Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
  4 * Copyright(c) 2009 Intel Corporation
  5 *
  6 * based on raid6recov.c:
  7 *   Copyright 2002 H. Peter Anvin
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
  9#include <linux/kernel.h>
 10#include <linux/interrupt.h>
 11#include <linux/module.h>
 12#include <linux/dma-mapping.h>
 13#include <linux/raid/pq.h>
 14#include <linux/async_tx.h>
 15#include <linux/dmaengine.h>
 16
 17static struct dma_async_tx_descriptor *
 18async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
 19		  size_t len, struct async_submit_ctl *submit)
 20{
 21	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
 22						      &dest, 1, srcs, 2, len);
 23	struct dma_device *dma = chan ? chan->device : NULL;
 24	struct dmaengine_unmap_data *unmap = NULL;
 25	const u8 *amul, *bmul;
 26	u8 ax, bx;
 27	u8 *a, *b, *c;
 28
 29	if (dma)
 30		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
 31
 32	if (unmap) {
 33		struct device *dev = dma->dev;
 34		dma_addr_t pq[2];
 35		struct dma_async_tx_descriptor *tx;
 36		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
 37
 38		if (submit->flags & ASYNC_TX_FENCE)
 39			dma_flags |= DMA_PREP_FENCE;
 40		unmap->addr[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
 41		unmap->addr[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
 42		unmap->to_cnt = 2;
 43
 44		unmap->addr[2] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
 45		unmap->bidi_cnt = 1;
 46		/* engine only looks at Q, but expects it to follow P */
 47		pq[1] = unmap->addr[2];
 48
 49		unmap->len = len;
 50		tx = dma->device_prep_dma_pq(chan, pq, unmap->addr, 2, coef,
 51					     len, dma_flags);
 52		if (tx) {
 53			dma_set_unmap(tx, unmap);
 54			async_tx_submit(chan, tx, submit);
 55			dmaengine_unmap_put(unmap);
 56			return tx;
 57		}
 58
 59		/* could not get a descriptor, unmap and fall through to
 60		 * the synchronous path
 61		 */
 62		dmaengine_unmap_put(unmap);
 
 
 63	}
 64
 65	/* run the operation synchronously */
 66	async_tx_quiesce(&submit->depend_tx);
 67	amul = raid6_gfmul[coef[0]];
 68	bmul = raid6_gfmul[coef[1]];
 69	a = page_address(srcs[0]);
 70	b = page_address(srcs[1]);
 71	c = page_address(dest);
 72
 73	while (len--) {
 74		ax    = amul[*a++];
 75		bx    = bmul[*b++];
 76		*c++ = ax ^ bx;
 77	}
 78
 79	return NULL;
 80}
 81
 82static struct dma_async_tx_descriptor *
 83async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
 84	   struct async_submit_ctl *submit)
 85{
 86	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
 87						      &dest, 1, &src, 1, len);
 88	struct dma_device *dma = chan ? chan->device : NULL;
 89	struct dmaengine_unmap_data *unmap = NULL;
 90	const u8 *qmul; /* Q multiplier table */
 91	u8 *d, *s;
 92
 93	if (dma)
 94		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
 95
 96	if (unmap) {
 97		dma_addr_t dma_dest[2];
 
 98		struct device *dev = dma->dev;
 99		struct dma_async_tx_descriptor *tx;
100		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
101
102		if (submit->flags & ASYNC_TX_FENCE)
103			dma_flags |= DMA_PREP_FENCE;
104		unmap->addr[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
105		unmap->to_cnt++;
106		unmap->addr[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
107		dma_dest[1] = unmap->addr[1];
108		unmap->bidi_cnt++;
109		unmap->len = len;
110
111		/* this looks funny, but the engine looks for Q at
112		 * dma_dest[1] and ignores dma_dest[0] as a dest
113		 * due to DMA_PREP_PQ_DISABLE_P
114		 */
115		tx = dma->device_prep_dma_pq(chan, dma_dest, unmap->addr,
116					     1, &coef, len, dma_flags);
117
118		if (tx) {
119			dma_set_unmap(tx, unmap);
120			dmaengine_unmap_put(unmap);
121			async_tx_submit(chan, tx, submit);
122			return tx;
123		}
124
125		/* could not get a descriptor, unmap and fall through to
126		 * the synchronous path
127		 */
128		dmaengine_unmap_put(unmap);
 
129	}
130
131	/* no channel available, or failed to allocate a descriptor, so
132	 * perform the operation synchronously
133	 */
134	async_tx_quiesce(&submit->depend_tx);
135	qmul  = raid6_gfmul[coef];
136	d = page_address(dest);
137	s = page_address(src);
138
139	while (len--)
140		*d++ = qmul[*s++];
141
142	return NULL;
143}
144
145static struct dma_async_tx_descriptor *
146__2data_recov_4(int disks, size_t bytes, int faila, int failb,
147		struct page **blocks, struct async_submit_ctl *submit)
148{
149	struct dma_async_tx_descriptor *tx = NULL;
150	struct page *p, *q, *a, *b;
151	struct page *srcs[2];
152	unsigned char coef[2];
153	enum async_tx_flags flags = submit->flags;
154	dma_async_tx_callback cb_fn = submit->cb_fn;
155	void *cb_param = submit->cb_param;
156	void *scribble = submit->scribble;
157
158	p = blocks[disks-2];
159	q = blocks[disks-1];
160
161	a = blocks[faila];
162	b = blocks[failb];
163
164	/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
165	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
166	srcs[0] = p;
167	srcs[1] = q;
168	coef[0] = raid6_gfexi[failb-faila];
169	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
170	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
171	tx = async_sum_product(b, srcs, coef, bytes, submit);
172
173	/* Dy = P+Pxy+Dx */
174	srcs[0] = p;
175	srcs[1] = b;
176	init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
177			  cb_param, scribble);
178	tx = async_xor(a, srcs, 0, 2, bytes, submit);
179
180	return tx;
181
182}
183
184static struct dma_async_tx_descriptor *
185__2data_recov_5(int disks, size_t bytes, int faila, int failb,
186		struct page **blocks, struct async_submit_ctl *submit)
187{
188	struct dma_async_tx_descriptor *tx = NULL;
189	struct page *p, *q, *g, *dp, *dq;
190	struct page *srcs[2];
191	unsigned char coef[2];
192	enum async_tx_flags flags = submit->flags;
193	dma_async_tx_callback cb_fn = submit->cb_fn;
194	void *cb_param = submit->cb_param;
195	void *scribble = submit->scribble;
196	int good_srcs, good, i;
197
198	good_srcs = 0;
199	good = -1;
200	for (i = 0; i < disks-2; i++) {
201		if (blocks[i] == NULL)
202			continue;
203		if (i == faila || i == failb)
204			continue;
205		good = i;
206		good_srcs++;
207	}
208	BUG_ON(good_srcs > 1);
209
210	p = blocks[disks-2];
211	q = blocks[disks-1];
212	g = blocks[good];
213
214	/* Compute syndrome with zero for the missing data pages
215	 * Use the dead data pages as temporary storage for delta p and
216	 * delta q
217	 */
218	dp = blocks[faila];
219	dq = blocks[failb];
220
221	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
222	tx = async_memcpy(dp, g, 0, 0, bytes, submit);
223	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
224	tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
225
226	/* compute P + Pxy */
227	srcs[0] = dp;
228	srcs[1] = p;
229	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
230			  NULL, NULL, scribble);
231	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
232
233	/* compute Q + Qxy */
234	srcs[0] = dq;
235	srcs[1] = q;
236	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
237			  NULL, NULL, scribble);
238	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
239
240	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
241	srcs[0] = dp;
242	srcs[1] = dq;
243	coef[0] = raid6_gfexi[failb-faila];
244	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
245	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
246	tx = async_sum_product(dq, srcs, coef, bytes, submit);
247
248	/* Dy = P+Pxy+Dx */
249	srcs[0] = dp;
250	srcs[1] = dq;
251	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
252			  cb_param, scribble);
253	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
254
255	return tx;
256}
257
258static struct dma_async_tx_descriptor *
259__2data_recov_n(int disks, size_t bytes, int faila, int failb,
260	      struct page **blocks, struct async_submit_ctl *submit)
261{
262	struct dma_async_tx_descriptor *tx = NULL;
263	struct page *p, *q, *dp, *dq;
264	struct page *srcs[2];
265	unsigned char coef[2];
266	enum async_tx_flags flags = submit->flags;
267	dma_async_tx_callback cb_fn = submit->cb_fn;
268	void *cb_param = submit->cb_param;
269	void *scribble = submit->scribble;
270
271	p = blocks[disks-2];
272	q = blocks[disks-1];
273
274	/* Compute syndrome with zero for the missing data pages
275	 * Use the dead data pages as temporary storage for
276	 * delta p and delta q
277	 */
278	dp = blocks[faila];
279	blocks[faila] = NULL;
280	blocks[disks-2] = dp;
281	dq = blocks[failb];
282	blocks[failb] = NULL;
283	blocks[disks-1] = dq;
284
285	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
286	tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
287
288	/* Restore pointer table */
289	blocks[faila]   = dp;
290	blocks[failb]   = dq;
291	blocks[disks-2] = p;
292	blocks[disks-1] = q;
293
294	/* compute P + Pxy */
295	srcs[0] = dp;
296	srcs[1] = p;
297	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
298			  NULL, NULL, scribble);
299	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
300
301	/* compute Q + Qxy */
302	srcs[0] = dq;
303	srcs[1] = q;
304	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
305			  NULL, NULL, scribble);
306	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
307
308	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
309	srcs[0] = dp;
310	srcs[1] = dq;
311	coef[0] = raid6_gfexi[failb-faila];
312	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
313	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
314	tx = async_sum_product(dq, srcs, coef, bytes, submit);
315
316	/* Dy = P+Pxy+Dx */
317	srcs[0] = dp;
318	srcs[1] = dq;
319	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
320			  cb_param, scribble);
321	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
322
323	return tx;
324}
325
326/**
327 * async_raid6_2data_recov - asynchronously calculate two missing data blocks
328 * @disks: number of disks in the RAID-6 array
329 * @bytes: block size
330 * @faila: first failed drive index
331 * @failb: second failed drive index
332 * @blocks: array of source pointers where the last two entries are p and q
333 * @submit: submission/completion modifiers
334 */
335struct dma_async_tx_descriptor *
336async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
337			struct page **blocks, struct async_submit_ctl *submit)
338{
339	void *scribble = submit->scribble;
340	int non_zero_srcs, i;
341
342	BUG_ON(faila == failb);
343	if (failb < faila)
344		swap(faila, failb);
345
346	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
347
348	/* if a dma resource is not available or a scribble buffer is not
349	 * available punt to the synchronous path.  In the 'dma not
350	 * available' case be sure to use the scribble buffer to
351	 * preserve the content of 'blocks' as the caller intended.
352	 */
353	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
354		void **ptrs = scribble ? scribble : (void **) blocks;
355
356		async_tx_quiesce(&submit->depend_tx);
357		for (i = 0; i < disks; i++)
358			if (blocks[i] == NULL)
359				ptrs[i] = (void *) raid6_empty_zero_page;
360			else
361				ptrs[i] = page_address(blocks[i]);
362
363		raid6_2data_recov(disks, bytes, faila, failb, ptrs);
364
365		async_tx_sync_epilog(submit);
366
367		return NULL;
368	}
369
370	non_zero_srcs = 0;
371	for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
372		if (blocks[i])
373			non_zero_srcs++;
374	switch (non_zero_srcs) {
375	case 0:
376	case 1:
377		/* There must be at least 2 sources - the failed devices. */
378		BUG();
379
380	case 2:
381		/* dma devices do not uniformly understand a zero source pq
382		 * operation (in contrast to the synchronous case), so
383		 * explicitly handle the special case of a 4 disk array with
384		 * both data disks missing.
385		 */
386		return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
387	case 3:
388		/* dma devices do not uniformly understand a single
389		 * source pq operation (in contrast to the synchronous
390		 * case), so explicitly handle the special case of a 5 disk
391		 * array with 2 of 3 data disks missing.
392		 */
393		return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
394	default:
395		return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
396	}
397}
398EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
399
400/**
401 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
402 * @disks: number of disks in the RAID-6 array
403 * @bytes: block size
404 * @faila: failed drive index
405 * @blocks: array of source pointers where the last two entries are p and q
406 * @submit: submission/completion modifiers
407 */
408struct dma_async_tx_descriptor *
409async_raid6_datap_recov(int disks, size_t bytes, int faila,
410			struct page **blocks, struct async_submit_ctl *submit)
411{
412	struct dma_async_tx_descriptor *tx = NULL;
413	struct page *p, *q, *dq;
414	u8 coef;
415	enum async_tx_flags flags = submit->flags;
416	dma_async_tx_callback cb_fn = submit->cb_fn;
417	void *cb_param = submit->cb_param;
418	void *scribble = submit->scribble;
419	int good_srcs, good, i;
420	struct page *srcs[2];
421
422	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
423
424	/* if a dma resource is not available or a scribble buffer is not
425	 * available punt to the synchronous path.  In the 'dma not
426	 * available' case be sure to use the scribble buffer to
427	 * preserve the content of 'blocks' as the caller intended.
428	 */
429	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
430		void **ptrs = scribble ? scribble : (void **) blocks;
431
432		async_tx_quiesce(&submit->depend_tx);
433		for (i = 0; i < disks; i++)
434			if (blocks[i] == NULL)
435				ptrs[i] = (void*)raid6_empty_zero_page;
436			else
437				ptrs[i] = page_address(blocks[i]);
438
439		raid6_datap_recov(disks, bytes, faila, ptrs);
440
441		async_tx_sync_epilog(submit);
442
443		return NULL;
444	}
445
446	good_srcs = 0;
447	good = -1;
448	for (i = 0; i < disks-2; i++) {
449		if (i == faila)
450			continue;
451		if (blocks[i]) {
452			good = i;
453			good_srcs++;
454			if (good_srcs > 1)
455				break;
456		}
457	}
458	BUG_ON(good_srcs == 0);
459
460	p = blocks[disks-2];
461	q = blocks[disks-1];
462
463	/* Compute syndrome with zero for the missing data page
464	 * Use the dead data page as temporary storage for delta q
465	 */
466	dq = blocks[faila];
467	blocks[faila] = NULL;
468	blocks[disks-1] = dq;
469
470	/* in the 4-disk case we only need to perform a single source
471	 * multiplication with the one good data block.
472	 */
473	if (good_srcs == 1) {
474		struct page *g = blocks[good];
475
476		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
477				  scribble);
478		tx = async_memcpy(p, g, 0, 0, bytes, submit);
479
480		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
481				  scribble);
482		tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
483	} else {
484		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
485				  scribble);
486		tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
487	}
488
489	/* Restore pointer table */
490	blocks[faila]   = dq;
491	blocks[disks-1] = q;
492
493	/* calculate g^{-faila} */
494	coef = raid6_gfinv[raid6_gfexp[faila]];
495
496	srcs[0] = dq;
497	srcs[1] = q;
498	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
499			  NULL, NULL, scribble);
500	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
501
502	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
503	tx = async_mult(dq, dq, coef, bytes, submit);
504
505	srcs[0] = p;
506	srcs[1] = dq;
507	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
508			  cb_param, scribble);
509	tx = async_xor(p, srcs, 0, 2, bytes, submit);
510
511	return tx;
512}
513EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
514
515MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
516MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
517MODULE_LICENSE("GPL");
v3.1
 
  1/*
  2 * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
  3 * Copyright(c) 2009 Intel Corporation
  4 *
  5 * based on raid6recov.c:
  6 *   Copyright 2002 H. Peter Anvin
  7 *
  8 * This program is free software; you can redistribute it and/or modify it
  9 * under the terms of the GNU General Public License as published by the Free
 10 * Software Foundation; either version 2 of the License, or (at your option)
 11 * any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful, but WITHOUT
 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 16 * more details.
 17 *
 18 * You should have received a copy of the GNU General Public License along with
 19 * this program; if not, write to the Free Software Foundation, Inc., 51
 20 * Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 21 *
 22 */
 23#include <linux/kernel.h>
 24#include <linux/interrupt.h>
 
 25#include <linux/dma-mapping.h>
 26#include <linux/raid/pq.h>
 27#include <linux/async_tx.h>
 
 28
 29static struct dma_async_tx_descriptor *
 30async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
 31		  size_t len, struct async_submit_ctl *submit)
 32{
 33	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
 34						      &dest, 1, srcs, 2, len);
 35	struct dma_device *dma = chan ? chan->device : NULL;
 
 36	const u8 *amul, *bmul;
 37	u8 ax, bx;
 38	u8 *a, *b, *c;
 39
 40	if (dma) {
 41		dma_addr_t dma_dest[2];
 42		dma_addr_t dma_src[2];
 
 43		struct device *dev = dma->dev;
 
 44		struct dma_async_tx_descriptor *tx;
 45		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
 46
 47		if (submit->flags & ASYNC_TX_FENCE)
 48			dma_flags |= DMA_PREP_FENCE;
 49		dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
 50		dma_src[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
 51		dma_src[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
 52		tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 2, coef,
 
 
 
 
 
 
 
 53					     len, dma_flags);
 54		if (tx) {
 
 55			async_tx_submit(chan, tx, submit);
 
 56			return tx;
 57		}
 58
 59		/* could not get a descriptor, unmap and fall through to
 60		 * the synchronous path
 61		 */
 62		dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
 63		dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
 64		dma_unmap_page(dev, dma_src[1], len, DMA_TO_DEVICE);
 65	}
 66
 67	/* run the operation synchronously */
 68	async_tx_quiesce(&submit->depend_tx);
 69	amul = raid6_gfmul[coef[0]];
 70	bmul = raid6_gfmul[coef[1]];
 71	a = page_address(srcs[0]);
 72	b = page_address(srcs[1]);
 73	c = page_address(dest);
 74
 75	while (len--) {
 76		ax    = amul[*a++];
 77		bx    = bmul[*b++];
 78		*c++ = ax ^ bx;
 79	}
 80
 81	return NULL;
 82}
 83
 84static struct dma_async_tx_descriptor *
 85async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
 86	   struct async_submit_ctl *submit)
 87{
 88	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
 89						      &dest, 1, &src, 1, len);
 90	struct dma_device *dma = chan ? chan->device : NULL;
 
 91	const u8 *qmul; /* Q multiplier table */
 92	u8 *d, *s;
 93
 94	if (dma) {
 
 
 
 95		dma_addr_t dma_dest[2];
 96		dma_addr_t dma_src[1];
 97		struct device *dev = dma->dev;
 98		struct dma_async_tx_descriptor *tx;
 99		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
100
101		if (submit->flags & ASYNC_TX_FENCE)
102			dma_flags |= DMA_PREP_FENCE;
103		dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
104		dma_src[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
105		tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 1, &coef,
106					     len, dma_flags);
 
 
 
 
 
 
 
 
 
 
107		if (tx) {
 
 
108			async_tx_submit(chan, tx, submit);
109			return tx;
110		}
111
112		/* could not get a descriptor, unmap and fall through to
113		 * the synchronous path
114		 */
115		dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
116		dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
117	}
118
119	/* no channel available, or failed to allocate a descriptor, so
120	 * perform the operation synchronously
121	 */
122	async_tx_quiesce(&submit->depend_tx);
123	qmul  = raid6_gfmul[coef];
124	d = page_address(dest);
125	s = page_address(src);
126
127	while (len--)
128		*d++ = qmul[*s++];
129
130	return NULL;
131}
132
133static struct dma_async_tx_descriptor *
134__2data_recov_4(int disks, size_t bytes, int faila, int failb,
135		struct page **blocks, struct async_submit_ctl *submit)
136{
137	struct dma_async_tx_descriptor *tx = NULL;
138	struct page *p, *q, *a, *b;
139	struct page *srcs[2];
140	unsigned char coef[2];
141	enum async_tx_flags flags = submit->flags;
142	dma_async_tx_callback cb_fn = submit->cb_fn;
143	void *cb_param = submit->cb_param;
144	void *scribble = submit->scribble;
145
146	p = blocks[disks-2];
147	q = blocks[disks-1];
148
149	a = blocks[faila];
150	b = blocks[failb];
151
152	/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
153	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
154	srcs[0] = p;
155	srcs[1] = q;
156	coef[0] = raid6_gfexi[failb-faila];
157	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
158	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
159	tx = async_sum_product(b, srcs, coef, bytes, submit);
160
161	/* Dy = P+Pxy+Dx */
162	srcs[0] = p;
163	srcs[1] = b;
164	init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
165			  cb_param, scribble);
166	tx = async_xor(a, srcs, 0, 2, bytes, submit);
167
168	return tx;
169
170}
171
172static struct dma_async_tx_descriptor *
173__2data_recov_5(int disks, size_t bytes, int faila, int failb,
174		struct page **blocks, struct async_submit_ctl *submit)
175{
176	struct dma_async_tx_descriptor *tx = NULL;
177	struct page *p, *q, *g, *dp, *dq;
178	struct page *srcs[2];
179	unsigned char coef[2];
180	enum async_tx_flags flags = submit->flags;
181	dma_async_tx_callback cb_fn = submit->cb_fn;
182	void *cb_param = submit->cb_param;
183	void *scribble = submit->scribble;
184	int good_srcs, good, i;
185
186	good_srcs = 0;
187	good = -1;
188	for (i = 0; i < disks-2; i++) {
189		if (blocks[i] == NULL)
190			continue;
191		if (i == faila || i == failb)
192			continue;
193		good = i;
194		good_srcs++;
195	}
196	BUG_ON(good_srcs > 1);
197
198	p = blocks[disks-2];
199	q = blocks[disks-1];
200	g = blocks[good];
201
202	/* Compute syndrome with zero for the missing data pages
203	 * Use the dead data pages as temporary storage for delta p and
204	 * delta q
205	 */
206	dp = blocks[faila];
207	dq = blocks[failb];
208
209	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
210	tx = async_memcpy(dp, g, 0, 0, bytes, submit);
211	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
212	tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
213
214	/* compute P + Pxy */
215	srcs[0] = dp;
216	srcs[1] = p;
217	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
218			  NULL, NULL, scribble);
219	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
220
221	/* compute Q + Qxy */
222	srcs[0] = dq;
223	srcs[1] = q;
224	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
225			  NULL, NULL, scribble);
226	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
227
228	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
229	srcs[0] = dp;
230	srcs[1] = dq;
231	coef[0] = raid6_gfexi[failb-faila];
232	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
233	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
234	tx = async_sum_product(dq, srcs, coef, bytes, submit);
235
236	/* Dy = P+Pxy+Dx */
237	srcs[0] = dp;
238	srcs[1] = dq;
239	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
240			  cb_param, scribble);
241	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
242
243	return tx;
244}
245
246static struct dma_async_tx_descriptor *
247__2data_recov_n(int disks, size_t bytes, int faila, int failb,
248	      struct page **blocks, struct async_submit_ctl *submit)
249{
250	struct dma_async_tx_descriptor *tx = NULL;
251	struct page *p, *q, *dp, *dq;
252	struct page *srcs[2];
253	unsigned char coef[2];
254	enum async_tx_flags flags = submit->flags;
255	dma_async_tx_callback cb_fn = submit->cb_fn;
256	void *cb_param = submit->cb_param;
257	void *scribble = submit->scribble;
258
259	p = blocks[disks-2];
260	q = blocks[disks-1];
261
262	/* Compute syndrome with zero for the missing data pages
263	 * Use the dead data pages as temporary storage for
264	 * delta p and delta q
265	 */
266	dp = blocks[faila];
267	blocks[faila] = NULL;
268	blocks[disks-2] = dp;
269	dq = blocks[failb];
270	blocks[failb] = NULL;
271	blocks[disks-1] = dq;
272
273	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
274	tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
275
276	/* Restore pointer table */
277	blocks[faila]   = dp;
278	blocks[failb]   = dq;
279	blocks[disks-2] = p;
280	blocks[disks-1] = q;
281
282	/* compute P + Pxy */
283	srcs[0] = dp;
284	srcs[1] = p;
285	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
286			  NULL, NULL, scribble);
287	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
288
289	/* compute Q + Qxy */
290	srcs[0] = dq;
291	srcs[1] = q;
292	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
293			  NULL, NULL, scribble);
294	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
295
296	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
297	srcs[0] = dp;
298	srcs[1] = dq;
299	coef[0] = raid6_gfexi[failb-faila];
300	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
301	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
302	tx = async_sum_product(dq, srcs, coef, bytes, submit);
303
304	/* Dy = P+Pxy+Dx */
305	srcs[0] = dp;
306	srcs[1] = dq;
307	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
308			  cb_param, scribble);
309	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
310
311	return tx;
312}
313
314/**
315 * async_raid6_2data_recov - asynchronously calculate two missing data blocks
316 * @disks: number of disks in the RAID-6 array
317 * @bytes: block size
318 * @faila: first failed drive index
319 * @failb: second failed drive index
320 * @blocks: array of source pointers where the last two entries are p and q
321 * @submit: submission/completion modifiers
322 */
323struct dma_async_tx_descriptor *
324async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
325			struct page **blocks, struct async_submit_ctl *submit)
326{
327	void *scribble = submit->scribble;
328	int non_zero_srcs, i;
329
330	BUG_ON(faila == failb);
331	if (failb < faila)
332		swap(faila, failb);
333
334	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
335
336	/* if a dma resource is not available or a scribble buffer is not
337	 * available punt to the synchronous path.  In the 'dma not
338	 * available' case be sure to use the scribble buffer to
339	 * preserve the content of 'blocks' as the caller intended.
340	 */
341	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
342		void **ptrs = scribble ? scribble : (void **) blocks;
343
344		async_tx_quiesce(&submit->depend_tx);
345		for (i = 0; i < disks; i++)
346			if (blocks[i] == NULL)
347				ptrs[i] = (void *) raid6_empty_zero_page;
348			else
349				ptrs[i] = page_address(blocks[i]);
350
351		raid6_2data_recov(disks, bytes, faila, failb, ptrs);
352
353		async_tx_sync_epilog(submit);
354
355		return NULL;
356	}
357
358	non_zero_srcs = 0;
359	for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
360		if (blocks[i])
361			non_zero_srcs++;
362	switch (non_zero_srcs) {
363	case 0:
364	case 1:
365		/* There must be at least 2 sources - the failed devices. */
366		BUG();
367
368	case 2:
369		/* dma devices do not uniformly understand a zero source pq
370		 * operation (in contrast to the synchronous case), so
371		 * explicitly handle the special case of a 4 disk array with
372		 * both data disks missing.
373		 */
374		return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
375	case 3:
376		/* dma devices do not uniformly understand a single
377		 * source pq operation (in contrast to the synchronous
378		 * case), so explicitly handle the special case of a 5 disk
379		 * array with 2 of 3 data disks missing.
380		 */
381		return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
382	default:
383		return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
384	}
385}
386EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
387
388/**
389 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
390 * @disks: number of disks in the RAID-6 array
391 * @bytes: block size
392 * @faila: failed drive index
393 * @blocks: array of source pointers where the last two entries are p and q
394 * @submit: submission/completion modifiers
395 */
396struct dma_async_tx_descriptor *
397async_raid6_datap_recov(int disks, size_t bytes, int faila,
398			struct page **blocks, struct async_submit_ctl *submit)
399{
400	struct dma_async_tx_descriptor *tx = NULL;
401	struct page *p, *q, *dq;
402	u8 coef;
403	enum async_tx_flags flags = submit->flags;
404	dma_async_tx_callback cb_fn = submit->cb_fn;
405	void *cb_param = submit->cb_param;
406	void *scribble = submit->scribble;
407	int good_srcs, good, i;
408	struct page *srcs[2];
409
410	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
411
412	/* if a dma resource is not available or a scribble buffer is not
413	 * available punt to the synchronous path.  In the 'dma not
414	 * available' case be sure to use the scribble buffer to
415	 * preserve the content of 'blocks' as the caller intended.
416	 */
417	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
418		void **ptrs = scribble ? scribble : (void **) blocks;
419
420		async_tx_quiesce(&submit->depend_tx);
421		for (i = 0; i < disks; i++)
422			if (blocks[i] == NULL)
423				ptrs[i] = (void*)raid6_empty_zero_page;
424			else
425				ptrs[i] = page_address(blocks[i]);
426
427		raid6_datap_recov(disks, bytes, faila, ptrs);
428
429		async_tx_sync_epilog(submit);
430
431		return NULL;
432	}
433
434	good_srcs = 0;
435	good = -1;
436	for (i = 0; i < disks-2; i++) {
437		if (i == faila)
438			continue;
439		if (blocks[i]) {
440			good = i;
441			good_srcs++;
442			if (good_srcs > 1)
443				break;
444		}
445	}
446	BUG_ON(good_srcs == 0);
447
448	p = blocks[disks-2];
449	q = blocks[disks-1];
450
451	/* Compute syndrome with zero for the missing data page
452	 * Use the dead data page as temporary storage for delta q
453	 */
454	dq = blocks[faila];
455	blocks[faila] = NULL;
456	blocks[disks-1] = dq;
457
458	/* in the 4-disk case we only need to perform a single source
459	 * multiplication with the one good data block.
460	 */
461	if (good_srcs == 1) {
462		struct page *g = blocks[good];
463
464		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
465				  scribble);
466		tx = async_memcpy(p, g, 0, 0, bytes, submit);
467
468		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
469				  scribble);
470		tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
471	} else {
472		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
473				  scribble);
474		tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
475	}
476
477	/* Restore pointer table */
478	blocks[faila]   = dq;
479	blocks[disks-1] = q;
480
481	/* calculate g^{-faila} */
482	coef = raid6_gfinv[raid6_gfexp[faila]];
483
484	srcs[0] = dq;
485	srcs[1] = q;
486	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
487			  NULL, NULL, scribble);
488	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
489
490	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
491	tx = async_mult(dq, dq, coef, bytes, submit);
492
493	srcs[0] = p;
494	srcs[1] = dq;
495	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
496			  cb_param, scribble);
497	tx = async_xor(p, srcs, 0, 2, bytes, submit);
498
499	return tx;
500}
501EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
502
503MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
504MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
505MODULE_LICENSE("GPL");