Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swapfile.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 */
   8
   9#include <linux/mm.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/task.h>
  12#include <linux/hugetlb.h>
  13#include <linux/mman.h>
  14#include <linux/slab.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/swap.h>
  17#include <linux/vmalloc.h>
  18#include <linux/pagemap.h>
  19#include <linux/namei.h>
  20#include <linux/shmem_fs.h>
  21#include <linux/blkdev.h>
  22#include <linux/random.h>
  23#include <linux/writeback.h>
  24#include <linux/proc_fs.h>
  25#include <linux/seq_file.h>
  26#include <linux/init.h>
 
  27#include <linux/ksm.h>
  28#include <linux/rmap.h>
  29#include <linux/security.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mutex.h>
  32#include <linux/capability.h>
  33#include <linux/syscalls.h>
  34#include <linux/memcontrol.h>
  35#include <linux/poll.h>
  36#include <linux/oom.h>
  37#include <linux/frontswap.h>
  38#include <linux/swapfile.h>
  39#include <linux/export.h>
  40#include <linux/swap_slots.h>
  41#include <linux/sort.h>
  42
 
  43#include <asm/tlbflush.h>
  44#include <linux/swapops.h>
  45#include <linux/swap_cgroup.h>
  46
  47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  48				 unsigned char);
  49static void free_swap_count_continuations(struct swap_info_struct *);
  50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  51
  52DEFINE_SPINLOCK(swap_lock);
  53static unsigned int nr_swapfiles;
  54atomic_long_t nr_swap_pages;
  55/*
  56 * Some modules use swappable objects and may try to swap them out under
  57 * memory pressure (via the shrinker). Before doing so, they may wish to
  58 * check to see if any swap space is available.
  59 */
  60EXPORT_SYMBOL_GPL(nr_swap_pages);
  61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  62long total_swap_pages;
  63static int least_priority = -1;
  64
  65static const char Bad_file[] = "Bad swap file entry ";
  66static const char Unused_file[] = "Unused swap file entry ";
  67static const char Bad_offset[] = "Bad swap offset entry ";
  68static const char Unused_offset[] = "Unused swap offset entry ";
  69
  70/*
  71 * all active swap_info_structs
  72 * protected with swap_lock, and ordered by priority.
  73 */
  74PLIST_HEAD(swap_active_head);
  75
  76/*
  77 * all available (active, not full) swap_info_structs
  78 * protected with swap_avail_lock, ordered by priority.
  79 * This is used by get_swap_page() instead of swap_active_head
  80 * because swap_active_head includes all swap_info_structs,
  81 * but get_swap_page() doesn't need to look at full ones.
  82 * This uses its own lock instead of swap_lock because when a
  83 * swap_info_struct changes between not-full/full, it needs to
  84 * add/remove itself to/from this list, but the swap_info_struct->lock
  85 * is held and the locking order requires swap_lock to be taken
  86 * before any swap_info_struct->lock.
  87 */
  88static struct plist_head *swap_avail_heads;
  89static DEFINE_SPINLOCK(swap_avail_lock);
  90
  91struct swap_info_struct *swap_info[MAX_SWAPFILES];
  92
  93static DEFINE_MUTEX(swapon_mutex);
  94
  95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  96/* Activity counter to indicate that a swapon or swapoff has occurred */
  97static atomic_t proc_poll_event = ATOMIC_INIT(0);
  98
  99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 100
 101static struct swap_info_struct *swap_type_to_swap_info(int type)
 102{
 103	if (type >= READ_ONCE(nr_swapfiles))
 104		return NULL;
 105
 106	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
 107	return READ_ONCE(swap_info[type]);
 108}
 109
 110static inline unsigned char swap_count(unsigned char ent)
 111{
 112	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 113}
 114
 115/* Reclaim the swap entry anyway if possible */
 116#define TTRS_ANYWAY		0x1
 117/*
 118 * Reclaim the swap entry if there are no more mappings of the
 119 * corresponding page
 120 */
 121#define TTRS_UNMAPPED		0x2
 122/* Reclaim the swap entry if swap is getting full*/
 123#define TTRS_FULL		0x4
 124
 125/* returns 1 if swap entry is freed */
 126static int __try_to_reclaim_swap(struct swap_info_struct *si,
 127				 unsigned long offset, unsigned long flags)
 128{
 129	swp_entry_t entry = swp_entry(si->type, offset);
 130	struct page *page;
 131	int ret = 0;
 132
 133	page = find_get_page(swap_address_space(entry), offset);
 134	if (!page)
 135		return 0;
 136	/*
 137	 * When this function is called from scan_swap_map_slots() and it's
 138	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
 139	 * here. We have to use trylock for avoiding deadlock. This is a special
 140	 * case and you should use try_to_free_swap() with explicit lock_page()
 141	 * in usual operations.
 142	 */
 143	if (trylock_page(page)) {
 144		if ((flags & TTRS_ANYWAY) ||
 145		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
 146		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
 147			ret = try_to_free_swap(page);
 148		unlock_page(page);
 149	}
 150	put_page(page);
 151	return ret;
 152}
 153
 154static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 155{
 156	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 157	return rb_entry(rb, struct swap_extent, rb_node);
 158}
 159
 160static inline struct swap_extent *next_se(struct swap_extent *se)
 161{
 162	struct rb_node *rb = rb_next(&se->rb_node);
 163	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 164}
 165
 166/*
 167 * swapon tell device that all the old swap contents can be discarded,
 168 * to allow the swap device to optimize its wear-levelling.
 169 */
 170static int discard_swap(struct swap_info_struct *si)
 171{
 172	struct swap_extent *se;
 173	sector_t start_block;
 174	sector_t nr_blocks;
 175	int err = 0;
 176
 177	/* Do not discard the swap header page! */
 178	se = first_se(si);
 179	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 180	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 181	if (nr_blocks) {
 182		err = blkdev_issue_discard(si->bdev, start_block,
 183				nr_blocks, GFP_KERNEL, 0);
 184		if (err)
 185			return err;
 186		cond_resched();
 187	}
 188
 189	for (se = next_se(se); se; se = next_se(se)) {
 190		start_block = se->start_block << (PAGE_SHIFT - 9);
 191		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 192
 193		err = blkdev_issue_discard(si->bdev, start_block,
 194				nr_blocks, GFP_KERNEL, 0);
 195		if (err)
 196			break;
 197
 198		cond_resched();
 199	}
 200	return err;		/* That will often be -EOPNOTSUPP */
 201}
 202
 203static struct swap_extent *
 204offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 205{
 206	struct swap_extent *se;
 207	struct rb_node *rb;
 208
 209	rb = sis->swap_extent_root.rb_node;
 210	while (rb) {
 211		se = rb_entry(rb, struct swap_extent, rb_node);
 212		if (offset < se->start_page)
 213			rb = rb->rb_left;
 214		else if (offset >= se->start_page + se->nr_pages)
 215			rb = rb->rb_right;
 216		else
 217			return se;
 218	}
 219	/* It *must* be present */
 220	BUG();
 221}
 222
 223/*
 224 * swap allocation tell device that a cluster of swap can now be discarded,
 225 * to allow the swap device to optimize its wear-levelling.
 226 */
 227static void discard_swap_cluster(struct swap_info_struct *si,
 228				 pgoff_t start_page, pgoff_t nr_pages)
 229{
 230	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 
 231
 232	while (nr_pages) {
 233		pgoff_t offset = start_page - se->start_page;
 234		sector_t start_block = se->start_block + offset;
 235		sector_t nr_blocks = se->nr_pages - offset;
 236
 237		if (nr_blocks > nr_pages)
 238			nr_blocks = nr_pages;
 239		start_page += nr_blocks;
 240		nr_pages -= nr_blocks;
 241
 242		start_block <<= PAGE_SHIFT - 9;
 243		nr_blocks <<= PAGE_SHIFT - 9;
 244		if (blkdev_issue_discard(si->bdev, start_block,
 245					nr_blocks, GFP_NOIO, 0))
 246			break;
 247
 248		se = next_se(se);
 249	}
 250}
 251
 252#ifdef CONFIG_THP_SWAP
 253#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 254
 255#define swap_entry_size(size)	(size)
 256#else
 257#define SWAPFILE_CLUSTER	256
 258
 259/*
 260 * Define swap_entry_size() as constant to let compiler to optimize
 261 * out some code if !CONFIG_THP_SWAP
 262 */
 263#define swap_entry_size(size)	1
 264#endif
 265#define LATENCY_LIMIT		256
 266
 267static inline void cluster_set_flag(struct swap_cluster_info *info,
 268	unsigned int flag)
 269{
 270	info->flags = flag;
 271}
 272
 273static inline unsigned int cluster_count(struct swap_cluster_info *info)
 274{
 275	return info->data;
 276}
 277
 278static inline void cluster_set_count(struct swap_cluster_info *info,
 279				     unsigned int c)
 280{
 281	info->data = c;
 282}
 283
 284static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 285					 unsigned int c, unsigned int f)
 286{
 287	info->flags = f;
 288	info->data = c;
 289}
 290
 291static inline unsigned int cluster_next(struct swap_cluster_info *info)
 292{
 293	return info->data;
 294}
 295
 296static inline void cluster_set_next(struct swap_cluster_info *info,
 297				    unsigned int n)
 298{
 299	info->data = n;
 300}
 301
 302static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 303					 unsigned int n, unsigned int f)
 304{
 305	info->flags = f;
 306	info->data = n;
 307}
 308
 309static inline bool cluster_is_free(struct swap_cluster_info *info)
 310{
 311	return info->flags & CLUSTER_FLAG_FREE;
 312}
 313
 314static inline bool cluster_is_null(struct swap_cluster_info *info)
 315{
 316	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 317}
 318
 319static inline void cluster_set_null(struct swap_cluster_info *info)
 320{
 321	info->flags = CLUSTER_FLAG_NEXT_NULL;
 322	info->data = 0;
 323}
 324
 325static inline bool cluster_is_huge(struct swap_cluster_info *info)
 326{
 327	if (IS_ENABLED(CONFIG_THP_SWAP))
 328		return info->flags & CLUSTER_FLAG_HUGE;
 329	return false;
 330}
 331
 332static inline void cluster_clear_huge(struct swap_cluster_info *info)
 333{
 334	info->flags &= ~CLUSTER_FLAG_HUGE;
 335}
 336
 337static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 338						     unsigned long offset)
 339{
 340	struct swap_cluster_info *ci;
 341
 342	ci = si->cluster_info;
 343	if (ci) {
 344		ci += offset / SWAPFILE_CLUSTER;
 345		spin_lock(&ci->lock);
 346	}
 347	return ci;
 348}
 349
 350static inline void unlock_cluster(struct swap_cluster_info *ci)
 351{
 352	if (ci)
 353		spin_unlock(&ci->lock);
 354}
 355
 356/*
 357 * Determine the locking method in use for this device.  Return
 358 * swap_cluster_info if SSD-style cluster-based locking is in place.
 359 */
 360static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 361		struct swap_info_struct *si, unsigned long offset)
 362{
 363	struct swap_cluster_info *ci;
 364
 365	/* Try to use fine-grained SSD-style locking if available: */
 366	ci = lock_cluster(si, offset);
 367	/* Otherwise, fall back to traditional, coarse locking: */
 368	if (!ci)
 369		spin_lock(&si->lock);
 370
 371	return ci;
 372}
 373
 374static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 375					       struct swap_cluster_info *ci)
 376{
 377	if (ci)
 378		unlock_cluster(ci);
 379	else
 380		spin_unlock(&si->lock);
 381}
 382
 383static inline bool cluster_list_empty(struct swap_cluster_list *list)
 384{
 385	return cluster_is_null(&list->head);
 386}
 387
 388static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 389{
 390	return cluster_next(&list->head);
 391}
 392
 393static void cluster_list_init(struct swap_cluster_list *list)
 394{
 395	cluster_set_null(&list->head);
 396	cluster_set_null(&list->tail);
 397}
 398
 399static void cluster_list_add_tail(struct swap_cluster_list *list,
 400				  struct swap_cluster_info *ci,
 401				  unsigned int idx)
 402{
 403	if (cluster_list_empty(list)) {
 404		cluster_set_next_flag(&list->head, idx, 0);
 405		cluster_set_next_flag(&list->tail, idx, 0);
 406	} else {
 407		struct swap_cluster_info *ci_tail;
 408		unsigned int tail = cluster_next(&list->tail);
 409
 410		/*
 411		 * Nested cluster lock, but both cluster locks are
 412		 * only acquired when we held swap_info_struct->lock
 413		 */
 414		ci_tail = ci + tail;
 415		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 416		cluster_set_next(ci_tail, idx);
 417		spin_unlock(&ci_tail->lock);
 418		cluster_set_next_flag(&list->tail, idx, 0);
 419	}
 420}
 421
 422static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 423					   struct swap_cluster_info *ci)
 424{
 425	unsigned int idx;
 426
 427	idx = cluster_next(&list->head);
 428	if (cluster_next(&list->tail) == idx) {
 429		cluster_set_null(&list->head);
 430		cluster_set_null(&list->tail);
 431	} else
 432		cluster_set_next_flag(&list->head,
 433				      cluster_next(&ci[idx]), 0);
 434
 435	return idx;
 436}
 437
 438/* Add a cluster to discard list and schedule it to do discard */
 439static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 440		unsigned int idx)
 441{
 442	/*
 443	 * If scan_swap_map() can't find a free cluster, it will check
 444	 * si->swap_map directly. To make sure the discarding cluster isn't
 445	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
 446	 * will be cleared after discard
 447	 */
 448	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 449			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 450
 451	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 452
 453	schedule_work(&si->discard_work);
 454}
 455
 456static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 457{
 458	struct swap_cluster_info *ci = si->cluster_info;
 459
 460	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 461	cluster_list_add_tail(&si->free_clusters, ci, idx);
 462}
 463
 464/*
 465 * Doing discard actually. After a cluster discard is finished, the cluster
 466 * will be added to free cluster list. caller should hold si->lock.
 467*/
 468static void swap_do_scheduled_discard(struct swap_info_struct *si)
 469{
 470	struct swap_cluster_info *info, *ci;
 471	unsigned int idx;
 472
 473	info = si->cluster_info;
 474
 475	while (!cluster_list_empty(&si->discard_clusters)) {
 476		idx = cluster_list_del_first(&si->discard_clusters, info);
 477		spin_unlock(&si->lock);
 478
 479		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 480				SWAPFILE_CLUSTER);
 481
 482		spin_lock(&si->lock);
 483		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 484		__free_cluster(si, idx);
 485		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 486				0, SWAPFILE_CLUSTER);
 487		unlock_cluster(ci);
 488	}
 489}
 490
 491static void swap_discard_work(struct work_struct *work)
 492{
 493	struct swap_info_struct *si;
 494
 495	si = container_of(work, struct swap_info_struct, discard_work);
 496
 497	spin_lock(&si->lock);
 498	swap_do_scheduled_discard(si);
 499	spin_unlock(&si->lock);
 500}
 501
 502static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 503{
 504	struct swap_cluster_info *ci = si->cluster_info;
 505
 506	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 507	cluster_list_del_first(&si->free_clusters, ci);
 508	cluster_set_count_flag(ci + idx, 0, 0);
 509}
 510
 511static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 512{
 513	struct swap_cluster_info *ci = si->cluster_info + idx;
 514
 515	VM_BUG_ON(cluster_count(ci) != 0);
 516	/*
 517	 * If the swap is discardable, prepare discard the cluster
 518	 * instead of free it immediately. The cluster will be freed
 519	 * after discard.
 520	 */
 521	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 522	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 523		swap_cluster_schedule_discard(si, idx);
 524		return;
 525	}
 526
 527	__free_cluster(si, idx);
 528}
 529
 530/*
 531 * The cluster corresponding to page_nr will be used. The cluster will be
 532 * removed from free cluster list and its usage counter will be increased.
 533 */
 534static void inc_cluster_info_page(struct swap_info_struct *p,
 535	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 536{
 537	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 538
 539	if (!cluster_info)
 540		return;
 541	if (cluster_is_free(&cluster_info[idx]))
 542		alloc_cluster(p, idx);
 543
 544	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 545	cluster_set_count(&cluster_info[idx],
 546		cluster_count(&cluster_info[idx]) + 1);
 547}
 548
 549/*
 550 * The cluster corresponding to page_nr decreases one usage. If the usage
 551 * counter becomes 0, which means no page in the cluster is in using, we can
 552 * optionally discard the cluster and add it to free cluster list.
 553 */
 554static void dec_cluster_info_page(struct swap_info_struct *p,
 555	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 556{
 557	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 558
 559	if (!cluster_info)
 560		return;
 561
 562	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 563	cluster_set_count(&cluster_info[idx],
 564		cluster_count(&cluster_info[idx]) - 1);
 565
 566	if (cluster_count(&cluster_info[idx]) == 0)
 567		free_cluster(p, idx);
 568}
 569
 570/*
 571 * It's possible scan_swap_map() uses a free cluster in the middle of free
 572 * cluster list. Avoiding such abuse to avoid list corruption.
 573 */
 574static bool
 575scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 576	unsigned long offset)
 577{
 578	struct percpu_cluster *percpu_cluster;
 579	bool conflict;
 580
 581	offset /= SWAPFILE_CLUSTER;
 582	conflict = !cluster_list_empty(&si->free_clusters) &&
 583		offset != cluster_list_first(&si->free_clusters) &&
 584		cluster_is_free(&si->cluster_info[offset]);
 585
 586	if (!conflict)
 587		return false;
 588
 589	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 590	cluster_set_null(&percpu_cluster->index);
 591	return true;
 592}
 593
 594/*
 595 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 596 * might involve allocating a new cluster for current CPU too.
 597 */
 598static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 599	unsigned long *offset, unsigned long *scan_base)
 600{
 601	struct percpu_cluster *cluster;
 602	struct swap_cluster_info *ci;
 603	unsigned long tmp, max;
 604
 605new_cluster:
 606	cluster = this_cpu_ptr(si->percpu_cluster);
 607	if (cluster_is_null(&cluster->index)) {
 608		if (!cluster_list_empty(&si->free_clusters)) {
 609			cluster->index = si->free_clusters.head;
 610			cluster->next = cluster_next(&cluster->index) *
 611					SWAPFILE_CLUSTER;
 612		} else if (!cluster_list_empty(&si->discard_clusters)) {
 613			/*
 614			 * we don't have free cluster but have some clusters in
 615			 * discarding, do discard now and reclaim them, then
 616			 * reread cluster_next_cpu since we dropped si->lock
 617			 */
 618			swap_do_scheduled_discard(si);
 619			*scan_base = this_cpu_read(*si->cluster_next_cpu);
 620			*offset = *scan_base;
 621			goto new_cluster;
 622		} else
 623			return false;
 624	}
 625
 626	/*
 627	 * Other CPUs can use our cluster if they can't find a free cluster,
 628	 * check if there is still free entry in the cluster
 629	 */
 630	tmp = cluster->next;
 631	max = min_t(unsigned long, si->max,
 632		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 633	if (tmp < max) {
 634		ci = lock_cluster(si, tmp);
 635		while (tmp < max) {
 636			if (!si->swap_map[tmp])
 637				break;
 638			tmp++;
 639		}
 640		unlock_cluster(ci);
 641	}
 642	if (tmp >= max) {
 643		cluster_set_null(&cluster->index);
 644		goto new_cluster;
 645	}
 646	cluster->next = tmp + 1;
 647	*offset = tmp;
 648	*scan_base = tmp;
 649	return true;
 650}
 651
 652static void __del_from_avail_list(struct swap_info_struct *p)
 653{
 654	int nid;
 655
 656	for_each_node(nid)
 657		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 658}
 659
 660static void del_from_avail_list(struct swap_info_struct *p)
 661{
 662	spin_lock(&swap_avail_lock);
 663	__del_from_avail_list(p);
 664	spin_unlock(&swap_avail_lock);
 665}
 666
 667static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 668			     unsigned int nr_entries)
 669{
 670	unsigned int end = offset + nr_entries - 1;
 671
 672	if (offset == si->lowest_bit)
 673		si->lowest_bit += nr_entries;
 674	if (end == si->highest_bit)
 675		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
 676	si->inuse_pages += nr_entries;
 677	if (si->inuse_pages == si->pages) {
 678		si->lowest_bit = si->max;
 679		si->highest_bit = 0;
 680		del_from_avail_list(si);
 681	}
 682}
 683
 684static void add_to_avail_list(struct swap_info_struct *p)
 685{
 686	int nid;
 687
 688	spin_lock(&swap_avail_lock);
 689	for_each_node(nid) {
 690		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
 691		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 692	}
 693	spin_unlock(&swap_avail_lock);
 694}
 695
 696static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 697			    unsigned int nr_entries)
 698{
 699	unsigned long begin = offset;
 700	unsigned long end = offset + nr_entries - 1;
 701	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 702
 703	if (offset < si->lowest_bit)
 704		si->lowest_bit = offset;
 705	if (end > si->highest_bit) {
 706		bool was_full = !si->highest_bit;
 707
 708		WRITE_ONCE(si->highest_bit, end);
 709		if (was_full && (si->flags & SWP_WRITEOK))
 710			add_to_avail_list(si);
 711	}
 712	atomic_long_add(nr_entries, &nr_swap_pages);
 713	si->inuse_pages -= nr_entries;
 714	if (si->flags & SWP_BLKDEV)
 715		swap_slot_free_notify =
 716			si->bdev->bd_disk->fops->swap_slot_free_notify;
 717	else
 718		swap_slot_free_notify = NULL;
 719	while (offset <= end) {
 720		frontswap_invalidate_page(si->type, offset);
 721		if (swap_slot_free_notify)
 722			swap_slot_free_notify(si->bdev, offset);
 723		offset++;
 724	}
 725	clear_shadow_from_swap_cache(si->type, begin, end);
 726}
 727
 728static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
 729{
 730	unsigned long prev;
 731
 732	if (!(si->flags & SWP_SOLIDSTATE)) {
 733		si->cluster_next = next;
 734		return;
 735	}
 736
 737	prev = this_cpu_read(*si->cluster_next_cpu);
 738	/*
 739	 * Cross the swap address space size aligned trunk, choose
 740	 * another trunk randomly to avoid lock contention on swap
 741	 * address space if possible.
 742	 */
 743	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
 744	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
 745		/* No free swap slots available */
 746		if (si->highest_bit <= si->lowest_bit)
 747			return;
 748		next = si->lowest_bit +
 749			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
 750		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
 751		next = max_t(unsigned int, next, si->lowest_bit);
 752	}
 753	this_cpu_write(*si->cluster_next_cpu, next);
 754}
 755
 756static int scan_swap_map_slots(struct swap_info_struct *si,
 757			       unsigned char usage, int nr,
 758			       swp_entry_t slots[])
 759{
 760	struct swap_cluster_info *ci;
 761	unsigned long offset;
 762	unsigned long scan_base;
 763	unsigned long last_in_cluster = 0;
 764	int latency_ration = LATENCY_LIMIT;
 765	int n_ret = 0;
 766	bool scanned_many = false;
 767
 768	/*
 769	 * We try to cluster swap pages by allocating them sequentially
 770	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 771	 * way, however, we resort to first-free allocation, starting
 772	 * a new cluster.  This prevents us from scattering swap pages
 773	 * all over the entire swap partition, so that we reduce
 774	 * overall disk seek times between swap pages.  -- sct
 775	 * But we do now try to find an empty cluster.  -Andrea
 776	 * And we let swap pages go all over an SSD partition.  Hugh
 777	 */
 778
 779	si->flags += SWP_SCANNING;
 780	/*
 781	 * Use percpu scan base for SSD to reduce lock contention on
 782	 * cluster and swap cache.  For HDD, sequential access is more
 783	 * important.
 784	 */
 785	if (si->flags & SWP_SOLIDSTATE)
 786		scan_base = this_cpu_read(*si->cluster_next_cpu);
 787	else
 788		scan_base = si->cluster_next;
 789	offset = scan_base;
 790
 791	/* SSD algorithm */
 792	if (si->cluster_info) {
 793		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 794			goto scan;
 795	} else if (unlikely(!si->cluster_nr--)) {
 796		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 797			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 798			goto checks;
 799		}
 800
 801		spin_unlock(&si->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 802
 803		/*
 804		 * If seek is expensive, start searching for new cluster from
 805		 * start of partition, to minimize the span of allocated swap.
 806		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 807		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 
 
 808		 */
 809		scan_base = offset = si->lowest_bit;
 
 810		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 811
 812		/* Locate the first empty (unaligned) cluster */
 813		for (; last_in_cluster <= si->highest_bit; offset++) {
 814			if (si->swap_map[offset])
 815				last_in_cluster = offset + SWAPFILE_CLUSTER;
 816			else if (offset == last_in_cluster) {
 817				spin_lock(&si->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818				offset -= SWAPFILE_CLUSTER - 1;
 819				si->cluster_next = offset;
 820				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 
 821				goto checks;
 822			}
 823			if (unlikely(--latency_ration < 0)) {
 824				cond_resched();
 825				latency_ration = LATENCY_LIMIT;
 826			}
 827		}
 828
 829		offset = scan_base;
 830		spin_lock(&si->lock);
 831		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 
 832	}
 833
 834checks:
 835	if (si->cluster_info) {
 836		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 837		/* take a break if we already got some slots */
 838			if (n_ret)
 839				goto done;
 840			if (!scan_swap_map_try_ssd_cluster(si, &offset,
 841							&scan_base))
 842				goto scan;
 843		}
 844	}
 845	if (!(si->flags & SWP_WRITEOK))
 846		goto no_page;
 847	if (!si->highest_bit)
 848		goto no_page;
 849	if (offset > si->highest_bit)
 850		scan_base = offset = si->lowest_bit;
 851
 852	ci = lock_cluster(si, offset);
 853	/* reuse swap entry of cache-only swap if not busy. */
 854	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 855		int swap_was_freed;
 856		unlock_cluster(ci);
 857		spin_unlock(&si->lock);
 858		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
 859		spin_lock(&si->lock);
 860		/* entry was freed successfully, try to use this again */
 861		if (swap_was_freed)
 862			goto checks;
 863		goto scan; /* check next one */
 864	}
 865
 866	if (si->swap_map[offset]) {
 867		unlock_cluster(ci);
 868		if (!n_ret)
 869			goto scan;
 870		else
 871			goto done;
 872	}
 873	WRITE_ONCE(si->swap_map[offset], usage);
 874	inc_cluster_info_page(si, si->cluster_info, offset);
 875	unlock_cluster(ci);
 876
 877	swap_range_alloc(si, offset, 1);
 878	slots[n_ret++] = swp_entry(si->type, offset);
 879
 880	/* got enough slots or reach max slots? */
 881	if ((n_ret == nr) || (offset >= si->highest_bit))
 882		goto done;
 883
 884	/* search for next available slot */
 885
 886	/* time to take a break? */
 887	if (unlikely(--latency_ration < 0)) {
 888		if (n_ret)
 889			goto done;
 890		spin_unlock(&si->lock);
 891		cond_resched();
 892		spin_lock(&si->lock);
 893		latency_ration = LATENCY_LIMIT;
 894	}
 895
 896	/* try to get more slots in cluster */
 897	if (si->cluster_info) {
 898		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 899			goto checks;
 900	} else if (si->cluster_nr && !si->swap_map[++offset]) {
 901		/* non-ssd case, still more slots in cluster? */
 902		--si->cluster_nr;
 903		goto checks;
 904	}
 
 
 
 905
 906	/*
 907	 * Even if there's no free clusters available (fragmented),
 908	 * try to scan a little more quickly with lock held unless we
 909	 * have scanned too many slots already.
 910	 */
 911	if (!scanned_many) {
 912		unsigned long scan_limit;
 
 
 
 
 
 
 
 
 
 
 
 913
 914		if (offset < scan_base)
 915			scan_limit = scan_base;
 916		else
 917			scan_limit = si->highest_bit;
 918		for (; offset <= scan_limit && --latency_ration > 0;
 919		     offset++) {
 920			if (!si->swap_map[offset])
 921				goto checks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922		}
 923	}
 924
 925done:
 926	set_cluster_next(si, offset + 1);
 927	si->flags -= SWP_SCANNING;
 928	return n_ret;
 929
 930scan:
 931	spin_unlock(&si->lock);
 932	while (++offset <= READ_ONCE(si->highest_bit)) {
 933		if (data_race(!si->swap_map[offset])) {
 934			spin_lock(&si->lock);
 935			goto checks;
 936		}
 937		if (vm_swap_full() &&
 938		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
 939			spin_lock(&si->lock);
 940			goto checks;
 941		}
 942		if (unlikely(--latency_ration < 0)) {
 943			cond_resched();
 944			latency_ration = LATENCY_LIMIT;
 945			scanned_many = true;
 946		}
 947	}
 948	offset = si->lowest_bit;
 949	while (offset < scan_base) {
 950		if (data_race(!si->swap_map[offset])) {
 951			spin_lock(&si->lock);
 952			goto checks;
 953		}
 954		if (vm_swap_full() &&
 955		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
 956			spin_lock(&si->lock);
 957			goto checks;
 958		}
 959		if (unlikely(--latency_ration < 0)) {
 960			cond_resched();
 961			latency_ration = LATENCY_LIMIT;
 962			scanned_many = true;
 963		}
 964		offset++;
 965	}
 966	spin_lock(&si->lock);
 967
 968no_page:
 969	si->flags -= SWP_SCANNING;
 970	return n_ret;
 971}
 972
 973static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 974{
 975	unsigned long idx;
 976	struct swap_cluster_info *ci;
 977	unsigned long offset, i;
 978	unsigned char *map;
 979
 980	/*
 981	 * Should not even be attempting cluster allocations when huge
 982	 * page swap is disabled.  Warn and fail the allocation.
 983	 */
 984	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
 985		VM_WARN_ON_ONCE(1);
 986		return 0;
 987	}
 988
 989	if (cluster_list_empty(&si->free_clusters))
 990		return 0;
 991
 992	idx = cluster_list_first(&si->free_clusters);
 993	offset = idx * SWAPFILE_CLUSTER;
 994	ci = lock_cluster(si, offset);
 995	alloc_cluster(si, idx);
 996	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
 997
 998	map = si->swap_map + offset;
 999	for (i = 0; i < SWAPFILE_CLUSTER; i++)
1000		map[i] = SWAP_HAS_CACHE;
1001	unlock_cluster(ci);
1002	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1003	*slot = swp_entry(si->type, offset);
1004
1005	return 1;
1006}
1007
1008static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1009{
1010	unsigned long offset = idx * SWAPFILE_CLUSTER;
1011	struct swap_cluster_info *ci;
1012
1013	ci = lock_cluster(si, offset);
1014	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1015	cluster_set_count_flag(ci, 0, 0);
1016	free_cluster(si, idx);
1017	unlock_cluster(ci);
1018	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1019}
1020
1021static unsigned long scan_swap_map(struct swap_info_struct *si,
1022				   unsigned char usage)
1023{
1024	swp_entry_t entry;
1025	int n_ret;
1026
1027	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1028
1029	if (n_ret)
1030		return swp_offset(entry);
1031	else
1032		return 0;
1033
1034}
1035
1036int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1037{
1038	unsigned long size = swap_entry_size(entry_size);
1039	struct swap_info_struct *si, *next;
1040	long avail_pgs;
1041	int n_ret = 0;
1042	int node;
1043
1044	/* Only single cluster request supported */
1045	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1046
1047	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1048	if (avail_pgs <= 0)
1049		goto noswap;
 
1050
1051	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
 
 
 
 
 
 
 
1052
1053	atomic_long_sub(n_goal * size, &nr_swap_pages);
 
 
 
1054
1055	spin_lock(&swap_avail_lock);
 
 
 
 
 
 
 
 
1056
1057start_over:
1058	node = numa_node_id();
1059	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1060		/* requeue si to after same-priority siblings */
1061		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1062		spin_unlock(&swap_avail_lock);
1063		spin_lock(&si->lock);
1064		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1065			spin_lock(&swap_avail_lock);
1066			if (plist_node_empty(&si->avail_lists[node])) {
1067				spin_unlock(&si->lock);
1068				goto nextsi;
1069			}
1070			WARN(!si->highest_bit,
1071			     "swap_info %d in list but !highest_bit\n",
1072			     si->type);
1073			WARN(!(si->flags & SWP_WRITEOK),
1074			     "swap_info %d in list but !SWP_WRITEOK\n",
1075			     si->type);
1076			__del_from_avail_list(si);
1077			spin_unlock(&si->lock);
1078			goto nextsi;
1079		}
1080		if (size == SWAPFILE_CLUSTER) {
1081			if (si->flags & SWP_BLKDEV)
1082				n_ret = swap_alloc_cluster(si, swp_entries);
1083		} else
1084			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1085						    n_goal, swp_entries);
1086		spin_unlock(&si->lock);
1087		if (n_ret || size == SWAPFILE_CLUSTER)
1088			goto check_out;
1089		pr_debug("scan_swap_map of si %d failed to find offset\n",
1090			si->type);
1091
1092		spin_lock(&swap_avail_lock);
1093nextsi:
1094		/*
1095		 * if we got here, it's likely that si was almost full before,
1096		 * and since scan_swap_map() can drop the si->lock, multiple
1097		 * callers probably all tried to get a page from the same si
1098		 * and it filled up before we could get one; or, the si filled
1099		 * up between us dropping swap_avail_lock and taking si->lock.
1100		 * Since we dropped the swap_avail_lock, the swap_avail_head
1101		 * list may have been modified; so if next is still in the
1102		 * swap_avail_head list then try it, otherwise start over
1103		 * if we have not gotten any slots.
1104		 */
1105		if (plist_node_empty(&next->avail_lists[node]))
1106			goto start_over;
1107	}
1108
1109	spin_unlock(&swap_avail_lock);
1110
1111check_out:
1112	if (n_ret < n_goal)
1113		atomic_long_add((long)(n_goal - n_ret) * size,
1114				&nr_swap_pages);
1115noswap:
1116	return n_ret;
 
1117}
1118
1119/* The only caller of this function is now suspend routine */
1120swp_entry_t get_swap_page_of_type(int type)
1121{
1122	struct swap_info_struct *si = swap_type_to_swap_info(type);
1123	pgoff_t offset;
1124
1125	if (!si)
1126		goto fail;
1127
1128	spin_lock(&si->lock);
1129	if (si->flags & SWP_WRITEOK) {
1130		atomic_long_dec(&nr_swap_pages);
1131		/* This is called for allocating swap entry, not cache */
1132		offset = scan_swap_map(si, 1);
1133		if (offset) {
1134			spin_unlock(&si->lock);
1135			return swp_entry(type, offset);
1136		}
1137		atomic_long_inc(&nr_swap_pages);
1138	}
1139	spin_unlock(&si->lock);
1140fail:
1141	return (swp_entry_t) {0};
1142}
1143
1144static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1145{
1146	struct swap_info_struct *p;
1147	unsigned long offset;
1148
1149	if (!entry.val)
1150		goto out;
1151	p = swp_swap_info(entry);
1152	if (!p)
1153		goto bad_nofile;
1154	if (data_race(!(p->flags & SWP_USED)))
 
1155		goto bad_device;
1156	offset = swp_offset(entry);
1157	if (offset >= p->max)
1158		goto bad_offset;
 
 
 
1159	return p;
1160
 
 
 
1161bad_offset:
1162	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1163	goto out;
1164bad_device:
1165	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1166	goto out;
1167bad_nofile:
1168	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1169out:
1170	return NULL;
1171}
1172
1173static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1174{
1175	struct swap_info_struct *p;
1176
1177	p = __swap_info_get(entry);
1178	if (!p)
1179		goto out;
1180	if (data_race(!p->swap_map[swp_offset(entry)]))
1181		goto bad_free;
1182	return p;
1183
1184bad_free:
1185	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1186	goto out;
1187out:
1188	return NULL;
1189}
1190
1191static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1192{
1193	struct swap_info_struct *p;
1194
1195	p = _swap_info_get(entry);
1196	if (p)
1197		spin_lock(&p->lock);
1198	return p;
1199}
1200
1201static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1202					struct swap_info_struct *q)
1203{
1204	struct swap_info_struct *p;
1205
1206	p = _swap_info_get(entry);
1207
1208	if (p != q) {
1209		if (q != NULL)
1210			spin_unlock(&q->lock);
1211		if (p != NULL)
1212			spin_lock(&p->lock);
1213	}
1214	return p;
1215}
1216
1217static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1218					      unsigned long offset,
1219					      unsigned char usage)
1220{
 
1221	unsigned char count;
1222	unsigned char has_cache;
1223
1224	count = p->swap_map[offset];
1225
1226	has_cache = count & SWAP_HAS_CACHE;
1227	count &= ~SWAP_HAS_CACHE;
1228
1229	if (usage == SWAP_HAS_CACHE) {
1230		VM_BUG_ON(!has_cache);
1231		has_cache = 0;
1232	} else if (count == SWAP_MAP_SHMEM) {
1233		/*
1234		 * Or we could insist on shmem.c using a special
1235		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1236		 */
1237		count = 0;
1238	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1239		if (count == COUNT_CONTINUED) {
1240			if (swap_count_continued(p, offset, count))
1241				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1242			else
1243				count = SWAP_MAP_MAX;
1244		} else
1245			count--;
1246	}
1247
1248	usage = count | has_cache;
1249	if (usage)
1250		WRITE_ONCE(p->swap_map[offset], usage);
1251	else
1252		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1253
1254	return usage;
1255}
1256
1257/*
1258 * Check whether swap entry is valid in the swap device.  If so,
1259 * return pointer to swap_info_struct, and keep the swap entry valid
1260 * via preventing the swap device from being swapoff, until
1261 * put_swap_device() is called.  Otherwise return NULL.
1262 *
1263 * The entirety of the RCU read critical section must come before the
1264 * return from or after the call to synchronize_rcu() in
1265 * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1266 * true, the si->map, si->cluster_info, etc. must be valid in the
1267 * critical section.
1268 *
1269 * Notice that swapoff or swapoff+swapon can still happen before the
1270 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1271 * in put_swap_device() if there isn't any other way to prevent
1272 * swapoff, such as page lock, page table lock, etc.  The caller must
1273 * be prepared for that.  For example, the following situation is
1274 * possible.
1275 *
1276 *   CPU1				CPU2
1277 *   do_swap_page()
1278 *     ...				swapoff+swapon
1279 *     __read_swap_cache_async()
1280 *       swapcache_prepare()
1281 *         __swap_duplicate()
1282 *           // check swap_map
1283 *     // verify PTE not changed
1284 *
1285 * In __swap_duplicate(), the swap_map need to be checked before
1286 * changing partly because the specified swap entry may be for another
1287 * swap device which has been swapoff.  And in do_swap_page(), after
1288 * the page is read from the swap device, the PTE is verified not
1289 * changed with the page table locked to check whether the swap device
1290 * has been swapoff or swapoff+swapon.
1291 */
1292struct swap_info_struct *get_swap_device(swp_entry_t entry)
1293{
1294	struct swap_info_struct *si;
1295	unsigned long offset;
1296
1297	if (!entry.val)
1298		goto out;
1299	si = swp_swap_info(entry);
1300	if (!si)
1301		goto bad_nofile;
1302
1303	rcu_read_lock();
1304	if (data_race(!(si->flags & SWP_VALID)))
1305		goto unlock_out;
1306	offset = swp_offset(entry);
1307	if (offset >= si->max)
1308		goto unlock_out;
1309
1310	return si;
1311bad_nofile:
1312	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1313out:
1314	return NULL;
1315unlock_out:
1316	rcu_read_unlock();
1317	return NULL;
1318}
1319
1320static unsigned char __swap_entry_free(struct swap_info_struct *p,
1321				       swp_entry_t entry)
1322{
1323	struct swap_cluster_info *ci;
1324	unsigned long offset = swp_offset(entry);
1325	unsigned char usage;
1326
1327	ci = lock_cluster_or_swap_info(p, offset);
1328	usage = __swap_entry_free_locked(p, offset, 1);
1329	unlock_cluster_or_swap_info(p, ci);
1330	if (!usage)
1331		free_swap_slot(entry);
 
 
 
 
 
 
 
 
 
 
 
1332
1333	return usage;
1334}
1335
1336static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1337{
1338	struct swap_cluster_info *ci;
1339	unsigned long offset = swp_offset(entry);
1340	unsigned char count;
1341
1342	ci = lock_cluster(p, offset);
1343	count = p->swap_map[offset];
1344	VM_BUG_ON(count != SWAP_HAS_CACHE);
1345	p->swap_map[offset] = 0;
1346	dec_cluster_info_page(p, p->cluster_info, offset);
1347	unlock_cluster(ci);
1348
1349	mem_cgroup_uncharge_swap(entry, 1);
1350	swap_range_free(p, offset, 1);
1351}
1352
1353/*
1354 * Caller has made sure that the swap device corresponding to entry
1355 * is still around or has not been recycled.
1356 */
1357void swap_free(swp_entry_t entry)
1358{
1359	struct swap_info_struct *p;
1360
1361	p = _swap_info_get(entry);
1362	if (p)
1363		__swap_entry_free(p, entry);
 
 
1364}
1365
1366/*
1367 * Called after dropping swapcache to decrease refcnt to swap entries.
1368 */
1369void put_swap_page(struct page *page, swp_entry_t entry)
1370{
1371	unsigned long offset = swp_offset(entry);
1372	unsigned long idx = offset / SWAPFILE_CLUSTER;
1373	struct swap_cluster_info *ci;
1374	struct swap_info_struct *si;
1375	unsigned char *map;
1376	unsigned int i, free_entries = 0;
1377	unsigned char val;
1378	int size = swap_entry_size(thp_nr_pages(page));
1379
1380	si = _swap_info_get(entry);
1381	if (!si)
1382		return;
1383
1384	ci = lock_cluster_or_swap_info(si, offset);
1385	if (size == SWAPFILE_CLUSTER) {
1386		VM_BUG_ON(!cluster_is_huge(ci));
1387		map = si->swap_map + offset;
1388		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1389			val = map[i];
1390			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1391			if (val == SWAP_HAS_CACHE)
1392				free_entries++;
1393		}
1394		cluster_clear_huge(ci);
1395		if (free_entries == SWAPFILE_CLUSTER) {
1396			unlock_cluster_or_swap_info(si, ci);
1397			spin_lock(&si->lock);
1398			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1399			swap_free_cluster(si, idx);
1400			spin_unlock(&si->lock);
1401			return;
1402		}
1403	}
1404	for (i = 0; i < size; i++, entry.val++) {
1405		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1406			unlock_cluster_or_swap_info(si, ci);
1407			free_swap_slot(entry);
1408			if (i == size - 1)
1409				return;
1410			lock_cluster_or_swap_info(si, offset);
1411		}
1412	}
1413	unlock_cluster_or_swap_info(si, ci);
1414}
1415
1416#ifdef CONFIG_THP_SWAP
1417int split_swap_cluster(swp_entry_t entry)
1418{
1419	struct swap_info_struct *si;
1420	struct swap_cluster_info *ci;
1421	unsigned long offset = swp_offset(entry);
1422
1423	si = _swap_info_get(entry);
1424	if (!si)
1425		return -EBUSY;
1426	ci = lock_cluster(si, offset);
1427	cluster_clear_huge(ci);
1428	unlock_cluster(ci);
1429	return 0;
1430}
1431#endif
1432
1433static int swp_entry_cmp(const void *ent1, const void *ent2)
1434{
1435	const swp_entry_t *e1 = ent1, *e2 = ent2;
1436
1437	return (int)swp_type(*e1) - (int)swp_type(*e2);
1438}
1439
1440void swapcache_free_entries(swp_entry_t *entries, int n)
1441{
1442	struct swap_info_struct *p, *prev;
1443	int i;
1444
1445	if (n <= 0)
1446		return;
1447
1448	prev = NULL;
1449	p = NULL;
1450
1451	/*
1452	 * Sort swap entries by swap device, so each lock is only taken once.
1453	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1454	 * so low that it isn't necessary to optimize further.
1455	 */
1456	if (nr_swapfiles > 1)
1457		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1458	for (i = 0; i < n; ++i) {
1459		p = swap_info_get_cont(entries[i], prev);
1460		if (p)
1461			swap_entry_free(p, entries[i]);
1462		prev = p;
1463	}
1464	if (p)
1465		spin_unlock(&p->lock);
1466}
1467
1468/*
1469 * How many references to page are currently swapped out?
1470 * This does not give an exact answer when swap count is continued,
1471 * but does include the high COUNT_CONTINUED flag to allow for that.
1472 */
1473int page_swapcount(struct page *page)
1474{
1475	int count = 0;
1476	struct swap_info_struct *p;
1477	struct swap_cluster_info *ci;
1478	swp_entry_t entry;
1479	unsigned long offset;
1480
1481	entry.val = page_private(page);
1482	p = _swap_info_get(entry);
1483	if (p) {
1484		offset = swp_offset(entry);
1485		ci = lock_cluster_or_swap_info(p, offset);
1486		count = swap_count(p->swap_map[offset]);
1487		unlock_cluster_or_swap_info(p, ci);
1488	}
1489	return count;
1490}
1491
1492int __swap_count(swp_entry_t entry)
1493{
1494	struct swap_info_struct *si;
1495	pgoff_t offset = swp_offset(entry);
1496	int count = 0;
1497
1498	si = get_swap_device(entry);
1499	if (si) {
1500		count = swap_count(si->swap_map[offset]);
1501		put_swap_device(si);
1502	}
1503	return count;
1504}
1505
1506static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1507{
1508	int count = 0;
1509	pgoff_t offset = swp_offset(entry);
1510	struct swap_cluster_info *ci;
1511
1512	ci = lock_cluster_or_swap_info(si, offset);
1513	count = swap_count(si->swap_map[offset]);
1514	unlock_cluster_or_swap_info(si, ci);
1515	return count;
1516}
1517
1518/*
1519 * How many references to @entry are currently swapped out?
1520 * This does not give an exact answer when swap count is continued,
1521 * but does include the high COUNT_CONTINUED flag to allow for that.
1522 */
1523int __swp_swapcount(swp_entry_t entry)
1524{
1525	int count = 0;
1526	struct swap_info_struct *si;
1527
1528	si = get_swap_device(entry);
1529	if (si) {
1530		count = swap_swapcount(si, entry);
1531		put_swap_device(si);
1532	}
1533	return count;
1534}
1535
1536/*
1537 * How many references to @entry are currently swapped out?
1538 * This considers COUNT_CONTINUED so it returns exact answer.
1539 */
1540int swp_swapcount(swp_entry_t entry)
1541{
1542	int count, tmp_count, n;
1543	struct swap_info_struct *p;
1544	struct swap_cluster_info *ci;
1545	struct page *page;
1546	pgoff_t offset;
1547	unsigned char *map;
1548
1549	p = _swap_info_get(entry);
1550	if (!p)
1551		return 0;
1552
1553	offset = swp_offset(entry);
1554
1555	ci = lock_cluster_or_swap_info(p, offset);
1556
1557	count = swap_count(p->swap_map[offset]);
1558	if (!(count & COUNT_CONTINUED))
1559		goto out;
1560
1561	count &= ~COUNT_CONTINUED;
1562	n = SWAP_MAP_MAX + 1;
1563
1564	page = vmalloc_to_page(p->swap_map + offset);
1565	offset &= ~PAGE_MASK;
1566	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1567
1568	do {
1569		page = list_next_entry(page, lru);
1570		map = kmap_atomic(page);
1571		tmp_count = map[offset];
1572		kunmap_atomic(map);
1573
1574		count += (tmp_count & ~COUNT_CONTINUED) * n;
1575		n *= (SWAP_CONT_MAX + 1);
1576	} while (tmp_count & COUNT_CONTINUED);
1577out:
1578	unlock_cluster_or_swap_info(p, ci);
1579	return count;
1580}
1581
1582static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1583					 swp_entry_t entry)
1584{
1585	struct swap_cluster_info *ci;
1586	unsigned char *map = si->swap_map;
1587	unsigned long roffset = swp_offset(entry);
1588	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1589	int i;
1590	bool ret = false;
1591
1592	ci = lock_cluster_or_swap_info(si, offset);
1593	if (!ci || !cluster_is_huge(ci)) {
1594		if (swap_count(map[roffset]))
1595			ret = true;
1596		goto unlock_out;
1597	}
1598	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1599		if (swap_count(map[offset + i])) {
1600			ret = true;
1601			break;
1602		}
1603	}
1604unlock_out:
1605	unlock_cluster_or_swap_info(si, ci);
1606	return ret;
1607}
1608
1609static bool page_swapped(struct page *page)
1610{
1611	swp_entry_t entry;
1612	struct swap_info_struct *si;
1613
1614	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1615		return page_swapcount(page) != 0;
1616
1617	page = compound_head(page);
1618	entry.val = page_private(page);
1619	si = _swap_info_get(entry);
1620	if (si)
1621		return swap_page_trans_huge_swapped(si, entry);
1622	return false;
1623}
1624
1625static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1626					 int *total_swapcount)
1627{
1628	int i, map_swapcount, _total_mapcount, _total_swapcount;
1629	unsigned long offset = 0;
1630	struct swap_info_struct *si;
1631	struct swap_cluster_info *ci = NULL;
1632	unsigned char *map = NULL;
1633	int mapcount, swapcount = 0;
1634
1635	/* hugetlbfs shouldn't call it */
1636	VM_BUG_ON_PAGE(PageHuge(page), page);
1637
1638	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1639		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1640		if (PageSwapCache(page))
1641			swapcount = page_swapcount(page);
1642		if (total_swapcount)
1643			*total_swapcount = swapcount;
1644		return mapcount + swapcount;
1645	}
1646
1647	page = compound_head(page);
1648
1649	_total_mapcount = _total_swapcount = map_swapcount = 0;
1650	if (PageSwapCache(page)) {
1651		swp_entry_t entry;
1652
1653		entry.val = page_private(page);
1654		si = _swap_info_get(entry);
1655		if (si) {
1656			map = si->swap_map;
1657			offset = swp_offset(entry);
1658		}
1659	}
1660	if (map)
1661		ci = lock_cluster(si, offset);
1662	for (i = 0; i < HPAGE_PMD_NR; i++) {
1663		mapcount = atomic_read(&page[i]._mapcount) + 1;
1664		_total_mapcount += mapcount;
1665		if (map) {
1666			swapcount = swap_count(map[offset + i]);
1667			_total_swapcount += swapcount;
1668		}
1669		map_swapcount = max(map_swapcount, mapcount + swapcount);
1670	}
1671	unlock_cluster(ci);
1672	if (PageDoubleMap(page)) {
1673		map_swapcount -= 1;
1674		_total_mapcount -= HPAGE_PMD_NR;
1675	}
1676	mapcount = compound_mapcount(page);
1677	map_swapcount += mapcount;
1678	_total_mapcount += mapcount;
1679	if (total_mapcount)
1680		*total_mapcount = _total_mapcount;
1681	if (total_swapcount)
1682		*total_swapcount = _total_swapcount;
1683
1684	return map_swapcount;
1685}
1686
1687/*
1688 * We can write to an anon page without COW if there are no other references
1689 * to it.  And as a side-effect, free up its swap: because the old content
1690 * on disk will never be read, and seeking back there to write new content
1691 * later would only waste time away from clustering.
1692 *
1693 * NOTE: total_map_swapcount should not be relied upon by the caller if
1694 * reuse_swap_page() returns false, but it may be always overwritten
1695 * (see the other implementation for CONFIG_SWAP=n).
1696 */
1697bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1698{
1699	int count, total_mapcount, total_swapcount;
1700
1701	VM_BUG_ON_PAGE(!PageLocked(page), page);
1702	if (unlikely(PageKsm(page)))
1703		return false;
1704	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1705					      &total_swapcount);
1706	if (total_map_swapcount)
1707		*total_map_swapcount = total_mapcount + total_swapcount;
1708	if (count == 1 && PageSwapCache(page) &&
1709	    (likely(!PageTransCompound(page)) ||
1710	     /* The remaining swap count will be freed soon */
1711	     total_swapcount == page_swapcount(page))) {
1712		if (!PageWriteback(page)) {
1713			page = compound_head(page);
1714			delete_from_swap_cache(page);
1715			SetPageDirty(page);
1716		} else {
1717			swp_entry_t entry;
1718			struct swap_info_struct *p;
1719
1720			entry.val = page_private(page);
1721			p = swap_info_get(entry);
1722			if (p->flags & SWP_STABLE_WRITES) {
1723				spin_unlock(&p->lock);
1724				return false;
1725			}
1726			spin_unlock(&p->lock);
1727		}
1728	}
1729
1730	return count <= 1;
1731}
1732
1733/*
1734 * If swap is getting full, or if there are no more mappings of this page,
1735 * then try_to_free_swap is called to free its swap space.
1736 */
1737int try_to_free_swap(struct page *page)
1738{
1739	VM_BUG_ON_PAGE(!PageLocked(page), page);
1740
1741	if (!PageSwapCache(page))
1742		return 0;
1743	if (PageWriteback(page))
1744		return 0;
1745	if (page_swapped(page))
1746		return 0;
1747
1748	/*
1749	 * Once hibernation has begun to create its image of memory,
1750	 * there's a danger that one of the calls to try_to_free_swap()
1751	 * - most probably a call from __try_to_reclaim_swap() while
1752	 * hibernation is allocating its own swap pages for the image,
1753	 * but conceivably even a call from memory reclaim - will free
1754	 * the swap from a page which has already been recorded in the
1755	 * image as a clean swapcache page, and then reuse its swap for
1756	 * another page of the image.  On waking from hibernation, the
1757	 * original page might be freed under memory pressure, then
1758	 * later read back in from swap, now with the wrong data.
1759	 *
1760	 * Hibernation suspends storage while it is writing the image
1761	 * to disk so check that here.
1762	 */
1763	if (pm_suspended_storage())
1764		return 0;
1765
1766	page = compound_head(page);
1767	delete_from_swap_cache(page);
1768	SetPageDirty(page);
1769	return 1;
1770}
1771
1772/*
1773 * Free the swap entry like above, but also try to
1774 * free the page cache entry if it is the last user.
1775 */
1776int free_swap_and_cache(swp_entry_t entry)
1777{
1778	struct swap_info_struct *p;
1779	unsigned char count;
1780
1781	if (non_swap_entry(entry))
1782		return 1;
1783
1784	p = _swap_info_get(entry);
1785	if (p) {
1786		count = __swap_entry_free(p, entry);
1787		if (count == SWAP_HAS_CACHE &&
1788		    !swap_page_trans_huge_swapped(p, entry))
1789			__try_to_reclaim_swap(p, swp_offset(entry),
1790					      TTRS_UNMAPPED | TTRS_FULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1791	}
1792	return p != NULL;
1793}
1794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795#ifdef CONFIG_HIBERNATION
1796/*
1797 * Find the swap type that corresponds to given device (if any).
1798 *
1799 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1800 * from 0, in which the swap header is expected to be located.
1801 *
1802 * This is needed for the suspend to disk (aka swsusp).
1803 */
1804int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1805{
1806	struct block_device *bdev = NULL;
1807	int type;
1808
1809	if (device)
1810		bdev = bdget(device);
1811
1812	spin_lock(&swap_lock);
1813	for (type = 0; type < nr_swapfiles; type++) {
1814		struct swap_info_struct *sis = swap_info[type];
1815
1816		if (!(sis->flags & SWP_WRITEOK))
1817			continue;
1818
1819		if (!bdev) {
1820			if (bdev_p)
1821				*bdev_p = bdgrab(sis->bdev);
1822
1823			spin_unlock(&swap_lock);
1824			return type;
1825		}
1826		if (bdev == sis->bdev) {
1827			struct swap_extent *se = first_se(sis);
1828
1829			if (se->start_block == offset) {
1830				if (bdev_p)
1831					*bdev_p = bdgrab(sis->bdev);
1832
1833				spin_unlock(&swap_lock);
1834				bdput(bdev);
1835				return type;
1836			}
1837		}
1838	}
1839	spin_unlock(&swap_lock);
1840	if (bdev)
1841		bdput(bdev);
1842
1843	return -ENODEV;
1844}
1845
1846/*
1847 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1848 * corresponding to given index in swap_info (swap type).
1849 */
1850sector_t swapdev_block(int type, pgoff_t offset)
1851{
1852	struct block_device *bdev;
1853	struct swap_info_struct *si = swap_type_to_swap_info(type);
1854
1855	if (!si || !(si->flags & SWP_WRITEOK))
 
 
1856		return 0;
1857	return map_swap_entry(swp_entry(type, offset), &bdev);
1858}
1859
1860/*
1861 * Return either the total number of swap pages of given type, or the number
1862 * of free pages of that type (depending on @free)
1863 *
1864 * This is needed for software suspend
1865 */
1866unsigned int count_swap_pages(int type, int free)
1867{
1868	unsigned int n = 0;
1869
1870	spin_lock(&swap_lock);
1871	if ((unsigned int)type < nr_swapfiles) {
1872		struct swap_info_struct *sis = swap_info[type];
1873
1874		spin_lock(&sis->lock);
1875		if (sis->flags & SWP_WRITEOK) {
1876			n = sis->pages;
1877			if (free)
1878				n -= sis->inuse_pages;
1879		}
1880		spin_unlock(&sis->lock);
1881	}
1882	spin_unlock(&swap_lock);
1883	return n;
1884}
1885#endif /* CONFIG_HIBERNATION */
1886
1887static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1888{
1889	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1890}
1891
1892/*
1893 * No need to decide whether this PTE shares the swap entry with others,
1894 * just let do_wp_page work it out if a write is requested later - to
1895 * force COW, vm_page_prot omits write permission from any private vma.
1896 */
1897static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1898		unsigned long addr, swp_entry_t entry, struct page *page)
1899{
1900	struct page *swapcache;
1901	spinlock_t *ptl;
1902	pte_t *pte;
1903	int ret = 1;
1904
1905	swapcache = page;
1906	page = ksm_might_need_to_copy(page, vma, addr);
1907	if (unlikely(!page))
1908		return -ENOMEM;
1909
1910	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1911	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
 
 
1912		ret = 0;
1913		goto out;
1914	}
1915
1916	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1917	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1918	get_page(page);
1919	set_pte_at(vma->vm_mm, addr, pte,
1920		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1921	if (page == swapcache) {
1922		page_add_anon_rmap(page, vma, addr, false);
1923	} else { /* ksm created a completely new copy */
1924		page_add_new_anon_rmap(page, vma, addr, false);
1925		lru_cache_add_inactive_or_unevictable(page, vma);
1926	}
1927	swap_free(entry);
1928	/*
1929	 * Move the page to the active list so it is not
1930	 * immediately swapped out again after swapon.
1931	 */
1932	activate_page(page);
1933out:
1934	pte_unmap_unlock(pte, ptl);
1935	if (page != swapcache) {
1936		unlock_page(page);
1937		put_page(page);
1938	}
1939	return ret;
1940}
1941
1942static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1943			unsigned long addr, unsigned long end,
1944			unsigned int type, bool frontswap,
1945			unsigned long *fs_pages_to_unuse)
1946{
1947	struct page *page;
1948	swp_entry_t entry;
1949	pte_t *pte;
1950	struct swap_info_struct *si;
1951	unsigned long offset;
1952	int ret = 0;
1953	volatile unsigned char *swap_map;
1954
1955	si = swap_info[type];
 
 
 
 
 
 
 
 
1956	pte = pte_offset_map(pmd, addr);
1957	do {
1958		struct vm_fault vmf;
1959
1960		if (!is_swap_pte(*pte))
1961			continue;
1962
1963		entry = pte_to_swp_entry(*pte);
1964		if (swp_type(entry) != type)
1965			continue;
1966
1967		offset = swp_offset(entry);
1968		if (frontswap && !frontswap_test(si, offset))
1969			continue;
1970
1971		pte_unmap(pte);
1972		swap_map = &si->swap_map[offset];
1973		page = lookup_swap_cache(entry, vma, addr);
1974		if (!page) {
1975			vmf.vma = vma;
1976			vmf.address = addr;
1977			vmf.pmd = pmd;
1978			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1979						&vmf);
1980		}
1981		if (!page) {
1982			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1983				goto try_next;
1984			return -ENOMEM;
1985		}
1986
1987		lock_page(page);
1988		wait_on_page_writeback(page);
1989		ret = unuse_pte(vma, pmd, addr, entry, page);
1990		if (ret < 0) {
1991			unlock_page(page);
1992			put_page(page);
1993			goto out;
1994		}
1995
1996		try_to_free_swap(page);
1997		unlock_page(page);
1998		put_page(page);
1999
2000		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2001			ret = FRONTSWAP_PAGES_UNUSED;
2002			goto out;
2003		}
2004try_next:
2005		pte = pte_offset_map(pmd, addr);
2006	} while (pte++, addr += PAGE_SIZE, addr != end);
2007	pte_unmap(pte - 1);
2008
2009	ret = 0;
2010out:
2011	return ret;
2012}
2013
2014static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2015				unsigned long addr, unsigned long end,
2016				unsigned int type, bool frontswap,
2017				unsigned long *fs_pages_to_unuse)
2018{
2019	pmd_t *pmd;
2020	unsigned long next;
2021	int ret;
2022
2023	pmd = pmd_offset(pud, addr);
2024	do {
2025		cond_resched();
2026		next = pmd_addr_end(addr, end);
2027		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2028			continue;
2029		ret = unuse_pte_range(vma, pmd, addr, next, type,
2030				      frontswap, fs_pages_to_unuse);
 
2031		if (ret)
2032			return ret;
2033	} while (pmd++, addr = next, addr != end);
2034	return 0;
2035}
2036
2037static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2038				unsigned long addr, unsigned long end,
2039				unsigned int type, bool frontswap,
2040				unsigned long *fs_pages_to_unuse)
2041{
2042	pud_t *pud;
2043	unsigned long next;
2044	int ret;
2045
2046	pud = pud_offset(p4d, addr);
2047	do {
2048		next = pud_addr_end(addr, end);
2049		if (pud_none_or_clear_bad(pud))
2050			continue;
2051		ret = unuse_pmd_range(vma, pud, addr, next, type,
2052				      frontswap, fs_pages_to_unuse);
2053		if (ret)
2054			return ret;
2055	} while (pud++, addr = next, addr != end);
2056	return 0;
2057}
2058
2059static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2060				unsigned long addr, unsigned long end,
2061				unsigned int type, bool frontswap,
2062				unsigned long *fs_pages_to_unuse)
2063{
2064	p4d_t *p4d;
2065	unsigned long next;
2066	int ret;
2067
2068	p4d = p4d_offset(pgd, addr);
2069	do {
2070		next = p4d_addr_end(addr, end);
2071		if (p4d_none_or_clear_bad(p4d))
2072			continue;
2073		ret = unuse_pud_range(vma, p4d, addr, next, type,
2074				      frontswap, fs_pages_to_unuse);
2075		if (ret)
2076			return ret;
2077	} while (p4d++, addr = next, addr != end);
2078	return 0;
2079}
2080
2081static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2082		     bool frontswap, unsigned long *fs_pages_to_unuse)
2083{
2084	pgd_t *pgd;
2085	unsigned long addr, end, next;
2086	int ret;
2087
2088	addr = vma->vm_start;
2089	end = vma->vm_end;
 
 
 
 
 
 
 
 
2090
2091	pgd = pgd_offset(vma->vm_mm, addr);
2092	do {
2093		next = pgd_addr_end(addr, end);
2094		if (pgd_none_or_clear_bad(pgd))
2095			continue;
2096		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2097				      frontswap, fs_pages_to_unuse);
2098		if (ret)
2099			return ret;
2100	} while (pgd++, addr = next, addr != end);
2101	return 0;
2102}
2103
2104static int unuse_mm(struct mm_struct *mm, unsigned int type,
2105		    bool frontswap, unsigned long *fs_pages_to_unuse)
2106{
2107	struct vm_area_struct *vma;
2108	int ret = 0;
2109
2110	mmap_read_lock(mm);
 
 
 
 
 
 
 
 
 
2111	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2112		if (vma->anon_vma) {
2113			ret = unuse_vma(vma, type, frontswap,
2114					fs_pages_to_unuse);
2115			if (ret)
2116				break;
2117		}
2118		cond_resched();
2119	}
2120	mmap_read_unlock(mm);
2121	return ret;
2122}
2123
2124/*
2125 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2126 * from current position to next entry still in use. Return 0
2127 * if there are no inuse entries after prev till end of the map.
2128 */
2129static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2130					unsigned int prev, bool frontswap)
2131{
2132	unsigned int i;
 
2133	unsigned char count;
2134
2135	/*
2136	 * No need for swap_lock here: we're just looking
2137	 * for whether an entry is in use, not modifying it; false
2138	 * hits are okay, and sys_swapoff() has already prevented new
2139	 * allocations from this area (while holding swap_lock).
2140	 */
2141	for (i = prev + 1; i < si->max; i++) {
2142		count = READ_ONCE(si->swap_map[i]);
2143		if (count && swap_count(count) != SWAP_MAP_BAD)
2144			if (!frontswap || frontswap_test(si, i))
2145				break;
2146		if ((i % LATENCY_LIMIT) == 0)
2147			cond_resched();
 
 
 
 
 
 
 
 
 
 
2148	}
2149
2150	if (i == si->max)
2151		i = 0;
2152
2153	return i;
2154}
2155
2156/*
2157 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2158 * pages_to_unuse==0 means all pages; ignored if frontswap is false
 
2159 */
2160int try_to_unuse(unsigned int type, bool frontswap,
2161		 unsigned long pages_to_unuse)
2162{
2163	struct mm_struct *prev_mm;
2164	struct mm_struct *mm;
2165	struct list_head *p;
2166	int retval = 0;
2167	struct swap_info_struct *si = swap_info[type];
 
 
 
2168	struct page *page;
2169	swp_entry_t entry;
2170	unsigned int i;
2171
2172	if (!READ_ONCE(si->inuse_pages))
2173		return 0;
2174
2175	if (!frontswap)
2176		pages_to_unuse = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2177
2178retry:
2179	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2180	if (retval)
2181		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2182
2183	prev_mm = &init_mm;
2184	mmget(prev_mm);
 
 
 
 
 
 
2185
2186	spin_lock(&mmlist_lock);
2187	p = &init_mm.mmlist;
2188	while (READ_ONCE(si->inuse_pages) &&
2189	       !signal_pending(current) &&
2190	       (p = p->next) != &init_mm.mmlist) {
 
 
 
 
 
 
 
2191
2192		mm = list_entry(p, struct mm_struct, mmlist);
2193		if (!mmget_not_zero(mm))
 
 
 
 
 
 
 
2194			continue;
2195		spin_unlock(&mmlist_lock);
2196		mmput(prev_mm);
2197		prev_mm = mm;
2198		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2199
2200		if (retval) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2201			mmput(prev_mm);
2202			goto out;
 
 
 
 
 
 
2203		}
2204
2205		/*
2206		 * Make sure that we aren't completely killing
2207		 * interactive performance.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2208		 */
2209		cond_resched();
2210		spin_lock(&mmlist_lock);
2211	}
2212	spin_unlock(&mmlist_lock);
2213
2214	mmput(prev_mm);
2215
2216	i = 0;
2217	while (READ_ONCE(si->inuse_pages) &&
2218	       !signal_pending(current) &&
2219	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2220
2221		entry = swp_entry(type, i);
2222		page = find_get_page(swap_address_space(entry), i);
2223		if (!page)
2224			continue;
2225
2226		/*
2227		 * It is conceivable that a racing task removed this page from
2228		 * swap cache just before we acquired the page lock. The page
2229		 * might even be back in swap cache on another swap area. But
2230		 * that is okay, try_to_free_swap() only removes stale pages.
 
2231		 */
2232		lock_page(page);
2233		wait_on_page_writeback(page);
2234		try_to_free_swap(page);
 
 
 
 
 
 
 
2235		unlock_page(page);
2236		put_page(page);
2237
2238		/*
2239		 * For frontswap, we just need to unuse pages_to_unuse, if
2240		 * it was specified. Need not check frontswap again here as
2241		 * we already zeroed out pages_to_unuse if not frontswap.
2242		 */
2243		if (pages_to_unuse && --pages_to_unuse == 0)
2244			goto out;
2245	}
2246
2247	/*
2248	 * Lets check again to see if there are still swap entries in the map.
2249	 * If yes, we would need to do retry the unuse logic again.
2250	 * Under global memory pressure, swap entries can be reinserted back
2251	 * into process space after the mmlist loop above passes over them.
2252	 *
2253	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2254	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2255	 * at its own independent pace; and even shmem_writepage() could have
2256	 * been preempted after get_swap_page(), temporarily hiding that swap.
2257	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2258	 */
2259	if (READ_ONCE(si->inuse_pages)) {
2260		if (!signal_pending(current))
2261			goto retry;
2262		retval = -EINTR;
2263	}
2264out:
2265	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2266}
2267
2268/*
2269 * After a successful try_to_unuse, if no swap is now in use, we know
2270 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2271 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2272 * added to the mmlist just after page_duplicate - before would be racy.
2273 */
2274static void drain_mmlist(void)
2275{
2276	struct list_head *p, *next;
2277	unsigned int type;
2278
2279	for (type = 0; type < nr_swapfiles; type++)
2280		if (swap_info[type]->inuse_pages)
2281			return;
2282	spin_lock(&mmlist_lock);
2283	list_for_each_safe(p, next, &init_mm.mmlist)
2284		list_del_init(p);
2285	spin_unlock(&mmlist_lock);
2286}
2287
2288/*
2289 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2290 * corresponds to page offset for the specified swap entry.
2291 * Note that the type of this function is sector_t, but it returns page offset
2292 * into the bdev, not sector offset.
2293 */
2294static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2295{
2296	struct swap_info_struct *sis;
 
2297	struct swap_extent *se;
2298	pgoff_t offset;
2299
2300	sis = swp_swap_info(entry);
2301	*bdev = sis->bdev;
2302
2303	offset = swp_offset(entry);
2304	se = offset_to_swap_extent(sis, offset);
2305	return se->start_block + (offset - se->start_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
2306}
2307
2308/*
2309 * Returns the page offset into bdev for the specified page's swap entry.
2310 */
2311sector_t map_swap_page(struct page *page, struct block_device **bdev)
2312{
2313	swp_entry_t entry;
2314	entry.val = page_private(page);
2315	return map_swap_entry(entry, bdev);
2316}
2317
2318/*
2319 * Free all of a swapdev's extent information
2320 */
2321static void destroy_swap_extents(struct swap_info_struct *sis)
2322{
2323	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2324		struct rb_node *rb = sis->swap_extent_root.rb_node;
2325		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2326
2327		rb_erase(rb, &sis->swap_extent_root);
 
 
2328		kfree(se);
2329	}
2330
2331	if (sis->flags & SWP_ACTIVATED) {
2332		struct file *swap_file = sis->swap_file;
2333		struct address_space *mapping = swap_file->f_mapping;
2334
2335		sis->flags &= ~SWP_ACTIVATED;
2336		if (mapping->a_ops->swap_deactivate)
2337			mapping->a_ops->swap_deactivate(swap_file);
2338	}
2339}
2340
2341/*
2342 * Add a block range (and the corresponding page range) into this swapdev's
2343 * extent tree.
2344 *
2345 * This function rather assumes that it is called in ascending page order.
2346 */
2347int
2348add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2349		unsigned long nr_pages, sector_t start_block)
2350{
2351	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2352	struct swap_extent *se;
2353	struct swap_extent *new_se;
 
2354
2355	/*
2356	 * place the new node at the right most since the
2357	 * function is called in ascending page order.
2358	 */
2359	while (*link) {
2360		parent = *link;
2361		link = &parent->rb_right;
2362	}
2363
2364	if (parent) {
2365		se = rb_entry(parent, struct swap_extent, rb_node);
2366		BUG_ON(se->start_page + se->nr_pages != start_page);
2367		if (se->start_block + se->nr_pages == start_block) {
2368			/* Merge it */
2369			se->nr_pages += nr_pages;
2370			return 0;
2371		}
2372	}
2373
2374	/* No merge, insert a new extent. */
 
 
2375	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2376	if (new_se == NULL)
2377		return -ENOMEM;
2378	new_se->start_page = start_page;
2379	new_se->nr_pages = nr_pages;
2380	new_se->start_block = start_block;
2381
2382	rb_link_node(&new_se->rb_node, parent, link);
2383	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2384	return 1;
2385}
2386EXPORT_SYMBOL_GPL(add_swap_extent);
2387
2388/*
2389 * A `swap extent' is a simple thing which maps a contiguous range of pages
2390 * onto a contiguous range of disk blocks.  An ordered list of swap extents
2391 * is built at swapon time and is then used at swap_writepage/swap_readpage
2392 * time for locating where on disk a page belongs.
2393 *
2394 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2395 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2396 * swap files identically.
2397 *
2398 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2399 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2400 * swapfiles are handled *identically* after swapon time.
2401 *
2402 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2403 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2404 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2405 * requirements, they are simply tossed out - we will never use those blocks
2406 * for swapping.
2407 *
2408 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2409 * prevents users from writing to the swap device, which will corrupt memory.
 
2410 *
2411 * The amount of disk space which a single swap extent represents varies.
2412 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2413 * extents in the list.  To avoid much list walking, we cache the previous
2414 * search location in `curr_swap_extent', and start new searches from there.
2415 * This is extremely effective.  The average number of iterations in
2416 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2417 */
2418static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2419{
2420	struct file *swap_file = sis->swap_file;
2421	struct address_space *mapping = swap_file->f_mapping;
2422	struct inode *inode = mapping->host;
 
 
 
 
 
 
2423	int ret;
2424
 
2425	if (S_ISBLK(inode->i_mode)) {
2426		ret = add_swap_extent(sis, 0, sis->max, 0);
2427		*span = sis->pages;
2428		return ret;
2429	}
2430
2431	if (mapping->a_ops->swap_activate) {
2432		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2433		if (ret >= 0)
2434			sis->flags |= SWP_ACTIVATED;
2435		if (!ret) {
2436			sis->flags |= SWP_FS;
2437			ret = add_swap_extent(sis, 0, sis->max, 0);
2438			*span = sis->pages;
2439		}
2440		return ret;
2441	}
2442
2443	return generic_swapfile_activate(sis, swap_file, span);
2444}
 
 
 
 
 
 
 
 
 
 
 
 
 
2445
2446static int swap_node(struct swap_info_struct *p)
2447{
2448	struct block_device *bdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2449
2450	if (p->bdev)
2451		bdev = p->bdev;
2452	else
2453		bdev = p->swap_file->f_inode->i_sb->s_bdev;
 
 
 
2454
2455	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2456}
2457
2458static void setup_swap_info(struct swap_info_struct *p, int prio,
2459			    unsigned char *swap_map,
2460			    struct swap_cluster_info *cluster_info)
2461{
2462	int i;
2463
 
2464	if (prio >= 0)
2465		p->prio = prio;
2466	else
2467		p->prio = --least_priority;
2468	/*
2469	 * the plist prio is negated because plist ordering is
2470	 * low-to-high, while swap ordering is high-to-low
2471	 */
2472	p->list.prio = -p->prio;
2473	for_each_node(i) {
2474		if (p->prio >= 0)
2475			p->avail_lists[i].prio = -p->prio;
2476		else {
2477			if (swap_node(p) == i)
2478				p->avail_lists[i].prio = 1;
2479			else
2480				p->avail_lists[i].prio = -p->prio;
2481		}
2482	}
2483	p->swap_map = swap_map;
2484	p->cluster_info = cluster_info;
2485}
2486
2487static void _enable_swap_info(struct swap_info_struct *p)
2488{
2489	p->flags |= SWP_WRITEOK | SWP_VALID;
2490	atomic_long_add(p->pages, &nr_swap_pages);
2491	total_swap_pages += p->pages;
2492
2493	assert_spin_locked(&swap_lock);
2494	/*
2495	 * both lists are plists, and thus priority ordered.
2496	 * swap_active_head needs to be priority ordered for swapoff(),
2497	 * which on removal of any swap_info_struct with an auto-assigned
2498	 * (i.e. negative) priority increments the auto-assigned priority
2499	 * of any lower-priority swap_info_structs.
2500	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2501	 * which allocates swap pages from the highest available priority
2502	 * swap_info_struct.
2503	 */
2504	plist_add(&p->list, &swap_active_head);
2505	add_to_avail_list(p);
2506}
2507
2508static void enable_swap_info(struct swap_info_struct *p, int prio,
2509				unsigned char *swap_map,
2510				struct swap_cluster_info *cluster_info,
2511				unsigned long *frontswap_map)
2512{
2513	frontswap_init(p->type, frontswap_map);
2514	spin_lock(&swap_lock);
2515	spin_lock(&p->lock);
2516	setup_swap_info(p, prio, swap_map, cluster_info);
2517	spin_unlock(&p->lock);
2518	spin_unlock(&swap_lock);
2519	/*
2520	 * Guarantee swap_map, cluster_info, etc. fields are valid
2521	 * between get/put_swap_device() if SWP_VALID bit is set
2522	 */
2523	synchronize_rcu();
2524	spin_lock(&swap_lock);
2525	spin_lock(&p->lock);
2526	_enable_swap_info(p);
2527	spin_unlock(&p->lock);
2528	spin_unlock(&swap_lock);
2529}
2530
2531static void reinsert_swap_info(struct swap_info_struct *p)
2532{
2533	spin_lock(&swap_lock);
2534	spin_lock(&p->lock);
2535	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2536	_enable_swap_info(p);
2537	spin_unlock(&p->lock);
2538	spin_unlock(&swap_lock);
2539}
2540
2541bool has_usable_swap(void)
2542{
2543	bool ret = true;
2544
2545	spin_lock(&swap_lock);
2546	if (plist_head_empty(&swap_active_head))
2547		ret = false;
2548	spin_unlock(&swap_lock);
2549	return ret;
2550}
2551
2552SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2553{
2554	struct swap_info_struct *p = NULL;
2555	unsigned char *swap_map;
2556	struct swap_cluster_info *cluster_info;
2557	unsigned long *frontswap_map;
2558	struct file *swap_file, *victim;
2559	struct address_space *mapping;
2560	struct inode *inode;
2561	struct filename *pathname;
2562	int err, found = 0;
2563	unsigned int old_block_size;
 
2564
2565	if (!capable(CAP_SYS_ADMIN))
2566		return -EPERM;
2567
2568	BUG_ON(!current->mm);
2569
2570	pathname = getname(specialfile);
 
2571	if (IS_ERR(pathname))
2572		return PTR_ERR(pathname);
2573
2574	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
 
2575	err = PTR_ERR(victim);
2576	if (IS_ERR(victim))
2577		goto out;
2578
2579	mapping = victim->f_mapping;
 
2580	spin_lock(&swap_lock);
2581	plist_for_each_entry(p, &swap_active_head, list) {
 
2582		if (p->flags & SWP_WRITEOK) {
2583			if (p->swap_file->f_mapping == mapping) {
2584				found = 1;
2585				break;
2586			}
2587		}
 
2588	}
2589	if (!found) {
2590		err = -EINVAL;
2591		spin_unlock(&swap_lock);
2592		goto out_dput;
2593	}
2594	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2595		vm_unacct_memory(p->pages);
2596	else {
2597		err = -ENOMEM;
2598		spin_unlock(&swap_lock);
2599		goto out_dput;
2600	}
2601	del_from_avail_list(p);
2602	spin_lock(&p->lock);
 
 
 
 
 
 
2603	if (p->prio < 0) {
2604		struct swap_info_struct *si = p;
2605		int nid;
2606
2607		plist_for_each_entry_continue(si, &swap_active_head, list) {
2608			si->prio++;
2609			si->list.prio--;
2610			for_each_node(nid) {
2611				if (si->avail_lists[nid].prio != 1)
2612					si->avail_lists[nid].prio--;
2613			}
2614		}
2615		least_priority++;
2616	}
2617	plist_del(&p->list, &swap_active_head);
2618	atomic_long_sub(p->pages, &nr_swap_pages);
2619	total_swap_pages -= p->pages;
2620	p->flags &= ~SWP_WRITEOK;
2621	spin_unlock(&p->lock);
2622	spin_unlock(&swap_lock);
2623
2624	disable_swap_slots_cache_lock();
2625
2626	set_current_oom_origin();
2627	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2628	clear_current_oom_origin();
2629
2630	if (err) {
 
 
 
 
 
 
2631		/* re-insert swap space back into swap_list */
2632		reinsert_swap_info(p);
2633		reenable_swap_slots_cache_unlock();
2634		goto out_dput;
2635	}
2636
2637	reenable_swap_slots_cache_unlock();
2638
2639	spin_lock(&swap_lock);
2640	spin_lock(&p->lock);
2641	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2642	spin_unlock(&p->lock);
2643	spin_unlock(&swap_lock);
2644	/*
2645	 * wait for swap operations protected by get/put_swap_device()
2646	 * to complete
2647	 */
2648	synchronize_rcu();
2649
2650	flush_work(&p->discard_work);
2651
2652	destroy_swap_extents(p);
2653	if (p->flags & SWP_CONTINUED)
2654		free_swap_count_continuations(p);
2655
2656	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2657		atomic_dec(&nr_rotate_swap);
2658
2659	mutex_lock(&swapon_mutex);
2660	spin_lock(&swap_lock);
2661	spin_lock(&p->lock);
2662	drain_mmlist();
2663
2664	/* wait for anyone still in scan_swap_map */
2665	p->highest_bit = 0;		/* cuts scans short */
2666	while (p->flags >= SWP_SCANNING) {
2667		spin_unlock(&p->lock);
2668		spin_unlock(&swap_lock);
2669		schedule_timeout_uninterruptible(1);
2670		spin_lock(&swap_lock);
2671		spin_lock(&p->lock);
2672	}
2673
2674	swap_file = p->swap_file;
2675	old_block_size = p->old_block_size;
2676	p->swap_file = NULL;
2677	p->max = 0;
2678	swap_map = p->swap_map;
2679	p->swap_map = NULL;
2680	cluster_info = p->cluster_info;
2681	p->cluster_info = NULL;
2682	frontswap_map = frontswap_map_get(p);
2683	spin_unlock(&p->lock);
2684	spin_unlock(&swap_lock);
2685	frontswap_invalidate_area(p->type);
2686	frontswap_map_set(p, NULL);
2687	mutex_unlock(&swapon_mutex);
2688	free_percpu(p->percpu_cluster);
2689	p->percpu_cluster = NULL;
2690	free_percpu(p->cluster_next_cpu);
2691	p->cluster_next_cpu = NULL;
2692	vfree(swap_map);
2693	kvfree(cluster_info);
2694	kvfree(frontswap_map);
2695	/* Destroy swap account information */
2696	swap_cgroup_swapoff(p->type);
2697	exit_swap_address_space(p->type);
2698
2699	inode = mapping->host;
2700	if (S_ISBLK(inode->i_mode)) {
2701		struct block_device *bdev = I_BDEV(inode);
2702
2703		set_blocksize(bdev, old_block_size);
2704		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 
 
 
 
2705	}
2706
2707	inode_lock(inode);
2708	inode->i_flags &= ~S_SWAPFILE;
2709	inode_unlock(inode);
2710	filp_close(swap_file, NULL);
2711
2712	/*
2713	 * Clear the SWP_USED flag after all resources are freed so that swapon
2714	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2715	 * not hold p->lock after we cleared its SWP_WRITEOK.
2716	 */
2717	spin_lock(&swap_lock);
2718	p->flags = 0;
2719	spin_unlock(&swap_lock);
2720
2721	err = 0;
2722	atomic_inc(&proc_poll_event);
2723	wake_up_interruptible(&proc_poll_wait);
2724
2725out_dput:
2726	filp_close(victim, NULL);
2727out:
2728	putname(pathname);
2729	return err;
2730}
2731
2732#ifdef CONFIG_PROC_FS
2733static __poll_t swaps_poll(struct file *file, poll_table *wait)
2734{
2735	struct seq_file *seq = file->private_data;
2736
2737	poll_wait(file, &proc_poll_wait, wait);
2738
2739	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2740		seq->poll_event = atomic_read(&proc_poll_event);
2741		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2742	}
2743
2744	return EPOLLIN | EPOLLRDNORM;
2745}
2746
2747/* iterator */
2748static void *swap_start(struct seq_file *swap, loff_t *pos)
2749{
2750	struct swap_info_struct *si;
2751	int type;
2752	loff_t l = *pos;
2753
2754	mutex_lock(&swapon_mutex);
2755
2756	if (!l)
2757		return SEQ_START_TOKEN;
2758
2759	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
 
 
2760		if (!(si->flags & SWP_USED) || !si->swap_map)
2761			continue;
2762		if (!--l)
2763			return si;
2764	}
2765
2766	return NULL;
2767}
2768
2769static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2770{
2771	struct swap_info_struct *si = v;
2772	int type;
2773
2774	if (v == SEQ_START_TOKEN)
2775		type = 0;
2776	else
2777		type = si->type + 1;
2778
2779	++(*pos);
2780	for (; (si = swap_type_to_swap_info(type)); type++) {
 
2781		if (!(si->flags & SWP_USED) || !si->swap_map)
2782			continue;
 
2783		return si;
2784	}
2785
2786	return NULL;
2787}
2788
2789static void swap_stop(struct seq_file *swap, void *v)
2790{
2791	mutex_unlock(&swapon_mutex);
2792}
2793
2794static int swap_show(struct seq_file *swap, void *v)
2795{
2796	struct swap_info_struct *si = v;
2797	struct file *file;
2798	int len;
2799	unsigned int bytes, inuse;
2800
2801	if (si == SEQ_START_TOKEN) {
2802		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2803		return 0;
2804	}
2805
2806	bytes = si->pages << (PAGE_SHIFT - 10);
2807	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2808
2809	file = si->swap_file;
2810	len = seq_file_path(swap, file, " \t\n\\");
2811	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2812			len < 40 ? 40 - len : 1, " ",
2813			S_ISBLK(file_inode(file)->i_mode) ?
2814				"partition" : "file\t",
2815			bytes, bytes < 10000000 ? "\t" : "",
2816			inuse, inuse < 10000000 ? "\t" : "",
2817			si->prio);
2818	return 0;
2819}
2820
2821static const struct seq_operations swaps_op = {
2822	.start =	swap_start,
2823	.next =		swap_next,
2824	.stop =		swap_stop,
2825	.show =		swap_show
2826};
2827
2828static int swaps_open(struct inode *inode, struct file *file)
2829{
2830	struct seq_file *seq;
2831	int ret;
2832
2833	ret = seq_open(file, &swaps_op);
2834	if (ret)
2835		return ret;
2836
2837	seq = file->private_data;
2838	seq->poll_event = atomic_read(&proc_poll_event);
2839	return 0;
2840}
2841
2842static const struct proc_ops swaps_proc_ops = {
2843	.proc_flags	= PROC_ENTRY_PERMANENT,
2844	.proc_open	= swaps_open,
2845	.proc_read	= seq_read,
2846	.proc_lseek	= seq_lseek,
2847	.proc_release	= seq_release,
2848	.proc_poll	= swaps_poll,
2849};
2850
2851static int __init procswaps_init(void)
2852{
2853	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2854	return 0;
2855}
2856__initcall(procswaps_init);
2857#endif /* CONFIG_PROC_FS */
2858
2859#ifdef MAX_SWAPFILES_CHECK
2860static int __init max_swapfiles_check(void)
2861{
2862	MAX_SWAPFILES_CHECK();
2863	return 0;
2864}
2865late_initcall(max_swapfiles_check);
2866#endif
2867
2868static struct swap_info_struct *alloc_swap_info(void)
2869{
2870	struct swap_info_struct *p;
2871	unsigned int type;
2872	int i;
2873
2874	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2875	if (!p)
2876		return ERR_PTR(-ENOMEM);
2877
2878	spin_lock(&swap_lock);
2879	for (type = 0; type < nr_swapfiles; type++) {
2880		if (!(swap_info[type]->flags & SWP_USED))
2881			break;
2882	}
2883	if (type >= MAX_SWAPFILES) {
2884		spin_unlock(&swap_lock);
2885		kvfree(p);
2886		return ERR_PTR(-EPERM);
2887	}
2888	if (type >= nr_swapfiles) {
2889		p->type = type;
2890		WRITE_ONCE(swap_info[type], p);
2891		/*
2892		 * Write swap_info[type] before nr_swapfiles, in case a
2893		 * racing procfs swap_start() or swap_next() is reading them.
2894		 * (We never shrink nr_swapfiles, we never free this entry.)
2895		 */
2896		smp_wmb();
2897		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2898	} else {
2899		kvfree(p);
2900		p = swap_info[type];
2901		/*
2902		 * Do not memset this entry: a racing procfs swap_next()
2903		 * would be relying on p->type to remain valid.
2904		 */
2905	}
2906	p->swap_extent_root = RB_ROOT;
2907	plist_node_init(&p->list, 0);
2908	for_each_node(i)
2909		plist_node_init(&p->avail_lists[i], 0);
2910	p->flags = SWP_USED;
 
2911	spin_unlock(&swap_lock);
2912	spin_lock_init(&p->lock);
2913	spin_lock_init(&p->cont_lock);
2914
2915	return p;
2916}
2917
2918static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2919{
2920	int error;
2921
2922	if (S_ISBLK(inode->i_mode)) {
2923		p->bdev = bdgrab(I_BDEV(inode));
2924		error = blkdev_get(p->bdev,
2925				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
 
2926		if (error < 0) {
2927			p->bdev = NULL;
2928			return error;
2929		}
2930		p->old_block_size = block_size(p->bdev);
2931		error = set_blocksize(p->bdev, PAGE_SIZE);
2932		if (error < 0)
2933			return error;
2934		/*
2935		 * Zoned block devices contain zones that have a sequential
2936		 * write only restriction.  Hence zoned block devices are not
2937		 * suitable for swapping.  Disallow them here.
2938		 */
2939		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2940			return -EINVAL;
2941		p->flags |= SWP_BLKDEV;
2942	} else if (S_ISREG(inode->i_mode)) {
2943		p->bdev = inode->i_sb->s_bdev;
2944	}
 
 
 
 
2945
2946	return 0;
2947}
2948
2949
2950/*
2951 * Find out how many pages are allowed for a single swap device. There
2952 * are two limiting factors:
2953 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2954 * 2) the number of bits in the swap pte, as defined by the different
2955 * architectures.
2956 *
2957 * In order to find the largest possible bit mask, a swap entry with
2958 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2959 * decoded to a swp_entry_t again, and finally the swap offset is
2960 * extracted.
2961 *
2962 * This will mask all the bits from the initial ~0UL mask that can't
2963 * be encoded in either the swp_entry_t or the architecture definition
2964 * of a swap pte.
2965 */
2966unsigned long generic_max_swapfile_size(void)
2967{
2968	return swp_offset(pte_to_swp_entry(
2969			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2970}
2971
2972/* Can be overridden by an architecture for additional checks. */
2973__weak unsigned long max_swapfile_size(void)
2974{
2975	return generic_max_swapfile_size();
2976}
2977
2978static unsigned long read_swap_header(struct swap_info_struct *p,
2979					union swap_header *swap_header,
2980					struct inode *inode)
2981{
2982	int i;
2983	unsigned long maxpages;
2984	unsigned long swapfilepages;
2985	unsigned long last_page;
2986
2987	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2988		pr_err("Unable to find swap-space signature\n");
2989		return 0;
2990	}
2991
2992	/* swap partition endianess hack... */
2993	if (swab32(swap_header->info.version) == 1) {
2994		swab32s(&swap_header->info.version);
2995		swab32s(&swap_header->info.last_page);
2996		swab32s(&swap_header->info.nr_badpages);
2997		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2998			return 0;
2999		for (i = 0; i < swap_header->info.nr_badpages; i++)
3000			swab32s(&swap_header->info.badpages[i]);
3001	}
3002	/* Check the swap header's sub-version */
3003	if (swap_header->info.version != 1) {
3004		pr_warn("Unable to handle swap header version %d\n",
3005			swap_header->info.version);
 
3006		return 0;
3007	}
3008
3009	p->lowest_bit  = 1;
3010	p->cluster_next = 1;
3011	p->cluster_nr = 0;
3012
3013	maxpages = max_swapfile_size();
3014	last_page = swap_header->info.last_page;
3015	if (!last_page) {
3016		pr_warn("Empty swap-file\n");
3017		return 0;
3018	}
3019	if (last_page > maxpages) {
3020		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3021			maxpages << (PAGE_SHIFT - 10),
3022			last_page << (PAGE_SHIFT - 10));
3023	}
3024	if (maxpages > last_page) {
3025		maxpages = last_page + 1;
 
 
 
 
 
 
 
 
 
3026		/* p->max is an unsigned int: don't overflow it */
3027		if ((unsigned int)maxpages == 0)
3028			maxpages = UINT_MAX;
3029	}
3030	p->highest_bit = maxpages - 1;
3031
3032	if (!maxpages)
3033		return 0;
3034	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3035	if (swapfilepages && maxpages > swapfilepages) {
3036		pr_warn("Swap area shorter than signature indicates\n");
 
3037		return 0;
3038	}
3039	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3040		return 0;
3041	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3042		return 0;
3043
3044	return maxpages;
3045}
3046
3047#define SWAP_CLUSTER_INFO_COLS						\
3048	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3049#define SWAP_CLUSTER_SPACE_COLS						\
3050	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3051#define SWAP_CLUSTER_COLS						\
3052	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3053
3054static int setup_swap_map_and_extents(struct swap_info_struct *p,
3055					union swap_header *swap_header,
3056					unsigned char *swap_map,
3057					struct swap_cluster_info *cluster_info,
3058					unsigned long maxpages,
3059					sector_t *span)
3060{
3061	unsigned int j, k;
3062	unsigned int nr_good_pages;
3063	int nr_extents;
3064	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3065	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3066	unsigned long i, idx;
3067
3068	nr_good_pages = maxpages - 1;	/* omit header page */
3069
3070	cluster_list_init(&p->free_clusters);
3071	cluster_list_init(&p->discard_clusters);
3072
3073	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3074		unsigned int page_nr = swap_header->info.badpages[i];
3075		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3076			return -EINVAL;
3077		if (page_nr < maxpages) {
3078			swap_map[page_nr] = SWAP_MAP_BAD;
3079			nr_good_pages--;
3080			/*
3081			 * Haven't marked the cluster free yet, no list
3082			 * operation involved
3083			 */
3084			inc_cluster_info_page(p, cluster_info, page_nr);
3085		}
3086	}
3087
3088	/* Haven't marked the cluster free yet, no list operation involved */
3089	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3090		inc_cluster_info_page(p, cluster_info, i);
3091
3092	if (nr_good_pages) {
3093		swap_map[0] = SWAP_MAP_BAD;
3094		/*
3095		 * Not mark the cluster free yet, no list
3096		 * operation involved
3097		 */
3098		inc_cluster_info_page(p, cluster_info, 0);
3099		p->max = maxpages;
3100		p->pages = nr_good_pages;
3101		nr_extents = setup_swap_extents(p, span);
3102		if (nr_extents < 0)
3103			return nr_extents;
3104		nr_good_pages = p->pages;
3105	}
3106	if (!nr_good_pages) {
3107		pr_warn("Empty swap-file\n");
3108		return -EINVAL;
3109	}
3110
3111	if (!cluster_info)
3112		return nr_extents;
3113
3114
3115	/*
3116	 * Reduce false cache line sharing between cluster_info and
3117	 * sharing same address space.
3118	 */
3119	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3120		j = (k + col) % SWAP_CLUSTER_COLS;
3121		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3122			idx = i * SWAP_CLUSTER_COLS + j;
3123			if (idx >= nr_clusters)
3124				continue;
3125			if (cluster_count(&cluster_info[idx]))
3126				continue;
3127			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3128			cluster_list_add_tail(&p->free_clusters, cluster_info,
3129					      idx);
3130		}
3131	}
3132	return nr_extents;
3133}
3134
3135/*
3136 * Helper to sys_swapon determining if a given swap
3137 * backing device queue supports DISCARD operations.
3138 */
3139static bool swap_discardable(struct swap_info_struct *si)
3140{
3141	struct request_queue *q = bdev_get_queue(si->bdev);
3142
3143	if (!q || !blk_queue_discard(q))
3144		return false;
3145
3146	return true;
3147}
3148
3149SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3150{
3151	struct swap_info_struct *p;
3152	struct filename *name;
3153	struct file *swap_file = NULL;
3154	struct address_space *mapping;
 
3155	int prio;
3156	int error;
3157	union swap_header *swap_header;
3158	int nr_extents;
3159	sector_t span;
3160	unsigned long maxpages;
3161	unsigned char *swap_map = NULL;
3162	struct swap_cluster_info *cluster_info = NULL;
3163	unsigned long *frontswap_map = NULL;
3164	struct page *page = NULL;
3165	struct inode *inode = NULL;
3166	bool inced_nr_rotate_swap = false;
3167
3168	if (swap_flags & ~SWAP_FLAGS_VALID)
3169		return -EINVAL;
3170
3171	if (!capable(CAP_SYS_ADMIN))
3172		return -EPERM;
3173
3174	if (!swap_avail_heads)
3175		return -ENOMEM;
3176
3177	p = alloc_swap_info();
3178	if (IS_ERR(p))
3179		return PTR_ERR(p);
3180
3181	INIT_WORK(&p->discard_work, swap_discard_work);
3182
3183	name = getname(specialfile);
3184	if (IS_ERR(name)) {
3185		error = PTR_ERR(name);
3186		name = NULL;
3187		goto bad_swap;
3188	}
3189	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3190	if (IS_ERR(swap_file)) {
3191		error = PTR_ERR(swap_file);
3192		swap_file = NULL;
3193		goto bad_swap;
3194	}
3195
3196	p->swap_file = swap_file;
3197	mapping = swap_file->f_mapping;
3198	inode = mapping->host;
3199
 
 
 
 
 
 
 
 
 
 
 
 
 
3200	error = claim_swapfile(p, inode);
3201	if (unlikely(error))
3202		goto bad_swap;
3203
3204	inode_lock(inode);
3205	if (IS_SWAPFILE(inode)) {
3206		error = -EBUSY;
3207		goto bad_swap_unlock_inode;
3208	}
3209
3210	/*
3211	 * Read the swap header.
3212	 */
3213	if (!mapping->a_ops->readpage) {
3214		error = -EINVAL;
3215		goto bad_swap_unlock_inode;
3216	}
3217	page = read_mapping_page(mapping, 0, swap_file);
3218	if (IS_ERR(page)) {
3219		error = PTR_ERR(page);
3220		goto bad_swap_unlock_inode;
3221	}
3222	swap_header = kmap(page);
3223
3224	maxpages = read_swap_header(p, swap_header, inode);
3225	if (unlikely(!maxpages)) {
3226		error = -EINVAL;
3227		goto bad_swap_unlock_inode;
3228	}
3229
3230	/* OK, set up the swap map and apply the bad block list */
3231	swap_map = vzalloc(maxpages);
3232	if (!swap_map) {
3233		error = -ENOMEM;
3234		goto bad_swap_unlock_inode;
3235	}
3236
3237	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3238		p->flags |= SWP_STABLE_WRITES;
3239
3240	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3241		p->flags |= SWP_SYNCHRONOUS_IO;
3242
3243	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3244		int cpu;
3245		unsigned long ci, nr_cluster;
3246
3247		p->flags |= SWP_SOLIDSTATE;
3248		p->cluster_next_cpu = alloc_percpu(unsigned int);
3249		if (!p->cluster_next_cpu) {
3250			error = -ENOMEM;
3251			goto bad_swap_unlock_inode;
3252		}
3253		/*
3254		 * select a random position to start with to help wear leveling
3255		 * SSD
3256		 */
3257		for_each_possible_cpu(cpu) {
3258			per_cpu(*p->cluster_next_cpu, cpu) =
3259				1 + prandom_u32_max(p->highest_bit);
3260		}
3261		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3262
3263		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3264					GFP_KERNEL);
3265		if (!cluster_info) {
3266			error = -ENOMEM;
3267			goto bad_swap_unlock_inode;
3268		}
3269
3270		for (ci = 0; ci < nr_cluster; ci++)
3271			spin_lock_init(&((cluster_info + ci)->lock));
3272
3273		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3274		if (!p->percpu_cluster) {
3275			error = -ENOMEM;
3276			goto bad_swap_unlock_inode;
3277		}
3278		for_each_possible_cpu(cpu) {
3279			struct percpu_cluster *cluster;
3280			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3281			cluster_set_null(&cluster->index);
3282		}
3283	} else {
3284		atomic_inc(&nr_rotate_swap);
3285		inced_nr_rotate_swap = true;
3286	}
3287
3288	error = swap_cgroup_swapon(p->type, maxpages);
3289	if (error)
3290		goto bad_swap_unlock_inode;
3291
3292	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3293		cluster_info, maxpages, &span);
3294	if (unlikely(nr_extents < 0)) {
3295		error = nr_extents;
3296		goto bad_swap_unlock_inode;
3297	}
3298	/* frontswap enabled? set up bit-per-page map for frontswap */
3299	if (IS_ENABLED(CONFIG_FRONTSWAP))
3300		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3301					 sizeof(long),
3302					 GFP_KERNEL);
3303
3304	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3305		/*
3306		 * When discard is enabled for swap with no particular
3307		 * policy flagged, we set all swap discard flags here in
3308		 * order to sustain backward compatibility with older
3309		 * swapon(8) releases.
3310		 */
3311		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3312			     SWP_PAGE_DISCARD);
3313
3314		/*
3315		 * By flagging sys_swapon, a sysadmin can tell us to
3316		 * either do single-time area discards only, or to just
3317		 * perform discards for released swap page-clusters.
3318		 * Now it's time to adjust the p->flags accordingly.
3319		 */
3320		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3321			p->flags &= ~SWP_PAGE_DISCARD;
3322		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3323			p->flags &= ~SWP_AREA_DISCARD;
3324
3325		/* issue a swapon-time discard if it's still required */
3326		if (p->flags & SWP_AREA_DISCARD) {
3327			int err = discard_swap(p);
3328			if (unlikely(err))
3329				pr_err("swapon: discard_swap(%p): %d\n",
3330					p, err);
3331		}
3332	}
3333
3334	error = init_swap_address_space(p->type, maxpages);
3335	if (error)
3336		goto bad_swap_unlock_inode;
3337
3338	/*
3339	 * Flush any pending IO and dirty mappings before we start using this
3340	 * swap device.
3341	 */
3342	inode->i_flags |= S_SWAPFILE;
3343	error = inode_drain_writes(inode);
3344	if (error) {
3345		inode->i_flags &= ~S_SWAPFILE;
3346		goto bad_swap_unlock_inode;
3347	}
3348
3349	mutex_lock(&swapon_mutex);
3350	prio = -1;
3351	if (swap_flags & SWAP_FLAG_PREFER)
3352		prio =
3353		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3354	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3355
3356	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3357		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
 
3358		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3359		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3360		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3361		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3362		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3363		(frontswap_map) ? "FS" : "");
3364
3365	mutex_unlock(&swapon_mutex);
3366	atomic_inc(&proc_poll_event);
3367	wake_up_interruptible(&proc_poll_wait);
3368
 
 
3369	error = 0;
3370	goto out;
3371bad_swap_unlock_inode:
3372	inode_unlock(inode);
3373bad_swap:
3374	free_percpu(p->percpu_cluster);
3375	p->percpu_cluster = NULL;
3376	free_percpu(p->cluster_next_cpu);
3377	p->cluster_next_cpu = NULL;
3378	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3379		set_blocksize(p->bdev, p->old_block_size);
3380		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3381	}
3382	inode = NULL;
3383	destroy_swap_extents(p);
3384	swap_cgroup_swapoff(p->type);
3385	spin_lock(&swap_lock);
3386	p->swap_file = NULL;
3387	p->flags = 0;
3388	spin_unlock(&swap_lock);
3389	vfree(swap_map);
3390	kvfree(cluster_info);
3391	kvfree(frontswap_map);
3392	if (inced_nr_rotate_swap)
3393		atomic_dec(&nr_rotate_swap);
3394	if (swap_file)
3395		filp_close(swap_file, NULL);
 
3396out:
3397	if (page && !IS_ERR(page)) {
3398		kunmap(page);
3399		put_page(page);
3400	}
3401	if (name)
3402		putname(name);
3403	if (inode)
3404		inode_unlock(inode);
3405	if (!error)
3406		enable_swap_slots_cache();
3407	return error;
3408}
3409
3410void si_swapinfo(struct sysinfo *val)
3411{
3412	unsigned int type;
3413	unsigned long nr_to_be_unused = 0;
3414
3415	spin_lock(&swap_lock);
3416	for (type = 0; type < nr_swapfiles; type++) {
3417		struct swap_info_struct *si = swap_info[type];
3418
3419		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3420			nr_to_be_unused += si->inuse_pages;
3421	}
3422	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3423	val->totalswap = total_swap_pages + nr_to_be_unused;
3424	spin_unlock(&swap_lock);
3425}
3426
3427/*
3428 * Verify that a swap entry is valid and increment its swap map count.
3429 *
3430 * Returns error code in following case.
3431 * - success -> 0
3432 * - swp_entry is invalid -> EINVAL
3433 * - swp_entry is migration entry -> EINVAL
3434 * - swap-cache reference is requested but there is already one. -> EEXIST
3435 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3436 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3437 */
3438static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3439{
3440	struct swap_info_struct *p;
3441	struct swap_cluster_info *ci;
3442	unsigned long offset;
3443	unsigned char count;
3444	unsigned char has_cache;
3445	int err = -EINVAL;
3446
3447	p = get_swap_device(entry);
3448	if (!p)
3449		goto out;
3450
 
 
 
 
3451	offset = swp_offset(entry);
3452	ci = lock_cluster_or_swap_info(p, offset);
3453
3454	count = p->swap_map[offset];
3455
3456	/*
3457	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3458	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3459	 */
3460	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3461		err = -ENOENT;
3462		goto unlock_out;
3463	}
3464
 
3465	has_cache = count & SWAP_HAS_CACHE;
3466	count &= ~SWAP_HAS_CACHE;
3467	err = 0;
3468
3469	if (usage == SWAP_HAS_CACHE) {
3470
3471		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3472		if (!has_cache && count)
3473			has_cache = SWAP_HAS_CACHE;
3474		else if (has_cache)		/* someone else added cache */
3475			err = -EEXIST;
3476		else				/* no users remaining */
3477			err = -ENOENT;
3478
3479	} else if (count || has_cache) {
3480
3481		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3482			count += usage;
3483		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3484			err = -EINVAL;
3485		else if (swap_count_continued(p, offset, count))
3486			count = COUNT_CONTINUED;
3487		else
3488			err = -ENOMEM;
3489	} else
3490		err = -ENOENT;			/* unused swap entry */
3491
3492	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3493
3494unlock_out:
3495	unlock_cluster_or_swap_info(p, ci);
3496out:
3497	if (p)
3498		put_swap_device(p);
3499	return err;
 
 
 
 
3500}
3501
3502/*
3503 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3504 * (in which case its reference count is never incremented).
3505 */
3506void swap_shmem_alloc(swp_entry_t entry)
3507{
3508	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3509}
3510
3511/*
3512 * Increase reference count of swap entry by 1.
3513 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3514 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3515 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3516 * might occur if a page table entry has got corrupted.
3517 */
3518int swap_duplicate(swp_entry_t entry)
3519{
3520	int err = 0;
3521
3522	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3523		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3524	return err;
3525}
3526
3527/*
3528 * @entry: swap entry for which we allocate swap cache.
3529 *
3530 * Called when allocating swap cache for existing swap entry,
3531 * This can return error codes. Returns 0 at success.
3532 * -EEXIST means there is a swap cache.
3533 * Note: return code is different from swap_duplicate().
3534 */
3535int swapcache_prepare(swp_entry_t entry)
3536{
3537	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3538}
3539
3540struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3541{
3542	return swap_type_to_swap_info(swp_type(entry));
3543}
3544
3545struct swap_info_struct *page_swap_info(struct page *page)
3546{
3547	swp_entry_t entry = { .val = page_private(page) };
3548	return swp_swap_info(entry);
3549}
3550
3551/*
3552 * out-of-line __page_file_ methods to avoid include hell.
 
3553 */
3554struct address_space *__page_file_mapping(struct page *page)
3555{
3556	return page_swap_info(page)->swap_file->f_mapping;
3557}
3558EXPORT_SYMBOL_GPL(__page_file_mapping);
 
 
3559
3560pgoff_t __page_file_index(struct page *page)
3561{
3562	swp_entry_t swap = { .val = page_private(page) };
3563	return swp_offset(swap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3564}
3565EXPORT_SYMBOL_GPL(__page_file_index);
3566
3567/*
3568 * add_swap_count_continuation - called when a swap count is duplicated
3569 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3570 * page of the original vmalloc'ed swap_map, to hold the continuation count
3571 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3572 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3573 *
3574 * These continuation pages are seldom referenced: the common paths all work
3575 * on the original swap_map, only referring to a continuation page when the
3576 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3577 *
3578 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3579 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3580 * can be called after dropping locks.
3581 */
3582int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3583{
3584	struct swap_info_struct *si;
3585	struct swap_cluster_info *ci;
3586	struct page *head;
3587	struct page *page;
3588	struct page *list_page;
3589	pgoff_t offset;
3590	unsigned char count;
3591	int ret = 0;
3592
3593	/*
3594	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3595	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3596	 */
3597	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3598
3599	si = get_swap_device(entry);
3600	if (!si) {
3601		/*
3602		 * An acceptable race has occurred since the failing
3603		 * __swap_duplicate(): the swap device may be swapoff
 
3604		 */
3605		goto outer;
3606	}
3607	spin_lock(&si->lock);
3608
3609	offset = swp_offset(entry);
3610
3611	ci = lock_cluster(si, offset);
3612
3613	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3614
3615	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3616		/*
3617		 * The higher the swap count, the more likely it is that tasks
3618		 * will race to add swap count continuation: we need to avoid
3619		 * over-provisioning.
3620		 */
3621		goto out;
3622	}
3623
3624	if (!page) {
3625		ret = -ENOMEM;
3626		goto out;
3627	}
3628
3629	/*
3630	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3631	 * no architecture is using highmem pages for kernel page tables: so it
3632	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3633	 */
3634	head = vmalloc_to_page(si->swap_map + offset);
3635	offset &= ~PAGE_MASK;
3636
3637	spin_lock(&si->cont_lock);
3638	/*
3639	 * Page allocation does not initialize the page's lru field,
3640	 * but it does always reset its private field.
3641	 */
3642	if (!page_private(head)) {
3643		BUG_ON(count & COUNT_CONTINUED);
3644		INIT_LIST_HEAD(&head->lru);
3645		set_page_private(head, SWP_CONTINUED);
3646		si->flags |= SWP_CONTINUED;
3647	}
3648
3649	list_for_each_entry(list_page, &head->lru, lru) {
3650		unsigned char *map;
3651
3652		/*
3653		 * If the previous map said no continuation, but we've found
3654		 * a continuation page, free our allocation and use this one.
3655		 */
3656		if (!(count & COUNT_CONTINUED))
3657			goto out_unlock_cont;
3658
3659		map = kmap_atomic(list_page) + offset;
3660		count = *map;
3661		kunmap_atomic(map);
3662
3663		/*
3664		 * If this continuation count now has some space in it,
3665		 * free our allocation and use this one.
3666		 */
3667		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3668			goto out_unlock_cont;
3669	}
3670
3671	list_add_tail(&page->lru, &head->lru);
3672	page = NULL;			/* now it's attached, don't free it */
3673out_unlock_cont:
3674	spin_unlock(&si->cont_lock);
3675out:
3676	unlock_cluster(ci);
3677	spin_unlock(&si->lock);
3678	put_swap_device(si);
3679outer:
3680	if (page)
3681		__free_page(page);
3682	return ret;
3683}
3684
3685/*
3686 * swap_count_continued - when the original swap_map count is incremented
3687 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3688 * into, carry if so, or else fail until a new continuation page is allocated;
3689 * when the original swap_map count is decremented from 0 with continuation,
3690 * borrow from the continuation and report whether it still holds more.
3691 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3692 * lock.
3693 */
3694static bool swap_count_continued(struct swap_info_struct *si,
3695				 pgoff_t offset, unsigned char count)
3696{
3697	struct page *head;
3698	struct page *page;
3699	unsigned char *map;
3700	bool ret;
3701
3702	head = vmalloc_to_page(si->swap_map + offset);
3703	if (page_private(head) != SWP_CONTINUED) {
3704		BUG_ON(count & COUNT_CONTINUED);
3705		return false;		/* need to add count continuation */
3706	}
3707
3708	spin_lock(&si->cont_lock);
3709	offset &= ~PAGE_MASK;
3710	page = list_next_entry(head, lru);
3711	map = kmap_atomic(page) + offset;
3712
3713	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3714		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3715
3716	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3717		/*
3718		 * Think of how you add 1 to 999
3719		 */
3720		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3721			kunmap_atomic(map);
3722			page = list_next_entry(page, lru);
3723			BUG_ON(page == head);
3724			map = kmap_atomic(page) + offset;
3725		}
3726		if (*map == SWAP_CONT_MAX) {
3727			kunmap_atomic(map);
3728			page = list_next_entry(page, lru);
3729			if (page == head) {
3730				ret = false;	/* add count continuation */
3731				goto out;
3732			}
3733			map = kmap_atomic(page) + offset;
3734init_map:		*map = 0;		/* we didn't zero the page */
3735		}
3736		*map += 1;
3737		kunmap_atomic(map);
3738		while ((page = list_prev_entry(page, lru)) != head) {
3739			map = kmap_atomic(page) + offset;
 
3740			*map = COUNT_CONTINUED;
3741			kunmap_atomic(map);
 
3742		}
3743		ret = true;			/* incremented */
3744
3745	} else {				/* decrementing */
3746		/*
3747		 * Think of how you subtract 1 from 1000
3748		 */
3749		BUG_ON(count != COUNT_CONTINUED);
3750		while (*map == COUNT_CONTINUED) {
3751			kunmap_atomic(map);
3752			page = list_next_entry(page, lru);
3753			BUG_ON(page == head);
3754			map = kmap_atomic(page) + offset;
3755		}
3756		BUG_ON(*map == 0);
3757		*map -= 1;
3758		if (*map == 0)
3759			count = 0;
3760		kunmap_atomic(map);
3761		while ((page = list_prev_entry(page, lru)) != head) {
3762			map = kmap_atomic(page) + offset;
 
3763			*map = SWAP_CONT_MAX | count;
3764			count = COUNT_CONTINUED;
3765			kunmap_atomic(map);
 
3766		}
3767		ret = count == COUNT_CONTINUED;
3768	}
3769out:
3770	spin_unlock(&si->cont_lock);
3771	return ret;
3772}
3773
3774/*
3775 * free_swap_count_continuations - swapoff free all the continuation pages
3776 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3777 */
3778static void free_swap_count_continuations(struct swap_info_struct *si)
3779{
3780	pgoff_t offset;
3781
3782	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3783		struct page *head;
3784		head = vmalloc_to_page(si->swap_map + offset);
3785		if (page_private(head)) {
3786			struct page *page, *next;
3787
3788			list_for_each_entry_safe(page, next, &head->lru, lru) {
3789				list_del(&page->lru);
 
3790				__free_page(page);
3791			}
3792		}
3793	}
3794}
3795
3796#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3797void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3798{
3799	struct swap_info_struct *si, *next;
3800	int nid = page_to_nid(page);
3801
3802	if (!(gfp_mask & __GFP_IO))
3803		return;
3804
3805	if (!blk_cgroup_congested())
3806		return;
3807
3808	/*
3809	 * We've already scheduled a throttle, avoid taking the global swap
3810	 * lock.
3811	 */
3812	if (current->throttle_queue)
3813		return;
3814
3815	spin_lock(&swap_avail_lock);
3816	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3817				  avail_lists[nid]) {
3818		if (si->bdev) {
3819			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3820			break;
3821		}
3822	}
3823	spin_unlock(&swap_avail_lock);
3824}
3825#endif
3826
3827static int __init swapfile_init(void)
3828{
3829	int nid;
3830
3831	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3832					 GFP_KERNEL);
3833	if (!swap_avail_heads) {
3834		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3835		return -ENOMEM;
3836	}
3837
3838	for_each_node(nid)
3839		plist_head_init(&swap_avail_heads[nid]);
3840
3841	return 0;
3842}
3843subsys_initcall(swapfile_init);
v3.1
 
   1/*
   2 *  linux/mm/swapfile.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *  Swap reorganised 29.12.95, Stephen Tweedie
   6 */
   7
   8#include <linux/mm.h>
 
 
   9#include <linux/hugetlb.h>
  10#include <linux/mman.h>
  11#include <linux/slab.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/swap.h>
  14#include <linux/vmalloc.h>
  15#include <linux/pagemap.h>
  16#include <linux/namei.h>
  17#include <linux/shmem_fs.h>
  18#include <linux/blkdev.h>
  19#include <linux/random.h>
  20#include <linux/writeback.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/init.h>
  24#include <linux/module.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/security.h>
  28#include <linux/backing-dev.h>
  29#include <linux/mutex.h>
  30#include <linux/capability.h>
  31#include <linux/syscalls.h>
  32#include <linux/memcontrol.h>
  33#include <linux/poll.h>
  34#include <linux/oom.h>
 
 
 
 
 
  35
  36#include <asm/pgtable.h>
  37#include <asm/tlbflush.h>
  38#include <linux/swapops.h>
  39#include <linux/page_cgroup.h>
  40
  41static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  42				 unsigned char);
  43static void free_swap_count_continuations(struct swap_info_struct *);
  44static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  45
  46static DEFINE_SPINLOCK(swap_lock);
  47static unsigned int nr_swapfiles;
  48long nr_swap_pages;
 
 
 
 
 
 
 
  49long total_swap_pages;
  50static int least_priority;
  51
  52static const char Bad_file[] = "Bad swap file entry ";
  53static const char Unused_file[] = "Unused swap file entry ";
  54static const char Bad_offset[] = "Bad swap offset entry ";
  55static const char Unused_offset[] = "Unused swap offset entry ";
  56
  57static struct swap_list_t swap_list = {-1, -1};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58
  59static struct swap_info_struct *swap_info[MAX_SWAPFILES];
  60
  61static DEFINE_MUTEX(swapon_mutex);
  62
  63static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  64/* Activity counter to indicate that a swapon or swapoff has occurred */
  65static atomic_t proc_poll_event = ATOMIC_INIT(0);
  66
 
 
 
 
 
 
 
 
 
 
 
  67static inline unsigned char swap_count(unsigned char ent)
  68{
  69	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
  70}
  71
 
 
 
 
 
 
 
 
 
 
  72/* returns 1 if swap entry is freed */
  73static int
  74__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
  75{
  76	swp_entry_t entry = swp_entry(si->type, offset);
  77	struct page *page;
  78	int ret = 0;
  79
  80	page = find_get_page(&swapper_space, entry.val);
  81	if (!page)
  82		return 0;
  83	/*
  84	 * This function is called from scan_swap_map() and it's called
  85	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
  86	 * We have to use trylock for avoiding deadlock. This is a special
  87	 * case and you should use try_to_free_swap() with explicit lock_page()
  88	 * in usual operations.
  89	 */
  90	if (trylock_page(page)) {
  91		ret = try_to_free_swap(page);
 
 
 
  92		unlock_page(page);
  93	}
  94	page_cache_release(page);
  95	return ret;
  96}
  97
 
 
 
 
 
 
 
 
 
 
 
 
  98/*
  99 * swapon tell device that all the old swap contents can be discarded,
 100 * to allow the swap device to optimize its wear-levelling.
 101 */
 102static int discard_swap(struct swap_info_struct *si)
 103{
 104	struct swap_extent *se;
 105	sector_t start_block;
 106	sector_t nr_blocks;
 107	int err = 0;
 108
 109	/* Do not discard the swap header page! */
 110	se = &si->first_swap_extent;
 111	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 112	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 113	if (nr_blocks) {
 114		err = blkdev_issue_discard(si->bdev, start_block,
 115				nr_blocks, GFP_KERNEL, 0);
 116		if (err)
 117			return err;
 118		cond_resched();
 119	}
 120
 121	list_for_each_entry(se, &si->first_swap_extent.list, list) {
 122		start_block = se->start_block << (PAGE_SHIFT - 9);
 123		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 124
 125		err = blkdev_issue_discard(si->bdev, start_block,
 126				nr_blocks, GFP_KERNEL, 0);
 127		if (err)
 128			break;
 129
 130		cond_resched();
 131	}
 132	return err;		/* That will often be -EOPNOTSUPP */
 133}
 134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135/*
 136 * swap allocation tell device that a cluster of swap can now be discarded,
 137 * to allow the swap device to optimize its wear-levelling.
 138 */
 139static void discard_swap_cluster(struct swap_info_struct *si,
 140				 pgoff_t start_page, pgoff_t nr_pages)
 141{
 142	struct swap_extent *se = si->curr_swap_extent;
 143	int found_extent = 0;
 144
 145	while (nr_pages) {
 146		struct list_head *lh;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147
 148		if (se->start_page <= start_page &&
 149		    start_page < se->start_page + se->nr_pages) {
 150			pgoff_t offset = start_page - se->start_page;
 151			sector_t start_block = se->start_block + offset;
 152			sector_t nr_blocks = se->nr_pages - offset;
 153
 154			if (nr_blocks > nr_pages)
 155				nr_blocks = nr_pages;
 156			start_page += nr_blocks;
 157			nr_pages -= nr_blocks;
 158
 159			if (!found_extent++)
 160				si->curr_swap_extent = se;
 161
 162			start_block <<= PAGE_SHIFT - 9;
 163			nr_blocks <<= PAGE_SHIFT - 9;
 164			if (blkdev_issue_discard(si->bdev, start_block,
 165				    nr_blocks, GFP_NOIO, 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166				break;
 
 167		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168
 169		lh = se->list.next;
 170		se = list_entry(lh, struct swap_extent, list);
 
 
 
 
 
 
 171	}
 
 172}
 173
 174static int wait_for_discard(void *word)
 
 175{
 176	schedule();
 177	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 178}
 179
 180#define SWAPFILE_CLUSTER	256
 181#define LATENCY_LIMIT		256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182
 183static unsigned long scan_swap_map(struct swap_info_struct *si,
 184				   unsigned char usage)
 
 185{
 
 186	unsigned long offset;
 187	unsigned long scan_base;
 188	unsigned long last_in_cluster = 0;
 189	int latency_ration = LATENCY_LIMIT;
 190	int found_free_cluster = 0;
 
 191
 192	/*
 193	 * We try to cluster swap pages by allocating them sequentially
 194	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 195	 * way, however, we resort to first-free allocation, starting
 196	 * a new cluster.  This prevents us from scattering swap pages
 197	 * all over the entire swap partition, so that we reduce
 198	 * overall disk seek times between swap pages.  -- sct
 199	 * But we do now try to find an empty cluster.  -Andrea
 200	 * And we let swap pages go all over an SSD partition.  Hugh
 201	 */
 202
 203	si->flags += SWP_SCANNING;
 204	scan_base = offset = si->cluster_next;
 
 
 
 
 
 
 
 
 
 205
 206	if (unlikely(!si->cluster_nr--)) {
 
 
 
 
 207		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 208			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 209			goto checks;
 210		}
 211		if (si->flags & SWP_DISCARDABLE) {
 212			/*
 213			 * Start range check on racing allocations, in case
 214			 * they overlap the cluster we eventually decide on
 215			 * (we scan without swap_lock to allow preemption).
 216			 * It's hardly conceivable that cluster_nr could be
 217			 * wrapped during our scan, but don't depend on it.
 218			 */
 219			if (si->lowest_alloc)
 220				goto checks;
 221			si->lowest_alloc = si->max;
 222			si->highest_alloc = 0;
 223		}
 224		spin_unlock(&swap_lock);
 225
 226		/*
 227		 * If seek is expensive, start searching for new cluster from
 228		 * start of partition, to minimize the span of allocated swap.
 229		 * But if seek is cheap, search from our current position, so
 230		 * that swap is allocated from all over the partition: if the
 231		 * Flash Translation Layer only remaps within limited zones,
 232		 * we don't want to wear out the first zone too quickly.
 233		 */
 234		if (!(si->flags & SWP_SOLIDSTATE))
 235			scan_base = offset = si->lowest_bit;
 236		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 237
 238		/* Locate the first empty (unaligned) cluster */
 239		for (; last_in_cluster <= si->highest_bit; offset++) {
 240			if (si->swap_map[offset])
 241				last_in_cluster = offset + SWAPFILE_CLUSTER;
 242			else if (offset == last_in_cluster) {
 243				spin_lock(&swap_lock);
 244				offset -= SWAPFILE_CLUSTER - 1;
 245				si->cluster_next = offset;
 246				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 247				found_free_cluster = 1;
 248				goto checks;
 249			}
 250			if (unlikely(--latency_ration < 0)) {
 251				cond_resched();
 252				latency_ration = LATENCY_LIMIT;
 253			}
 254		}
 255
 256		offset = si->lowest_bit;
 257		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 258
 259		/* Locate the first empty (unaligned) cluster */
 260		for (; last_in_cluster < scan_base; offset++) {
 261			if (si->swap_map[offset])
 262				last_in_cluster = offset + SWAPFILE_CLUSTER;
 263			else if (offset == last_in_cluster) {
 264				spin_lock(&swap_lock);
 265				offset -= SWAPFILE_CLUSTER - 1;
 266				si->cluster_next = offset;
 267				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 268				found_free_cluster = 1;
 269				goto checks;
 270			}
 271			if (unlikely(--latency_ration < 0)) {
 272				cond_resched();
 273				latency_ration = LATENCY_LIMIT;
 274			}
 275		}
 276
 277		offset = scan_base;
 278		spin_lock(&swap_lock);
 279		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 280		si->lowest_alloc = 0;
 281	}
 282
 283checks:
 
 
 
 
 
 
 
 
 
 
 284	if (!(si->flags & SWP_WRITEOK))
 285		goto no_page;
 286	if (!si->highest_bit)
 287		goto no_page;
 288	if (offset > si->highest_bit)
 289		scan_base = offset = si->lowest_bit;
 290
 
 291	/* reuse swap entry of cache-only swap if not busy. */
 292	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 293		int swap_was_freed;
 294		spin_unlock(&swap_lock);
 295		swap_was_freed = __try_to_reclaim_swap(si, offset);
 296		spin_lock(&swap_lock);
 
 297		/* entry was freed successfully, try to use this again */
 298		if (swap_was_freed)
 299			goto checks;
 300		goto scan; /* check next one */
 301	}
 302
 303	if (si->swap_map[offset])
 304		goto scan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305
 306	if (offset == si->lowest_bit)
 307		si->lowest_bit++;
 308	if (offset == si->highest_bit)
 309		si->highest_bit--;
 310	si->inuse_pages++;
 311	if (si->inuse_pages == si->pages) {
 312		si->lowest_bit = si->max;
 313		si->highest_bit = 0;
 314	}
 315	si->swap_map[offset] = usage;
 316	si->cluster_next = offset + 1;
 317	si->flags -= SWP_SCANNING;
 318
 319	if (si->lowest_alloc) {
 320		/*
 321		 * Only set when SWP_DISCARDABLE, and there's a scan
 322		 * for a free cluster in progress or just completed.
 323		 */
 324		if (found_free_cluster) {
 325			/*
 326			 * To optimize wear-levelling, discard the
 327			 * old data of the cluster, taking care not to
 328			 * discard any of its pages that have already
 329			 * been allocated by racing tasks (offset has
 330			 * already stepped over any at the beginning).
 331			 */
 332			if (offset < si->highest_alloc &&
 333			    si->lowest_alloc <= last_in_cluster)
 334				last_in_cluster = si->lowest_alloc - 1;
 335			si->flags |= SWP_DISCARDING;
 336			spin_unlock(&swap_lock);
 337
 338			if (offset < last_in_cluster)
 339				discard_swap_cluster(si, offset,
 340					last_in_cluster - offset + 1);
 341
 342			spin_lock(&swap_lock);
 343			si->lowest_alloc = 0;
 344			si->flags &= ~SWP_DISCARDING;
 345
 346			smp_mb();	/* wake_up_bit advises this */
 347			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
 348
 349		} else if (si->flags & SWP_DISCARDING) {
 350			/*
 351			 * Delay using pages allocated by racing tasks
 352			 * until the whole discard has been issued. We
 353			 * could defer that delay until swap_writepage,
 354			 * but it's easier to keep this self-contained.
 355			 */
 356			spin_unlock(&swap_lock);
 357			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
 358				wait_for_discard, TASK_UNINTERRUPTIBLE);
 359			spin_lock(&swap_lock);
 360		} else {
 361			/*
 362			 * Note pages allocated by racing tasks while
 363			 * scan for a free cluster is in progress, so
 364			 * that its final discard can exclude them.
 365			 */
 366			if (offset < si->lowest_alloc)
 367				si->lowest_alloc = offset;
 368			if (offset > si->highest_alloc)
 369				si->highest_alloc = offset;
 370		}
 371	}
 372	return offset;
 
 
 
 
 373
 374scan:
 375	spin_unlock(&swap_lock);
 376	while (++offset <= si->highest_bit) {
 377		if (!si->swap_map[offset]) {
 378			spin_lock(&swap_lock);
 379			goto checks;
 380		}
 381		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 382			spin_lock(&swap_lock);
 
 383			goto checks;
 384		}
 385		if (unlikely(--latency_ration < 0)) {
 386			cond_resched();
 387			latency_ration = LATENCY_LIMIT;
 
 388		}
 389	}
 390	offset = si->lowest_bit;
 391	while (++offset < scan_base) {
 392		if (!si->swap_map[offset]) {
 393			spin_lock(&swap_lock);
 394			goto checks;
 395		}
 396		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 397			spin_lock(&swap_lock);
 
 398			goto checks;
 399		}
 400		if (unlikely(--latency_ration < 0)) {
 401			cond_resched();
 402			latency_ration = LATENCY_LIMIT;
 
 403		}
 
 404	}
 405	spin_lock(&swap_lock);
 406
 407no_page:
 408	si->flags -= SWP_SCANNING;
 409	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410}
 411
 412swp_entry_t get_swap_page(void)
 413{
 414	struct swap_info_struct *si;
 415	pgoff_t offset;
 416	int type, next;
 417	int wrapped = 0;
 
 
 
 
 418
 419	spin_lock(&swap_lock);
 420	if (nr_swap_pages <= 0)
 421		goto noswap;
 422	nr_swap_pages--;
 423
 424	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
 425		si = swap_info[type];
 426		next = si->next;
 427		if (next < 0 ||
 428		    (!wrapped && si->prio != swap_info[next]->prio)) {
 429			next = swap_list.head;
 430			wrapped++;
 431		}
 432
 433		if (!si->highest_bit)
 434			continue;
 435		if (!(si->flags & SWP_WRITEOK))
 436			continue;
 437
 438		swap_list.next = next;
 439		/* This is called for allocating swap entry for cache */
 440		offset = scan_swap_map(si, SWAP_HAS_CACHE);
 441		if (offset) {
 442			spin_unlock(&swap_lock);
 443			return swp_entry(type, offset);
 444		}
 445		next = swap_list.next;
 446	}
 447
 448	nr_swap_pages++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 449noswap:
 450	spin_unlock(&swap_lock);
 451	return (swp_entry_t) {0};
 452}
 453
 454/* The only caller of this function is now susupend routine */
 455swp_entry_t get_swap_page_of_type(int type)
 456{
 457	struct swap_info_struct *si;
 458	pgoff_t offset;
 459
 460	spin_lock(&swap_lock);
 461	si = swap_info[type];
 462	if (si && (si->flags & SWP_WRITEOK)) {
 463		nr_swap_pages--;
 
 
 464		/* This is called for allocating swap entry, not cache */
 465		offset = scan_swap_map(si, 1);
 466		if (offset) {
 467			spin_unlock(&swap_lock);
 468			return swp_entry(type, offset);
 469		}
 470		nr_swap_pages++;
 471	}
 472	spin_unlock(&swap_lock);
 
 473	return (swp_entry_t) {0};
 474}
 475
 476static struct swap_info_struct *swap_info_get(swp_entry_t entry)
 477{
 478	struct swap_info_struct *p;
 479	unsigned long offset, type;
 480
 481	if (!entry.val)
 482		goto out;
 483	type = swp_type(entry);
 484	if (type >= nr_swapfiles)
 485		goto bad_nofile;
 486	p = swap_info[type];
 487	if (!(p->flags & SWP_USED))
 488		goto bad_device;
 489	offset = swp_offset(entry);
 490	if (offset >= p->max)
 491		goto bad_offset;
 492	if (!p->swap_map[offset])
 493		goto bad_free;
 494	spin_lock(&swap_lock);
 495	return p;
 496
 497bad_free:
 498	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
 499	goto out;
 500bad_offset:
 501	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
 502	goto out;
 503bad_device:
 504	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
 505	goto out;
 506bad_nofile:
 507	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
 508out:
 509	return NULL;
 510}
 511
 512static unsigned char swap_entry_free(struct swap_info_struct *p,
 513				     swp_entry_t entry, unsigned char usage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514{
 515	unsigned long offset = swp_offset(entry);
 516	unsigned char count;
 517	unsigned char has_cache;
 518
 519	count = p->swap_map[offset];
 
 520	has_cache = count & SWAP_HAS_CACHE;
 521	count &= ~SWAP_HAS_CACHE;
 522
 523	if (usage == SWAP_HAS_CACHE) {
 524		VM_BUG_ON(!has_cache);
 525		has_cache = 0;
 526	} else if (count == SWAP_MAP_SHMEM) {
 527		/*
 528		 * Or we could insist on shmem.c using a special
 529		 * swap_shmem_free() and free_shmem_swap_and_cache()...
 530		 */
 531		count = 0;
 532	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
 533		if (count == COUNT_CONTINUED) {
 534			if (swap_count_continued(p, offset, count))
 535				count = SWAP_MAP_MAX | COUNT_CONTINUED;
 536			else
 537				count = SWAP_MAP_MAX;
 538		} else
 539			count--;
 540	}
 541
 542	if (!count)
 543		mem_cgroup_uncharge_swap(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544
 545	usage = count | has_cache;
 546	p->swap_map[offset] = usage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547
 548	/* free if no reference */
 549	if (!usage) {
 550		struct gendisk *disk = p->bdev->bd_disk;
 551		if (offset < p->lowest_bit)
 552			p->lowest_bit = offset;
 553		if (offset > p->highest_bit)
 554			p->highest_bit = offset;
 555		if (swap_list.next >= 0 &&
 556		    p->prio > swap_info[swap_list.next]->prio)
 557			swap_list.next = p->type;
 558		nr_swap_pages++;
 559		p->inuse_pages--;
 560		if ((p->flags & SWP_BLKDEV) &&
 561				disk->fops->swap_slot_free_notify)
 562			disk->fops->swap_slot_free_notify(p->bdev, offset);
 563	}
 564
 565	return usage;
 566}
 567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568/*
 569 * Caller has made sure that the swapdevice corresponding to entry
 570 * is still around or has not been recycled.
 571 */
 572void swap_free(swp_entry_t entry)
 573{
 574	struct swap_info_struct *p;
 575
 576	p = swap_info_get(entry);
 577	if (p) {
 578		swap_entry_free(p, entry, 1);
 579		spin_unlock(&swap_lock);
 580	}
 581}
 582
 583/*
 584 * Called after dropping swapcache to decrease refcnt to swap entries.
 585 */
 586void swapcache_free(swp_entry_t entry, struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587{
 588	struct swap_info_struct *p;
 589	unsigned char count;
 
 
 
 
 
 
 590
 591	p = swap_info_get(entry);
 592	if (p) {
 593		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
 594		if (page)
 595			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
 596		spin_unlock(&swap_lock);
 
 
 
 
 
 
 597	}
 
 
 598}
 599
 600/*
 601 * How many references to page are currently swapped out?
 602 * This does not give an exact answer when swap count is continued,
 603 * but does include the high COUNT_CONTINUED flag to allow for that.
 604 */
 605static inline int page_swapcount(struct page *page)
 606{
 607	int count = 0;
 608	struct swap_info_struct *p;
 
 609	swp_entry_t entry;
 
 610
 611	entry.val = page_private(page);
 612	p = swap_info_get(entry);
 613	if (p) {
 614		count = swap_count(p->swap_map[swp_offset(entry)]);
 615		spin_unlock(&swap_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616	}
 617	return count;
 618}
 619
 620/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621 * We can write to an anon page without COW if there are no other references
 622 * to it.  And as a side-effect, free up its swap: because the old content
 623 * on disk will never be read, and seeking back there to write new content
 624 * later would only waste time away from clustering.
 
 
 
 
 625 */
 626int reuse_swap_page(struct page *page)
 627{
 628	int count;
 629
 630	VM_BUG_ON(!PageLocked(page));
 631	if (unlikely(PageKsm(page)))
 632		return 0;
 633	count = page_mapcount(page);
 634	if (count <= 1 && PageSwapCache(page)) {
 635		count += page_swapcount(page);
 636		if (count == 1 && !PageWriteback(page)) {
 
 
 
 
 
 
 637			delete_from_swap_cache(page);
 638			SetPageDirty(page);
 
 
 
 
 
 
 
 
 
 
 
 639		}
 640	}
 
 641	return count <= 1;
 642}
 643
 644/*
 645 * If swap is getting full, or if there are no more mappings of this page,
 646 * then try_to_free_swap is called to free its swap space.
 647 */
 648int try_to_free_swap(struct page *page)
 649{
 650	VM_BUG_ON(!PageLocked(page));
 651
 652	if (!PageSwapCache(page))
 653		return 0;
 654	if (PageWriteback(page))
 655		return 0;
 656	if (page_swapcount(page))
 657		return 0;
 658
 659	/*
 660	 * Once hibernation has begun to create its image of memory,
 661	 * there's a danger that one of the calls to try_to_free_swap()
 662	 * - most probably a call from __try_to_reclaim_swap() while
 663	 * hibernation is allocating its own swap pages for the image,
 664	 * but conceivably even a call from memory reclaim - will free
 665	 * the swap from a page which has already been recorded in the
 666	 * image as a clean swapcache page, and then reuse its swap for
 667	 * another page of the image.  On waking from hibernation, the
 668	 * original page might be freed under memory pressure, then
 669	 * later read back in from swap, now with the wrong data.
 670	 *
 671	 * Hibernation clears bits from gfp_allowed_mask to prevent
 672	 * memory reclaim from writing to disk, so check that here.
 673	 */
 674	if (!(gfp_allowed_mask & __GFP_IO))
 675		return 0;
 676
 
 677	delete_from_swap_cache(page);
 678	SetPageDirty(page);
 679	return 1;
 680}
 681
 682/*
 683 * Free the swap entry like above, but also try to
 684 * free the page cache entry if it is the last user.
 685 */
 686int free_swap_and_cache(swp_entry_t entry)
 687{
 688	struct swap_info_struct *p;
 689	struct page *page = NULL;
 690
 691	if (non_swap_entry(entry))
 692		return 1;
 693
 694	p = swap_info_get(entry);
 695	if (p) {
 696		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
 697			page = find_get_page(&swapper_space, entry.val);
 698			if (page && !trylock_page(page)) {
 699				page_cache_release(page);
 700				page = NULL;
 701			}
 702		}
 703		spin_unlock(&swap_lock);
 704	}
 705	if (page) {
 706		/*
 707		 * Not mapped elsewhere, or swap space full? Free it!
 708		 * Also recheck PageSwapCache now page is locked (above).
 709		 */
 710		if (PageSwapCache(page) && !PageWriteback(page) &&
 711				(!page_mapped(page) || vm_swap_full())) {
 712			delete_from_swap_cache(page);
 713			SetPageDirty(page);
 714		}
 715		unlock_page(page);
 716		page_cache_release(page);
 717	}
 718	return p != NULL;
 719}
 720
 721#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 722/**
 723 * mem_cgroup_count_swap_user - count the user of a swap entry
 724 * @ent: the swap entry to be checked
 725 * @pagep: the pointer for the swap cache page of the entry to be stored
 726 *
 727 * Returns the number of the user of the swap entry. The number is valid only
 728 * for swaps of anonymous pages.
 729 * If the entry is found on swap cache, the page is stored to pagep with
 730 * refcount of it being incremented.
 731 */
 732int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
 733{
 734	struct page *page;
 735	struct swap_info_struct *p;
 736	int count = 0;
 737
 738	page = find_get_page(&swapper_space, ent.val);
 739	if (page)
 740		count += page_mapcount(page);
 741	p = swap_info_get(ent);
 742	if (p) {
 743		count += swap_count(p->swap_map[swp_offset(ent)]);
 744		spin_unlock(&swap_lock);
 745	}
 746
 747	*pagep = page;
 748	return count;
 749}
 750#endif
 751
 752#ifdef CONFIG_HIBERNATION
 753/*
 754 * Find the swap type that corresponds to given device (if any).
 755 *
 756 * @offset - number of the PAGE_SIZE-sized block of the device, starting
 757 * from 0, in which the swap header is expected to be located.
 758 *
 759 * This is needed for the suspend to disk (aka swsusp).
 760 */
 761int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
 762{
 763	struct block_device *bdev = NULL;
 764	int type;
 765
 766	if (device)
 767		bdev = bdget(device);
 768
 769	spin_lock(&swap_lock);
 770	for (type = 0; type < nr_swapfiles; type++) {
 771		struct swap_info_struct *sis = swap_info[type];
 772
 773		if (!(sis->flags & SWP_WRITEOK))
 774			continue;
 775
 776		if (!bdev) {
 777			if (bdev_p)
 778				*bdev_p = bdgrab(sis->bdev);
 779
 780			spin_unlock(&swap_lock);
 781			return type;
 782		}
 783		if (bdev == sis->bdev) {
 784			struct swap_extent *se = &sis->first_swap_extent;
 785
 786			if (se->start_block == offset) {
 787				if (bdev_p)
 788					*bdev_p = bdgrab(sis->bdev);
 789
 790				spin_unlock(&swap_lock);
 791				bdput(bdev);
 792				return type;
 793			}
 794		}
 795	}
 796	spin_unlock(&swap_lock);
 797	if (bdev)
 798		bdput(bdev);
 799
 800	return -ENODEV;
 801}
 802
 803/*
 804 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
 805 * corresponding to given index in swap_info (swap type).
 806 */
 807sector_t swapdev_block(int type, pgoff_t offset)
 808{
 809	struct block_device *bdev;
 
 810
 811	if ((unsigned int)type >= nr_swapfiles)
 812		return 0;
 813	if (!(swap_info[type]->flags & SWP_WRITEOK))
 814		return 0;
 815	return map_swap_entry(swp_entry(type, offset), &bdev);
 816}
 817
 818/*
 819 * Return either the total number of swap pages of given type, or the number
 820 * of free pages of that type (depending on @free)
 821 *
 822 * This is needed for software suspend
 823 */
 824unsigned int count_swap_pages(int type, int free)
 825{
 826	unsigned int n = 0;
 827
 828	spin_lock(&swap_lock);
 829	if ((unsigned int)type < nr_swapfiles) {
 830		struct swap_info_struct *sis = swap_info[type];
 831
 
 832		if (sis->flags & SWP_WRITEOK) {
 833			n = sis->pages;
 834			if (free)
 835				n -= sis->inuse_pages;
 836		}
 
 837	}
 838	spin_unlock(&swap_lock);
 839	return n;
 840}
 841#endif /* CONFIG_HIBERNATION */
 842
 
 
 
 
 
 843/*
 844 * No need to decide whether this PTE shares the swap entry with others,
 845 * just let do_wp_page work it out if a write is requested later - to
 846 * force COW, vm_page_prot omits write permission from any private vma.
 847 */
 848static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
 849		unsigned long addr, swp_entry_t entry, struct page *page)
 850{
 851	struct mem_cgroup *ptr;
 852	spinlock_t *ptl;
 853	pte_t *pte;
 854	int ret = 1;
 855
 856	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
 857		ret = -ENOMEM;
 858		goto out_nolock;
 859	}
 860
 861	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 862	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
 863		if (ret > 0)
 864			mem_cgroup_cancel_charge_swapin(ptr);
 865		ret = 0;
 866		goto out;
 867	}
 868
 869	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
 870	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
 871	get_page(page);
 872	set_pte_at(vma->vm_mm, addr, pte,
 873		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
 874	page_add_anon_rmap(page, vma, addr);
 875	mem_cgroup_commit_charge_swapin(page, ptr);
 
 
 
 
 876	swap_free(entry);
 877	/*
 878	 * Move the page to the active list so it is not
 879	 * immediately swapped out again after swapon.
 880	 */
 881	activate_page(page);
 882out:
 883	pte_unmap_unlock(pte, ptl);
 884out_nolock:
 
 
 
 885	return ret;
 886}
 887
 888static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 889				unsigned long addr, unsigned long end,
 890				swp_entry_t entry, struct page *page)
 
 891{
 892	pte_t swp_pte = swp_entry_to_pte(entry);
 
 893	pte_t *pte;
 
 
 894	int ret = 0;
 
 895
 896	/*
 897	 * We don't actually need pte lock while scanning for swp_pte: since
 898	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
 899	 * page table while we're scanning; though it could get zapped, and on
 900	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
 901	 * of unmatched parts which look like swp_pte, so unuse_pte must
 902	 * recheck under pte lock.  Scanning without pte lock lets it be
 903	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
 904	 */
 905	pte = pte_offset_map(pmd, addr);
 906	do {
 907		/*
 908		 * swapoff spends a _lot_ of time in this loop!
 909		 * Test inline before going to call unuse_pte.
 910		 */
 911		if (unlikely(pte_same(*pte, swp_pte))) {
 912			pte_unmap(pte);
 913			ret = unuse_pte(vma, pmd, addr, entry, page);
 914			if (ret)
 915				goto out;
 916			pte = pte_offset_map(pmd, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917		}
 
 
 918	} while (pte++, addr += PAGE_SIZE, addr != end);
 919	pte_unmap(pte - 1);
 
 
 920out:
 921	return ret;
 922}
 923
 924static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 925				unsigned long addr, unsigned long end,
 926				swp_entry_t entry, struct page *page)
 
 927{
 928	pmd_t *pmd;
 929	unsigned long next;
 930	int ret;
 931
 932	pmd = pmd_offset(pud, addr);
 933	do {
 
 934		next = pmd_addr_end(addr, end);
 935		if (unlikely(pmd_trans_huge(*pmd)))
 936			continue;
 937		if (pmd_none_or_clear_bad(pmd))
 938			continue;
 939		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
 940		if (ret)
 941			return ret;
 942	} while (pmd++, addr = next, addr != end);
 943	return 0;
 944}
 945
 946static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 947				unsigned long addr, unsigned long end,
 948				swp_entry_t entry, struct page *page)
 
 949{
 950	pud_t *pud;
 951	unsigned long next;
 952	int ret;
 953
 954	pud = pud_offset(pgd, addr);
 955	do {
 956		next = pud_addr_end(addr, end);
 957		if (pud_none_or_clear_bad(pud))
 958			continue;
 959		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
 
 960		if (ret)
 961			return ret;
 962	} while (pud++, addr = next, addr != end);
 963	return 0;
 964}
 965
 966static int unuse_vma(struct vm_area_struct *vma,
 967				swp_entry_t entry, struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968{
 969	pgd_t *pgd;
 970	unsigned long addr, end, next;
 971	int ret;
 972
 973	if (page_anon_vma(page)) {
 974		addr = page_address_in_vma(page, vma);
 975		if (addr == -EFAULT)
 976			return 0;
 977		else
 978			end = addr + PAGE_SIZE;
 979	} else {
 980		addr = vma->vm_start;
 981		end = vma->vm_end;
 982	}
 983
 984	pgd = pgd_offset(vma->vm_mm, addr);
 985	do {
 986		next = pgd_addr_end(addr, end);
 987		if (pgd_none_or_clear_bad(pgd))
 988			continue;
 989		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
 
 990		if (ret)
 991			return ret;
 992	} while (pgd++, addr = next, addr != end);
 993	return 0;
 994}
 995
 996static int unuse_mm(struct mm_struct *mm,
 997				swp_entry_t entry, struct page *page)
 998{
 999	struct vm_area_struct *vma;
1000	int ret = 0;
1001
1002	if (!down_read_trylock(&mm->mmap_sem)) {
1003		/*
1004		 * Activate page so shrink_inactive_list is unlikely to unmap
1005		 * its ptes while lock is dropped, so swapoff can make progress.
1006		 */
1007		activate_page(page);
1008		unlock_page(page);
1009		down_read(&mm->mmap_sem);
1010		lock_page(page);
1011	}
1012	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1013		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1014			break;
 
 
 
 
 
1015	}
1016	up_read(&mm->mmap_sem);
1017	return (ret < 0)? ret: 0;
1018}
1019
1020/*
1021 * Scan swap_map from current position to next entry still in use.
1022 * Recycle to start on reaching the end, returning 0 when empty.
 
1023 */
1024static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1025					unsigned int prev)
1026{
1027	unsigned int max = si->max;
1028	unsigned int i = prev;
1029	unsigned char count;
1030
1031	/*
1032	 * No need for swap_lock here: we're just looking
1033	 * for whether an entry is in use, not modifying it; false
1034	 * hits are okay, and sys_swapoff() has already prevented new
1035	 * allocations from this area (while holding swap_lock).
1036	 */
1037	for (;;) {
1038		if (++i >= max) {
1039			if (!prev) {
1040				i = 0;
1041				break;
1042			}
1043			/*
1044			 * No entries in use at top of swap_map,
1045			 * loop back to start and recheck there.
1046			 */
1047			max = prev + 1;
1048			prev = 0;
1049			i = 1;
1050		}
1051		count = si->swap_map[i];
1052		if (count && swap_count(count) != SWAP_MAP_BAD)
1053			break;
1054	}
 
 
 
 
1055	return i;
1056}
1057
1058/*
1059 * We completely avoid races by reading each swap page in advance,
1060 * and then search for the process using it.  All the necessary
1061 * page table adjustments can then be made atomically.
1062 */
1063static int try_to_unuse(unsigned int type)
 
1064{
 
 
 
 
1065	struct swap_info_struct *si = swap_info[type];
1066	struct mm_struct *start_mm;
1067	unsigned char *swap_map;
1068	unsigned char swcount;
1069	struct page *page;
1070	swp_entry_t entry;
1071	unsigned int i = 0;
1072	int retval = 0;
 
 
1073
1074	/*
1075	 * When searching mms for an entry, a good strategy is to
1076	 * start at the first mm we freed the previous entry from
1077	 * (though actually we don't notice whether we or coincidence
1078	 * freed the entry).  Initialize this start_mm with a hold.
1079	 *
1080	 * A simpler strategy would be to start at the last mm we
1081	 * freed the previous entry from; but that would take less
1082	 * advantage of mmlist ordering, which clusters forked mms
1083	 * together, child after parent.  If we race with dup_mmap(), we
1084	 * prefer to resolve parent before child, lest we miss entries
1085	 * duplicated after we scanned child: using last mm would invert
1086	 * that.
1087	 */
1088	start_mm = &init_mm;
1089	atomic_inc(&init_mm.mm_users);
1090
1091	/*
1092	 * Keep on scanning until all entries have gone.  Usually,
1093	 * one pass through swap_map is enough, but not necessarily:
1094	 * there are races when an instance of an entry might be missed.
1095	 */
1096	while ((i = find_next_to_unuse(si, i)) != 0) {
1097		if (signal_pending(current)) {
1098			retval = -EINTR;
1099			break;
1100		}
1101
1102		/*
1103		 * Get a page for the entry, using the existing swap
1104		 * cache page if there is one.  Otherwise, get a clean
1105		 * page and read the swap into it.
1106		 */
1107		swap_map = &si->swap_map[i];
1108		entry = swp_entry(type, i);
1109		page = read_swap_cache_async(entry,
1110					GFP_HIGHUSER_MOVABLE, NULL, 0);
1111		if (!page) {
1112			/*
1113			 * Either swap_duplicate() failed because entry
1114			 * has been freed independently, and will not be
1115			 * reused since sys_swapoff() already disabled
1116			 * allocation from here, or alloc_page() failed.
1117			 */
1118			if (!*swap_map)
1119				continue;
1120			retval = -ENOMEM;
1121			break;
1122		}
1123
1124		/*
1125		 * Don't hold on to start_mm if it looks like exiting.
1126		 */
1127		if (atomic_read(&start_mm->mm_users) == 1) {
1128			mmput(start_mm);
1129			start_mm = &init_mm;
1130			atomic_inc(&init_mm.mm_users);
1131		}
1132
1133		/*
1134		 * Wait for and lock page.  When do_swap_page races with
1135		 * try_to_unuse, do_swap_page can handle the fault much
1136		 * faster than try_to_unuse can locate the entry.  This
1137		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1138		 * defer to do_swap_page in such a case - in some tests,
1139		 * do_swap_page and try_to_unuse repeatedly compete.
1140		 */
1141		wait_on_page_locked(page);
1142		wait_on_page_writeback(page);
1143		lock_page(page);
1144		wait_on_page_writeback(page);
1145
1146		/*
1147		 * Remove all references to entry.
1148		 */
1149		swcount = *swap_map;
1150		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1151			retval = shmem_unuse(entry, page);
1152			/* page has already been unlocked and released */
1153			if (retval < 0)
1154				break;
1155			continue;
1156		}
1157		if (swap_count(swcount) && start_mm != &init_mm)
1158			retval = unuse_mm(start_mm, entry, page);
 
1159
1160		if (swap_count(*swap_map)) {
1161			int set_start_mm = (*swap_map >= swcount);
1162			struct list_head *p = &start_mm->mmlist;
1163			struct mm_struct *new_start_mm = start_mm;
1164			struct mm_struct *prev_mm = start_mm;
1165			struct mm_struct *mm;
1166
1167			atomic_inc(&new_start_mm->mm_users);
1168			atomic_inc(&prev_mm->mm_users);
1169			spin_lock(&mmlist_lock);
1170			while (swap_count(*swap_map) && !retval &&
1171					(p = p->next) != &start_mm->mmlist) {
1172				mm = list_entry(p, struct mm_struct, mmlist);
1173				if (!atomic_inc_not_zero(&mm->mm_users))
1174					continue;
1175				spin_unlock(&mmlist_lock);
1176				mmput(prev_mm);
1177				prev_mm = mm;
1178
1179				cond_resched();
1180
1181				swcount = *swap_map;
1182				if (!swap_count(swcount)) /* any usage ? */
1183					;
1184				else if (mm == &init_mm)
1185					set_start_mm = 1;
1186				else
1187					retval = unuse_mm(mm, entry, page);
1188
1189				if (set_start_mm && *swap_map < swcount) {
1190					mmput(new_start_mm);
1191					atomic_inc(&mm->mm_users);
1192					new_start_mm = mm;
1193					set_start_mm = 0;
1194				}
1195				spin_lock(&mmlist_lock);
1196			}
1197			spin_unlock(&mmlist_lock);
1198			mmput(prev_mm);
1199			mmput(start_mm);
1200			start_mm = new_start_mm;
1201		}
1202		if (retval) {
1203			unlock_page(page);
1204			page_cache_release(page);
1205			break;
1206		}
1207
1208		/*
1209		 * If a reference remains (rare), we would like to leave
1210		 * the page in the swap cache; but try_to_unmap could
1211		 * then re-duplicate the entry once we drop page lock,
1212		 * so we might loop indefinitely; also, that page could
1213		 * not be swapped out to other storage meanwhile.  So:
1214		 * delete from cache even if there's another reference,
1215		 * after ensuring that the data has been saved to disk -
1216		 * since if the reference remains (rarer), it will be
1217		 * read from disk into another page.  Splitting into two
1218		 * pages would be incorrect if swap supported "shared
1219		 * private" pages, but they are handled by tmpfs files.
1220		 *
1221		 * Given how unuse_vma() targets one particular offset
1222		 * in an anon_vma, once the anon_vma has been determined,
1223		 * this splitting happens to be just what is needed to
1224		 * handle where KSM pages have been swapped out: re-reading
1225		 * is unnecessarily slow, but we can fix that later on.
1226		 */
1227		if (swap_count(*swap_map) &&
1228		     PageDirty(page) && PageSwapCache(page)) {
1229			struct writeback_control wbc = {
1230				.sync_mode = WB_SYNC_NONE,
1231			};
1232
1233			swap_writepage(page, &wbc);
1234			lock_page(page);
1235			wait_on_page_writeback(page);
1236		}
 
 
 
 
 
 
1237
1238		/*
1239		 * It is conceivable that a racing task removed this page from
1240		 * swap cache just before we acquired the page lock at the top,
1241		 * or while we dropped it in unuse_mm().  The page might even
1242		 * be back in swap cache on another swap area: that we must not
1243		 * delete, since it may not have been written out to swap yet.
1244		 */
1245		if (PageSwapCache(page) &&
1246		    likely(page_private(page) == entry.val))
1247			delete_from_swap_cache(page);
1248
1249		/*
1250		 * So we could skip searching mms once swap count went
1251		 * to 1, we did not mark any present ptes as dirty: must
1252		 * mark page dirty so shrink_page_list will preserve it.
1253		 */
1254		SetPageDirty(page);
1255		unlock_page(page);
1256		page_cache_release(page);
1257
1258		/*
1259		 * Make sure that we aren't completely killing
1260		 * interactive performance.
 
1261		 */
1262		cond_resched();
 
1263	}
1264
1265	mmput(start_mm);
1266	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267}
1268
1269/*
1270 * After a successful try_to_unuse, if no swap is now in use, we know
1271 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1272 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1273 * added to the mmlist just after page_duplicate - before would be racy.
1274 */
1275static void drain_mmlist(void)
1276{
1277	struct list_head *p, *next;
1278	unsigned int type;
1279
1280	for (type = 0; type < nr_swapfiles; type++)
1281		if (swap_info[type]->inuse_pages)
1282			return;
1283	spin_lock(&mmlist_lock);
1284	list_for_each_safe(p, next, &init_mm.mmlist)
1285		list_del_init(p);
1286	spin_unlock(&mmlist_lock);
1287}
1288
1289/*
1290 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1291 * corresponds to page offset for the specified swap entry.
1292 * Note that the type of this function is sector_t, but it returns page offset
1293 * into the bdev, not sector offset.
1294 */
1295static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1296{
1297	struct swap_info_struct *sis;
1298	struct swap_extent *start_se;
1299	struct swap_extent *se;
1300	pgoff_t offset;
1301
1302	sis = swap_info[swp_type(entry)];
1303	*bdev = sis->bdev;
1304
1305	offset = swp_offset(entry);
1306	start_se = sis->curr_swap_extent;
1307	se = start_se;
1308
1309	for ( ; ; ) {
1310		struct list_head *lh;
1311
1312		if (se->start_page <= offset &&
1313				offset < (se->start_page + se->nr_pages)) {
1314			return se->start_block + (offset - se->start_page);
1315		}
1316		lh = se->list.next;
1317		se = list_entry(lh, struct swap_extent, list);
1318		sis->curr_swap_extent = se;
1319		BUG_ON(se == start_se);		/* It *must* be present */
1320	}
1321}
1322
1323/*
1324 * Returns the page offset into bdev for the specified page's swap entry.
1325 */
1326sector_t map_swap_page(struct page *page, struct block_device **bdev)
1327{
1328	swp_entry_t entry;
1329	entry.val = page_private(page);
1330	return map_swap_entry(entry, bdev);
1331}
1332
1333/*
1334 * Free all of a swapdev's extent information
1335 */
1336static void destroy_swap_extents(struct swap_info_struct *sis)
1337{
1338	while (!list_empty(&sis->first_swap_extent.list)) {
1339		struct swap_extent *se;
 
1340
1341		se = list_entry(sis->first_swap_extent.list.next,
1342				struct swap_extent, list);
1343		list_del(&se->list);
1344		kfree(se);
1345	}
 
 
 
 
 
 
 
 
 
1346}
1347
1348/*
1349 * Add a block range (and the corresponding page range) into this swapdev's
1350 * extent list.  The extent list is kept sorted in page order.
1351 *
1352 * This function rather assumes that it is called in ascending page order.
1353 */
1354static int
1355add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1356		unsigned long nr_pages, sector_t start_block)
1357{
 
1358	struct swap_extent *se;
1359	struct swap_extent *new_se;
1360	struct list_head *lh;
1361
1362	if (start_page == 0) {
1363		se = &sis->first_swap_extent;
1364		sis->curr_swap_extent = se;
1365		se->start_page = 0;
1366		se->nr_pages = nr_pages;
1367		se->start_block = start_block;
1368		return 1;
1369	} else {
1370		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1371		se = list_entry(lh, struct swap_extent, list);
 
1372		BUG_ON(se->start_page + se->nr_pages != start_page);
1373		if (se->start_block + se->nr_pages == start_block) {
1374			/* Merge it */
1375			se->nr_pages += nr_pages;
1376			return 0;
1377		}
1378	}
1379
1380	/*
1381	 * No merge.  Insert a new extent, preserving ordering.
1382	 */
1383	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1384	if (new_se == NULL)
1385		return -ENOMEM;
1386	new_se->start_page = start_page;
1387	new_se->nr_pages = nr_pages;
1388	new_se->start_block = start_block;
1389
1390	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
 
1391	return 1;
1392}
 
1393
1394/*
1395 * A `swap extent' is a simple thing which maps a contiguous range of pages
1396 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1397 * is built at swapon time and is then used at swap_writepage/swap_readpage
1398 * time for locating where on disk a page belongs.
1399 *
1400 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1401 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1402 * swap files identically.
1403 *
1404 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1405 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1406 * swapfiles are handled *identically* after swapon time.
1407 *
1408 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1409 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1410 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1411 * requirements, they are simply tossed out - we will never use those blocks
1412 * for swapping.
1413 *
1414 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1415 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1416 * which will scribble on the fs.
1417 *
1418 * The amount of disk space which a single swap extent represents varies.
1419 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1420 * extents in the list.  To avoid much list walking, we cache the previous
1421 * search location in `curr_swap_extent', and start new searches from there.
1422 * This is extremely effective.  The average number of iterations in
1423 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1424 */
1425static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1426{
1427	struct inode *inode;
1428	unsigned blocks_per_page;
1429	unsigned long page_no;
1430	unsigned blkbits;
1431	sector_t probe_block;
1432	sector_t last_block;
1433	sector_t lowest_block = -1;
1434	sector_t highest_block = 0;
1435	int nr_extents = 0;
1436	int ret;
1437
1438	inode = sis->swap_file->f_mapping->host;
1439	if (S_ISBLK(inode->i_mode)) {
1440		ret = add_swap_extent(sis, 0, sis->max, 0);
1441		*span = sis->pages;
1442		goto out;
1443	}
1444
1445	blkbits = inode->i_blkbits;
1446	blocks_per_page = PAGE_SIZE >> blkbits;
 
 
 
 
 
 
 
 
 
1447
1448	/*
1449	 * Map all the blocks into the extent list.  This code doesn't try
1450	 * to be very smart.
1451	 */
1452	probe_block = 0;
1453	page_no = 0;
1454	last_block = i_size_read(inode) >> blkbits;
1455	while ((probe_block + blocks_per_page) <= last_block &&
1456			page_no < sis->max) {
1457		unsigned block_in_page;
1458		sector_t first_block;
1459
1460		first_block = bmap(inode, probe_block);
1461		if (first_block == 0)
1462			goto bad_bmap;
1463
1464		/*
1465		 * It must be PAGE_SIZE aligned on-disk
1466		 */
1467		if (first_block & (blocks_per_page - 1)) {
1468			probe_block++;
1469			goto reprobe;
1470		}
1471
1472		for (block_in_page = 1; block_in_page < blocks_per_page;
1473					block_in_page++) {
1474			sector_t block;
1475
1476			block = bmap(inode, probe_block + block_in_page);
1477			if (block == 0)
1478				goto bad_bmap;
1479			if (block != first_block + block_in_page) {
1480				/* Discontiguity */
1481				probe_block++;
1482				goto reprobe;
1483			}
1484		}
1485
1486		first_block >>= (PAGE_SHIFT - blkbits);
1487		if (page_no) {	/* exclude the header page */
1488			if (first_block < lowest_block)
1489				lowest_block = first_block;
1490			if (first_block > highest_block)
1491				highest_block = first_block;
1492		}
1493
1494		/*
1495		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1496		 */
1497		ret = add_swap_extent(sis, page_no, 1, first_block);
1498		if (ret < 0)
1499			goto out;
1500		nr_extents += ret;
1501		page_no++;
1502		probe_block += blocks_per_page;
1503reprobe:
1504		continue;
1505	}
1506	ret = nr_extents;
1507	*span = 1 + highest_block - lowest_block;
1508	if (page_no == 0)
1509		page_no = 1;	/* force Empty message */
1510	sis->max = page_no;
1511	sis->pages = page_no - 1;
1512	sis->highest_bit = page_no - 1;
1513out:
1514	return ret;
1515bad_bmap:
1516	printk(KERN_ERR "swapon: swapfile has holes\n");
1517	ret = -EINVAL;
1518	goto out;
1519}
1520
1521static void enable_swap_info(struct swap_info_struct *p, int prio,
1522				unsigned char *swap_map)
 
1523{
1524	int i, prev;
1525
1526	spin_lock(&swap_lock);
1527	if (prio >= 0)
1528		p->prio = prio;
1529	else
1530		p->prio = --least_priority;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531	p->swap_map = swap_map;
1532	p->flags |= SWP_WRITEOK;
1533	nr_swap_pages += p->pages;
 
 
 
 
 
1534	total_swap_pages += p->pages;
1535
1536	/* insert swap space into swap_list: */
1537	prev = -1;
1538	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1539		if (p->prio >= swap_info[i]->prio)
1540			break;
1541		prev = i;
1542	}
1543	p->next = i;
1544	if (prev < 0)
1545		swap_list.head = swap_list.next = p->type;
1546	else
1547		swap_info[prev]->next = p->type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548	spin_unlock(&swap_lock);
 
1549}
1550
1551SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1552{
1553	struct swap_info_struct *p = NULL;
1554	unsigned char *swap_map;
 
 
1555	struct file *swap_file, *victim;
1556	struct address_space *mapping;
1557	struct inode *inode;
1558	char *pathname;
1559	int oom_score_adj;
1560	int i, type, prev;
1561	int err;
1562
1563	if (!capable(CAP_SYS_ADMIN))
1564		return -EPERM;
1565
 
 
1566	pathname = getname(specialfile);
1567	err = PTR_ERR(pathname);
1568	if (IS_ERR(pathname))
1569		goto out;
1570
1571	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1572	putname(pathname);
1573	err = PTR_ERR(victim);
1574	if (IS_ERR(victim))
1575		goto out;
1576
1577	mapping = victim->f_mapping;
1578	prev = -1;
1579	spin_lock(&swap_lock);
1580	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1581		p = swap_info[type];
1582		if (p->flags & SWP_WRITEOK) {
1583			if (p->swap_file->f_mapping == mapping)
 
1584				break;
 
1585		}
1586		prev = type;
1587	}
1588	if (type < 0) {
1589		err = -EINVAL;
1590		spin_unlock(&swap_lock);
1591		goto out_dput;
1592	}
1593	if (!security_vm_enough_memory(p->pages))
1594		vm_unacct_memory(p->pages);
1595	else {
1596		err = -ENOMEM;
1597		spin_unlock(&swap_lock);
1598		goto out_dput;
1599	}
1600	if (prev < 0)
1601		swap_list.head = p->next;
1602	else
1603		swap_info[prev]->next = p->next;
1604	if (type == swap_list.next) {
1605		/* just pick something that's safe... */
1606		swap_list.next = swap_list.head;
1607	}
1608	if (p->prio < 0) {
1609		for (i = p->next; i >= 0; i = swap_info[i]->next)
1610			swap_info[i]->prio = p->prio--;
 
 
 
 
 
 
 
 
 
1611		least_priority++;
1612	}
1613	nr_swap_pages -= p->pages;
 
1614	total_swap_pages -= p->pages;
1615	p->flags &= ~SWP_WRITEOK;
 
1616	spin_unlock(&swap_lock);
1617
1618	oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1619	err = try_to_unuse(type);
1620	test_set_oom_score_adj(oom_score_adj);
 
 
1621
1622	if (err) {
1623		/*
1624		 * reading p->prio and p->swap_map outside the lock is
1625		 * safe here because only sys_swapon and sys_swapoff
1626		 * change them, and there can be no other sys_swapon or
1627		 * sys_swapoff for this swap_info_struct at this point.
1628		 */
1629		/* re-insert swap space back into swap_list */
1630		enable_swap_info(p, p->prio, p->swap_map);
 
1631		goto out_dput;
1632	}
1633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634	destroy_swap_extents(p);
1635	if (p->flags & SWP_CONTINUED)
1636		free_swap_count_continuations(p);
1637
 
 
 
1638	mutex_lock(&swapon_mutex);
1639	spin_lock(&swap_lock);
 
1640	drain_mmlist();
1641
1642	/* wait for anyone still in scan_swap_map */
1643	p->highest_bit = 0;		/* cuts scans short */
1644	while (p->flags >= SWP_SCANNING) {
 
1645		spin_unlock(&swap_lock);
1646		schedule_timeout_uninterruptible(1);
1647		spin_lock(&swap_lock);
 
1648	}
1649
1650	swap_file = p->swap_file;
 
1651	p->swap_file = NULL;
1652	p->max = 0;
1653	swap_map = p->swap_map;
1654	p->swap_map = NULL;
1655	p->flags = 0;
 
 
 
1656	spin_unlock(&swap_lock);
 
 
1657	mutex_unlock(&swapon_mutex);
 
 
 
 
1658	vfree(swap_map);
1659	/* Destroy swap account informatin */
1660	swap_cgroup_swapoff(type);
 
 
 
1661
1662	inode = mapping->host;
1663	if (S_ISBLK(inode->i_mode)) {
1664		struct block_device *bdev = I_BDEV(inode);
1665		set_blocksize(bdev, p->old_block_size);
 
1666		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1667	} else {
1668		mutex_lock(&inode->i_mutex);
1669		inode->i_flags &= ~S_SWAPFILE;
1670		mutex_unlock(&inode->i_mutex);
1671	}
 
 
 
 
1672	filp_close(swap_file, NULL);
 
 
 
 
 
 
 
 
 
 
1673	err = 0;
1674	atomic_inc(&proc_poll_event);
1675	wake_up_interruptible(&proc_poll_wait);
1676
1677out_dput:
1678	filp_close(victim, NULL);
1679out:
 
1680	return err;
1681}
1682
1683#ifdef CONFIG_PROC_FS
1684static unsigned swaps_poll(struct file *file, poll_table *wait)
1685{
1686	struct seq_file *seq = file->private_data;
1687
1688	poll_wait(file, &proc_poll_wait, wait);
1689
1690	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1691		seq->poll_event = atomic_read(&proc_poll_event);
1692		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1693	}
1694
1695	return POLLIN | POLLRDNORM;
1696}
1697
1698/* iterator */
1699static void *swap_start(struct seq_file *swap, loff_t *pos)
1700{
1701	struct swap_info_struct *si;
1702	int type;
1703	loff_t l = *pos;
1704
1705	mutex_lock(&swapon_mutex);
1706
1707	if (!l)
1708		return SEQ_START_TOKEN;
1709
1710	for (type = 0; type < nr_swapfiles; type++) {
1711		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1712		si = swap_info[type];
1713		if (!(si->flags & SWP_USED) || !si->swap_map)
1714			continue;
1715		if (!--l)
1716			return si;
1717	}
1718
1719	return NULL;
1720}
1721
1722static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1723{
1724	struct swap_info_struct *si = v;
1725	int type;
1726
1727	if (v == SEQ_START_TOKEN)
1728		type = 0;
1729	else
1730		type = si->type + 1;
1731
1732	for (; type < nr_swapfiles; type++) {
1733		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1734		si = swap_info[type];
1735		if (!(si->flags & SWP_USED) || !si->swap_map)
1736			continue;
1737		++*pos;
1738		return si;
1739	}
1740
1741	return NULL;
1742}
1743
1744static void swap_stop(struct seq_file *swap, void *v)
1745{
1746	mutex_unlock(&swapon_mutex);
1747}
1748
1749static int swap_show(struct seq_file *swap, void *v)
1750{
1751	struct swap_info_struct *si = v;
1752	struct file *file;
1753	int len;
 
1754
1755	if (si == SEQ_START_TOKEN) {
1756		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1757		return 0;
1758	}
1759
 
 
 
1760	file = si->swap_file;
1761	len = seq_path(swap, &file->f_path, " \t\n\\");
1762	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1763			len < 40 ? 40 - len : 1, " ",
1764			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1765				"partition" : "file\t",
1766			si->pages << (PAGE_SHIFT - 10),
1767			si->inuse_pages << (PAGE_SHIFT - 10),
1768			si->prio);
1769	return 0;
1770}
1771
1772static const struct seq_operations swaps_op = {
1773	.start =	swap_start,
1774	.next =		swap_next,
1775	.stop =		swap_stop,
1776	.show =		swap_show
1777};
1778
1779static int swaps_open(struct inode *inode, struct file *file)
1780{
1781	struct seq_file *seq;
1782	int ret;
1783
1784	ret = seq_open(file, &swaps_op);
1785	if (ret)
1786		return ret;
1787
1788	seq = file->private_data;
1789	seq->poll_event = atomic_read(&proc_poll_event);
1790	return 0;
1791}
1792
1793static const struct file_operations proc_swaps_operations = {
1794	.open		= swaps_open,
1795	.read		= seq_read,
1796	.llseek		= seq_lseek,
1797	.release	= seq_release,
1798	.poll		= swaps_poll,
 
1799};
1800
1801static int __init procswaps_init(void)
1802{
1803	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1804	return 0;
1805}
1806__initcall(procswaps_init);
1807#endif /* CONFIG_PROC_FS */
1808
1809#ifdef MAX_SWAPFILES_CHECK
1810static int __init max_swapfiles_check(void)
1811{
1812	MAX_SWAPFILES_CHECK();
1813	return 0;
1814}
1815late_initcall(max_swapfiles_check);
1816#endif
1817
1818static struct swap_info_struct *alloc_swap_info(void)
1819{
1820	struct swap_info_struct *p;
1821	unsigned int type;
 
1822
1823	p = kzalloc(sizeof(*p), GFP_KERNEL);
1824	if (!p)
1825		return ERR_PTR(-ENOMEM);
1826
1827	spin_lock(&swap_lock);
1828	for (type = 0; type < nr_swapfiles; type++) {
1829		if (!(swap_info[type]->flags & SWP_USED))
1830			break;
1831	}
1832	if (type >= MAX_SWAPFILES) {
1833		spin_unlock(&swap_lock);
1834		kfree(p);
1835		return ERR_PTR(-EPERM);
1836	}
1837	if (type >= nr_swapfiles) {
1838		p->type = type;
1839		swap_info[type] = p;
1840		/*
1841		 * Write swap_info[type] before nr_swapfiles, in case a
1842		 * racing procfs swap_start() or swap_next() is reading them.
1843		 * (We never shrink nr_swapfiles, we never free this entry.)
1844		 */
1845		smp_wmb();
1846		nr_swapfiles++;
1847	} else {
1848		kfree(p);
1849		p = swap_info[type];
1850		/*
1851		 * Do not memset this entry: a racing procfs swap_next()
1852		 * would be relying on p->type to remain valid.
1853		 */
1854	}
1855	INIT_LIST_HEAD(&p->first_swap_extent.list);
 
 
 
1856	p->flags = SWP_USED;
1857	p->next = -1;
1858	spin_unlock(&swap_lock);
 
 
1859
1860	return p;
1861}
1862
1863static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1864{
1865	int error;
1866
1867	if (S_ISBLK(inode->i_mode)) {
1868		p->bdev = bdgrab(I_BDEV(inode));
1869		error = blkdev_get(p->bdev,
1870				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1871				   sys_swapon);
1872		if (error < 0) {
1873			p->bdev = NULL;
1874			return -EINVAL;
1875		}
1876		p->old_block_size = block_size(p->bdev);
1877		error = set_blocksize(p->bdev, PAGE_SIZE);
1878		if (error < 0)
1879			return error;
 
 
 
 
 
 
 
1880		p->flags |= SWP_BLKDEV;
1881	} else if (S_ISREG(inode->i_mode)) {
1882		p->bdev = inode->i_sb->s_bdev;
1883		mutex_lock(&inode->i_mutex);
1884		if (IS_SWAPFILE(inode))
1885			return -EBUSY;
1886	} else
1887		return -EINVAL;
1888
1889	return 0;
1890}
1891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1892static unsigned long read_swap_header(struct swap_info_struct *p,
1893					union swap_header *swap_header,
1894					struct inode *inode)
1895{
1896	int i;
1897	unsigned long maxpages;
1898	unsigned long swapfilepages;
 
1899
1900	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1901		printk(KERN_ERR "Unable to find swap-space signature\n");
1902		return 0;
1903	}
1904
1905	/* swap partition endianess hack... */
1906	if (swab32(swap_header->info.version) == 1) {
1907		swab32s(&swap_header->info.version);
1908		swab32s(&swap_header->info.last_page);
1909		swab32s(&swap_header->info.nr_badpages);
 
 
1910		for (i = 0; i < swap_header->info.nr_badpages; i++)
1911			swab32s(&swap_header->info.badpages[i]);
1912	}
1913	/* Check the swap header's sub-version */
1914	if (swap_header->info.version != 1) {
1915		printk(KERN_WARNING
1916		       "Unable to handle swap header version %d\n",
1917		       swap_header->info.version);
1918		return 0;
1919	}
1920
1921	p->lowest_bit  = 1;
1922	p->cluster_next = 1;
1923	p->cluster_nr = 0;
1924
1925	/*
1926	 * Find out how many pages are allowed for a single swap
1927	 * device. There are three limiting factors: 1) the number
1928	 * of bits for the swap offset in the swp_entry_t type, and
1929	 * 2) the number of bits in the swap pte as defined by the
1930	 * the different architectures, and 3) the number of free bits
1931	 * in an exceptional radix_tree entry. In order to find the
1932	 * largest possible bit mask, a swap entry with swap type 0
1933	 * and swap offset ~0UL is created, encoded to a swap pte,
1934	 * decoded to a swp_entry_t again, and finally the swap
1935	 * offset is extracted. This will mask all the bits from
1936	 * the initial ~0UL mask that can't be encoded in either
1937	 * the swp_entry_t or the architecture definition of a
1938	 * swap pte.  Then the same is done for a radix_tree entry.
1939	 */
1940	maxpages = swp_offset(pte_to_swp_entry(
1941			swp_entry_to_pte(swp_entry(0, ~0UL))));
1942	maxpages = swp_offset(radix_to_swp_entry(
1943			swp_to_radix_entry(swp_entry(0, maxpages)))) + 1;
1944
1945	if (maxpages > swap_header->info.last_page) {
1946		maxpages = swap_header->info.last_page + 1;
1947		/* p->max is an unsigned int: don't overflow it */
1948		if ((unsigned int)maxpages == 0)
1949			maxpages = UINT_MAX;
1950	}
1951	p->highest_bit = maxpages - 1;
1952
1953	if (!maxpages)
1954		return 0;
1955	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1956	if (swapfilepages && maxpages > swapfilepages) {
1957		printk(KERN_WARNING
1958		       "Swap area shorter than signature indicates\n");
1959		return 0;
1960	}
1961	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1962		return 0;
1963	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1964		return 0;
1965
1966	return maxpages;
1967}
1968
 
 
 
 
 
 
 
1969static int setup_swap_map_and_extents(struct swap_info_struct *p,
1970					union swap_header *swap_header,
1971					unsigned char *swap_map,
 
1972					unsigned long maxpages,
1973					sector_t *span)
1974{
1975	int i;
1976	unsigned int nr_good_pages;
1977	int nr_extents;
 
 
 
1978
1979	nr_good_pages = maxpages - 1;	/* omit header page */
1980
 
 
 
1981	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1982		unsigned int page_nr = swap_header->info.badpages[i];
1983		if (page_nr == 0 || page_nr > swap_header->info.last_page)
1984			return -EINVAL;
1985		if (page_nr < maxpages) {
1986			swap_map[page_nr] = SWAP_MAP_BAD;
1987			nr_good_pages--;
 
 
 
 
 
1988		}
1989	}
1990
 
 
 
 
1991	if (nr_good_pages) {
1992		swap_map[0] = SWAP_MAP_BAD;
 
 
 
 
 
1993		p->max = maxpages;
1994		p->pages = nr_good_pages;
1995		nr_extents = setup_swap_extents(p, span);
1996		if (nr_extents < 0)
1997			return nr_extents;
1998		nr_good_pages = p->pages;
1999	}
2000	if (!nr_good_pages) {
2001		printk(KERN_WARNING "Empty swap-file\n");
2002		return -EINVAL;
2003	}
2004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2005	return nr_extents;
2006}
2007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2008SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2009{
2010	struct swap_info_struct *p;
2011	char *name;
2012	struct file *swap_file = NULL;
2013	struct address_space *mapping;
2014	int i;
2015	int prio;
2016	int error;
2017	union swap_header *swap_header;
2018	int nr_extents;
2019	sector_t span;
2020	unsigned long maxpages;
2021	unsigned char *swap_map = NULL;
 
 
2022	struct page *page = NULL;
2023	struct inode *inode = NULL;
 
 
 
 
2024
2025	if (!capable(CAP_SYS_ADMIN))
2026		return -EPERM;
2027
 
 
 
2028	p = alloc_swap_info();
2029	if (IS_ERR(p))
2030		return PTR_ERR(p);
2031
 
 
2032	name = getname(specialfile);
2033	if (IS_ERR(name)) {
2034		error = PTR_ERR(name);
2035		name = NULL;
2036		goto bad_swap;
2037	}
2038	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2039	if (IS_ERR(swap_file)) {
2040		error = PTR_ERR(swap_file);
2041		swap_file = NULL;
2042		goto bad_swap;
2043	}
2044
2045	p->swap_file = swap_file;
2046	mapping = swap_file->f_mapping;
 
2047
2048	for (i = 0; i < nr_swapfiles; i++) {
2049		struct swap_info_struct *q = swap_info[i];
2050
2051		if (q == p || !q->swap_file)
2052			continue;
2053		if (mapping == q->swap_file->f_mapping) {
2054			error = -EBUSY;
2055			goto bad_swap;
2056		}
2057	}
2058
2059	inode = mapping->host;
2060	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2061	error = claim_swapfile(p, inode);
2062	if (unlikely(error))
2063		goto bad_swap;
2064
 
 
 
 
 
 
2065	/*
2066	 * Read the swap header.
2067	 */
2068	if (!mapping->a_ops->readpage) {
2069		error = -EINVAL;
2070		goto bad_swap;
2071	}
2072	page = read_mapping_page(mapping, 0, swap_file);
2073	if (IS_ERR(page)) {
2074		error = PTR_ERR(page);
2075		goto bad_swap;
2076	}
2077	swap_header = kmap(page);
2078
2079	maxpages = read_swap_header(p, swap_header, inode);
2080	if (unlikely(!maxpages)) {
2081		error = -EINVAL;
2082		goto bad_swap;
2083	}
2084
2085	/* OK, set up the swap map and apply the bad block list */
2086	swap_map = vzalloc(maxpages);
2087	if (!swap_map) {
2088		error = -ENOMEM;
2089		goto bad_swap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090	}
2091
2092	error = swap_cgroup_swapon(p->type, maxpages);
2093	if (error)
2094		goto bad_swap;
2095
2096	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2097		maxpages, &span);
2098	if (unlikely(nr_extents < 0)) {
2099		error = nr_extents;
2100		goto bad_swap;
2101	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2102
2103	if (p->bdev) {
2104		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2105			p->flags |= SWP_SOLIDSTATE;
2106			p->cluster_next = 1 + (random32() % p->highest_bit);
 
 
2107		}
2108		if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2109			p->flags |= SWP_DISCARDABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
2110	}
2111
2112	mutex_lock(&swapon_mutex);
2113	prio = -1;
2114	if (swap_flags & SWAP_FLAG_PREFER)
2115		prio =
2116		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2117	enable_swap_info(p, prio, swap_map);
2118
2119	printk(KERN_INFO "Adding %uk swap on %s.  "
2120			"Priority:%d extents:%d across:%lluk %s%s\n",
2121		p->pages<<(PAGE_SHIFT-10), name, p->prio,
2122		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2123		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2124		(p->flags & SWP_DISCARDABLE) ? "D" : "");
 
 
 
2125
2126	mutex_unlock(&swapon_mutex);
2127	atomic_inc(&proc_poll_event);
2128	wake_up_interruptible(&proc_poll_wait);
2129
2130	if (S_ISREG(inode->i_mode))
2131		inode->i_flags |= S_SWAPFILE;
2132	error = 0;
2133	goto out;
 
 
2134bad_swap:
 
 
 
 
2135	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2136		set_blocksize(p->bdev, p->old_block_size);
2137		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2138	}
 
2139	destroy_swap_extents(p);
2140	swap_cgroup_swapoff(p->type);
2141	spin_lock(&swap_lock);
2142	p->swap_file = NULL;
2143	p->flags = 0;
2144	spin_unlock(&swap_lock);
2145	vfree(swap_map);
2146	if (swap_file) {
2147		if (inode && S_ISREG(inode->i_mode)) {
2148			mutex_unlock(&inode->i_mutex);
2149			inode = NULL;
2150		}
2151		filp_close(swap_file, NULL);
2152	}
2153out:
2154	if (page && !IS_ERR(page)) {
2155		kunmap(page);
2156		page_cache_release(page);
2157	}
2158	if (name)
2159		putname(name);
2160	if (inode && S_ISREG(inode->i_mode))
2161		mutex_unlock(&inode->i_mutex);
 
 
2162	return error;
2163}
2164
2165void si_swapinfo(struct sysinfo *val)
2166{
2167	unsigned int type;
2168	unsigned long nr_to_be_unused = 0;
2169
2170	spin_lock(&swap_lock);
2171	for (type = 0; type < nr_swapfiles; type++) {
2172		struct swap_info_struct *si = swap_info[type];
2173
2174		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2175			nr_to_be_unused += si->inuse_pages;
2176	}
2177	val->freeswap = nr_swap_pages + nr_to_be_unused;
2178	val->totalswap = total_swap_pages + nr_to_be_unused;
2179	spin_unlock(&swap_lock);
2180}
2181
2182/*
2183 * Verify that a swap entry is valid and increment its swap map count.
2184 *
2185 * Returns error code in following case.
2186 * - success -> 0
2187 * - swp_entry is invalid -> EINVAL
2188 * - swp_entry is migration entry -> EINVAL
2189 * - swap-cache reference is requested but there is already one. -> EEXIST
2190 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2191 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2192 */
2193static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2194{
2195	struct swap_info_struct *p;
2196	unsigned long offset, type;
 
2197	unsigned char count;
2198	unsigned char has_cache;
2199	int err = -EINVAL;
2200
2201	if (non_swap_entry(entry))
 
2202		goto out;
2203
2204	type = swp_type(entry);
2205	if (type >= nr_swapfiles)
2206		goto bad_file;
2207	p = swap_info[type];
2208	offset = swp_offset(entry);
 
 
 
2209
2210	spin_lock(&swap_lock);
2211	if (unlikely(offset >= p->max))
 
 
 
 
2212		goto unlock_out;
 
2213
2214	count = p->swap_map[offset];
2215	has_cache = count & SWAP_HAS_CACHE;
2216	count &= ~SWAP_HAS_CACHE;
2217	err = 0;
2218
2219	if (usage == SWAP_HAS_CACHE) {
2220
2221		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2222		if (!has_cache && count)
2223			has_cache = SWAP_HAS_CACHE;
2224		else if (has_cache)		/* someone else added cache */
2225			err = -EEXIST;
2226		else				/* no users remaining */
2227			err = -ENOENT;
2228
2229	} else if (count || has_cache) {
2230
2231		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2232			count += usage;
2233		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2234			err = -EINVAL;
2235		else if (swap_count_continued(p, offset, count))
2236			count = COUNT_CONTINUED;
2237		else
2238			err = -ENOMEM;
2239	} else
2240		err = -ENOENT;			/* unused swap entry */
2241
2242	p->swap_map[offset] = count | has_cache;
2243
2244unlock_out:
2245	spin_unlock(&swap_lock);
2246out:
 
 
2247	return err;
2248
2249bad_file:
2250	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2251	goto out;
2252}
2253
2254/*
2255 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2256 * (in which case its reference count is never incremented).
2257 */
2258void swap_shmem_alloc(swp_entry_t entry)
2259{
2260	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2261}
2262
2263/*
2264 * Increase reference count of swap entry by 1.
2265 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2266 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2267 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2268 * might occur if a page table entry has got corrupted.
2269 */
2270int swap_duplicate(swp_entry_t entry)
2271{
2272	int err = 0;
2273
2274	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2275		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2276	return err;
2277}
2278
2279/*
2280 * @entry: swap entry for which we allocate swap cache.
2281 *
2282 * Called when allocating swap cache for existing swap entry,
2283 * This can return error codes. Returns 0 at success.
2284 * -EBUSY means there is a swap cache.
2285 * Note: return code is different from swap_duplicate().
2286 */
2287int swapcache_prepare(swp_entry_t entry)
2288{
2289	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2290}
2291
 
 
 
 
 
 
 
 
 
 
 
2292/*
2293 * swap_lock prevents swap_map being freed. Don't grab an extra
2294 * reference on the swaphandle, it doesn't matter if it becomes unused.
2295 */
2296int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2297{
2298	struct swap_info_struct *si;
2299	int our_page_cluster = page_cluster;
2300	pgoff_t target, toff;
2301	pgoff_t base, end;
2302	int nr_pages = 0;
2303
2304	if (!our_page_cluster)	/* no readahead */
2305		return 0;
2306
2307	si = swap_info[swp_type(entry)];
2308	target = swp_offset(entry);
2309	base = (target >> our_page_cluster) << our_page_cluster;
2310	end = base + (1 << our_page_cluster);
2311	if (!base)		/* first page is swap header */
2312		base++;
2313
2314	spin_lock(&swap_lock);
2315	if (end > si->max)	/* don't go beyond end of map */
2316		end = si->max;
2317
2318	/* Count contiguous allocated slots above our target */
2319	for (toff = target; ++toff < end; nr_pages++) {
2320		/* Don't read in free or bad pages */
2321		if (!si->swap_map[toff])
2322			break;
2323		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2324			break;
2325	}
2326	/* Count contiguous allocated slots below our target */
2327	for (toff = target; --toff >= base; nr_pages++) {
2328		/* Don't read in free or bad pages */
2329		if (!si->swap_map[toff])
2330			break;
2331		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2332			break;
2333	}
2334	spin_unlock(&swap_lock);
2335
2336	/*
2337	 * Indicate starting offset, and return number of pages to get:
2338	 * if only 1, say 0, since there's then no readahead to be done.
2339	 */
2340	*offset = ++toff;
2341	return nr_pages? ++nr_pages: 0;
2342}
 
2343
2344/*
2345 * add_swap_count_continuation - called when a swap count is duplicated
2346 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2347 * page of the original vmalloc'ed swap_map, to hold the continuation count
2348 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2349 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2350 *
2351 * These continuation pages are seldom referenced: the common paths all work
2352 * on the original swap_map, only referring to a continuation page when the
2353 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2354 *
2355 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2356 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2357 * can be called after dropping locks.
2358 */
2359int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2360{
2361	struct swap_info_struct *si;
 
2362	struct page *head;
2363	struct page *page;
2364	struct page *list_page;
2365	pgoff_t offset;
2366	unsigned char count;
 
2367
2368	/*
2369	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2370	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2371	 */
2372	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2373
2374	si = swap_info_get(entry);
2375	if (!si) {
2376		/*
2377		 * An acceptable race has occurred since the failing
2378		 * __swap_duplicate(): the swap entry has been freed,
2379		 * perhaps even the whole swap_map cleared for swapoff.
2380		 */
2381		goto outer;
2382	}
 
2383
2384	offset = swp_offset(entry);
 
 
 
2385	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2386
2387	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2388		/*
2389		 * The higher the swap count, the more likely it is that tasks
2390		 * will race to add swap count continuation: we need to avoid
2391		 * over-provisioning.
2392		 */
2393		goto out;
2394	}
2395
2396	if (!page) {
2397		spin_unlock(&swap_lock);
2398		return -ENOMEM;
2399	}
2400
2401	/*
2402	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2403	 * no architecture is using highmem pages for kernel pagetables: so it
2404	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2405	 */
2406	head = vmalloc_to_page(si->swap_map + offset);
2407	offset &= ~PAGE_MASK;
2408
 
2409	/*
2410	 * Page allocation does not initialize the page's lru field,
2411	 * but it does always reset its private field.
2412	 */
2413	if (!page_private(head)) {
2414		BUG_ON(count & COUNT_CONTINUED);
2415		INIT_LIST_HEAD(&head->lru);
2416		set_page_private(head, SWP_CONTINUED);
2417		si->flags |= SWP_CONTINUED;
2418	}
2419
2420	list_for_each_entry(list_page, &head->lru, lru) {
2421		unsigned char *map;
2422
2423		/*
2424		 * If the previous map said no continuation, but we've found
2425		 * a continuation page, free our allocation and use this one.
2426		 */
2427		if (!(count & COUNT_CONTINUED))
2428			goto out;
2429
2430		map = kmap_atomic(list_page, KM_USER0) + offset;
2431		count = *map;
2432		kunmap_atomic(map, KM_USER0);
2433
2434		/*
2435		 * If this continuation count now has some space in it,
2436		 * free our allocation and use this one.
2437		 */
2438		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2439			goto out;
2440	}
2441
2442	list_add_tail(&page->lru, &head->lru);
2443	page = NULL;			/* now it's attached, don't free it */
 
 
2444out:
2445	spin_unlock(&swap_lock);
 
 
2446outer:
2447	if (page)
2448		__free_page(page);
2449	return 0;
2450}
2451
2452/*
2453 * swap_count_continued - when the original swap_map count is incremented
2454 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2455 * into, carry if so, or else fail until a new continuation page is allocated;
2456 * when the original swap_map count is decremented from 0 with continuation,
2457 * borrow from the continuation and report whether it still holds more.
2458 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
 
2459 */
2460static bool swap_count_continued(struct swap_info_struct *si,
2461				 pgoff_t offset, unsigned char count)
2462{
2463	struct page *head;
2464	struct page *page;
2465	unsigned char *map;
 
2466
2467	head = vmalloc_to_page(si->swap_map + offset);
2468	if (page_private(head) != SWP_CONTINUED) {
2469		BUG_ON(count & COUNT_CONTINUED);
2470		return false;		/* need to add count continuation */
2471	}
2472
 
2473	offset &= ~PAGE_MASK;
2474	page = list_entry(head->lru.next, struct page, lru);
2475	map = kmap_atomic(page, KM_USER0) + offset;
2476
2477	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2478		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2479
2480	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2481		/*
2482		 * Think of how you add 1 to 999
2483		 */
2484		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2485			kunmap_atomic(map, KM_USER0);
2486			page = list_entry(page->lru.next, struct page, lru);
2487			BUG_ON(page == head);
2488			map = kmap_atomic(page, KM_USER0) + offset;
2489		}
2490		if (*map == SWAP_CONT_MAX) {
2491			kunmap_atomic(map, KM_USER0);
2492			page = list_entry(page->lru.next, struct page, lru);
2493			if (page == head)
2494				return false;	/* add count continuation */
2495			map = kmap_atomic(page, KM_USER0) + offset;
 
 
2496init_map:		*map = 0;		/* we didn't zero the page */
2497		}
2498		*map += 1;
2499		kunmap_atomic(map, KM_USER0);
2500		page = list_entry(page->lru.prev, struct page, lru);
2501		while (page != head) {
2502			map = kmap_atomic(page, KM_USER0) + offset;
2503			*map = COUNT_CONTINUED;
2504			kunmap_atomic(map, KM_USER0);
2505			page = list_entry(page->lru.prev, struct page, lru);
2506		}
2507		return true;			/* incremented */
2508
2509	} else {				/* decrementing */
2510		/*
2511		 * Think of how you subtract 1 from 1000
2512		 */
2513		BUG_ON(count != COUNT_CONTINUED);
2514		while (*map == COUNT_CONTINUED) {
2515			kunmap_atomic(map, KM_USER0);
2516			page = list_entry(page->lru.next, struct page, lru);
2517			BUG_ON(page == head);
2518			map = kmap_atomic(page, KM_USER0) + offset;
2519		}
2520		BUG_ON(*map == 0);
2521		*map -= 1;
2522		if (*map == 0)
2523			count = 0;
2524		kunmap_atomic(map, KM_USER0);
2525		page = list_entry(page->lru.prev, struct page, lru);
2526		while (page != head) {
2527			map = kmap_atomic(page, KM_USER0) + offset;
2528			*map = SWAP_CONT_MAX | count;
2529			count = COUNT_CONTINUED;
2530			kunmap_atomic(map, KM_USER0);
2531			page = list_entry(page->lru.prev, struct page, lru);
2532		}
2533		return count == COUNT_CONTINUED;
2534	}
 
 
 
2535}
2536
2537/*
2538 * free_swap_count_continuations - swapoff free all the continuation pages
2539 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2540 */
2541static void free_swap_count_continuations(struct swap_info_struct *si)
2542{
2543	pgoff_t offset;
2544
2545	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2546		struct page *head;
2547		head = vmalloc_to_page(si->swap_map + offset);
2548		if (page_private(head)) {
2549			struct list_head *this, *next;
2550			list_for_each_safe(this, next, &head->lru) {
2551				struct page *page;
2552				page = list_entry(this, struct page, lru);
2553				list_del(this);
2554				__free_page(page);
2555			}
2556		}
2557	}
2558}