Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Arch specific cpu topology information
  4 *
  5 * Copyright (C) 2016, ARM Ltd.
  6 * Written by: Juri Lelli, ARM Ltd.
  7 */
  8
  9#include <linux/acpi.h>
 10#include <linux/cpu.h>
 11#include <linux/cpufreq.h>
 12#include <linux/device.h>
 13#include <linux/of.h>
 14#include <linux/slab.h>
 15#include <linux/string.h>
 16#include <linux/sched/topology.h>
 17#include <linux/cpuset.h>
 18#include <linux/cpumask.h>
 19#include <linux/init.h>
 20#include <linux/percpu.h>
 21#include <linux/sched.h>
 22#include <linux/smp.h>
 23
 24__weak bool arch_freq_counters_available(struct cpumask *cpus)
 25{
 26	return false;
 27}
 28DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
 29
 30void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
 31			 unsigned long max_freq)
 32{
 33	unsigned long scale;
 34	int i;
 35
 36	/*
 37	 * If the use of counters for FIE is enabled, just return as we don't
 38	 * want to update the scale factor with information from CPUFREQ.
 39	 * Instead the scale factor will be updated from arch_scale_freq_tick.
 40	 */
 41	if (arch_freq_counters_available(cpus))
 42		return;
 43
 44	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
 45
 46	for_each_cpu(i, cpus)
 47		per_cpu(freq_scale, i) = scale;
 48}
 49
 50DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
 51
 52void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
 53{
 54	per_cpu(cpu_scale, cpu) = capacity;
 55}
 56
 57DEFINE_PER_CPU(unsigned long, thermal_pressure);
 58
 59void topology_set_thermal_pressure(const struct cpumask *cpus,
 60			       unsigned long th_pressure)
 61{
 62	int cpu;
 63
 64	for_each_cpu(cpu, cpus)
 65		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
 66}
 67
 68static ssize_t cpu_capacity_show(struct device *dev,
 69				 struct device_attribute *attr,
 70				 char *buf)
 71{
 72	struct cpu *cpu = container_of(dev, struct cpu, dev);
 73
 74	return sprintf(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
 75}
 76
 77static void update_topology_flags_workfn(struct work_struct *work);
 78static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
 79
 80static DEVICE_ATTR_RO(cpu_capacity);
 81
 82static int register_cpu_capacity_sysctl(void)
 83{
 84	int i;
 85	struct device *cpu;
 86
 87	for_each_possible_cpu(i) {
 88		cpu = get_cpu_device(i);
 89		if (!cpu) {
 90			pr_err("%s: too early to get CPU%d device!\n",
 91			       __func__, i);
 92			continue;
 93		}
 94		device_create_file(cpu, &dev_attr_cpu_capacity);
 95	}
 96
 97	return 0;
 98}
 99subsys_initcall(register_cpu_capacity_sysctl);
100
101static int update_topology;
102
103int topology_update_cpu_topology(void)
104{
105	return update_topology;
106}
107
108/*
109 * Updating the sched_domains can't be done directly from cpufreq callbacks
110 * due to locking, so queue the work for later.
111 */
112static void update_topology_flags_workfn(struct work_struct *work)
113{
114	update_topology = 1;
115	rebuild_sched_domains();
116	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
117	update_topology = 0;
118}
119
120static DEFINE_PER_CPU(u32, freq_factor) = 1;
121static u32 *raw_capacity;
122
123static int free_raw_capacity(void)
124{
125	kfree(raw_capacity);
126	raw_capacity = NULL;
127
128	return 0;
129}
130
131void topology_normalize_cpu_scale(void)
132{
133	u64 capacity;
134	u64 capacity_scale;
135	int cpu;
136
137	if (!raw_capacity)
138		return;
139
140	capacity_scale = 1;
141	for_each_possible_cpu(cpu) {
142		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
143		capacity_scale = max(capacity, capacity_scale);
144	}
145
146	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
147	for_each_possible_cpu(cpu) {
148		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
149		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
150			capacity_scale);
151		topology_set_cpu_scale(cpu, capacity);
152		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
153			cpu, topology_get_cpu_scale(cpu));
154	}
155}
156
157bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
158{
159	struct clk *cpu_clk;
160	static bool cap_parsing_failed;
161	int ret;
162	u32 cpu_capacity;
163
164	if (cap_parsing_failed)
165		return false;
166
167	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
168				   &cpu_capacity);
169	if (!ret) {
170		if (!raw_capacity) {
171			raw_capacity = kcalloc(num_possible_cpus(),
172					       sizeof(*raw_capacity),
173					       GFP_KERNEL);
174			if (!raw_capacity) {
175				cap_parsing_failed = true;
176				return false;
177			}
178		}
179		raw_capacity[cpu] = cpu_capacity;
180		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
181			cpu_node, raw_capacity[cpu]);
182
183		/*
184		 * Update freq_factor for calculating early boot cpu capacities.
185		 * For non-clk CPU DVFS mechanism, there's no way to get the
186		 * frequency value now, assuming they are running at the same
187		 * frequency (by keeping the initial freq_factor value).
188		 */
189		cpu_clk = of_clk_get(cpu_node, 0);
190		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
191			per_cpu(freq_factor, cpu) =
192				clk_get_rate(cpu_clk) / 1000;
193			clk_put(cpu_clk);
194		}
195	} else {
196		if (raw_capacity) {
197			pr_err("cpu_capacity: missing %pOF raw capacity\n",
198				cpu_node);
199			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
200		}
201		cap_parsing_failed = true;
202		free_raw_capacity();
203	}
204
205	return !ret;
206}
207
208#ifdef CONFIG_CPU_FREQ
209static cpumask_var_t cpus_to_visit;
210static void parsing_done_workfn(struct work_struct *work);
211static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
212
213static int
214init_cpu_capacity_callback(struct notifier_block *nb,
215			   unsigned long val,
216			   void *data)
217{
218	struct cpufreq_policy *policy = data;
219	int cpu;
220
221	if (!raw_capacity)
222		return 0;
223
224	if (val != CPUFREQ_CREATE_POLICY)
225		return 0;
226
227	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
228		 cpumask_pr_args(policy->related_cpus),
229		 cpumask_pr_args(cpus_to_visit));
230
231	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
232
233	for_each_cpu(cpu, policy->related_cpus)
234		per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
235
236	if (cpumask_empty(cpus_to_visit)) {
237		topology_normalize_cpu_scale();
238		schedule_work(&update_topology_flags_work);
239		free_raw_capacity();
240		pr_debug("cpu_capacity: parsing done\n");
241		schedule_work(&parsing_done_work);
242	}
243
244	return 0;
245}
246
247static struct notifier_block init_cpu_capacity_notifier = {
248	.notifier_call = init_cpu_capacity_callback,
249};
250
251static int __init register_cpufreq_notifier(void)
252{
253	int ret;
254
255	/*
256	 * on ACPI-based systems we need to use the default cpu capacity
257	 * until we have the necessary code to parse the cpu capacity, so
258	 * skip registering cpufreq notifier.
259	 */
260	if (!acpi_disabled || !raw_capacity)
261		return -EINVAL;
262
263	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
264		return -ENOMEM;
265
266	cpumask_copy(cpus_to_visit, cpu_possible_mask);
267
268	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
269					CPUFREQ_POLICY_NOTIFIER);
270
271	if (ret)
272		free_cpumask_var(cpus_to_visit);
273
274	return ret;
275}
276core_initcall(register_cpufreq_notifier);
277
278static void parsing_done_workfn(struct work_struct *work)
279{
280	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
281					 CPUFREQ_POLICY_NOTIFIER);
282	free_cpumask_var(cpus_to_visit);
283}
284
285#else
286core_initcall(free_raw_capacity);
287#endif
288
289#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
290/*
291 * This function returns the logic cpu number of the node.
292 * There are basically three kinds of return values:
293 * (1) logic cpu number which is > 0.
294 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
295 * there is no possible logical CPU in the kernel to match. This happens
296 * when CONFIG_NR_CPUS is configure to be smaller than the number of
297 * CPU nodes in DT. We need to just ignore this case.
298 * (3) -1 if the node does not exist in the device tree
299 */
300static int __init get_cpu_for_node(struct device_node *node)
301{
302	struct device_node *cpu_node;
303	int cpu;
304
305	cpu_node = of_parse_phandle(node, "cpu", 0);
306	if (!cpu_node)
307		return -1;
308
309	cpu = of_cpu_node_to_id(cpu_node);
310	if (cpu >= 0)
311		topology_parse_cpu_capacity(cpu_node, cpu);
312	else
313		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
314			cpu_node, cpumask_pr_args(cpu_possible_mask));
315
316	of_node_put(cpu_node);
317	return cpu;
318}
319
320static int __init parse_core(struct device_node *core, int package_id,
321			     int core_id)
322{
323	char name[20];
324	bool leaf = true;
325	int i = 0;
326	int cpu;
327	struct device_node *t;
328
329	do {
330		snprintf(name, sizeof(name), "thread%d", i);
331		t = of_get_child_by_name(core, name);
332		if (t) {
333			leaf = false;
334			cpu = get_cpu_for_node(t);
335			if (cpu >= 0) {
336				cpu_topology[cpu].package_id = package_id;
337				cpu_topology[cpu].core_id = core_id;
338				cpu_topology[cpu].thread_id = i;
339			} else if (cpu != -ENODEV) {
340				pr_err("%pOF: Can't get CPU for thread\n", t);
341				of_node_put(t);
342				return -EINVAL;
343			}
344			of_node_put(t);
345		}
346		i++;
347	} while (t);
348
349	cpu = get_cpu_for_node(core);
350	if (cpu >= 0) {
351		if (!leaf) {
352			pr_err("%pOF: Core has both threads and CPU\n",
353			       core);
354			return -EINVAL;
355		}
356
357		cpu_topology[cpu].package_id = package_id;
358		cpu_topology[cpu].core_id = core_id;
359	} else if (leaf && cpu != -ENODEV) {
360		pr_err("%pOF: Can't get CPU for leaf core\n", core);
361		return -EINVAL;
362	}
363
364	return 0;
365}
366
367static int __init parse_cluster(struct device_node *cluster, int depth)
368{
369	char name[20];
370	bool leaf = true;
371	bool has_cores = false;
372	struct device_node *c;
373	static int package_id __initdata;
374	int core_id = 0;
375	int i, ret;
376
377	/*
378	 * First check for child clusters; we currently ignore any
379	 * information about the nesting of clusters and present the
380	 * scheduler with a flat list of them.
381	 */
382	i = 0;
383	do {
384		snprintf(name, sizeof(name), "cluster%d", i);
385		c = of_get_child_by_name(cluster, name);
386		if (c) {
387			leaf = false;
388			ret = parse_cluster(c, depth + 1);
389			of_node_put(c);
390			if (ret != 0)
391				return ret;
392		}
393		i++;
394	} while (c);
395
396	/* Now check for cores */
397	i = 0;
398	do {
399		snprintf(name, sizeof(name), "core%d", i);
400		c = of_get_child_by_name(cluster, name);
401		if (c) {
402			has_cores = true;
403
404			if (depth == 0) {
405				pr_err("%pOF: cpu-map children should be clusters\n",
406				       c);
407				of_node_put(c);
408				return -EINVAL;
409			}
410
411			if (leaf) {
412				ret = parse_core(c, package_id, core_id++);
413			} else {
414				pr_err("%pOF: Non-leaf cluster with core %s\n",
415				       cluster, name);
416				ret = -EINVAL;
417			}
418
419			of_node_put(c);
420			if (ret != 0)
421				return ret;
422		}
423		i++;
424	} while (c);
425
426	if (leaf && !has_cores)
427		pr_warn("%pOF: empty cluster\n", cluster);
428
429	if (leaf)
430		package_id++;
431
432	return 0;
433}
434
435static int __init parse_dt_topology(void)
436{
437	struct device_node *cn, *map;
438	int ret = 0;
439	int cpu;
440
441	cn = of_find_node_by_path("/cpus");
442	if (!cn) {
443		pr_err("No CPU information found in DT\n");
444		return 0;
445	}
446
447	/*
448	 * When topology is provided cpu-map is essentially a root
449	 * cluster with restricted subnodes.
450	 */
451	map = of_get_child_by_name(cn, "cpu-map");
452	if (!map)
453		goto out;
454
455	ret = parse_cluster(map, 0);
456	if (ret != 0)
457		goto out_map;
458
459	topology_normalize_cpu_scale();
460
461	/*
462	 * Check that all cores are in the topology; the SMP code will
463	 * only mark cores described in the DT as possible.
464	 */
465	for_each_possible_cpu(cpu)
466		if (cpu_topology[cpu].package_id == -1)
467			ret = -EINVAL;
468
469out_map:
470	of_node_put(map);
471out:
472	of_node_put(cn);
473	return ret;
474}
475#endif
476
477/*
478 * cpu topology table
479 */
480struct cpu_topology cpu_topology[NR_CPUS];
481EXPORT_SYMBOL_GPL(cpu_topology);
482
483const struct cpumask *cpu_coregroup_mask(int cpu)
484{
485	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
486
487	/* Find the smaller of NUMA, core or LLC siblings */
488	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
489		/* not numa in package, lets use the package siblings */
490		core_mask = &cpu_topology[cpu].core_sibling;
491	}
492	if (cpu_topology[cpu].llc_id != -1) {
493		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
494			core_mask = &cpu_topology[cpu].llc_sibling;
495	}
496
497	return core_mask;
498}
499
500void update_siblings_masks(unsigned int cpuid)
501{
502	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
503	int cpu;
504
505	/* update core and thread sibling masks */
506	for_each_online_cpu(cpu) {
507		cpu_topo = &cpu_topology[cpu];
508
509		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
510			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
511			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
512		}
513
514		if (cpuid_topo->package_id != cpu_topo->package_id)
515			continue;
516
517		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
518		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
519
520		if (cpuid_topo->core_id != cpu_topo->core_id)
521			continue;
522
523		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
524		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
525	}
526}
527
528static void clear_cpu_topology(int cpu)
529{
530	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
531
532	cpumask_clear(&cpu_topo->llc_sibling);
533	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
534
535	cpumask_clear(&cpu_topo->core_sibling);
536	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
537	cpumask_clear(&cpu_topo->thread_sibling);
538	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
539}
540
541void __init reset_cpu_topology(void)
542{
543	unsigned int cpu;
544
545	for_each_possible_cpu(cpu) {
546		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
547
548		cpu_topo->thread_id = -1;
549		cpu_topo->core_id = -1;
550		cpu_topo->package_id = -1;
551		cpu_topo->llc_id = -1;
552
553		clear_cpu_topology(cpu);
554	}
555}
556
557void remove_cpu_topology(unsigned int cpu)
558{
559	int sibling;
560
561	for_each_cpu(sibling, topology_core_cpumask(cpu))
562		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
563	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
564		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
565	for_each_cpu(sibling, topology_llc_cpumask(cpu))
566		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
567
568	clear_cpu_topology(cpu);
569}
570
571__weak int __init parse_acpi_topology(void)
572{
573	return 0;
574}
575
576#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
577void __init init_cpu_topology(void)
578{
579	reset_cpu_topology();
580
581	/*
582	 * Discard anything that was parsed if we hit an error so we
583	 * don't use partial information.
584	 */
585	if (parse_acpi_topology())
586		reset_cpu_topology();
587	else if (of_have_populated_dt() && parse_dt_topology())
588		reset_cpu_topology();
589}
590#endif