Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1/*
   2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
   3 * Copyright © 2004 Micron Technology Inc.
   4 * Copyright © 2004 David Brownell
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/platform_device.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/delay.h>
  14#include <linux/interrupt.h>
  15#include <linux/jiffies.h>
  16#include <linux/sched.h>
  17#include <linux/mtd/mtd.h>
  18#include <linux/mtd/nand.h>
  19#include <linux/mtd/partitions.h>
  20#include <linux/io.h>
  21#include <linux/slab.h>
  22
  23#include <plat/dma.h>
  24#include <plat/gpmc.h>
  25#include <plat/nand.h>
  26
  27#define	DRIVER_NAME	"omap2-nand"
  28#define	OMAP_NAND_TIMEOUT_MS	5000
  29
  30#define NAND_Ecc_P1e		(1 << 0)
  31#define NAND_Ecc_P2e		(1 << 1)
  32#define NAND_Ecc_P4e		(1 << 2)
  33#define NAND_Ecc_P8e		(1 << 3)
  34#define NAND_Ecc_P16e		(1 << 4)
  35#define NAND_Ecc_P32e		(1 << 5)
  36#define NAND_Ecc_P64e		(1 << 6)
  37#define NAND_Ecc_P128e		(1 << 7)
  38#define NAND_Ecc_P256e		(1 << 8)
  39#define NAND_Ecc_P512e		(1 << 9)
  40#define NAND_Ecc_P1024e		(1 << 10)
  41#define NAND_Ecc_P2048e		(1 << 11)
  42
  43#define NAND_Ecc_P1o		(1 << 16)
  44#define NAND_Ecc_P2o		(1 << 17)
  45#define NAND_Ecc_P4o		(1 << 18)
  46#define NAND_Ecc_P8o		(1 << 19)
  47#define NAND_Ecc_P16o		(1 << 20)
  48#define NAND_Ecc_P32o		(1 << 21)
  49#define NAND_Ecc_P64o		(1 << 22)
  50#define NAND_Ecc_P128o		(1 << 23)
  51#define NAND_Ecc_P256o		(1 << 24)
  52#define NAND_Ecc_P512o		(1 << 25)
  53#define NAND_Ecc_P1024o		(1 << 26)
  54#define NAND_Ecc_P2048o		(1 << 27)
  55
  56#define TF(value)	(value ? 1 : 0)
  57
  58#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
  59#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
  60#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
  61#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
  62#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
  63#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
  64#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
  65#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)
  66
  67#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
  68#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
  69#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
  70#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
  71#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
  72#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
  73#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
  74#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)
  75
  76#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
  77#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
  78#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
  79#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
  80#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
  81#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
  82#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
  83#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)
  84
  85#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
  86#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
  87#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
  88#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
  89#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
  90#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
  91#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
  92#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)
  93
  94#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
  95#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)
  96
  97static const char *part_probes[] = { "cmdlinepart", NULL };
  98
  99/* oob info generated runtime depending on ecc algorithm and layout selected */
 100static struct nand_ecclayout omap_oobinfo;
 101/* Define some generic bad / good block scan pattern which are used
 102 * while scanning a device for factory marked good / bad blocks
 103 */
 104static uint8_t scan_ff_pattern[] = { 0xff };
 105static struct nand_bbt_descr bb_descrip_flashbased = {
 106	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
 107	.offs = 0,
 108	.len = 1,
 109	.pattern = scan_ff_pattern,
 110};
 111
 112
 113struct omap_nand_info {
 114	struct nand_hw_control		controller;
 115	struct omap_nand_platform_data	*pdata;
 116	struct mtd_info			mtd;
 117	struct mtd_partition		*parts;
 118	struct nand_chip		nand;
 119	struct platform_device		*pdev;
 120
 121	int				gpmc_cs;
 122	unsigned long			phys_base;
 123	struct completion		comp;
 124	int				dma_ch;
 125	int				gpmc_irq;
 126	enum {
 127		OMAP_NAND_IO_READ = 0,	/* read */
 128		OMAP_NAND_IO_WRITE,	/* write */
 129	} iomode;
 130	u_char				*buf;
 131	int					buf_len;
 132};
 133
 134/**
 135 * omap_hwcontrol - hardware specific access to control-lines
 136 * @mtd: MTD device structure
 137 * @cmd: command to device
 138 * @ctrl:
 139 * NAND_NCE: bit 0 -> don't care
 140 * NAND_CLE: bit 1 -> Command Latch
 141 * NAND_ALE: bit 2 -> Address Latch
 142 *
 143 * NOTE: boards may use different bits for these!!
 144 */
 145static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 146{
 147	struct omap_nand_info *info = container_of(mtd,
 148					struct omap_nand_info, mtd);
 149
 150	if (cmd != NAND_CMD_NONE) {
 151		if (ctrl & NAND_CLE)
 152			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
 153
 154		else if (ctrl & NAND_ALE)
 155			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
 156
 157		else /* NAND_NCE */
 158			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
 159	}
 160}
 161
 162/**
 163 * omap_read_buf8 - read data from NAND controller into buffer
 164 * @mtd: MTD device structure
 165 * @buf: buffer to store date
 166 * @len: number of bytes to read
 167 */
 168static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
 169{
 170	struct nand_chip *nand = mtd->priv;
 171
 172	ioread8_rep(nand->IO_ADDR_R, buf, len);
 173}
 174
 175/**
 176 * omap_write_buf8 - write buffer to NAND controller
 177 * @mtd: MTD device structure
 178 * @buf: data buffer
 179 * @len: number of bytes to write
 180 */
 181static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
 182{
 183	struct omap_nand_info *info = container_of(mtd,
 184						struct omap_nand_info, mtd);
 185	u_char *p = (u_char *)buf;
 186	u32	status = 0;
 187
 188	while (len--) {
 189		iowrite8(*p++, info->nand.IO_ADDR_W);
 190		/* wait until buffer is available for write */
 191		do {
 192			status = gpmc_read_status(GPMC_STATUS_BUFFER);
 193		} while (!status);
 194	}
 195}
 196
 197/**
 198 * omap_read_buf16 - read data from NAND controller into buffer
 199 * @mtd: MTD device structure
 200 * @buf: buffer to store date
 201 * @len: number of bytes to read
 202 */
 203static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
 204{
 205	struct nand_chip *nand = mtd->priv;
 206
 207	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
 208}
 209
 210/**
 211 * omap_write_buf16 - write buffer to NAND controller
 212 * @mtd: MTD device structure
 213 * @buf: data buffer
 214 * @len: number of bytes to write
 215 */
 216static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
 217{
 218	struct omap_nand_info *info = container_of(mtd,
 219						struct omap_nand_info, mtd);
 220	u16 *p = (u16 *) buf;
 221	u32	status = 0;
 222	/* FIXME try bursts of writesw() or DMA ... */
 223	len >>= 1;
 224
 225	while (len--) {
 226		iowrite16(*p++, info->nand.IO_ADDR_W);
 227		/* wait until buffer is available for write */
 228		do {
 229			status = gpmc_read_status(GPMC_STATUS_BUFFER);
 230		} while (!status);
 231	}
 232}
 233
 234/**
 235 * omap_read_buf_pref - read data from NAND controller into buffer
 236 * @mtd: MTD device structure
 237 * @buf: buffer to store date
 238 * @len: number of bytes to read
 239 */
 240static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
 241{
 242	struct omap_nand_info *info = container_of(mtd,
 243						struct omap_nand_info, mtd);
 244	uint32_t r_count = 0;
 245	int ret = 0;
 246	u32 *p = (u32 *)buf;
 247
 248	/* take care of subpage reads */
 249	if (len % 4) {
 250		if (info->nand.options & NAND_BUSWIDTH_16)
 251			omap_read_buf16(mtd, buf, len % 4);
 252		else
 253			omap_read_buf8(mtd, buf, len % 4);
 254		p = (u32 *) (buf + len % 4);
 255		len -= len % 4;
 256	}
 257
 258	/* configure and start prefetch transfer */
 259	ret = gpmc_prefetch_enable(info->gpmc_cs,
 260			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
 261	if (ret) {
 262		/* PFPW engine is busy, use cpu copy method */
 263		if (info->nand.options & NAND_BUSWIDTH_16)
 264			omap_read_buf16(mtd, (u_char *)p, len);
 265		else
 266			omap_read_buf8(mtd, (u_char *)p, len);
 267	} else {
 268		do {
 269			r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
 270			r_count = r_count >> 2;
 271			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
 272			p += r_count;
 273			len -= r_count << 2;
 274		} while (len);
 275		/* disable and stop the PFPW engine */
 276		gpmc_prefetch_reset(info->gpmc_cs);
 277	}
 278}
 279
 280/**
 281 * omap_write_buf_pref - write buffer to NAND controller
 282 * @mtd: MTD device structure
 283 * @buf: data buffer
 284 * @len: number of bytes to write
 285 */
 286static void omap_write_buf_pref(struct mtd_info *mtd,
 287					const u_char *buf, int len)
 288{
 289	struct omap_nand_info *info = container_of(mtd,
 290						struct omap_nand_info, mtd);
 291	uint32_t w_count = 0;
 292	int i = 0, ret = 0;
 293	u16 *p = (u16 *)buf;
 294	unsigned long tim, limit;
 295
 296	/* take care of subpage writes */
 297	if (len % 2 != 0) {
 298		writeb(*buf, info->nand.IO_ADDR_W);
 299		p = (u16 *)(buf + 1);
 300		len--;
 301	}
 302
 303	/*  configure and start prefetch transfer */
 304	ret = gpmc_prefetch_enable(info->gpmc_cs,
 305			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
 306	if (ret) {
 307		/* PFPW engine is busy, use cpu copy method */
 308		if (info->nand.options & NAND_BUSWIDTH_16)
 309			omap_write_buf16(mtd, (u_char *)p, len);
 310		else
 311			omap_write_buf8(mtd, (u_char *)p, len);
 312	} else {
 313		while (len) {
 314			w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
 315			w_count = w_count >> 1;
 316			for (i = 0; (i < w_count) && len; i++, len -= 2)
 317				iowrite16(*p++, info->nand.IO_ADDR_W);
 318		}
 319		/* wait for data to flushed-out before reset the prefetch */
 320		tim = 0;
 321		limit = (loops_per_jiffy *
 322					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 323		while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
 324			cpu_relax();
 325
 326		/* disable and stop the PFPW engine */
 327		gpmc_prefetch_reset(info->gpmc_cs);
 328	}
 329}
 330
 331/*
 332 * omap_nand_dma_cb: callback on the completion of dma transfer
 333 * @lch: logical channel
 334 * @ch_satuts: channel status
 335 * @data: pointer to completion data structure
 336 */
 337static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
 338{
 339	complete((struct completion *) data);
 340}
 341
 342/*
 343 * omap_nand_dma_transfer: configer and start dma transfer
 344 * @mtd: MTD device structure
 345 * @addr: virtual address in RAM of source/destination
 346 * @len: number of data bytes to be transferred
 347 * @is_write: flag for read/write operation
 348 */
 349static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
 350					unsigned int len, int is_write)
 351{
 352	struct omap_nand_info *info = container_of(mtd,
 353					struct omap_nand_info, mtd);
 354	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 355							DMA_FROM_DEVICE;
 356	dma_addr_t dma_addr;
 357	int ret;
 358	unsigned long tim, limit;
 359
 360	/* The fifo depth is 64 bytes max.
 361	 * But configure the FIFO-threahold to 32 to get a sync at each frame
 362	 * and frame length is 32 bytes.
 363	 */
 364	int buf_len = len >> 6;
 365
 366	if (addr >= high_memory) {
 367		struct page *p1;
 368
 369		if (((size_t)addr & PAGE_MASK) !=
 370			((size_t)(addr + len - 1) & PAGE_MASK))
 371			goto out_copy;
 372		p1 = vmalloc_to_page(addr);
 373		if (!p1)
 374			goto out_copy;
 375		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
 376	}
 377
 378	dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
 379	if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
 380		dev_err(&info->pdev->dev,
 381			"Couldn't DMA map a %d byte buffer\n", len);
 382		goto out_copy;
 383	}
 384
 385	if (is_write) {
 386	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
 387						info->phys_base, 0, 0);
 388	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
 389							dma_addr, 0, 0);
 390	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
 391					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
 392					OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
 393	} else {
 394	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
 395						info->phys_base, 0, 0);
 396	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
 397							dma_addr, 0, 0);
 398	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
 399					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
 400					OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
 401	}
 402	/*  configure and start prefetch transfer */
 403	ret = gpmc_prefetch_enable(info->gpmc_cs,
 404			PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
 405	if (ret)
 406		/* PFPW engine is busy, use cpu copy method */
 407		goto out_copy;
 408
 409	init_completion(&info->comp);
 410
 411	omap_start_dma(info->dma_ch);
 412
 413	/* setup and start DMA using dma_addr */
 414	wait_for_completion(&info->comp);
 415	tim = 0;
 416	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 417	while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
 418		cpu_relax();
 419
 420	/* disable and stop the PFPW engine */
 421	gpmc_prefetch_reset(info->gpmc_cs);
 422
 423	dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
 424	return 0;
 425
 426out_copy:
 427	if (info->nand.options & NAND_BUSWIDTH_16)
 428		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
 429			: omap_write_buf16(mtd, (u_char *) addr, len);
 430	else
 431		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
 432			: omap_write_buf8(mtd, (u_char *) addr, len);
 433	return 0;
 434}
 435
 436/**
 437 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 438 * @mtd: MTD device structure
 439 * @buf: buffer to store date
 440 * @len: number of bytes to read
 441 */
 442static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
 443{
 444	if (len <= mtd->oobsize)
 445		omap_read_buf_pref(mtd, buf, len);
 446	else
 447		/* start transfer in DMA mode */
 448		omap_nand_dma_transfer(mtd, buf, len, 0x0);
 449}
 450
 451/**
 452 * omap_write_buf_dma_pref - write buffer to NAND controller
 453 * @mtd: MTD device structure
 454 * @buf: data buffer
 455 * @len: number of bytes to write
 456 */
 457static void omap_write_buf_dma_pref(struct mtd_info *mtd,
 458					const u_char *buf, int len)
 459{
 460	if (len <= mtd->oobsize)
 461		omap_write_buf_pref(mtd, buf, len);
 462	else
 463		/* start transfer in DMA mode */
 464		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
 465}
 466
 467/*
 468 * omap_nand_irq - GMPC irq handler
 469 * @this_irq: gpmc irq number
 470 * @dev: omap_nand_info structure pointer is passed here
 471 */
 472static irqreturn_t omap_nand_irq(int this_irq, void *dev)
 473{
 474	struct omap_nand_info *info = (struct omap_nand_info *) dev;
 475	u32 bytes;
 476	u32 irq_stat;
 477
 478	irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
 479	bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
 480	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
 481	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
 482		if (irq_stat & 0x2)
 483			goto done;
 484
 485		if (info->buf_len && (info->buf_len < bytes))
 486			bytes = info->buf_len;
 487		else if (!info->buf_len)
 488			bytes = 0;
 489		iowrite32_rep(info->nand.IO_ADDR_W,
 490						(u32 *)info->buf, bytes >> 2);
 491		info->buf = info->buf + bytes;
 492		info->buf_len -= bytes;
 493
 494	} else {
 495		ioread32_rep(info->nand.IO_ADDR_R,
 496						(u32 *)info->buf, bytes >> 2);
 497		info->buf = info->buf + bytes;
 498
 499		if (irq_stat & 0x2)
 500			goto done;
 501	}
 502	gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
 503
 504	return IRQ_HANDLED;
 505
 506done:
 507	complete(&info->comp);
 508	/* disable irq */
 509	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
 510
 511	/* clear status */
 512	gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
 513
 514	return IRQ_HANDLED;
 515}
 516
 517/*
 518 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 519 * @mtd: MTD device structure
 520 * @buf: buffer to store date
 521 * @len: number of bytes to read
 522 */
 523static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
 524{
 525	struct omap_nand_info *info = container_of(mtd,
 526						struct omap_nand_info, mtd);
 527	int ret = 0;
 528
 529	if (len <= mtd->oobsize) {
 530		omap_read_buf_pref(mtd, buf, len);
 531		return;
 532	}
 533
 534	info->iomode = OMAP_NAND_IO_READ;
 535	info->buf = buf;
 536	init_completion(&info->comp);
 537
 538	/*  configure and start prefetch transfer */
 539	ret = gpmc_prefetch_enable(info->gpmc_cs,
 540			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
 541	if (ret)
 542		/* PFPW engine is busy, use cpu copy method */
 543		goto out_copy;
 544
 545	info->buf_len = len;
 546	/* enable irq */
 547	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
 548		(GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
 549
 550	/* waiting for read to complete */
 551	wait_for_completion(&info->comp);
 552
 553	/* disable and stop the PFPW engine */
 554	gpmc_prefetch_reset(info->gpmc_cs);
 555	return;
 556
 557out_copy:
 558	if (info->nand.options & NAND_BUSWIDTH_16)
 559		omap_read_buf16(mtd, buf, len);
 560	else
 561		omap_read_buf8(mtd, buf, len);
 562}
 563
 564/*
 565 * omap_write_buf_irq_pref - write buffer to NAND controller
 566 * @mtd: MTD device structure
 567 * @buf: data buffer
 568 * @len: number of bytes to write
 569 */
 570static void omap_write_buf_irq_pref(struct mtd_info *mtd,
 571					const u_char *buf, int len)
 572{
 573	struct omap_nand_info *info = container_of(mtd,
 574						struct omap_nand_info, mtd);
 575	int ret = 0;
 576	unsigned long tim, limit;
 577
 578	if (len <= mtd->oobsize) {
 579		omap_write_buf_pref(mtd, buf, len);
 580		return;
 581	}
 582
 583	info->iomode = OMAP_NAND_IO_WRITE;
 584	info->buf = (u_char *) buf;
 585	init_completion(&info->comp);
 586
 587	/* configure and start prefetch transfer : size=24 */
 588	ret = gpmc_prefetch_enable(info->gpmc_cs,
 589			(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
 590	if (ret)
 591		/* PFPW engine is busy, use cpu copy method */
 592		goto out_copy;
 593
 594	info->buf_len = len;
 595	/* enable irq */
 596	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
 597			(GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
 598
 599	/* waiting for write to complete */
 600	wait_for_completion(&info->comp);
 601	/* wait for data to flushed-out before reset the prefetch */
 602	tim = 0;
 603	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 604	while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
 605		cpu_relax();
 606
 607	/* disable and stop the PFPW engine */
 608	gpmc_prefetch_reset(info->gpmc_cs);
 609	return;
 610
 611out_copy:
 612	if (info->nand.options & NAND_BUSWIDTH_16)
 613		omap_write_buf16(mtd, buf, len);
 614	else
 615		omap_write_buf8(mtd, buf, len);
 616}
 617
 618/**
 619 * omap_verify_buf - Verify chip data against buffer
 620 * @mtd: MTD device structure
 621 * @buf: buffer containing the data to compare
 622 * @len: number of bytes to compare
 623 */
 624static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
 625{
 626	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 627							mtd);
 628	u16 *p = (u16 *) buf;
 629
 630	len >>= 1;
 631	while (len--) {
 632		if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
 633			return -EFAULT;
 634	}
 635
 636	return 0;
 637}
 638
 639/**
 640 * gen_true_ecc - This function will generate true ECC value
 641 * @ecc_buf: buffer to store ecc code
 642 *
 643 * This generated true ECC value can be used when correcting
 644 * data read from NAND flash memory core
 645 */
 646static void gen_true_ecc(u8 *ecc_buf)
 647{
 648	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 649		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 650
 651	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 652			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 653	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 654			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 655	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 656			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 657}
 658
 659/**
 660 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 661 * @ecc_data1:  ecc code from nand spare area
 662 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 663 * @page_data:  page data
 664 *
 665 * This function compares two ECC's and indicates if there is an error.
 666 * If the error can be corrected it will be corrected to the buffer.
 667 * If there is no error, %0 is returned. If there is an error but it
 668 * was corrected, %1 is returned. Otherwise, %-1 is returned.
 669 */
 670static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
 671			    u8 *ecc_data2,	/* read from register */
 672			    u8 *page_data)
 673{
 674	uint	i;
 675	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 676	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
 677	u8	ecc_bit[24];
 678	u8	ecc_sum = 0;
 679	u8	find_bit = 0;
 680	uint	find_byte = 0;
 681	int	isEccFF;
 682
 683	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 684
 685	gen_true_ecc(ecc_data1);
 686	gen_true_ecc(ecc_data2);
 687
 688	for (i = 0; i <= 2; i++) {
 689		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
 690		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
 691	}
 692
 693	for (i = 0; i < 8; i++) {
 694		tmp0_bit[i]     = *ecc_data1 % 2;
 695		*ecc_data1	= *ecc_data1 / 2;
 696	}
 697
 698	for (i = 0; i < 8; i++) {
 699		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
 700		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 701	}
 702
 703	for (i = 0; i < 8; i++) {
 704		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
 705		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 706	}
 707
 708	for (i = 0; i < 8; i++) {
 709		comp0_bit[i]     = *ecc_data2 % 2;
 710		*ecc_data2       = *ecc_data2 / 2;
 711	}
 712
 713	for (i = 0; i < 8; i++) {
 714		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 715		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 716	}
 717
 718	for (i = 0; i < 8; i++) {
 719		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 720		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 721	}
 722
 723	for (i = 0; i < 6; i++)
 724		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 725
 726	for (i = 0; i < 8; i++)
 727		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 728
 729	for (i = 0; i < 8; i++)
 730		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 731
 732	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 733	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 734
 735	for (i = 0; i < 24; i++)
 736		ecc_sum += ecc_bit[i];
 737
 738	switch (ecc_sum) {
 739	case 0:
 740		/* Not reached because this function is not called if
 741		 *  ECC values are equal
 742		 */
 743		return 0;
 744
 745	case 1:
 746		/* Uncorrectable error */
 747		DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
 748		return -1;
 749
 750	case 11:
 751		/* UN-Correctable error */
 752		DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
 753		return -1;
 754
 755	case 12:
 756		/* Correctable error */
 757		find_byte = (ecc_bit[23] << 8) +
 758			    (ecc_bit[21] << 7) +
 759			    (ecc_bit[19] << 6) +
 760			    (ecc_bit[17] << 5) +
 761			    (ecc_bit[15] << 4) +
 762			    (ecc_bit[13] << 3) +
 763			    (ecc_bit[11] << 2) +
 764			    (ecc_bit[9]  << 1) +
 765			    ecc_bit[7];
 766
 767		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 768
 769		DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
 770				"offset: %d, bit: %d\n", find_byte, find_bit);
 771
 772		page_data[find_byte] ^= (1 << find_bit);
 773
 774		return 1;
 775	default:
 776		if (isEccFF) {
 777			if (ecc_data2[0] == 0 &&
 778			    ecc_data2[1] == 0 &&
 779			    ecc_data2[2] == 0)
 780				return 0;
 781		}
 782		DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
 783		return -1;
 784	}
 785}
 786
 787/**
 788 * omap_correct_data - Compares the ECC read with HW generated ECC
 789 * @mtd: MTD device structure
 790 * @dat: page data
 791 * @read_ecc: ecc read from nand flash
 792 * @calc_ecc: ecc read from HW ECC registers
 793 *
 794 * Compares the ecc read from nand spare area with ECC registers values
 795 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 796 * detection and correction. If there are no errors, %0 is returned. If
 797 * there were errors and all of the errors were corrected, the number of
 798 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 799 * returned.
 800 */
 801static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
 802				u_char *read_ecc, u_char *calc_ecc)
 803{
 804	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 805							mtd);
 806	int blockCnt = 0, i = 0, ret = 0;
 807	int stat = 0;
 808
 809	/* Ex NAND_ECC_HW12_2048 */
 810	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
 811			(info->nand.ecc.size  == 2048))
 812		blockCnt = 4;
 813	else
 814		blockCnt = 1;
 815
 816	for (i = 0; i < blockCnt; i++) {
 817		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 818			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 819			if (ret < 0)
 820				return ret;
 821			/* keep track of the number of corrected errors */
 822			stat += ret;
 823		}
 824		read_ecc += 3;
 825		calc_ecc += 3;
 826		dat      += 512;
 827	}
 828	return stat;
 829}
 830
 831/**
 832 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 833 * @mtd: MTD device structure
 834 * @dat: The pointer to data on which ecc is computed
 835 * @ecc_code: The ecc_code buffer
 836 *
 837 * Using noninverted ECC can be considered ugly since writing a blank
 838 * page ie. padding will clear the ECC bytes. This is no problem as long
 839 * nobody is trying to write data on the seemingly unused page. Reading
 840 * an erased page will produce an ECC mismatch between generated and read
 841 * ECC bytes that has to be dealt with separately.
 842 */
 843static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 844				u_char *ecc_code)
 845{
 846	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 847							mtd);
 848	return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
 849}
 850
 851/**
 852 * omap_enable_hwecc - This function enables the hardware ecc functionality
 853 * @mtd: MTD device structure
 854 * @mode: Read/Write mode
 855 */
 856static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
 857{
 858	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 859							mtd);
 860	struct nand_chip *chip = mtd->priv;
 861	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 862
 863	gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
 864}
 865
 866/**
 867 * omap_wait - wait until the command is done
 868 * @mtd: MTD device structure
 869 * @chip: NAND Chip structure
 870 *
 871 * Wait function is called during Program and erase operations and
 872 * the way it is called from MTD layer, we should wait till the NAND
 873 * chip is ready after the programming/erase operation has completed.
 874 *
 875 * Erase can take up to 400ms and program up to 20ms according to
 876 * general NAND and SmartMedia specs
 877 */
 878static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
 879{
 880	struct nand_chip *this = mtd->priv;
 881	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 882							mtd);
 883	unsigned long timeo = jiffies;
 884	int status = NAND_STATUS_FAIL, state = this->state;
 885
 886	if (state == FL_ERASING)
 887		timeo += (HZ * 400) / 1000;
 888	else
 889		timeo += (HZ * 20) / 1000;
 890
 891	gpmc_nand_write(info->gpmc_cs,
 892			GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
 893	while (time_before(jiffies, timeo)) {
 894		status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
 895		if (status & NAND_STATUS_READY)
 896			break;
 897		cond_resched();
 898	}
 899	return status;
 900}
 901
 902/**
 903 * omap_dev_ready - calls the platform specific dev_ready function
 904 * @mtd: MTD device structure
 905 */
 906static int omap_dev_ready(struct mtd_info *mtd)
 907{
 908	unsigned int val = 0;
 909	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 910							mtd);
 911
 912	val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
 913	if ((val & 0x100) == 0x100) {
 914		/* Clear IRQ Interrupt */
 915		val |= 0x100;
 916		val &= ~(0x0);
 917		gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
 918	} else {
 919		unsigned int cnt = 0;
 920		while (cnt++ < 0x1FF) {
 921			if  ((val & 0x100) == 0x100)
 922				return 0;
 923			val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
 924		}
 925	}
 926
 927	return 1;
 928}
 929
 930static int __devinit omap_nand_probe(struct platform_device *pdev)
 931{
 932	struct omap_nand_info		*info;
 933	struct omap_nand_platform_data	*pdata;
 934	int				err;
 935	int				i, offset;
 936
 937	pdata = pdev->dev.platform_data;
 938	if (pdata == NULL) {
 939		dev_err(&pdev->dev, "platform data missing\n");
 940		return -ENODEV;
 941	}
 942
 943	info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
 944	if (!info)
 945		return -ENOMEM;
 946
 947	platform_set_drvdata(pdev, info);
 948
 949	spin_lock_init(&info->controller.lock);
 950	init_waitqueue_head(&info->controller.wq);
 951
 952	info->pdev = pdev;
 953
 954	info->gpmc_cs		= pdata->cs;
 955	info->phys_base		= pdata->phys_base;
 956
 957	info->mtd.priv		= &info->nand;
 958	info->mtd.name		= dev_name(&pdev->dev);
 959	info->mtd.owner		= THIS_MODULE;
 960
 961	info->nand.options	= pdata->devsize;
 962	info->nand.options	|= NAND_SKIP_BBTSCAN;
 963
 964	/* NAND write protect off */
 965	gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
 966
 967	if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
 968				pdev->dev.driver->name)) {
 969		err = -EBUSY;
 970		goto out_free_info;
 971	}
 972
 973	info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
 974	if (!info->nand.IO_ADDR_R) {
 975		err = -ENOMEM;
 976		goto out_release_mem_region;
 977	}
 978
 979	info->nand.controller = &info->controller;
 980
 981	info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
 982	info->nand.cmd_ctrl  = omap_hwcontrol;
 983
 984	/*
 985	 * If RDY/BSY line is connected to OMAP then use the omap ready
 986	 * funcrtion and the generic nand_wait function which reads the status
 987	 * register after monitoring the RDY/BSY line.Otherwise use a standard
 988	 * chip delay which is slightly more than tR (AC Timing) of the NAND
 989	 * device and read status register until you get a failure or success
 990	 */
 991	if (pdata->dev_ready) {
 992		info->nand.dev_ready = omap_dev_ready;
 993		info->nand.chip_delay = 0;
 994	} else {
 995		info->nand.waitfunc = omap_wait;
 996		info->nand.chip_delay = 50;
 997	}
 998
 999	switch (pdata->xfer_type) {
1000	case NAND_OMAP_PREFETCH_POLLED:
1001		info->nand.read_buf   = omap_read_buf_pref;
1002		info->nand.write_buf  = omap_write_buf_pref;
1003		break;
1004
1005	case NAND_OMAP_POLLED:
1006		if (info->nand.options & NAND_BUSWIDTH_16) {
1007			info->nand.read_buf   = omap_read_buf16;
1008			info->nand.write_buf  = omap_write_buf16;
1009		} else {
1010			info->nand.read_buf   = omap_read_buf8;
1011			info->nand.write_buf  = omap_write_buf8;
1012		}
1013		break;
1014
1015	case NAND_OMAP_PREFETCH_DMA:
1016		err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1017				omap_nand_dma_cb, &info->comp, &info->dma_ch);
1018		if (err < 0) {
1019			info->dma_ch = -1;
1020			dev_err(&pdev->dev, "DMA request failed!\n");
1021			goto out_release_mem_region;
1022		} else {
1023			omap_set_dma_dest_burst_mode(info->dma_ch,
1024					OMAP_DMA_DATA_BURST_16);
1025			omap_set_dma_src_burst_mode(info->dma_ch,
1026					OMAP_DMA_DATA_BURST_16);
1027
1028			info->nand.read_buf   = omap_read_buf_dma_pref;
1029			info->nand.write_buf  = omap_write_buf_dma_pref;
1030		}
1031		break;
1032
1033	case NAND_OMAP_PREFETCH_IRQ:
1034		err = request_irq(pdata->gpmc_irq,
1035				omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1036		if (err) {
1037			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1038							pdata->gpmc_irq, err);
1039			goto out_release_mem_region;
1040		} else {
1041			info->gpmc_irq	     = pdata->gpmc_irq;
1042			info->nand.read_buf  = omap_read_buf_irq_pref;
1043			info->nand.write_buf = omap_write_buf_irq_pref;
1044		}
1045		break;
1046
1047	default:
1048		dev_err(&pdev->dev,
1049			"xfer_type(%d) not supported!\n", pdata->xfer_type);
1050		err = -EINVAL;
1051		goto out_release_mem_region;
1052	}
1053
1054	info->nand.verify_buf = omap_verify_buf;
1055
1056	/* selsect the ecc type */
1057	if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1058		info->nand.ecc.mode = NAND_ECC_SOFT;
1059	else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1060		(pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1061		info->nand.ecc.bytes            = 3;
1062		info->nand.ecc.size             = 512;
1063		info->nand.ecc.calculate        = omap_calculate_ecc;
1064		info->nand.ecc.hwctl            = omap_enable_hwecc;
1065		info->nand.ecc.correct          = omap_correct_data;
1066		info->nand.ecc.mode             = NAND_ECC_HW;
1067	}
1068
1069	/* DIP switches on some boards change between 8 and 16 bit
1070	 * bus widths for flash.  Try the other width if the first try fails.
1071	 */
1072	if (nand_scan_ident(&info->mtd, 1, NULL)) {
1073		info->nand.options ^= NAND_BUSWIDTH_16;
1074		if (nand_scan_ident(&info->mtd, 1, NULL)) {
1075			err = -ENXIO;
1076			goto out_release_mem_region;
1077		}
1078	}
1079
1080	/* rom code layout */
1081	if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1082
1083		if (info->nand.options & NAND_BUSWIDTH_16)
1084			offset = 2;
1085		else {
1086			offset = 1;
1087			info->nand.badblock_pattern = &bb_descrip_flashbased;
1088		}
1089		omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1090		for (i = 0; i < omap_oobinfo.eccbytes; i++)
1091			omap_oobinfo.eccpos[i] = i+offset;
1092
1093		omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1094		omap_oobinfo.oobfree->length = info->mtd.oobsize -
1095					(offset + omap_oobinfo.eccbytes);
1096
1097		info->nand.ecc.layout = &omap_oobinfo;
1098	}
1099
1100	/* second phase scan */
1101	if (nand_scan_tail(&info->mtd)) {
1102		err = -ENXIO;
1103		goto out_release_mem_region;
1104	}
1105
1106	err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
1107	if (err > 0)
1108		mtd_device_register(&info->mtd, info->parts, err);
1109	else if (pdata->parts)
1110		mtd_device_register(&info->mtd, pdata->parts, pdata->nr_parts);
1111	else
1112		mtd_device_register(&info->mtd, NULL, 0);
1113
1114	platform_set_drvdata(pdev, &info->mtd);
1115
1116	return 0;
1117
1118out_release_mem_region:
1119	release_mem_region(info->phys_base, NAND_IO_SIZE);
1120out_free_info:
1121	kfree(info);
1122
1123	return err;
1124}
1125
1126static int omap_nand_remove(struct platform_device *pdev)
1127{
1128	struct mtd_info *mtd = platform_get_drvdata(pdev);
1129	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1130							mtd);
1131
1132	platform_set_drvdata(pdev, NULL);
1133	if (info->dma_ch != -1)
1134		omap_free_dma(info->dma_ch);
1135
1136	if (info->gpmc_irq)
1137		free_irq(info->gpmc_irq, info);
1138
1139	/* Release NAND device, its internal structures and partitions */
1140	nand_release(&info->mtd);
1141	iounmap(info->nand.IO_ADDR_R);
1142	kfree(&info->mtd);
1143	return 0;
1144}
1145
1146static struct platform_driver omap_nand_driver = {
1147	.probe		= omap_nand_probe,
1148	.remove		= omap_nand_remove,
1149	.driver		= {
1150		.name	= DRIVER_NAME,
1151		.owner	= THIS_MODULE,
1152	},
1153};
1154
1155static int __init omap_nand_init(void)
1156{
1157	pr_info("%s driver initializing\n", DRIVER_NAME);
1158
1159	return platform_driver_register(&omap_nand_driver);
1160}
1161
1162static void __exit omap_nand_exit(void)
1163{
1164	platform_driver_unregister(&omap_nand_driver);
1165}
1166
1167module_init(omap_nand_init);
1168module_exit(omap_nand_exit);
1169
1170MODULE_ALIAS("platform:" DRIVER_NAME);
1171MODULE_LICENSE("GPL");
1172MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");