Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Arch specific cpu topology information
  4 *
  5 * Copyright (C) 2016, ARM Ltd.
  6 * Written by: Juri Lelli, ARM Ltd.
  7 */
  8
  9#include <linux/acpi.h>
 10#include <linux/cpu.h>
 11#include <linux/cpufreq.h>
 12#include <linux/device.h>
 13#include <linux/of.h>
 14#include <linux/slab.h>
 15#include <linux/string.h>
 16#include <linux/sched/topology.h>
 17#include <linux/cpuset.h>
 18#include <linux/cpumask.h>
 19#include <linux/init.h>
 20#include <linux/percpu.h>
 
 21#include <linux/sched.h>
 22#include <linux/smp.h>
 23
 24__weak bool arch_freq_counters_available(struct cpumask *cpus)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25{
 26	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27}
 28DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
 29
 30void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
 31			 unsigned long max_freq)
 
 
 
 32{
 33	unsigned long scale;
 34	int i;
 35
 
 
 
 36	/*
 37	 * If the use of counters for FIE is enabled, just return as we don't
 38	 * want to update the scale factor with information from CPUFREQ.
 39	 * Instead the scale factor will be updated from arch_scale_freq_tick.
 40	 */
 41	if (arch_freq_counters_available(cpus))
 42		return;
 43
 44	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
 45
 46	for_each_cpu(i, cpus)
 47		per_cpu(freq_scale, i) = scale;
 48}
 49
 50DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
 51
 52void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
 53{
 54	per_cpu(cpu_scale, cpu) = capacity;
 55}
 56
 57DEFINE_PER_CPU(unsigned long, thermal_pressure);
 58
 59void topology_set_thermal_pressure(const struct cpumask *cpus,
 60			       unsigned long th_pressure)
 61{
 62	int cpu;
 63
 64	for_each_cpu(cpu, cpus)
 65		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
 66}
 67
 68static ssize_t cpu_capacity_show(struct device *dev,
 69				 struct device_attribute *attr,
 70				 char *buf)
 71{
 72	struct cpu *cpu = container_of(dev, struct cpu, dev);
 73
 74	return sprintf(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
 75}
 76
 77static void update_topology_flags_workfn(struct work_struct *work);
 78static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
 79
 80static DEVICE_ATTR_RO(cpu_capacity);
 81
 82static int register_cpu_capacity_sysctl(void)
 83{
 84	int i;
 85	struct device *cpu;
 86
 87	for_each_possible_cpu(i) {
 88		cpu = get_cpu_device(i);
 89		if (!cpu) {
 90			pr_err("%s: too early to get CPU%d device!\n",
 91			       __func__, i);
 92			continue;
 93		}
 94		device_create_file(cpu, &dev_attr_cpu_capacity);
 95	}
 96
 97	return 0;
 98}
 99subsys_initcall(register_cpu_capacity_sysctl);
100
101static int update_topology;
102
103int topology_update_cpu_topology(void)
104{
105	return update_topology;
106}
107
108/*
109 * Updating the sched_domains can't be done directly from cpufreq callbacks
110 * due to locking, so queue the work for later.
111 */
112static void update_topology_flags_workfn(struct work_struct *work)
113{
114	update_topology = 1;
115	rebuild_sched_domains();
116	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
117	update_topology = 0;
118}
119
120static DEFINE_PER_CPU(u32, freq_factor) = 1;
121static u32 *raw_capacity;
122
123static int free_raw_capacity(void)
124{
125	kfree(raw_capacity);
126	raw_capacity = NULL;
127
128	return 0;
129}
130
131void topology_normalize_cpu_scale(void)
132{
133	u64 capacity;
134	u64 capacity_scale;
135	int cpu;
136
137	if (!raw_capacity)
138		return;
139
140	capacity_scale = 1;
141	for_each_possible_cpu(cpu) {
142		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
143		capacity_scale = max(capacity, capacity_scale);
144	}
145
146	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
147	for_each_possible_cpu(cpu) {
148		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
149		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
150			capacity_scale);
151		topology_set_cpu_scale(cpu, capacity);
152		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
153			cpu, topology_get_cpu_scale(cpu));
154	}
155}
156
157bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
158{
159	struct clk *cpu_clk;
160	static bool cap_parsing_failed;
161	int ret;
162	u32 cpu_capacity;
163
164	if (cap_parsing_failed)
165		return false;
166
167	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
168				   &cpu_capacity);
169	if (!ret) {
170		if (!raw_capacity) {
171			raw_capacity = kcalloc(num_possible_cpus(),
172					       sizeof(*raw_capacity),
173					       GFP_KERNEL);
174			if (!raw_capacity) {
175				cap_parsing_failed = true;
176				return false;
177			}
178		}
179		raw_capacity[cpu] = cpu_capacity;
180		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
181			cpu_node, raw_capacity[cpu]);
182
183		/*
184		 * Update freq_factor for calculating early boot cpu capacities.
185		 * For non-clk CPU DVFS mechanism, there's no way to get the
186		 * frequency value now, assuming they are running at the same
187		 * frequency (by keeping the initial freq_factor value).
188		 */
189		cpu_clk = of_clk_get(cpu_node, 0);
190		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
191			per_cpu(freq_factor, cpu) =
192				clk_get_rate(cpu_clk) / 1000;
193			clk_put(cpu_clk);
194		}
195	} else {
196		if (raw_capacity) {
197			pr_err("cpu_capacity: missing %pOF raw capacity\n",
198				cpu_node);
199			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
200		}
201		cap_parsing_failed = true;
202		free_raw_capacity();
203	}
204
205	return !ret;
206}
207
208#ifdef CONFIG_CPU_FREQ
209static cpumask_var_t cpus_to_visit;
210static void parsing_done_workfn(struct work_struct *work);
211static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
212
213static int
214init_cpu_capacity_callback(struct notifier_block *nb,
215			   unsigned long val,
216			   void *data)
217{
218	struct cpufreq_policy *policy = data;
219	int cpu;
220
221	if (!raw_capacity)
222		return 0;
223
224	if (val != CPUFREQ_CREATE_POLICY)
225		return 0;
226
227	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
228		 cpumask_pr_args(policy->related_cpus),
229		 cpumask_pr_args(cpus_to_visit));
230
231	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
232
233	for_each_cpu(cpu, policy->related_cpus)
234		per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
235
236	if (cpumask_empty(cpus_to_visit)) {
237		topology_normalize_cpu_scale();
238		schedule_work(&update_topology_flags_work);
239		free_raw_capacity();
240		pr_debug("cpu_capacity: parsing done\n");
241		schedule_work(&parsing_done_work);
242	}
243
244	return 0;
245}
246
247static struct notifier_block init_cpu_capacity_notifier = {
248	.notifier_call = init_cpu_capacity_callback,
249};
250
251static int __init register_cpufreq_notifier(void)
252{
253	int ret;
254
255	/*
256	 * on ACPI-based systems we need to use the default cpu capacity
257	 * until we have the necessary code to parse the cpu capacity, so
258	 * skip registering cpufreq notifier.
259	 */
260	if (!acpi_disabled || !raw_capacity)
261		return -EINVAL;
262
263	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
264		return -ENOMEM;
265
266	cpumask_copy(cpus_to_visit, cpu_possible_mask);
267
268	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
269					CPUFREQ_POLICY_NOTIFIER);
270
271	if (ret)
272		free_cpumask_var(cpus_to_visit);
273
274	return ret;
275}
276core_initcall(register_cpufreq_notifier);
277
278static void parsing_done_workfn(struct work_struct *work)
279{
280	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
281					 CPUFREQ_POLICY_NOTIFIER);
282	free_cpumask_var(cpus_to_visit);
283}
284
285#else
286core_initcall(free_raw_capacity);
287#endif
288
289#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
290/*
291 * This function returns the logic cpu number of the node.
292 * There are basically three kinds of return values:
293 * (1) logic cpu number which is > 0.
294 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
295 * there is no possible logical CPU in the kernel to match. This happens
296 * when CONFIG_NR_CPUS is configure to be smaller than the number of
297 * CPU nodes in DT. We need to just ignore this case.
298 * (3) -1 if the node does not exist in the device tree
299 */
300static int __init get_cpu_for_node(struct device_node *node)
301{
302	struct device_node *cpu_node;
303	int cpu;
304
305	cpu_node = of_parse_phandle(node, "cpu", 0);
306	if (!cpu_node)
307		return -1;
308
309	cpu = of_cpu_node_to_id(cpu_node);
310	if (cpu >= 0)
311		topology_parse_cpu_capacity(cpu_node, cpu);
312	else
313		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
314			cpu_node, cpumask_pr_args(cpu_possible_mask));
315
316	of_node_put(cpu_node);
317	return cpu;
318}
319
320static int __init parse_core(struct device_node *core, int package_id,
321			     int core_id)
322{
323	char name[20];
324	bool leaf = true;
325	int i = 0;
326	int cpu;
327	struct device_node *t;
328
329	do {
330		snprintf(name, sizeof(name), "thread%d", i);
331		t = of_get_child_by_name(core, name);
332		if (t) {
333			leaf = false;
334			cpu = get_cpu_for_node(t);
335			if (cpu >= 0) {
336				cpu_topology[cpu].package_id = package_id;
337				cpu_topology[cpu].core_id = core_id;
338				cpu_topology[cpu].thread_id = i;
339			} else if (cpu != -ENODEV) {
340				pr_err("%pOF: Can't get CPU for thread\n", t);
341				of_node_put(t);
342				return -EINVAL;
343			}
344			of_node_put(t);
345		}
346		i++;
347	} while (t);
348
349	cpu = get_cpu_for_node(core);
350	if (cpu >= 0) {
351		if (!leaf) {
352			pr_err("%pOF: Core has both threads and CPU\n",
353			       core);
354			return -EINVAL;
355		}
356
357		cpu_topology[cpu].package_id = package_id;
358		cpu_topology[cpu].core_id = core_id;
359	} else if (leaf && cpu != -ENODEV) {
360		pr_err("%pOF: Can't get CPU for leaf core\n", core);
361		return -EINVAL;
362	}
363
364	return 0;
365}
366
367static int __init parse_cluster(struct device_node *cluster, int depth)
368{
369	char name[20];
370	bool leaf = true;
371	bool has_cores = false;
372	struct device_node *c;
373	static int package_id __initdata;
374	int core_id = 0;
375	int i, ret;
376
377	/*
378	 * First check for child clusters; we currently ignore any
379	 * information about the nesting of clusters and present the
380	 * scheduler with a flat list of them.
381	 */
382	i = 0;
383	do {
384		snprintf(name, sizeof(name), "cluster%d", i);
385		c = of_get_child_by_name(cluster, name);
386		if (c) {
387			leaf = false;
388			ret = parse_cluster(c, depth + 1);
389			of_node_put(c);
390			if (ret != 0)
391				return ret;
392		}
393		i++;
394	} while (c);
395
396	/* Now check for cores */
397	i = 0;
398	do {
399		snprintf(name, sizeof(name), "core%d", i);
400		c = of_get_child_by_name(cluster, name);
401		if (c) {
402			has_cores = true;
403
404			if (depth == 0) {
405				pr_err("%pOF: cpu-map children should be clusters\n",
406				       c);
407				of_node_put(c);
408				return -EINVAL;
409			}
410
411			if (leaf) {
412				ret = parse_core(c, package_id, core_id++);
413			} else {
414				pr_err("%pOF: Non-leaf cluster with core %s\n",
415				       cluster, name);
416				ret = -EINVAL;
417			}
418
419			of_node_put(c);
420			if (ret != 0)
421				return ret;
422		}
423		i++;
424	} while (c);
425
426	if (leaf && !has_cores)
427		pr_warn("%pOF: empty cluster\n", cluster);
428
429	if (leaf)
430		package_id++;
431
432	return 0;
433}
434
435static int __init parse_dt_topology(void)
436{
437	struct device_node *cn, *map;
438	int ret = 0;
439	int cpu;
440
441	cn = of_find_node_by_path("/cpus");
442	if (!cn) {
443		pr_err("No CPU information found in DT\n");
444		return 0;
445	}
446
447	/*
448	 * When topology is provided cpu-map is essentially a root
449	 * cluster with restricted subnodes.
450	 */
451	map = of_get_child_by_name(cn, "cpu-map");
452	if (!map)
453		goto out;
454
455	ret = parse_cluster(map, 0);
456	if (ret != 0)
457		goto out_map;
458
459	topology_normalize_cpu_scale();
460
461	/*
462	 * Check that all cores are in the topology; the SMP code will
463	 * only mark cores described in the DT as possible.
464	 */
465	for_each_possible_cpu(cpu)
466		if (cpu_topology[cpu].package_id == -1)
467			ret = -EINVAL;
468
469out_map:
470	of_node_put(map);
471out:
472	of_node_put(cn);
473	return ret;
474}
475#endif
476
477/*
478 * cpu topology table
479 */
480struct cpu_topology cpu_topology[NR_CPUS];
481EXPORT_SYMBOL_GPL(cpu_topology);
482
483const struct cpumask *cpu_coregroup_mask(int cpu)
484{
485	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
486
487	/* Find the smaller of NUMA, core or LLC siblings */
488	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
489		/* not numa in package, lets use the package siblings */
490		core_mask = &cpu_topology[cpu].core_sibling;
491	}
492	if (cpu_topology[cpu].llc_id != -1) {
493		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
494			core_mask = &cpu_topology[cpu].llc_sibling;
495	}
496
497	return core_mask;
498}
499
500void update_siblings_masks(unsigned int cpuid)
501{
502	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
503	int cpu;
504
505	/* update core and thread sibling masks */
506	for_each_online_cpu(cpu) {
507		cpu_topo = &cpu_topology[cpu];
508
509		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
510			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
511			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
512		}
513
514		if (cpuid_topo->package_id != cpu_topo->package_id)
515			continue;
516
517		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
518		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
519
520		if (cpuid_topo->core_id != cpu_topo->core_id)
521			continue;
522
523		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
524		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
525	}
526}
527
528static void clear_cpu_topology(int cpu)
529{
530	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
531
532	cpumask_clear(&cpu_topo->llc_sibling);
533	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
534
535	cpumask_clear(&cpu_topo->core_sibling);
536	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
537	cpumask_clear(&cpu_topo->thread_sibling);
538	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
539}
540
541void __init reset_cpu_topology(void)
542{
543	unsigned int cpu;
544
545	for_each_possible_cpu(cpu) {
546		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
547
548		cpu_topo->thread_id = -1;
549		cpu_topo->core_id = -1;
550		cpu_topo->package_id = -1;
551		cpu_topo->llc_id = -1;
552
553		clear_cpu_topology(cpu);
554	}
555}
556
557void remove_cpu_topology(unsigned int cpu)
558{
559	int sibling;
560
561	for_each_cpu(sibling, topology_core_cpumask(cpu))
562		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
563	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
564		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
565	for_each_cpu(sibling, topology_llc_cpumask(cpu))
566		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
567
568	clear_cpu_topology(cpu);
569}
570
571__weak int __init parse_acpi_topology(void)
572{
573	return 0;
574}
575
576#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
577void __init init_cpu_topology(void)
578{
579	reset_cpu_topology();
580
581	/*
582	 * Discard anything that was parsed if we hit an error so we
583	 * don't use partial information.
584	 */
585	if (parse_acpi_topology())
586		reset_cpu_topology();
587	else if (of_have_populated_dt() && parse_dt_topology())
588		reset_cpu_topology();
589}
590#endif
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Arch specific cpu topology information
  4 *
  5 * Copyright (C) 2016, ARM Ltd.
  6 * Written by: Juri Lelli, ARM Ltd.
  7 */
  8
  9#include <linux/acpi.h>
 10#include <linux/cpu.h>
 11#include <linux/cpufreq.h>
 12#include <linux/device.h>
 13#include <linux/of.h>
 14#include <linux/slab.h>
 15#include <linux/string.h>
 16#include <linux/sched/topology.h>
 17#include <linux/cpuset.h>
 18#include <linux/cpumask.h>
 19#include <linux/init.h>
 20#include <linux/percpu.h>
 21#include <linux/rcupdate.h>
 22#include <linux/sched.h>
 23#include <linux/smp.h>
 24
 25static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
 26static struct cpumask scale_freq_counters_mask;
 27static bool scale_freq_invariant;
 28
 29static bool supports_scale_freq_counters(const struct cpumask *cpus)
 30{
 31	return cpumask_subset(cpus, &scale_freq_counters_mask);
 32}
 33
 34bool topology_scale_freq_invariant(void)
 35{
 36	return cpufreq_supports_freq_invariance() ||
 37	       supports_scale_freq_counters(cpu_online_mask);
 38}
 39
 40static void update_scale_freq_invariant(bool status)
 41{
 42	if (scale_freq_invariant == status)
 43		return;
 44
 45	/*
 46	 * Task scheduler behavior depends on frequency invariance support,
 47	 * either cpufreq or counter driven. If the support status changes as
 48	 * a result of counter initialisation and use, retrigger the build of
 49	 * scheduling domains to ensure the information is propagated properly.
 50	 */
 51	if (topology_scale_freq_invariant() == status) {
 52		scale_freq_invariant = status;
 53		rebuild_sched_domains_energy();
 54	}
 55}
 56
 57void topology_set_scale_freq_source(struct scale_freq_data *data,
 58				    const struct cpumask *cpus)
 59{
 60	struct scale_freq_data *sfd;
 61	int cpu;
 62
 63	/*
 64	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
 65	 * supported by cpufreq.
 66	 */
 67	if (cpumask_empty(&scale_freq_counters_mask))
 68		scale_freq_invariant = topology_scale_freq_invariant();
 69
 70	rcu_read_lock();
 71
 72	for_each_cpu(cpu, cpus) {
 73		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
 74
 75		/* Use ARCH provided counters whenever possible */
 76		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
 77			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
 78			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
 79		}
 80	}
 81
 82	rcu_read_unlock();
 83
 84	update_scale_freq_invariant(true);
 85}
 86EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
 87
 88void topology_clear_scale_freq_source(enum scale_freq_source source,
 89				      const struct cpumask *cpus)
 90{
 91	struct scale_freq_data *sfd;
 92	int cpu;
 93
 94	rcu_read_lock();
 95
 96	for_each_cpu(cpu, cpus) {
 97		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
 98
 99		if (sfd && sfd->source == source) {
100			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
101			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
102		}
103	}
104
105	rcu_read_unlock();
106
107	/*
108	 * Make sure all references to previous sft_data are dropped to avoid
109	 * use-after-free races.
110	 */
111	synchronize_rcu();
112
113	update_scale_freq_invariant(false);
114}
115EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
116
117void topology_scale_freq_tick(void)
118{
119	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
120
121	if (sfd)
122		sfd->set_freq_scale();
123}
 
124
125DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
126EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
127
128void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
129			     unsigned long max_freq)
130{
131	unsigned long scale;
132	int i;
133
134	if (WARN_ON_ONCE(!cur_freq || !max_freq))
135		return;
136
137	/*
138	 * If the use of counters for FIE is enabled, just return as we don't
139	 * want to update the scale factor with information from CPUFREQ.
140	 * Instead the scale factor will be updated from arch_scale_freq_tick.
141	 */
142	if (supports_scale_freq_counters(cpus))
143		return;
144
145	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
146
147	for_each_cpu(i, cpus)
148		per_cpu(arch_freq_scale, i) = scale;
149}
150
151DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
152
153void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
154{
155	per_cpu(cpu_scale, cpu) = capacity;
156}
157
158DEFINE_PER_CPU(unsigned long, thermal_pressure);
159
160void topology_set_thermal_pressure(const struct cpumask *cpus,
161			       unsigned long th_pressure)
162{
163	int cpu;
164
165	for_each_cpu(cpu, cpus)
166		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
167}
168
169static ssize_t cpu_capacity_show(struct device *dev,
170				 struct device_attribute *attr,
171				 char *buf)
172{
173	struct cpu *cpu = container_of(dev, struct cpu, dev);
174
175	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
176}
177
178static void update_topology_flags_workfn(struct work_struct *work);
179static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
180
181static DEVICE_ATTR_RO(cpu_capacity);
182
183static int register_cpu_capacity_sysctl(void)
184{
185	int i;
186	struct device *cpu;
187
188	for_each_possible_cpu(i) {
189		cpu = get_cpu_device(i);
190		if (!cpu) {
191			pr_err("%s: too early to get CPU%d device!\n",
192			       __func__, i);
193			continue;
194		}
195		device_create_file(cpu, &dev_attr_cpu_capacity);
196	}
197
198	return 0;
199}
200subsys_initcall(register_cpu_capacity_sysctl);
201
202static int update_topology;
203
204int topology_update_cpu_topology(void)
205{
206	return update_topology;
207}
208
209/*
210 * Updating the sched_domains can't be done directly from cpufreq callbacks
211 * due to locking, so queue the work for later.
212 */
213static void update_topology_flags_workfn(struct work_struct *work)
214{
215	update_topology = 1;
216	rebuild_sched_domains();
217	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
218	update_topology = 0;
219}
220
221static DEFINE_PER_CPU(u32, freq_factor) = 1;
222static u32 *raw_capacity;
223
224static int free_raw_capacity(void)
225{
226	kfree(raw_capacity);
227	raw_capacity = NULL;
228
229	return 0;
230}
231
232void topology_normalize_cpu_scale(void)
233{
234	u64 capacity;
235	u64 capacity_scale;
236	int cpu;
237
238	if (!raw_capacity)
239		return;
240
241	capacity_scale = 1;
242	for_each_possible_cpu(cpu) {
243		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
244		capacity_scale = max(capacity, capacity_scale);
245	}
246
247	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
248	for_each_possible_cpu(cpu) {
249		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
250		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
251			capacity_scale);
252		topology_set_cpu_scale(cpu, capacity);
253		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
254			cpu, topology_get_cpu_scale(cpu));
255	}
256}
257
258bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
259{
260	struct clk *cpu_clk;
261	static bool cap_parsing_failed;
262	int ret;
263	u32 cpu_capacity;
264
265	if (cap_parsing_failed)
266		return false;
267
268	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
269				   &cpu_capacity);
270	if (!ret) {
271		if (!raw_capacity) {
272			raw_capacity = kcalloc(num_possible_cpus(),
273					       sizeof(*raw_capacity),
274					       GFP_KERNEL);
275			if (!raw_capacity) {
276				cap_parsing_failed = true;
277				return false;
278			}
279		}
280		raw_capacity[cpu] = cpu_capacity;
281		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
282			cpu_node, raw_capacity[cpu]);
283
284		/*
285		 * Update freq_factor for calculating early boot cpu capacities.
286		 * For non-clk CPU DVFS mechanism, there's no way to get the
287		 * frequency value now, assuming they are running at the same
288		 * frequency (by keeping the initial freq_factor value).
289		 */
290		cpu_clk = of_clk_get(cpu_node, 0);
291		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
292			per_cpu(freq_factor, cpu) =
293				clk_get_rate(cpu_clk) / 1000;
294			clk_put(cpu_clk);
295		}
296	} else {
297		if (raw_capacity) {
298			pr_err("cpu_capacity: missing %pOF raw capacity\n",
299				cpu_node);
300			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
301		}
302		cap_parsing_failed = true;
303		free_raw_capacity();
304	}
305
306	return !ret;
307}
308
309#ifdef CONFIG_CPU_FREQ
310static cpumask_var_t cpus_to_visit;
311static void parsing_done_workfn(struct work_struct *work);
312static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
313
314static int
315init_cpu_capacity_callback(struct notifier_block *nb,
316			   unsigned long val,
317			   void *data)
318{
319	struct cpufreq_policy *policy = data;
320	int cpu;
321
322	if (!raw_capacity)
323		return 0;
324
325	if (val != CPUFREQ_CREATE_POLICY)
326		return 0;
327
328	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
329		 cpumask_pr_args(policy->related_cpus),
330		 cpumask_pr_args(cpus_to_visit));
331
332	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
333
334	for_each_cpu(cpu, policy->related_cpus)
335		per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
336
337	if (cpumask_empty(cpus_to_visit)) {
338		topology_normalize_cpu_scale();
339		schedule_work(&update_topology_flags_work);
340		free_raw_capacity();
341		pr_debug("cpu_capacity: parsing done\n");
342		schedule_work(&parsing_done_work);
343	}
344
345	return 0;
346}
347
348static struct notifier_block init_cpu_capacity_notifier = {
349	.notifier_call = init_cpu_capacity_callback,
350};
351
352static int __init register_cpufreq_notifier(void)
353{
354	int ret;
355
356	/*
357	 * on ACPI-based systems we need to use the default cpu capacity
358	 * until we have the necessary code to parse the cpu capacity, so
359	 * skip registering cpufreq notifier.
360	 */
361	if (!acpi_disabled || !raw_capacity)
362		return -EINVAL;
363
364	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
365		return -ENOMEM;
366
367	cpumask_copy(cpus_to_visit, cpu_possible_mask);
368
369	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
370					CPUFREQ_POLICY_NOTIFIER);
371
372	if (ret)
373		free_cpumask_var(cpus_to_visit);
374
375	return ret;
376}
377core_initcall(register_cpufreq_notifier);
378
379static void parsing_done_workfn(struct work_struct *work)
380{
381	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
382					 CPUFREQ_POLICY_NOTIFIER);
383	free_cpumask_var(cpus_to_visit);
384}
385
386#else
387core_initcall(free_raw_capacity);
388#endif
389
390#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
391/*
392 * This function returns the logic cpu number of the node.
393 * There are basically three kinds of return values:
394 * (1) logic cpu number which is > 0.
395 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
396 * there is no possible logical CPU in the kernel to match. This happens
397 * when CONFIG_NR_CPUS is configure to be smaller than the number of
398 * CPU nodes in DT. We need to just ignore this case.
399 * (3) -1 if the node does not exist in the device tree
400 */
401static int __init get_cpu_for_node(struct device_node *node)
402{
403	struct device_node *cpu_node;
404	int cpu;
405
406	cpu_node = of_parse_phandle(node, "cpu", 0);
407	if (!cpu_node)
408		return -1;
409
410	cpu = of_cpu_node_to_id(cpu_node);
411	if (cpu >= 0)
412		topology_parse_cpu_capacity(cpu_node, cpu);
413	else
414		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
415			cpu_node, cpumask_pr_args(cpu_possible_mask));
416
417	of_node_put(cpu_node);
418	return cpu;
419}
420
421static int __init parse_core(struct device_node *core, int package_id,
422			     int core_id)
423{
424	char name[20];
425	bool leaf = true;
426	int i = 0;
427	int cpu;
428	struct device_node *t;
429
430	do {
431		snprintf(name, sizeof(name), "thread%d", i);
432		t = of_get_child_by_name(core, name);
433		if (t) {
434			leaf = false;
435			cpu = get_cpu_for_node(t);
436			if (cpu >= 0) {
437				cpu_topology[cpu].package_id = package_id;
438				cpu_topology[cpu].core_id = core_id;
439				cpu_topology[cpu].thread_id = i;
440			} else if (cpu != -ENODEV) {
441				pr_err("%pOF: Can't get CPU for thread\n", t);
442				of_node_put(t);
443				return -EINVAL;
444			}
445			of_node_put(t);
446		}
447		i++;
448	} while (t);
449
450	cpu = get_cpu_for_node(core);
451	if (cpu >= 0) {
452		if (!leaf) {
453			pr_err("%pOF: Core has both threads and CPU\n",
454			       core);
455			return -EINVAL;
456		}
457
458		cpu_topology[cpu].package_id = package_id;
459		cpu_topology[cpu].core_id = core_id;
460	} else if (leaf && cpu != -ENODEV) {
461		pr_err("%pOF: Can't get CPU for leaf core\n", core);
462		return -EINVAL;
463	}
464
465	return 0;
466}
467
468static int __init parse_cluster(struct device_node *cluster, int depth)
469{
470	char name[20];
471	bool leaf = true;
472	bool has_cores = false;
473	struct device_node *c;
474	static int package_id __initdata;
475	int core_id = 0;
476	int i, ret;
477
478	/*
479	 * First check for child clusters; we currently ignore any
480	 * information about the nesting of clusters and present the
481	 * scheduler with a flat list of them.
482	 */
483	i = 0;
484	do {
485		snprintf(name, sizeof(name), "cluster%d", i);
486		c = of_get_child_by_name(cluster, name);
487		if (c) {
488			leaf = false;
489			ret = parse_cluster(c, depth + 1);
490			of_node_put(c);
491			if (ret != 0)
492				return ret;
493		}
494		i++;
495	} while (c);
496
497	/* Now check for cores */
498	i = 0;
499	do {
500		snprintf(name, sizeof(name), "core%d", i);
501		c = of_get_child_by_name(cluster, name);
502		if (c) {
503			has_cores = true;
504
505			if (depth == 0) {
506				pr_err("%pOF: cpu-map children should be clusters\n",
507				       c);
508				of_node_put(c);
509				return -EINVAL;
510			}
511
512			if (leaf) {
513				ret = parse_core(c, package_id, core_id++);
514			} else {
515				pr_err("%pOF: Non-leaf cluster with core %s\n",
516				       cluster, name);
517				ret = -EINVAL;
518			}
519
520			of_node_put(c);
521			if (ret != 0)
522				return ret;
523		}
524		i++;
525	} while (c);
526
527	if (leaf && !has_cores)
528		pr_warn("%pOF: empty cluster\n", cluster);
529
530	if (leaf)
531		package_id++;
532
533	return 0;
534}
535
536static int __init parse_dt_topology(void)
537{
538	struct device_node *cn, *map;
539	int ret = 0;
540	int cpu;
541
542	cn = of_find_node_by_path("/cpus");
543	if (!cn) {
544		pr_err("No CPU information found in DT\n");
545		return 0;
546	}
547
548	/*
549	 * When topology is provided cpu-map is essentially a root
550	 * cluster with restricted subnodes.
551	 */
552	map = of_get_child_by_name(cn, "cpu-map");
553	if (!map)
554		goto out;
555
556	ret = parse_cluster(map, 0);
557	if (ret != 0)
558		goto out_map;
559
560	topology_normalize_cpu_scale();
561
562	/*
563	 * Check that all cores are in the topology; the SMP code will
564	 * only mark cores described in the DT as possible.
565	 */
566	for_each_possible_cpu(cpu)
567		if (cpu_topology[cpu].package_id == -1)
568			ret = -EINVAL;
569
570out_map:
571	of_node_put(map);
572out:
573	of_node_put(cn);
574	return ret;
575}
576#endif
577
578/*
579 * cpu topology table
580 */
581struct cpu_topology cpu_topology[NR_CPUS];
582EXPORT_SYMBOL_GPL(cpu_topology);
583
584const struct cpumask *cpu_coregroup_mask(int cpu)
585{
586	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
587
588	/* Find the smaller of NUMA, core or LLC siblings */
589	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
590		/* not numa in package, lets use the package siblings */
591		core_mask = &cpu_topology[cpu].core_sibling;
592	}
593	if (cpu_topology[cpu].llc_id != -1) {
594		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
595			core_mask = &cpu_topology[cpu].llc_sibling;
596	}
597
598	return core_mask;
599}
600
601void update_siblings_masks(unsigned int cpuid)
602{
603	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
604	int cpu;
605
606	/* update core and thread sibling masks */
607	for_each_online_cpu(cpu) {
608		cpu_topo = &cpu_topology[cpu];
609
610		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
611			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
612			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
613		}
614
615		if (cpuid_topo->package_id != cpu_topo->package_id)
616			continue;
617
618		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
619		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
620
621		if (cpuid_topo->core_id != cpu_topo->core_id)
622			continue;
623
624		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
625		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
626	}
627}
628
629static void clear_cpu_topology(int cpu)
630{
631	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
632
633	cpumask_clear(&cpu_topo->llc_sibling);
634	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
635
636	cpumask_clear(&cpu_topo->core_sibling);
637	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
638	cpumask_clear(&cpu_topo->thread_sibling);
639	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
640}
641
642void __init reset_cpu_topology(void)
643{
644	unsigned int cpu;
645
646	for_each_possible_cpu(cpu) {
647		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
648
649		cpu_topo->thread_id = -1;
650		cpu_topo->core_id = -1;
651		cpu_topo->package_id = -1;
652		cpu_topo->llc_id = -1;
653
654		clear_cpu_topology(cpu);
655	}
656}
657
658void remove_cpu_topology(unsigned int cpu)
659{
660	int sibling;
661
662	for_each_cpu(sibling, topology_core_cpumask(cpu))
663		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
664	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
665		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
666	for_each_cpu(sibling, topology_llc_cpumask(cpu))
667		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
668
669	clear_cpu_topology(cpu);
670}
671
672__weak int __init parse_acpi_topology(void)
673{
674	return 0;
675}
676
677#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
678void __init init_cpu_topology(void)
679{
680	reset_cpu_topology();
681
682	/*
683	 * Discard anything that was parsed if we hit an error so we
684	 * don't use partial information.
685	 */
686	if (parse_acpi_topology())
687		reset_cpu_topology();
688	else if (of_have_populated_dt() && parse_dt_topology())
689		reset_cpu_topology();
690}
691#endif