAP;
 
 951		if (is_migration_entry(entry))
 952			page = migration_entry_to_page(entry);
 953	} else {
 954		if (vma->vm_flags & VM_SOFTDIRTY)
 955			flags2 |= __PM_SOFT_DIRTY;
 956		*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
 957		return;
 958	}
 959
 960	if (page && !PageAnon(page))
 961		flags |= PM_FILE;
 962	if ((vma->vm_flags & VM_SOFTDIRTY))
 963		flags2 |= __PM_SOFT_DIRTY;
 
 
 964
 965	*pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
 966}
 967
 968#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 969static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
 970		pmd_t pmd, int offset, int pmd_flags2)
 971{
 972	/*
 973	 * Currently pmd for thp is always present because thp can not be
 974	 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
 975	 * This if-check is just to prepare for future implementation.
 976	 */
 977	if (pmd_present(pmd))
 978		*pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
 979				| PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
 980	else
 981		*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
 982}
 983#else
 984static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
 985		pmd_t pmd, int offset, int pmd_flags2)
 986{
 987}
 988#endif
 989
 990static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 991			     struct mm_walk *walk)
 992{
 993	struct vm_area_struct *vma;
 994	struct pagemapread *pm = walk->private;
 995	spinlock_t *ptl;
 996	pte_t *pte;
 997	int err = 0;
 998	pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
 999
1000	/* find the first VMA at or above 'addr' */
1001	vma = find_vma(walk->mm, addr);
1002	if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1003		int pmd_flags2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004
1005		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1006			pmd_flags2 = __PM_SOFT_DIRTY;
1007		else
1008			pmd_flags2 = 0;
1009
1010		for (; addr != end; addr += PAGE_SIZE) {
1011			unsigned long offset;
1012
1013			offset = (addr & ~PAGEMAP_WALK_MASK) >>
1014					PAGE_SHIFT;
1015			thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1016			err = add_to_pagemap(addr, &pme, pm);
1017			if (err)
1018				break;
 
 
 
 
 
 
1019		}
1020		spin_unlock(ptl);
1021		return err;
1022	}
1023
1024	if (pmd_trans_unstable(pmd))
1025		return 0;
1026	for (; addr != end; addr += PAGE_SIZE) {
1027		int flags2;
1028
1029		/* check to see if we've left 'vma' behind
1030		 * and need a new, higher one */
1031		if (vma && (addr >= vma->vm_end)) {
1032			vma = find_vma(walk->mm, addr);
1033			if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1034				flags2 = __PM_SOFT_DIRTY;
1035			else
1036				flags2 = 0;
1037			pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
1038		}
1039
1040		/* check that 'vma' actually covers this address,
1041		 * and that it isn't a huge page vma */
1042		if (vma && (vma->vm_start <= addr) &&
1043		    !is_vm_hugetlb_page(vma)) {
1044			pte = pte_offset_map(pmd, addr);
1045			pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1046			/* unmap before userspace copy */
1047			pte_unmap(pte);
1048		}
1049		err = add_to_pagemap(addr, &pme, pm);
1050		if (err)
1051			return err;
1052	}
 
1053
1054	cond_resched();
1055
1056	return err;
1057}
1058
1059#ifdef CONFIG_HUGETLB_PAGE
1060static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1061					pte_t pte, int offset, int flags2)
1062{
1063	if (pte_present(pte))
1064		*pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)	|
1065				PM_STATUS2(pm->v2, flags2)		|
1066				PM_PRESENT);
1067	else
1068		*pme = make_pme(PM_NOT_PRESENT(pm->v2)			|
1069				PM_STATUS2(pm->v2, flags2));
1070}
1071
1072/* This function walks within one hugetlb entry in the single call */
1073static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1074				 unsigned long addr, unsigned long end,
1075				 struct mm_walk *walk)
1076{
1077	struct pagemapread *pm = walk->private;
1078	struct vm_area_struct *vma;
 
1079	int err = 0;
1080	int flags2;
1081	pagemap_entry_t pme;
1082
1083	vma = find_vma(walk->mm, addr);
1084	WARN_ON_ONCE(!vma);
1085
1086	if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1087		flags2 = __PM_SOFT_DIRTY;
1088	else
1089		flags2 = 0;
 
 
 
 
 
 
 
 
 
 
 
1090
1091	for (; addr != end; addr += PAGE_SIZE) {
1092		int offset = (addr & ~hmask) >> PAGE_SHIFT;
1093		huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1094		err = add_to_pagemap(addr, &pme, pm);
1095		if (err)
1096			return err;
 
 
1097	}
1098
1099	cond_resched();
1100
1101	return err;
1102}
 
 
1103#endif /* HUGETLB_PAGE */
1104
 
 
 
 
 
 
1105/*
1106 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1107 *
1108 * For each page in the address space, this file contains one 64-bit entry
1109 * consisting of the following:
1110 *
1111 * Bits 0-54  page frame number (PFN) if present
1112 * Bits 0-4   swap type if swapped
1113 * Bits 5-54  swap offset if swapped
1114 * Bits 55-60 page shift (page size = 1<<page shift)
 
 
1115 * Bit  61    page is file-page or shared-anon
1116 * Bit  62    page swapped
1117 * Bit  63    page present
1118 *
1119 * If the page is not present but in swap, then the PFN contains an
1120 * encoding of the swap file number and the page's offset into the
1121 * swap. Unmapped pages return a null PFN. This allows determining
1122 * precisely which pages are mapped (or in swap) and comparing mapped
1123 * pages between processes.
1124 *
1125 * Efficient users of this interface will use /proc/pid/maps to
1126 * determine which areas of memory are actually mapped and llseek to
1127 * skip over unmapped regions.
1128 */
1129static ssize_t pagemap_read(struct file *file, char __user *buf,
1130			    size_t count, loff_t *ppos)
1131{
1132	struct task_struct *task = get_proc_task(file_inode(file));
1133	struct mm_struct *mm;
1134	struct pagemapread pm;
1135	int ret = -ESRCH;
1136	struct mm_walk pagemap_walk = {};
1137	unsigned long src;
1138	unsigned long svpfn;
1139	unsigned long start_vaddr;
1140	unsigned long end_vaddr;
1141	int copied = 0;
1142
1143	if (!task)
1144		goto out;
1145
1146	ret = -EINVAL;
1147	/* file position must be aligned */
1148	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1149		goto out_task;
1150
1151	ret = 0;
1152	if (!count)
1153		goto out_task;
 
 
 
1154
1155	pm.v2 = soft_dirty_cleared;
1156	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1157	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1158	ret = -ENOMEM;
1159	if (!pm.buffer)
1160		goto out_task;
1161
1162	mm = mm_access(task, PTRACE_MODE_READ);
1163	ret = PTR_ERR(mm);
1164	if (!mm || IS_ERR(mm))
1165		goto out_free;
1166
1167	pagemap_walk.pmd_entry = pagemap_pte_range;
1168	pagemap_walk.pte_hole = pagemap_pte_hole;
1169#ifdef CONFIG_HUGETLB_PAGE
1170	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1171#endif
1172	pagemap_walk.mm = mm;
1173	pagemap_walk.private = &pm;
1174
1175	src = *ppos;
1176	svpfn = src / PM_ENTRY_BYTES;
1177	start_vaddr = svpfn << PAGE_SHIFT;
1178	end_vaddr = TASK_SIZE_OF(task);
1179
1180	/* watch out for wraparound */
1181	if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1182		start_vaddr = end_vaddr;
1183
1184	/*
1185	 * The odds are that this will stop walking way
1186	 * before end_vaddr, because the length of the
1187	 * user buffer is tracked in "pm", and the walk
1188	 * will stop when we hit the end of the buffer.
1189	 */
1190	ret = 0;
1191	while (count && (start_vaddr < end_vaddr)) {
1192		int len;
1193		unsigned long end;
1194
1195		pm.pos = 0;
1196		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1197		/* overflow ? */
1198		if (end < start_vaddr || end > end_vaddr)
1199			end = end_vaddr;
1200		down_read(&mm->mmap_sem);
1201		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1202		up_read(&mm->mmap_sem);
 
 
1203		start_vaddr = end;
1204
1205		len = min(count, PM_ENTRY_BYTES * pm.pos);
1206		if (copy_to_user(buf, pm.buffer, len)) {
1207			ret = -EFAULT;
1208			goto out_mm;
1209		}
1210		copied += len;
1211		buf += len;
1212		count -= len;
1213	}
1214	*ppos += copied;
1215	if (!ret || ret == PM_END_OF_BUFFER)
1216		ret = copied;
1217
 
 
1218out_mm:
1219	mmput(mm);
1220out_free:
1221	kfree(pm.buffer);
1222out_task:
1223	put_task_struct(task);
1224out:
1225	return ret;
1226}
1227
1228static int pagemap_open(struct inode *inode, struct file *file)
1229{
1230	pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1231			"to stop being page-shift some time soon. See the "
1232			"linux/Documentation/vm/pagemap.txt for details.\n");
 
 
 
 
 
 
 
 
 
 
 
 
1233	return 0;
1234}
1235
1236const struct file_operations proc_pagemap_operations = {
1237	.llseek		= mem_lseek, /* borrow this */
1238	.read		= pagemap_read,
1239	.open		= pagemap_open,
 
1240};
1241#endif /* CONFIG_PROC_PAGE_MONITOR */
1242
1243#ifdef CONFIG_NUMA
1244
1245struct numa_maps {
1246	struct vm_area_struct *vma;
1247	unsigned long pages;
1248	unsigned long anon;
1249	unsigned long active;
1250	unsigned long writeback;
1251	unsigned long mapcount_max;
1252	unsigned long dirty;
1253	unsigned long swapcache;
1254	unsigned long node[MAX_NUMNODES];
1255};
1256
1257struct numa_maps_private {
1258	struct proc_maps_private proc_maps;
1259	struct numa_maps md;
1260};
1261
1262static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1263			unsigned long nr_pages)
1264{
1265	int count = page_mapcount(page);
1266
1267	md->pages += nr_pages;
1268	if (pte_dirty || PageDirty(page))
1269		md->dirty += nr_pages;
1270
1271	if (PageSwapCache(page))
1272		md->swapcache += nr_pages;
1273
1274	if (PageActive(page) || PageUnevictable(page))
1275		md->active += nr_pages;
1276
1277	if (PageWriteback(page))
1278		md->writeback += nr_pages;
1279
1280	if (PageAnon(page))
1281		md->anon += nr_pages;
1282
1283	if (count > md->mapcount_max)
1284		md->mapcount_max = count;
1285
1286	md->node[page_to_nid(page)] += nr_pages;
1287}
1288
1289static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1290		unsigned long addr)
1291{
1292	struct page *page;
1293	int nid;
1294
1295	if (!pte_present(pte))
1296		return NULL;
1297
1298	page = vm_normal_page(vma, addr, pte);
1299	if (!page)
1300		return NULL;
1301
1302	if (PageReserved(page))
1303		return NULL;
1304
1305	nid = page_to_nid(page);
1306	if (!node_isset(nid, node_states[N_MEMORY]))
1307		return NULL;
1308
1309	return page;
1310}
1311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1313		unsigned long end, struct mm_walk *walk)
1314{
1315	struct numa_maps *md;
 
1316	spinlock_t *ptl;
1317	pte_t *orig_pte;
1318	pte_t *pte;
1319
1320	md = walk->private;
1321
1322	if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
1323		pte_t huge_pte = *(pte_t *)pmd;
1324		struct page *page;
1325
1326		page = can_gather_numa_stats(huge_pte, md->vma, addr);
1327		if (page)
1328			gather_stats(page, md, pte_dirty(huge_pte),
1329				     HPAGE_PMD_SIZE/PAGE_SIZE);
1330		spin_unlock(ptl);
1331		return 0;
1332	}
1333
1334	if (pmd_trans_unstable(pmd))
1335		return 0;
 
1336	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1337	do {
1338		struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1339		if (!page)
1340			continue;
1341		gather_stats(page, md, pte_dirty(*pte), 1);
1342
1343	} while (pte++, addr += PAGE_SIZE, addr != end);
1344	pte_unmap_unlock(orig_pte, ptl);
 
1345	return 0;
1346}
1347#ifdef CONFIG_HUGETLB_PAGE
1348static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1349		unsigned long addr, unsigned long end, struct mm_walk *walk)
1350{
 
1351	struct numa_maps *md;
1352	struct page *page;
1353
1354	if (!pte_present(*pte))
1355		return 0;
1356
1357	page = pte_page(*pte);
1358	if (!page)
1359		return 0;
1360
1361	md = walk->private;
1362	gather_stats(page, md, pte_dirty(*pte), 1);
1363	return 0;
1364}
1365
1366#else
1367static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1368		unsigned long addr, unsigned long end, struct mm_walk *walk)
1369{
1370	return 0;
1371}
1372#endif
1373
 
 
 
 
 
1374/*
1375 * Display pages allocated per node and memory policy via /proc.
1376 */
1377static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1378{
1379	struct numa_maps_private *numa_priv = m->private;
1380	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1381	struct vm_area_struct *vma = v;
1382	struct numa_maps *md = &numa_priv->md;
1383	struct file *file = vma->vm_file;
1384	struct task_struct *task = proc_priv->task;
1385	struct mm_struct *mm = vma->vm_mm;
1386	struct mm_walk walk = {};
1387	struct mempolicy *pol;
1388	char buffer[64];
1389	int nid;
1390
1391	if (!mm)
1392		return 0;
1393
1394	/* Ensure we start with an empty set of numa_maps statistics. */
1395	memset(md, 0, sizeof(*md));
1396
1397	md->vma = vma;
1398
1399	walk.hugetlb_entry = gather_hugetbl_stats;
1400	walk.pmd_entry = gather_pte_stats;
1401	walk.private = md;
1402	walk.mm = mm;
1403
1404	pol = get_vma_policy(task, vma, vma->vm_start);
1405	mpol_to_str(buffer, sizeof(buffer), pol);
1406	mpol_cond_put(pol);
1407
1408	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1409
1410	if (file) {
1411		seq_printf(m, " file=");
1412		seq_path(m, &file->f_path, "\n\t= ");
1413	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1414		seq_printf(m, " heap");
1415	} else {
1416		pid_t tid = vm_is_stack(task, vma, is_pid);
1417		if (tid != 0) {
1418			/*
1419			 * Thread stack in /proc/PID/task/TID/maps or
1420			 * the main process stack.
1421			 */
1422			if (!is_pid || (vma->vm_start <= mm->start_stack &&
1423			    vma->vm_end >= mm->start_stack))
1424				seq_printf(m, " stack");
1425			else
1426				seq_printf(m, " stack:%d", tid);
1427		}
1428	}
1429
1430	if (is_vm_hugetlb_page(vma))
1431		seq_printf(m, " huge");
1432
1433	walk_page_range(vma->vm_start, vma->vm_end, &walk);
 
1434
1435	if (!md->pages)
1436		goto out;
1437
1438	if (md->anon)
1439		seq_printf(m, " anon=%lu", md->anon);
1440
1441	if (md->dirty)
1442		seq_printf(m, " dirty=%lu", md->dirty);
1443
1444	if (md->pages != md->anon && md->pages != md->dirty)
1445		seq_printf(m, " mapped=%lu", md->pages);
1446
1447	if (md->mapcount_max > 1)
1448		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1449
1450	if (md->swapcache)
1451		seq_printf(m, " swapcache=%lu", md->swapcache);
1452
1453	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1454		seq_printf(m, " active=%lu", md->active);
1455
1456	if (md->writeback)
1457		seq_printf(m, " writeback=%lu", md->writeback);
1458
1459	for_each_node_state(nid, N_MEMORY)
1460		if (md->node[nid])
1461			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
 
 
1462out:
1463	seq_putc(m, '\n');
1464
1465	if (m->count < m->size)
1466		m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1467	return 0;
1468}
1469
1470static int show_pid_numa_map(struct seq_file *m, void *v)
1471{
1472	return show_numa_map(m, v, 1);
1473}
1474
1475static int show_tid_numa_map(struct seq_file *m, void *v)
1476{
1477	return show_numa_map(m, v, 0);
1478}
1479
1480static const struct seq_operations proc_pid_numa_maps_op = {
1481	.start  = m_start,
1482	.next   = m_next,
1483	.stop   = m_stop,
1484	.show   = show_pid_numa_map,
1485};
1486
1487static const struct seq_operations proc_tid_numa_maps_op = {
1488	.start  = m_start,
1489	.next   = m_next,
1490	.stop   = m_stop,
1491	.show   = show_tid_numa_map,
1492};
1493
1494static int numa_maps_open(struct inode *inode, struct file *file,
1495			  const struct seq_operations *ops)
1496{
1497	struct numa_maps_private *priv;
1498	int ret = -ENOMEM;
1499	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1500	if (priv) {
1501		priv->proc_maps.pid = proc_pid(inode);
1502		ret = seq_open(file, ops);
1503		if (!ret) {
1504			struct seq_file *m = file->private_data;
1505			m->private = priv;
1506		} else {
1507			kfree(priv);
1508		}
1509	}
1510	return ret;
1511}
1512
1513static int pid_numa_maps_open(struct inode *inode, struct file *file)
1514{
1515	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1516}
1517
1518static int tid_numa_maps_open(struct inode *inode, struct file *file)
1519{
1520	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1521}
1522
1523const struct file_operations proc_pid_numa_maps_operations = {
1524	.open		= pid_numa_maps_open,
1525	.read		= seq_read,
1526	.llseek		= seq_lseek,
1527	.release	= seq_release_private,
1528};
1529
1530const struct file_operations proc_tid_numa_maps_operations = {
1531	.open		= tid_numa_maps_open,
1532	.read		= seq_read,
1533	.llseek		= seq_lseek,
1534	.release	= seq_release_private,
1535};
1536#endif /* CONFIG_NUMA */