Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/pipe.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/file.h>
  10#include <linux/poll.h>
  11#include <linux/slab.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/fs.h>
  15#include <linux/log2.h>
  16#include <linux/mount.h>
  17#include <linux/pseudo_fs.h>
  18#include <linux/magic.h>
  19#include <linux/pipe_fs_i.h>
  20#include <linux/uio.h>
  21#include <linux/highmem.h>
  22#include <linux/pagemap.h>
  23#include <linux/audit.h>
  24#include <linux/syscalls.h>
  25#include <linux/fcntl.h>
  26#include <linux/memcontrol.h>
  27#include <linux/watch_queue.h>
  28
  29#include <linux/uaccess.h>
  30#include <asm/ioctls.h>
  31
  32#include "internal.h"
  33
  34/*
  35 * The max size that a non-root user is allowed to grow the pipe. Can
  36 * be set by root in /proc/sys/fs/pipe-max-size
  37 */
  38unsigned int pipe_max_size = 1048576;
  39
  40/* Maximum allocatable pages per user. Hard limit is unset by default, soft
  41 * matches default values.
  42 */
  43unsigned long pipe_user_pages_hard;
  44unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
  45
  46/*
  47 * We use head and tail indices that aren't masked off, except at the point of
  48 * dereference, but rather they're allowed to wrap naturally.  This means there
  49 * isn't a dead spot in the buffer, but the ring has to be a power of two and
  50 * <= 2^31.
  51 * -- David Howells 2019-09-23.
  52 *
  53 * Reads with count = 0 should always return 0.
  54 * -- Julian Bradfield 1999-06-07.
  55 *
  56 * FIFOs and Pipes now generate SIGIO for both readers and writers.
  57 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
  58 *
  59 * pipe_read & write cleanup
  60 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
  61 */
  62
  63static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
  64{
  65	if (pipe->files)
  66		mutex_lock_nested(&pipe->mutex, subclass);
  67}
  68
  69void pipe_lock(struct pipe_inode_info *pipe)
  70{
  71	/*
  72	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
  73	 */
  74	pipe_lock_nested(pipe, I_MUTEX_PARENT);
  75}
  76EXPORT_SYMBOL(pipe_lock);
  77
  78void pipe_unlock(struct pipe_inode_info *pipe)
  79{
  80	if (pipe->files)
  81		mutex_unlock(&pipe->mutex);
  82}
  83EXPORT_SYMBOL(pipe_unlock);
  84
  85static inline void __pipe_lock(struct pipe_inode_info *pipe)
  86{
  87	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
  88}
  89
  90static inline void __pipe_unlock(struct pipe_inode_info *pipe)
  91{
  92	mutex_unlock(&pipe->mutex);
  93}
  94
  95void pipe_double_lock(struct pipe_inode_info *pipe1,
  96		      struct pipe_inode_info *pipe2)
  97{
  98	BUG_ON(pipe1 == pipe2);
  99
 100	if (pipe1 < pipe2) {
 101		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
 102		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
 103	} else {
 104		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
 105		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
 106	}
 107}
 108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
 110				  struct pipe_buffer *buf)
 111{
 112	struct page *page = buf->page;
 113
 114	/*
 115	 * If nobody else uses this page, and we don't already have a
 116	 * temporary page, let's keep track of it as a one-deep
 117	 * allocation cache. (Otherwise just release our reference to it)
 118	 */
 119	if (page_count(page) == 1 && !pipe->tmp_page)
 120		pipe->tmp_page = page;
 121	else
 122		put_page(page);
 123}
 124
 125static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
 126		struct pipe_buffer *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127{
 128	struct page *page = buf->page;
 
 
 
 129
 130	if (page_count(page) != 1)
 131		return false;
 132	memcg_kmem_uncharge_page(page, 0);
 133	__SetPageLocked(page);
 134	return true;
 135}
 
 136
 137/**
 138 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139 * @pipe:	the pipe that the buffer belongs to
 140 * @buf:	the buffer to attempt to steal
 141 *
 142 * Description:
 143 *	This function attempts to steal the &struct page attached to
 144 *	@buf. If successful, this function returns 0 and returns with
 145 *	the page locked. The caller may then reuse the page for whatever
 146 *	he wishes; the typical use is insertion into a different file
 147 *	page cache.
 148 */
 149bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
 150		struct pipe_buffer *buf)
 151{
 152	struct page *page = buf->page;
 153
 154	/*
 155	 * A reference of one is golden, that means that the owner of this
 156	 * page is the only one holding a reference to it. lock the page
 157	 * and return OK.
 158	 */
 159	if (page_count(page) == 1) {
 160		lock_page(page);
 161		return true;
 162	}
 163	return false;
 
 164}
 165EXPORT_SYMBOL(generic_pipe_buf_try_steal);
 166
 167/**
 168 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
 169 * @pipe:	the pipe that the buffer belongs to
 170 * @buf:	the buffer to get a reference to
 171 *
 172 * Description:
 173 *	This function grabs an extra reference to @buf. It's used in
 174 *	in the tee() system call, when we duplicate the buffers in one
 175 *	pipe into another.
 176 */
 177bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
 178{
 179	return try_get_page(buf->page);
 180}
 181EXPORT_SYMBOL(generic_pipe_buf_get);
 182
 183/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
 185 * @pipe:	the pipe that the buffer belongs to
 186 * @buf:	the buffer to put a reference to
 187 *
 188 * Description:
 189 *	This function releases a reference to @buf.
 190 */
 191void generic_pipe_buf_release(struct pipe_inode_info *pipe,
 192			      struct pipe_buffer *buf)
 193{
 194	put_page(buf->page);
 195}
 196EXPORT_SYMBOL(generic_pipe_buf_release);
 197
 198static const struct pipe_buf_operations anon_pipe_buf_ops = {
 199	.release	= anon_pipe_buf_release,
 200	.try_steal	= anon_pipe_buf_try_steal,
 201	.get		= generic_pipe_buf_get,
 
 
 
 
 202};
 203
 204/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
 205static inline bool pipe_readable(const struct pipe_inode_info *pipe)
 206{
 207	unsigned int head = READ_ONCE(pipe->head);
 208	unsigned int tail = READ_ONCE(pipe->tail);
 209	unsigned int writers = READ_ONCE(pipe->writers);
 210
 211	return !pipe_empty(head, tail) || !writers;
 212}
 213
 214static ssize_t
 215pipe_read(struct kiocb *iocb, struct iov_iter *to)
 
 216{
 217	size_t total_len = iov_iter_count(to);
 218	struct file *filp = iocb->ki_filp;
 219	struct pipe_inode_info *pipe = filp->private_data;
 220	bool was_full, wake_next_reader = false;
 
 221	ssize_t ret;
 
 
 222
 
 223	/* Null read succeeds. */
 224	if (unlikely(total_len == 0))
 225		return 0;
 226
 
 227	ret = 0;
 228	__pipe_lock(pipe);
 229
 230	/*
 231	 * We only wake up writers if the pipe was full when we started
 232	 * reading in order to avoid unnecessary wakeups.
 233	 *
 234	 * But when we do wake up writers, we do so using a sync wakeup
 235	 * (WF_SYNC), because we want them to get going and generate more
 236	 * data for us.
 237	 */
 238	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
 239	for (;;) {
 240		unsigned int head = pipe->head;
 241		unsigned int tail = pipe->tail;
 242		unsigned int mask = pipe->ring_size - 1;
 243
 244#ifdef CONFIG_WATCH_QUEUE
 245		if (pipe->note_loss) {
 246			struct watch_notification n;
 247
 248			if (total_len < 8) {
 249				if (ret == 0)
 250					ret = -ENOBUFS;
 251				break;
 252			}
 253
 254			n.type = WATCH_TYPE_META;
 255			n.subtype = WATCH_META_LOSS_NOTIFICATION;
 256			n.info = watch_sizeof(n);
 257			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
 258				if (ret == 0)
 259					ret = -EFAULT;
 260				break;
 261			}
 262			ret += sizeof(n);
 263			total_len -= sizeof(n);
 264			pipe->note_loss = false;
 265		}
 266#endif
 267
 268		if (!pipe_empty(head, tail)) {
 269			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 270			size_t chars = buf->len;
 271			size_t written;
 272			int error;
 273
 274			if (chars > total_len) {
 275				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
 276					if (ret == 0)
 277						ret = -ENOBUFS;
 278					break;
 279				}
 280				chars = total_len;
 281			}
 282
 283			error = pipe_buf_confirm(pipe, buf);
 284			if (error) {
 285				if (!ret)
 286					ret = error;
 287				break;
 288			}
 289
 290			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
 291			if (unlikely(written < chars)) {
 
 
 
 
 
 
 
 
 
 
 
 292				if (!ret)
 293					ret = -EFAULT;
 294				break;
 295			}
 296			ret += chars;
 297			buf->offset += chars;
 298			buf->len -= chars;
 299
 300			/* Was it a packet buffer? Clean up and exit */
 301			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
 302				total_len = chars;
 303				buf->len = 0;
 304			}
 305
 306			if (!buf->len) {
 307				pipe_buf_release(pipe, buf);
 308				spin_lock_irq(&pipe->rd_wait.lock);
 309#ifdef CONFIG_WATCH_QUEUE
 310				if (buf->flags & PIPE_BUF_FLAG_LOSS)
 311					pipe->note_loss = true;
 312#endif
 313				tail++;
 314				pipe->tail = tail;
 315				spin_unlock_irq(&pipe->rd_wait.lock);
 316			}
 317			total_len -= chars;
 318			if (!total_len)
 319				break;	/* common path: read succeeded */
 320			if (!pipe_empty(head, tail))	/* More to do? */
 321				continue;
 322		}
 323
 
 324		if (!pipe->writers)
 325			break;
 326		if (ret)
 327			break;
 328		if (filp->f_flags & O_NONBLOCK) {
 329			ret = -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 330			break;
 331		}
 332		__pipe_unlock(pipe);
 333
 334		/*
 335		 * We only get here if we didn't actually read anything.
 336		 *
 337		 * However, we could have seen (and removed) a zero-sized
 338		 * pipe buffer, and might have made space in the buffers
 339		 * that way.
 340		 *
 341		 * You can't make zero-sized pipe buffers by doing an empty
 342		 * write (not even in packet mode), but they can happen if
 343		 * the writer gets an EFAULT when trying to fill a buffer
 344		 * that already got allocated and inserted in the buffer
 345		 * array.
 346		 *
 347		 * So we still need to wake up any pending writers in the
 348		 * _very_ unlikely case that the pipe was full, but we got
 349		 * no data.
 350		 */
 351		if (unlikely(was_full)) {
 352			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
 353			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 354		}
 
 
 
 355
 356		/*
 357		 * But because we didn't read anything, at this point we can
 358		 * just return directly with -ERESTARTSYS if we're interrupted,
 359		 * since we've done any required wakeups and there's no need
 360		 * to mark anything accessed. And we've dropped the lock.
 361		 */
 362		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
 363			return -ERESTARTSYS;
 364
 365		__pipe_lock(pipe);
 366		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
 367		wake_next_reader = true;
 368	}
 369	if (pipe_empty(pipe->head, pipe->tail))
 370		wake_next_reader = false;
 371	__pipe_unlock(pipe);
 372
 373	if (was_full) {
 374		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
 375		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 376	}
 377	if (wake_next_reader)
 378		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
 379	if (ret > 0)
 380		file_accessed(filp);
 381	return ret;
 382}
 383
 384static inline int is_packetized(struct file *file)
 385{
 386	return (file->f_flags & O_DIRECT) != 0;
 387}
 388
 389/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
 390static inline bool pipe_writable(const struct pipe_inode_info *pipe)
 391{
 392	unsigned int head = READ_ONCE(pipe->head);
 393	unsigned int tail = READ_ONCE(pipe->tail);
 394	unsigned int max_usage = READ_ONCE(pipe->max_usage);
 395
 396	return !pipe_full(head, tail, max_usage) ||
 397		!READ_ONCE(pipe->readers);
 398}
 399
 400static ssize_t
 401pipe_write(struct kiocb *iocb, struct iov_iter *from)
 
 402{
 403	struct file *filp = iocb->ki_filp;
 404	struct pipe_inode_info *pipe = filp->private_data;
 405	unsigned int head;
 406	ssize_t ret = 0;
 407	size_t total_len = iov_iter_count(from);
 
 
 408	ssize_t chars;
 409	bool was_empty = false;
 410	bool wake_next_writer = false;
 411
 
 412	/* Null write succeeds. */
 413	if (unlikely(total_len == 0))
 414		return 0;
 415
 416	__pipe_lock(pipe);
 
 
 
 417
 418	if (!pipe->readers) {
 419		send_sig(SIGPIPE, current, 0);
 420		ret = -EPIPE;
 421		goto out;
 422	}
 423
 424#ifdef CONFIG_WATCH_QUEUE
 425	if (pipe->watch_queue) {
 426		ret = -EXDEV;
 427		goto out;
 428	}
 429#endif
 430
 431	/*
 432	 * Only wake up if the pipe started out empty, since
 433	 * otherwise there should be no readers waiting.
 434	 *
 435	 * If it wasn't empty we try to merge new data into
 436	 * the last buffer.
 437	 *
 438	 * That naturally merges small writes, but it also
 439	 * page-aligs the rest of the writes for large writes
 440	 * spanning multiple pages.
 441	 */
 442	head = pipe->head;
 443	was_empty = pipe_empty(head, pipe->tail);
 444	chars = total_len & (PAGE_SIZE-1);
 445	if (chars && !was_empty) {
 446		unsigned int mask = pipe->ring_size - 1;
 447		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
 448		int offset = buf->offset + buf->len;
 449
 450		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
 451		    offset + chars <= PAGE_SIZE) {
 452			ret = pipe_buf_confirm(pipe, buf);
 453			if (ret)
 
 
 454				goto out;
 455
 456			ret = copy_page_from_iter(buf->page, offset, chars, from);
 457			if (unlikely(ret < chars)) {
 458				ret = -EFAULT;
 
 
 
 
 
 
 
 
 
 
 459				goto out;
 460			}
 461
 462			buf->len += ret;
 463			if (!iov_iter_count(from))
 
 464				goto out;
 465		}
 466	}
 467
 468	for (;;) {
 
 
 469		if (!pipe->readers) {
 470			send_sig(SIGPIPE, current, 0);
 471			if (!ret)
 472				ret = -EPIPE;
 473			break;
 474		}
 475
 476		head = pipe->head;
 477		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
 478			unsigned int mask = pipe->ring_size - 1;
 479			struct pipe_buffer *buf = &pipe->bufs[head & mask];
 480			struct page *page = pipe->tmp_page;
 481			int copied;
 
 482
 483			if (!page) {
 484				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
 485				if (unlikely(!page)) {
 486					ret = ret ? : -ENOMEM;
 487					break;
 488				}
 489				pipe->tmp_page = page;
 490			}
 491
 492			/* Allocate a slot in the ring in advance and attach an
 493			 * empty buffer.  If we fault or otherwise fail to use
 494			 * it, either the reader will consume it or it'll still
 495			 * be there for the next write.
 496			 */
 497			spin_lock_irq(&pipe->rd_wait.lock);
 498
 499			head = pipe->head;
 500			if (pipe_full(head, pipe->tail, pipe->max_usage)) {
 501				spin_unlock_irq(&pipe->rd_wait.lock);
 502				continue;
 503			}
 504
 505			pipe->head = head + 1;
 506			spin_unlock_irq(&pipe->rd_wait.lock);
 
 
 
 
 507
 508			/* Insert it into the buffer array */
 509			buf = &pipe->bufs[head & mask];
 510			buf->page = page;
 511			buf->ops = &anon_pipe_buf_ops;
 512			buf->offset = 0;
 513			buf->len = 0;
 514			if (is_packetized(filp))
 515				buf->flags = PIPE_BUF_FLAG_PACKET;
 516			else
 517				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
 518			pipe->tmp_page = NULL;
 519
 520			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
 521			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
 
 
 
 522				if (!ret)
 523					ret = -EFAULT;
 524				break;
 525			}
 526			ret += copied;
 
 
 
 
 527			buf->offset = 0;
 528			buf->len = copied;
 
 
 529
 530			if (!iov_iter_count(from))
 
 531				break;
 532		}
 533
 534		if (!pipe_full(head, pipe->tail, pipe->max_usage))
 535			continue;
 536
 537		/* Wait for buffer space to become available. */
 538		if (filp->f_flags & O_NONBLOCK) {
 539			if (!ret)
 540				ret = -EAGAIN;
 541			break;
 542		}
 543		if (signal_pending(current)) {
 544			if (!ret)
 545				ret = -ERESTARTSYS;
 546			break;
 547		}
 548
 549		/*
 550		 * We're going to release the pipe lock and wait for more
 551		 * space. We wake up any readers if necessary, and then
 552		 * after waiting we need to re-check whether the pipe
 553		 * become empty while we dropped the lock.
 554		 */
 555		__pipe_unlock(pipe);
 556		if (was_empty) {
 557			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
 558			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 
 559		}
 560		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
 561		__pipe_lock(pipe);
 562		was_empty = pipe_empty(pipe->head, pipe->tail);
 563		wake_next_writer = true;
 564	}
 565out:
 566	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
 567		wake_next_writer = false;
 568	__pipe_unlock(pipe);
 569
 570	/*
 571	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
 572	 * want the reader to start processing things asap, rather than
 573	 * leave the data pending.
 574	 *
 575	 * This is particularly important for small writes, because of
 576	 * how (for example) the GNU make jobserver uses small writes to
 577	 * wake up pending jobs
 578	 */
 579	if (was_empty) {
 580		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
 581		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 582	}
 583	if (wake_next_writer)
 584		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
 585	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
 586		int err = file_update_time(filp);
 587		if (err)
 588			ret = err;
 589		sb_end_write(file_inode(filp)->i_sb);
 590	}
 591	return ret;
 592}
 593
 594static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 
 595{
 596	struct pipe_inode_info *pipe = filp->private_data;
 597	int count, head, tail, mask;
 598
 599	switch (cmd) {
 600	case FIONREAD:
 601		__pipe_lock(pipe);
 602		count = 0;
 603		head = pipe->head;
 604		tail = pipe->tail;
 605		mask = pipe->ring_size - 1;
 606
 607		while (tail != head) {
 608			count += pipe->bufs[tail & mask].len;
 609			tail++;
 610		}
 611		__pipe_unlock(pipe);
 612
 613		return put_user(count, (int __user *)arg);
 
 
 
 
 
 614
 615#ifdef CONFIG_WATCH_QUEUE
 616	case IOC_WATCH_QUEUE_SET_SIZE: {
 617		int ret;
 618		__pipe_lock(pipe);
 619		ret = watch_queue_set_size(pipe, arg);
 620		__pipe_unlock(pipe);
 621		return ret;
 622	}
 623
 624	case IOC_WATCH_QUEUE_SET_FILTER:
 625		return watch_queue_set_filter(
 626			pipe, (struct watch_notification_filter __user *)arg);
 627#endif
 
 
 
 
 
 
 
 
 628
 629	default:
 630		return -ENOIOCTLCMD;
 
 631	}
 632}
 633
 634/* No kernel lock held - fine */
 635static __poll_t
 636pipe_poll(struct file *filp, poll_table *wait)
 637{
 638	__poll_t mask;
 639	struct pipe_inode_info *pipe = filp->private_data;
 640	unsigned int head, tail;
 641
 642	/*
 643	 * Reading pipe state only -- no need for acquiring the semaphore.
 644	 *
 645	 * But because this is racy, the code has to add the
 646	 * entry to the poll table _first_ ..
 647	 */
 648	if (filp->f_mode & FMODE_READ)
 649		poll_wait(filp, &pipe->rd_wait, wait);
 650	if (filp->f_mode & FMODE_WRITE)
 651		poll_wait(filp, &pipe->wr_wait, wait);
 652
 653	/*
 654	 * .. and only then can you do the racy tests. That way,
 655	 * if something changes and you got it wrong, the poll
 656	 * table entry will wake you up and fix it.
 657	 */
 658	head = READ_ONCE(pipe->head);
 659	tail = READ_ONCE(pipe->tail);
 660
 
 
 661	mask = 0;
 662	if (filp->f_mode & FMODE_READ) {
 663		if (!pipe_empty(head, tail))
 664			mask |= EPOLLIN | EPOLLRDNORM;
 665		if (!pipe->writers && filp->f_version != pipe->w_counter)
 666			mask |= EPOLLHUP;
 667	}
 668
 669	if (filp->f_mode & FMODE_WRITE) {
 670		if (!pipe_full(head, tail, pipe->max_usage))
 671			mask |= EPOLLOUT | EPOLLWRNORM;
 672		/*
 673		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
 674		 * behave exactly like pipes for poll().
 675		 */
 676		if (!pipe->readers)
 677			mask |= EPOLLERR;
 678	}
 679
 680	return mask;
 681}
 682
 683static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
 
 684{
 685	int kill = 0;
 
 
 
 
 
 686
 687	spin_lock(&inode->i_lock);
 688	if (!--pipe->files) {
 689		inode->i_pipe = NULL;
 690		kill = 1;
 
 
 691	}
 692	spin_unlock(&inode->i_lock);
 693
 694	if (kill)
 695		free_pipe_info(pipe);
 696}
 697
 698static int
 699pipe_release(struct inode *inode, struct file *file)
 700{
 701	struct pipe_inode_info *pipe = file->private_data;
 
 702
 703	__pipe_lock(pipe);
 704	if (file->f_mode & FMODE_READ)
 705		pipe->readers--;
 706	if (file->f_mode & FMODE_WRITE)
 707		pipe->writers--;
 708
 709	/* Was that the last reader or writer, but not the other side? */
 710	if (!pipe->readers != !pipe->writers) {
 711		wake_up_interruptible_all(&pipe->rd_wait);
 712		wake_up_interruptible_all(&pipe->wr_wait);
 713		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 714		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 715	}
 716	__pipe_unlock(pipe);
 717
 718	put_pipe_info(inode, pipe);
 719	return 0;
 720}
 721
 
 722static int
 723pipe_fasync(int fd, struct file *filp, int on)
 724{
 725	struct pipe_inode_info *pipe = filp->private_data;
 726	int retval = 0;
 
 
 
 
 
 
 
 
 727
 728	__pipe_lock(pipe);
 729	if (filp->f_mode & FMODE_READ)
 730		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
 731	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
 
 
 
 
 
 
 732		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
 733		if (retval < 0 && (filp->f_mode & FMODE_READ))
 734			/* this can happen only if on == T */
 735			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
 736	}
 737	__pipe_unlock(pipe);
 738	return retval;
 739}
 740
 741unsigned long account_pipe_buffers(struct user_struct *user,
 742				   unsigned long old, unsigned long new)
 
 743{
 744	return atomic_long_add_return(new - old, &user->pipe_bufs);
 745}
 746
 747bool too_many_pipe_buffers_soft(unsigned long user_bufs)
 
 748{
 749	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
 750
 751	return soft_limit && user_bufs > soft_limit;
 752}
 753
 754bool too_many_pipe_buffers_hard(unsigned long user_bufs)
 
 755{
 756	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
 757
 758	return hard_limit && user_bufs > hard_limit;
 
 
 759}
 760
 761bool pipe_is_unprivileged_user(void)
 
 762{
 763	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
 
 
 
 
 
 
 
 
 
 
 
 764}
 765
 766struct pipe_inode_info *alloc_pipe_info(void)
 
 767{
 768	struct pipe_inode_info *pipe;
 769	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
 770	struct user_struct *user = get_current_user();
 771	unsigned long user_bufs;
 772	unsigned int max_size = READ_ONCE(pipe_max_size);
 773
 774	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
 775	if (pipe == NULL)
 776		goto out_free_uid;
 777
 778	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
 779		pipe_bufs = max_size >> PAGE_SHIFT;
 
 
 
 
 780
 781	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
 
 
 
 
 
 
 782
 783	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
 784		user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
 785		pipe_bufs = 1;
 
 
 
 
 
 786	}
 787
 788	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
 789		goto out_revert_acct;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790
 791	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
 792			     GFP_KERNEL_ACCOUNT);
 
 793
 794	if (pipe->bufs) {
 795		init_waitqueue_head(&pipe->rd_wait);
 796		init_waitqueue_head(&pipe->wr_wait);
 797		pipe->r_counter = pipe->w_counter = 1;
 798		pipe->max_usage = pipe_bufs;
 799		pipe->ring_size = pipe_bufs;
 800		pipe->nr_accounted = pipe_bufs;
 801		pipe->user = user;
 802		mutex_init(&pipe->mutex);
 803		return pipe;
 
 804	}
 805
 806out_revert_acct:
 807	(void) account_pipe_buffers(user, pipe_bufs, 0);
 808	kfree(pipe);
 809out_free_uid:
 810	free_uid(user);
 811	return NULL;
 812}
 813
 814void free_pipe_info(struct pipe_inode_info *pipe)
 815{
 816	int i;
 817
 818#ifdef CONFIG_WATCH_QUEUE
 819	if (pipe->watch_queue) {
 820		watch_queue_clear(pipe->watch_queue);
 821		put_watch_queue(pipe->watch_queue);
 822	}
 823#endif
 824
 825	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
 826	free_uid(pipe->user);
 827	for (i = 0; i < pipe->ring_size; i++) {
 828		struct pipe_buffer *buf = pipe->bufs + i;
 829		if (buf->ops)
 830			pipe_buf_release(pipe, buf);
 831	}
 832	if (pipe->tmp_page)
 833		__free_page(pipe->tmp_page);
 834	kfree(pipe->bufs);
 835	kfree(pipe);
 836}
 837
 
 
 
 
 
 
 838static struct vfsmount *pipe_mnt __read_mostly;
 839
 840/*
 841 * pipefs_dname() is called from d_path().
 842 */
 843static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
 844{
 845	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
 846				d_inode(dentry)->i_ino);
 847}
 848
 849static const struct dentry_operations pipefs_dentry_operations = {
 850	.d_dname	= pipefs_dname,
 851};
 852
 853static struct inode * get_pipe_inode(void)
 854{
 855	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
 856	struct pipe_inode_info *pipe;
 857
 858	if (!inode)
 859		goto fail_inode;
 860
 861	inode->i_ino = get_next_ino();
 862
 863	pipe = alloc_pipe_info();
 864	if (!pipe)
 865		goto fail_iput;
 866
 867	inode->i_pipe = pipe;
 868	pipe->files = 2;
 869	pipe->readers = pipe->writers = 1;
 870	inode->i_fop = &pipefifo_fops;
 871
 872	/*
 873	 * Mark the inode dirty from the very beginning,
 874	 * that way it will never be moved to the dirty
 875	 * list because "mark_inode_dirty()" will think
 876	 * that it already _is_ on the dirty list.
 877	 */
 878	inode->i_state = I_DIRTY;
 879	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
 880	inode->i_uid = current_fsuid();
 881	inode->i_gid = current_fsgid();
 882	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 883
 884	return inode;
 885
 886fail_iput:
 887	iput(inode);
 888
 889fail_inode:
 890	return NULL;
 891}
 892
 893int create_pipe_files(struct file **res, int flags)
 894{
 895	struct inode *inode = get_pipe_inode();
 
 896	struct file *f;
 897	int error;
 
 898
 
 
 899	if (!inode)
 900		return -ENFILE;
 901
 902	if (flags & O_NOTIFICATION_PIPE) {
 903		error = watch_queue_init(inode->i_pipe);
 904		if (error) {
 905			free_pipe_info(inode->i_pipe);
 906			iput(inode);
 907			return error;
 908		}
 909	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910
 911	f = alloc_file_pseudo(inode, pipe_mnt, "",
 912				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
 913				&pipefifo_fops);
 914	if (IS_ERR(f)) {
 915		free_pipe_info(inode->i_pipe);
 916		iput(inode);
 917		return PTR_ERR(f);
 918	}
 919
 920	f->private_data = inode->i_pipe;
 921
 922	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
 923				  &pipefifo_fops);
 924	if (IS_ERR(res[0])) {
 925		put_pipe_info(inode, inode->i_pipe);
 926		fput(f);
 927		return PTR_ERR(res[0]);
 928	}
 929	res[0]->private_data = inode->i_pipe;
 930	res[1] = f;
 931	stream_open(inode, res[0]);
 932	stream_open(inode, res[1]);
 933	return 0;
 934}
 935
 936static int __do_pipe_flags(int *fd, struct file **files, int flags)
 937{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 938	int error;
 939	int fdw, fdr;
 940
 941	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
 942		return -EINVAL;
 943
 944	error = create_pipe_files(files, flags);
 945	if (error)
 946		return error;
 
 
 
 
 947
 948	error = get_unused_fd_flags(flags);
 949	if (error < 0)
 950		goto err_read_pipe;
 951	fdr = error;
 952
 953	error = get_unused_fd_flags(flags);
 954	if (error < 0)
 955		goto err_fdr;
 956	fdw = error;
 957
 958	audit_fd_pair(fdr, fdw);
 
 
 959	fd[0] = fdr;
 960	fd[1] = fdw;
 
 961	return 0;
 962
 963 err_fdr:
 964	put_unused_fd(fdr);
 965 err_read_pipe:
 966	fput(files[0]);
 967	fput(files[1]);
 968	return error;
 969}
 970
 971int do_pipe_flags(int *fd, int flags)
 972{
 973	struct file *files[2];
 974	int error = __do_pipe_flags(fd, files, flags);
 975	if (!error) {
 976		fd_install(fd[0], files[0]);
 977		fd_install(fd[1], files[1]);
 978	}
 979	return error;
 980}
 981
 982/*
 983 * sys_pipe() is the normal C calling standard for creating
 984 * a pipe. It's not the way Unix traditionally does this, though.
 985 */
 986static int do_pipe2(int __user *fildes, int flags)
 987{
 988	struct file *files[2];
 989	int fd[2];
 990	int error;
 991
 992	error = __do_pipe_flags(fd, files, flags);
 993	if (!error) {
 994		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
 995			fput(files[0]);
 996			fput(files[1]);
 997			put_unused_fd(fd[0]);
 998			put_unused_fd(fd[1]);
 999			error = -EFAULT;
1000		} else {
1001			fd_install(fd[0], files[0]);
1002			fd_install(fd[1], files[1]);
1003		}
1004	}
1005	return error;
1006}
1007
1008SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1009{
1010	return do_pipe2(fildes, flags);
1011}
1012
1013SYSCALL_DEFINE1(pipe, int __user *, fildes)
1014{
1015	return do_pipe2(fildes, 0);
1016}
1017
1018/*
1019 * This is the stupid "wait for pipe to be readable or writable"
1020 * model.
1021 *
1022 * See pipe_read/write() for the proper kind of exclusive wait,
1023 * but that requires that we wake up any other readers/writers
1024 * if we then do not end up reading everything (ie the whole
1025 * "wake_next_reader/writer" logic in pipe_read/write()).
1026 */
1027void pipe_wait_readable(struct pipe_inode_info *pipe)
1028{
1029	pipe_unlock(pipe);
1030	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1031	pipe_lock(pipe);
1032}
1033
1034void pipe_wait_writable(struct pipe_inode_info *pipe)
1035{
1036	pipe_unlock(pipe);
1037	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1038	pipe_lock(pipe);
1039}
1040
1041/*
1042 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1043 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1044 * race with the count check and waitqueue prep.
1045 *
1046 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1047 * then check the condition you're waiting for, and only then sleep. But
1048 * because of the pipe lock, we can check the condition before being on
1049 * the wait queue.
1050 *
1051 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1052 */
1053static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1054{
1055	DEFINE_WAIT(rdwait);
1056	int cur = *cnt;
1057
1058	while (cur == *cnt) {
1059		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1060		pipe_unlock(pipe);
1061		schedule();
1062		finish_wait(&pipe->rd_wait, &rdwait);
1063		pipe_lock(pipe);
1064		if (signal_pending(current))
1065			break;
1066	}
1067	return cur == *cnt ? -ERESTARTSYS : 0;
1068}
1069
1070static void wake_up_partner(struct pipe_inode_info *pipe)
1071{
1072	wake_up_interruptible_all(&pipe->rd_wait);
1073}
1074
1075static int fifo_open(struct inode *inode, struct file *filp)
1076{
1077	struct pipe_inode_info *pipe;
1078	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1079	int ret;
1080
1081	filp->f_version = 0;
1082
1083	spin_lock(&inode->i_lock);
1084	if (inode->i_pipe) {
1085		pipe = inode->i_pipe;
1086		pipe->files++;
1087		spin_unlock(&inode->i_lock);
1088	} else {
1089		spin_unlock(&inode->i_lock);
1090		pipe = alloc_pipe_info();
1091		if (!pipe)
1092			return -ENOMEM;
1093		pipe->files = 1;
1094		spin_lock(&inode->i_lock);
1095		if (unlikely(inode->i_pipe)) {
1096			inode->i_pipe->files++;
1097			spin_unlock(&inode->i_lock);
1098			free_pipe_info(pipe);
1099			pipe = inode->i_pipe;
1100		} else {
1101			inode->i_pipe = pipe;
1102			spin_unlock(&inode->i_lock);
1103		}
1104	}
1105	filp->private_data = pipe;
1106	/* OK, we have a pipe and it's pinned down */
1107
1108	__pipe_lock(pipe);
1109
1110	/* We can only do regular read/write on fifos */
1111	stream_open(inode, filp);
1112
1113	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1114	case FMODE_READ:
1115	/*
1116	 *  O_RDONLY
1117	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1118	 *  opened, even when there is no process writing the FIFO.
1119	 */
1120		pipe->r_counter++;
1121		if (pipe->readers++ == 0)
1122			wake_up_partner(pipe);
1123
1124		if (!is_pipe && !pipe->writers) {
1125			if ((filp->f_flags & O_NONBLOCK)) {
1126				/* suppress EPOLLHUP until we have
1127				 * seen a writer */
1128				filp->f_version = pipe->w_counter;
1129			} else {
1130				if (wait_for_partner(pipe, &pipe->w_counter))
1131					goto err_rd;
1132			}
1133		}
1134		break;
1135
1136	case FMODE_WRITE:
1137	/*
1138	 *  O_WRONLY
1139	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1140	 *  errno=ENXIO when there is no process reading the FIFO.
1141	 */
1142		ret = -ENXIO;
1143		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1144			goto err;
1145
1146		pipe->w_counter++;
1147		if (!pipe->writers++)
1148			wake_up_partner(pipe);
1149
1150		if (!is_pipe && !pipe->readers) {
1151			if (wait_for_partner(pipe, &pipe->r_counter))
1152				goto err_wr;
1153		}
1154		break;
1155
1156	case FMODE_READ | FMODE_WRITE:
1157	/*
1158	 *  O_RDWR
1159	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1160	 *  This implementation will NEVER block on a O_RDWR open, since
1161	 *  the process can at least talk to itself.
1162	 */
1163
1164		pipe->readers++;
1165		pipe->writers++;
1166		pipe->r_counter++;
1167		pipe->w_counter++;
1168		if (pipe->readers == 1 || pipe->writers == 1)
1169			wake_up_partner(pipe);
1170		break;
1171
1172	default:
1173		ret = -EINVAL;
1174		goto err;
1175	}
1176
1177	/* Ok! */
1178	__pipe_unlock(pipe);
1179	return 0;
1180
1181err_rd:
1182	if (!--pipe->readers)
1183		wake_up_interruptible(&pipe->wr_wait);
1184	ret = -ERESTARTSYS;
1185	goto err;
1186
1187err_wr:
1188	if (!--pipe->writers)
1189		wake_up_interruptible_all(&pipe->rd_wait);
1190	ret = -ERESTARTSYS;
1191	goto err;
1192
1193err:
1194	__pipe_unlock(pipe);
1195
1196	put_pipe_info(inode, pipe);
1197	return ret;
1198}
1199
1200const struct file_operations pipefifo_fops = {
1201	.open		= fifo_open,
1202	.llseek		= no_llseek,
1203	.read_iter	= pipe_read,
1204	.write_iter	= pipe_write,
1205	.poll		= pipe_poll,
1206	.unlocked_ioctl	= pipe_ioctl,
1207	.release	= pipe_release,
1208	.fasync		= pipe_fasync,
1209};
1210
1211/*
1212 * Currently we rely on the pipe array holding a power-of-2 number
1213 * of pages. Returns 0 on error.
1214 */
1215unsigned int round_pipe_size(unsigned long size)
1216{
1217	if (size > (1U << 31))
1218		return 0;
1219
1220	/* Minimum pipe size, as required by POSIX */
1221	if (size < PAGE_SIZE)
1222		return PAGE_SIZE;
1223
1224	return roundup_pow_of_two(size);
1225}
1226
1227/*
1228 * Resize the pipe ring to a number of slots.
1229 */
1230int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1231{
1232	struct pipe_buffer *bufs;
1233	unsigned int head, tail, mask, n;
1234
1235	/*
1236	 * We can shrink the pipe, if arg is greater than the ring occupancy.
1237	 * Since we don't expect a lot of shrink+grow operations, just free and
1238	 * allocate again like we would do for growing.  If the pipe currently
1239	 * contains more buffers than arg, then return busy.
1240	 */
1241	mask = pipe->ring_size - 1;
1242	head = pipe->head;
1243	tail = pipe->tail;
1244	n = pipe_occupancy(pipe->head, pipe->tail);
1245	if (nr_slots < n)
1246		return -EBUSY;
1247
1248	bufs = kcalloc(nr_slots, sizeof(*bufs),
1249		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1250	if (unlikely(!bufs))
1251		return -ENOMEM;
1252
1253	/*
1254	 * The pipe array wraps around, so just start the new one at zero
1255	 * and adjust the indices.
1256	 */
1257	if (n > 0) {
1258		unsigned int h = head & mask;
1259		unsigned int t = tail & mask;
1260		if (h > t) {
1261			memcpy(bufs, pipe->bufs + t,
1262			       n * sizeof(struct pipe_buffer));
1263		} else {
1264			unsigned int tsize = pipe->ring_size - t;
1265			if (h > 0)
1266				memcpy(bufs + tsize, pipe->bufs,
1267				       h * sizeof(struct pipe_buffer));
1268			memcpy(bufs, pipe->bufs + t,
1269			       tsize * sizeof(struct pipe_buffer));
1270		}
 
1271	}
1272
1273	head = n;
1274	tail = 0;
1275
1276	kfree(pipe->bufs);
1277	pipe->bufs = bufs;
1278	pipe->ring_size = nr_slots;
1279	if (pipe->max_usage > nr_slots)
1280		pipe->max_usage = nr_slots;
1281	pipe->tail = tail;
1282	pipe->head = head;
1283
1284	/* This might have made more room for writers */
1285	wake_up_interruptible(&pipe->wr_wait);
1286	return 0;
1287}
1288
1289/*
1290 * Allocate a new array of pipe buffers and copy the info over. Returns the
1291 * pipe size if successful, or return -ERROR on error.
1292 */
1293static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1294{
1295	unsigned long user_bufs;
1296	unsigned int nr_slots, size;
1297	long ret = 0;
1298
1299#ifdef CONFIG_WATCH_QUEUE
1300	if (pipe->watch_queue)
1301		return -EBUSY;
1302#endif
1303
1304	size = round_pipe_size(arg);
1305	nr_slots = size >> PAGE_SHIFT;
 
1306
1307	if (!nr_slots)
1308		return -EINVAL;
 
 
 
 
 
 
1309
1310	/*
1311	 * If trying to increase the pipe capacity, check that an
1312	 * unprivileged user is not trying to exceed various limits
1313	 * (soft limit check here, hard limit check just below).
1314	 * Decreasing the pipe capacity is always permitted, even
1315	 * if the user is currently over a limit.
1316	 */
1317	if (nr_slots > pipe->max_usage &&
1318			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1319		return -EPERM;
1320
1321	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1322
1323	if (nr_slots > pipe->max_usage &&
1324			(too_many_pipe_buffers_hard(user_bufs) ||
1325			 too_many_pipe_buffers_soft(user_bufs)) &&
1326			pipe_is_unprivileged_user()) {
1327		ret = -EPERM;
1328		goto out_revert_acct;
1329	}
1330
1331	ret = pipe_resize_ring(pipe, nr_slots);
1332	if (ret < 0)
1333		goto out_revert_acct;
1334
1335	pipe->max_usage = nr_slots;
1336	pipe->nr_accounted = nr_slots;
1337	return pipe->max_usage * PAGE_SIZE;
1338
1339out_revert_acct:
1340	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1341	return ret;
1342}
1343
1344/*
1345 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1346 * location, so checking ->i_pipe is not enough to verify that this is a
1347 * pipe.
1348 */
1349struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1350{
1351	struct pipe_inode_info *pipe = file->private_data;
1352
1353	if (file->f_op != &pipefifo_fops || !pipe)
1354		return NULL;
1355#ifdef CONFIG_WATCH_QUEUE
1356	if (for_splice && pipe->watch_queue)
1357		return NULL;
1358#endif
1359	return pipe;
1360}
1361
1362long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1363{
1364	struct pipe_inode_info *pipe;
1365	long ret;
1366
1367	pipe = get_pipe_info(file, false);
1368	if (!pipe)
1369		return -EBADF;
1370
1371	__pipe_lock(pipe);
1372
1373	switch (cmd) {
1374	case F_SETPIPE_SZ:
1375		ret = pipe_set_size(pipe, arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
1376		break;
 
1377	case F_GETPIPE_SZ:
1378		ret = pipe->max_usage * PAGE_SIZE;
1379		break;
1380	default:
1381		ret = -EINVAL;
1382		break;
1383	}
1384
1385	__pipe_unlock(pipe);
 
1386	return ret;
1387}
1388
1389static const struct super_operations pipefs_ops = {
1390	.destroy_inode = free_inode_nonrcu,
1391	.statfs = simple_statfs,
1392};
1393
1394/*
1395 * pipefs should _never_ be mounted by userland - too much of security hassle,
1396 * no real gain from having the whole whorehouse mounted. So we don't need
1397 * any operations on the root directory. However, we need a non-trivial
1398 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1399 */
1400
1401static int pipefs_init_fs_context(struct fs_context *fc)
1402{
1403	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1404	if (!ctx)
1405		return -ENOMEM;
1406	ctx->ops = &pipefs_ops;
1407	ctx->dops = &pipefs_dentry_operations;
1408	return 0;
1409}
1410
1411static struct file_system_type pipe_fs_type = {
1412	.name		= "pipefs",
1413	.init_fs_context = pipefs_init_fs_context,
1414	.kill_sb	= kill_anon_super,
1415};
1416
1417static int __init init_pipe_fs(void)
1418{
1419	int err = register_filesystem(&pipe_fs_type);
1420
1421	if (!err) {
1422		pipe_mnt = kern_mount(&pipe_fs_type);
1423		if (IS_ERR(pipe_mnt)) {
1424			err = PTR_ERR(pipe_mnt);
1425			unregister_filesystem(&pipe_fs_type);
1426		}
1427	}
1428	return err;
1429}
1430
 
 
 
 
 
 
1431fs_initcall(init_pipe_fs);
v3.1
 
   1/*
   2 *  linux/fs/pipe.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
   5 */
   6
   7#include <linux/mm.h>
   8#include <linux/file.h>
   9#include <linux/poll.h>
  10#include <linux/slab.h>
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/fs.h>
  14#include <linux/log2.h>
  15#include <linux/mount.h>
 
 
  16#include <linux/pipe_fs_i.h>
  17#include <linux/uio.h>
  18#include <linux/highmem.h>
  19#include <linux/pagemap.h>
  20#include <linux/audit.h>
  21#include <linux/syscalls.h>
  22#include <linux/fcntl.h>
 
 
  23
  24#include <asm/uaccess.h>
  25#include <asm/ioctls.h>
  26
 
 
  27/*
  28 * The max size that a non-root user is allowed to grow the pipe. Can
  29 * be set by root in /proc/sys/fs/pipe-max-size
  30 */
  31unsigned int pipe_max_size = 1048576;
  32
  33/*
  34 * Minimum pipe size, as required by POSIX
  35 */
  36unsigned int pipe_min_size = PAGE_SIZE;
 
  37
  38/*
  39 * We use a start+len construction, which provides full use of the 
  40 * allocated memory.
  41 * -- Florian Coosmann (FGC)
  42 * 
 
 
  43 * Reads with count = 0 should always return 0.
  44 * -- Julian Bradfield 1999-06-07.
  45 *
  46 * FIFOs and Pipes now generate SIGIO for both readers and writers.
  47 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
  48 *
  49 * pipe_read & write cleanup
  50 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
  51 */
  52
  53static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
  54{
  55	if (pipe->inode)
  56		mutex_lock_nested(&pipe->inode->i_mutex, subclass);
  57}
  58
  59void pipe_lock(struct pipe_inode_info *pipe)
  60{
  61	/*
  62	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
  63	 */
  64	pipe_lock_nested(pipe, I_MUTEX_PARENT);
  65}
  66EXPORT_SYMBOL(pipe_lock);
  67
  68void pipe_unlock(struct pipe_inode_info *pipe)
  69{
  70	if (pipe->inode)
  71		mutex_unlock(&pipe->inode->i_mutex);
  72}
  73EXPORT_SYMBOL(pipe_unlock);
  74
 
 
 
 
 
 
 
 
 
 
  75void pipe_double_lock(struct pipe_inode_info *pipe1,
  76		      struct pipe_inode_info *pipe2)
  77{
  78	BUG_ON(pipe1 == pipe2);
  79
  80	if (pipe1 < pipe2) {
  81		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
  82		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
  83	} else {
  84		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
  85		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
  86	}
  87}
  88
  89/* Drop the inode semaphore and wait for a pipe event, atomically */
  90void pipe_wait(struct pipe_inode_info *pipe)
  91{
  92	DEFINE_WAIT(wait);
  93
  94	/*
  95	 * Pipes are system-local resources, so sleeping on them
  96	 * is considered a noninteractive wait:
  97	 */
  98	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
  99	pipe_unlock(pipe);
 100	schedule();
 101	finish_wait(&pipe->wait, &wait);
 102	pipe_lock(pipe);
 103}
 104
 105static int
 106pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
 107			int atomic)
 108{
 109	unsigned long copy;
 110
 111	while (len > 0) {
 112		while (!iov->iov_len)
 113			iov++;
 114		copy = min_t(unsigned long, len, iov->iov_len);
 115
 116		if (atomic) {
 117			if (__copy_from_user_inatomic(to, iov->iov_base, copy))
 118				return -EFAULT;
 119		} else {
 120			if (copy_from_user(to, iov->iov_base, copy))
 121				return -EFAULT;
 122		}
 123		to += copy;
 124		len -= copy;
 125		iov->iov_base += copy;
 126		iov->iov_len -= copy;
 127	}
 128	return 0;
 129}
 130
 131static int
 132pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
 133		      int atomic)
 134{
 135	unsigned long copy;
 136
 137	while (len > 0) {
 138		while (!iov->iov_len)
 139			iov++;
 140		copy = min_t(unsigned long, len, iov->iov_len);
 141
 142		if (atomic) {
 143			if (__copy_to_user_inatomic(iov->iov_base, from, copy))
 144				return -EFAULT;
 145		} else {
 146			if (copy_to_user(iov->iov_base, from, copy))
 147				return -EFAULT;
 148		}
 149		from += copy;
 150		len -= copy;
 151		iov->iov_base += copy;
 152		iov->iov_len -= copy;
 153	}
 154	return 0;
 155}
 156
 157/*
 158 * Attempt to pre-fault in the user memory, so we can use atomic copies.
 159 * Returns the number of bytes not faulted in.
 160 */
 161static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
 162{
 163	while (!iov->iov_len)
 164		iov++;
 165
 166	while (len > 0) {
 167		unsigned long this_len;
 168
 169		this_len = min_t(unsigned long, len, iov->iov_len);
 170		if (fault_in_pages_writeable(iov->iov_base, this_len))
 171			break;
 172
 173		len -= this_len;
 174		iov++;
 175	}
 176
 177	return len;
 178}
 179
 180/*
 181 * Pre-fault in the user memory, so we can use atomic copies.
 182 */
 183static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
 184{
 185	while (!iov->iov_len)
 186		iov++;
 187
 188	while (len > 0) {
 189		unsigned long this_len;
 190
 191		this_len = min_t(unsigned long, len, iov->iov_len);
 192		fault_in_pages_readable(iov->iov_base, this_len);
 193		len -= this_len;
 194		iov++;
 195	}
 196}
 197
 198static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
 199				  struct pipe_buffer *buf)
 200{
 201	struct page *page = buf->page;
 202
 203	/*
 204	 * If nobody else uses this page, and we don't already have a
 205	 * temporary page, let's keep track of it as a one-deep
 206	 * allocation cache. (Otherwise just release our reference to it)
 207	 */
 208	if (page_count(page) == 1 && !pipe->tmp_page)
 209		pipe->tmp_page = page;
 210	else
 211		page_cache_release(page);
 212}
 213
 214/**
 215 * generic_pipe_buf_map - virtually map a pipe buffer
 216 * @pipe:	the pipe that the buffer belongs to
 217 * @buf:	the buffer that should be mapped
 218 * @atomic:	whether to use an atomic map
 219 *
 220 * Description:
 221 *	This function returns a kernel virtual address mapping for the
 222 *	pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
 223 *	and the caller has to be careful not to fault before calling
 224 *	the unmap function.
 225 *
 226 *	Note that this function occupies KM_USER0 if @atomic != 0.
 227 */
 228void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
 229			   struct pipe_buffer *buf, int atomic)
 230{
 231	if (atomic) {
 232		buf->flags |= PIPE_BUF_FLAG_ATOMIC;
 233		return kmap_atomic(buf->page, KM_USER0);
 234	}
 235
 236	return kmap(buf->page);
 
 
 
 
 237}
 238EXPORT_SYMBOL(generic_pipe_buf_map);
 239
 240/**
 241 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
 242 * @pipe:	the pipe that the buffer belongs to
 243 * @buf:	the buffer that should be unmapped
 244 * @map_data:	the data that the mapping function returned
 245 *
 246 * Description:
 247 *	This function undoes the mapping that ->map() provided.
 248 */
 249void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
 250			    struct pipe_buffer *buf, void *map_data)
 251{
 252	if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
 253		buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
 254		kunmap_atomic(map_data, KM_USER0);
 255	} else
 256		kunmap(buf->page);
 257}
 258EXPORT_SYMBOL(generic_pipe_buf_unmap);
 259
 260/**
 261 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
 262 * @pipe:	the pipe that the buffer belongs to
 263 * @buf:	the buffer to attempt to steal
 264 *
 265 * Description:
 266 *	This function attempts to steal the &struct page attached to
 267 *	@buf. If successful, this function returns 0 and returns with
 268 *	the page locked. The caller may then reuse the page for whatever
 269 *	he wishes; the typical use is insertion into a different file
 270 *	page cache.
 271 */
 272int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
 273			   struct pipe_buffer *buf)
 274{
 275	struct page *page = buf->page;
 276
 277	/*
 278	 * A reference of one is golden, that means that the owner of this
 279	 * page is the only one holding a reference to it. lock the page
 280	 * and return OK.
 281	 */
 282	if (page_count(page) == 1) {
 283		lock_page(page);
 284		return 0;
 285	}
 286
 287	return 1;
 288}
 289EXPORT_SYMBOL(generic_pipe_buf_steal);
 290
 291/**
 292 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
 293 * @pipe:	the pipe that the buffer belongs to
 294 * @buf:	the buffer to get a reference to
 295 *
 296 * Description:
 297 *	This function grabs an extra reference to @buf. It's used in
 298 *	in the tee() system call, when we duplicate the buffers in one
 299 *	pipe into another.
 300 */
 301void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
 302{
 303	page_cache_get(buf->page);
 304}
 305EXPORT_SYMBOL(generic_pipe_buf_get);
 306
 307/**
 308 * generic_pipe_buf_confirm - verify contents of the pipe buffer
 309 * @info:	the pipe that the buffer belongs to
 310 * @buf:	the buffer to confirm
 311 *
 312 * Description:
 313 *	This function does nothing, because the generic pipe code uses
 314 *	pages that are always good when inserted into the pipe.
 315 */
 316int generic_pipe_buf_confirm(struct pipe_inode_info *info,
 317			     struct pipe_buffer *buf)
 318{
 319	return 0;
 320}
 321EXPORT_SYMBOL(generic_pipe_buf_confirm);
 322
 323/**
 324 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
 325 * @pipe:	the pipe that the buffer belongs to
 326 * @buf:	the buffer to put a reference to
 327 *
 328 * Description:
 329 *	This function releases a reference to @buf.
 330 */
 331void generic_pipe_buf_release(struct pipe_inode_info *pipe,
 332			      struct pipe_buffer *buf)
 333{
 334	page_cache_release(buf->page);
 335}
 336EXPORT_SYMBOL(generic_pipe_buf_release);
 337
 338static const struct pipe_buf_operations anon_pipe_buf_ops = {
 339	.can_merge = 1,
 340	.map = generic_pipe_buf_map,
 341	.unmap = generic_pipe_buf_unmap,
 342	.confirm = generic_pipe_buf_confirm,
 343	.release = anon_pipe_buf_release,
 344	.steal = generic_pipe_buf_steal,
 345	.get = generic_pipe_buf_get,
 346};
 347
 
 
 
 
 
 
 
 
 
 
 348static ssize_t
 349pipe_read(struct kiocb *iocb, const struct iovec *_iov,
 350	   unsigned long nr_segs, loff_t pos)
 351{
 
 352	struct file *filp = iocb->ki_filp;
 353	struct inode *inode = filp->f_path.dentry->d_inode;
 354	struct pipe_inode_info *pipe;
 355	int do_wakeup;
 356	ssize_t ret;
 357	struct iovec *iov = (struct iovec *)_iov;
 358	size_t total_len;
 359
 360	total_len = iov_length(iov, nr_segs);
 361	/* Null read succeeds. */
 362	if (unlikely(total_len == 0))
 363		return 0;
 364
 365	do_wakeup = 0;
 366	ret = 0;
 367	mutex_lock(&inode->i_mutex);
 368	pipe = inode->i_pipe;
 
 
 
 
 
 
 
 
 
 369	for (;;) {
 370		int bufs = pipe->nrbufs;
 371		if (bufs) {
 372			int curbuf = pipe->curbuf;
 373			struct pipe_buffer *buf = pipe->bufs + curbuf;
 374			const struct pipe_buf_operations *ops = buf->ops;
 375			void *addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376			size_t chars = buf->len;
 377			int error, atomic;
 
 378
 379			if (chars > total_len)
 
 
 
 
 
 380				chars = total_len;
 
 381
 382			error = ops->confirm(pipe, buf);
 383			if (error) {
 384				if (!ret)
 385					ret = error;
 386				break;
 387			}
 388
 389			atomic = !iov_fault_in_pages_write(iov, chars);
 390redo:
 391			addr = ops->map(pipe, buf, atomic);
 392			error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
 393			ops->unmap(pipe, buf, addr);
 394			if (unlikely(error)) {
 395				/*
 396				 * Just retry with the slow path if we failed.
 397				 */
 398				if (atomic) {
 399					atomic = 0;
 400					goto redo;
 401				}
 402				if (!ret)
 403					ret = error;
 404				break;
 405			}
 406			ret += chars;
 407			buf->offset += chars;
 408			buf->len -= chars;
 
 
 
 
 
 
 
 409			if (!buf->len) {
 410				buf->ops = NULL;
 411				ops->release(pipe, buf);
 412				curbuf = (curbuf + 1) & (pipe->buffers - 1);
 413				pipe->curbuf = curbuf;
 414				pipe->nrbufs = --bufs;
 415				do_wakeup = 1;
 
 
 
 416			}
 417			total_len -= chars;
 418			if (!total_len)
 419				break;	/* common path: read succeeded */
 
 
 420		}
 421		if (bufs)	/* More to do? */
 422			continue;
 423		if (!pipe->writers)
 424			break;
 425		if (!pipe->waiting_writers) {
 426			/* syscall merging: Usually we must not sleep
 427			 * if O_NONBLOCK is set, or if we got some data.
 428			 * But if a writer sleeps in kernel space, then
 429			 * we can wait for that data without violating POSIX.
 430			 */
 431			if (ret)
 432				break;
 433			if (filp->f_flags & O_NONBLOCK) {
 434				ret = -EAGAIN;
 435				break;
 436			}
 437		}
 438		if (signal_pending(current)) {
 439			if (!ret)
 440				ret = -ERESTARTSYS;
 441			break;
 442		}
 443		if (do_wakeup) {
 444			wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
 445 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446		}
 447		pipe_wait(pipe);
 448	}
 449	mutex_unlock(&inode->i_mutex);
 450
 451	/* Signal writers asynchronously that there is more room. */
 452	if (do_wakeup) {
 453		wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 455	}
 
 
 456	if (ret > 0)
 457		file_accessed(filp);
 458	return ret;
 459}
 460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461static ssize_t
 462pipe_write(struct kiocb *iocb, const struct iovec *_iov,
 463	    unsigned long nr_segs, loff_t ppos)
 464{
 465	struct file *filp = iocb->ki_filp;
 466	struct inode *inode = filp->f_path.dentry->d_inode;
 467	struct pipe_inode_info *pipe;
 468	ssize_t ret;
 469	int do_wakeup;
 470	struct iovec *iov = (struct iovec *)_iov;
 471	size_t total_len;
 472	ssize_t chars;
 
 
 473
 474	total_len = iov_length(iov, nr_segs);
 475	/* Null write succeeds. */
 476	if (unlikely(total_len == 0))
 477		return 0;
 478
 479	do_wakeup = 0;
 480	ret = 0;
 481	mutex_lock(&inode->i_mutex);
 482	pipe = inode->i_pipe;
 483
 484	if (!pipe->readers) {
 485		send_sig(SIGPIPE, current, 0);
 486		ret = -EPIPE;
 487		goto out;
 488	}
 489
 490	/* We try to merge small writes */
 491	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
 492	if (pipe->nrbufs && chars != 0) {
 493		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
 494							(pipe->buffers - 1);
 495		struct pipe_buffer *buf = pipe->bufs + lastbuf;
 496		const struct pipe_buf_operations *ops = buf->ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497		int offset = buf->offset + buf->len;
 498
 499		if (ops->can_merge && offset + chars <= PAGE_SIZE) {
 500			int error, atomic = 1;
 501			void *addr;
 502
 503			error = ops->confirm(pipe, buf);
 504			if (error)
 505				goto out;
 506
 507			iov_fault_in_pages_read(iov, chars);
 508redo1:
 509			addr = ops->map(pipe, buf, atomic);
 510			error = pipe_iov_copy_from_user(offset + addr, iov,
 511							chars, atomic);
 512			ops->unmap(pipe, buf, addr);
 513			ret = error;
 514			do_wakeup = 1;
 515			if (error) {
 516				if (atomic) {
 517					atomic = 0;
 518					goto redo1;
 519				}
 520				goto out;
 521			}
 522			buf->len += chars;
 523			total_len -= chars;
 524			ret = chars;
 525			if (!total_len)
 526				goto out;
 527		}
 528	}
 529
 530	for (;;) {
 531		int bufs;
 532
 533		if (!pipe->readers) {
 534			send_sig(SIGPIPE, current, 0);
 535			if (!ret)
 536				ret = -EPIPE;
 537			break;
 538		}
 539		bufs = pipe->nrbufs;
 540		if (bufs < pipe->buffers) {
 541			int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
 542			struct pipe_buffer *buf = pipe->bufs + newbuf;
 
 543			struct page *page = pipe->tmp_page;
 544			char *src;
 545			int error, atomic = 1;
 546
 547			if (!page) {
 548				page = alloc_page(GFP_HIGHUSER);
 549				if (unlikely(!page)) {
 550					ret = ret ? : -ENOMEM;
 551					break;
 552				}
 553				pipe->tmp_page = page;
 554			}
 555			/* Always wake up, even if the copy fails. Otherwise
 556			 * we lock up (O_NONBLOCK-)readers that sleep due to
 557			 * syscall merging.
 558			 * FIXME! Is this really true?
 
 559			 */
 560			do_wakeup = 1;
 561			chars = PAGE_SIZE;
 562			if (chars > total_len)
 563				chars = total_len;
 
 
 
 564
 565			iov_fault_in_pages_read(iov, chars);
 566redo2:
 567			if (atomic)
 568				src = kmap_atomic(page, KM_USER0);
 569			else
 570				src = kmap(page);
 571
 572			error = pipe_iov_copy_from_user(src, iov, chars,
 573							atomic);
 574			if (atomic)
 575				kunmap_atomic(src, KM_USER0);
 
 
 
 
 576			else
 577				kunmap(page);
 
 578
 579			if (unlikely(error)) {
 580				if (atomic) {
 581					atomic = 0;
 582					goto redo2;
 583				}
 584				if (!ret)
 585					ret = error;
 586				break;
 587			}
 588			ret += chars;
 589
 590			/* Insert it into the buffer array */
 591			buf->page = page;
 592			buf->ops = &anon_pipe_buf_ops;
 593			buf->offset = 0;
 594			buf->len = chars;
 595			pipe->nrbufs = ++bufs;
 596			pipe->tmp_page = NULL;
 597
 598			total_len -= chars;
 599			if (!total_len)
 600				break;
 601		}
 602		if (bufs < pipe->buffers)
 
 603			continue;
 
 
 604		if (filp->f_flags & O_NONBLOCK) {
 605			if (!ret)
 606				ret = -EAGAIN;
 607			break;
 608		}
 609		if (signal_pending(current)) {
 610			if (!ret)
 611				ret = -ERESTARTSYS;
 612			break;
 613		}
 614		if (do_wakeup) {
 615			wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
 
 
 
 
 
 
 
 
 616			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 617			do_wakeup = 0;
 618		}
 619		pipe->waiting_writers++;
 620		pipe_wait(pipe);
 621		pipe->waiting_writers--;
 
 622	}
 623out:
 624	mutex_unlock(&inode->i_mutex);
 625	if (do_wakeup) {
 626		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
 
 
 
 
 
 
 
 
 
 
 
 
 627		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 628	}
 629	if (ret > 0)
 630		file_update_time(filp);
 
 
 
 
 
 
 631	return ret;
 632}
 633
 634static ssize_t
 635bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
 636{
 637	return -EBADF;
 638}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639
 640static ssize_t
 641bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
 642	   loff_t *ppos)
 643{
 644	return -EBADF;
 645}
 646
 647static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 648{
 649	struct inode *inode = filp->f_path.dentry->d_inode;
 650	struct pipe_inode_info *pipe;
 651	int count, buf, nrbufs;
 
 
 
 652
 653	switch (cmd) {
 654		case FIONREAD:
 655			mutex_lock(&inode->i_mutex);
 656			pipe = inode->i_pipe;
 657			count = 0;
 658			buf = pipe->curbuf;
 659			nrbufs = pipe->nrbufs;
 660			while (--nrbufs >= 0) {
 661				count += pipe->bufs[buf].len;
 662				buf = (buf+1) & (pipe->buffers - 1);
 663			}
 664			mutex_unlock(&inode->i_mutex);
 665
 666			return put_user(count, (int __user *)arg);
 667		default:
 668			return -EINVAL;
 669	}
 670}
 671
 672/* No kernel lock held - fine */
 673static unsigned int
 674pipe_poll(struct file *filp, poll_table *wait)
 675{
 676	unsigned int mask;
 677	struct inode *inode = filp->f_path.dentry->d_inode;
 678	struct pipe_inode_info *pipe = inode->i_pipe;
 679	int nrbufs;
 
 
 
 
 
 
 
 
 
 
 680
 681	poll_wait(filp, &pipe->wait, wait);
 
 
 
 
 
 
 682
 683	/* Reading only -- no need for acquiring the semaphore.  */
 684	nrbufs = pipe->nrbufs;
 685	mask = 0;
 686	if (filp->f_mode & FMODE_READ) {
 687		mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
 
 688		if (!pipe->writers && filp->f_version != pipe->w_counter)
 689			mask |= POLLHUP;
 690	}
 691
 692	if (filp->f_mode & FMODE_WRITE) {
 693		mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
 
 694		/*
 695		 * Most Unices do not set POLLERR for FIFOs but on Linux they
 696		 * behave exactly like pipes for poll().
 697		 */
 698		if (!pipe->readers)
 699			mask |= POLLERR;
 700	}
 701
 702	return mask;
 703}
 704
 705static int
 706pipe_release(struct inode *inode, int decr, int decw)
 707{
 708	struct pipe_inode_info *pipe;
 709
 710	mutex_lock(&inode->i_mutex);
 711	pipe = inode->i_pipe;
 712	pipe->readers -= decr;
 713	pipe->writers -= decw;
 714
 715	if (!pipe->readers && !pipe->writers) {
 716		free_pipe_info(inode);
 717	} else {
 718		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
 719		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 720		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 721	}
 722	mutex_unlock(&inode->i_mutex);
 723
 724	return 0;
 
 725}
 726
 727static int
 728pipe_read_fasync(int fd, struct file *filp, int on)
 729{
 730	struct inode *inode = filp->f_path.dentry->d_inode;
 731	int retval;
 732
 733	mutex_lock(&inode->i_mutex);
 734	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
 735	mutex_unlock(&inode->i_mutex);
 
 
 
 
 
 
 
 
 
 
 
 736
 737	return retval;
 
 738}
 739
 740
 741static int
 742pipe_write_fasync(int fd, struct file *filp, int on)
 743{
 744	struct inode *inode = filp->f_path.dentry->d_inode;
 745	int retval;
 746
 747	mutex_lock(&inode->i_mutex);
 748	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
 749	mutex_unlock(&inode->i_mutex);
 750
 751	return retval;
 752}
 753
 754
 755static int
 756pipe_rdwr_fasync(int fd, struct file *filp, int on)
 757{
 758	struct inode *inode = filp->f_path.dentry->d_inode;
 759	struct pipe_inode_info *pipe = inode->i_pipe;
 760	int retval;
 761
 762	mutex_lock(&inode->i_mutex);
 763	retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
 764	if (retval >= 0) {
 765		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
 766		if (retval < 0) /* this can happen only if on == T */
 
 767			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
 768	}
 769	mutex_unlock(&inode->i_mutex);
 770	return retval;
 771}
 772
 773
 774static int
 775pipe_read_release(struct inode *inode, struct file *filp)
 776{
 777	return pipe_release(inode, 1, 0);
 778}
 779
 780static int
 781pipe_write_release(struct inode *inode, struct file *filp)
 782{
 783	return pipe_release(inode, 0, 1);
 
 
 784}
 785
 786static int
 787pipe_rdwr_release(struct inode *inode, struct file *filp)
 788{
 789	int decr, decw;
 790
 791	decr = (filp->f_mode & FMODE_READ) != 0;
 792	decw = (filp->f_mode & FMODE_WRITE) != 0;
 793	return pipe_release(inode, decr, decw);
 794}
 795
 796static int
 797pipe_read_open(struct inode *inode, struct file *filp)
 798{
 799	int ret = -ENOENT;
 800
 801	mutex_lock(&inode->i_mutex);
 802
 803	if (inode->i_pipe) {
 804		ret = 0;
 805		inode->i_pipe->readers++;
 806	}
 807
 808	mutex_unlock(&inode->i_mutex);
 809
 810	return ret;
 811}
 812
 813static int
 814pipe_write_open(struct inode *inode, struct file *filp)
 815{
 816	int ret = -ENOENT;
 
 
 
 
 817
 818	mutex_lock(&inode->i_mutex);
 
 
 819
 820	if (inode->i_pipe) {
 821		ret = 0;
 822		inode->i_pipe->writers++;
 823	}
 824
 825	mutex_unlock(&inode->i_mutex);
 826
 827	return ret;
 828}
 829
 830static int
 831pipe_rdwr_open(struct inode *inode, struct file *filp)
 832{
 833	int ret = -ENOENT;
 834
 835	mutex_lock(&inode->i_mutex);
 836
 837	if (inode->i_pipe) {
 838		ret = 0;
 839		if (filp->f_mode & FMODE_READ)
 840			inode->i_pipe->readers++;
 841		if (filp->f_mode & FMODE_WRITE)
 842			inode->i_pipe->writers++;
 843	}
 844
 845	mutex_unlock(&inode->i_mutex);
 846
 847	return ret;
 848}
 849
 850/*
 851 * The file_operations structs are not static because they
 852 * are also used in linux/fs/fifo.c to do operations on FIFOs.
 853 *
 854 * Pipes reuse fifos' file_operations structs.
 855 */
 856const struct file_operations read_pipefifo_fops = {
 857	.llseek		= no_llseek,
 858	.read		= do_sync_read,
 859	.aio_read	= pipe_read,
 860	.write		= bad_pipe_w,
 861	.poll		= pipe_poll,
 862	.unlocked_ioctl	= pipe_ioctl,
 863	.open		= pipe_read_open,
 864	.release	= pipe_read_release,
 865	.fasync		= pipe_read_fasync,
 866};
 867
 868const struct file_operations write_pipefifo_fops = {
 869	.llseek		= no_llseek,
 870	.read		= bad_pipe_r,
 871	.write		= do_sync_write,
 872	.aio_write	= pipe_write,
 873	.poll		= pipe_poll,
 874	.unlocked_ioctl	= pipe_ioctl,
 875	.open		= pipe_write_open,
 876	.release	= pipe_write_release,
 877	.fasync		= pipe_write_fasync,
 878};
 879
 880const struct file_operations rdwr_pipefifo_fops = {
 881	.llseek		= no_llseek,
 882	.read		= do_sync_read,
 883	.aio_read	= pipe_read,
 884	.write		= do_sync_write,
 885	.aio_write	= pipe_write,
 886	.poll		= pipe_poll,
 887	.unlocked_ioctl	= pipe_ioctl,
 888	.open		= pipe_rdwr_open,
 889	.release	= pipe_rdwr_release,
 890	.fasync		= pipe_rdwr_fasync,
 891};
 892
 893struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
 894{
 895	struct pipe_inode_info *pipe;
 896
 897	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
 898	if (pipe) {
 899		pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
 900		if (pipe->bufs) {
 901			init_waitqueue_head(&pipe->wait);
 902			pipe->r_counter = pipe->w_counter = 1;
 903			pipe->inode = inode;
 904			pipe->buffers = PIPE_DEF_BUFFERS;
 905			return pipe;
 906		}
 907		kfree(pipe);
 908	}
 909
 
 
 
 
 
 910	return NULL;
 911}
 912
 913void __free_pipe_info(struct pipe_inode_info *pipe)
 914{
 915	int i;
 916
 917	for (i = 0; i < pipe->buffers; i++) {
 
 
 
 
 
 
 
 
 
 918		struct pipe_buffer *buf = pipe->bufs + i;
 919		if (buf->ops)
 920			buf->ops->release(pipe, buf);
 921	}
 922	if (pipe->tmp_page)
 923		__free_page(pipe->tmp_page);
 924	kfree(pipe->bufs);
 925	kfree(pipe);
 926}
 927
 928void free_pipe_info(struct inode *inode)
 929{
 930	__free_pipe_info(inode->i_pipe);
 931	inode->i_pipe = NULL;
 932}
 933
 934static struct vfsmount *pipe_mnt __read_mostly;
 935
 936/*
 937 * pipefs_dname() is called from d_path().
 938 */
 939static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
 940{
 941	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
 942				dentry->d_inode->i_ino);
 943}
 944
 945static const struct dentry_operations pipefs_dentry_operations = {
 946	.d_dname	= pipefs_dname,
 947};
 948
 949static struct inode * get_pipe_inode(void)
 950{
 951	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
 952	struct pipe_inode_info *pipe;
 953
 954	if (!inode)
 955		goto fail_inode;
 956
 957	inode->i_ino = get_next_ino();
 958
 959	pipe = alloc_pipe_info(inode);
 960	if (!pipe)
 961		goto fail_iput;
 
 962	inode->i_pipe = pipe;
 963
 964	pipe->readers = pipe->writers = 1;
 965	inode->i_fop = &rdwr_pipefifo_fops;
 966
 967	/*
 968	 * Mark the inode dirty from the very beginning,
 969	 * that way it will never be moved to the dirty
 970	 * list because "mark_inode_dirty()" will think
 971	 * that it already _is_ on the dirty list.
 972	 */
 973	inode->i_state = I_DIRTY;
 974	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
 975	inode->i_uid = current_fsuid();
 976	inode->i_gid = current_fsgid();
 977	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 978
 979	return inode;
 980
 981fail_iput:
 982	iput(inode);
 983
 984fail_inode:
 985	return NULL;
 986}
 987
 988struct file *create_write_pipe(int flags)
 989{
 990	int err;
 991	struct inode *inode;
 992	struct file *f;
 993	struct path path;
 994	struct qstr name = { .name = "" };
 995
 996	err = -ENFILE;
 997	inode = get_pipe_inode();
 998	if (!inode)
 999		goto err;
1000
1001	err = -ENOMEM;
1002	path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
1003	if (!path.dentry)
1004		goto err_inode;
1005	path.mnt = mntget(pipe_mnt);
1006
1007	d_instantiate(path.dentry, inode);
1008
1009	err = -ENFILE;
1010	f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
1011	if (!f)
1012		goto err_dentry;
1013	f->f_mapping = inode->i_mapping;
1014
1015	f->f_flags = O_WRONLY | (flags & O_NONBLOCK);
1016	f->f_version = 0;
1017
1018	return f;
1019
1020 err_dentry:
1021	free_pipe_info(inode);
1022	path_put(&path);
1023	return ERR_PTR(err);
1024
1025 err_inode:
1026	free_pipe_info(inode);
1027	iput(inode);
1028 err:
1029	return ERR_PTR(err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1030}
1031
1032void free_write_pipe(struct file *f)
1033{
1034	free_pipe_info(f->f_dentry->d_inode);
1035	path_put(&f->f_path);
1036	put_filp(f);
1037}
1038
1039struct file *create_read_pipe(struct file *wrf, int flags)
1040{
1041	/* Grab pipe from the writer */
1042	struct file *f = alloc_file(&wrf->f_path, FMODE_READ,
1043				    &read_pipefifo_fops);
1044	if (!f)
1045		return ERR_PTR(-ENFILE);
1046
1047	path_get(&wrf->f_path);
1048	f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1049
1050	return f;
1051}
1052
1053int do_pipe_flags(int *fd, int flags)
1054{
1055	struct file *fw, *fr;
1056	int error;
1057	int fdw, fdr;
1058
1059	if (flags & ~(O_CLOEXEC | O_NONBLOCK))
1060		return -EINVAL;
1061
1062	fw = create_write_pipe(flags);
1063	if (IS_ERR(fw))
1064		return PTR_ERR(fw);
1065	fr = create_read_pipe(fw, flags);
1066	error = PTR_ERR(fr);
1067	if (IS_ERR(fr))
1068		goto err_write_pipe;
1069
1070	error = get_unused_fd_flags(flags);
1071	if (error < 0)
1072		goto err_read_pipe;
1073	fdr = error;
1074
1075	error = get_unused_fd_flags(flags);
1076	if (error < 0)
1077		goto err_fdr;
1078	fdw = error;
1079
1080	audit_fd_pair(fdr, fdw);
1081	fd_install(fdr, fr);
1082	fd_install(fdw, fw);
1083	fd[0] = fdr;
1084	fd[1] = fdw;
1085
1086	return 0;
1087
1088 err_fdr:
1089	put_unused_fd(fdr);
1090 err_read_pipe:
1091	path_put(&fr->f_path);
1092	put_filp(fr);
1093 err_write_pipe:
1094	free_write_pipe(fw);
 
 
 
 
 
 
 
 
 
1095	return error;
1096}
1097
1098/*
1099 * sys_pipe() is the normal C calling standard for creating
1100 * a pipe. It's not the way Unix traditionally does this, though.
1101 */
1102SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1103{
 
1104	int fd[2];
1105	int error;
1106
1107	error = do_pipe_flags(fd, flags);
1108	if (!error) {
1109		if (copy_to_user(fildes, fd, sizeof(fd))) {
1110			sys_close(fd[0]);
1111			sys_close(fd[1]);
 
 
1112			error = -EFAULT;
 
 
 
1113		}
1114	}
1115	return error;
1116}
1117
 
 
 
 
 
1118SYSCALL_DEFINE1(pipe, int __user *, fildes)
1119{
1120	return sys_pipe2(fildes, 0);
1121}
1122
1123/*
1124 * Allocate a new array of pipe buffers and copy the info over. Returns the
1125 * pipe size if successful, or return -ERROR on error.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126 */
1127static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1128{
1129	struct pipe_buffer *bufs;
 
1130
1131	/*
1132	 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1133	 * expect a lot of shrink+grow operations, just free and allocate
1134	 * again like we would do for growing. If the pipe currently
1135	 * contains more buffers than arg, then return busy.
1136	 */
1137	if (nr_pages < pipe->nrbufs)
 
 
 
 
1138		return -EBUSY;
1139
1140	bufs = kcalloc(nr_pages, sizeof(struct pipe_buffer), GFP_KERNEL);
 
1141	if (unlikely(!bufs))
1142		return -ENOMEM;
1143
1144	/*
1145	 * The pipe array wraps around, so just start the new one at zero
1146	 * and adjust the indexes.
1147	 */
1148	if (pipe->nrbufs) {
1149		unsigned int tail;
1150		unsigned int head;
1151
1152		tail = pipe->curbuf + pipe->nrbufs;
1153		if (tail < pipe->buffers)
1154			tail = 0;
1155		else
1156			tail &= (pipe->buffers - 1);
1157
1158		head = pipe->nrbufs - tail;
1159		if (head)
1160			memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1161		if (tail)
1162			memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1163	}
1164
1165	pipe->curbuf = 0;
 
 
1166	kfree(pipe->bufs);
1167	pipe->bufs = bufs;
1168	pipe->buffers = nr_pages;
1169	return nr_pages * PAGE_SIZE;
 
 
 
 
 
 
 
1170}
1171
1172/*
1173 * Currently we rely on the pipe array holding a power-of-2 number
1174 * of pages.
1175 */
1176static inline unsigned int round_pipe_size(unsigned int size)
1177{
1178	unsigned long nr_pages;
 
 
 
 
 
 
 
1179
1180	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1181	return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1182}
1183
1184/*
1185 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1186 * will return an error.
1187 */
1188int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1189		 size_t *lenp, loff_t *ppos)
1190{
1191	int ret;
1192
1193	ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1194	if (ret < 0 || !write)
1195		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196
1197	pipe_max_size = round_pipe_size(pipe_max_size);
 
1198	return ret;
1199}
1200
1201/*
1202 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1203 * location, so checking ->i_pipe is not enough to verify that this is a
1204 * pipe.
1205 */
1206struct pipe_inode_info *get_pipe_info(struct file *file)
1207{
1208	struct inode *i = file->f_path.dentry->d_inode;
1209
1210	return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL;
 
 
 
 
 
 
1211}
1212
1213long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1214{
1215	struct pipe_inode_info *pipe;
1216	long ret;
1217
1218	pipe = get_pipe_info(file);
1219	if (!pipe)
1220		return -EBADF;
1221
1222	mutex_lock(&pipe->inode->i_mutex);
1223
1224	switch (cmd) {
1225	case F_SETPIPE_SZ: {
1226		unsigned int size, nr_pages;
1227
1228		size = round_pipe_size(arg);
1229		nr_pages = size >> PAGE_SHIFT;
1230
1231		ret = -EINVAL;
1232		if (!nr_pages)
1233			goto out;
1234
1235		if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1236			ret = -EPERM;
1237			goto out;
1238		}
1239		ret = pipe_set_size(pipe, nr_pages);
1240		break;
1241		}
1242	case F_GETPIPE_SZ:
1243		ret = pipe->buffers * PAGE_SIZE;
1244		break;
1245	default:
1246		ret = -EINVAL;
1247		break;
1248	}
1249
1250out:
1251	mutex_unlock(&pipe->inode->i_mutex);
1252	return ret;
1253}
1254
1255static const struct super_operations pipefs_ops = {
1256	.destroy_inode = free_inode_nonrcu,
 
1257};
1258
1259/*
1260 * pipefs should _never_ be mounted by userland - too much of security hassle,
1261 * no real gain from having the whole whorehouse mounted. So we don't need
1262 * any operations on the root directory. However, we need a non-trivial
1263 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1264 */
1265static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1266			 int flags, const char *dev_name, void *data)
1267{
1268	return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1269			&pipefs_dentry_operations, PIPEFS_MAGIC);
 
 
 
 
1270}
1271
1272static struct file_system_type pipe_fs_type = {
1273	.name		= "pipefs",
1274	.mount		= pipefs_mount,
1275	.kill_sb	= kill_anon_super,
1276};
1277
1278static int __init init_pipe_fs(void)
1279{
1280	int err = register_filesystem(&pipe_fs_type);
1281
1282	if (!err) {
1283		pipe_mnt = kern_mount(&pipe_fs_type);
1284		if (IS_ERR(pipe_mnt)) {
1285			err = PTR_ERR(pipe_mnt);
1286			unregister_filesystem(&pipe_fs_type);
1287		}
1288	}
1289	return err;
1290}
1291
1292static void __exit exit_pipe_fs(void)
1293{
1294	kern_unmount(pipe_mnt);
1295	unregister_filesystem(&pipe_fs_type);
1296}
1297
1298fs_initcall(init_pipe_fs);
1299module_exit(exit_pipe_fs);