Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
  1/*
  2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3 *
  4 *   This program is free software; you can redistribute it and/or
  5 *   modify it under the terms of the GNU General Public License
  6 *   as published by the Free Software Foundation, version 2.
  7 *
  8 *   This program is distributed in the hope that it will be useful, but
  9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 11 *   NON INFRINGEMENT.  See the GNU General Public License for
 12 *   more details.
 13 *
 14 * From i386 code copyright (C) 1995  Linus Torvalds
 15 */
 16
 17#include <linux/signal.h>
 18#include <linux/sched.h>
 19#include <linux/kernel.h>
 20#include <linux/errno.h>
 21#include <linux/string.h>
 22#include <linux/types.h>
 23#include <linux/ptrace.h>
 24#include <linux/mman.h>
 25#include <linux/mm.h>
 26#include <linux/smp.h>
 27#include <linux/interrupt.h>
 28#include <linux/init.h>
 29#include <linux/tty.h>
 30#include <linux/vt_kern.h>		/* For unblank_screen() */
 31#include <linux/highmem.h>
 32#include <linux/module.h>
 33#include <linux/kprobes.h>
 34#include <linux/hugetlb.h>
 35#include <linux/syscalls.h>
 36#include <linux/uaccess.h>
 37
 38#include <asm/system.h>
 39#include <asm/pgalloc.h>
 40#include <asm/sections.h>
 41#include <asm/traps.h>
 42#include <asm/syscalls.h>
 43
 44#include <arch/interrupts.h>
 45
 46static noinline void force_sig_info_fault(const char *type, int si_signo,
 47					  int si_code, unsigned long address,
 48					  int fault_num,
 49					  struct task_struct *tsk,
 50					  struct pt_regs *regs)
 51{
 52	siginfo_t info;
 53
 54	if (unlikely(tsk->pid < 2)) {
 55		panic("Signal %d (code %d) at %#lx sent to %s!",
 56		      si_signo, si_code & 0xffff, address,
 57		      tsk->pid ? "init" : "the idle task");
 58	}
 59
 60	info.si_signo = si_signo;
 61	info.si_errno = 0;
 62	info.si_code = si_code;
 63	info.si_addr = (void __user *)address;
 64	info.si_trapno = fault_num;
 65	trace_unhandled_signal(type, regs, address, si_signo);
 66	force_sig_info(si_signo, &info, tsk);
 67}
 68
 69#ifndef __tilegx__
 70/*
 71 * Synthesize the fault a PL0 process would get by doing a word-load of
 72 * an unaligned address or a high kernel address.
 73 */
 74SYSCALL_DEFINE2(cmpxchg_badaddr, unsigned long, address,
 75		struct pt_regs *, regs)
 76{
 77	if (address >= PAGE_OFFSET)
 78		force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
 79				     address, INT_DTLB_MISS, current, regs);
 80	else
 81		force_sig_info_fault("atomic alignment fault", SIGBUS,
 82				     BUS_ADRALN, address,
 83				     INT_UNALIGN_DATA, current, regs);
 84
 85	/*
 86	 * Adjust pc to point at the actual instruction, which is unusual
 87	 * for syscalls normally, but is appropriate when we are claiming
 88	 * that a syscall swint1 caused a page fault or bus error.
 89	 */
 90	regs->pc -= 8;
 91
 92	/*
 93	 * Mark this as a caller-save interrupt, like a normal page fault,
 94	 * so that when we go through the signal handler path we will
 95	 * properly restore r0, r1, and r2 for the signal handler arguments.
 96	 */
 97	regs->flags |= PT_FLAGS_CALLER_SAVES;
 98
 99	return 0;
100}
101#endif
102
103static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
104{
105	unsigned index = pgd_index(address);
106	pgd_t *pgd_k;
107	pud_t *pud, *pud_k;
108	pmd_t *pmd, *pmd_k;
109
110	pgd += index;
111	pgd_k = init_mm.pgd + index;
112
113	if (!pgd_present(*pgd_k))
114		return NULL;
115
116	pud = pud_offset(pgd, address);
117	pud_k = pud_offset(pgd_k, address);
118	if (!pud_present(*pud_k))
119		return NULL;
120
121	pmd = pmd_offset(pud, address);
122	pmd_k = pmd_offset(pud_k, address);
123	if (!pmd_present(*pmd_k))
124		return NULL;
125	if (!pmd_present(*pmd)) {
126		set_pmd(pmd, *pmd_k);
127		arch_flush_lazy_mmu_mode();
128	} else
129		BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
130	return pmd_k;
131}
132
133/*
134 * Handle a fault on the vmalloc or module mapping area
135 */
136static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
137{
138	pmd_t *pmd_k;
139	pte_t *pte_k;
140
141	/* Make sure we are in vmalloc area */
142	if (!(address >= VMALLOC_START && address < VMALLOC_END))
143		return -1;
144
145	/*
146	 * Synchronize this task's top level page-table
147	 * with the 'reference' page table.
148	 */
149	pmd_k = vmalloc_sync_one(pgd, address);
150	if (!pmd_k)
151		return -1;
152	if (pmd_huge(*pmd_k))
153		return 0;   /* support TILE huge_vmap() API */
154	pte_k = pte_offset_kernel(pmd_k, address);
155	if (!pte_present(*pte_k))
156		return -1;
157	return 0;
158}
159
160/* Wait until this PTE has completed migration. */
161static void wait_for_migration(pte_t *pte)
162{
163	if (pte_migrating(*pte)) {
164		/*
165		 * Wait until the migrater fixes up this pte.
166		 * We scale the loop count by the clock rate so we'll wait for
167		 * a few seconds here.
168		 */
169		int retries = 0;
170		int bound = get_clock_rate();
171		while (pte_migrating(*pte)) {
172			barrier();
173			if (++retries > bound)
174				panic("Hit migrating PTE (%#llx) and"
175				      " page PFN %#lx still migrating",
176				      pte->val, pte_pfn(*pte));
177		}
178	}
179}
180
181/*
182 * It's not generally safe to use "current" to get the page table pointer,
183 * since we might be running an oprofile interrupt in the middle of a
184 * task switch.
185 */
186static pgd_t *get_current_pgd(void)
187{
188	HV_Context ctx = hv_inquire_context();
189	unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
190	struct page *pgd_page = pfn_to_page(pgd_pfn);
191	BUG_ON(PageHighMem(pgd_page));   /* oops, HIGHPTE? */
192	return (pgd_t *) __va(ctx.page_table);
193}
194
195/*
196 * We can receive a page fault from a migrating PTE at any time.
197 * Handle it by just waiting until the fault resolves.
198 *
199 * It's also possible to get a migrating kernel PTE that resolves
200 * itself during the downcall from hypervisor to Linux.  We just check
201 * here to see if the PTE seems valid, and if so we retry it.
202 *
203 * NOTE! We MUST NOT take any locks for this case.  We may be in an
204 * interrupt or a critical region, and must do as little as possible.
205 * Similarly, we can't use atomic ops here, since we may be handling a
206 * fault caused by an atomic op access.
207 */
208static int handle_migrating_pte(pgd_t *pgd, int fault_num,
209				unsigned long address,
210				int is_kernel_mode, int write)
211{
212	pud_t *pud;
213	pmd_t *pmd;
214	pte_t *pte;
215	pte_t pteval;
216
217	if (pgd_addr_invalid(address))
218		return 0;
219
220	pgd += pgd_index(address);
221	pud = pud_offset(pgd, address);
222	if (!pud || !pud_present(*pud))
223		return 0;
224	pmd = pmd_offset(pud, address);
225	if (!pmd || !pmd_present(*pmd))
226		return 0;
227	pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
228		pte_offset_kernel(pmd, address);
229	pteval = *pte;
230	if (pte_migrating(pteval)) {
231		wait_for_migration(pte);
232		return 1;
233	}
234
235	if (!is_kernel_mode || !pte_present(pteval))
236		return 0;
237	if (fault_num == INT_ITLB_MISS) {
238		if (pte_exec(pteval))
239			return 1;
240	} else if (write) {
241		if (pte_write(pteval))
242			return 1;
243	} else {
244		if (pte_read(pteval))
245			return 1;
246	}
247
248	return 0;
249}
250
251/*
252 * This routine is responsible for faulting in user pages.
253 * It passes the work off to one of the appropriate routines.
254 * It returns true if the fault was successfully handled.
255 */
256static int handle_page_fault(struct pt_regs *regs,
257			     int fault_num,
258			     int is_page_fault,
259			     unsigned long address,
260			     int write)
261{
262	struct task_struct *tsk;
263	struct mm_struct *mm;
264	struct vm_area_struct *vma;
265	unsigned long stack_offset;
266	int fault;
267	int si_code;
268	int is_kernel_mode;
269	pgd_t *pgd;
270
271	/* on TILE, protection faults are always writes */
272	if (!is_page_fault)
273		write = 1;
274
275	is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
276
277	tsk = validate_current();
278
279	/*
280	 * Check to see if we might be overwriting the stack, and bail
281	 * out if so.  The page fault code is a relatively likely
282	 * place to get trapped in an infinite regress, and once we
283	 * overwrite the whole stack, it becomes very hard to recover.
284	 */
285	stack_offset = stack_pointer & (THREAD_SIZE-1);
286	if (stack_offset < THREAD_SIZE / 8) {
287		pr_alert("Potential stack overrun: sp %#lx\n",
288		       stack_pointer);
289		show_regs(regs);
290		pr_alert("Killing current process %d/%s\n",
291		       tsk->pid, tsk->comm);
292		do_group_exit(SIGKILL);
293	}
294
295	/*
296	 * Early on, we need to check for migrating PTE entries;
297	 * see homecache.c.  If we find a migrating PTE, we wait until
298	 * the backing page claims to be done migrating, then we proceed.
299	 * For kernel PTEs, we rewrite the PTE and return and retry.
300	 * Otherwise, we treat the fault like a normal "no PTE" fault,
301	 * rather than trying to patch up the existing PTE.
302	 */
303	pgd = get_current_pgd();
304	if (handle_migrating_pte(pgd, fault_num, address,
305				 is_kernel_mode, write))
306		return 1;
307
308	si_code = SEGV_MAPERR;
309
310	/*
311	 * We fault-in kernel-space virtual memory on-demand. The
312	 * 'reference' page table is init_mm.pgd.
313	 *
314	 * NOTE! We MUST NOT take any locks for this case. We may
315	 * be in an interrupt or a critical region, and should
316	 * only copy the information from the master page table,
317	 * nothing more.
318	 *
319	 * This verifies that the fault happens in kernel space
320	 * and that the fault was not a protection fault.
321	 */
322	if (unlikely(address >= TASK_SIZE &&
323		     !is_arch_mappable_range(address, 0))) {
324		if (is_kernel_mode && is_page_fault &&
325		    vmalloc_fault(pgd, address) >= 0)
326			return 1;
327		/*
328		 * Don't take the mm semaphore here. If we fixup a prefetch
329		 * fault we could otherwise deadlock.
330		 */
331		mm = NULL;  /* happy compiler */
332		vma = NULL;
333		goto bad_area_nosemaphore;
334	}
335
336	/*
337	 * If we're trying to touch user-space addresses, we must
338	 * be either at PL0, or else with interrupts enabled in the
339	 * kernel, so either way we can re-enable interrupts here.
340	 */
341	local_irq_enable();
342
343	mm = tsk->mm;
344
345	/*
346	 * If we're in an interrupt, have no user context or are running in an
347	 * atomic region then we must not take the fault.
348	 */
349	if (in_atomic() || !mm) {
350		vma = NULL;  /* happy compiler */
351		goto bad_area_nosemaphore;
352	}
353
354	/*
355	 * When running in the kernel we expect faults to occur only to
356	 * addresses in user space.  All other faults represent errors in the
357	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
358	 * erroneous fault occurring in a code path which already holds mmap_sem
359	 * we will deadlock attempting to validate the fault against the
360	 * address space.  Luckily the kernel only validly references user
361	 * space from well defined areas of code, which are listed in the
362	 * exceptions table.
363	 *
364	 * As the vast majority of faults will be valid we will only perform
365	 * the source reference check when there is a possibility of a deadlock.
366	 * Attempt to lock the address space, if we cannot we then validate the
367	 * source.  If this is invalid we can skip the address space check,
368	 * thus avoiding the deadlock.
369	 */
370	if (!down_read_trylock(&mm->mmap_sem)) {
371		if (is_kernel_mode &&
372		    !search_exception_tables(regs->pc)) {
373			vma = NULL;  /* happy compiler */
374			goto bad_area_nosemaphore;
375		}
376		down_read(&mm->mmap_sem);
377	}
378
379	vma = find_vma(mm, address);
380	if (!vma)
381		goto bad_area;
382	if (vma->vm_start <= address)
383		goto good_area;
384	if (!(vma->vm_flags & VM_GROWSDOWN))
385		goto bad_area;
386	if (regs->sp < PAGE_OFFSET) {
387		/*
388		 * accessing the stack below sp is always a bug.
389		 */
390		if (address < regs->sp)
391			goto bad_area;
392	}
393	if (expand_stack(vma, address))
394		goto bad_area;
395
396/*
397 * Ok, we have a good vm_area for this memory access, so
398 * we can handle it..
399 */
400good_area:
401	si_code = SEGV_ACCERR;
402	if (fault_num == INT_ITLB_MISS) {
403		if (!(vma->vm_flags & VM_EXEC))
404			goto bad_area;
405	} else if (write) {
406#ifdef TEST_VERIFY_AREA
407		if (!is_page_fault && regs->cs == KERNEL_CS)
408			pr_err("WP fault at "REGFMT"\n", regs->eip);
409#endif
410		if (!(vma->vm_flags & VM_WRITE))
411			goto bad_area;
412	} else {
413		if (!is_page_fault || !(vma->vm_flags & VM_READ))
414			goto bad_area;
415	}
416
417 survive:
418	/*
419	 * If for any reason at all we couldn't handle the fault,
420	 * make sure we exit gracefully rather than endlessly redo
421	 * the fault.
422	 */
423	fault = handle_mm_fault(mm, vma, address, write);
424	if (unlikely(fault & VM_FAULT_ERROR)) {
425		if (fault & VM_FAULT_OOM)
426			goto out_of_memory;
427		else if (fault & VM_FAULT_SIGBUS)
428			goto do_sigbus;
429		BUG();
430	}
431	if (fault & VM_FAULT_MAJOR)
432		tsk->maj_flt++;
433	else
434		tsk->min_flt++;
435
436#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
437	/*
438	 * If this was an asynchronous fault,
439	 * restart the appropriate engine.
440	 */
441	switch (fault_num) {
442#if CHIP_HAS_TILE_DMA()
443	case INT_DMATLB_MISS:
444	case INT_DMATLB_MISS_DWNCL:
445	case INT_DMATLB_ACCESS:
446	case INT_DMATLB_ACCESS_DWNCL:
447		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
448		break;
449#endif
450#if CHIP_HAS_SN_PROC()
451	case INT_SNITLB_MISS:
452	case INT_SNITLB_MISS_DWNCL:
453		__insn_mtspr(SPR_SNCTL,
454			     __insn_mfspr(SPR_SNCTL) &
455			     ~SPR_SNCTL__FRZPROC_MASK);
456		break;
457#endif
458	}
459#endif
460
461	up_read(&mm->mmap_sem);
462	return 1;
463
464/*
465 * Something tried to access memory that isn't in our memory map..
466 * Fix it, but check if it's kernel or user first..
467 */
468bad_area:
469	up_read(&mm->mmap_sem);
470
471bad_area_nosemaphore:
472	/* User mode accesses just cause a SIGSEGV */
473	if (!is_kernel_mode) {
474		/*
475		 * It's possible to have interrupts off here.
476		 */
477		local_irq_enable();
478
479		force_sig_info_fault("segfault", SIGSEGV, si_code, address,
480				     fault_num, tsk, regs);
481		return 0;
482	}
483
484no_context:
485	/* Are we prepared to handle this kernel fault?  */
486	if (fixup_exception(regs))
487		return 0;
488
489/*
490 * Oops. The kernel tried to access some bad page. We'll have to
491 * terminate things with extreme prejudice.
492 */
493
494	bust_spinlocks(1);
495
496	/* FIXME: no lookup_address() yet */
497#ifdef SUPPORT_LOOKUP_ADDRESS
498	if (fault_num == INT_ITLB_MISS) {
499		pte_t *pte = lookup_address(address);
500
501		if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
502			pr_crit("kernel tried to execute"
503			       " non-executable page - exploit attempt?"
504			       " (uid: %d)\n", current->uid);
505	}
506#endif
507	if (address < PAGE_SIZE)
508		pr_alert("Unable to handle kernel NULL pointer dereference\n");
509	else
510		pr_alert("Unable to handle kernel paging request\n");
511	pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
512		 address, regs->pc);
513
514	show_regs(regs);
515
516	if (unlikely(tsk->pid < 2)) {
517		panic("Kernel page fault running %s!",
518		      tsk->pid ? "init" : "the idle task");
519	}
520
521	/*
522	 * More FIXME: we should probably copy the i386 here and
523	 * implement a generic die() routine.  Not today.
524	 */
525#ifdef SUPPORT_DIE
526	die("Oops", regs);
527#endif
528	bust_spinlocks(1);
529
530	do_group_exit(SIGKILL);
531
532/*
533 * We ran out of memory, or some other thing happened to us that made
534 * us unable to handle the page fault gracefully.
535 */
536out_of_memory:
537	up_read(&mm->mmap_sem);
538	if (is_global_init(tsk)) {
539		yield();
540		down_read(&mm->mmap_sem);
541		goto survive;
542	}
543	pr_alert("VM: killing process %s\n", tsk->comm);
544	if (!is_kernel_mode)
545		do_group_exit(SIGKILL);
546	goto no_context;
547
548do_sigbus:
549	up_read(&mm->mmap_sem);
550
551	/* Kernel mode? Handle exceptions or die */
552	if (is_kernel_mode)
553		goto no_context;
554
555	force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
556			     fault_num, tsk, regs);
557	return 0;
558}
559
560#ifndef __tilegx__
561
562/* We must release ICS before panicking or we won't get anywhere. */
563#define ics_panic(fmt, ...) do { \
564	__insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
565	panic(fmt, __VA_ARGS__); \
566} while (0)
567
568/*
569 * When we take an ITLB or DTLB fault or access violation in the
570 * supervisor while the critical section bit is set, the hypervisor is
571 * reluctant to write new values into the EX_CONTEXT_K_x registers,
572 * since that might indicate we have not yet squirreled the SPR
573 * contents away and can thus safely take a recursive interrupt.
574 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
575 *
576 * Note that this routine is called before homecache_tlb_defer_enter(),
577 * which means that we can properly unlock any atomics that might
578 * be used there (good), but also means we must be very sensitive
579 * to not touch any data structures that might be located in memory
580 * that could migrate, as we could be entering the kernel on a dataplane
581 * cpu that has been deferring kernel TLB updates.  This means, for
582 * example, that we can't migrate init_mm or its pgd.
583 */
584struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
585				      unsigned long address,
586				      unsigned long info)
587{
588	unsigned long pc = info & ~1;
589	int write = info & 1;
590	pgd_t *pgd = get_current_pgd();
591
592	/* Retval is 1 at first since we will handle the fault fully. */
593	struct intvec_state state = {
594		do_page_fault, fault_num, address, write, 1
595	};
596
597	/* Validate that we are plausibly in the right routine. */
598	if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
599	    (fault_num != INT_DTLB_MISS &&
600	     fault_num != INT_DTLB_ACCESS)) {
601		unsigned long old_pc = regs->pc;
602		regs->pc = pc;
603		ics_panic("Bad ICS page fault args:"
604			  " old PC %#lx, fault %d/%d at %#lx\n",
605			  old_pc, fault_num, write, address);
606	}
607
608	/* We might be faulting on a vmalloc page, so check that first. */
609	if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
610		return state;
611
612	/*
613	 * If we faulted with ICS set in sys_cmpxchg, we are providing
614	 * a user syscall service that should generate a signal on
615	 * fault.  We didn't set up a kernel stack on initial entry to
616	 * sys_cmpxchg, but instead had one set up by the fault, which
617	 * (because sys_cmpxchg never releases ICS) came to us via the
618	 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
619	 * still referencing the original user code.  We release the
620	 * atomic lock and rewrite pt_regs so that it appears that we
621	 * came from user-space directly, and after we finish the
622	 * fault we'll go back to user space and re-issue the swint.
623	 * This way the backtrace information is correct if we need to
624	 * emit a stack dump at any point while handling this.
625	 *
626	 * Must match register use in sys_cmpxchg().
627	 */
628	if (pc >= (unsigned long) sys_cmpxchg &&
629	    pc < (unsigned long) __sys_cmpxchg_end) {
630#ifdef CONFIG_SMP
631		/* Don't unlock before we could have locked. */
632		if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
633			int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
634			__atomic_fault_unlock(lock_ptr);
635		}
636#endif
637		regs->sp = regs->regs[27];
638	}
639
640	/*
641	 * We can also fault in the atomic assembly, in which
642	 * case we use the exception table to do the first-level fixup.
643	 * We may re-fixup again in the real fault handler if it
644	 * turns out the faulting address is just bad, and not,
645	 * for example, migrating.
646	 */
647	else if (pc >= (unsigned long) __start_atomic_asm_code &&
648		   pc < (unsigned long) __end_atomic_asm_code) {
649		const struct exception_table_entry *fixup;
650#ifdef CONFIG_SMP
651		/* Unlock the atomic lock. */
652		int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
653		__atomic_fault_unlock(lock_ptr);
654#endif
655		fixup = search_exception_tables(pc);
656		if (!fixup)
657			ics_panic("ICS atomic fault not in table:"
658				  " PC %#lx, fault %d", pc, fault_num);
659		regs->pc = fixup->fixup;
660		regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
661	}
662
663	/*
664	 * Now that we have released the atomic lock (if necessary),
665	 * it's safe to spin if the PTE that caused the fault was migrating.
666	 */
667	if (fault_num == INT_DTLB_ACCESS)
668		write = 1;
669	if (handle_migrating_pte(pgd, fault_num, address, 1, write))
670		return state;
671
672	/* Return zero so that we continue on with normal fault handling. */
673	state.retval = 0;
674	return state;
675}
676
677#endif /* !__tilegx__ */
678
679/*
680 * This routine handles page faults.  It determines the address, and the
681 * problem, and then passes it handle_page_fault() for normal DTLB and
682 * ITLB issues, and for DMA or SN processor faults when we are in user
683 * space.  For the latter, if we're in kernel mode, we just save the
684 * interrupt away appropriately and return immediately.  We can't do
685 * page faults for user code while in kernel mode.
686 */
687void do_page_fault(struct pt_regs *regs, int fault_num,
688		   unsigned long address, unsigned long write)
689{
690	int is_page_fault;
691
692	/* This case should have been handled by do_page_fault_ics(). */
693	BUG_ON(write & ~1);
694
695#if CHIP_HAS_TILE_DMA()
696	/*
697	 * If it's a DMA fault, suspend the transfer while we're
698	 * handling the miss; we'll restart after it's handled.  If we
699	 * don't suspend, it's possible that this process could swap
700	 * out and back in, and restart the engine since the DMA is
701	 * still 'running'.
702	 */
703	if (fault_num == INT_DMATLB_MISS ||
704	    fault_num == INT_DMATLB_ACCESS ||
705	    fault_num == INT_DMATLB_MISS_DWNCL ||
706	    fault_num == INT_DMATLB_ACCESS_DWNCL) {
707		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
708		while (__insn_mfspr(SPR_DMA_USER_STATUS) &
709		       SPR_DMA_STATUS__BUSY_MASK)
710			;
711	}
712#endif
713
714	/* Validate fault num and decide if this is a first-time page fault. */
715	switch (fault_num) {
716	case INT_ITLB_MISS:
717	case INT_DTLB_MISS:
718#if CHIP_HAS_TILE_DMA()
719	case INT_DMATLB_MISS:
720	case INT_DMATLB_MISS_DWNCL:
721#endif
722#if CHIP_HAS_SN_PROC()
723	case INT_SNITLB_MISS:
724	case INT_SNITLB_MISS_DWNCL:
725#endif
726		is_page_fault = 1;
727		break;
728
729	case INT_DTLB_ACCESS:
730#if CHIP_HAS_TILE_DMA()
731	case INT_DMATLB_ACCESS:
732	case INT_DMATLB_ACCESS_DWNCL:
733#endif
734		is_page_fault = 0;
735		break;
736
737	default:
738		panic("Bad fault number %d in do_page_fault", fault_num);
739	}
740
741#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
742	if (EX1_PL(regs->ex1) != USER_PL) {
743		struct async_tlb *async;
744		switch (fault_num) {
745#if CHIP_HAS_TILE_DMA()
746		case INT_DMATLB_MISS:
747		case INT_DMATLB_ACCESS:
748		case INT_DMATLB_MISS_DWNCL:
749		case INT_DMATLB_ACCESS_DWNCL:
750			async = &current->thread.dma_async_tlb;
751			break;
752#endif
753#if CHIP_HAS_SN_PROC()
754		case INT_SNITLB_MISS:
755		case INT_SNITLB_MISS_DWNCL:
756			async = &current->thread.sn_async_tlb;
757			break;
758#endif
759		default:
760			async = NULL;
761		}
762		if (async) {
763
764			/*
765			 * No vmalloc check required, so we can allow
766			 * interrupts immediately at this point.
767			 */
768			local_irq_enable();
769
770			set_thread_flag(TIF_ASYNC_TLB);
771			if (async->fault_num != 0) {
772				panic("Second async fault %d;"
773				      " old fault was %d (%#lx/%ld)",
774				      fault_num, async->fault_num,
775				      address, write);
776			}
777			BUG_ON(fault_num == 0);
778			async->fault_num = fault_num;
779			async->is_fault = is_page_fault;
780			async->is_write = write;
781			async->address = address;
782			return;
783		}
784	}
785#endif
786
787	handle_page_fault(regs, fault_num, is_page_fault, address, write);
788}
789
790
791#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
792/*
793 * Check an async_tlb structure to see if a deferred fault is waiting,
794 * and if so pass it to the page-fault code.
795 */
796static void handle_async_page_fault(struct pt_regs *regs,
797				    struct async_tlb *async)
798{
799	if (async->fault_num) {
800		/*
801		 * Clear async->fault_num before calling the page-fault
802		 * handler so that if we re-interrupt before returning
803		 * from the function we have somewhere to put the
804		 * information from the new interrupt.
805		 */
806		int fault_num = async->fault_num;
807		async->fault_num = 0;
808		handle_page_fault(regs, fault_num, async->is_fault,
809				  async->address, async->is_write);
810	}
811}
812
813/*
814 * This routine effectively re-issues asynchronous page faults
815 * when we are returning to user space.
816 */
817void do_async_page_fault(struct pt_regs *regs)
818{
819	/*
820	 * Clear thread flag early.  If we re-interrupt while processing
821	 * code here, we will reset it and recall this routine before
822	 * returning to user space.
823	 */
824	clear_thread_flag(TIF_ASYNC_TLB);
825
826#if CHIP_HAS_TILE_DMA()
827	handle_async_page_fault(regs, &current->thread.dma_async_tlb);
828#endif
829#if CHIP_HAS_SN_PROC()
830	handle_async_page_fault(regs, &current->thread.sn_async_tlb);
831#endif
832}
833#endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
834
835
836void vmalloc_sync_all(void)
837{
838#ifdef __tilegx__
839	/* Currently all L1 kernel pmd's are static and shared. */
840	BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
841#else
842	/*
843	 * Note that races in the updates of insync and start aren't
844	 * problematic: insync can only get set bits added, and updates to
845	 * start are only improving performance (without affecting correctness
846	 * if undone).
847	 */
848	static DECLARE_BITMAP(insync, PTRS_PER_PGD);
849	static unsigned long start = PAGE_OFFSET;
850	unsigned long address;
851
852	BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
853	for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
854		if (!test_bit(pgd_index(address), insync)) {
855			unsigned long flags;
856			struct list_head *pos;
857
858			spin_lock_irqsave(&pgd_lock, flags);
859			list_for_each(pos, &pgd_list)
860				if (!vmalloc_sync_one(list_to_pgd(pos),
861								address)) {
862					/* Must be at first entry in list. */
863					BUG_ON(pos != pgd_list.next);
864					break;
865				}
866			spin_unlock_irqrestore(&pgd_lock, flags);
867			if (pos != pgd_list.next)
868				set_bit(pgd_index(address), insync);
869		}
870		if (address == start && test_bit(pgd_index(address), insync))
871			start = address + PGDIR_SIZE;
872	}
873#endif
874}