Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swapfile.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 */
   8
 
   9#include <linux/mm.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/task.h>
  12#include <linux/hugetlb.h>
  13#include <linux/mman.h>
  14#include <linux/slab.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/swap.h>
  17#include <linux/vmalloc.h>
  18#include <linux/pagemap.h>
  19#include <linux/namei.h>
  20#include <linux/shmem_fs.h>
  21#include <linux/blkdev.h>
  22#include <linux/random.h>
  23#include <linux/writeback.h>
  24#include <linux/proc_fs.h>
  25#include <linux/seq_file.h>
  26#include <linux/init.h>
  27#include <linux/ksm.h>
  28#include <linux/rmap.h>
  29#include <linux/security.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mutex.h>
  32#include <linux/capability.h>
  33#include <linux/syscalls.h>
  34#include <linux/memcontrol.h>
  35#include <linux/poll.h>
  36#include <linux/oom.h>
  37#include <linux/frontswap.h>
  38#include <linux/swapfile.h>
  39#include <linux/export.h>
  40#include <linux/swap_slots.h>
  41#include <linux/sort.h>
 
 
 
 
  42
  43#include <asm/tlbflush.h>
  44#include <linux/swapops.h>
  45#include <linux/swap_cgroup.h>
 
 
  46
  47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  48				 unsigned char);
  49static void free_swap_count_continuations(struct swap_info_struct *);
  50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  51
  52DEFINE_SPINLOCK(swap_lock);
  53static unsigned int nr_swapfiles;
  54atomic_long_t nr_swap_pages;
  55/*
  56 * Some modules use swappable objects and may try to swap them out under
  57 * memory pressure (via the shrinker). Before doing so, they may wish to
  58 * check to see if any swap space is available.
  59 */
  60EXPORT_SYMBOL_GPL(nr_swap_pages);
  61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  62long total_swap_pages;
  63static int least_priority = -1;
 
 
 
 
  64
  65static const char Bad_file[] = "Bad swap file entry ";
  66static const char Unused_file[] = "Unused swap file entry ";
  67static const char Bad_offset[] = "Bad swap offset entry ";
  68static const char Unused_offset[] = "Unused swap offset entry ";
  69
  70/*
  71 * all active swap_info_structs
  72 * protected with swap_lock, and ordered by priority.
  73 */
  74PLIST_HEAD(swap_active_head);
  75
  76/*
  77 * all available (active, not full) swap_info_structs
  78 * protected with swap_avail_lock, ordered by priority.
  79 * This is used by get_swap_page() instead of swap_active_head
  80 * because swap_active_head includes all swap_info_structs,
  81 * but get_swap_page() doesn't need to look at full ones.
  82 * This uses its own lock instead of swap_lock because when a
  83 * swap_info_struct changes between not-full/full, it needs to
  84 * add/remove itself to/from this list, but the swap_info_struct->lock
  85 * is held and the locking order requires swap_lock to be taken
  86 * before any swap_info_struct->lock.
  87 */
  88static struct plist_head *swap_avail_heads;
  89static DEFINE_SPINLOCK(swap_avail_lock);
  90
  91struct swap_info_struct *swap_info[MAX_SWAPFILES];
  92
  93static DEFINE_MUTEX(swapon_mutex);
  94
  95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  96/* Activity counter to indicate that a swapon or swapoff has occurred */
  97static atomic_t proc_poll_event = ATOMIC_INIT(0);
  98
  99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 100
 101static struct swap_info_struct *swap_type_to_swap_info(int type)
 102{
 103	if (type >= READ_ONCE(nr_swapfiles))
 104		return NULL;
 105
 106	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
 107	return READ_ONCE(swap_info[type]);
 108}
 109
 110static inline unsigned char swap_count(unsigned char ent)
 111{
 112	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 113}
 114
 115/* Reclaim the swap entry anyway if possible */
 116#define TTRS_ANYWAY		0x1
 117/*
 118 * Reclaim the swap entry if there are no more mappings of the
 119 * corresponding page
 120 */
 121#define TTRS_UNMAPPED		0x2
 122/* Reclaim the swap entry if swap is getting full*/
 123#define TTRS_FULL		0x4
 124
 125/* returns 1 if swap entry is freed */
 126static int __try_to_reclaim_swap(struct swap_info_struct *si,
 127				 unsigned long offset, unsigned long flags)
 128{
 129	swp_entry_t entry = swp_entry(si->type, offset);
 130	struct page *page;
 131	int ret = 0;
 132
 133	page = find_get_page(swap_address_space(entry), offset);
 134	if (!page)
 135		return 0;
 136	/*
 137	 * When this function is called from scan_swap_map_slots() and it's
 138	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
 139	 * here. We have to use trylock for avoiding deadlock. This is a special
 140	 * case and you should use try_to_free_swap() with explicit lock_page()
 141	 * in usual operations.
 142	 */
 143	if (trylock_page(page)) {
 144		if ((flags & TTRS_ANYWAY) ||
 145		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
 146		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
 147			ret = try_to_free_swap(page);
 148		unlock_page(page);
 149	}
 150	put_page(page);
 151	return ret;
 152}
 153
 154static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 155{
 156	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 157	return rb_entry(rb, struct swap_extent, rb_node);
 158}
 159
 160static inline struct swap_extent *next_se(struct swap_extent *se)
 161{
 162	struct rb_node *rb = rb_next(&se->rb_node);
 163	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 164}
 165
 166/*
 167 * swapon tell device that all the old swap contents can be discarded,
 168 * to allow the swap device to optimize its wear-levelling.
 169 */
 170static int discard_swap(struct swap_info_struct *si)
 171{
 172	struct swap_extent *se;
 173	sector_t start_block;
 174	sector_t nr_blocks;
 175	int err = 0;
 176
 177	/* Do not discard the swap header page! */
 178	se = first_se(si);
 179	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 180	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 181	if (nr_blocks) {
 182		err = blkdev_issue_discard(si->bdev, start_block,
 183				nr_blocks, GFP_KERNEL, 0);
 184		if (err)
 185			return err;
 186		cond_resched();
 187	}
 188
 189	for (se = next_se(se); se; se = next_se(se)) {
 190		start_block = se->start_block << (PAGE_SHIFT - 9);
 191		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 192
 193		err = blkdev_issue_discard(si->bdev, start_block,
 194				nr_blocks, GFP_KERNEL, 0);
 195		if (err)
 196			break;
 197
 198		cond_resched();
 199	}
 200	return err;		/* That will often be -EOPNOTSUPP */
 201}
 202
 203static struct swap_extent *
 204offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 205{
 206	struct swap_extent *se;
 207	struct rb_node *rb;
 208
 209	rb = sis->swap_extent_root.rb_node;
 210	while (rb) {
 211		se = rb_entry(rb, struct swap_extent, rb_node);
 212		if (offset < se->start_page)
 213			rb = rb->rb_left;
 214		else if (offset >= se->start_page + se->nr_pages)
 215			rb = rb->rb_right;
 216		else
 217			return se;
 218	}
 219	/* It *must* be present */
 220	BUG();
 221}
 222
 
 
 
 
 
 
 
 
 
 
 
 
 
 223/*
 224 * swap allocation tell device that a cluster of swap can now be discarded,
 225 * to allow the swap device to optimize its wear-levelling.
 226 */
 227static void discard_swap_cluster(struct swap_info_struct *si,
 228				 pgoff_t start_page, pgoff_t nr_pages)
 229{
 230	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 231
 232	while (nr_pages) {
 233		pgoff_t offset = start_page - se->start_page;
 234		sector_t start_block = se->start_block + offset;
 235		sector_t nr_blocks = se->nr_pages - offset;
 236
 237		if (nr_blocks > nr_pages)
 238			nr_blocks = nr_pages;
 239		start_page += nr_blocks;
 240		nr_pages -= nr_blocks;
 241
 242		start_block <<= PAGE_SHIFT - 9;
 243		nr_blocks <<= PAGE_SHIFT - 9;
 244		if (blkdev_issue_discard(si->bdev, start_block,
 245					nr_blocks, GFP_NOIO, 0))
 246			break;
 247
 248		se = next_se(se);
 249	}
 250}
 251
 252#ifdef CONFIG_THP_SWAP
 253#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 254
 255#define swap_entry_size(size)	(size)
 256#else
 257#define SWAPFILE_CLUSTER	256
 258
 259/*
 260 * Define swap_entry_size() as constant to let compiler to optimize
 261 * out some code if !CONFIG_THP_SWAP
 262 */
 263#define swap_entry_size(size)	1
 264#endif
 265#define LATENCY_LIMIT		256
 266
 267static inline void cluster_set_flag(struct swap_cluster_info *info,
 268	unsigned int flag)
 269{
 270	info->flags = flag;
 271}
 272
 273static inline unsigned int cluster_count(struct swap_cluster_info *info)
 274{
 275	return info->data;
 276}
 277
 278static inline void cluster_set_count(struct swap_cluster_info *info,
 279				     unsigned int c)
 280{
 281	info->data = c;
 282}
 283
 284static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 285					 unsigned int c, unsigned int f)
 286{
 287	info->flags = f;
 288	info->data = c;
 289}
 290
 291static inline unsigned int cluster_next(struct swap_cluster_info *info)
 292{
 293	return info->data;
 294}
 295
 296static inline void cluster_set_next(struct swap_cluster_info *info,
 297				    unsigned int n)
 298{
 299	info->data = n;
 300}
 301
 302static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 303					 unsigned int n, unsigned int f)
 304{
 305	info->flags = f;
 306	info->data = n;
 307}
 308
 309static inline bool cluster_is_free(struct swap_cluster_info *info)
 310{
 311	return info->flags & CLUSTER_FLAG_FREE;
 312}
 313
 314static inline bool cluster_is_null(struct swap_cluster_info *info)
 315{
 316	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 317}
 318
 319static inline void cluster_set_null(struct swap_cluster_info *info)
 320{
 321	info->flags = CLUSTER_FLAG_NEXT_NULL;
 322	info->data = 0;
 323}
 324
 325static inline bool cluster_is_huge(struct swap_cluster_info *info)
 326{
 327	if (IS_ENABLED(CONFIG_THP_SWAP))
 328		return info->flags & CLUSTER_FLAG_HUGE;
 329	return false;
 330}
 331
 332static inline void cluster_clear_huge(struct swap_cluster_info *info)
 333{
 334	info->flags &= ~CLUSTER_FLAG_HUGE;
 335}
 336
 337static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 338						     unsigned long offset)
 339{
 340	struct swap_cluster_info *ci;
 341
 342	ci = si->cluster_info;
 343	if (ci) {
 344		ci += offset / SWAPFILE_CLUSTER;
 345		spin_lock(&ci->lock);
 346	}
 347	return ci;
 348}
 349
 350static inline void unlock_cluster(struct swap_cluster_info *ci)
 351{
 352	if (ci)
 353		spin_unlock(&ci->lock);
 354}
 355
 356/*
 357 * Determine the locking method in use for this device.  Return
 358 * swap_cluster_info if SSD-style cluster-based locking is in place.
 359 */
 360static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 361		struct swap_info_struct *si, unsigned long offset)
 362{
 363	struct swap_cluster_info *ci;
 364
 365	/* Try to use fine-grained SSD-style locking if available: */
 366	ci = lock_cluster(si, offset);
 367	/* Otherwise, fall back to traditional, coarse locking: */
 368	if (!ci)
 369		spin_lock(&si->lock);
 370
 371	return ci;
 372}
 373
 374static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 375					       struct swap_cluster_info *ci)
 376{
 377	if (ci)
 378		unlock_cluster(ci);
 379	else
 380		spin_unlock(&si->lock);
 381}
 382
 383static inline bool cluster_list_empty(struct swap_cluster_list *list)
 384{
 385	return cluster_is_null(&list->head);
 386}
 387
 388static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 389{
 390	return cluster_next(&list->head);
 391}
 392
 393static void cluster_list_init(struct swap_cluster_list *list)
 394{
 395	cluster_set_null(&list->head);
 396	cluster_set_null(&list->tail);
 397}
 398
 399static void cluster_list_add_tail(struct swap_cluster_list *list,
 400				  struct swap_cluster_info *ci,
 401				  unsigned int idx)
 402{
 403	if (cluster_list_empty(list)) {
 404		cluster_set_next_flag(&list->head, idx, 0);
 405		cluster_set_next_flag(&list->tail, idx, 0);
 406	} else {
 407		struct swap_cluster_info *ci_tail;
 408		unsigned int tail = cluster_next(&list->tail);
 409
 410		/*
 411		 * Nested cluster lock, but both cluster locks are
 412		 * only acquired when we held swap_info_struct->lock
 413		 */
 414		ci_tail = ci + tail;
 415		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 416		cluster_set_next(ci_tail, idx);
 417		spin_unlock(&ci_tail->lock);
 418		cluster_set_next_flag(&list->tail, idx, 0);
 419	}
 420}
 421
 422static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 423					   struct swap_cluster_info *ci)
 424{
 425	unsigned int idx;
 426
 427	idx = cluster_next(&list->head);
 428	if (cluster_next(&list->tail) == idx) {
 429		cluster_set_null(&list->head);
 430		cluster_set_null(&list->tail);
 431	} else
 432		cluster_set_next_flag(&list->head,
 433				      cluster_next(&ci[idx]), 0);
 434
 435	return idx;
 436}
 437
 438/* Add a cluster to discard list and schedule it to do discard */
 439static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 440		unsigned int idx)
 441{
 442	/*
 443	 * If scan_swap_map() can't find a free cluster, it will check
 444	 * si->swap_map directly. To make sure the discarding cluster isn't
 445	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
 446	 * will be cleared after discard
 447	 */
 448	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 449			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 450
 451	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 452
 453	schedule_work(&si->discard_work);
 454}
 455
 456static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 457{
 458	struct swap_cluster_info *ci = si->cluster_info;
 459
 460	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 461	cluster_list_add_tail(&si->free_clusters, ci, idx);
 462}
 463
 464/*
 465 * Doing discard actually. After a cluster discard is finished, the cluster
 466 * will be added to free cluster list. caller should hold si->lock.
 467*/
 468static void swap_do_scheduled_discard(struct swap_info_struct *si)
 469{
 470	struct swap_cluster_info *info, *ci;
 471	unsigned int idx;
 472
 473	info = si->cluster_info;
 474
 475	while (!cluster_list_empty(&si->discard_clusters)) {
 476		idx = cluster_list_del_first(&si->discard_clusters, info);
 477		spin_unlock(&si->lock);
 478
 479		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 480				SWAPFILE_CLUSTER);
 481
 482		spin_lock(&si->lock);
 483		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 484		__free_cluster(si, idx);
 485		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 486				0, SWAPFILE_CLUSTER);
 487		unlock_cluster(ci);
 488	}
 489}
 490
 491static void swap_discard_work(struct work_struct *work)
 492{
 493	struct swap_info_struct *si;
 494
 495	si = container_of(work, struct swap_info_struct, discard_work);
 496
 497	spin_lock(&si->lock);
 498	swap_do_scheduled_discard(si);
 499	spin_unlock(&si->lock);
 500}
 501
 
 
 
 
 
 
 
 
 502static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 503{
 504	struct swap_cluster_info *ci = si->cluster_info;
 505
 506	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 507	cluster_list_del_first(&si->free_clusters, ci);
 508	cluster_set_count_flag(ci + idx, 0, 0);
 509}
 510
 511static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 512{
 513	struct swap_cluster_info *ci = si->cluster_info + idx;
 514
 515	VM_BUG_ON(cluster_count(ci) != 0);
 516	/*
 517	 * If the swap is discardable, prepare discard the cluster
 518	 * instead of free it immediately. The cluster will be freed
 519	 * after discard.
 520	 */
 521	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 522	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 523		swap_cluster_schedule_discard(si, idx);
 524		return;
 525	}
 526
 527	__free_cluster(si, idx);
 528}
 529
 530/*
 531 * The cluster corresponding to page_nr will be used. The cluster will be
 532 * removed from free cluster list and its usage counter will be increased.
 533 */
 534static void inc_cluster_info_page(struct swap_info_struct *p,
 535	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 536{
 537	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 538
 539	if (!cluster_info)
 540		return;
 541	if (cluster_is_free(&cluster_info[idx]))
 542		alloc_cluster(p, idx);
 543
 544	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 545	cluster_set_count(&cluster_info[idx],
 546		cluster_count(&cluster_info[idx]) + 1);
 547}
 548
 549/*
 550 * The cluster corresponding to page_nr decreases one usage. If the usage
 551 * counter becomes 0, which means no page in the cluster is in using, we can
 552 * optionally discard the cluster and add it to free cluster list.
 553 */
 554static void dec_cluster_info_page(struct swap_info_struct *p,
 555	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 556{
 557	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 558
 559	if (!cluster_info)
 560		return;
 561
 562	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 563	cluster_set_count(&cluster_info[idx],
 564		cluster_count(&cluster_info[idx]) - 1);
 565
 566	if (cluster_count(&cluster_info[idx]) == 0)
 567		free_cluster(p, idx);
 568}
 569
 570/*
 571 * It's possible scan_swap_map() uses a free cluster in the middle of free
 572 * cluster list. Avoiding such abuse to avoid list corruption.
 573 */
 574static bool
 575scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 576	unsigned long offset)
 577{
 578	struct percpu_cluster *percpu_cluster;
 579	bool conflict;
 580
 581	offset /= SWAPFILE_CLUSTER;
 582	conflict = !cluster_list_empty(&si->free_clusters) &&
 583		offset != cluster_list_first(&si->free_clusters) &&
 584		cluster_is_free(&si->cluster_info[offset]);
 585
 586	if (!conflict)
 587		return false;
 588
 589	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 590	cluster_set_null(&percpu_cluster->index);
 591	return true;
 592}
 593
 594/*
 595 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 596 * might involve allocating a new cluster for current CPU too.
 597 */
 598static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 599	unsigned long *offset, unsigned long *scan_base)
 600{
 601	struct percpu_cluster *cluster;
 602	struct swap_cluster_info *ci;
 603	unsigned long tmp, max;
 604
 605new_cluster:
 606	cluster = this_cpu_ptr(si->percpu_cluster);
 607	if (cluster_is_null(&cluster->index)) {
 608		if (!cluster_list_empty(&si->free_clusters)) {
 609			cluster->index = si->free_clusters.head;
 610			cluster->next = cluster_next(&cluster->index) *
 611					SWAPFILE_CLUSTER;
 612		} else if (!cluster_list_empty(&si->discard_clusters)) {
 613			/*
 614			 * we don't have free cluster but have some clusters in
 615			 * discarding, do discard now and reclaim them, then
 616			 * reread cluster_next_cpu since we dropped si->lock
 617			 */
 618			swap_do_scheduled_discard(si);
 619			*scan_base = this_cpu_read(*si->cluster_next_cpu);
 620			*offset = *scan_base;
 621			goto new_cluster;
 622		} else
 623			return false;
 624	}
 625
 626	/*
 627	 * Other CPUs can use our cluster if they can't find a free cluster,
 628	 * check if there is still free entry in the cluster
 629	 */
 630	tmp = cluster->next;
 631	max = min_t(unsigned long, si->max,
 632		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 633	if (tmp < max) {
 634		ci = lock_cluster(si, tmp);
 635		while (tmp < max) {
 636			if (!si->swap_map[tmp])
 637				break;
 638			tmp++;
 639		}
 640		unlock_cluster(ci);
 641	}
 642	if (tmp >= max) {
 643		cluster_set_null(&cluster->index);
 644		goto new_cluster;
 645	}
 646	cluster->next = tmp + 1;
 647	*offset = tmp;
 648	*scan_base = tmp;
 649	return true;
 650}
 651
 652static void __del_from_avail_list(struct swap_info_struct *p)
 653{
 654	int nid;
 655
 
 656	for_each_node(nid)
 657		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 658}
 659
 660static void del_from_avail_list(struct swap_info_struct *p)
 661{
 662	spin_lock(&swap_avail_lock);
 663	__del_from_avail_list(p);
 664	spin_unlock(&swap_avail_lock);
 665}
 666
 667static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 668			     unsigned int nr_entries)
 669{
 670	unsigned int end = offset + nr_entries - 1;
 671
 672	if (offset == si->lowest_bit)
 673		si->lowest_bit += nr_entries;
 674	if (end == si->highest_bit)
 675		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
 676	si->inuse_pages += nr_entries;
 677	if (si->inuse_pages == si->pages) {
 678		si->lowest_bit = si->max;
 679		si->highest_bit = 0;
 680		del_from_avail_list(si);
 681	}
 682}
 683
 684static void add_to_avail_list(struct swap_info_struct *p)
 685{
 686	int nid;
 687
 688	spin_lock(&swap_avail_lock);
 689	for_each_node(nid) {
 690		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
 691		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 692	}
 693	spin_unlock(&swap_avail_lock);
 694}
 695
 696static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 697			    unsigned int nr_entries)
 698{
 699	unsigned long begin = offset;
 700	unsigned long end = offset + nr_entries - 1;
 701	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 702
 703	if (offset < si->lowest_bit)
 704		si->lowest_bit = offset;
 705	if (end > si->highest_bit) {
 706		bool was_full = !si->highest_bit;
 707
 708		WRITE_ONCE(si->highest_bit, end);
 709		if (was_full && (si->flags & SWP_WRITEOK))
 710			add_to_avail_list(si);
 711	}
 712	atomic_long_add(nr_entries, &nr_swap_pages);
 713	si->inuse_pages -= nr_entries;
 714	if (si->flags & SWP_BLKDEV)
 715		swap_slot_free_notify =
 716			si->bdev->bd_disk->fops->swap_slot_free_notify;
 717	else
 718		swap_slot_free_notify = NULL;
 719	while (offset <= end) {
 720		frontswap_invalidate_page(si->type, offset);
 
 721		if (swap_slot_free_notify)
 722			swap_slot_free_notify(si->bdev, offset);
 723		offset++;
 724	}
 725	clear_shadow_from_swap_cache(si->type, begin, end);
 726}
 727
 728static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
 729{
 730	unsigned long prev;
 731
 732	if (!(si->flags & SWP_SOLIDSTATE)) {
 733		si->cluster_next = next;
 734		return;
 735	}
 736
 737	prev = this_cpu_read(*si->cluster_next_cpu);
 738	/*
 739	 * Cross the swap address space size aligned trunk, choose
 740	 * another trunk randomly to avoid lock contention on swap
 741	 * address space if possible.
 742	 */
 743	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
 744	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
 745		/* No free swap slots available */
 746		if (si->highest_bit <= si->lowest_bit)
 747			return;
 748		next = si->lowest_bit +
 749			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
 750		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
 751		next = max_t(unsigned int, next, si->lowest_bit);
 752	}
 753	this_cpu_write(*si->cluster_next_cpu, next);
 754}
 755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756static int scan_swap_map_slots(struct swap_info_struct *si,
 757			       unsigned char usage, int nr,
 758			       swp_entry_t slots[])
 759{
 760	struct swap_cluster_info *ci;
 761	unsigned long offset;
 762	unsigned long scan_base;
 763	unsigned long last_in_cluster = 0;
 764	int latency_ration = LATENCY_LIMIT;
 765	int n_ret = 0;
 766	bool scanned_many = false;
 767
 768	/*
 769	 * We try to cluster swap pages by allocating them sequentially
 770	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 771	 * way, however, we resort to first-free allocation, starting
 772	 * a new cluster.  This prevents us from scattering swap pages
 773	 * all over the entire swap partition, so that we reduce
 774	 * overall disk seek times between swap pages.  -- sct
 775	 * But we do now try to find an empty cluster.  -Andrea
 776	 * And we let swap pages go all over an SSD partition.  Hugh
 777	 */
 778
 779	si->flags += SWP_SCANNING;
 780	/*
 781	 * Use percpu scan base for SSD to reduce lock contention on
 782	 * cluster and swap cache.  For HDD, sequential access is more
 783	 * important.
 784	 */
 785	if (si->flags & SWP_SOLIDSTATE)
 786		scan_base = this_cpu_read(*si->cluster_next_cpu);
 787	else
 788		scan_base = si->cluster_next;
 789	offset = scan_base;
 790
 791	/* SSD algorithm */
 792	if (si->cluster_info) {
 793		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 794			goto scan;
 795	} else if (unlikely(!si->cluster_nr--)) {
 796		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 797			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 798			goto checks;
 799		}
 800
 801		spin_unlock(&si->lock);
 802
 803		/*
 804		 * If seek is expensive, start searching for new cluster from
 805		 * start of partition, to minimize the span of allocated swap.
 806		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 807		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 808		 */
 809		scan_base = offset = si->lowest_bit;
 810		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 811
 812		/* Locate the first empty (unaligned) cluster */
 813		for (; last_in_cluster <= si->highest_bit; offset++) {
 814			if (si->swap_map[offset])
 815				last_in_cluster = offset + SWAPFILE_CLUSTER;
 816			else if (offset == last_in_cluster) {
 817				spin_lock(&si->lock);
 818				offset -= SWAPFILE_CLUSTER - 1;
 819				si->cluster_next = offset;
 820				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 821				goto checks;
 822			}
 823			if (unlikely(--latency_ration < 0)) {
 824				cond_resched();
 825				latency_ration = LATENCY_LIMIT;
 826			}
 827		}
 828
 829		offset = scan_base;
 830		spin_lock(&si->lock);
 831		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 832	}
 833
 834checks:
 835	if (si->cluster_info) {
 836		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 837		/* take a break if we already got some slots */
 838			if (n_ret)
 839				goto done;
 840			if (!scan_swap_map_try_ssd_cluster(si, &offset,
 841							&scan_base))
 842				goto scan;
 843		}
 844	}
 845	if (!(si->flags & SWP_WRITEOK))
 846		goto no_page;
 847	if (!si->highest_bit)
 848		goto no_page;
 849	if (offset > si->highest_bit)
 850		scan_base = offset = si->lowest_bit;
 851
 852	ci = lock_cluster(si, offset);
 853	/* reuse swap entry of cache-only swap if not busy. */
 854	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 855		int swap_was_freed;
 856		unlock_cluster(ci);
 857		spin_unlock(&si->lock);
 858		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
 859		spin_lock(&si->lock);
 860		/* entry was freed successfully, try to use this again */
 861		if (swap_was_freed)
 862			goto checks;
 863		goto scan; /* check next one */
 864	}
 865
 866	if (si->swap_map[offset]) {
 867		unlock_cluster(ci);
 868		if (!n_ret)
 869			goto scan;
 870		else
 871			goto done;
 872	}
 873	WRITE_ONCE(si->swap_map[offset], usage);
 874	inc_cluster_info_page(si, si->cluster_info, offset);
 875	unlock_cluster(ci);
 876
 877	swap_range_alloc(si, offset, 1);
 878	slots[n_ret++] = swp_entry(si->type, offset);
 879
 880	/* got enough slots or reach max slots? */
 881	if ((n_ret == nr) || (offset >= si->highest_bit))
 882		goto done;
 883
 884	/* search for next available slot */
 885
 886	/* time to take a break? */
 887	if (unlikely(--latency_ration < 0)) {
 888		if (n_ret)
 889			goto done;
 890		spin_unlock(&si->lock);
 891		cond_resched();
 892		spin_lock(&si->lock);
 893		latency_ration = LATENCY_LIMIT;
 894	}
 895
 896	/* try to get more slots in cluster */
 897	if (si->cluster_info) {
 898		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 899			goto checks;
 900	} else if (si->cluster_nr && !si->swap_map[++offset]) {
 901		/* non-ssd case, still more slots in cluster? */
 902		--si->cluster_nr;
 903		goto checks;
 904	}
 905
 906	/*
 907	 * Even if there's no free clusters available (fragmented),
 908	 * try to scan a little more quickly with lock held unless we
 909	 * have scanned too many slots already.
 910	 */
 911	if (!scanned_many) {
 912		unsigned long scan_limit;
 913
 914		if (offset < scan_base)
 915			scan_limit = scan_base;
 916		else
 917			scan_limit = si->highest_bit;
 918		for (; offset <= scan_limit && --latency_ration > 0;
 919		     offset++) {
 920			if (!si->swap_map[offset])
 921				goto checks;
 922		}
 923	}
 924
 925done:
 926	set_cluster_next(si, offset + 1);
 927	si->flags -= SWP_SCANNING;
 928	return n_ret;
 929
 930scan:
 931	spin_unlock(&si->lock);
 932	while (++offset <= READ_ONCE(si->highest_bit)) {
 933		if (data_race(!si->swap_map[offset])) {
 934			spin_lock(&si->lock);
 935			goto checks;
 936		}
 937		if (vm_swap_full() &&
 938		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
 939			spin_lock(&si->lock);
 940			goto checks;
 941		}
 942		if (unlikely(--latency_ration < 0)) {
 943			cond_resched();
 944			latency_ration = LATENCY_LIMIT;
 945			scanned_many = true;
 946		}
 
 
 947	}
 948	offset = si->lowest_bit;
 949	while (offset < scan_base) {
 950		if (data_race(!si->swap_map[offset])) {
 951			spin_lock(&si->lock);
 952			goto checks;
 953		}
 954		if (vm_swap_full() &&
 955		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
 956			spin_lock(&si->lock);
 957			goto checks;
 958		}
 959		if (unlikely(--latency_ration < 0)) {
 960			cond_resched();
 961			latency_ration = LATENCY_LIMIT;
 962			scanned_many = true;
 963		}
 
 
 964		offset++;
 965	}
 966	spin_lock(&si->lock);
 967
 968no_page:
 969	si->flags -= SWP_SCANNING;
 970	return n_ret;
 971}
 972
 973static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 974{
 975	unsigned long idx;
 976	struct swap_cluster_info *ci;
 977	unsigned long offset, i;
 978	unsigned char *map;
 979
 980	/*
 981	 * Should not even be attempting cluster allocations when huge
 982	 * page swap is disabled.  Warn and fail the allocation.
 983	 */
 984	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
 985		VM_WARN_ON_ONCE(1);
 986		return 0;
 987	}
 988
 989	if (cluster_list_empty(&si->free_clusters))
 990		return 0;
 991
 992	idx = cluster_list_first(&si->free_clusters);
 993	offset = idx * SWAPFILE_CLUSTER;
 994	ci = lock_cluster(si, offset);
 995	alloc_cluster(si, idx);
 996	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
 997
 998	map = si->swap_map + offset;
 999	for (i = 0; i < SWAPFILE_CLUSTER; i++)
1000		map[i] = SWAP_HAS_CACHE;
1001	unlock_cluster(ci);
1002	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1003	*slot = swp_entry(si->type, offset);
1004
1005	return 1;
1006}
1007
1008static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1009{
1010	unsigned long offset = idx * SWAPFILE_CLUSTER;
1011	struct swap_cluster_info *ci;
1012
1013	ci = lock_cluster(si, offset);
1014	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1015	cluster_set_count_flag(ci, 0, 0);
1016	free_cluster(si, idx);
1017	unlock_cluster(ci);
1018	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1019}
1020
1021static unsigned long scan_swap_map(struct swap_info_struct *si,
1022				   unsigned char usage)
1023{
1024	swp_entry_t entry;
1025	int n_ret;
1026
1027	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1028
1029	if (n_ret)
1030		return swp_offset(entry);
1031	else
1032		return 0;
1033
1034}
1035
1036int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1037{
1038	unsigned long size = swap_entry_size(entry_size);
1039	struct swap_info_struct *si, *next;
1040	long avail_pgs;
1041	int n_ret = 0;
1042	int node;
1043
1044	/* Only single cluster request supported */
1045	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1046
 
 
1047	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1048	if (avail_pgs <= 0)
 
1049		goto noswap;
 
1050
1051	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1052
1053	atomic_long_sub(n_goal * size, &nr_swap_pages);
1054
1055	spin_lock(&swap_avail_lock);
1056
1057start_over:
1058	node = numa_node_id();
1059	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1060		/* requeue si to after same-priority siblings */
1061		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1062		spin_unlock(&swap_avail_lock);
1063		spin_lock(&si->lock);
1064		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1065			spin_lock(&swap_avail_lock);
1066			if (plist_node_empty(&si->avail_lists[node])) {
1067				spin_unlock(&si->lock);
1068				goto nextsi;
1069			}
1070			WARN(!si->highest_bit,
1071			     "swap_info %d in list but !highest_bit\n",
1072			     si->type);
1073			WARN(!(si->flags & SWP_WRITEOK),
1074			     "swap_info %d in list but !SWP_WRITEOK\n",
1075			     si->type);
1076			__del_from_avail_list(si);
1077			spin_unlock(&si->lock);
1078			goto nextsi;
1079		}
1080		if (size == SWAPFILE_CLUSTER) {
1081			if (si->flags & SWP_BLKDEV)
1082				n_ret = swap_alloc_cluster(si, swp_entries);
1083		} else
1084			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1085						    n_goal, swp_entries);
1086		spin_unlock(&si->lock);
1087		if (n_ret || size == SWAPFILE_CLUSTER)
1088			goto check_out;
1089		pr_debug("scan_swap_map of si %d failed to find offset\n",
1090			si->type);
1091
1092		spin_lock(&swap_avail_lock);
1093nextsi:
1094		/*
1095		 * if we got here, it's likely that si was almost full before,
1096		 * and since scan_swap_map() can drop the si->lock, multiple
1097		 * callers probably all tried to get a page from the same si
1098		 * and it filled up before we could get one; or, the si filled
1099		 * up between us dropping swap_avail_lock and taking si->lock.
1100		 * Since we dropped the swap_avail_lock, the swap_avail_head
1101		 * list may have been modified; so if next is still in the
1102		 * swap_avail_head list then try it, otherwise start over
1103		 * if we have not gotten any slots.
1104		 */
1105		if (plist_node_empty(&next->avail_lists[node]))
1106			goto start_over;
1107	}
1108
1109	spin_unlock(&swap_avail_lock);
1110
1111check_out:
1112	if (n_ret < n_goal)
1113		atomic_long_add((long)(n_goal - n_ret) * size,
1114				&nr_swap_pages);
1115noswap:
1116	return n_ret;
1117}
1118
1119/* The only caller of this function is now suspend routine */
1120swp_entry_t get_swap_page_of_type(int type)
1121{
1122	struct swap_info_struct *si = swap_type_to_swap_info(type);
1123	pgoff_t offset;
1124
1125	if (!si)
1126		goto fail;
1127
1128	spin_lock(&si->lock);
1129	if (si->flags & SWP_WRITEOK) {
1130		atomic_long_dec(&nr_swap_pages);
1131		/* This is called for allocating swap entry, not cache */
1132		offset = scan_swap_map(si, 1);
1133		if (offset) {
1134			spin_unlock(&si->lock);
1135			return swp_entry(type, offset);
1136		}
1137		atomic_long_inc(&nr_swap_pages);
1138	}
1139	spin_unlock(&si->lock);
1140fail:
1141	return (swp_entry_t) {0};
1142}
1143
1144static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1145{
1146	struct swap_info_struct *p;
1147	unsigned long offset;
1148
1149	if (!entry.val)
1150		goto out;
1151	p = swp_swap_info(entry);
1152	if (!p)
1153		goto bad_nofile;
1154	if (data_race(!(p->flags & SWP_USED)))
1155		goto bad_device;
1156	offset = swp_offset(entry);
1157	if (offset >= p->max)
1158		goto bad_offset;
 
 
1159	return p;
1160
 
 
 
1161bad_offset:
1162	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1163	goto out;
1164bad_device:
1165	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1166	goto out;
1167bad_nofile:
1168	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1169out:
1170	return NULL;
1171}
1172
1173static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1174{
1175	struct swap_info_struct *p;
1176
1177	p = __swap_info_get(entry);
1178	if (!p)
1179		goto out;
1180	if (data_race(!p->swap_map[swp_offset(entry)]))
1181		goto bad_free;
1182	return p;
1183
1184bad_free:
1185	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1186	goto out;
1187out:
1188	return NULL;
1189}
1190
1191static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1192{
1193	struct swap_info_struct *p;
1194
1195	p = _swap_info_get(entry);
1196	if (p)
1197		spin_lock(&p->lock);
1198	return p;
1199}
1200
1201static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1202					struct swap_info_struct *q)
1203{
1204	struct swap_info_struct *p;
1205
1206	p = _swap_info_get(entry);
1207
1208	if (p != q) {
1209		if (q != NULL)
1210			spin_unlock(&q->lock);
1211		if (p != NULL)
1212			spin_lock(&p->lock);
1213	}
1214	return p;
1215}
1216
1217static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1218					      unsigned long offset,
1219					      unsigned char usage)
1220{
1221	unsigned char count;
1222	unsigned char has_cache;
1223
1224	count = p->swap_map[offset];
1225
1226	has_cache = count & SWAP_HAS_CACHE;
1227	count &= ~SWAP_HAS_CACHE;
1228
1229	if (usage == SWAP_HAS_CACHE) {
1230		VM_BUG_ON(!has_cache);
1231		has_cache = 0;
1232	} else if (count == SWAP_MAP_SHMEM) {
1233		/*
1234		 * Or we could insist on shmem.c using a special
1235		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1236		 */
1237		count = 0;
1238	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1239		if (count == COUNT_CONTINUED) {
1240			if (swap_count_continued(p, offset, count))
1241				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1242			else
1243				count = SWAP_MAP_MAX;
1244		} else
1245			count--;
1246	}
1247
1248	usage = count | has_cache;
1249	if (usage)
1250		WRITE_ONCE(p->swap_map[offset], usage);
1251	else
1252		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1253
1254	return usage;
1255}
1256
1257/*
 
 
 
 
 
 
 
1258 * Check whether swap entry is valid in the swap device.  If so,
1259 * return pointer to swap_info_struct, and keep the swap entry valid
1260 * via preventing the swap device from being swapoff, until
1261 * put_swap_device() is called.  Otherwise return NULL.
1262 *
1263 * The entirety of the RCU read critical section must come before the
1264 * return from or after the call to synchronize_rcu() in
1265 * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1266 * true, the si->map, si->cluster_info, etc. must be valid in the
1267 * critical section.
1268 *
1269 * Notice that swapoff or swapoff+swapon can still happen before the
1270 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1271 * in put_swap_device() if there isn't any other way to prevent
1272 * swapoff, such as page lock, page table lock, etc.  The caller must
1273 * be prepared for that.  For example, the following situation is
1274 * possible.
1275 *
1276 *   CPU1				CPU2
1277 *   do_swap_page()
1278 *     ...				swapoff+swapon
1279 *     __read_swap_cache_async()
1280 *       swapcache_prepare()
1281 *         __swap_duplicate()
1282 *           // check swap_map
1283 *     // verify PTE not changed
1284 *
1285 * In __swap_duplicate(), the swap_map need to be checked before
1286 * changing partly because the specified swap entry may be for another
1287 * swap device which has been swapoff.  And in do_swap_page(), after
1288 * the page is read from the swap device, the PTE is verified not
1289 * changed with the page table locked to check whether the swap device
1290 * has been swapoff or swapoff+swapon.
1291 */
1292struct swap_info_struct *get_swap_device(swp_entry_t entry)
1293{
1294	struct swap_info_struct *si;
1295	unsigned long offset;
1296
1297	if (!entry.val)
1298		goto out;
1299	si = swp_swap_info(entry);
1300	if (!si)
1301		goto bad_nofile;
1302
1303	rcu_read_lock();
1304	if (data_race(!(si->flags & SWP_VALID)))
1305		goto unlock_out;
 
 
 
 
 
 
1306	offset = swp_offset(entry);
1307	if (offset >= si->max)
1308		goto unlock_out;
1309
1310	return si;
1311bad_nofile:
1312	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1313out:
1314	return NULL;
1315unlock_out:
1316	rcu_read_unlock();
 
1317	return NULL;
1318}
1319
1320static unsigned char __swap_entry_free(struct swap_info_struct *p,
1321				       swp_entry_t entry)
1322{
1323	struct swap_cluster_info *ci;
1324	unsigned long offset = swp_offset(entry);
1325	unsigned char usage;
1326
1327	ci = lock_cluster_or_swap_info(p, offset);
1328	usage = __swap_entry_free_locked(p, offset, 1);
1329	unlock_cluster_or_swap_info(p, ci);
1330	if (!usage)
1331		free_swap_slot(entry);
1332
1333	return usage;
1334}
1335
1336static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1337{
1338	struct swap_cluster_info *ci;
1339	unsigned long offset = swp_offset(entry);
1340	unsigned char count;
1341
1342	ci = lock_cluster(p, offset);
1343	count = p->swap_map[offset];
1344	VM_BUG_ON(count != SWAP_HAS_CACHE);
1345	p->swap_map[offset] = 0;
1346	dec_cluster_info_page(p, p->cluster_info, offset);
1347	unlock_cluster(ci);
1348
1349	mem_cgroup_uncharge_swap(entry, 1);
1350	swap_range_free(p, offset, 1);
1351}
1352
1353/*
1354 * Caller has made sure that the swap device corresponding to entry
1355 * is still around or has not been recycled.
1356 */
1357void swap_free(swp_entry_t entry)
1358{
1359	struct swap_info_struct *p;
1360
1361	p = _swap_info_get(entry);
1362	if (p)
1363		__swap_entry_free(p, entry);
1364}
1365
1366/*
1367 * Called after dropping swapcache to decrease refcnt to swap entries.
1368 */
1369void put_swap_page(struct page *page, swp_entry_t entry)
1370{
1371	unsigned long offset = swp_offset(entry);
1372	unsigned long idx = offset / SWAPFILE_CLUSTER;
1373	struct swap_cluster_info *ci;
1374	struct swap_info_struct *si;
1375	unsigned char *map;
1376	unsigned int i, free_entries = 0;
1377	unsigned char val;
1378	int size = swap_entry_size(thp_nr_pages(page));
1379
1380	si = _swap_info_get(entry);
1381	if (!si)
1382		return;
1383
1384	ci = lock_cluster_or_swap_info(si, offset);
1385	if (size == SWAPFILE_CLUSTER) {
1386		VM_BUG_ON(!cluster_is_huge(ci));
1387		map = si->swap_map + offset;
1388		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1389			val = map[i];
1390			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1391			if (val == SWAP_HAS_CACHE)
1392				free_entries++;
1393		}
1394		cluster_clear_huge(ci);
1395		if (free_entries == SWAPFILE_CLUSTER) {
1396			unlock_cluster_or_swap_info(si, ci);
1397			spin_lock(&si->lock);
1398			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1399			swap_free_cluster(si, idx);
1400			spin_unlock(&si->lock);
1401			return;
1402		}
1403	}
1404	for (i = 0; i < size; i++, entry.val++) {
1405		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1406			unlock_cluster_or_swap_info(si, ci);
1407			free_swap_slot(entry);
1408			if (i == size - 1)
1409				return;
1410			lock_cluster_or_swap_info(si, offset);
1411		}
1412	}
1413	unlock_cluster_or_swap_info(si, ci);
1414}
1415
1416#ifdef CONFIG_THP_SWAP
1417int split_swap_cluster(swp_entry_t entry)
1418{
1419	struct swap_info_struct *si;
1420	struct swap_cluster_info *ci;
1421	unsigned long offset = swp_offset(entry);
1422
1423	si = _swap_info_get(entry);
1424	if (!si)
1425		return -EBUSY;
1426	ci = lock_cluster(si, offset);
1427	cluster_clear_huge(ci);
1428	unlock_cluster(ci);
1429	return 0;
1430}
1431#endif
1432
1433static int swp_entry_cmp(const void *ent1, const void *ent2)
1434{
1435	const swp_entry_t *e1 = ent1, *e2 = ent2;
1436
1437	return (int)swp_type(*e1) - (int)swp_type(*e2);
1438}
1439
1440void swapcache_free_entries(swp_entry_t *entries, int n)
1441{
1442	struct swap_info_struct *p, *prev;
1443	int i;
1444
1445	if (n <= 0)
1446		return;
1447
1448	prev = NULL;
1449	p = NULL;
1450
1451	/*
1452	 * Sort swap entries by swap device, so each lock is only taken once.
1453	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1454	 * so low that it isn't necessary to optimize further.
1455	 */
1456	if (nr_swapfiles > 1)
1457		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1458	for (i = 0; i < n; ++i) {
1459		p = swap_info_get_cont(entries[i], prev);
1460		if (p)
1461			swap_entry_free(p, entries[i]);
1462		prev = p;
1463	}
1464	if (p)
1465		spin_unlock(&p->lock);
1466}
1467
1468/*
1469 * How many references to page are currently swapped out?
1470 * This does not give an exact answer when swap count is continued,
1471 * but does include the high COUNT_CONTINUED flag to allow for that.
1472 */
1473int page_swapcount(struct page *page)
1474{
1475	int count = 0;
1476	struct swap_info_struct *p;
1477	struct swap_cluster_info *ci;
1478	swp_entry_t entry;
1479	unsigned long offset;
1480
1481	entry.val = page_private(page);
1482	p = _swap_info_get(entry);
1483	if (p) {
1484		offset = swp_offset(entry);
1485		ci = lock_cluster_or_swap_info(p, offset);
1486		count = swap_count(p->swap_map[offset]);
1487		unlock_cluster_or_swap_info(p, ci);
1488	}
1489	return count;
1490}
1491
1492int __swap_count(swp_entry_t entry)
1493{
1494	struct swap_info_struct *si;
1495	pgoff_t offset = swp_offset(entry);
1496	int count = 0;
1497
1498	si = get_swap_device(entry);
1499	if (si) {
1500		count = swap_count(si->swap_map[offset]);
1501		put_swap_device(si);
1502	}
1503	return count;
1504}
1505
1506static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1507{
1508	int count = 0;
1509	pgoff_t offset = swp_offset(entry);
1510	struct swap_cluster_info *ci;
1511
1512	ci = lock_cluster_or_swap_info(si, offset);
1513	count = swap_count(si->swap_map[offset]);
1514	unlock_cluster_or_swap_info(si, ci);
1515	return count;
1516}
1517
1518/*
1519 * How many references to @entry are currently swapped out?
1520 * This does not give an exact answer when swap count is continued,
1521 * but does include the high COUNT_CONTINUED flag to allow for that.
1522 */
1523int __swp_swapcount(swp_entry_t entry)
1524{
1525	int count = 0;
1526	struct swap_info_struct *si;
 
1527
1528	si = get_swap_device(entry);
1529	if (si) {
1530		count = swap_swapcount(si, entry);
1531		put_swap_device(si);
1532	}
1533	return count;
1534}
1535
1536/*
1537 * How many references to @entry are currently swapped out?
1538 * This considers COUNT_CONTINUED so it returns exact answer.
1539 */
1540int swp_swapcount(swp_entry_t entry)
1541{
1542	int count, tmp_count, n;
1543	struct swap_info_struct *p;
1544	struct swap_cluster_info *ci;
1545	struct page *page;
1546	pgoff_t offset;
1547	unsigned char *map;
1548
1549	p = _swap_info_get(entry);
1550	if (!p)
1551		return 0;
1552
1553	offset = swp_offset(entry);
1554
1555	ci = lock_cluster_or_swap_info(p, offset);
1556
1557	count = swap_count(p->swap_map[offset]);
1558	if (!(count & COUNT_CONTINUED))
1559		goto out;
1560
1561	count &= ~COUNT_CONTINUED;
1562	n = SWAP_MAP_MAX + 1;
1563
1564	page = vmalloc_to_page(p->swap_map + offset);
1565	offset &= ~PAGE_MASK;
1566	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1567
1568	do {
1569		page = list_next_entry(page, lru);
1570		map = kmap_atomic(page);
1571		tmp_count = map[offset];
1572		kunmap_atomic(map);
1573
1574		count += (tmp_count & ~COUNT_CONTINUED) * n;
1575		n *= (SWAP_CONT_MAX + 1);
1576	} while (tmp_count & COUNT_CONTINUED);
1577out:
1578	unlock_cluster_or_swap_info(p, ci);
1579	return count;
1580}
1581
1582static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1583					 swp_entry_t entry)
1584{
1585	struct swap_cluster_info *ci;
1586	unsigned char *map = si->swap_map;
1587	unsigned long roffset = swp_offset(entry);
1588	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1589	int i;
1590	bool ret = false;
1591
1592	ci = lock_cluster_or_swap_info(si, offset);
1593	if (!ci || !cluster_is_huge(ci)) {
1594		if (swap_count(map[roffset]))
1595			ret = true;
1596		goto unlock_out;
1597	}
1598	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1599		if (swap_count(map[offset + i])) {
1600			ret = true;
1601			break;
1602		}
1603	}
1604unlock_out:
1605	unlock_cluster_or_swap_info(si, ci);
1606	return ret;
1607}
1608
1609static bool page_swapped(struct page *page)
1610{
1611	swp_entry_t entry;
1612	struct swap_info_struct *si;
1613
1614	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1615		return page_swapcount(page) != 0;
1616
1617	page = compound_head(page);
1618	entry.val = page_private(page);
1619	si = _swap_info_get(entry);
1620	if (si)
1621		return swap_page_trans_huge_swapped(si, entry);
1622	return false;
1623}
1624
1625static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1626					 int *total_swapcount)
1627{
1628	int i, map_swapcount, _total_mapcount, _total_swapcount;
1629	unsigned long offset = 0;
1630	struct swap_info_struct *si;
1631	struct swap_cluster_info *ci = NULL;
1632	unsigned char *map = NULL;
1633	int mapcount, swapcount = 0;
1634
1635	/* hugetlbfs shouldn't call it */
1636	VM_BUG_ON_PAGE(PageHuge(page), page);
1637
1638	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1639		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1640		if (PageSwapCache(page))
1641			swapcount = page_swapcount(page);
1642		if (total_swapcount)
1643			*total_swapcount = swapcount;
1644		return mapcount + swapcount;
1645	}
1646
1647	page = compound_head(page);
1648
1649	_total_mapcount = _total_swapcount = map_swapcount = 0;
1650	if (PageSwapCache(page)) {
1651		swp_entry_t entry;
1652
1653		entry.val = page_private(page);
1654		si = _swap_info_get(entry);
1655		if (si) {
1656			map = si->swap_map;
1657			offset = swp_offset(entry);
1658		}
1659	}
1660	if (map)
1661		ci = lock_cluster(si, offset);
1662	for (i = 0; i < HPAGE_PMD_NR; i++) {
1663		mapcount = atomic_read(&page[i]._mapcount) + 1;
1664		_total_mapcount += mapcount;
1665		if (map) {
1666			swapcount = swap_count(map[offset + i]);
1667			_total_swapcount += swapcount;
1668		}
1669		map_swapcount = max(map_swapcount, mapcount + swapcount);
1670	}
1671	unlock_cluster(ci);
1672	if (PageDoubleMap(page)) {
1673		map_swapcount -= 1;
1674		_total_mapcount -= HPAGE_PMD_NR;
1675	}
1676	mapcount = compound_mapcount(page);
1677	map_swapcount += mapcount;
1678	_total_mapcount += mapcount;
1679	if (total_mapcount)
1680		*total_mapcount = _total_mapcount;
1681	if (total_swapcount)
1682		*total_swapcount = _total_swapcount;
1683
1684	return map_swapcount;
1685}
1686
1687/*
1688 * We can write to an anon page without COW if there are no other references
1689 * to it.  And as a side-effect, free up its swap: because the old content
1690 * on disk will never be read, and seeking back there to write new content
1691 * later would only waste time away from clustering.
 
1692 *
1693 * NOTE: total_map_swapcount should not be relied upon by the caller if
1694 * reuse_swap_page() returns false, but it may be always overwritten
1695 * (see the other implementation for CONFIG_SWAP=n).
1696 */
1697bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1698{
1699	int count, total_mapcount, total_swapcount;
1700
1701	VM_BUG_ON_PAGE(!PageLocked(page), page);
1702	if (unlikely(PageKsm(page)))
 
 
 
1703		return false;
1704	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1705					      &total_swapcount);
1706	if (total_map_swapcount)
1707		*total_map_swapcount = total_mapcount + total_swapcount;
1708	if (count == 1 && PageSwapCache(page) &&
1709	    (likely(!PageTransCompound(page)) ||
1710	     /* The remaining swap count will be freed soon */
1711	     total_swapcount == page_swapcount(page))) {
1712		if (!PageWriteback(page)) {
1713			page = compound_head(page);
1714			delete_from_swap_cache(page);
1715			SetPageDirty(page);
1716		} else {
1717			swp_entry_t entry;
1718			struct swap_info_struct *p;
1719
1720			entry.val = page_private(page);
1721			p = swap_info_get(entry);
1722			if (p->flags & SWP_STABLE_WRITES) {
1723				spin_unlock(&p->lock);
1724				return false;
1725			}
1726			spin_unlock(&p->lock);
1727		}
1728	}
1729
1730	return count <= 1;
1731}
1732
1733/*
1734 * If swap is getting full, or if there are no more mappings of this page,
1735 * then try_to_free_swap is called to free its swap space.
1736 */
1737int try_to_free_swap(struct page *page)
1738{
1739	VM_BUG_ON_PAGE(!PageLocked(page), page);
1740
1741	if (!PageSwapCache(page))
1742		return 0;
1743	if (PageWriteback(page))
1744		return 0;
1745	if (page_swapped(page))
1746		return 0;
1747
1748	/*
1749	 * Once hibernation has begun to create its image of memory,
1750	 * there's a danger that one of the calls to try_to_free_swap()
1751	 * - most probably a call from __try_to_reclaim_swap() while
1752	 * hibernation is allocating its own swap pages for the image,
1753	 * but conceivably even a call from memory reclaim - will free
1754	 * the swap from a page which has already been recorded in the
1755	 * image as a clean swapcache page, and then reuse its swap for
1756	 * another page of the image.  On waking from hibernation, the
1757	 * original page might be freed under memory pressure, then
1758	 * later read back in from swap, now with the wrong data.
1759	 *
1760	 * Hibernation suspends storage while it is writing the image
1761	 * to disk so check that here.
1762	 */
1763	if (pm_suspended_storage())
1764		return 0;
1765
1766	page = compound_head(page);
1767	delete_from_swap_cache(page);
1768	SetPageDirty(page);
1769	return 1;
1770}
1771
1772/*
1773 * Free the swap entry like above, but also try to
1774 * free the page cache entry if it is the last user.
1775 */
1776int free_swap_and_cache(swp_entry_t entry)
1777{
1778	struct swap_info_struct *p;
1779	unsigned char count;
1780
1781	if (non_swap_entry(entry))
1782		return 1;
1783
1784	p = _swap_info_get(entry);
1785	if (p) {
1786		count = __swap_entry_free(p, entry);
1787		if (count == SWAP_HAS_CACHE &&
1788		    !swap_page_trans_huge_swapped(p, entry))
1789			__try_to_reclaim_swap(p, swp_offset(entry),
1790					      TTRS_UNMAPPED | TTRS_FULL);
1791	}
1792	return p != NULL;
1793}
1794
1795#ifdef CONFIG_HIBERNATION
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796/*
1797 * Find the swap type that corresponds to given device (if any).
1798 *
1799 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1800 * from 0, in which the swap header is expected to be located.
1801 *
1802 * This is needed for the suspend to disk (aka swsusp).
1803 */
1804int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1805{
1806	struct block_device *bdev = NULL;
1807	int type;
1808
1809	if (device)
1810		bdev = bdget(device);
1811
1812	spin_lock(&swap_lock);
1813	for (type = 0; type < nr_swapfiles; type++) {
1814		struct swap_info_struct *sis = swap_info[type];
1815
1816		if (!(sis->flags & SWP_WRITEOK))
1817			continue;
1818
1819		if (!bdev) {
1820			if (bdev_p)
1821				*bdev_p = bdgrab(sis->bdev);
1822
1823			spin_unlock(&swap_lock);
1824			return type;
1825		}
1826		if (bdev == sis->bdev) {
1827			struct swap_extent *se = first_se(sis);
1828
1829			if (se->start_block == offset) {
1830				if (bdev_p)
1831					*bdev_p = bdgrab(sis->bdev);
1832
1833				spin_unlock(&swap_lock);
1834				bdput(bdev);
1835				return type;
1836			}
1837		}
1838	}
1839	spin_unlock(&swap_lock);
1840	if (bdev)
1841		bdput(bdev);
1842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1843	return -ENODEV;
1844}
1845
1846/*
1847 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1848 * corresponding to given index in swap_info (swap type).
1849 */
1850sector_t swapdev_block(int type, pgoff_t offset)
1851{
1852	struct block_device *bdev;
1853	struct swap_info_struct *si = swap_type_to_swap_info(type);
 
1854
1855	if (!si || !(si->flags & SWP_WRITEOK))
1856		return 0;
1857	return map_swap_entry(swp_entry(type, offset), &bdev);
 
1858}
1859
1860/*
1861 * Return either the total number of swap pages of given type, or the number
1862 * of free pages of that type (depending on @free)
1863 *
1864 * This is needed for software suspend
1865 */
1866unsigned int count_swap_pages(int type, int free)
1867{
1868	unsigned int n = 0;
1869
1870	spin_lock(&swap_lock);
1871	if ((unsigned int)type < nr_swapfiles) {
1872		struct swap_info_struct *sis = swap_info[type];
1873
1874		spin_lock(&sis->lock);
1875		if (sis->flags & SWP_WRITEOK) {
1876			n = sis->pages;
1877			if (free)
1878				n -= sis->inuse_pages;
1879		}
1880		spin_unlock(&sis->lock);
1881	}
1882	spin_unlock(&swap_lock);
1883	return n;
1884}
1885#endif /* CONFIG_HIBERNATION */
1886
1887static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1888{
1889	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1890}
1891
1892/*
1893 * No need to decide whether this PTE shares the swap entry with others,
1894 * just let do_wp_page work it out if a write is requested later - to
1895 * force COW, vm_page_prot omits write permission from any private vma.
1896 */
1897static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1898		unsigned long addr, swp_entry_t entry, struct page *page)
1899{
1900	struct page *swapcache;
 
1901	spinlock_t *ptl;
1902	pte_t *pte;
 
1903	int ret = 1;
1904
1905	swapcache = page;
1906	page = ksm_might_need_to_copy(page, vma, addr);
1907	if (unlikely(!page))
1908		return -ENOMEM;
 
 
 
 
 
 
 
 
1909
1910	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1911	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
 
1912		ret = 0;
1913		goto out;
1914	}
1915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1916	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1917	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1918	get_page(page);
1919	set_pte_at(vma->vm_mm, addr, pte,
1920		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1921	if (page == swapcache) {
1922		page_add_anon_rmap(page, vma, addr, false);
 
 
 
 
 
 
 
 
 
1923	} else { /* ksm created a completely new copy */
1924		page_add_new_anon_rmap(page, vma, addr, false);
1925		lru_cache_add_inactive_or_unevictable(page, vma);
1926	}
 
 
 
 
 
 
 
1927	swap_free(entry);
1928	/*
1929	 * Move the page to the active list so it is not
1930	 * immediately swapped out again after swapon.
1931	 */
1932	activate_page(page);
1933out:
1934	pte_unmap_unlock(pte, ptl);
1935	if (page != swapcache) {
1936		unlock_page(page);
1937		put_page(page);
 
1938	}
1939	return ret;
1940}
1941
1942static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1943			unsigned long addr, unsigned long end,
1944			unsigned int type, bool frontswap,
1945			unsigned long *fs_pages_to_unuse)
1946{
1947	struct page *page;
1948	swp_entry_t entry;
1949	pte_t *pte;
1950	struct swap_info_struct *si;
1951	unsigned long offset;
1952	int ret = 0;
1953	volatile unsigned char *swap_map;
1954
1955	si = swap_info[type];
1956	pte = pte_offset_map(pmd, addr);
1957	do {
1958		struct vm_fault vmf;
 
 
 
 
 
1959
1960		if (!is_swap_pte(*pte))
 
 
 
 
 
 
 
 
1961			continue;
1962
1963		entry = pte_to_swp_entry(*pte);
1964		if (swp_type(entry) != type)
1965			continue;
1966
1967		offset = swp_offset(entry);
1968		if (frontswap && !frontswap_test(si, offset))
1969			continue;
1970
1971		pte_unmap(pte);
1972		swap_map = &si->swap_map[offset];
1973		page = lookup_swap_cache(entry, vma, addr);
1974		if (!page) {
1975			vmf.vma = vma;
1976			vmf.address = addr;
1977			vmf.pmd = pmd;
 
 
 
 
 
 
1978			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1979						&vmf);
 
 
1980		}
1981		if (!page) {
1982			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1983				goto try_next;
 
1984			return -ENOMEM;
1985		}
1986
1987		lock_page(page);
1988		wait_on_page_writeback(page);
1989		ret = unuse_pte(vma, pmd, addr, entry, page);
1990		if (ret < 0) {
1991			unlock_page(page);
1992			put_page(page);
1993			goto out;
1994		}
1995
1996		try_to_free_swap(page);
1997		unlock_page(page);
1998		put_page(page);
 
1999
2000		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2001			ret = FRONTSWAP_PAGES_UNUSED;
2002			goto out;
2003		}
2004try_next:
2005		pte = pte_offset_map(pmd, addr);
2006	} while (pte++, addr += PAGE_SIZE, addr != end);
2007	pte_unmap(pte - 1);
2008
2009	ret = 0;
2010out:
2011	return ret;
2012}
2013
2014static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2015				unsigned long addr, unsigned long end,
2016				unsigned int type, bool frontswap,
2017				unsigned long *fs_pages_to_unuse)
2018{
2019	pmd_t *pmd;
2020	unsigned long next;
2021	int ret;
2022
2023	pmd = pmd_offset(pud, addr);
2024	do {
2025		cond_resched();
2026		next = pmd_addr_end(addr, end);
2027		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2028			continue;
2029		ret = unuse_pte_range(vma, pmd, addr, next, type,
2030				      frontswap, fs_pages_to_unuse);
2031		if (ret)
2032			return ret;
2033	} while (pmd++, addr = next, addr != end);
2034	return 0;
2035}
2036
2037static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2038				unsigned long addr, unsigned long end,
2039				unsigned int type, bool frontswap,
2040				unsigned long *fs_pages_to_unuse)
2041{
2042	pud_t *pud;
2043	unsigned long next;
2044	int ret;
2045
2046	pud = pud_offset(p4d, addr);
2047	do {
2048		next = pud_addr_end(addr, end);
2049		if (pud_none_or_clear_bad(pud))
2050			continue;
2051		ret = unuse_pmd_range(vma, pud, addr, next, type,
2052				      frontswap, fs_pages_to_unuse);
2053		if (ret)
2054			return ret;
2055	} while (pud++, addr = next, addr != end);
2056	return 0;
2057}
2058
2059static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2060				unsigned long addr, unsigned long end,
2061				unsigned int type, bool frontswap,
2062				unsigned long *fs_pages_to_unuse)
2063{
2064	p4d_t *p4d;
2065	unsigned long next;
2066	int ret;
2067
2068	p4d = p4d_offset(pgd, addr);
2069	do {
2070		next = p4d_addr_end(addr, end);
2071		if (p4d_none_or_clear_bad(p4d))
2072			continue;
2073		ret = unuse_pud_range(vma, p4d, addr, next, type,
2074				      frontswap, fs_pages_to_unuse);
2075		if (ret)
2076			return ret;
2077	} while (p4d++, addr = next, addr != end);
2078	return 0;
2079}
2080
2081static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2082		     bool frontswap, unsigned long *fs_pages_to_unuse)
2083{
2084	pgd_t *pgd;
2085	unsigned long addr, end, next;
2086	int ret;
2087
2088	addr = vma->vm_start;
2089	end = vma->vm_end;
2090
2091	pgd = pgd_offset(vma->vm_mm, addr);
2092	do {
2093		next = pgd_addr_end(addr, end);
2094		if (pgd_none_or_clear_bad(pgd))
2095			continue;
2096		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2097				      frontswap, fs_pages_to_unuse);
2098		if (ret)
2099			return ret;
2100	} while (pgd++, addr = next, addr != end);
2101	return 0;
2102}
2103
2104static int unuse_mm(struct mm_struct *mm, unsigned int type,
2105		    bool frontswap, unsigned long *fs_pages_to_unuse)
2106{
2107	struct vm_area_struct *vma;
2108	int ret = 0;
 
2109
2110	mmap_read_lock(mm);
2111	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2112		if (vma->anon_vma) {
2113			ret = unuse_vma(vma, type, frontswap,
2114					fs_pages_to_unuse);
2115			if (ret)
2116				break;
2117		}
 
2118		cond_resched();
2119	}
2120	mmap_read_unlock(mm);
2121	return ret;
2122}
2123
2124/*
2125 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2126 * from current position to next entry still in use. Return 0
2127 * if there are no inuse entries after prev till end of the map.
2128 */
2129static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2130					unsigned int prev, bool frontswap)
2131{
2132	unsigned int i;
2133	unsigned char count;
2134
2135	/*
2136	 * No need for swap_lock here: we're just looking
2137	 * for whether an entry is in use, not modifying it; false
2138	 * hits are okay, and sys_swapoff() has already prevented new
2139	 * allocations from this area (while holding swap_lock).
2140	 */
2141	for (i = prev + 1; i < si->max; i++) {
2142		count = READ_ONCE(si->swap_map[i]);
2143		if (count && swap_count(count) != SWAP_MAP_BAD)
2144			if (!frontswap || frontswap_test(si, i))
2145				break;
2146		if ((i % LATENCY_LIMIT) == 0)
2147			cond_resched();
2148	}
2149
2150	if (i == si->max)
2151		i = 0;
2152
2153	return i;
2154}
2155
2156/*
2157 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2158 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2159 */
2160int try_to_unuse(unsigned int type, bool frontswap,
2161		 unsigned long pages_to_unuse)
2162{
2163	struct mm_struct *prev_mm;
2164	struct mm_struct *mm;
2165	struct list_head *p;
2166	int retval = 0;
2167	struct swap_info_struct *si = swap_info[type];
2168	struct page *page;
2169	swp_entry_t entry;
2170	unsigned int i;
2171
2172	if (!READ_ONCE(si->inuse_pages))
2173		return 0;
2174
2175	if (!frontswap)
2176		pages_to_unuse = 0;
2177
2178retry:
2179	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2180	if (retval)
2181		goto out;
2182
2183	prev_mm = &init_mm;
2184	mmget(prev_mm);
2185
2186	spin_lock(&mmlist_lock);
2187	p = &init_mm.mmlist;
2188	while (READ_ONCE(si->inuse_pages) &&
2189	       !signal_pending(current) &&
2190	       (p = p->next) != &init_mm.mmlist) {
2191
2192		mm = list_entry(p, struct mm_struct, mmlist);
2193		if (!mmget_not_zero(mm))
2194			continue;
2195		spin_unlock(&mmlist_lock);
2196		mmput(prev_mm);
2197		prev_mm = mm;
2198		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2199
2200		if (retval) {
2201			mmput(prev_mm);
2202			goto out;
2203		}
2204
2205		/*
2206		 * Make sure that we aren't completely killing
2207		 * interactive performance.
2208		 */
2209		cond_resched();
2210		spin_lock(&mmlist_lock);
2211	}
2212	spin_unlock(&mmlist_lock);
2213
2214	mmput(prev_mm);
2215
2216	i = 0;
2217	while (READ_ONCE(si->inuse_pages) &&
2218	       !signal_pending(current) &&
2219	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2220
2221		entry = swp_entry(type, i);
2222		page = find_get_page(swap_address_space(entry), i);
2223		if (!page)
2224			continue;
2225
2226		/*
2227		 * It is conceivable that a racing task removed this page from
2228		 * swap cache just before we acquired the page lock. The page
2229		 * might even be back in swap cache on another swap area. But
2230		 * that is okay, try_to_free_swap() only removes stale pages.
2231		 */
2232		lock_page(page);
2233		wait_on_page_writeback(page);
2234		try_to_free_swap(page);
2235		unlock_page(page);
2236		put_page(page);
2237
2238		/*
2239		 * For frontswap, we just need to unuse pages_to_unuse, if
2240		 * it was specified. Need not check frontswap again here as
2241		 * we already zeroed out pages_to_unuse if not frontswap.
2242		 */
2243		if (pages_to_unuse && --pages_to_unuse == 0)
2244			goto out;
2245	}
2246
2247	/*
2248	 * Lets check again to see if there are still swap entries in the map.
2249	 * If yes, we would need to do retry the unuse logic again.
2250	 * Under global memory pressure, swap entries can be reinserted back
2251	 * into process space after the mmlist loop above passes over them.
2252	 *
2253	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2254	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2255	 * at its own independent pace; and even shmem_writepage() could have
2256	 * been preempted after get_swap_page(), temporarily hiding that swap.
2257	 * It's easy and robust (though cpu-intensive) just to keep retrying.
 
2258	 */
2259	if (READ_ONCE(si->inuse_pages)) {
2260		if (!signal_pending(current))
2261			goto retry;
2262		retval = -EINTR;
2263	}
2264out:
2265	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2266}
2267
2268/*
2269 * After a successful try_to_unuse, if no swap is now in use, we know
2270 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2271 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2272 * added to the mmlist just after page_duplicate - before would be racy.
2273 */
2274static void drain_mmlist(void)
2275{
2276	struct list_head *p, *next;
2277	unsigned int type;
2278
2279	for (type = 0; type < nr_swapfiles; type++)
2280		if (swap_info[type]->inuse_pages)
2281			return;
2282	spin_lock(&mmlist_lock);
2283	list_for_each_safe(p, next, &init_mm.mmlist)
2284		list_del_init(p);
2285	spin_unlock(&mmlist_lock);
2286}
2287
2288/*
2289 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2290 * corresponds to page offset for the specified swap entry.
2291 * Note that the type of this function is sector_t, but it returns page offset
2292 * into the bdev, not sector offset.
2293 */
2294static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2295{
2296	struct swap_info_struct *sis;
2297	struct swap_extent *se;
2298	pgoff_t offset;
2299
2300	sis = swp_swap_info(entry);
2301	*bdev = sis->bdev;
2302
2303	offset = swp_offset(entry);
2304	se = offset_to_swap_extent(sis, offset);
2305	return se->start_block + (offset - se->start_page);
2306}
2307
2308/*
2309 * Returns the page offset into bdev for the specified page's swap entry.
2310 */
2311sector_t map_swap_page(struct page *page, struct block_device **bdev)
2312{
2313	swp_entry_t entry;
2314	entry.val = page_private(page);
2315	return map_swap_entry(entry, bdev);
2316}
2317
2318/*
2319 * Free all of a swapdev's extent information
2320 */
2321static void destroy_swap_extents(struct swap_info_struct *sis)
2322{
2323	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2324		struct rb_node *rb = sis->swap_extent_root.rb_node;
2325		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2326
2327		rb_erase(rb, &sis->swap_extent_root);
2328		kfree(se);
2329	}
2330
2331	if (sis->flags & SWP_ACTIVATED) {
2332		struct file *swap_file = sis->swap_file;
2333		struct address_space *mapping = swap_file->f_mapping;
2334
2335		sis->flags &= ~SWP_ACTIVATED;
2336		if (mapping->a_ops->swap_deactivate)
2337			mapping->a_ops->swap_deactivate(swap_file);
2338	}
2339}
2340
2341/*
2342 * Add a block range (and the corresponding page range) into this swapdev's
2343 * extent tree.
2344 *
2345 * This function rather assumes that it is called in ascending page order.
2346 */
2347int
2348add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2349		unsigned long nr_pages, sector_t start_block)
2350{
2351	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2352	struct swap_extent *se;
2353	struct swap_extent *new_se;
2354
2355	/*
2356	 * place the new node at the right most since the
2357	 * function is called in ascending page order.
2358	 */
2359	while (*link) {
2360		parent = *link;
2361		link = &parent->rb_right;
2362	}
2363
2364	if (parent) {
2365		se = rb_entry(parent, struct swap_extent, rb_node);
2366		BUG_ON(se->start_page + se->nr_pages != start_page);
2367		if (se->start_block + se->nr_pages == start_block) {
2368			/* Merge it */
2369			se->nr_pages += nr_pages;
2370			return 0;
2371		}
2372	}
2373
2374	/* No merge, insert a new extent. */
2375	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2376	if (new_se == NULL)
2377		return -ENOMEM;
2378	new_se->start_page = start_page;
2379	new_se->nr_pages = nr_pages;
2380	new_se->start_block = start_block;
2381
2382	rb_link_node(&new_se->rb_node, parent, link);
2383	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2384	return 1;
2385}
2386EXPORT_SYMBOL_GPL(add_swap_extent);
2387
2388/*
2389 * A `swap extent' is a simple thing which maps a contiguous range of pages
2390 * onto a contiguous range of disk blocks.  An ordered list of swap extents
2391 * is built at swapon time and is then used at swap_writepage/swap_readpage
2392 * time for locating where on disk a page belongs.
2393 *
2394 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2395 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2396 * swap files identically.
2397 *
2398 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2399 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2400 * swapfiles are handled *identically* after swapon time.
2401 *
2402 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2403 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2404 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2405 * requirements, they are simply tossed out - we will never use those blocks
2406 * for swapping.
2407 *
2408 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2409 * prevents users from writing to the swap device, which will corrupt memory.
2410 *
2411 * The amount of disk space which a single swap extent represents varies.
2412 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2413 * extents in the list.  To avoid much list walking, we cache the previous
2414 * search location in `curr_swap_extent', and start new searches from there.
2415 * This is extremely effective.  The average number of iterations in
2416 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2417 */
2418static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2419{
2420	struct file *swap_file = sis->swap_file;
2421	struct address_space *mapping = swap_file->f_mapping;
2422	struct inode *inode = mapping->host;
2423	int ret;
2424
2425	if (S_ISBLK(inode->i_mode)) {
2426		ret = add_swap_extent(sis, 0, sis->max, 0);
2427		*span = sis->pages;
2428		return ret;
2429	}
2430
2431	if (mapping->a_ops->swap_activate) {
2432		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2433		if (ret >= 0)
2434			sis->flags |= SWP_ACTIVATED;
2435		if (!ret) {
2436			sis->flags |= SWP_FS;
2437			ret = add_swap_extent(sis, 0, sis->max, 0);
2438			*span = sis->pages;
 
2439		}
2440		return ret;
2441	}
2442
2443	return generic_swapfile_activate(sis, swap_file, span);
2444}
2445
2446static int swap_node(struct swap_info_struct *p)
2447{
2448	struct block_device *bdev;
2449
2450	if (p->bdev)
2451		bdev = p->bdev;
2452	else
2453		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2454
2455	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2456}
2457
2458static void setup_swap_info(struct swap_info_struct *p, int prio,
2459			    unsigned char *swap_map,
2460			    struct swap_cluster_info *cluster_info)
2461{
2462	int i;
2463
2464	if (prio >= 0)
2465		p->prio = prio;
2466	else
2467		p->prio = --least_priority;
2468	/*
2469	 * the plist prio is negated because plist ordering is
2470	 * low-to-high, while swap ordering is high-to-low
2471	 */
2472	p->list.prio = -p->prio;
2473	for_each_node(i) {
2474		if (p->prio >= 0)
2475			p->avail_lists[i].prio = -p->prio;
2476		else {
2477			if (swap_node(p) == i)
2478				p->avail_lists[i].prio = 1;
2479			else
2480				p->avail_lists[i].prio = -p->prio;
2481		}
2482	}
2483	p->swap_map = swap_map;
2484	p->cluster_info = cluster_info;
2485}
2486
2487static void _enable_swap_info(struct swap_info_struct *p)
2488{
2489	p->flags |= SWP_WRITEOK | SWP_VALID;
2490	atomic_long_add(p->pages, &nr_swap_pages);
2491	total_swap_pages += p->pages;
2492
2493	assert_spin_locked(&swap_lock);
2494	/*
2495	 * both lists are plists, and thus priority ordered.
2496	 * swap_active_head needs to be priority ordered for swapoff(),
2497	 * which on removal of any swap_info_struct with an auto-assigned
2498	 * (i.e. negative) priority increments the auto-assigned priority
2499	 * of any lower-priority swap_info_structs.
2500	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2501	 * which allocates swap pages from the highest available priority
2502	 * swap_info_struct.
2503	 */
2504	plist_add(&p->list, &swap_active_head);
2505	add_to_avail_list(p);
 
 
 
2506}
2507
2508static void enable_swap_info(struct swap_info_struct *p, int prio,
2509				unsigned char *swap_map,
2510				struct swap_cluster_info *cluster_info,
2511				unsigned long *frontswap_map)
2512{
2513	frontswap_init(p->type, frontswap_map);
 
2514	spin_lock(&swap_lock);
2515	spin_lock(&p->lock);
2516	setup_swap_info(p, prio, swap_map, cluster_info);
2517	spin_unlock(&p->lock);
2518	spin_unlock(&swap_lock);
2519	/*
2520	 * Guarantee swap_map, cluster_info, etc. fields are valid
2521	 * between get/put_swap_device() if SWP_VALID bit is set
2522	 */
2523	synchronize_rcu();
2524	spin_lock(&swap_lock);
2525	spin_lock(&p->lock);
2526	_enable_swap_info(p);
2527	spin_unlock(&p->lock);
2528	spin_unlock(&swap_lock);
2529}
2530
2531static void reinsert_swap_info(struct swap_info_struct *p)
2532{
2533	spin_lock(&swap_lock);
2534	spin_lock(&p->lock);
2535	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2536	_enable_swap_info(p);
2537	spin_unlock(&p->lock);
2538	spin_unlock(&swap_lock);
2539}
2540
2541bool has_usable_swap(void)
2542{
2543	bool ret = true;
2544
2545	spin_lock(&swap_lock);
2546	if (plist_head_empty(&swap_active_head))
2547		ret = false;
2548	spin_unlock(&swap_lock);
2549	return ret;
2550}
2551
2552SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2553{
2554	struct swap_info_struct *p = NULL;
2555	unsigned char *swap_map;
2556	struct swap_cluster_info *cluster_info;
2557	unsigned long *frontswap_map;
2558	struct file *swap_file, *victim;
2559	struct address_space *mapping;
2560	struct inode *inode;
2561	struct filename *pathname;
2562	int err, found = 0;
2563	unsigned int old_block_size;
2564
2565	if (!capable(CAP_SYS_ADMIN))
2566		return -EPERM;
2567
2568	BUG_ON(!current->mm);
2569
2570	pathname = getname(specialfile);
2571	if (IS_ERR(pathname))
2572		return PTR_ERR(pathname);
2573
2574	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2575	err = PTR_ERR(victim);
2576	if (IS_ERR(victim))
2577		goto out;
2578
2579	mapping = victim->f_mapping;
2580	spin_lock(&swap_lock);
2581	plist_for_each_entry(p, &swap_active_head, list) {
2582		if (p->flags & SWP_WRITEOK) {
2583			if (p->swap_file->f_mapping == mapping) {
2584				found = 1;
2585				break;
2586			}
2587		}
2588	}
2589	if (!found) {
2590		err = -EINVAL;
2591		spin_unlock(&swap_lock);
2592		goto out_dput;
2593	}
2594	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2595		vm_unacct_memory(p->pages);
2596	else {
2597		err = -ENOMEM;
2598		spin_unlock(&swap_lock);
2599		goto out_dput;
2600	}
2601	del_from_avail_list(p);
2602	spin_lock(&p->lock);
 
2603	if (p->prio < 0) {
2604		struct swap_info_struct *si = p;
2605		int nid;
2606
2607		plist_for_each_entry_continue(si, &swap_active_head, list) {
2608			si->prio++;
2609			si->list.prio--;
2610			for_each_node(nid) {
2611				if (si->avail_lists[nid].prio != 1)
2612					si->avail_lists[nid].prio--;
2613			}
2614		}
2615		least_priority++;
2616	}
2617	plist_del(&p->list, &swap_active_head);
2618	atomic_long_sub(p->pages, &nr_swap_pages);
2619	total_swap_pages -= p->pages;
2620	p->flags &= ~SWP_WRITEOK;
2621	spin_unlock(&p->lock);
2622	spin_unlock(&swap_lock);
2623
2624	disable_swap_slots_cache_lock();
2625
2626	set_current_oom_origin();
2627	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2628	clear_current_oom_origin();
2629
2630	if (err) {
2631		/* re-insert swap space back into swap_list */
2632		reinsert_swap_info(p);
2633		reenable_swap_slots_cache_unlock();
2634		goto out_dput;
2635	}
2636
2637	reenable_swap_slots_cache_unlock();
2638
2639	spin_lock(&swap_lock);
2640	spin_lock(&p->lock);
2641	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2642	spin_unlock(&p->lock);
2643	spin_unlock(&swap_lock);
2644	/*
2645	 * wait for swap operations protected by get/put_swap_device()
2646	 * to complete
 
 
 
2647	 */
 
2648	synchronize_rcu();
 
2649
2650	flush_work(&p->discard_work);
2651
2652	destroy_swap_extents(p);
2653	if (p->flags & SWP_CONTINUED)
2654		free_swap_count_continuations(p);
2655
2656	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2657		atomic_dec(&nr_rotate_swap);
2658
2659	mutex_lock(&swapon_mutex);
2660	spin_lock(&swap_lock);
2661	spin_lock(&p->lock);
2662	drain_mmlist();
2663
2664	/* wait for anyone still in scan_swap_map */
2665	p->highest_bit = 0;		/* cuts scans short */
2666	while (p->flags >= SWP_SCANNING) {
2667		spin_unlock(&p->lock);
2668		spin_unlock(&swap_lock);
2669		schedule_timeout_uninterruptible(1);
2670		spin_lock(&swap_lock);
2671		spin_lock(&p->lock);
2672	}
2673
2674	swap_file = p->swap_file;
2675	old_block_size = p->old_block_size;
2676	p->swap_file = NULL;
2677	p->max = 0;
2678	swap_map = p->swap_map;
2679	p->swap_map = NULL;
2680	cluster_info = p->cluster_info;
2681	p->cluster_info = NULL;
2682	frontswap_map = frontswap_map_get(p);
2683	spin_unlock(&p->lock);
2684	spin_unlock(&swap_lock);
2685	frontswap_invalidate_area(p->type);
2686	frontswap_map_set(p, NULL);
2687	mutex_unlock(&swapon_mutex);
2688	free_percpu(p->percpu_cluster);
2689	p->percpu_cluster = NULL;
2690	free_percpu(p->cluster_next_cpu);
2691	p->cluster_next_cpu = NULL;
2692	vfree(swap_map);
2693	kvfree(cluster_info);
2694	kvfree(frontswap_map);
2695	/* Destroy swap account information */
2696	swap_cgroup_swapoff(p->type);
2697	exit_swap_address_space(p->type);
2698
2699	inode = mapping->host;
2700	if (S_ISBLK(inode->i_mode)) {
2701		struct block_device *bdev = I_BDEV(inode);
2702
2703		set_blocksize(bdev, old_block_size);
2704		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2705	}
2706
2707	inode_lock(inode);
2708	inode->i_flags &= ~S_SWAPFILE;
2709	inode_unlock(inode);
2710	filp_close(swap_file, NULL);
2711
2712	/*
2713	 * Clear the SWP_USED flag after all resources are freed so that swapon
2714	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2715	 * not hold p->lock after we cleared its SWP_WRITEOK.
2716	 */
2717	spin_lock(&swap_lock);
2718	p->flags = 0;
2719	spin_unlock(&swap_lock);
2720
2721	err = 0;
2722	atomic_inc(&proc_poll_event);
2723	wake_up_interruptible(&proc_poll_wait);
2724
2725out_dput:
2726	filp_close(victim, NULL);
2727out:
2728	putname(pathname);
2729	return err;
2730}
2731
2732#ifdef CONFIG_PROC_FS
2733static __poll_t swaps_poll(struct file *file, poll_table *wait)
2734{
2735	struct seq_file *seq = file->private_data;
2736
2737	poll_wait(file, &proc_poll_wait, wait);
2738
2739	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2740		seq->poll_event = atomic_read(&proc_poll_event);
2741		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2742	}
2743
2744	return EPOLLIN | EPOLLRDNORM;
2745}
2746
2747/* iterator */
2748static void *swap_start(struct seq_file *swap, loff_t *pos)
2749{
2750	struct swap_info_struct *si;
2751	int type;
2752	loff_t l = *pos;
2753
2754	mutex_lock(&swapon_mutex);
2755
2756	if (!l)
2757		return SEQ_START_TOKEN;
2758
2759	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2760		if (!(si->flags & SWP_USED) || !si->swap_map)
2761			continue;
2762		if (!--l)
2763			return si;
2764	}
2765
2766	return NULL;
2767}
2768
2769static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2770{
2771	struct swap_info_struct *si = v;
2772	int type;
2773
2774	if (v == SEQ_START_TOKEN)
2775		type = 0;
2776	else
2777		type = si->type + 1;
2778
2779	++(*pos);
2780	for (; (si = swap_type_to_swap_info(type)); type++) {
2781		if (!(si->flags & SWP_USED) || !si->swap_map)
2782			continue;
2783		return si;
2784	}
2785
2786	return NULL;
2787}
2788
2789static void swap_stop(struct seq_file *swap, void *v)
2790{
2791	mutex_unlock(&swapon_mutex);
2792}
2793
2794static int swap_show(struct seq_file *swap, void *v)
2795{
2796	struct swap_info_struct *si = v;
2797	struct file *file;
2798	int len;
2799	unsigned int bytes, inuse;
2800
2801	if (si == SEQ_START_TOKEN) {
2802		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2803		return 0;
2804	}
2805
2806	bytes = si->pages << (PAGE_SHIFT - 10);
2807	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2808
2809	file = si->swap_file;
2810	len = seq_file_path(swap, file, " \t\n\\");
2811	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2812			len < 40 ? 40 - len : 1, " ",
2813			S_ISBLK(file_inode(file)->i_mode) ?
2814				"partition" : "file\t",
2815			bytes, bytes < 10000000 ? "\t" : "",
2816			inuse, inuse < 10000000 ? "\t" : "",
2817			si->prio);
2818	return 0;
2819}
2820
2821static const struct seq_operations swaps_op = {
2822	.start =	swap_start,
2823	.next =		swap_next,
2824	.stop =		swap_stop,
2825	.show =		swap_show
2826};
2827
2828static int swaps_open(struct inode *inode, struct file *file)
2829{
2830	struct seq_file *seq;
2831	int ret;
2832
2833	ret = seq_open(file, &swaps_op);
2834	if (ret)
2835		return ret;
2836
2837	seq = file->private_data;
2838	seq->poll_event = atomic_read(&proc_poll_event);
2839	return 0;
2840}
2841
2842static const struct proc_ops swaps_proc_ops = {
2843	.proc_flags	= PROC_ENTRY_PERMANENT,
2844	.proc_open	= swaps_open,
2845	.proc_read	= seq_read,
2846	.proc_lseek	= seq_lseek,
2847	.proc_release	= seq_release,
2848	.proc_poll	= swaps_poll,
2849};
2850
2851static int __init procswaps_init(void)
2852{
2853	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2854	return 0;
2855}
2856__initcall(procswaps_init);
2857#endif /* CONFIG_PROC_FS */
2858
2859#ifdef MAX_SWAPFILES_CHECK
2860static int __init max_swapfiles_check(void)
2861{
2862	MAX_SWAPFILES_CHECK();
2863	return 0;
2864}
2865late_initcall(max_swapfiles_check);
2866#endif
2867
2868static struct swap_info_struct *alloc_swap_info(void)
2869{
2870	struct swap_info_struct *p;
 
2871	unsigned int type;
2872	int i;
2873
2874	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2875	if (!p)
2876		return ERR_PTR(-ENOMEM);
2877
 
 
 
 
 
 
2878	spin_lock(&swap_lock);
2879	for (type = 0; type < nr_swapfiles; type++) {
2880		if (!(swap_info[type]->flags & SWP_USED))
2881			break;
2882	}
2883	if (type >= MAX_SWAPFILES) {
2884		spin_unlock(&swap_lock);
 
2885		kvfree(p);
2886		return ERR_PTR(-EPERM);
2887	}
2888	if (type >= nr_swapfiles) {
2889		p->type = type;
2890		WRITE_ONCE(swap_info[type], p);
2891		/*
2892		 * Write swap_info[type] before nr_swapfiles, in case a
2893		 * racing procfs swap_start() or swap_next() is reading them.
2894		 * (We never shrink nr_swapfiles, we never free this entry.)
2895		 */
2896		smp_wmb();
2897		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2898	} else {
2899		kvfree(p);
2900		p = swap_info[type];
2901		/*
2902		 * Do not memset this entry: a racing procfs swap_next()
2903		 * would be relying on p->type to remain valid.
2904		 */
2905	}
2906	p->swap_extent_root = RB_ROOT;
2907	plist_node_init(&p->list, 0);
2908	for_each_node(i)
2909		plist_node_init(&p->avail_lists[i], 0);
2910	p->flags = SWP_USED;
2911	spin_unlock(&swap_lock);
 
 
 
 
2912	spin_lock_init(&p->lock);
2913	spin_lock_init(&p->cont_lock);
 
2914
2915	return p;
2916}
2917
2918static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2919{
2920	int error;
2921
2922	if (S_ISBLK(inode->i_mode)) {
2923		p->bdev = bdgrab(I_BDEV(inode));
2924		error = blkdev_get(p->bdev,
2925				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2926		if (error < 0) {
2927			p->bdev = NULL;
2928			return error;
2929		}
 
2930		p->old_block_size = block_size(p->bdev);
2931		error = set_blocksize(p->bdev, PAGE_SIZE);
2932		if (error < 0)
2933			return error;
2934		/*
2935		 * Zoned block devices contain zones that have a sequential
2936		 * write only restriction.  Hence zoned block devices are not
2937		 * suitable for swapping.  Disallow them here.
2938		 */
2939		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2940			return -EINVAL;
2941		p->flags |= SWP_BLKDEV;
2942	} else if (S_ISREG(inode->i_mode)) {
2943		p->bdev = inode->i_sb->s_bdev;
2944	}
2945
2946	return 0;
2947}
2948
2949
2950/*
2951 * Find out how many pages are allowed for a single swap device. There
2952 * are two limiting factors:
2953 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2954 * 2) the number of bits in the swap pte, as defined by the different
2955 * architectures.
2956 *
2957 * In order to find the largest possible bit mask, a swap entry with
2958 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2959 * decoded to a swp_entry_t again, and finally the swap offset is
2960 * extracted.
2961 *
2962 * This will mask all the bits from the initial ~0UL mask that can't
2963 * be encoded in either the swp_entry_t or the architecture definition
2964 * of a swap pte.
2965 */
2966unsigned long generic_max_swapfile_size(void)
2967{
2968	return swp_offset(pte_to_swp_entry(
2969			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2970}
2971
2972/* Can be overridden by an architecture for additional checks. */
2973__weak unsigned long max_swapfile_size(void)
2974{
2975	return generic_max_swapfile_size();
2976}
2977
2978static unsigned long read_swap_header(struct swap_info_struct *p,
2979					union swap_header *swap_header,
2980					struct inode *inode)
2981{
2982	int i;
2983	unsigned long maxpages;
2984	unsigned long swapfilepages;
2985	unsigned long last_page;
2986
2987	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2988		pr_err("Unable to find swap-space signature\n");
2989		return 0;
2990	}
2991
2992	/* swap partition endianess hack... */
2993	if (swab32(swap_header->info.version) == 1) {
2994		swab32s(&swap_header->info.version);
2995		swab32s(&swap_header->info.last_page);
2996		swab32s(&swap_header->info.nr_badpages);
2997		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2998			return 0;
2999		for (i = 0; i < swap_header->info.nr_badpages; i++)
3000			swab32s(&swap_header->info.badpages[i]);
3001	}
3002	/* Check the swap header's sub-version */
3003	if (swap_header->info.version != 1) {
3004		pr_warn("Unable to handle swap header version %d\n",
3005			swap_header->info.version);
3006		return 0;
3007	}
3008
3009	p->lowest_bit  = 1;
3010	p->cluster_next = 1;
3011	p->cluster_nr = 0;
3012
3013	maxpages = max_swapfile_size();
3014	last_page = swap_header->info.last_page;
3015	if (!last_page) {
3016		pr_warn("Empty swap-file\n");
3017		return 0;
3018	}
3019	if (last_page > maxpages) {
3020		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3021			maxpages << (PAGE_SHIFT - 10),
3022			last_page << (PAGE_SHIFT - 10));
3023	}
3024	if (maxpages > last_page) {
3025		maxpages = last_page + 1;
3026		/* p->max is an unsigned int: don't overflow it */
3027		if ((unsigned int)maxpages == 0)
3028			maxpages = UINT_MAX;
3029	}
3030	p->highest_bit = maxpages - 1;
3031
3032	if (!maxpages)
3033		return 0;
3034	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3035	if (swapfilepages && maxpages > swapfilepages) {
3036		pr_warn("Swap area shorter than signature indicates\n");
3037		return 0;
3038	}
3039	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3040		return 0;
3041	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3042		return 0;
3043
3044	return maxpages;
3045}
3046
3047#define SWAP_CLUSTER_INFO_COLS						\
3048	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3049#define SWAP_CLUSTER_SPACE_COLS						\
3050	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3051#define SWAP_CLUSTER_COLS						\
3052	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3053
3054static int setup_swap_map_and_extents(struct swap_info_struct *p,
3055					union swap_header *swap_header,
3056					unsigned char *swap_map,
3057					struct swap_cluster_info *cluster_info,
3058					unsigned long maxpages,
3059					sector_t *span)
3060{
3061	unsigned int j, k;
3062	unsigned int nr_good_pages;
3063	int nr_extents;
3064	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3065	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3066	unsigned long i, idx;
3067
3068	nr_good_pages = maxpages - 1;	/* omit header page */
3069
3070	cluster_list_init(&p->free_clusters);
3071	cluster_list_init(&p->discard_clusters);
3072
3073	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3074		unsigned int page_nr = swap_header->info.badpages[i];
3075		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3076			return -EINVAL;
3077		if (page_nr < maxpages) {
3078			swap_map[page_nr] = SWAP_MAP_BAD;
3079			nr_good_pages--;
3080			/*
3081			 * Haven't marked the cluster free yet, no list
3082			 * operation involved
3083			 */
3084			inc_cluster_info_page(p, cluster_info, page_nr);
3085		}
3086	}
3087
3088	/* Haven't marked the cluster free yet, no list operation involved */
3089	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3090		inc_cluster_info_page(p, cluster_info, i);
3091
3092	if (nr_good_pages) {
3093		swap_map[0] = SWAP_MAP_BAD;
3094		/*
3095		 * Not mark the cluster free yet, no list
3096		 * operation involved
3097		 */
3098		inc_cluster_info_page(p, cluster_info, 0);
3099		p->max = maxpages;
3100		p->pages = nr_good_pages;
3101		nr_extents = setup_swap_extents(p, span);
3102		if (nr_extents < 0)
3103			return nr_extents;
3104		nr_good_pages = p->pages;
3105	}
3106	if (!nr_good_pages) {
3107		pr_warn("Empty swap-file\n");
3108		return -EINVAL;
3109	}
3110
3111	if (!cluster_info)
3112		return nr_extents;
3113
3114
3115	/*
3116	 * Reduce false cache line sharing between cluster_info and
3117	 * sharing same address space.
3118	 */
3119	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3120		j = (k + col) % SWAP_CLUSTER_COLS;
3121		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3122			idx = i * SWAP_CLUSTER_COLS + j;
3123			if (idx >= nr_clusters)
3124				continue;
3125			if (cluster_count(&cluster_info[idx]))
3126				continue;
3127			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3128			cluster_list_add_tail(&p->free_clusters, cluster_info,
3129					      idx);
3130		}
3131	}
3132	return nr_extents;
3133}
3134
3135/*
3136 * Helper to sys_swapon determining if a given swap
3137 * backing device queue supports DISCARD operations.
3138 */
3139static bool swap_discardable(struct swap_info_struct *si)
3140{
3141	struct request_queue *q = bdev_get_queue(si->bdev);
3142
3143	if (!q || !blk_queue_discard(q))
3144		return false;
3145
3146	return true;
3147}
3148
3149SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3150{
3151	struct swap_info_struct *p;
3152	struct filename *name;
3153	struct file *swap_file = NULL;
3154	struct address_space *mapping;
 
3155	int prio;
3156	int error;
3157	union swap_header *swap_header;
3158	int nr_extents;
3159	sector_t span;
3160	unsigned long maxpages;
3161	unsigned char *swap_map = NULL;
3162	struct swap_cluster_info *cluster_info = NULL;
3163	unsigned long *frontswap_map = NULL;
3164	struct page *page = NULL;
3165	struct inode *inode = NULL;
3166	bool inced_nr_rotate_swap = false;
3167
3168	if (swap_flags & ~SWAP_FLAGS_VALID)
3169		return -EINVAL;
3170
3171	if (!capable(CAP_SYS_ADMIN))
3172		return -EPERM;
3173
3174	if (!swap_avail_heads)
3175		return -ENOMEM;
3176
3177	p = alloc_swap_info();
3178	if (IS_ERR(p))
3179		return PTR_ERR(p);
3180
3181	INIT_WORK(&p->discard_work, swap_discard_work);
3182
3183	name = getname(specialfile);
3184	if (IS_ERR(name)) {
3185		error = PTR_ERR(name);
3186		name = NULL;
3187		goto bad_swap;
3188	}
3189	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3190	if (IS_ERR(swap_file)) {
3191		error = PTR_ERR(swap_file);
3192		swap_file = NULL;
3193		goto bad_swap;
3194	}
3195
3196	p->swap_file = swap_file;
3197	mapping = swap_file->f_mapping;
 
3198	inode = mapping->host;
3199
3200	error = claim_swapfile(p, inode);
3201	if (unlikely(error))
3202		goto bad_swap;
3203
3204	inode_lock(inode);
 
 
 
 
3205	if (IS_SWAPFILE(inode)) {
3206		error = -EBUSY;
3207		goto bad_swap_unlock_inode;
3208	}
3209
3210	/*
3211	 * Read the swap header.
3212	 */
3213	if (!mapping->a_ops->readpage) {
3214		error = -EINVAL;
3215		goto bad_swap_unlock_inode;
3216	}
3217	page = read_mapping_page(mapping, 0, swap_file);
3218	if (IS_ERR(page)) {
3219		error = PTR_ERR(page);
3220		goto bad_swap_unlock_inode;
3221	}
3222	swap_header = kmap(page);
3223
3224	maxpages = read_swap_header(p, swap_header, inode);
3225	if (unlikely(!maxpages)) {
3226		error = -EINVAL;
3227		goto bad_swap_unlock_inode;
3228	}
3229
3230	/* OK, set up the swap map and apply the bad block list */
3231	swap_map = vzalloc(maxpages);
3232	if (!swap_map) {
3233		error = -ENOMEM;
3234		goto bad_swap_unlock_inode;
3235	}
3236
3237	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3238		p->flags |= SWP_STABLE_WRITES;
3239
3240	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3241		p->flags |= SWP_SYNCHRONOUS_IO;
3242
3243	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3244		int cpu;
3245		unsigned long ci, nr_cluster;
3246
3247		p->flags |= SWP_SOLIDSTATE;
3248		p->cluster_next_cpu = alloc_percpu(unsigned int);
3249		if (!p->cluster_next_cpu) {
3250			error = -ENOMEM;
3251			goto bad_swap_unlock_inode;
3252		}
3253		/*
3254		 * select a random position to start with to help wear leveling
3255		 * SSD
3256		 */
3257		for_each_possible_cpu(cpu) {
3258			per_cpu(*p->cluster_next_cpu, cpu) =
3259				1 + prandom_u32_max(p->highest_bit);
3260		}
3261		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3262
3263		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3264					GFP_KERNEL);
3265		if (!cluster_info) {
3266			error = -ENOMEM;
3267			goto bad_swap_unlock_inode;
3268		}
3269
3270		for (ci = 0; ci < nr_cluster; ci++)
3271			spin_lock_init(&((cluster_info + ci)->lock));
3272
3273		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3274		if (!p->percpu_cluster) {
3275			error = -ENOMEM;
3276			goto bad_swap_unlock_inode;
3277		}
3278		for_each_possible_cpu(cpu) {
3279			struct percpu_cluster *cluster;
3280			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3281			cluster_set_null(&cluster->index);
3282		}
3283	} else {
3284		atomic_inc(&nr_rotate_swap);
3285		inced_nr_rotate_swap = true;
3286	}
3287
3288	error = swap_cgroup_swapon(p->type, maxpages);
3289	if (error)
3290		goto bad_swap_unlock_inode;
3291
3292	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3293		cluster_info, maxpages, &span);
3294	if (unlikely(nr_extents < 0)) {
3295		error = nr_extents;
3296		goto bad_swap_unlock_inode;
3297	}
3298	/* frontswap enabled? set up bit-per-page map for frontswap */
3299	if (IS_ENABLED(CONFIG_FRONTSWAP))
3300		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3301					 sizeof(long),
3302					 GFP_KERNEL);
3303
3304	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
 
3305		/*
3306		 * When discard is enabled for swap with no particular
3307		 * policy flagged, we set all swap discard flags here in
3308		 * order to sustain backward compatibility with older
3309		 * swapon(8) releases.
3310		 */
3311		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3312			     SWP_PAGE_DISCARD);
3313
3314		/*
3315		 * By flagging sys_swapon, a sysadmin can tell us to
3316		 * either do single-time area discards only, or to just
3317		 * perform discards for released swap page-clusters.
3318		 * Now it's time to adjust the p->flags accordingly.
3319		 */
3320		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3321			p->flags &= ~SWP_PAGE_DISCARD;
3322		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3323			p->flags &= ~SWP_AREA_DISCARD;
3324
3325		/* issue a swapon-time discard if it's still required */
3326		if (p->flags & SWP_AREA_DISCARD) {
3327			int err = discard_swap(p);
3328			if (unlikely(err))
3329				pr_err("swapon: discard_swap(%p): %d\n",
3330					p, err);
3331		}
3332	}
3333
3334	error = init_swap_address_space(p->type, maxpages);
3335	if (error)
3336		goto bad_swap_unlock_inode;
3337
3338	/*
3339	 * Flush any pending IO and dirty mappings before we start using this
3340	 * swap device.
3341	 */
3342	inode->i_flags |= S_SWAPFILE;
3343	error = inode_drain_writes(inode);
3344	if (error) {
3345		inode->i_flags &= ~S_SWAPFILE;
3346		goto bad_swap_unlock_inode;
3347	}
3348
3349	mutex_lock(&swapon_mutex);
3350	prio = -1;
3351	if (swap_flags & SWAP_FLAG_PREFER)
3352		prio =
3353		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3354	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3355
3356	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3357		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3358		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3359		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3360		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3361		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3362		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3363		(frontswap_map) ? "FS" : "");
3364
3365	mutex_unlock(&swapon_mutex);
3366	atomic_inc(&proc_poll_event);
3367	wake_up_interruptible(&proc_poll_wait);
3368
3369	error = 0;
3370	goto out;
 
 
3371bad_swap_unlock_inode:
3372	inode_unlock(inode);
3373bad_swap:
3374	free_percpu(p->percpu_cluster);
3375	p->percpu_cluster = NULL;
3376	free_percpu(p->cluster_next_cpu);
3377	p->cluster_next_cpu = NULL;
3378	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3379		set_blocksize(p->bdev, p->old_block_size);
3380		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 
3381	}
3382	inode = NULL;
3383	destroy_swap_extents(p);
3384	swap_cgroup_swapoff(p->type);
3385	spin_lock(&swap_lock);
3386	p->swap_file = NULL;
3387	p->flags = 0;
3388	spin_unlock(&swap_lock);
3389	vfree(swap_map);
3390	kvfree(cluster_info);
3391	kvfree(frontswap_map);
3392	if (inced_nr_rotate_swap)
3393		atomic_dec(&nr_rotate_swap);
3394	if (swap_file)
3395		filp_close(swap_file, NULL);
3396out:
3397	if (page && !IS_ERR(page)) {
3398		kunmap(page);
3399		put_page(page);
3400	}
3401	if (name)
3402		putname(name);
3403	if (inode)
3404		inode_unlock(inode);
3405	if (!error)
3406		enable_swap_slots_cache();
3407	return error;
3408}
3409
3410void si_swapinfo(struct sysinfo *val)
3411{
3412	unsigned int type;
3413	unsigned long nr_to_be_unused = 0;
3414
3415	spin_lock(&swap_lock);
3416	for (type = 0; type < nr_swapfiles; type++) {
3417		struct swap_info_struct *si = swap_info[type];
3418
3419		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3420			nr_to_be_unused += si->inuse_pages;
3421	}
3422	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3423	val->totalswap = total_swap_pages + nr_to_be_unused;
3424	spin_unlock(&swap_lock);
3425}
3426
3427/*
3428 * Verify that a swap entry is valid and increment its swap map count.
3429 *
3430 * Returns error code in following case.
3431 * - success -> 0
3432 * - swp_entry is invalid -> EINVAL
3433 * - swp_entry is migration entry -> EINVAL
3434 * - swap-cache reference is requested but there is already one. -> EEXIST
3435 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3436 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3437 */
3438static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3439{
3440	struct swap_info_struct *p;
3441	struct swap_cluster_info *ci;
3442	unsigned long offset;
3443	unsigned char count;
3444	unsigned char has_cache;
3445	int err = -EINVAL;
3446
3447	p = get_swap_device(entry);
3448	if (!p)
3449		goto out;
3450
3451	offset = swp_offset(entry);
3452	ci = lock_cluster_or_swap_info(p, offset);
3453
3454	count = p->swap_map[offset];
3455
3456	/*
3457	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3458	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3459	 */
3460	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3461		err = -ENOENT;
3462		goto unlock_out;
3463	}
3464
3465	has_cache = count & SWAP_HAS_CACHE;
3466	count &= ~SWAP_HAS_CACHE;
3467	err = 0;
3468
3469	if (usage == SWAP_HAS_CACHE) {
3470
3471		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3472		if (!has_cache && count)
3473			has_cache = SWAP_HAS_CACHE;
3474		else if (has_cache)		/* someone else added cache */
3475			err = -EEXIST;
3476		else				/* no users remaining */
3477			err = -ENOENT;
3478
3479	} else if (count || has_cache) {
3480
3481		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3482			count += usage;
3483		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3484			err = -EINVAL;
3485		else if (swap_count_continued(p, offset, count))
3486			count = COUNT_CONTINUED;
3487		else
3488			err = -ENOMEM;
3489	} else
3490		err = -ENOENT;			/* unused swap entry */
3491
3492	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3493
3494unlock_out:
3495	unlock_cluster_or_swap_info(p, ci);
3496out:
3497	if (p)
3498		put_swap_device(p);
3499	return err;
3500}
3501
3502/*
3503 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3504 * (in which case its reference count is never incremented).
3505 */
3506void swap_shmem_alloc(swp_entry_t entry)
3507{
3508	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3509}
3510
3511/*
3512 * Increase reference count of swap entry by 1.
3513 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3514 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3515 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3516 * might occur if a page table entry has got corrupted.
3517 */
3518int swap_duplicate(swp_entry_t entry)
3519{
3520	int err = 0;
3521
3522	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3523		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3524	return err;
3525}
3526
3527/*
3528 * @entry: swap entry for which we allocate swap cache.
3529 *
3530 * Called when allocating swap cache for existing swap entry,
3531 * This can return error codes. Returns 0 at success.
3532 * -EEXIST means there is a swap cache.
3533 * Note: return code is different from swap_duplicate().
3534 */
3535int swapcache_prepare(swp_entry_t entry)
3536{
3537	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3538}
3539
3540struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3541{
3542	return swap_type_to_swap_info(swp_type(entry));
 
 
 
 
 
 
 
 
3543}
3544
3545struct swap_info_struct *page_swap_info(struct page *page)
3546{
3547	swp_entry_t entry = { .val = page_private(page) };
3548	return swp_swap_info(entry);
3549}
3550
3551/*
3552 * out-of-line __page_file_ methods to avoid include hell.
3553 */
3554struct address_space *__page_file_mapping(struct page *page)
3555{
3556	return page_swap_info(page)->swap_file->f_mapping;
3557}
3558EXPORT_SYMBOL_GPL(__page_file_mapping);
3559
3560pgoff_t __page_file_index(struct page *page)
3561{
3562	swp_entry_t swap = { .val = page_private(page) };
3563	return swp_offset(swap);
3564}
3565EXPORT_SYMBOL_GPL(__page_file_index);
3566
3567/*
3568 * add_swap_count_continuation - called when a swap count is duplicated
3569 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3570 * page of the original vmalloc'ed swap_map, to hold the continuation count
3571 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3572 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3573 *
3574 * These continuation pages are seldom referenced: the common paths all work
3575 * on the original swap_map, only referring to a continuation page when the
3576 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3577 *
3578 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3579 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3580 * can be called after dropping locks.
3581 */
3582int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3583{
3584	struct swap_info_struct *si;
3585	struct swap_cluster_info *ci;
3586	struct page *head;
3587	struct page *page;
3588	struct page *list_page;
3589	pgoff_t offset;
3590	unsigned char count;
3591	int ret = 0;
3592
3593	/*
3594	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3595	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3596	 */
3597	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3598
3599	si = get_swap_device(entry);
3600	if (!si) {
3601		/*
3602		 * An acceptable race has occurred since the failing
3603		 * __swap_duplicate(): the swap device may be swapoff
3604		 */
3605		goto outer;
3606	}
3607	spin_lock(&si->lock);
3608
3609	offset = swp_offset(entry);
3610
3611	ci = lock_cluster(si, offset);
3612
3613	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3614
3615	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3616		/*
3617		 * The higher the swap count, the more likely it is that tasks
3618		 * will race to add swap count continuation: we need to avoid
3619		 * over-provisioning.
3620		 */
3621		goto out;
3622	}
3623
3624	if (!page) {
3625		ret = -ENOMEM;
3626		goto out;
3627	}
3628
3629	/*
3630	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3631	 * no architecture is using highmem pages for kernel page tables: so it
3632	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3633	 */
3634	head = vmalloc_to_page(si->swap_map + offset);
3635	offset &= ~PAGE_MASK;
3636
3637	spin_lock(&si->cont_lock);
3638	/*
3639	 * Page allocation does not initialize the page's lru field,
3640	 * but it does always reset its private field.
3641	 */
3642	if (!page_private(head)) {
3643		BUG_ON(count & COUNT_CONTINUED);
3644		INIT_LIST_HEAD(&head->lru);
3645		set_page_private(head, SWP_CONTINUED);
3646		si->flags |= SWP_CONTINUED;
3647	}
3648
3649	list_for_each_entry(list_page, &head->lru, lru) {
3650		unsigned char *map;
3651
3652		/*
3653		 * If the previous map said no continuation, but we've found
3654		 * a continuation page, free our allocation and use this one.
3655		 */
3656		if (!(count & COUNT_CONTINUED))
3657			goto out_unlock_cont;
3658
3659		map = kmap_atomic(list_page) + offset;
3660		count = *map;
3661		kunmap_atomic(map);
3662
3663		/*
3664		 * If this continuation count now has some space in it,
3665		 * free our allocation and use this one.
3666		 */
3667		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3668			goto out_unlock_cont;
3669	}
3670
3671	list_add_tail(&page->lru, &head->lru);
3672	page = NULL;			/* now it's attached, don't free it */
3673out_unlock_cont:
3674	spin_unlock(&si->cont_lock);
3675out:
3676	unlock_cluster(ci);
3677	spin_unlock(&si->lock);
3678	put_swap_device(si);
3679outer:
3680	if (page)
3681		__free_page(page);
3682	return ret;
3683}
3684
3685/*
3686 * swap_count_continued - when the original swap_map count is incremented
3687 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3688 * into, carry if so, or else fail until a new continuation page is allocated;
3689 * when the original swap_map count is decremented from 0 with continuation,
3690 * borrow from the continuation and report whether it still holds more.
3691 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3692 * lock.
3693 */
3694static bool swap_count_continued(struct swap_info_struct *si,
3695				 pgoff_t offset, unsigned char count)
3696{
3697	struct page *head;
3698	struct page *page;
3699	unsigned char *map;
3700	bool ret;
3701
3702	head = vmalloc_to_page(si->swap_map + offset);
3703	if (page_private(head) != SWP_CONTINUED) {
3704		BUG_ON(count & COUNT_CONTINUED);
3705		return false;		/* need to add count continuation */
3706	}
3707
3708	spin_lock(&si->cont_lock);
3709	offset &= ~PAGE_MASK;
3710	page = list_next_entry(head, lru);
3711	map = kmap_atomic(page) + offset;
3712
3713	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3714		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3715
3716	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3717		/*
3718		 * Think of how you add 1 to 999
3719		 */
3720		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3721			kunmap_atomic(map);
3722			page = list_next_entry(page, lru);
3723			BUG_ON(page == head);
3724			map = kmap_atomic(page) + offset;
3725		}
3726		if (*map == SWAP_CONT_MAX) {
3727			kunmap_atomic(map);
3728			page = list_next_entry(page, lru);
3729			if (page == head) {
3730				ret = false;	/* add count continuation */
3731				goto out;
3732			}
3733			map = kmap_atomic(page) + offset;
3734init_map:		*map = 0;		/* we didn't zero the page */
3735		}
3736		*map += 1;
3737		kunmap_atomic(map);
3738		while ((page = list_prev_entry(page, lru)) != head) {
3739			map = kmap_atomic(page) + offset;
3740			*map = COUNT_CONTINUED;
3741			kunmap_atomic(map);
3742		}
3743		ret = true;			/* incremented */
3744
3745	} else {				/* decrementing */
3746		/*
3747		 * Think of how you subtract 1 from 1000
3748		 */
3749		BUG_ON(count != COUNT_CONTINUED);
3750		while (*map == COUNT_CONTINUED) {
3751			kunmap_atomic(map);
3752			page = list_next_entry(page, lru);
3753			BUG_ON(page == head);
3754			map = kmap_atomic(page) + offset;
3755		}
3756		BUG_ON(*map == 0);
3757		*map -= 1;
3758		if (*map == 0)
3759			count = 0;
3760		kunmap_atomic(map);
3761		while ((page = list_prev_entry(page, lru)) != head) {
3762			map = kmap_atomic(page) + offset;
3763			*map = SWAP_CONT_MAX | count;
3764			count = COUNT_CONTINUED;
3765			kunmap_atomic(map);
3766		}
3767		ret = count == COUNT_CONTINUED;
3768	}
3769out:
3770	spin_unlock(&si->cont_lock);
3771	return ret;
3772}
3773
3774/*
3775 * free_swap_count_continuations - swapoff free all the continuation pages
3776 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3777 */
3778static void free_swap_count_continuations(struct swap_info_struct *si)
3779{
3780	pgoff_t offset;
3781
3782	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3783		struct page *head;
3784		head = vmalloc_to_page(si->swap_map + offset);
3785		if (page_private(head)) {
3786			struct page *page, *next;
3787
3788			list_for_each_entry_safe(page, next, &head->lru, lru) {
3789				list_del(&page->lru);
3790				__free_page(page);
3791			}
3792		}
3793	}
3794}
3795
3796#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3797void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3798{
3799	struct swap_info_struct *si, *next;
3800	int nid = page_to_nid(page);
3801
3802	if (!(gfp_mask & __GFP_IO))
3803		return;
3804
3805	if (!blk_cgroup_congested())
3806		return;
3807
3808	/*
3809	 * We've already scheduled a throttle, avoid taking the global swap
3810	 * lock.
3811	 */
3812	if (current->throttle_queue)
3813		return;
3814
3815	spin_lock(&swap_avail_lock);
3816	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3817				  avail_lists[nid]) {
3818		if (si->bdev) {
3819			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3820			break;
3821		}
3822	}
3823	spin_unlock(&swap_avail_lock);
3824}
3825#endif
3826
3827static int __init swapfile_init(void)
3828{
3829	int nid;
3830
3831	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3832					 GFP_KERNEL);
3833	if (!swap_avail_heads) {
3834		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3835		return -ENOMEM;
3836	}
3837
3838	for_each_node(nid)
3839		plist_head_init(&swap_avail_heads[nid]);
 
 
 
 
 
 
 
3840
3841	return 0;
3842}
3843subsys_initcall(swapfile_init);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swapfile.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 */
   8
   9#include <linux/blkdev.h>
  10#include <linux/mm.h>
  11#include <linux/sched/mm.h>
  12#include <linux/sched/task.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mman.h>
  15#include <linux/slab.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/swap.h>
  18#include <linux/vmalloc.h>
  19#include <linux/pagemap.h>
  20#include <linux/namei.h>
  21#include <linux/shmem_fs.h>
  22#include <linux/blk-cgroup.h>
  23#include <linux/random.h>
  24#include <linux/writeback.h>
  25#include <linux/proc_fs.h>
  26#include <linux/seq_file.h>
  27#include <linux/init.h>
  28#include <linux/ksm.h>
  29#include <linux/rmap.h>
  30#include <linux/security.h>
  31#include <linux/backing-dev.h>
  32#include <linux/mutex.h>
  33#include <linux/capability.h>
  34#include <linux/syscalls.h>
  35#include <linux/memcontrol.h>
  36#include <linux/poll.h>
  37#include <linux/oom.h>
 
  38#include <linux/swapfile.h>
  39#include <linux/export.h>
  40#include <linux/swap_slots.h>
  41#include <linux/sort.h>
  42#include <linux/completion.h>
  43#include <linux/suspend.h>
  44#include <linux/zswap.h>
  45#include <linux/plist.h>
  46
  47#include <asm/tlbflush.h>
  48#include <linux/swapops.h>
  49#include <linux/swap_cgroup.h>
  50#include "internal.h"
  51#include "swap.h"
  52
  53static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  54				 unsigned char);
  55static void free_swap_count_continuations(struct swap_info_struct *);
 
  56
  57static DEFINE_SPINLOCK(swap_lock);
  58static unsigned int nr_swapfiles;
  59atomic_long_t nr_swap_pages;
  60/*
  61 * Some modules use swappable objects and may try to swap them out under
  62 * memory pressure (via the shrinker). Before doing so, they may wish to
  63 * check to see if any swap space is available.
  64 */
  65EXPORT_SYMBOL_GPL(nr_swap_pages);
  66/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  67long total_swap_pages;
  68static int least_priority = -1;
  69unsigned long swapfile_maximum_size;
  70#ifdef CONFIG_MIGRATION
  71bool swap_migration_ad_supported;
  72#endif	/* CONFIG_MIGRATION */
  73
  74static const char Bad_file[] = "Bad swap file entry ";
  75static const char Unused_file[] = "Unused swap file entry ";
  76static const char Bad_offset[] = "Bad swap offset entry ";
  77static const char Unused_offset[] = "Unused swap offset entry ";
  78
  79/*
  80 * all active swap_info_structs
  81 * protected with swap_lock, and ordered by priority.
  82 */
  83static PLIST_HEAD(swap_active_head);
  84
  85/*
  86 * all available (active, not full) swap_info_structs
  87 * protected with swap_avail_lock, ordered by priority.
  88 * This is used by folio_alloc_swap() instead of swap_active_head
  89 * because swap_active_head includes all swap_info_structs,
  90 * but folio_alloc_swap() doesn't need to look at full ones.
  91 * This uses its own lock instead of swap_lock because when a
  92 * swap_info_struct changes between not-full/full, it needs to
  93 * add/remove itself to/from this list, but the swap_info_struct->lock
  94 * is held and the locking order requires swap_lock to be taken
  95 * before any swap_info_struct->lock.
  96 */
  97static struct plist_head *swap_avail_heads;
  98static DEFINE_SPINLOCK(swap_avail_lock);
  99
 100static struct swap_info_struct *swap_info[MAX_SWAPFILES];
 101
 102static DEFINE_MUTEX(swapon_mutex);
 103
 104static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
 105/* Activity counter to indicate that a swapon or swapoff has occurred */
 106static atomic_t proc_poll_event = ATOMIC_INIT(0);
 107
 108atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 109
 110static struct swap_info_struct *swap_type_to_swap_info(int type)
 111{
 112	if (type >= MAX_SWAPFILES)
 113		return NULL;
 114
 115	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
 
 116}
 117
 118static inline unsigned char swap_count(unsigned char ent)
 119{
 120	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 121}
 122
 123/* Reclaim the swap entry anyway if possible */
 124#define TTRS_ANYWAY		0x1
 125/*
 126 * Reclaim the swap entry if there are no more mappings of the
 127 * corresponding page
 128 */
 129#define TTRS_UNMAPPED		0x2
 130/* Reclaim the swap entry if swap is getting full*/
 131#define TTRS_FULL		0x4
 132
 133/* returns 1 if swap entry is freed */
 134static int __try_to_reclaim_swap(struct swap_info_struct *si,
 135				 unsigned long offset, unsigned long flags)
 136{
 137	swp_entry_t entry = swp_entry(si->type, offset);
 138	struct folio *folio;
 139	int ret = 0;
 140
 141	folio = filemap_get_folio(swap_address_space(entry), offset);
 142	if (IS_ERR(folio))
 143		return 0;
 144	/*
 145	 * When this function is called from scan_swap_map_slots() and it's
 146	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
 147	 * here. We have to use trylock for avoiding deadlock. This is a special
 148	 * case and you should use folio_free_swap() with explicit folio_lock()
 149	 * in usual operations.
 150	 */
 151	if (folio_trylock(folio)) {
 152		if ((flags & TTRS_ANYWAY) ||
 153		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
 154		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
 155			ret = folio_free_swap(folio);
 156		folio_unlock(folio);
 157	}
 158	folio_put(folio);
 159	return ret;
 160}
 161
 162static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 163{
 164	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 165	return rb_entry(rb, struct swap_extent, rb_node);
 166}
 167
 168static inline struct swap_extent *next_se(struct swap_extent *se)
 169{
 170	struct rb_node *rb = rb_next(&se->rb_node);
 171	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 172}
 173
 174/*
 175 * swapon tell device that all the old swap contents can be discarded,
 176 * to allow the swap device to optimize its wear-levelling.
 177 */
 178static int discard_swap(struct swap_info_struct *si)
 179{
 180	struct swap_extent *se;
 181	sector_t start_block;
 182	sector_t nr_blocks;
 183	int err = 0;
 184
 185	/* Do not discard the swap header page! */
 186	se = first_se(si);
 187	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 188	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 189	if (nr_blocks) {
 190		err = blkdev_issue_discard(si->bdev, start_block,
 191				nr_blocks, GFP_KERNEL);
 192		if (err)
 193			return err;
 194		cond_resched();
 195	}
 196
 197	for (se = next_se(se); se; se = next_se(se)) {
 198		start_block = se->start_block << (PAGE_SHIFT - 9);
 199		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 200
 201		err = blkdev_issue_discard(si->bdev, start_block,
 202				nr_blocks, GFP_KERNEL);
 203		if (err)
 204			break;
 205
 206		cond_resched();
 207	}
 208	return err;		/* That will often be -EOPNOTSUPP */
 209}
 210
 211static struct swap_extent *
 212offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 213{
 214	struct swap_extent *se;
 215	struct rb_node *rb;
 216
 217	rb = sis->swap_extent_root.rb_node;
 218	while (rb) {
 219		se = rb_entry(rb, struct swap_extent, rb_node);
 220		if (offset < se->start_page)
 221			rb = rb->rb_left;
 222		else if (offset >= se->start_page + se->nr_pages)
 223			rb = rb->rb_right;
 224		else
 225			return se;
 226	}
 227	/* It *must* be present */
 228	BUG();
 229}
 230
 231sector_t swap_folio_sector(struct folio *folio)
 232{
 233	struct swap_info_struct *sis = swp_swap_info(folio->swap);
 234	struct swap_extent *se;
 235	sector_t sector;
 236	pgoff_t offset;
 237
 238	offset = swp_offset(folio->swap);
 239	se = offset_to_swap_extent(sis, offset);
 240	sector = se->start_block + (offset - se->start_page);
 241	return sector << (PAGE_SHIFT - 9);
 242}
 243
 244/*
 245 * swap allocation tell device that a cluster of swap can now be discarded,
 246 * to allow the swap device to optimize its wear-levelling.
 247 */
 248static void discard_swap_cluster(struct swap_info_struct *si,
 249				 pgoff_t start_page, pgoff_t nr_pages)
 250{
 251	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 252
 253	while (nr_pages) {
 254		pgoff_t offset = start_page - se->start_page;
 255		sector_t start_block = se->start_block + offset;
 256		sector_t nr_blocks = se->nr_pages - offset;
 257
 258		if (nr_blocks > nr_pages)
 259			nr_blocks = nr_pages;
 260		start_page += nr_blocks;
 261		nr_pages -= nr_blocks;
 262
 263		start_block <<= PAGE_SHIFT - 9;
 264		nr_blocks <<= PAGE_SHIFT - 9;
 265		if (blkdev_issue_discard(si->bdev, start_block,
 266					nr_blocks, GFP_NOIO))
 267			break;
 268
 269		se = next_se(se);
 270	}
 271}
 272
 273#ifdef CONFIG_THP_SWAP
 274#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 275
 276#define swap_entry_size(size)	(size)
 277#else
 278#define SWAPFILE_CLUSTER	256
 279
 280/*
 281 * Define swap_entry_size() as constant to let compiler to optimize
 282 * out some code if !CONFIG_THP_SWAP
 283 */
 284#define swap_entry_size(size)	1
 285#endif
 286#define LATENCY_LIMIT		256
 287
 288static inline void cluster_set_flag(struct swap_cluster_info *info,
 289	unsigned int flag)
 290{
 291	info->flags = flag;
 292}
 293
 294static inline unsigned int cluster_count(struct swap_cluster_info *info)
 295{
 296	return info->data;
 297}
 298
 299static inline void cluster_set_count(struct swap_cluster_info *info,
 300				     unsigned int c)
 301{
 302	info->data = c;
 303}
 304
 305static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 306					 unsigned int c, unsigned int f)
 307{
 308	info->flags = f;
 309	info->data = c;
 310}
 311
 312static inline unsigned int cluster_next(struct swap_cluster_info *info)
 313{
 314	return info->data;
 315}
 316
 317static inline void cluster_set_next(struct swap_cluster_info *info,
 318				    unsigned int n)
 319{
 320	info->data = n;
 321}
 322
 323static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 324					 unsigned int n, unsigned int f)
 325{
 326	info->flags = f;
 327	info->data = n;
 328}
 329
 330static inline bool cluster_is_free(struct swap_cluster_info *info)
 331{
 332	return info->flags & CLUSTER_FLAG_FREE;
 333}
 334
 335static inline bool cluster_is_null(struct swap_cluster_info *info)
 336{
 337	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 338}
 339
 340static inline void cluster_set_null(struct swap_cluster_info *info)
 341{
 342	info->flags = CLUSTER_FLAG_NEXT_NULL;
 343	info->data = 0;
 344}
 345
 346static inline bool cluster_is_huge(struct swap_cluster_info *info)
 347{
 348	if (IS_ENABLED(CONFIG_THP_SWAP))
 349		return info->flags & CLUSTER_FLAG_HUGE;
 350	return false;
 351}
 352
 353static inline void cluster_clear_huge(struct swap_cluster_info *info)
 354{
 355	info->flags &= ~CLUSTER_FLAG_HUGE;
 356}
 357
 358static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 359						     unsigned long offset)
 360{
 361	struct swap_cluster_info *ci;
 362
 363	ci = si->cluster_info;
 364	if (ci) {
 365		ci += offset / SWAPFILE_CLUSTER;
 366		spin_lock(&ci->lock);
 367	}
 368	return ci;
 369}
 370
 371static inline void unlock_cluster(struct swap_cluster_info *ci)
 372{
 373	if (ci)
 374		spin_unlock(&ci->lock);
 375}
 376
 377/*
 378 * Determine the locking method in use for this device.  Return
 379 * swap_cluster_info if SSD-style cluster-based locking is in place.
 380 */
 381static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 382		struct swap_info_struct *si, unsigned long offset)
 383{
 384	struct swap_cluster_info *ci;
 385
 386	/* Try to use fine-grained SSD-style locking if available: */
 387	ci = lock_cluster(si, offset);
 388	/* Otherwise, fall back to traditional, coarse locking: */
 389	if (!ci)
 390		spin_lock(&si->lock);
 391
 392	return ci;
 393}
 394
 395static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 396					       struct swap_cluster_info *ci)
 397{
 398	if (ci)
 399		unlock_cluster(ci);
 400	else
 401		spin_unlock(&si->lock);
 402}
 403
 404static inline bool cluster_list_empty(struct swap_cluster_list *list)
 405{
 406	return cluster_is_null(&list->head);
 407}
 408
 409static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 410{
 411	return cluster_next(&list->head);
 412}
 413
 414static void cluster_list_init(struct swap_cluster_list *list)
 415{
 416	cluster_set_null(&list->head);
 417	cluster_set_null(&list->tail);
 418}
 419
 420static void cluster_list_add_tail(struct swap_cluster_list *list,
 421				  struct swap_cluster_info *ci,
 422				  unsigned int idx)
 423{
 424	if (cluster_list_empty(list)) {
 425		cluster_set_next_flag(&list->head, idx, 0);
 426		cluster_set_next_flag(&list->tail, idx, 0);
 427	} else {
 428		struct swap_cluster_info *ci_tail;
 429		unsigned int tail = cluster_next(&list->tail);
 430
 431		/*
 432		 * Nested cluster lock, but both cluster locks are
 433		 * only acquired when we held swap_info_struct->lock
 434		 */
 435		ci_tail = ci + tail;
 436		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 437		cluster_set_next(ci_tail, idx);
 438		spin_unlock(&ci_tail->lock);
 439		cluster_set_next_flag(&list->tail, idx, 0);
 440	}
 441}
 442
 443static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 444					   struct swap_cluster_info *ci)
 445{
 446	unsigned int idx;
 447
 448	idx = cluster_next(&list->head);
 449	if (cluster_next(&list->tail) == idx) {
 450		cluster_set_null(&list->head);
 451		cluster_set_null(&list->tail);
 452	} else
 453		cluster_set_next_flag(&list->head,
 454				      cluster_next(&ci[idx]), 0);
 455
 456	return idx;
 457}
 458
 459/* Add a cluster to discard list and schedule it to do discard */
 460static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 461		unsigned int idx)
 462{
 463	/*
 464	 * If scan_swap_map_slots() can't find a free cluster, it will check
 465	 * si->swap_map directly. To make sure the discarding cluster isn't
 466	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
 467	 * It will be cleared after discard
 468	 */
 469	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 470			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 471
 472	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 473
 474	schedule_work(&si->discard_work);
 475}
 476
 477static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 478{
 479	struct swap_cluster_info *ci = si->cluster_info;
 480
 481	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 482	cluster_list_add_tail(&si->free_clusters, ci, idx);
 483}
 484
 485/*
 486 * Doing discard actually. After a cluster discard is finished, the cluster
 487 * will be added to free cluster list. caller should hold si->lock.
 488*/
 489static void swap_do_scheduled_discard(struct swap_info_struct *si)
 490{
 491	struct swap_cluster_info *info, *ci;
 492	unsigned int idx;
 493
 494	info = si->cluster_info;
 495
 496	while (!cluster_list_empty(&si->discard_clusters)) {
 497		idx = cluster_list_del_first(&si->discard_clusters, info);
 498		spin_unlock(&si->lock);
 499
 500		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 501				SWAPFILE_CLUSTER);
 502
 503		spin_lock(&si->lock);
 504		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 505		__free_cluster(si, idx);
 506		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 507				0, SWAPFILE_CLUSTER);
 508		unlock_cluster(ci);
 509	}
 510}
 511
 512static void swap_discard_work(struct work_struct *work)
 513{
 514	struct swap_info_struct *si;
 515
 516	si = container_of(work, struct swap_info_struct, discard_work);
 517
 518	spin_lock(&si->lock);
 519	swap_do_scheduled_discard(si);
 520	spin_unlock(&si->lock);
 521}
 522
 523static void swap_users_ref_free(struct percpu_ref *ref)
 524{
 525	struct swap_info_struct *si;
 526
 527	si = container_of(ref, struct swap_info_struct, users);
 528	complete(&si->comp);
 529}
 530
 531static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 532{
 533	struct swap_cluster_info *ci = si->cluster_info;
 534
 535	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 536	cluster_list_del_first(&si->free_clusters, ci);
 537	cluster_set_count_flag(ci + idx, 0, 0);
 538}
 539
 540static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 541{
 542	struct swap_cluster_info *ci = si->cluster_info + idx;
 543
 544	VM_BUG_ON(cluster_count(ci) != 0);
 545	/*
 546	 * If the swap is discardable, prepare discard the cluster
 547	 * instead of free it immediately. The cluster will be freed
 548	 * after discard.
 549	 */
 550	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 551	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 552		swap_cluster_schedule_discard(si, idx);
 553		return;
 554	}
 555
 556	__free_cluster(si, idx);
 557}
 558
 559/*
 560 * The cluster corresponding to page_nr will be used. The cluster will be
 561 * removed from free cluster list and its usage counter will be increased.
 562 */
 563static void inc_cluster_info_page(struct swap_info_struct *p,
 564	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 565{
 566	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 567
 568	if (!cluster_info)
 569		return;
 570	if (cluster_is_free(&cluster_info[idx]))
 571		alloc_cluster(p, idx);
 572
 573	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 574	cluster_set_count(&cluster_info[idx],
 575		cluster_count(&cluster_info[idx]) + 1);
 576}
 577
 578/*
 579 * The cluster corresponding to page_nr decreases one usage. If the usage
 580 * counter becomes 0, which means no page in the cluster is in using, we can
 581 * optionally discard the cluster and add it to free cluster list.
 582 */
 583static void dec_cluster_info_page(struct swap_info_struct *p,
 584	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 585{
 586	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 587
 588	if (!cluster_info)
 589		return;
 590
 591	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 592	cluster_set_count(&cluster_info[idx],
 593		cluster_count(&cluster_info[idx]) - 1);
 594
 595	if (cluster_count(&cluster_info[idx]) == 0)
 596		free_cluster(p, idx);
 597}
 598
 599/*
 600 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
 601 * cluster list. Avoiding such abuse to avoid list corruption.
 602 */
 603static bool
 604scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 605	unsigned long offset)
 606{
 607	struct percpu_cluster *percpu_cluster;
 608	bool conflict;
 609
 610	offset /= SWAPFILE_CLUSTER;
 611	conflict = !cluster_list_empty(&si->free_clusters) &&
 612		offset != cluster_list_first(&si->free_clusters) &&
 613		cluster_is_free(&si->cluster_info[offset]);
 614
 615	if (!conflict)
 616		return false;
 617
 618	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 619	cluster_set_null(&percpu_cluster->index);
 620	return true;
 621}
 622
 623/*
 624 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 625 * might involve allocating a new cluster for current CPU too.
 626 */
 627static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 628	unsigned long *offset, unsigned long *scan_base)
 629{
 630	struct percpu_cluster *cluster;
 631	struct swap_cluster_info *ci;
 632	unsigned long tmp, max;
 633
 634new_cluster:
 635	cluster = this_cpu_ptr(si->percpu_cluster);
 636	if (cluster_is_null(&cluster->index)) {
 637		if (!cluster_list_empty(&si->free_clusters)) {
 638			cluster->index = si->free_clusters.head;
 639			cluster->next = cluster_next(&cluster->index) *
 640					SWAPFILE_CLUSTER;
 641		} else if (!cluster_list_empty(&si->discard_clusters)) {
 642			/*
 643			 * we don't have free cluster but have some clusters in
 644			 * discarding, do discard now and reclaim them, then
 645			 * reread cluster_next_cpu since we dropped si->lock
 646			 */
 647			swap_do_scheduled_discard(si);
 648			*scan_base = this_cpu_read(*si->cluster_next_cpu);
 649			*offset = *scan_base;
 650			goto new_cluster;
 651		} else
 652			return false;
 653	}
 654
 655	/*
 656	 * Other CPUs can use our cluster if they can't find a free cluster,
 657	 * check if there is still free entry in the cluster
 658	 */
 659	tmp = cluster->next;
 660	max = min_t(unsigned long, si->max,
 661		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 662	if (tmp < max) {
 663		ci = lock_cluster(si, tmp);
 664		while (tmp < max) {
 665			if (!si->swap_map[tmp])
 666				break;
 667			tmp++;
 668		}
 669		unlock_cluster(ci);
 670	}
 671	if (tmp >= max) {
 672		cluster_set_null(&cluster->index);
 673		goto new_cluster;
 674	}
 675	cluster->next = tmp + 1;
 676	*offset = tmp;
 677	*scan_base = tmp;
 678	return true;
 679}
 680
 681static void __del_from_avail_list(struct swap_info_struct *p)
 682{
 683	int nid;
 684
 685	assert_spin_locked(&p->lock);
 686	for_each_node(nid)
 687		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 688}
 689
 690static void del_from_avail_list(struct swap_info_struct *p)
 691{
 692	spin_lock(&swap_avail_lock);
 693	__del_from_avail_list(p);
 694	spin_unlock(&swap_avail_lock);
 695}
 696
 697static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 698			     unsigned int nr_entries)
 699{
 700	unsigned int end = offset + nr_entries - 1;
 701
 702	if (offset == si->lowest_bit)
 703		si->lowest_bit += nr_entries;
 704	if (end == si->highest_bit)
 705		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
 706	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
 707	if (si->inuse_pages == si->pages) {
 708		si->lowest_bit = si->max;
 709		si->highest_bit = 0;
 710		del_from_avail_list(si);
 711	}
 712}
 713
 714static void add_to_avail_list(struct swap_info_struct *p)
 715{
 716	int nid;
 717
 718	spin_lock(&swap_avail_lock);
 719	for_each_node(nid)
 
 720		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 
 721	spin_unlock(&swap_avail_lock);
 722}
 723
 724static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 725			    unsigned int nr_entries)
 726{
 727	unsigned long begin = offset;
 728	unsigned long end = offset + nr_entries - 1;
 729	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 730
 731	if (offset < si->lowest_bit)
 732		si->lowest_bit = offset;
 733	if (end > si->highest_bit) {
 734		bool was_full = !si->highest_bit;
 735
 736		WRITE_ONCE(si->highest_bit, end);
 737		if (was_full && (si->flags & SWP_WRITEOK))
 738			add_to_avail_list(si);
 739	}
 740	atomic_long_add(nr_entries, &nr_swap_pages);
 741	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
 742	if (si->flags & SWP_BLKDEV)
 743		swap_slot_free_notify =
 744			si->bdev->bd_disk->fops->swap_slot_free_notify;
 745	else
 746		swap_slot_free_notify = NULL;
 747	while (offset <= end) {
 748		arch_swap_invalidate_page(si->type, offset);
 749		zswap_invalidate(si->type, offset);
 750		if (swap_slot_free_notify)
 751			swap_slot_free_notify(si->bdev, offset);
 752		offset++;
 753	}
 754	clear_shadow_from_swap_cache(si->type, begin, end);
 755}
 756
 757static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
 758{
 759	unsigned long prev;
 760
 761	if (!(si->flags & SWP_SOLIDSTATE)) {
 762		si->cluster_next = next;
 763		return;
 764	}
 765
 766	prev = this_cpu_read(*si->cluster_next_cpu);
 767	/*
 768	 * Cross the swap address space size aligned trunk, choose
 769	 * another trunk randomly to avoid lock contention on swap
 770	 * address space if possible.
 771	 */
 772	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
 773	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
 774		/* No free swap slots available */
 775		if (si->highest_bit <= si->lowest_bit)
 776			return;
 777		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
 
 778		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
 779		next = max_t(unsigned int, next, si->lowest_bit);
 780	}
 781	this_cpu_write(*si->cluster_next_cpu, next);
 782}
 783
 784static bool swap_offset_available_and_locked(struct swap_info_struct *si,
 785					     unsigned long offset)
 786{
 787	if (data_race(!si->swap_map[offset])) {
 788		spin_lock(&si->lock);
 789		return true;
 790	}
 791
 792	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
 793		spin_lock(&si->lock);
 794		return true;
 795	}
 796
 797	return false;
 798}
 799
 800static int scan_swap_map_slots(struct swap_info_struct *si,
 801			       unsigned char usage, int nr,
 802			       swp_entry_t slots[])
 803{
 804	struct swap_cluster_info *ci;
 805	unsigned long offset;
 806	unsigned long scan_base;
 807	unsigned long last_in_cluster = 0;
 808	int latency_ration = LATENCY_LIMIT;
 809	int n_ret = 0;
 810	bool scanned_many = false;
 811
 812	/*
 813	 * We try to cluster swap pages by allocating them sequentially
 814	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 815	 * way, however, we resort to first-free allocation, starting
 816	 * a new cluster.  This prevents us from scattering swap pages
 817	 * all over the entire swap partition, so that we reduce
 818	 * overall disk seek times between swap pages.  -- sct
 819	 * But we do now try to find an empty cluster.  -Andrea
 820	 * And we let swap pages go all over an SSD partition.  Hugh
 821	 */
 822
 823	si->flags += SWP_SCANNING;
 824	/*
 825	 * Use percpu scan base for SSD to reduce lock contention on
 826	 * cluster and swap cache.  For HDD, sequential access is more
 827	 * important.
 828	 */
 829	if (si->flags & SWP_SOLIDSTATE)
 830		scan_base = this_cpu_read(*si->cluster_next_cpu);
 831	else
 832		scan_base = si->cluster_next;
 833	offset = scan_base;
 834
 835	/* SSD algorithm */
 836	if (si->cluster_info) {
 837		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 838			goto scan;
 839	} else if (unlikely(!si->cluster_nr--)) {
 840		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 841			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 842			goto checks;
 843		}
 844
 845		spin_unlock(&si->lock);
 846
 847		/*
 848		 * If seek is expensive, start searching for new cluster from
 849		 * start of partition, to minimize the span of allocated swap.
 850		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 851		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 852		 */
 853		scan_base = offset = si->lowest_bit;
 854		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 855
 856		/* Locate the first empty (unaligned) cluster */
 857		for (; last_in_cluster <= si->highest_bit; offset++) {
 858			if (si->swap_map[offset])
 859				last_in_cluster = offset + SWAPFILE_CLUSTER;
 860			else if (offset == last_in_cluster) {
 861				spin_lock(&si->lock);
 862				offset -= SWAPFILE_CLUSTER - 1;
 863				si->cluster_next = offset;
 864				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 865				goto checks;
 866			}
 867			if (unlikely(--latency_ration < 0)) {
 868				cond_resched();
 869				latency_ration = LATENCY_LIMIT;
 870			}
 871		}
 872
 873		offset = scan_base;
 874		spin_lock(&si->lock);
 875		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 876	}
 877
 878checks:
 879	if (si->cluster_info) {
 880		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 881		/* take a break if we already got some slots */
 882			if (n_ret)
 883				goto done;
 884			if (!scan_swap_map_try_ssd_cluster(si, &offset,
 885							&scan_base))
 886				goto scan;
 887		}
 888	}
 889	if (!(si->flags & SWP_WRITEOK))
 890		goto no_page;
 891	if (!si->highest_bit)
 892		goto no_page;
 893	if (offset > si->highest_bit)
 894		scan_base = offset = si->lowest_bit;
 895
 896	ci = lock_cluster(si, offset);
 897	/* reuse swap entry of cache-only swap if not busy. */
 898	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 899		int swap_was_freed;
 900		unlock_cluster(ci);
 901		spin_unlock(&si->lock);
 902		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
 903		spin_lock(&si->lock);
 904		/* entry was freed successfully, try to use this again */
 905		if (swap_was_freed)
 906			goto checks;
 907		goto scan; /* check next one */
 908	}
 909
 910	if (si->swap_map[offset]) {
 911		unlock_cluster(ci);
 912		if (!n_ret)
 913			goto scan;
 914		else
 915			goto done;
 916	}
 917	WRITE_ONCE(si->swap_map[offset], usage);
 918	inc_cluster_info_page(si, si->cluster_info, offset);
 919	unlock_cluster(ci);
 920
 921	swap_range_alloc(si, offset, 1);
 922	slots[n_ret++] = swp_entry(si->type, offset);
 923
 924	/* got enough slots or reach max slots? */
 925	if ((n_ret == nr) || (offset >= si->highest_bit))
 926		goto done;
 927
 928	/* search for next available slot */
 929
 930	/* time to take a break? */
 931	if (unlikely(--latency_ration < 0)) {
 932		if (n_ret)
 933			goto done;
 934		spin_unlock(&si->lock);
 935		cond_resched();
 936		spin_lock(&si->lock);
 937		latency_ration = LATENCY_LIMIT;
 938	}
 939
 940	/* try to get more slots in cluster */
 941	if (si->cluster_info) {
 942		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 943			goto checks;
 944	} else if (si->cluster_nr && !si->swap_map[++offset]) {
 945		/* non-ssd case, still more slots in cluster? */
 946		--si->cluster_nr;
 947		goto checks;
 948	}
 949
 950	/*
 951	 * Even if there's no free clusters available (fragmented),
 952	 * try to scan a little more quickly with lock held unless we
 953	 * have scanned too many slots already.
 954	 */
 955	if (!scanned_many) {
 956		unsigned long scan_limit;
 957
 958		if (offset < scan_base)
 959			scan_limit = scan_base;
 960		else
 961			scan_limit = si->highest_bit;
 962		for (; offset <= scan_limit && --latency_ration > 0;
 963		     offset++) {
 964			if (!si->swap_map[offset])
 965				goto checks;
 966		}
 967	}
 968
 969done:
 970	set_cluster_next(si, offset + 1);
 971	si->flags -= SWP_SCANNING;
 972	return n_ret;
 973
 974scan:
 975	spin_unlock(&si->lock);
 976	while (++offset <= READ_ONCE(si->highest_bit)) {
 
 
 
 
 
 
 
 
 
 977		if (unlikely(--latency_ration < 0)) {
 978			cond_resched();
 979			latency_ration = LATENCY_LIMIT;
 980			scanned_many = true;
 981		}
 982		if (swap_offset_available_and_locked(si, offset))
 983			goto checks;
 984	}
 985	offset = si->lowest_bit;
 986	while (offset < scan_base) {
 
 
 
 
 
 
 
 
 
 987		if (unlikely(--latency_ration < 0)) {
 988			cond_resched();
 989			latency_ration = LATENCY_LIMIT;
 990			scanned_many = true;
 991		}
 992		if (swap_offset_available_and_locked(si, offset))
 993			goto checks;
 994		offset++;
 995	}
 996	spin_lock(&si->lock);
 997
 998no_page:
 999	si->flags -= SWP_SCANNING;
1000	return n_ret;
1001}
1002
1003static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1004{
1005	unsigned long idx;
1006	struct swap_cluster_info *ci;
1007	unsigned long offset;
 
1008
1009	/*
1010	 * Should not even be attempting cluster allocations when huge
1011	 * page swap is disabled.  Warn and fail the allocation.
1012	 */
1013	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1014		VM_WARN_ON_ONCE(1);
1015		return 0;
1016	}
1017
1018	if (cluster_list_empty(&si->free_clusters))
1019		return 0;
1020
1021	idx = cluster_list_first(&si->free_clusters);
1022	offset = idx * SWAPFILE_CLUSTER;
1023	ci = lock_cluster(si, offset);
1024	alloc_cluster(si, idx);
1025	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1026
1027	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
 
 
1028	unlock_cluster(ci);
1029	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1030	*slot = swp_entry(si->type, offset);
1031
1032	return 1;
1033}
1034
1035static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1036{
1037	unsigned long offset = idx * SWAPFILE_CLUSTER;
1038	struct swap_cluster_info *ci;
1039
1040	ci = lock_cluster(si, offset);
1041	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1042	cluster_set_count_flag(ci, 0, 0);
1043	free_cluster(si, idx);
1044	unlock_cluster(ci);
1045	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1046}
1047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1049{
1050	unsigned long size = swap_entry_size(entry_size);
1051	struct swap_info_struct *si, *next;
1052	long avail_pgs;
1053	int n_ret = 0;
1054	int node;
1055
1056	/* Only single cluster request supported */
1057	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1058
1059	spin_lock(&swap_avail_lock);
1060
1061	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1062	if (avail_pgs <= 0) {
1063		spin_unlock(&swap_avail_lock);
1064		goto noswap;
1065	}
1066
1067	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1068
1069	atomic_long_sub(n_goal * size, &nr_swap_pages);
1070
 
 
1071start_over:
1072	node = numa_node_id();
1073	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1074		/* requeue si to after same-priority siblings */
1075		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1076		spin_unlock(&swap_avail_lock);
1077		spin_lock(&si->lock);
1078		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1079			spin_lock(&swap_avail_lock);
1080			if (plist_node_empty(&si->avail_lists[node])) {
1081				spin_unlock(&si->lock);
1082				goto nextsi;
1083			}
1084			WARN(!si->highest_bit,
1085			     "swap_info %d in list but !highest_bit\n",
1086			     si->type);
1087			WARN(!(si->flags & SWP_WRITEOK),
1088			     "swap_info %d in list but !SWP_WRITEOK\n",
1089			     si->type);
1090			__del_from_avail_list(si);
1091			spin_unlock(&si->lock);
1092			goto nextsi;
1093		}
1094		if (size == SWAPFILE_CLUSTER) {
1095			if (si->flags & SWP_BLKDEV)
1096				n_ret = swap_alloc_cluster(si, swp_entries);
1097		} else
1098			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1099						    n_goal, swp_entries);
1100		spin_unlock(&si->lock);
1101		if (n_ret || size == SWAPFILE_CLUSTER)
1102			goto check_out;
1103		cond_resched();
 
1104
1105		spin_lock(&swap_avail_lock);
1106nextsi:
1107		/*
1108		 * if we got here, it's likely that si was almost full before,
1109		 * and since scan_swap_map_slots() can drop the si->lock,
1110		 * multiple callers probably all tried to get a page from the
1111		 * same si and it filled up before we could get one; or, the si
1112		 * filled up between us dropping swap_avail_lock and taking
1113		 * si->lock. Since we dropped the swap_avail_lock, the
1114		 * swap_avail_head list may have been modified; so if next is
1115		 * still in the swap_avail_head list then try it, otherwise
1116		 * start over if we have not gotten any slots.
1117		 */
1118		if (plist_node_empty(&next->avail_lists[node]))
1119			goto start_over;
1120	}
1121
1122	spin_unlock(&swap_avail_lock);
1123
1124check_out:
1125	if (n_ret < n_goal)
1126		atomic_long_add((long)(n_goal - n_ret) * size,
1127				&nr_swap_pages);
1128noswap:
1129	return n_ret;
1130}
1131
1132static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133{
1134	struct swap_info_struct *p;
1135	unsigned long offset;
1136
1137	if (!entry.val)
1138		goto out;
1139	p = swp_swap_info(entry);
1140	if (!p)
1141		goto bad_nofile;
1142	if (data_race(!(p->flags & SWP_USED)))
1143		goto bad_device;
1144	offset = swp_offset(entry);
1145	if (offset >= p->max)
1146		goto bad_offset;
1147	if (data_race(!p->swap_map[swp_offset(entry)]))
1148		goto bad_free;
1149	return p;
1150
1151bad_free:
1152	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1153	goto out;
1154bad_offset:
1155	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1156	goto out;
1157bad_device:
1158	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1159	goto out;
1160bad_nofile:
1161	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162out:
1163	return NULL;
1164}
1165
 
 
 
 
 
 
 
 
 
 
1166static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1167					struct swap_info_struct *q)
1168{
1169	struct swap_info_struct *p;
1170
1171	p = _swap_info_get(entry);
1172
1173	if (p != q) {
1174		if (q != NULL)
1175			spin_unlock(&q->lock);
1176		if (p != NULL)
1177			spin_lock(&p->lock);
1178	}
1179	return p;
1180}
1181
1182static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1183					      unsigned long offset,
1184					      unsigned char usage)
1185{
1186	unsigned char count;
1187	unsigned char has_cache;
1188
1189	count = p->swap_map[offset];
1190
1191	has_cache = count & SWAP_HAS_CACHE;
1192	count &= ~SWAP_HAS_CACHE;
1193
1194	if (usage == SWAP_HAS_CACHE) {
1195		VM_BUG_ON(!has_cache);
1196		has_cache = 0;
1197	} else if (count == SWAP_MAP_SHMEM) {
1198		/*
1199		 * Or we could insist on shmem.c using a special
1200		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1201		 */
1202		count = 0;
1203	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1204		if (count == COUNT_CONTINUED) {
1205			if (swap_count_continued(p, offset, count))
1206				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1207			else
1208				count = SWAP_MAP_MAX;
1209		} else
1210			count--;
1211	}
1212
1213	usage = count | has_cache;
1214	if (usage)
1215		WRITE_ONCE(p->swap_map[offset], usage);
1216	else
1217		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1218
1219	return usage;
1220}
1221
1222/*
1223 * When we get a swap entry, if there aren't some other ways to
1224 * prevent swapoff, such as the folio in swap cache is locked, page
1225 * table lock is held, etc., the swap entry may become invalid because
1226 * of swapoff.  Then, we need to enclose all swap related functions
1227 * with get_swap_device() and put_swap_device(), unless the swap
1228 * functions call get/put_swap_device() by themselves.
1229 *
1230 * Check whether swap entry is valid in the swap device.  If so,
1231 * return pointer to swap_info_struct, and keep the swap entry valid
1232 * via preventing the swap device from being swapoff, until
1233 * put_swap_device() is called.  Otherwise return NULL.
1234 *
 
 
 
 
 
 
1235 * Notice that swapoff or swapoff+swapon can still happen before the
1236 * percpu_ref_tryget_live() in get_swap_device() or after the
1237 * percpu_ref_put() in put_swap_device() if there isn't any other way
1238 * to prevent swapoff.  The caller must be prepared for that.  For
1239 * example, the following situation is possible.
 
1240 *
1241 *   CPU1				CPU2
1242 *   do_swap_page()
1243 *     ...				swapoff+swapon
1244 *     __read_swap_cache_async()
1245 *       swapcache_prepare()
1246 *         __swap_duplicate()
1247 *           // check swap_map
1248 *     // verify PTE not changed
1249 *
1250 * In __swap_duplicate(), the swap_map need to be checked before
1251 * changing partly because the specified swap entry may be for another
1252 * swap device which has been swapoff.  And in do_swap_page(), after
1253 * the page is read from the swap device, the PTE is verified not
1254 * changed with the page table locked to check whether the swap device
1255 * has been swapoff or swapoff+swapon.
1256 */
1257struct swap_info_struct *get_swap_device(swp_entry_t entry)
1258{
1259	struct swap_info_struct *si;
1260	unsigned long offset;
1261
1262	if (!entry.val)
1263		goto out;
1264	si = swp_swap_info(entry);
1265	if (!si)
1266		goto bad_nofile;
1267	if (!percpu_ref_tryget_live(&si->users))
1268		goto out;
1269	/*
1270	 * Guarantee the si->users are checked before accessing other
1271	 * fields of swap_info_struct.
1272	 *
1273	 * Paired with the spin_unlock() after setup_swap_info() in
1274	 * enable_swap_info().
1275	 */
1276	smp_rmb();
1277	offset = swp_offset(entry);
1278	if (offset >= si->max)
1279		goto put_out;
1280
1281	return si;
1282bad_nofile:
1283	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1284out:
1285	return NULL;
1286put_out:
1287	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1288	percpu_ref_put(&si->users);
1289	return NULL;
1290}
1291
1292static unsigned char __swap_entry_free(struct swap_info_struct *p,
1293				       swp_entry_t entry)
1294{
1295	struct swap_cluster_info *ci;
1296	unsigned long offset = swp_offset(entry);
1297	unsigned char usage;
1298
1299	ci = lock_cluster_or_swap_info(p, offset);
1300	usage = __swap_entry_free_locked(p, offset, 1);
1301	unlock_cluster_or_swap_info(p, ci);
1302	if (!usage)
1303		free_swap_slot(entry);
1304
1305	return usage;
1306}
1307
1308static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1309{
1310	struct swap_cluster_info *ci;
1311	unsigned long offset = swp_offset(entry);
1312	unsigned char count;
1313
1314	ci = lock_cluster(p, offset);
1315	count = p->swap_map[offset];
1316	VM_BUG_ON(count != SWAP_HAS_CACHE);
1317	p->swap_map[offset] = 0;
1318	dec_cluster_info_page(p, p->cluster_info, offset);
1319	unlock_cluster(ci);
1320
1321	mem_cgroup_uncharge_swap(entry, 1);
1322	swap_range_free(p, offset, 1);
1323}
1324
1325/*
1326 * Caller has made sure that the swap device corresponding to entry
1327 * is still around or has not been recycled.
1328 */
1329void swap_free(swp_entry_t entry)
1330{
1331	struct swap_info_struct *p;
1332
1333	p = _swap_info_get(entry);
1334	if (p)
1335		__swap_entry_free(p, entry);
1336}
1337
1338/*
1339 * Called after dropping swapcache to decrease refcnt to swap entries.
1340 */
1341void put_swap_folio(struct folio *folio, swp_entry_t entry)
1342{
1343	unsigned long offset = swp_offset(entry);
1344	unsigned long idx = offset / SWAPFILE_CLUSTER;
1345	struct swap_cluster_info *ci;
1346	struct swap_info_struct *si;
1347	unsigned char *map;
1348	unsigned int i, free_entries = 0;
1349	unsigned char val;
1350	int size = swap_entry_size(folio_nr_pages(folio));
1351
1352	si = _swap_info_get(entry);
1353	if (!si)
1354		return;
1355
1356	ci = lock_cluster_or_swap_info(si, offset);
1357	if (size == SWAPFILE_CLUSTER) {
1358		VM_BUG_ON(!cluster_is_huge(ci));
1359		map = si->swap_map + offset;
1360		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1361			val = map[i];
1362			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1363			if (val == SWAP_HAS_CACHE)
1364				free_entries++;
1365		}
1366		cluster_clear_huge(ci);
1367		if (free_entries == SWAPFILE_CLUSTER) {
1368			unlock_cluster_or_swap_info(si, ci);
1369			spin_lock(&si->lock);
1370			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1371			swap_free_cluster(si, idx);
1372			spin_unlock(&si->lock);
1373			return;
1374		}
1375	}
1376	for (i = 0; i < size; i++, entry.val++) {
1377		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1378			unlock_cluster_or_swap_info(si, ci);
1379			free_swap_slot(entry);
1380			if (i == size - 1)
1381				return;
1382			lock_cluster_or_swap_info(si, offset);
1383		}
1384	}
1385	unlock_cluster_or_swap_info(si, ci);
1386}
1387
1388#ifdef CONFIG_THP_SWAP
1389int split_swap_cluster(swp_entry_t entry)
1390{
1391	struct swap_info_struct *si;
1392	struct swap_cluster_info *ci;
1393	unsigned long offset = swp_offset(entry);
1394
1395	si = _swap_info_get(entry);
1396	if (!si)
1397		return -EBUSY;
1398	ci = lock_cluster(si, offset);
1399	cluster_clear_huge(ci);
1400	unlock_cluster(ci);
1401	return 0;
1402}
1403#endif
1404
1405static int swp_entry_cmp(const void *ent1, const void *ent2)
1406{
1407	const swp_entry_t *e1 = ent1, *e2 = ent2;
1408
1409	return (int)swp_type(*e1) - (int)swp_type(*e2);
1410}
1411
1412void swapcache_free_entries(swp_entry_t *entries, int n)
1413{
1414	struct swap_info_struct *p, *prev;
1415	int i;
1416
1417	if (n <= 0)
1418		return;
1419
1420	prev = NULL;
1421	p = NULL;
1422
1423	/*
1424	 * Sort swap entries by swap device, so each lock is only taken once.
1425	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1426	 * so low that it isn't necessary to optimize further.
1427	 */
1428	if (nr_swapfiles > 1)
1429		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1430	for (i = 0; i < n; ++i) {
1431		p = swap_info_get_cont(entries[i], prev);
1432		if (p)
1433			swap_entry_free(p, entries[i]);
1434		prev = p;
1435	}
1436	if (p)
1437		spin_unlock(&p->lock);
1438}
1439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440int __swap_count(swp_entry_t entry)
1441{
1442	struct swap_info_struct *si = swp_swap_info(entry);
1443	pgoff_t offset = swp_offset(entry);
 
1444
1445	return swap_count(si->swap_map[offset]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446}
1447
1448/*
1449 * How many references to @entry are currently swapped out?
1450 * This does not give an exact answer when swap count is continued,
1451 * but does include the high COUNT_CONTINUED flag to allow for that.
1452 */
1453int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1454{
1455	pgoff_t offset = swp_offset(entry);
1456	struct swap_cluster_info *ci;
1457	int count;
1458
1459	ci = lock_cluster_or_swap_info(si, offset);
1460	count = swap_count(si->swap_map[offset]);
1461	unlock_cluster_or_swap_info(si, ci);
 
 
1462	return count;
1463}
1464
1465/*
1466 * How many references to @entry are currently swapped out?
1467 * This considers COUNT_CONTINUED so it returns exact answer.
1468 */
1469int swp_swapcount(swp_entry_t entry)
1470{
1471	int count, tmp_count, n;
1472	struct swap_info_struct *p;
1473	struct swap_cluster_info *ci;
1474	struct page *page;
1475	pgoff_t offset;
1476	unsigned char *map;
1477
1478	p = _swap_info_get(entry);
1479	if (!p)
1480		return 0;
1481
1482	offset = swp_offset(entry);
1483
1484	ci = lock_cluster_or_swap_info(p, offset);
1485
1486	count = swap_count(p->swap_map[offset]);
1487	if (!(count & COUNT_CONTINUED))
1488		goto out;
1489
1490	count &= ~COUNT_CONTINUED;
1491	n = SWAP_MAP_MAX + 1;
1492
1493	page = vmalloc_to_page(p->swap_map + offset);
1494	offset &= ~PAGE_MASK;
1495	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1496
1497	do {
1498		page = list_next_entry(page, lru);
1499		map = kmap_local_page(page);
1500		tmp_count = map[offset];
1501		kunmap_local(map);
1502
1503		count += (tmp_count & ~COUNT_CONTINUED) * n;
1504		n *= (SWAP_CONT_MAX + 1);
1505	} while (tmp_count & COUNT_CONTINUED);
1506out:
1507	unlock_cluster_or_swap_info(p, ci);
1508	return count;
1509}
1510
1511static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1512					 swp_entry_t entry)
1513{
1514	struct swap_cluster_info *ci;
1515	unsigned char *map = si->swap_map;
1516	unsigned long roffset = swp_offset(entry);
1517	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1518	int i;
1519	bool ret = false;
1520
1521	ci = lock_cluster_or_swap_info(si, offset);
1522	if (!ci || !cluster_is_huge(ci)) {
1523		if (swap_count(map[roffset]))
1524			ret = true;
1525		goto unlock_out;
1526	}
1527	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1528		if (swap_count(map[offset + i])) {
1529			ret = true;
1530			break;
1531		}
1532	}
1533unlock_out:
1534	unlock_cluster_or_swap_info(si, ci);
1535	return ret;
1536}
1537
1538static bool folio_swapped(struct folio *folio)
1539{
1540	swp_entry_t entry = folio->swap;
1541	struct swap_info_struct *si = _swap_info_get(entry);
1542
1543	if (!si)
1544		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1545
1546	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1547		return swap_swapcount(si, entry) != 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548
1549	return swap_page_trans_huge_swapped(si, entry);
1550}
1551
1552/**
1553 * folio_free_swap() - Free the swap space used for this folio.
1554 * @folio: The folio to remove.
1555 *
1556 * If swap is getting full, or if there are no more mappings of this folio,
1557 * then call folio_free_swap to free its swap space.
1558 *
1559 * Return: true if we were able to release the swap space.
 
 
1560 */
1561bool folio_free_swap(struct folio *folio)
1562{
1563	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1564
1565	if (!folio_test_swapcache(folio))
1566		return false;
1567	if (folio_test_writeback(folio))
1568		return false;
1569	if (folio_swapped(folio))
1570		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1571
1572	/*
1573	 * Once hibernation has begun to create its image of memory,
1574	 * there's a danger that one of the calls to folio_free_swap()
1575	 * - most probably a call from __try_to_reclaim_swap() while
1576	 * hibernation is allocating its own swap pages for the image,
1577	 * but conceivably even a call from memory reclaim - will free
1578	 * the swap from a folio which has already been recorded in the
1579	 * image as a clean swapcache folio, and then reuse its swap for
1580	 * another page of the image.  On waking from hibernation, the
1581	 * original folio might be freed under memory pressure, then
1582	 * later read back in from swap, now with the wrong data.
1583	 *
1584	 * Hibernation suspends storage while it is writing the image
1585	 * to disk so check that here.
1586	 */
1587	if (pm_suspended_storage())
1588		return false;
1589
1590	delete_from_swap_cache(folio);
1591	folio_set_dirty(folio);
1592	return true;
 
1593}
1594
1595/*
1596 * Free the swap entry like above, but also try to
1597 * free the page cache entry if it is the last user.
1598 */
1599int free_swap_and_cache(swp_entry_t entry)
1600{
1601	struct swap_info_struct *p;
1602	unsigned char count;
1603
1604	if (non_swap_entry(entry))
1605		return 1;
1606
1607	p = _swap_info_get(entry);
1608	if (p) {
1609		count = __swap_entry_free(p, entry);
1610		if (count == SWAP_HAS_CACHE &&
1611		    !swap_page_trans_huge_swapped(p, entry))
1612			__try_to_reclaim_swap(p, swp_offset(entry),
1613					      TTRS_UNMAPPED | TTRS_FULL);
1614	}
1615	return p != NULL;
1616}
1617
1618#ifdef CONFIG_HIBERNATION
1619
1620swp_entry_t get_swap_page_of_type(int type)
1621{
1622	struct swap_info_struct *si = swap_type_to_swap_info(type);
1623	swp_entry_t entry = {0};
1624
1625	if (!si)
1626		goto fail;
1627
1628	/* This is called for allocating swap entry, not cache */
1629	spin_lock(&si->lock);
1630	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1631		atomic_long_dec(&nr_swap_pages);
1632	spin_unlock(&si->lock);
1633fail:
1634	return entry;
1635}
1636
1637/*
1638 * Find the swap type that corresponds to given device (if any).
1639 *
1640 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1641 * from 0, in which the swap header is expected to be located.
1642 *
1643 * This is needed for the suspend to disk (aka swsusp).
1644 */
1645int swap_type_of(dev_t device, sector_t offset)
1646{
 
1647	int type;
1648
1649	if (!device)
1650		return -1;
1651
1652	spin_lock(&swap_lock);
1653	for (type = 0; type < nr_swapfiles; type++) {
1654		struct swap_info_struct *sis = swap_info[type];
1655
1656		if (!(sis->flags & SWP_WRITEOK))
1657			continue;
1658
1659		if (device == sis->bdev->bd_dev) {
 
 
 
 
 
 
 
1660			struct swap_extent *se = first_se(sis);
1661
1662			if (se->start_block == offset) {
 
 
 
1663				spin_unlock(&swap_lock);
 
1664				return type;
1665			}
1666		}
1667	}
1668	spin_unlock(&swap_lock);
1669	return -ENODEV;
1670}
1671
1672int find_first_swap(dev_t *device)
1673{
1674	int type;
1675
1676	spin_lock(&swap_lock);
1677	for (type = 0; type < nr_swapfiles; type++) {
1678		struct swap_info_struct *sis = swap_info[type];
1679
1680		if (!(sis->flags & SWP_WRITEOK))
1681			continue;
1682		*device = sis->bdev->bd_dev;
1683		spin_unlock(&swap_lock);
1684		return type;
1685	}
1686	spin_unlock(&swap_lock);
1687	return -ENODEV;
1688}
1689
1690/*
1691 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1692 * corresponding to given index in swap_info (swap type).
1693 */
1694sector_t swapdev_block(int type, pgoff_t offset)
1695{
 
1696	struct swap_info_struct *si = swap_type_to_swap_info(type);
1697	struct swap_extent *se;
1698
1699	if (!si || !(si->flags & SWP_WRITEOK))
1700		return 0;
1701	se = offset_to_swap_extent(si, offset);
1702	return se->start_block + (offset - se->start_page);
1703}
1704
1705/*
1706 * Return either the total number of swap pages of given type, or the number
1707 * of free pages of that type (depending on @free)
1708 *
1709 * This is needed for software suspend
1710 */
1711unsigned int count_swap_pages(int type, int free)
1712{
1713	unsigned int n = 0;
1714
1715	spin_lock(&swap_lock);
1716	if ((unsigned int)type < nr_swapfiles) {
1717		struct swap_info_struct *sis = swap_info[type];
1718
1719		spin_lock(&sis->lock);
1720		if (sis->flags & SWP_WRITEOK) {
1721			n = sis->pages;
1722			if (free)
1723				n -= sis->inuse_pages;
1724		}
1725		spin_unlock(&sis->lock);
1726	}
1727	spin_unlock(&swap_lock);
1728	return n;
1729}
1730#endif /* CONFIG_HIBERNATION */
1731
1732static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1733{
1734	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1735}
1736
1737/*
1738 * No need to decide whether this PTE shares the swap entry with others,
1739 * just let do_wp_page work it out if a write is requested later - to
1740 * force COW, vm_page_prot omits write permission from any private vma.
1741 */
1742static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1743		unsigned long addr, swp_entry_t entry, struct folio *folio)
1744{
1745	struct page *page;
1746	struct folio *swapcache;
1747	spinlock_t *ptl;
1748	pte_t *pte, new_pte, old_pte;
1749	bool hwpoisoned = false;
1750	int ret = 1;
1751
1752	swapcache = folio;
1753	folio = ksm_might_need_to_copy(folio, vma, addr);
1754	if (unlikely(!folio))
1755		return -ENOMEM;
1756	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1757		hwpoisoned = true;
1758		folio = swapcache;
1759	}
1760
1761	page = folio_file_page(folio, swp_offset(entry));
1762	if (PageHWPoison(page))
1763		hwpoisoned = true;
1764
1765	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1766	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1767						swp_entry_to_pte(entry)))) {
1768		ret = 0;
1769		goto out;
1770	}
1771
1772	old_pte = ptep_get(pte);
1773
1774	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1775		swp_entry_t swp_entry;
1776
1777		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1778		if (hwpoisoned) {
1779			swp_entry = make_hwpoison_entry(page);
1780		} else {
1781			swp_entry = make_poisoned_swp_entry();
1782		}
1783		new_pte = swp_entry_to_pte(swp_entry);
1784		ret = 0;
1785		goto setpte;
1786	}
1787
1788	/*
1789	 * Some architectures may have to restore extra metadata to the page
1790	 * when reading from swap. This metadata may be indexed by swap entry
1791	 * so this must be called before swap_free().
1792	 */
1793	arch_swap_restore(entry, folio);
1794
1795	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1796	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1797	folio_get(folio);
1798	if (folio == swapcache) {
1799		rmap_t rmap_flags = RMAP_NONE;
1800
1801		/*
1802		 * See do_swap_page(): writeback would be problematic.
1803		 * However, we do a folio_wait_writeback() just before this
1804		 * call and have the folio locked.
1805		 */
1806		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1807		if (pte_swp_exclusive(old_pte))
1808			rmap_flags |= RMAP_EXCLUSIVE;
1809
1810		folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1811	} else { /* ksm created a completely new copy */
1812		folio_add_new_anon_rmap(folio, vma, addr);
1813		folio_add_lru_vma(folio, vma);
1814	}
1815	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1816	if (pte_swp_soft_dirty(old_pte))
1817		new_pte = pte_mksoft_dirty(new_pte);
1818	if (pte_swp_uffd_wp(old_pte))
1819		new_pte = pte_mkuffd_wp(new_pte);
1820setpte:
1821	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1822	swap_free(entry);
 
 
 
 
 
1823out:
1824	if (pte)
1825		pte_unmap_unlock(pte, ptl);
1826	if (folio != swapcache) {
1827		folio_unlock(folio);
1828		folio_put(folio);
1829	}
1830	return ret;
1831}
1832
1833static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1834			unsigned long addr, unsigned long end,
1835			unsigned int type)
 
1836{
1837	pte_t *pte = NULL;
 
 
1838	struct swap_info_struct *si;
 
 
 
1839
1840	si = swap_info[type];
 
1841	do {
1842		struct folio *folio;
1843		unsigned long offset;
1844		unsigned char swp_count;
1845		swp_entry_t entry;
1846		int ret;
1847		pte_t ptent;
1848
1849		if (!pte++) {
1850			pte = pte_offset_map(pmd, addr);
1851			if (!pte)
1852				break;
1853		}
1854
1855		ptent = ptep_get_lockless(pte);
1856
1857		if (!is_swap_pte(ptent))
1858			continue;
1859
1860		entry = pte_to_swp_entry(ptent);
1861		if (swp_type(entry) != type)
1862			continue;
1863
1864		offset = swp_offset(entry);
 
 
 
1865		pte_unmap(pte);
1866		pte = NULL;
1867
1868		folio = swap_cache_get_folio(entry, vma, addr);
1869		if (!folio) {
1870			struct page *page;
1871			struct vm_fault vmf = {
1872				.vma = vma,
1873				.address = addr,
1874				.real_address = addr,
1875				.pmd = pmd,
1876			};
1877
1878			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1879						&vmf);
1880			if (page)
1881				folio = page_folio(page);
1882		}
1883		if (!folio) {
1884			swp_count = READ_ONCE(si->swap_map[offset]);
1885			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1886				continue;
1887			return -ENOMEM;
1888		}
1889
1890		folio_lock(folio);
1891		folio_wait_writeback(folio);
1892		ret = unuse_pte(vma, pmd, addr, entry, folio);
1893		if (ret < 0) {
1894			folio_unlock(folio);
1895			folio_put(folio);
1896			return ret;
1897		}
1898
1899		folio_free_swap(folio);
1900		folio_unlock(folio);
1901		folio_put(folio);
1902	} while (addr += PAGE_SIZE, addr != end);
1903
1904	if (pte)
1905		pte_unmap(pte);
1906	return 0;
 
 
 
 
 
 
 
 
 
1907}
1908
1909static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1910				unsigned long addr, unsigned long end,
1911				unsigned int type)
 
1912{
1913	pmd_t *pmd;
1914	unsigned long next;
1915	int ret;
1916
1917	pmd = pmd_offset(pud, addr);
1918	do {
1919		cond_resched();
1920		next = pmd_addr_end(addr, end);
1921		ret = unuse_pte_range(vma, pmd, addr, next, type);
 
 
 
1922		if (ret)
1923			return ret;
1924	} while (pmd++, addr = next, addr != end);
1925	return 0;
1926}
1927
1928static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1929				unsigned long addr, unsigned long end,
1930				unsigned int type)
 
1931{
1932	pud_t *pud;
1933	unsigned long next;
1934	int ret;
1935
1936	pud = pud_offset(p4d, addr);
1937	do {
1938		next = pud_addr_end(addr, end);
1939		if (pud_none_or_clear_bad(pud))
1940			continue;
1941		ret = unuse_pmd_range(vma, pud, addr, next, type);
 
1942		if (ret)
1943			return ret;
1944	} while (pud++, addr = next, addr != end);
1945	return 0;
1946}
1947
1948static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1949				unsigned long addr, unsigned long end,
1950				unsigned int type)
 
1951{
1952	p4d_t *p4d;
1953	unsigned long next;
1954	int ret;
1955
1956	p4d = p4d_offset(pgd, addr);
1957	do {
1958		next = p4d_addr_end(addr, end);
1959		if (p4d_none_or_clear_bad(p4d))
1960			continue;
1961		ret = unuse_pud_range(vma, p4d, addr, next, type);
 
1962		if (ret)
1963			return ret;
1964	} while (p4d++, addr = next, addr != end);
1965	return 0;
1966}
1967
1968static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
 
1969{
1970	pgd_t *pgd;
1971	unsigned long addr, end, next;
1972	int ret;
1973
1974	addr = vma->vm_start;
1975	end = vma->vm_end;
1976
1977	pgd = pgd_offset(vma->vm_mm, addr);
1978	do {
1979		next = pgd_addr_end(addr, end);
1980		if (pgd_none_or_clear_bad(pgd))
1981			continue;
1982		ret = unuse_p4d_range(vma, pgd, addr, next, type);
 
1983		if (ret)
1984			return ret;
1985	} while (pgd++, addr = next, addr != end);
1986	return 0;
1987}
1988
1989static int unuse_mm(struct mm_struct *mm, unsigned int type)
 
1990{
1991	struct vm_area_struct *vma;
1992	int ret = 0;
1993	VMA_ITERATOR(vmi, mm, 0);
1994
1995	mmap_read_lock(mm);
1996	for_each_vma(vmi, vma) {
1997		if (vma->anon_vma) {
1998			ret = unuse_vma(vma, type);
 
1999			if (ret)
2000				break;
2001		}
2002
2003		cond_resched();
2004	}
2005	mmap_read_unlock(mm);
2006	return ret;
2007}
2008
2009/*
2010 * Scan swap_map from current position to next entry still in use.
2011 * Return 0 if there are no inuse entries after prev till end of
2012 * the map.
2013 */
2014static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2015					unsigned int prev)
2016{
2017	unsigned int i;
2018	unsigned char count;
2019
2020	/*
2021	 * No need for swap_lock here: we're just looking
2022	 * for whether an entry is in use, not modifying it; false
2023	 * hits are okay, and sys_swapoff() has already prevented new
2024	 * allocations from this area (while holding swap_lock).
2025	 */
2026	for (i = prev + 1; i < si->max; i++) {
2027		count = READ_ONCE(si->swap_map[i]);
2028		if (count && swap_count(count) != SWAP_MAP_BAD)
2029			break;
 
2030		if ((i % LATENCY_LIMIT) == 0)
2031			cond_resched();
2032	}
2033
2034	if (i == si->max)
2035		i = 0;
2036
2037	return i;
2038}
2039
2040static int try_to_unuse(unsigned int type)
 
 
 
 
 
2041{
2042	struct mm_struct *prev_mm;
2043	struct mm_struct *mm;
2044	struct list_head *p;
2045	int retval = 0;
2046	struct swap_info_struct *si = swap_info[type];
2047	struct folio *folio;
2048	swp_entry_t entry;
2049	unsigned int i;
2050
2051	if (!READ_ONCE(si->inuse_pages))
2052		return 0;
2053
 
 
 
2054retry:
2055	retval = shmem_unuse(type);
2056	if (retval)
2057		return retval;
2058
2059	prev_mm = &init_mm;
2060	mmget(prev_mm);
2061
2062	spin_lock(&mmlist_lock);
2063	p = &init_mm.mmlist;
2064	while (READ_ONCE(si->inuse_pages) &&
2065	       !signal_pending(current) &&
2066	       (p = p->next) != &init_mm.mmlist) {
2067
2068		mm = list_entry(p, struct mm_struct, mmlist);
2069		if (!mmget_not_zero(mm))
2070			continue;
2071		spin_unlock(&mmlist_lock);
2072		mmput(prev_mm);
2073		prev_mm = mm;
2074		retval = unuse_mm(mm, type);
 
2075		if (retval) {
2076			mmput(prev_mm);
2077			return retval;
2078		}
2079
2080		/*
2081		 * Make sure that we aren't completely killing
2082		 * interactive performance.
2083		 */
2084		cond_resched();
2085		spin_lock(&mmlist_lock);
2086	}
2087	spin_unlock(&mmlist_lock);
2088
2089	mmput(prev_mm);
2090
2091	i = 0;
2092	while (READ_ONCE(si->inuse_pages) &&
2093	       !signal_pending(current) &&
2094	       (i = find_next_to_unuse(si, i)) != 0) {
2095
2096		entry = swp_entry(type, i);
2097		folio = filemap_get_folio(swap_address_space(entry), i);
2098		if (IS_ERR(folio))
2099			continue;
2100
2101		/*
2102		 * It is conceivable that a racing task removed this folio from
2103		 * swap cache just before we acquired the page lock. The folio
2104		 * might even be back in swap cache on another swap area. But
2105		 * that is okay, folio_free_swap() only removes stale folios.
2106		 */
2107		folio_lock(folio);
2108		folio_wait_writeback(folio);
2109		folio_free_swap(folio);
2110		folio_unlock(folio);
2111		folio_put(folio);
 
 
 
 
 
 
 
 
2112	}
2113
2114	/*
2115	 * Lets check again to see if there are still swap entries in the map.
2116	 * If yes, we would need to do retry the unuse logic again.
2117	 * Under global memory pressure, swap entries can be reinserted back
2118	 * into process space after the mmlist loop above passes over them.
2119	 *
2120	 * Limit the number of retries? No: when mmget_not_zero()
2121	 * above fails, that mm is likely to be freeing swap from
2122	 * exit_mmap(), which proceeds at its own independent pace;
2123	 * and even shmem_writepage() could have been preempted after
2124	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2125	 * and robust (though cpu-intensive) just to keep retrying.
2126	 */
2127	if (READ_ONCE(si->inuse_pages)) {
2128		if (!signal_pending(current))
2129			goto retry;
2130		return -EINTR;
2131	}
2132
2133	return 0;
2134}
2135
2136/*
2137 * After a successful try_to_unuse, if no swap is now in use, we know
2138 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2139 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2140 * added to the mmlist just after page_duplicate - before would be racy.
2141 */
2142static void drain_mmlist(void)
2143{
2144	struct list_head *p, *next;
2145	unsigned int type;
2146
2147	for (type = 0; type < nr_swapfiles; type++)
2148		if (swap_info[type]->inuse_pages)
2149			return;
2150	spin_lock(&mmlist_lock);
2151	list_for_each_safe(p, next, &init_mm.mmlist)
2152		list_del_init(p);
2153	spin_unlock(&mmlist_lock);
2154}
2155
2156/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157 * Free all of a swapdev's extent information
2158 */
2159static void destroy_swap_extents(struct swap_info_struct *sis)
2160{
2161	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2162		struct rb_node *rb = sis->swap_extent_root.rb_node;
2163		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2164
2165		rb_erase(rb, &sis->swap_extent_root);
2166		kfree(se);
2167	}
2168
2169	if (sis->flags & SWP_ACTIVATED) {
2170		struct file *swap_file = sis->swap_file;
2171		struct address_space *mapping = swap_file->f_mapping;
2172
2173		sis->flags &= ~SWP_ACTIVATED;
2174		if (mapping->a_ops->swap_deactivate)
2175			mapping->a_ops->swap_deactivate(swap_file);
2176	}
2177}
2178
2179/*
2180 * Add a block range (and the corresponding page range) into this swapdev's
2181 * extent tree.
2182 *
2183 * This function rather assumes that it is called in ascending page order.
2184 */
2185int
2186add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2187		unsigned long nr_pages, sector_t start_block)
2188{
2189	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2190	struct swap_extent *se;
2191	struct swap_extent *new_se;
2192
2193	/*
2194	 * place the new node at the right most since the
2195	 * function is called in ascending page order.
2196	 */
2197	while (*link) {
2198		parent = *link;
2199		link = &parent->rb_right;
2200	}
2201
2202	if (parent) {
2203		se = rb_entry(parent, struct swap_extent, rb_node);
2204		BUG_ON(se->start_page + se->nr_pages != start_page);
2205		if (se->start_block + se->nr_pages == start_block) {
2206			/* Merge it */
2207			se->nr_pages += nr_pages;
2208			return 0;
2209		}
2210	}
2211
2212	/* No merge, insert a new extent. */
2213	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2214	if (new_se == NULL)
2215		return -ENOMEM;
2216	new_se->start_page = start_page;
2217	new_se->nr_pages = nr_pages;
2218	new_se->start_block = start_block;
2219
2220	rb_link_node(&new_se->rb_node, parent, link);
2221	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2222	return 1;
2223}
2224EXPORT_SYMBOL_GPL(add_swap_extent);
2225
2226/*
2227 * A `swap extent' is a simple thing which maps a contiguous range of pages
2228 * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2229 * built at swapon time and is then used at swap_writepage/swap_read_folio
2230 * time for locating where on disk a page belongs.
2231 *
2232 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2233 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2234 * swap files identically.
2235 *
2236 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2237 * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2238 * swapfiles are handled *identically* after swapon time.
2239 *
2240 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2241 * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2242 * blocks are found which do not fall within the PAGE_SIZE alignment
2243 * requirements, they are simply tossed out - we will never use those blocks
2244 * for swapping.
2245 *
2246 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2247 * prevents users from writing to the swap device, which will corrupt memory.
2248 *
2249 * The amount of disk space which a single swap extent represents varies.
2250 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2251 * extents in the rbtree. - akpm.
 
 
 
2252 */
2253static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2254{
2255	struct file *swap_file = sis->swap_file;
2256	struct address_space *mapping = swap_file->f_mapping;
2257	struct inode *inode = mapping->host;
2258	int ret;
2259
2260	if (S_ISBLK(inode->i_mode)) {
2261		ret = add_swap_extent(sis, 0, sis->max, 0);
2262		*span = sis->pages;
2263		return ret;
2264	}
2265
2266	if (mapping->a_ops->swap_activate) {
2267		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2268		if (ret < 0)
2269			return ret;
2270		sis->flags |= SWP_ACTIVATED;
2271		if ((sis->flags & SWP_FS_OPS) &&
2272		    sio_pool_init() != 0) {
2273			destroy_swap_extents(sis);
2274			return -ENOMEM;
2275		}
2276		return ret;
2277	}
2278
2279	return generic_swapfile_activate(sis, swap_file, span);
2280}
2281
2282static int swap_node(struct swap_info_struct *p)
2283{
2284	struct block_device *bdev;
2285
2286	if (p->bdev)
2287		bdev = p->bdev;
2288	else
2289		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2290
2291	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2292}
2293
2294static void setup_swap_info(struct swap_info_struct *p, int prio,
2295			    unsigned char *swap_map,
2296			    struct swap_cluster_info *cluster_info)
2297{
2298	int i;
2299
2300	if (prio >= 0)
2301		p->prio = prio;
2302	else
2303		p->prio = --least_priority;
2304	/*
2305	 * the plist prio is negated because plist ordering is
2306	 * low-to-high, while swap ordering is high-to-low
2307	 */
2308	p->list.prio = -p->prio;
2309	for_each_node(i) {
2310		if (p->prio >= 0)
2311			p->avail_lists[i].prio = -p->prio;
2312		else {
2313			if (swap_node(p) == i)
2314				p->avail_lists[i].prio = 1;
2315			else
2316				p->avail_lists[i].prio = -p->prio;
2317		}
2318	}
2319	p->swap_map = swap_map;
2320	p->cluster_info = cluster_info;
2321}
2322
2323static void _enable_swap_info(struct swap_info_struct *p)
2324{
2325	p->flags |= SWP_WRITEOK;
2326	atomic_long_add(p->pages, &nr_swap_pages);
2327	total_swap_pages += p->pages;
2328
2329	assert_spin_locked(&swap_lock);
2330	/*
2331	 * both lists are plists, and thus priority ordered.
2332	 * swap_active_head needs to be priority ordered for swapoff(),
2333	 * which on removal of any swap_info_struct with an auto-assigned
2334	 * (i.e. negative) priority increments the auto-assigned priority
2335	 * of any lower-priority swap_info_structs.
2336	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2337	 * which allocates swap pages from the highest available priority
2338	 * swap_info_struct.
2339	 */
2340	plist_add(&p->list, &swap_active_head);
2341
2342	/* add to available list iff swap device is not full */
2343	if (p->highest_bit)
2344		add_to_avail_list(p);
2345}
2346
2347static void enable_swap_info(struct swap_info_struct *p, int prio,
2348				unsigned char *swap_map,
2349				struct swap_cluster_info *cluster_info)
 
2350{
2351	zswap_swapon(p->type);
2352
2353	spin_lock(&swap_lock);
2354	spin_lock(&p->lock);
2355	setup_swap_info(p, prio, swap_map, cluster_info);
2356	spin_unlock(&p->lock);
2357	spin_unlock(&swap_lock);
2358	/*
2359	 * Finished initializing swap device, now it's safe to reference it.
 
2360	 */
2361	percpu_ref_resurrect(&p->users);
2362	spin_lock(&swap_lock);
2363	spin_lock(&p->lock);
2364	_enable_swap_info(p);
2365	spin_unlock(&p->lock);
2366	spin_unlock(&swap_lock);
2367}
2368
2369static void reinsert_swap_info(struct swap_info_struct *p)
2370{
2371	spin_lock(&swap_lock);
2372	spin_lock(&p->lock);
2373	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2374	_enable_swap_info(p);
2375	spin_unlock(&p->lock);
2376	spin_unlock(&swap_lock);
2377}
2378
2379bool has_usable_swap(void)
2380{
2381	bool ret = true;
2382
2383	spin_lock(&swap_lock);
2384	if (plist_head_empty(&swap_active_head))
2385		ret = false;
2386	spin_unlock(&swap_lock);
2387	return ret;
2388}
2389
2390SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2391{
2392	struct swap_info_struct *p = NULL;
2393	unsigned char *swap_map;
2394	struct swap_cluster_info *cluster_info;
 
2395	struct file *swap_file, *victim;
2396	struct address_space *mapping;
2397	struct inode *inode;
2398	struct filename *pathname;
2399	int err, found = 0;
2400	unsigned int old_block_size;
2401
2402	if (!capable(CAP_SYS_ADMIN))
2403		return -EPERM;
2404
2405	BUG_ON(!current->mm);
2406
2407	pathname = getname(specialfile);
2408	if (IS_ERR(pathname))
2409		return PTR_ERR(pathname);
2410
2411	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2412	err = PTR_ERR(victim);
2413	if (IS_ERR(victim))
2414		goto out;
2415
2416	mapping = victim->f_mapping;
2417	spin_lock(&swap_lock);
2418	plist_for_each_entry(p, &swap_active_head, list) {
2419		if (p->flags & SWP_WRITEOK) {
2420			if (p->swap_file->f_mapping == mapping) {
2421				found = 1;
2422				break;
2423			}
2424		}
2425	}
2426	if (!found) {
2427		err = -EINVAL;
2428		spin_unlock(&swap_lock);
2429		goto out_dput;
2430	}
2431	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2432		vm_unacct_memory(p->pages);
2433	else {
2434		err = -ENOMEM;
2435		spin_unlock(&swap_lock);
2436		goto out_dput;
2437	}
 
2438	spin_lock(&p->lock);
2439	del_from_avail_list(p);
2440	if (p->prio < 0) {
2441		struct swap_info_struct *si = p;
2442		int nid;
2443
2444		plist_for_each_entry_continue(si, &swap_active_head, list) {
2445			si->prio++;
2446			si->list.prio--;
2447			for_each_node(nid) {
2448				if (si->avail_lists[nid].prio != 1)
2449					si->avail_lists[nid].prio--;
2450			}
2451		}
2452		least_priority++;
2453	}
2454	plist_del(&p->list, &swap_active_head);
2455	atomic_long_sub(p->pages, &nr_swap_pages);
2456	total_swap_pages -= p->pages;
2457	p->flags &= ~SWP_WRITEOK;
2458	spin_unlock(&p->lock);
2459	spin_unlock(&swap_lock);
2460
2461	disable_swap_slots_cache_lock();
2462
2463	set_current_oom_origin();
2464	err = try_to_unuse(p->type);
2465	clear_current_oom_origin();
2466
2467	if (err) {
2468		/* re-insert swap space back into swap_list */
2469		reinsert_swap_info(p);
2470		reenable_swap_slots_cache_unlock();
2471		goto out_dput;
2472	}
2473
2474	reenable_swap_slots_cache_unlock();
2475
 
 
 
 
 
2476	/*
2477	 * Wait for swap operations protected by get/put_swap_device()
2478	 * to complete.
2479	 *
2480	 * We need synchronize_rcu() here to protect the accessing to
2481	 * the swap cache data structure.
2482	 */
2483	percpu_ref_kill(&p->users);
2484	synchronize_rcu();
2485	wait_for_completion(&p->comp);
2486
2487	flush_work(&p->discard_work);
2488
2489	destroy_swap_extents(p);
2490	if (p->flags & SWP_CONTINUED)
2491		free_swap_count_continuations(p);
2492
2493	if (!p->bdev || !bdev_nonrot(p->bdev))
2494		atomic_dec(&nr_rotate_swap);
2495
2496	mutex_lock(&swapon_mutex);
2497	spin_lock(&swap_lock);
2498	spin_lock(&p->lock);
2499	drain_mmlist();
2500
2501	/* wait for anyone still in scan_swap_map_slots */
2502	p->highest_bit = 0;		/* cuts scans short */
2503	while (p->flags >= SWP_SCANNING) {
2504		spin_unlock(&p->lock);
2505		spin_unlock(&swap_lock);
2506		schedule_timeout_uninterruptible(1);
2507		spin_lock(&swap_lock);
2508		spin_lock(&p->lock);
2509	}
2510
2511	swap_file = p->swap_file;
2512	old_block_size = p->old_block_size;
2513	p->swap_file = NULL;
2514	p->max = 0;
2515	swap_map = p->swap_map;
2516	p->swap_map = NULL;
2517	cluster_info = p->cluster_info;
2518	p->cluster_info = NULL;
 
2519	spin_unlock(&p->lock);
2520	spin_unlock(&swap_lock);
2521	arch_swap_invalidate_area(p->type);
2522	zswap_swapoff(p->type);
2523	mutex_unlock(&swapon_mutex);
2524	free_percpu(p->percpu_cluster);
2525	p->percpu_cluster = NULL;
2526	free_percpu(p->cluster_next_cpu);
2527	p->cluster_next_cpu = NULL;
2528	vfree(swap_map);
2529	kvfree(cluster_info);
 
2530	/* Destroy swap account information */
2531	swap_cgroup_swapoff(p->type);
2532	exit_swap_address_space(p->type);
2533
2534	inode = mapping->host;
2535	if (p->bdev_handle) {
2536		set_blocksize(p->bdev, old_block_size);
2537		bdev_release(p->bdev_handle);
2538		p->bdev_handle = NULL;
 
2539	}
2540
2541	inode_lock(inode);
2542	inode->i_flags &= ~S_SWAPFILE;
2543	inode_unlock(inode);
2544	filp_close(swap_file, NULL);
2545
2546	/*
2547	 * Clear the SWP_USED flag after all resources are freed so that swapon
2548	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2549	 * not hold p->lock after we cleared its SWP_WRITEOK.
2550	 */
2551	spin_lock(&swap_lock);
2552	p->flags = 0;
2553	spin_unlock(&swap_lock);
2554
2555	err = 0;
2556	atomic_inc(&proc_poll_event);
2557	wake_up_interruptible(&proc_poll_wait);
2558
2559out_dput:
2560	filp_close(victim, NULL);
2561out:
2562	putname(pathname);
2563	return err;
2564}
2565
2566#ifdef CONFIG_PROC_FS
2567static __poll_t swaps_poll(struct file *file, poll_table *wait)
2568{
2569	struct seq_file *seq = file->private_data;
2570
2571	poll_wait(file, &proc_poll_wait, wait);
2572
2573	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2574		seq->poll_event = atomic_read(&proc_poll_event);
2575		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2576	}
2577
2578	return EPOLLIN | EPOLLRDNORM;
2579}
2580
2581/* iterator */
2582static void *swap_start(struct seq_file *swap, loff_t *pos)
2583{
2584	struct swap_info_struct *si;
2585	int type;
2586	loff_t l = *pos;
2587
2588	mutex_lock(&swapon_mutex);
2589
2590	if (!l)
2591		return SEQ_START_TOKEN;
2592
2593	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2594		if (!(si->flags & SWP_USED) || !si->swap_map)
2595			continue;
2596		if (!--l)
2597			return si;
2598	}
2599
2600	return NULL;
2601}
2602
2603static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2604{
2605	struct swap_info_struct *si = v;
2606	int type;
2607
2608	if (v == SEQ_START_TOKEN)
2609		type = 0;
2610	else
2611		type = si->type + 1;
2612
2613	++(*pos);
2614	for (; (si = swap_type_to_swap_info(type)); type++) {
2615		if (!(si->flags & SWP_USED) || !si->swap_map)
2616			continue;
2617		return si;
2618	}
2619
2620	return NULL;
2621}
2622
2623static void swap_stop(struct seq_file *swap, void *v)
2624{
2625	mutex_unlock(&swapon_mutex);
2626}
2627
2628static int swap_show(struct seq_file *swap, void *v)
2629{
2630	struct swap_info_struct *si = v;
2631	struct file *file;
2632	int len;
2633	unsigned long bytes, inuse;
2634
2635	if (si == SEQ_START_TOKEN) {
2636		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2637		return 0;
2638	}
2639
2640	bytes = K(si->pages);
2641	inuse = K(READ_ONCE(si->inuse_pages));
2642
2643	file = si->swap_file;
2644	len = seq_file_path(swap, file, " \t\n\\");
2645	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2646			len < 40 ? 40 - len : 1, " ",
2647			S_ISBLK(file_inode(file)->i_mode) ?
2648				"partition" : "file\t",
2649			bytes, bytes < 10000000 ? "\t" : "",
2650			inuse, inuse < 10000000 ? "\t" : "",
2651			si->prio);
2652	return 0;
2653}
2654
2655static const struct seq_operations swaps_op = {
2656	.start =	swap_start,
2657	.next =		swap_next,
2658	.stop =		swap_stop,
2659	.show =		swap_show
2660};
2661
2662static int swaps_open(struct inode *inode, struct file *file)
2663{
2664	struct seq_file *seq;
2665	int ret;
2666
2667	ret = seq_open(file, &swaps_op);
2668	if (ret)
2669		return ret;
2670
2671	seq = file->private_data;
2672	seq->poll_event = atomic_read(&proc_poll_event);
2673	return 0;
2674}
2675
2676static const struct proc_ops swaps_proc_ops = {
2677	.proc_flags	= PROC_ENTRY_PERMANENT,
2678	.proc_open	= swaps_open,
2679	.proc_read	= seq_read,
2680	.proc_lseek	= seq_lseek,
2681	.proc_release	= seq_release,
2682	.proc_poll	= swaps_poll,
2683};
2684
2685static int __init procswaps_init(void)
2686{
2687	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2688	return 0;
2689}
2690__initcall(procswaps_init);
2691#endif /* CONFIG_PROC_FS */
2692
2693#ifdef MAX_SWAPFILES_CHECK
2694static int __init max_swapfiles_check(void)
2695{
2696	MAX_SWAPFILES_CHECK();
2697	return 0;
2698}
2699late_initcall(max_swapfiles_check);
2700#endif
2701
2702static struct swap_info_struct *alloc_swap_info(void)
2703{
2704	struct swap_info_struct *p;
2705	struct swap_info_struct *defer = NULL;
2706	unsigned int type;
2707	int i;
2708
2709	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2710	if (!p)
2711		return ERR_PTR(-ENOMEM);
2712
2713	if (percpu_ref_init(&p->users, swap_users_ref_free,
2714			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2715		kvfree(p);
2716		return ERR_PTR(-ENOMEM);
2717	}
2718
2719	spin_lock(&swap_lock);
2720	for (type = 0; type < nr_swapfiles; type++) {
2721		if (!(swap_info[type]->flags & SWP_USED))
2722			break;
2723	}
2724	if (type >= MAX_SWAPFILES) {
2725		spin_unlock(&swap_lock);
2726		percpu_ref_exit(&p->users);
2727		kvfree(p);
2728		return ERR_PTR(-EPERM);
2729	}
2730	if (type >= nr_swapfiles) {
2731		p->type = type;
 
2732		/*
2733		 * Publish the swap_info_struct after initializing it.
2734		 * Note that kvzalloc() above zeroes all its fields.
 
2735		 */
2736		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2737		nr_swapfiles++;
2738	} else {
2739		defer = p;
2740		p = swap_info[type];
2741		/*
2742		 * Do not memset this entry: a racing procfs swap_next()
2743		 * would be relying on p->type to remain valid.
2744		 */
2745	}
2746	p->swap_extent_root = RB_ROOT;
2747	plist_node_init(&p->list, 0);
2748	for_each_node(i)
2749		plist_node_init(&p->avail_lists[i], 0);
2750	p->flags = SWP_USED;
2751	spin_unlock(&swap_lock);
2752	if (defer) {
2753		percpu_ref_exit(&defer->users);
2754		kvfree(defer);
2755	}
2756	spin_lock_init(&p->lock);
2757	spin_lock_init(&p->cont_lock);
2758	init_completion(&p->comp);
2759
2760	return p;
2761}
2762
2763static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2764{
2765	int error;
2766
2767	if (S_ISBLK(inode->i_mode)) {
2768		p->bdev_handle = bdev_open_by_dev(inode->i_rdev,
2769				BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2770		if (IS_ERR(p->bdev_handle)) {
2771			error = PTR_ERR(p->bdev_handle);
2772			p->bdev_handle = NULL;
2773			return error;
2774		}
2775		p->bdev = p->bdev_handle->bdev;
2776		p->old_block_size = block_size(p->bdev);
2777		error = set_blocksize(p->bdev, PAGE_SIZE);
2778		if (error < 0)
2779			return error;
2780		/*
2781		 * Zoned block devices contain zones that have a sequential
2782		 * write only restriction.  Hence zoned block devices are not
2783		 * suitable for swapping.  Disallow them here.
2784		 */
2785		if (bdev_is_zoned(p->bdev))
2786			return -EINVAL;
2787		p->flags |= SWP_BLKDEV;
2788	} else if (S_ISREG(inode->i_mode)) {
2789		p->bdev = inode->i_sb->s_bdev;
2790	}
2791
2792	return 0;
2793}
2794
2795
2796/*
2797 * Find out how many pages are allowed for a single swap device. There
2798 * are two limiting factors:
2799 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2800 * 2) the number of bits in the swap pte, as defined by the different
2801 * architectures.
2802 *
2803 * In order to find the largest possible bit mask, a swap entry with
2804 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2805 * decoded to a swp_entry_t again, and finally the swap offset is
2806 * extracted.
2807 *
2808 * This will mask all the bits from the initial ~0UL mask that can't
2809 * be encoded in either the swp_entry_t or the architecture definition
2810 * of a swap pte.
2811 */
2812unsigned long generic_max_swapfile_size(void)
2813{
2814	return swp_offset(pte_to_swp_entry(
2815			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2816}
2817
2818/* Can be overridden by an architecture for additional checks. */
2819__weak unsigned long arch_max_swapfile_size(void)
2820{
2821	return generic_max_swapfile_size();
2822}
2823
2824static unsigned long read_swap_header(struct swap_info_struct *p,
2825					union swap_header *swap_header,
2826					struct inode *inode)
2827{
2828	int i;
2829	unsigned long maxpages;
2830	unsigned long swapfilepages;
2831	unsigned long last_page;
2832
2833	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2834		pr_err("Unable to find swap-space signature\n");
2835		return 0;
2836	}
2837
2838	/* swap partition endianness hack... */
2839	if (swab32(swap_header->info.version) == 1) {
2840		swab32s(&swap_header->info.version);
2841		swab32s(&swap_header->info.last_page);
2842		swab32s(&swap_header->info.nr_badpages);
2843		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2844			return 0;
2845		for (i = 0; i < swap_header->info.nr_badpages; i++)
2846			swab32s(&swap_header->info.badpages[i]);
2847	}
2848	/* Check the swap header's sub-version */
2849	if (swap_header->info.version != 1) {
2850		pr_warn("Unable to handle swap header version %d\n",
2851			swap_header->info.version);
2852		return 0;
2853	}
2854
2855	p->lowest_bit  = 1;
2856	p->cluster_next = 1;
2857	p->cluster_nr = 0;
2858
2859	maxpages = swapfile_maximum_size;
2860	last_page = swap_header->info.last_page;
2861	if (!last_page) {
2862		pr_warn("Empty swap-file\n");
2863		return 0;
2864	}
2865	if (last_page > maxpages) {
2866		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2867			K(maxpages), K(last_page));
 
2868	}
2869	if (maxpages > last_page) {
2870		maxpages = last_page + 1;
2871		/* p->max is an unsigned int: don't overflow it */
2872		if ((unsigned int)maxpages == 0)
2873			maxpages = UINT_MAX;
2874	}
2875	p->highest_bit = maxpages - 1;
2876
2877	if (!maxpages)
2878		return 0;
2879	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2880	if (swapfilepages && maxpages > swapfilepages) {
2881		pr_warn("Swap area shorter than signature indicates\n");
2882		return 0;
2883	}
2884	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2885		return 0;
2886	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2887		return 0;
2888
2889	return maxpages;
2890}
2891
2892#define SWAP_CLUSTER_INFO_COLS						\
2893	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2894#define SWAP_CLUSTER_SPACE_COLS						\
2895	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2896#define SWAP_CLUSTER_COLS						\
2897	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2898
2899static int setup_swap_map_and_extents(struct swap_info_struct *p,
2900					union swap_header *swap_header,
2901					unsigned char *swap_map,
2902					struct swap_cluster_info *cluster_info,
2903					unsigned long maxpages,
2904					sector_t *span)
2905{
2906	unsigned int j, k;
2907	unsigned int nr_good_pages;
2908	int nr_extents;
2909	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2910	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2911	unsigned long i, idx;
2912
2913	nr_good_pages = maxpages - 1;	/* omit header page */
2914
2915	cluster_list_init(&p->free_clusters);
2916	cluster_list_init(&p->discard_clusters);
2917
2918	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2919		unsigned int page_nr = swap_header->info.badpages[i];
2920		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2921			return -EINVAL;
2922		if (page_nr < maxpages) {
2923			swap_map[page_nr] = SWAP_MAP_BAD;
2924			nr_good_pages--;
2925			/*
2926			 * Haven't marked the cluster free yet, no list
2927			 * operation involved
2928			 */
2929			inc_cluster_info_page(p, cluster_info, page_nr);
2930		}
2931	}
2932
2933	/* Haven't marked the cluster free yet, no list operation involved */
2934	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2935		inc_cluster_info_page(p, cluster_info, i);
2936
2937	if (nr_good_pages) {
2938		swap_map[0] = SWAP_MAP_BAD;
2939		/*
2940		 * Not mark the cluster free yet, no list
2941		 * operation involved
2942		 */
2943		inc_cluster_info_page(p, cluster_info, 0);
2944		p->max = maxpages;
2945		p->pages = nr_good_pages;
2946		nr_extents = setup_swap_extents(p, span);
2947		if (nr_extents < 0)
2948			return nr_extents;
2949		nr_good_pages = p->pages;
2950	}
2951	if (!nr_good_pages) {
2952		pr_warn("Empty swap-file\n");
2953		return -EINVAL;
2954	}
2955
2956	if (!cluster_info)
2957		return nr_extents;
2958
2959
2960	/*
2961	 * Reduce false cache line sharing between cluster_info and
2962	 * sharing same address space.
2963	 */
2964	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2965		j = (k + col) % SWAP_CLUSTER_COLS;
2966		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2967			idx = i * SWAP_CLUSTER_COLS + j;
2968			if (idx >= nr_clusters)
2969				continue;
2970			if (cluster_count(&cluster_info[idx]))
2971				continue;
2972			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2973			cluster_list_add_tail(&p->free_clusters, cluster_info,
2974					      idx);
2975		}
2976	}
2977	return nr_extents;
2978}
2979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2980SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2981{
2982	struct swap_info_struct *p;
2983	struct filename *name;
2984	struct file *swap_file = NULL;
2985	struct address_space *mapping;
2986	struct dentry *dentry;
2987	int prio;
2988	int error;
2989	union swap_header *swap_header;
2990	int nr_extents;
2991	sector_t span;
2992	unsigned long maxpages;
2993	unsigned char *swap_map = NULL;
2994	struct swap_cluster_info *cluster_info = NULL;
 
2995	struct page *page = NULL;
2996	struct inode *inode = NULL;
2997	bool inced_nr_rotate_swap = false;
2998
2999	if (swap_flags & ~SWAP_FLAGS_VALID)
3000		return -EINVAL;
3001
3002	if (!capable(CAP_SYS_ADMIN))
3003		return -EPERM;
3004
3005	if (!swap_avail_heads)
3006		return -ENOMEM;
3007
3008	p = alloc_swap_info();
3009	if (IS_ERR(p))
3010		return PTR_ERR(p);
3011
3012	INIT_WORK(&p->discard_work, swap_discard_work);
3013
3014	name = getname(specialfile);
3015	if (IS_ERR(name)) {
3016		error = PTR_ERR(name);
3017		name = NULL;
3018		goto bad_swap;
3019	}
3020	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3021	if (IS_ERR(swap_file)) {
3022		error = PTR_ERR(swap_file);
3023		swap_file = NULL;
3024		goto bad_swap;
3025	}
3026
3027	p->swap_file = swap_file;
3028	mapping = swap_file->f_mapping;
3029	dentry = swap_file->f_path.dentry;
3030	inode = mapping->host;
3031
3032	error = claim_swapfile(p, inode);
3033	if (unlikely(error))
3034		goto bad_swap;
3035
3036	inode_lock(inode);
3037	if (d_unlinked(dentry) || cant_mount(dentry)) {
3038		error = -ENOENT;
3039		goto bad_swap_unlock_inode;
3040	}
3041	if (IS_SWAPFILE(inode)) {
3042		error = -EBUSY;
3043		goto bad_swap_unlock_inode;
3044	}
3045
3046	/*
3047	 * Read the swap header.
3048	 */
3049	if (!mapping->a_ops->read_folio) {
3050		error = -EINVAL;
3051		goto bad_swap_unlock_inode;
3052	}
3053	page = read_mapping_page(mapping, 0, swap_file);
3054	if (IS_ERR(page)) {
3055		error = PTR_ERR(page);
3056		goto bad_swap_unlock_inode;
3057	}
3058	swap_header = kmap(page);
3059
3060	maxpages = read_swap_header(p, swap_header, inode);
3061	if (unlikely(!maxpages)) {
3062		error = -EINVAL;
3063		goto bad_swap_unlock_inode;
3064	}
3065
3066	/* OK, set up the swap map and apply the bad block list */
3067	swap_map = vzalloc(maxpages);
3068	if (!swap_map) {
3069		error = -ENOMEM;
3070		goto bad_swap_unlock_inode;
3071	}
3072
3073	if (p->bdev && bdev_stable_writes(p->bdev))
3074		p->flags |= SWP_STABLE_WRITES;
3075
3076	if (p->bdev && bdev_synchronous(p->bdev))
3077		p->flags |= SWP_SYNCHRONOUS_IO;
3078
3079	if (p->bdev && bdev_nonrot(p->bdev)) {
3080		int cpu;
3081		unsigned long ci, nr_cluster;
3082
3083		p->flags |= SWP_SOLIDSTATE;
3084		p->cluster_next_cpu = alloc_percpu(unsigned int);
3085		if (!p->cluster_next_cpu) {
3086			error = -ENOMEM;
3087			goto bad_swap_unlock_inode;
3088		}
3089		/*
3090		 * select a random position to start with to help wear leveling
3091		 * SSD
3092		 */
3093		for_each_possible_cpu(cpu) {
3094			per_cpu(*p->cluster_next_cpu, cpu) =
3095				get_random_u32_inclusive(1, p->highest_bit);
3096		}
3097		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3098
3099		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3100					GFP_KERNEL);
3101		if (!cluster_info) {
3102			error = -ENOMEM;
3103			goto bad_swap_unlock_inode;
3104		}
3105
3106		for (ci = 0; ci < nr_cluster; ci++)
3107			spin_lock_init(&((cluster_info + ci)->lock));
3108
3109		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3110		if (!p->percpu_cluster) {
3111			error = -ENOMEM;
3112			goto bad_swap_unlock_inode;
3113		}
3114		for_each_possible_cpu(cpu) {
3115			struct percpu_cluster *cluster;
3116			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3117			cluster_set_null(&cluster->index);
3118		}
3119	} else {
3120		atomic_inc(&nr_rotate_swap);
3121		inced_nr_rotate_swap = true;
3122	}
3123
3124	error = swap_cgroup_swapon(p->type, maxpages);
3125	if (error)
3126		goto bad_swap_unlock_inode;
3127
3128	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3129		cluster_info, maxpages, &span);
3130	if (unlikely(nr_extents < 0)) {
3131		error = nr_extents;
3132		goto bad_swap_unlock_inode;
3133	}
 
 
 
 
 
3134
3135	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3136	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3137		/*
3138		 * When discard is enabled for swap with no particular
3139		 * policy flagged, we set all swap discard flags here in
3140		 * order to sustain backward compatibility with older
3141		 * swapon(8) releases.
3142		 */
3143		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3144			     SWP_PAGE_DISCARD);
3145
3146		/*
3147		 * By flagging sys_swapon, a sysadmin can tell us to
3148		 * either do single-time area discards only, or to just
3149		 * perform discards for released swap page-clusters.
3150		 * Now it's time to adjust the p->flags accordingly.
3151		 */
3152		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3153			p->flags &= ~SWP_PAGE_DISCARD;
3154		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3155			p->flags &= ~SWP_AREA_DISCARD;
3156
3157		/* issue a swapon-time discard if it's still required */
3158		if (p->flags & SWP_AREA_DISCARD) {
3159			int err = discard_swap(p);
3160			if (unlikely(err))
3161				pr_err("swapon: discard_swap(%p): %d\n",
3162					p, err);
3163		}
3164	}
3165
3166	error = init_swap_address_space(p->type, maxpages);
3167	if (error)
3168		goto bad_swap_unlock_inode;
3169
3170	/*
3171	 * Flush any pending IO and dirty mappings before we start using this
3172	 * swap device.
3173	 */
3174	inode->i_flags |= S_SWAPFILE;
3175	error = inode_drain_writes(inode);
3176	if (error) {
3177		inode->i_flags &= ~S_SWAPFILE;
3178		goto free_swap_address_space;
3179	}
3180
3181	mutex_lock(&swapon_mutex);
3182	prio = -1;
3183	if (swap_flags & SWAP_FLAG_PREFER)
3184		prio =
3185		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3186	enable_swap_info(p, prio, swap_map, cluster_info);
3187
3188	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3189		K(p->pages), name->name, p->prio, nr_extents,
3190		K((unsigned long long)span),
3191		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3192		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3193		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3194		(p->flags & SWP_PAGE_DISCARD) ? "c" : "");
 
3195
3196	mutex_unlock(&swapon_mutex);
3197	atomic_inc(&proc_poll_event);
3198	wake_up_interruptible(&proc_poll_wait);
3199
3200	error = 0;
3201	goto out;
3202free_swap_address_space:
3203	exit_swap_address_space(p->type);
3204bad_swap_unlock_inode:
3205	inode_unlock(inode);
3206bad_swap:
3207	free_percpu(p->percpu_cluster);
3208	p->percpu_cluster = NULL;
3209	free_percpu(p->cluster_next_cpu);
3210	p->cluster_next_cpu = NULL;
3211	if (p->bdev_handle) {
3212		set_blocksize(p->bdev, p->old_block_size);
3213		bdev_release(p->bdev_handle);
3214		p->bdev_handle = NULL;
3215	}
3216	inode = NULL;
3217	destroy_swap_extents(p);
3218	swap_cgroup_swapoff(p->type);
3219	spin_lock(&swap_lock);
3220	p->swap_file = NULL;
3221	p->flags = 0;
3222	spin_unlock(&swap_lock);
3223	vfree(swap_map);
3224	kvfree(cluster_info);
 
3225	if (inced_nr_rotate_swap)
3226		atomic_dec(&nr_rotate_swap);
3227	if (swap_file)
3228		filp_close(swap_file, NULL);
3229out:
3230	if (page && !IS_ERR(page)) {
3231		kunmap(page);
3232		put_page(page);
3233	}
3234	if (name)
3235		putname(name);
3236	if (inode)
3237		inode_unlock(inode);
3238	if (!error)
3239		enable_swap_slots_cache();
3240	return error;
3241}
3242
3243void si_swapinfo(struct sysinfo *val)
3244{
3245	unsigned int type;
3246	unsigned long nr_to_be_unused = 0;
3247
3248	spin_lock(&swap_lock);
3249	for (type = 0; type < nr_swapfiles; type++) {
3250		struct swap_info_struct *si = swap_info[type];
3251
3252		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3253			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3254	}
3255	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3256	val->totalswap = total_swap_pages + nr_to_be_unused;
3257	spin_unlock(&swap_lock);
3258}
3259
3260/*
3261 * Verify that a swap entry is valid and increment its swap map count.
3262 *
3263 * Returns error code in following case.
3264 * - success -> 0
3265 * - swp_entry is invalid -> EINVAL
3266 * - swp_entry is migration entry -> EINVAL
3267 * - swap-cache reference is requested but there is already one. -> EEXIST
3268 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3269 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3270 */
3271static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3272{
3273	struct swap_info_struct *p;
3274	struct swap_cluster_info *ci;
3275	unsigned long offset;
3276	unsigned char count;
3277	unsigned char has_cache;
3278	int err;
3279
3280	p = swp_swap_info(entry);
 
 
3281
3282	offset = swp_offset(entry);
3283	ci = lock_cluster_or_swap_info(p, offset);
3284
3285	count = p->swap_map[offset];
3286
3287	/*
3288	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3289	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3290	 */
3291	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3292		err = -ENOENT;
3293		goto unlock_out;
3294	}
3295
3296	has_cache = count & SWAP_HAS_CACHE;
3297	count &= ~SWAP_HAS_CACHE;
3298	err = 0;
3299
3300	if (usage == SWAP_HAS_CACHE) {
3301
3302		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3303		if (!has_cache && count)
3304			has_cache = SWAP_HAS_CACHE;
3305		else if (has_cache)		/* someone else added cache */
3306			err = -EEXIST;
3307		else				/* no users remaining */
3308			err = -ENOENT;
3309
3310	} else if (count || has_cache) {
3311
3312		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3313			count += usage;
3314		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3315			err = -EINVAL;
3316		else if (swap_count_continued(p, offset, count))
3317			count = COUNT_CONTINUED;
3318		else
3319			err = -ENOMEM;
3320	} else
3321		err = -ENOENT;			/* unused swap entry */
3322
3323	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3324
3325unlock_out:
3326	unlock_cluster_or_swap_info(p, ci);
 
 
 
3327	return err;
3328}
3329
3330/*
3331 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3332 * (in which case its reference count is never incremented).
3333 */
3334void swap_shmem_alloc(swp_entry_t entry)
3335{
3336	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3337}
3338
3339/*
3340 * Increase reference count of swap entry by 1.
3341 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3342 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3343 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3344 * might occur if a page table entry has got corrupted.
3345 */
3346int swap_duplicate(swp_entry_t entry)
3347{
3348	int err = 0;
3349
3350	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3351		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3352	return err;
3353}
3354
3355/*
3356 * @entry: swap entry for which we allocate swap cache.
3357 *
3358 * Called when allocating swap cache for existing swap entry,
3359 * This can return error codes. Returns 0 at success.
3360 * -EEXIST means there is a swap cache.
3361 * Note: return code is different from swap_duplicate().
3362 */
3363int swapcache_prepare(swp_entry_t entry)
3364{
3365	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3366}
3367
3368void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3369{
3370	struct swap_cluster_info *ci;
3371	unsigned long offset = swp_offset(entry);
3372	unsigned char usage;
3373
3374	ci = lock_cluster_or_swap_info(si, offset);
3375	usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3376	unlock_cluster_or_swap_info(si, ci);
3377	if (!usage)
3378		free_swap_slot(entry);
3379}
3380
3381struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3382{
3383	return swap_type_to_swap_info(swp_type(entry));
 
3384}
3385
3386/*
3387 * out-of-line methods to avoid include hell.
3388 */
3389struct address_space *swapcache_mapping(struct folio *folio)
3390{
3391	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3392}
3393EXPORT_SYMBOL_GPL(swapcache_mapping);
3394
3395pgoff_t __page_file_index(struct page *page)
3396{
3397	swp_entry_t swap = page_swap_entry(page);
3398	return swp_offset(swap);
3399}
3400EXPORT_SYMBOL_GPL(__page_file_index);
3401
3402/*
3403 * add_swap_count_continuation - called when a swap count is duplicated
3404 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3405 * page of the original vmalloc'ed swap_map, to hold the continuation count
3406 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3407 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3408 *
3409 * These continuation pages are seldom referenced: the common paths all work
3410 * on the original swap_map, only referring to a continuation page when the
3411 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3412 *
3413 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3414 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3415 * can be called after dropping locks.
3416 */
3417int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3418{
3419	struct swap_info_struct *si;
3420	struct swap_cluster_info *ci;
3421	struct page *head;
3422	struct page *page;
3423	struct page *list_page;
3424	pgoff_t offset;
3425	unsigned char count;
3426	int ret = 0;
3427
3428	/*
3429	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3430	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3431	 */
3432	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3433
3434	si = get_swap_device(entry);
3435	if (!si) {
3436		/*
3437		 * An acceptable race has occurred since the failing
3438		 * __swap_duplicate(): the swap device may be swapoff
3439		 */
3440		goto outer;
3441	}
3442	spin_lock(&si->lock);
3443
3444	offset = swp_offset(entry);
3445
3446	ci = lock_cluster(si, offset);
3447
3448	count = swap_count(si->swap_map[offset]);
3449
3450	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3451		/*
3452		 * The higher the swap count, the more likely it is that tasks
3453		 * will race to add swap count continuation: we need to avoid
3454		 * over-provisioning.
3455		 */
3456		goto out;
3457	}
3458
3459	if (!page) {
3460		ret = -ENOMEM;
3461		goto out;
3462	}
3463
 
 
 
 
 
3464	head = vmalloc_to_page(si->swap_map + offset);
3465	offset &= ~PAGE_MASK;
3466
3467	spin_lock(&si->cont_lock);
3468	/*
3469	 * Page allocation does not initialize the page's lru field,
3470	 * but it does always reset its private field.
3471	 */
3472	if (!page_private(head)) {
3473		BUG_ON(count & COUNT_CONTINUED);
3474		INIT_LIST_HEAD(&head->lru);
3475		set_page_private(head, SWP_CONTINUED);
3476		si->flags |= SWP_CONTINUED;
3477	}
3478
3479	list_for_each_entry(list_page, &head->lru, lru) {
3480		unsigned char *map;
3481
3482		/*
3483		 * If the previous map said no continuation, but we've found
3484		 * a continuation page, free our allocation and use this one.
3485		 */
3486		if (!(count & COUNT_CONTINUED))
3487			goto out_unlock_cont;
3488
3489		map = kmap_local_page(list_page) + offset;
3490		count = *map;
3491		kunmap_local(map);
3492
3493		/*
3494		 * If this continuation count now has some space in it,
3495		 * free our allocation and use this one.
3496		 */
3497		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3498			goto out_unlock_cont;
3499	}
3500
3501	list_add_tail(&page->lru, &head->lru);
3502	page = NULL;			/* now it's attached, don't free it */
3503out_unlock_cont:
3504	spin_unlock(&si->cont_lock);
3505out:
3506	unlock_cluster(ci);
3507	spin_unlock(&si->lock);
3508	put_swap_device(si);
3509outer:
3510	if (page)
3511		__free_page(page);
3512	return ret;
3513}
3514
3515/*
3516 * swap_count_continued - when the original swap_map count is incremented
3517 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3518 * into, carry if so, or else fail until a new continuation page is allocated;
3519 * when the original swap_map count is decremented from 0 with continuation,
3520 * borrow from the continuation and report whether it still holds more.
3521 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3522 * lock.
3523 */
3524static bool swap_count_continued(struct swap_info_struct *si,
3525				 pgoff_t offset, unsigned char count)
3526{
3527	struct page *head;
3528	struct page *page;
3529	unsigned char *map;
3530	bool ret;
3531
3532	head = vmalloc_to_page(si->swap_map + offset);
3533	if (page_private(head) != SWP_CONTINUED) {
3534		BUG_ON(count & COUNT_CONTINUED);
3535		return false;		/* need to add count continuation */
3536	}
3537
3538	spin_lock(&si->cont_lock);
3539	offset &= ~PAGE_MASK;
3540	page = list_next_entry(head, lru);
3541	map = kmap_local_page(page) + offset;
3542
3543	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3544		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3545
3546	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3547		/*
3548		 * Think of how you add 1 to 999
3549		 */
3550		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3551			kunmap_local(map);
3552			page = list_next_entry(page, lru);
3553			BUG_ON(page == head);
3554			map = kmap_local_page(page) + offset;
3555		}
3556		if (*map == SWAP_CONT_MAX) {
3557			kunmap_local(map);
3558			page = list_next_entry(page, lru);
3559			if (page == head) {
3560				ret = false;	/* add count continuation */
3561				goto out;
3562			}
3563			map = kmap_local_page(page) + offset;
3564init_map:		*map = 0;		/* we didn't zero the page */
3565		}
3566		*map += 1;
3567		kunmap_local(map);
3568		while ((page = list_prev_entry(page, lru)) != head) {
3569			map = kmap_local_page(page) + offset;
3570			*map = COUNT_CONTINUED;
3571			kunmap_local(map);
3572		}
3573		ret = true;			/* incremented */
3574
3575	} else {				/* decrementing */
3576		/*
3577		 * Think of how you subtract 1 from 1000
3578		 */
3579		BUG_ON(count != COUNT_CONTINUED);
3580		while (*map == COUNT_CONTINUED) {
3581			kunmap_local(map);
3582			page = list_next_entry(page, lru);
3583			BUG_ON(page == head);
3584			map = kmap_local_page(page) + offset;
3585		}
3586		BUG_ON(*map == 0);
3587		*map -= 1;
3588		if (*map == 0)
3589			count = 0;
3590		kunmap_local(map);
3591		while ((page = list_prev_entry(page, lru)) != head) {
3592			map = kmap_local_page(page) + offset;
3593			*map = SWAP_CONT_MAX | count;
3594			count = COUNT_CONTINUED;
3595			kunmap_local(map);
3596		}
3597		ret = count == COUNT_CONTINUED;
3598	}
3599out:
3600	spin_unlock(&si->cont_lock);
3601	return ret;
3602}
3603
3604/*
3605 * free_swap_count_continuations - swapoff free all the continuation pages
3606 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3607 */
3608static void free_swap_count_continuations(struct swap_info_struct *si)
3609{
3610	pgoff_t offset;
3611
3612	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3613		struct page *head;
3614		head = vmalloc_to_page(si->swap_map + offset);
3615		if (page_private(head)) {
3616			struct page *page, *next;
3617
3618			list_for_each_entry_safe(page, next, &head->lru, lru) {
3619				list_del(&page->lru);
3620				__free_page(page);
3621			}
3622		}
3623	}
3624}
3625
3626#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3627void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3628{
3629	struct swap_info_struct *si, *next;
3630	int nid = folio_nid(folio);
3631
3632	if (!(gfp & __GFP_IO))
3633		return;
3634
3635	if (!blk_cgroup_congested())
3636		return;
3637
3638	/*
3639	 * We've already scheduled a throttle, avoid taking the global swap
3640	 * lock.
3641	 */
3642	if (current->throttle_disk)
3643		return;
3644
3645	spin_lock(&swap_avail_lock);
3646	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3647				  avail_lists[nid]) {
3648		if (si->bdev) {
3649			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3650			break;
3651		}
3652	}
3653	spin_unlock(&swap_avail_lock);
3654}
3655#endif
3656
3657static int __init swapfile_init(void)
3658{
3659	int nid;
3660
3661	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3662					 GFP_KERNEL);
3663	if (!swap_avail_heads) {
3664		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3665		return -ENOMEM;
3666	}
3667
3668	for_each_node(nid)
3669		plist_head_init(&swap_avail_heads[nid]);
3670
3671	swapfile_maximum_size = arch_max_swapfile_size();
3672
3673#ifdef CONFIG_MIGRATION
3674	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3675		swap_migration_ad_supported = true;
3676#endif	/* CONFIG_MIGRATION */
3677
3678	return 0;
3679}
3680subsys_initcall(swapfile_init);