Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_IA64_PROCESSOR_H
  3#define _ASM_IA64_PROCESSOR_H
  4
  5/*
  6 * Copyright (C) 1998-2004 Hewlett-Packard Co
  7 *	David Mosberger-Tang <davidm@hpl.hp.com>
  8 *	Stephane Eranian <eranian@hpl.hp.com>
  9 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
 10 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
 11 *
 12 * 11/24/98	S.Eranian	added ia64_set_iva()
 13 * 12/03/99	D. Mosberger	implement thread_saved_pc() via kernel unwind API
 14 * 06/16/00	A. Mallick	added csd/ssd/tssd for ia32 support
 15 */
 16
 17
 18#include <asm/intrinsics.h>
 19#include <asm/kregs.h>
 20#include <asm/ptrace.h>
 21#include <asm/ustack.h>
 22
 23#define IA64_NUM_PHYS_STACK_REG	96
 24#define IA64_NUM_DBG_REGS	8
 25
 26#define DEFAULT_MAP_BASE	__IA64_UL_CONST(0x2000000000000000)
 27#define DEFAULT_TASK_SIZE	__IA64_UL_CONST(0xa000000000000000)
 28
 29/*
 30 * TASK_SIZE really is a mis-named.  It really is the maximum user
 31 * space address (plus one).  On IA-64, there are five regions of 2TB
 32 * each (assuming 8KB page size), for a total of 8TB of user virtual
 33 * address space.
 34 */
 35#define TASK_SIZE       	DEFAULT_TASK_SIZE
 
 36
 37/*
 38 * This decides where the kernel will search for a free chunk of vm
 39 * space during mmap's.
 40 */
 41#define TASK_UNMAPPED_BASE	(current->thread.map_base)
 42
 43#define IA64_THREAD_FPH_VALID	(__IA64_UL(1) << 0)	/* floating-point high state valid? */
 44#define IA64_THREAD_DBG_VALID	(__IA64_UL(1) << 1)	/* debug registers valid? */
 45#define IA64_THREAD_PM_VALID	(__IA64_UL(1) << 2)	/* performance registers valid? */
 46#define IA64_THREAD_UAC_NOPRINT	(__IA64_UL(1) << 3)	/* don't log unaligned accesses */
 47#define IA64_THREAD_UAC_SIGBUS	(__IA64_UL(1) << 4)	/* generate SIGBUS on unaligned acc. */
 48#define IA64_THREAD_MIGRATION	(__IA64_UL(1) << 5)	/* require migration
 49							   sync at ctx sw */
 50#define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6)	/* don't log any fpswa faults */
 51#define IA64_THREAD_FPEMU_SIGFPE  (__IA64_UL(1) << 7)	/* send a SIGFPE for fpswa faults */
 52
 53#define IA64_THREAD_UAC_SHIFT	3
 54#define IA64_THREAD_UAC_MASK	(IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
 55#define IA64_THREAD_FPEMU_SHIFT	6
 56#define IA64_THREAD_FPEMU_MASK	(IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
 57
 58
 59/*
 60 * This shift should be large enough to be able to represent 1000000000/itc_freq with good
 61 * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
 62 * (this will give enough slack to represent 10 seconds worth of time as a scaled number).
 63 */
 64#define IA64_NSEC_PER_CYC_SHIFT	30
 65
 66#ifndef __ASSEMBLY__
 67
 68#include <linux/cache.h>
 69#include <linux/compiler.h>
 70#include <linux/threads.h>
 71#include <linux/types.h>
 72#include <linux/bitops.h>
 73
 74#include <asm/fpu.h>
 75#include <asm/page.h>
 76#include <asm/percpu.h>
 77#include <asm/rse.h>
 78#include <asm/unwind.h>
 79#include <linux/atomic.h>
 80#ifdef CONFIG_NUMA
 81#include <asm/nodedata.h>
 82#endif
 83
 84/* like above but expressed as bitfields for more efficient access: */
 85struct ia64_psr {
 86	__u64 reserved0 : 1;
 87	__u64 be : 1;
 88	__u64 up : 1;
 89	__u64 ac : 1;
 90	__u64 mfl : 1;
 91	__u64 mfh : 1;
 92	__u64 reserved1 : 7;
 93	__u64 ic : 1;
 94	__u64 i : 1;
 95	__u64 pk : 1;
 96	__u64 reserved2 : 1;
 97	__u64 dt : 1;
 98	__u64 dfl : 1;
 99	__u64 dfh : 1;
100	__u64 sp : 1;
101	__u64 pp : 1;
102	__u64 di : 1;
103	__u64 si : 1;
104	__u64 db : 1;
105	__u64 lp : 1;
106	__u64 tb : 1;
107	__u64 rt : 1;
108	__u64 reserved3 : 4;
109	__u64 cpl : 2;
110	__u64 is : 1;
111	__u64 mc : 1;
112	__u64 it : 1;
113	__u64 id : 1;
114	__u64 da : 1;
115	__u64 dd : 1;
116	__u64 ss : 1;
117	__u64 ri : 2;
118	__u64 ed : 1;
119	__u64 bn : 1;
120	__u64 reserved4 : 19;
121};
122
123union ia64_isr {
124	__u64  val;
125	struct {
126		__u64 code : 16;
127		__u64 vector : 8;
128		__u64 reserved1 : 8;
129		__u64 x : 1;
130		__u64 w : 1;
131		__u64 r : 1;
132		__u64 na : 1;
133		__u64 sp : 1;
134		__u64 rs : 1;
135		__u64 ir : 1;
136		__u64 ni : 1;
137		__u64 so : 1;
138		__u64 ei : 2;
139		__u64 ed : 1;
140		__u64 reserved2 : 20;
141	};
142};
143
144union ia64_lid {
145	__u64 val;
146	struct {
147		__u64  rv  : 16;
148		__u64  eid : 8;
149		__u64  id  : 8;
150		__u64  ig  : 32;
151	};
152};
153
154union ia64_tpr {
155	__u64 val;
156	struct {
157		__u64 ig0 : 4;
158		__u64 mic : 4;
159		__u64 rsv : 8;
160		__u64 mmi : 1;
161		__u64 ig1 : 47;
162	};
163};
164
165union ia64_itir {
166	__u64 val;
167	struct {
168		__u64 rv3  :  2; /* 0-1 */
169		__u64 ps   :  6; /* 2-7 */
170		__u64 key  : 24; /* 8-31 */
171		__u64 rv4  : 32; /* 32-63 */
172	};
173};
174
175union  ia64_rr {
176	__u64 val;
177	struct {
178		__u64  ve	:  1;  /* enable hw walker */
179		__u64  reserved0:  1;  /* reserved */
180		__u64  ps	:  6;  /* log page size */
181		__u64  rid	: 24;  /* region id */
182		__u64  reserved1: 32;  /* reserved */
183	};
184};
185
186/*
187 * CPU type, hardware bug flags, and per-CPU state.  Frequently used
188 * state comes earlier:
189 */
190struct cpuinfo_ia64 {
191	unsigned int softirq_pending;
192	unsigned long itm_delta;	/* # of clock cycles between clock ticks */
193	unsigned long itm_next;		/* interval timer mask value to use for next clock tick */
194	unsigned long nsec_per_cyc;	/* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
195	unsigned long unimpl_va_mask;	/* mask of unimplemented virtual address bits (from PAL) */
196	unsigned long unimpl_pa_mask;	/* mask of unimplemented physical address bits (from PAL) */
197	unsigned long itc_freq;		/* frequency of ITC counter */
198	unsigned long proc_freq;	/* frequency of processor */
199	unsigned long cyc_per_usec;	/* itc_freq/1000000 */
200	unsigned long ptce_base;
201	unsigned int ptce_count[2];
202	unsigned int ptce_stride[2];
203	struct task_struct *ksoftirqd;	/* kernel softirq daemon for this CPU */
204
205#ifdef CONFIG_SMP
206	unsigned long loops_per_jiffy;
207	int cpu;
208	unsigned int socket_id;	/* physical processor socket id */
209	unsigned short core_id;	/* core id */
210	unsigned short thread_id; /* thread id */
211	unsigned short num_log;	/* Total number of logical processors on
212				 * this socket that were successfully booted */
213	unsigned char cores_per_socket;	/* Cores per processor socket */
214	unsigned char threads_per_core;	/* Threads per core */
215#endif
216
217	/* CPUID-derived information: */
218	unsigned long ppn;
219	unsigned long features;
220	unsigned char number;
221	unsigned char revision;
222	unsigned char model;
223	unsigned char family;
224	unsigned char archrev;
225	char vendor[16];
226	char *model_name;
227
228#ifdef CONFIG_NUMA
229	struct ia64_node_data *node_data;
230#endif
231};
232
233DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
234
235/*
236 * The "local" data variable.  It refers to the per-CPU data of the currently executing
237 * CPU, much like "current" points to the per-task data of the currently executing task.
238 * Do not use the address of local_cpu_data, since it will be different from
239 * cpu_data(smp_processor_id())!
240 */
241#define local_cpu_data		(&__ia64_per_cpu_var(ia64_cpu_info))
242#define cpu_data(cpu)		(&per_cpu(ia64_cpu_info, cpu))
243
244extern void print_cpu_info (struct cpuinfo_ia64 *);
245
246typedef struct {
247	unsigned long seg;
248} mm_segment_t;
249
250#define SET_UNALIGN_CTL(task,value)								\
251({												\
252	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK)			\
253				| (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK));	\
254	0;											\
255})
256#define GET_UNALIGN_CTL(task,addr)								\
257({												\
258	put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT,	\
259		 (int __user *) (addr));							\
260})
261
262#define SET_FPEMU_CTL(task,value)								\
263({												\
264	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK)		\
265			  | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK));	\
266	0;											\
267})
268#define GET_FPEMU_CTL(task,addr)								\
269({												\
270	put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT,	\
271		 (int __user *) (addr));							\
272})
273
274struct thread_struct {
275	__u32 flags;			/* various thread flags (see IA64_THREAD_*) */
276	/* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
277	__u8 on_ustack;			/* executing on user-stacks? */
278	__u8 pad[3];
279	__u64 ksp;			/* kernel stack pointer */
280	__u64 map_base;			/* base address for get_unmapped_area() */
 
281	__u64 rbs_bot;			/* the base address for the RBS */
282	int last_fph_cpu;		/* CPU that may hold the contents of f32-f127 */
283
284#ifdef CONFIG_PERFMON
285	void *pfm_context;		     /* pointer to detailed PMU context */
286	unsigned long pfm_needs_checking;    /* when >0, pending perfmon work on kernel exit */
287# define INIT_THREAD_PM		.pfm_context =		NULL,     \
288				.pfm_needs_checking =	0UL,
289#else
290# define INIT_THREAD_PM
291#endif
292	unsigned long dbr[IA64_NUM_DBG_REGS];
293	unsigned long ibr[IA64_NUM_DBG_REGS];
294	struct ia64_fpreg fph[96];	/* saved/loaded on demand */
295};
296
297#define INIT_THREAD {						\
298	.flags =	0,					\
299	.on_ustack =	0,					\
300	.ksp =		0,					\
301	.map_base =	DEFAULT_MAP_BASE,			\
302	.rbs_bot =	STACK_TOP - DEFAULT_USER_STACK_SIZE,	\
 
303	.last_fph_cpu =  -1,					\
304	INIT_THREAD_PM						\
305	.dbr =		{0, },					\
306	.ibr =		{0, },					\
307	.fph =		{{{{0}}}, }				\
308}
309
310#define start_thread(regs,new_ip,new_sp) do {							\
 
311	regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL))		\
312			 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS));		\
313	regs->cr_iip = new_ip;									\
314	regs->ar_rsc = 0xf;		/* eager mode, privilege level 3 */			\
315	regs->ar_rnat = 0;									\
316	regs->ar_bspstore = current->thread.rbs_bot;						\
317	regs->ar_fpsr = FPSR_DEFAULT;								\
318	regs->loadrs = 0;									\
319	regs->r8 = get_dumpable(current->mm);	/* set "don't zap registers" flag */		\
320	regs->r12 = new_sp - 16;	/* allocate 16 byte scratch area */			\
321	if (unlikely(get_dumpable(current->mm) != SUID_DUMP_USER)) {	\
322		/*										\
323		 * Zap scratch regs to avoid leaking bits between processes with different	\
324		 * uid/privileges.								\
325		 */										\
326		regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0;					\
327		regs->r1 = 0; regs->r9  = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0;	\
328	}											\
329} while (0)
330
331/* Forward declarations, a strange C thing... */
332struct mm_struct;
333struct task_struct;
334
335/*
336 * Free all resources held by a thread. This is called after the
337 * parent of DEAD_TASK has collected the exit status of the task via
338 * wait().
339 */
340#define release_thread(dead_task)
341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342/* Get wait channel for task P.  */
343extern unsigned long get_wchan (struct task_struct *p);
344
345/* Return instruction pointer of blocked task TSK.  */
346#define KSTK_EIP(tsk)					\
347  ({							\
348	struct pt_regs *_regs = task_pt_regs(tsk);	\
349	_regs->cr_iip + ia64_psr(_regs)->ri;		\
350  })
351
352/* Return stack pointer of blocked task TSK.  */
353#define KSTK_ESP(tsk)  ((tsk)->thread.ksp)
354
355extern void ia64_getreg_unknown_kr (void);
356extern void ia64_setreg_unknown_kr (void);
357
358#define ia64_get_kr(regnum)					\
359({								\
360	unsigned long r = 0;					\
361								\
362	switch (regnum) {					\
363	    case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break;	\
364	    case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break;	\
365	    case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break;	\
366	    case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break;	\
367	    case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break;	\
368	    case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break;	\
369	    case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break;	\
370	    case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break;	\
371	    default: ia64_getreg_unknown_kr(); break;		\
372	}							\
373	r;							\
374})
375
376#define ia64_set_kr(regnum, r) 					\
377({								\
378	switch (regnum) {					\
379	    case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break;	\
380	    case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break;	\
381	    case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break;	\
382	    case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break;	\
383	    case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break;	\
384	    case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break;	\
385	    case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break;	\
386	    case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break;	\
387	    default: ia64_setreg_unknown_kr(); break;		\
388	}							\
389})
390
391/*
392 * The following three macros can't be inline functions because we don't have struct
393 * task_struct at this point.
394 */
395
396/*
397 * Return TRUE if task T owns the fph partition of the CPU we're running on.
398 * Must be called from code that has preemption disabled.
399 */
400#define ia64_is_local_fpu_owner(t)								\
401({												\
402	struct task_struct *__ia64_islfo_task = (t);						\
403	(__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id()				\
404	 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER));	\
405})
406
407/*
408 * Mark task T as owning the fph partition of the CPU we're running on.
409 * Must be called from code that has preemption disabled.
410 */
411#define ia64_set_local_fpu_owner(t) do {						\
412	struct task_struct *__ia64_slfo_task = (t);					\
413	__ia64_slfo_task->thread.last_fph_cpu = smp_processor_id();			\
414	ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task);		\
415} while (0)
416
417/* Mark the fph partition of task T as being invalid on all CPUs.  */
418#define ia64_drop_fpu(t)	((t)->thread.last_fph_cpu = -1)
419
420extern void __ia64_init_fpu (void);
421extern void __ia64_save_fpu (struct ia64_fpreg *fph);
422extern void __ia64_load_fpu (struct ia64_fpreg *fph);
423extern void ia64_save_debug_regs (unsigned long *save_area);
424extern void ia64_load_debug_regs (unsigned long *save_area);
425
426#define ia64_fph_enable()	do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
427#define ia64_fph_disable()	do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
428
429/* load fp 0.0 into fph */
430static inline void
431ia64_init_fpu (void) {
432	ia64_fph_enable();
433	__ia64_init_fpu();
434	ia64_fph_disable();
435}
436
437/* save f32-f127 at FPH */
438static inline void
439ia64_save_fpu (struct ia64_fpreg *fph) {
440	ia64_fph_enable();
441	__ia64_save_fpu(fph);
442	ia64_fph_disable();
443}
444
445/* load f32-f127 from FPH */
446static inline void
447ia64_load_fpu (struct ia64_fpreg *fph) {
448	ia64_fph_enable();
449	__ia64_load_fpu(fph);
450	ia64_fph_disable();
451}
452
453static inline __u64
454ia64_clear_ic (void)
455{
456	__u64 psr;
457	psr = ia64_getreg(_IA64_REG_PSR);
458	ia64_stop();
459	ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
460	ia64_srlz_i();
461	return psr;
462}
463
464/*
465 * Restore the psr.
466 */
467static inline void
468ia64_set_psr (__u64 psr)
469{
470	ia64_stop();
471	ia64_setreg(_IA64_REG_PSR_L, psr);
472	ia64_srlz_i();
473}
474
475/*
476 * Insert a translation into an instruction and/or data translation
477 * register.
478 */
479static inline void
480ia64_itr (__u64 target_mask, __u64 tr_num,
481	  __u64 vmaddr, __u64 pte,
482	  __u64 log_page_size)
483{
484	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
485	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
486	ia64_stop();
487	if (target_mask & 0x1)
488		ia64_itri(tr_num, pte);
489	if (target_mask & 0x2)
490		ia64_itrd(tr_num, pte);
491}
492
493/*
494 * Insert a translation into the instruction and/or data translation
495 * cache.
496 */
497static inline void
498ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
499	  __u64 log_page_size)
500{
501	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
502	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
503	ia64_stop();
504	/* as per EAS2.6, itc must be the last instruction in an instruction group */
505	if (target_mask & 0x1)
506		ia64_itci(pte);
507	if (target_mask & 0x2)
508		ia64_itcd(pte);
509}
510
511/*
512 * Purge a range of addresses from instruction and/or data translation
513 * register(s).
514 */
515static inline void
516ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
517{
518	if (target_mask & 0x1)
519		ia64_ptri(vmaddr, (log_size << 2));
520	if (target_mask & 0x2)
521		ia64_ptrd(vmaddr, (log_size << 2));
522}
523
524/* Set the interrupt vector address.  The address must be suitably aligned (32KB).  */
525static inline void
526ia64_set_iva (void *ivt_addr)
527{
528	ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
529	ia64_srlz_i();
530}
531
532/* Set the page table address and control bits.  */
533static inline void
534ia64_set_pta (__u64 pta)
535{
536	/* Note: srlz.i implies srlz.d */
537	ia64_setreg(_IA64_REG_CR_PTA, pta);
538	ia64_srlz_i();
539}
540
541static inline void
542ia64_eoi (void)
543{
544	ia64_setreg(_IA64_REG_CR_EOI, 0);
545	ia64_srlz_d();
546}
547
548#define cpu_relax()	ia64_hint(ia64_hint_pause)
549
550static inline int
551ia64_get_irr(unsigned int vector)
552{
553	unsigned int reg = vector / 64;
554	unsigned int bit = vector % 64;
555	u64 irr;
556
557	switch (reg) {
558	case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
559	case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
560	case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
561	case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
562	}
563
564	return test_bit(bit, &irr);
565}
566
567static inline void
568ia64_set_lrr0 (unsigned long val)
569{
570	ia64_setreg(_IA64_REG_CR_LRR0, val);
571	ia64_srlz_d();
572}
573
574static inline void
575ia64_set_lrr1 (unsigned long val)
576{
577	ia64_setreg(_IA64_REG_CR_LRR1, val);
578	ia64_srlz_d();
579}
580
581
582/*
583 * Given the address to which a spill occurred, return the unat bit
584 * number that corresponds to this address.
585 */
586static inline __u64
587ia64_unat_pos (void *spill_addr)
588{
589	return ((__u64) spill_addr >> 3) & 0x3f;
590}
591
592/*
593 * Set the NaT bit of an integer register which was spilled at address
594 * SPILL_ADDR.  UNAT is the mask to be updated.
595 */
596static inline void
597ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
598{
599	__u64 bit = ia64_unat_pos(spill_addr);
600	__u64 mask = 1UL << bit;
601
602	*unat = (*unat & ~mask) | (nat << bit);
603}
604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
605static inline __u64
606ia64_get_ivr (void)
607{
608	__u64 r;
609	ia64_srlz_d();
610	r = ia64_getreg(_IA64_REG_CR_IVR);
611	ia64_srlz_d();
612	return r;
613}
614
615static inline void
616ia64_set_dbr (__u64 regnum, __u64 value)
617{
618	__ia64_set_dbr(regnum, value);
619#ifdef CONFIG_ITANIUM
620	ia64_srlz_d();
621#endif
622}
623
624static inline __u64
625ia64_get_dbr (__u64 regnum)
626{
627	__u64 retval;
628
629	retval = __ia64_get_dbr(regnum);
630#ifdef CONFIG_ITANIUM
631	ia64_srlz_d();
632#endif
633	return retval;
634}
635
636static inline __u64
637ia64_rotr (__u64 w, __u64 n)
638{
639	return (w >> n) | (w << (64 - n));
640}
641
642#define ia64_rotl(w,n)	ia64_rotr((w), (64) - (n))
643
644/*
645 * Take a mapped kernel address and return the equivalent address
646 * in the region 7 identity mapped virtual area.
647 */
648static inline void *
649ia64_imva (void *addr)
650{
651	void *result;
652	result = (void *) ia64_tpa(addr);
653	return __va(result);
654}
655
656#define ARCH_HAS_PREFETCH
657#define ARCH_HAS_PREFETCHW
658#define ARCH_HAS_SPINLOCK_PREFETCH
659#define PREFETCH_STRIDE			L1_CACHE_BYTES
660
661static inline void
662prefetch (const void *x)
663{
664	 ia64_lfetch(ia64_lfhint_none, x);
665}
666
667static inline void
668prefetchw (const void *x)
669{
670	ia64_lfetch_excl(ia64_lfhint_none, x);
671}
672
673#define spin_lock_prefetch(x)	prefetchw(x)
674
675extern unsigned long boot_option_idle_override;
676
677enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT,
678			 IDLE_NOMWAIT, IDLE_POLL};
679
680void default_idle(void);
681
682#endif /* !__ASSEMBLY__ */
683
684#endif /* _ASM_IA64_PROCESSOR_H */
v3.1
 
  1#ifndef _ASM_IA64_PROCESSOR_H
  2#define _ASM_IA64_PROCESSOR_H
  3
  4/*
  5 * Copyright (C) 1998-2004 Hewlett-Packard Co
  6 *	David Mosberger-Tang <davidm@hpl.hp.com>
  7 *	Stephane Eranian <eranian@hpl.hp.com>
  8 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
  9 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
 10 *
 11 * 11/24/98	S.Eranian	added ia64_set_iva()
 12 * 12/03/99	D. Mosberger	implement thread_saved_pc() via kernel unwind API
 13 * 06/16/00	A. Mallick	added csd/ssd/tssd for ia32 support
 14 */
 15
 16
 17#include <asm/intrinsics.h>
 18#include <asm/kregs.h>
 19#include <asm/ptrace.h>
 20#include <asm/ustack.h>
 21
 22#define IA64_NUM_PHYS_STACK_REG	96
 23#define IA64_NUM_DBG_REGS	8
 24
 25#define DEFAULT_MAP_BASE	__IA64_UL_CONST(0x2000000000000000)
 26#define DEFAULT_TASK_SIZE	__IA64_UL_CONST(0xa000000000000000)
 27
 28/*
 29 * TASK_SIZE really is a mis-named.  It really is the maximum user
 30 * space address (plus one).  On IA-64, there are five regions of 2TB
 31 * each (assuming 8KB page size), for a total of 8TB of user virtual
 32 * address space.
 33 */
 34#define TASK_SIZE_OF(tsk)	((tsk)->thread.task_size)
 35#define TASK_SIZE       	TASK_SIZE_OF(current)
 36
 37/*
 38 * This decides where the kernel will search for a free chunk of vm
 39 * space during mmap's.
 40 */
 41#define TASK_UNMAPPED_BASE	(current->thread.map_base)
 42
 43#define IA64_THREAD_FPH_VALID	(__IA64_UL(1) << 0)	/* floating-point high state valid? */
 44#define IA64_THREAD_DBG_VALID	(__IA64_UL(1) << 1)	/* debug registers valid? */
 45#define IA64_THREAD_PM_VALID	(__IA64_UL(1) << 2)	/* performance registers valid? */
 46#define IA64_THREAD_UAC_NOPRINT	(__IA64_UL(1) << 3)	/* don't log unaligned accesses */
 47#define IA64_THREAD_UAC_SIGBUS	(__IA64_UL(1) << 4)	/* generate SIGBUS on unaligned acc. */
 48#define IA64_THREAD_MIGRATION	(__IA64_UL(1) << 5)	/* require migration
 49							   sync at ctx sw */
 50#define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6)	/* don't log any fpswa faults */
 51#define IA64_THREAD_FPEMU_SIGFPE  (__IA64_UL(1) << 7)	/* send a SIGFPE for fpswa faults */
 52
 53#define IA64_THREAD_UAC_SHIFT	3
 54#define IA64_THREAD_UAC_MASK	(IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
 55#define IA64_THREAD_FPEMU_SHIFT	6
 56#define IA64_THREAD_FPEMU_MASK	(IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
 57
 58
 59/*
 60 * This shift should be large enough to be able to represent 1000000000/itc_freq with good
 61 * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
 62 * (this will give enough slack to represent 10 seconds worth of time as a scaled number).
 63 */
 64#define IA64_NSEC_PER_CYC_SHIFT	30
 65
 66#ifndef __ASSEMBLY__
 67
 68#include <linux/cache.h>
 69#include <linux/compiler.h>
 70#include <linux/threads.h>
 71#include <linux/types.h>
 
 72
 73#include <asm/fpu.h>
 74#include <asm/page.h>
 75#include <asm/percpu.h>
 76#include <asm/rse.h>
 77#include <asm/unwind.h>
 78#include <linux/atomic.h>
 79#ifdef CONFIG_NUMA
 80#include <asm/nodedata.h>
 81#endif
 82
 83/* like above but expressed as bitfields for more efficient access: */
 84struct ia64_psr {
 85	__u64 reserved0 : 1;
 86	__u64 be : 1;
 87	__u64 up : 1;
 88	__u64 ac : 1;
 89	__u64 mfl : 1;
 90	__u64 mfh : 1;
 91	__u64 reserved1 : 7;
 92	__u64 ic : 1;
 93	__u64 i : 1;
 94	__u64 pk : 1;
 95	__u64 reserved2 : 1;
 96	__u64 dt : 1;
 97	__u64 dfl : 1;
 98	__u64 dfh : 1;
 99	__u64 sp : 1;
100	__u64 pp : 1;
101	__u64 di : 1;
102	__u64 si : 1;
103	__u64 db : 1;
104	__u64 lp : 1;
105	__u64 tb : 1;
106	__u64 rt : 1;
107	__u64 reserved3 : 4;
108	__u64 cpl : 2;
109	__u64 is : 1;
110	__u64 mc : 1;
111	__u64 it : 1;
112	__u64 id : 1;
113	__u64 da : 1;
114	__u64 dd : 1;
115	__u64 ss : 1;
116	__u64 ri : 2;
117	__u64 ed : 1;
118	__u64 bn : 1;
119	__u64 reserved4 : 19;
120};
121
122union ia64_isr {
123	__u64  val;
124	struct {
125		__u64 code : 16;
126		__u64 vector : 8;
127		__u64 reserved1 : 8;
128		__u64 x : 1;
129		__u64 w : 1;
130		__u64 r : 1;
131		__u64 na : 1;
132		__u64 sp : 1;
133		__u64 rs : 1;
134		__u64 ir : 1;
135		__u64 ni : 1;
136		__u64 so : 1;
137		__u64 ei : 2;
138		__u64 ed : 1;
139		__u64 reserved2 : 20;
140	};
141};
142
143union ia64_lid {
144	__u64 val;
145	struct {
146		__u64  rv  : 16;
147		__u64  eid : 8;
148		__u64  id  : 8;
149		__u64  ig  : 32;
150	};
151};
152
153union ia64_tpr {
154	__u64 val;
155	struct {
156		__u64 ig0 : 4;
157		__u64 mic : 4;
158		__u64 rsv : 8;
159		__u64 mmi : 1;
160		__u64 ig1 : 47;
161	};
162};
163
164union ia64_itir {
165	__u64 val;
166	struct {
167		__u64 rv3  :  2; /* 0-1 */
168		__u64 ps   :  6; /* 2-7 */
169		__u64 key  : 24; /* 8-31 */
170		__u64 rv4  : 32; /* 32-63 */
171	};
172};
173
174union  ia64_rr {
175	__u64 val;
176	struct {
177		__u64  ve	:  1;  /* enable hw walker */
178		__u64  reserved0:  1;  /* reserved */
179		__u64  ps	:  6;  /* log page size */
180		__u64  rid	: 24;  /* region id */
181		__u64  reserved1: 32;  /* reserved */
182	};
183};
184
185/*
186 * CPU type, hardware bug flags, and per-CPU state.  Frequently used
187 * state comes earlier:
188 */
189struct cpuinfo_ia64 {
190	unsigned int softirq_pending;
191	unsigned long itm_delta;	/* # of clock cycles between clock ticks */
192	unsigned long itm_next;		/* interval timer mask value to use for next clock tick */
193	unsigned long nsec_per_cyc;	/* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
194	unsigned long unimpl_va_mask;	/* mask of unimplemented virtual address bits (from PAL) */
195	unsigned long unimpl_pa_mask;	/* mask of unimplemented physical address bits (from PAL) */
196	unsigned long itc_freq;		/* frequency of ITC counter */
197	unsigned long proc_freq;	/* frequency of processor */
198	unsigned long cyc_per_usec;	/* itc_freq/1000000 */
199	unsigned long ptce_base;
200	unsigned int ptce_count[2];
201	unsigned int ptce_stride[2];
202	struct task_struct *ksoftirqd;	/* kernel softirq daemon for this CPU */
203
204#ifdef CONFIG_SMP
205	unsigned long loops_per_jiffy;
206	int cpu;
207	unsigned int socket_id;	/* physical processor socket id */
208	unsigned short core_id;	/* core id */
209	unsigned short thread_id; /* thread id */
210	unsigned short num_log;	/* Total number of logical processors on
211				 * this socket that were successfully booted */
212	unsigned char cores_per_socket;	/* Cores per processor socket */
213	unsigned char threads_per_core;	/* Threads per core */
214#endif
215
216	/* CPUID-derived information: */
217	unsigned long ppn;
218	unsigned long features;
219	unsigned char number;
220	unsigned char revision;
221	unsigned char model;
222	unsigned char family;
223	unsigned char archrev;
224	char vendor[16];
225	char *model_name;
226
227#ifdef CONFIG_NUMA
228	struct ia64_node_data *node_data;
229#endif
230};
231
232DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
233
234/*
235 * The "local" data variable.  It refers to the per-CPU data of the currently executing
236 * CPU, much like "current" points to the per-task data of the currently executing task.
237 * Do not use the address of local_cpu_data, since it will be different from
238 * cpu_data(smp_processor_id())!
239 */
240#define local_cpu_data		(&__ia64_per_cpu_var(ia64_cpu_info))
241#define cpu_data(cpu)		(&per_cpu(ia64_cpu_info, cpu))
242
243extern void print_cpu_info (struct cpuinfo_ia64 *);
244
245typedef struct {
246	unsigned long seg;
247} mm_segment_t;
248
249#define SET_UNALIGN_CTL(task,value)								\
250({												\
251	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK)			\
252				| (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK));	\
253	0;											\
254})
255#define GET_UNALIGN_CTL(task,addr)								\
256({												\
257	put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT,	\
258		 (int __user *) (addr));							\
259})
260
261#define SET_FPEMU_CTL(task,value)								\
262({												\
263	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK)		\
264			  | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK));	\
265	0;											\
266})
267#define GET_FPEMU_CTL(task,addr)								\
268({												\
269	put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT,	\
270		 (int __user *) (addr));							\
271})
272
273struct thread_struct {
274	__u32 flags;			/* various thread flags (see IA64_THREAD_*) */
275	/* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
276	__u8 on_ustack;			/* executing on user-stacks? */
277	__u8 pad[3];
278	__u64 ksp;			/* kernel stack pointer */
279	__u64 map_base;			/* base address for get_unmapped_area() */
280	__u64 task_size;		/* limit for task size */
281	__u64 rbs_bot;			/* the base address for the RBS */
282	int last_fph_cpu;		/* CPU that may hold the contents of f32-f127 */
283
284#ifdef CONFIG_PERFMON
285	void *pfm_context;		     /* pointer to detailed PMU context */
286	unsigned long pfm_needs_checking;    /* when >0, pending perfmon work on kernel exit */
287# define INIT_THREAD_PM		.pfm_context =		NULL,     \
288				.pfm_needs_checking =	0UL,
289#else
290# define INIT_THREAD_PM
291#endif
292	unsigned long dbr[IA64_NUM_DBG_REGS];
293	unsigned long ibr[IA64_NUM_DBG_REGS];
294	struct ia64_fpreg fph[96];	/* saved/loaded on demand */
295};
296
297#define INIT_THREAD {						\
298	.flags =	0,					\
299	.on_ustack =	0,					\
300	.ksp =		0,					\
301	.map_base =	DEFAULT_MAP_BASE,			\
302	.rbs_bot =	STACK_TOP - DEFAULT_USER_STACK_SIZE,	\
303	.task_size =	DEFAULT_TASK_SIZE,			\
304	.last_fph_cpu =  -1,					\
305	INIT_THREAD_PM						\
306	.dbr =		{0, },					\
307	.ibr =		{0, },					\
308	.fph =		{{{{0}}}, }				\
309}
310
311#define start_thread(regs,new_ip,new_sp) do {							\
312	set_fs(USER_DS);									\
313	regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL))		\
314			 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS));		\
315	regs->cr_iip = new_ip;									\
316	regs->ar_rsc = 0xf;		/* eager mode, privilege level 3 */			\
317	regs->ar_rnat = 0;									\
318	regs->ar_bspstore = current->thread.rbs_bot;						\
319	regs->ar_fpsr = FPSR_DEFAULT;								\
320	regs->loadrs = 0;									\
321	regs->r8 = get_dumpable(current->mm);	/* set "don't zap registers" flag */		\
322	regs->r12 = new_sp - 16;	/* allocate 16 byte scratch area */			\
323	if (unlikely(!get_dumpable(current->mm))) {							\
324		/*										\
325		 * Zap scratch regs to avoid leaking bits between processes with different	\
326		 * uid/privileges.								\
327		 */										\
328		regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0;					\
329		regs->r1 = 0; regs->r9  = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0;	\
330	}											\
331} while (0)
332
333/* Forward declarations, a strange C thing... */
334struct mm_struct;
335struct task_struct;
336
337/*
338 * Free all resources held by a thread. This is called after the
339 * parent of DEAD_TASK has collected the exit status of the task via
340 * wait().
341 */
342#define release_thread(dead_task)
343
344/* Prepare to copy thread state - unlazy all lazy status */
345#define prepare_to_copy(tsk)	do { } while (0)
346
347/*
348 * This is the mechanism for creating a new kernel thread.
349 *
350 * NOTE 1: Only a kernel-only process (ie the swapper or direct
351 * descendants who haven't done an "execve()") should use this: it
352 * will work within a system call from a "real" process, but the
353 * process memory space will not be free'd until both the parent and
354 * the child have exited.
355 *
356 * NOTE 2: This MUST NOT be an inlined function.  Otherwise, we get
357 * into trouble in init/main.c when the child thread returns to
358 * do_basic_setup() and the timing is such that free_initmem() has
359 * been called already.
360 */
361extern pid_t kernel_thread (int (*fn)(void *), void *arg, unsigned long flags);
362
363/* Get wait channel for task P.  */
364extern unsigned long get_wchan (struct task_struct *p);
365
366/* Return instruction pointer of blocked task TSK.  */
367#define KSTK_EIP(tsk)					\
368  ({							\
369	struct pt_regs *_regs = task_pt_regs(tsk);	\
370	_regs->cr_iip + ia64_psr(_regs)->ri;		\
371  })
372
373/* Return stack pointer of blocked task TSK.  */
374#define KSTK_ESP(tsk)  ((tsk)->thread.ksp)
375
376extern void ia64_getreg_unknown_kr (void);
377extern void ia64_setreg_unknown_kr (void);
378
379#define ia64_get_kr(regnum)					\
380({								\
381	unsigned long r = 0;					\
382								\
383	switch (regnum) {					\
384	    case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break;	\
385	    case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break;	\
386	    case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break;	\
387	    case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break;	\
388	    case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break;	\
389	    case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break;	\
390	    case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break;	\
391	    case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break;	\
392	    default: ia64_getreg_unknown_kr(); break;		\
393	}							\
394	r;							\
395})
396
397#define ia64_set_kr(regnum, r) 					\
398({								\
399	switch (regnum) {					\
400	    case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break;	\
401	    case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break;	\
402	    case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break;	\
403	    case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break;	\
404	    case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break;	\
405	    case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break;	\
406	    case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break;	\
407	    case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break;	\
408	    default: ia64_setreg_unknown_kr(); break;		\
409	}							\
410})
411
412/*
413 * The following three macros can't be inline functions because we don't have struct
414 * task_struct at this point.
415 */
416
417/*
418 * Return TRUE if task T owns the fph partition of the CPU we're running on.
419 * Must be called from code that has preemption disabled.
420 */
421#define ia64_is_local_fpu_owner(t)								\
422({												\
423	struct task_struct *__ia64_islfo_task = (t);						\
424	(__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id()				\
425	 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER));	\
426})
427
428/*
429 * Mark task T as owning the fph partition of the CPU we're running on.
430 * Must be called from code that has preemption disabled.
431 */
432#define ia64_set_local_fpu_owner(t) do {						\
433	struct task_struct *__ia64_slfo_task = (t);					\
434	__ia64_slfo_task->thread.last_fph_cpu = smp_processor_id();			\
435	ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task);		\
436} while (0)
437
438/* Mark the fph partition of task T as being invalid on all CPUs.  */
439#define ia64_drop_fpu(t)	((t)->thread.last_fph_cpu = -1)
440
441extern void __ia64_init_fpu (void);
442extern void __ia64_save_fpu (struct ia64_fpreg *fph);
443extern void __ia64_load_fpu (struct ia64_fpreg *fph);
444extern void ia64_save_debug_regs (unsigned long *save_area);
445extern void ia64_load_debug_regs (unsigned long *save_area);
446
447#define ia64_fph_enable()	do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
448#define ia64_fph_disable()	do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
449
450/* load fp 0.0 into fph */
451static inline void
452ia64_init_fpu (void) {
453	ia64_fph_enable();
454	__ia64_init_fpu();
455	ia64_fph_disable();
456}
457
458/* save f32-f127 at FPH */
459static inline void
460ia64_save_fpu (struct ia64_fpreg *fph) {
461	ia64_fph_enable();
462	__ia64_save_fpu(fph);
463	ia64_fph_disable();
464}
465
466/* load f32-f127 from FPH */
467static inline void
468ia64_load_fpu (struct ia64_fpreg *fph) {
469	ia64_fph_enable();
470	__ia64_load_fpu(fph);
471	ia64_fph_disable();
472}
473
474static inline __u64
475ia64_clear_ic (void)
476{
477	__u64 psr;
478	psr = ia64_getreg(_IA64_REG_PSR);
479	ia64_stop();
480	ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
481	ia64_srlz_i();
482	return psr;
483}
484
485/*
486 * Restore the psr.
487 */
488static inline void
489ia64_set_psr (__u64 psr)
490{
491	ia64_stop();
492	ia64_setreg(_IA64_REG_PSR_L, psr);
493	ia64_srlz_i();
494}
495
496/*
497 * Insert a translation into an instruction and/or data translation
498 * register.
499 */
500static inline void
501ia64_itr (__u64 target_mask, __u64 tr_num,
502	  __u64 vmaddr, __u64 pte,
503	  __u64 log_page_size)
504{
505	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
506	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
507	ia64_stop();
508	if (target_mask & 0x1)
509		ia64_itri(tr_num, pte);
510	if (target_mask & 0x2)
511		ia64_itrd(tr_num, pte);
512}
513
514/*
515 * Insert a translation into the instruction and/or data translation
516 * cache.
517 */
518static inline void
519ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
520	  __u64 log_page_size)
521{
522	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
523	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
524	ia64_stop();
525	/* as per EAS2.6, itc must be the last instruction in an instruction group */
526	if (target_mask & 0x1)
527		ia64_itci(pte);
528	if (target_mask & 0x2)
529		ia64_itcd(pte);
530}
531
532/*
533 * Purge a range of addresses from instruction and/or data translation
534 * register(s).
535 */
536static inline void
537ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
538{
539	if (target_mask & 0x1)
540		ia64_ptri(vmaddr, (log_size << 2));
541	if (target_mask & 0x2)
542		ia64_ptrd(vmaddr, (log_size << 2));
543}
544
545/* Set the interrupt vector address.  The address must be suitably aligned (32KB).  */
546static inline void
547ia64_set_iva (void *ivt_addr)
548{
549	ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
550	ia64_srlz_i();
551}
552
553/* Set the page table address and control bits.  */
554static inline void
555ia64_set_pta (__u64 pta)
556{
557	/* Note: srlz.i implies srlz.d */
558	ia64_setreg(_IA64_REG_CR_PTA, pta);
559	ia64_srlz_i();
560}
561
562static inline void
563ia64_eoi (void)
564{
565	ia64_setreg(_IA64_REG_CR_EOI, 0);
566	ia64_srlz_d();
567}
568
569#define cpu_relax()	ia64_hint(ia64_hint_pause)
570
571static inline int
572ia64_get_irr(unsigned int vector)
573{
574	unsigned int reg = vector / 64;
575	unsigned int bit = vector % 64;
576	u64 irr;
577
578	switch (reg) {
579	case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
580	case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
581	case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
582	case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
583	}
584
585	return test_bit(bit, &irr);
586}
587
588static inline void
589ia64_set_lrr0 (unsigned long val)
590{
591	ia64_setreg(_IA64_REG_CR_LRR0, val);
592	ia64_srlz_d();
593}
594
595static inline void
596ia64_set_lrr1 (unsigned long val)
597{
598	ia64_setreg(_IA64_REG_CR_LRR1, val);
599	ia64_srlz_d();
600}
601
602
603/*
604 * Given the address to which a spill occurred, return the unat bit
605 * number that corresponds to this address.
606 */
607static inline __u64
608ia64_unat_pos (void *spill_addr)
609{
610	return ((__u64) spill_addr >> 3) & 0x3f;
611}
612
613/*
614 * Set the NaT bit of an integer register which was spilled at address
615 * SPILL_ADDR.  UNAT is the mask to be updated.
616 */
617static inline void
618ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
619{
620	__u64 bit = ia64_unat_pos(spill_addr);
621	__u64 mask = 1UL << bit;
622
623	*unat = (*unat & ~mask) | (nat << bit);
624}
625
626/*
627 * Return saved PC of a blocked thread.
628 * Note that the only way T can block is through a call to schedule() -> switch_to().
629 */
630static inline unsigned long
631thread_saved_pc (struct task_struct *t)
632{
633	struct unw_frame_info info;
634	unsigned long ip;
635
636	unw_init_from_blocked_task(&info, t);
637	if (unw_unwind(&info) < 0)
638		return 0;
639	unw_get_ip(&info, &ip);
640	return ip;
641}
642
643/*
644 * Get the current instruction/program counter value.
645 */
646#define current_text_addr() \
647	({ void *_pc; _pc = (void *)ia64_getreg(_IA64_REG_IP); _pc; })
648
649static inline __u64
650ia64_get_ivr (void)
651{
652	__u64 r;
653	ia64_srlz_d();
654	r = ia64_getreg(_IA64_REG_CR_IVR);
655	ia64_srlz_d();
656	return r;
657}
658
659static inline void
660ia64_set_dbr (__u64 regnum, __u64 value)
661{
662	__ia64_set_dbr(regnum, value);
663#ifdef CONFIG_ITANIUM
664	ia64_srlz_d();
665#endif
666}
667
668static inline __u64
669ia64_get_dbr (__u64 regnum)
670{
671	__u64 retval;
672
673	retval = __ia64_get_dbr(regnum);
674#ifdef CONFIG_ITANIUM
675	ia64_srlz_d();
676#endif
677	return retval;
678}
679
680static inline __u64
681ia64_rotr (__u64 w, __u64 n)
682{
683	return (w >> n) | (w << (64 - n));
684}
685
686#define ia64_rotl(w,n)	ia64_rotr((w), (64) - (n))
687
688/*
689 * Take a mapped kernel address and return the equivalent address
690 * in the region 7 identity mapped virtual area.
691 */
692static inline void *
693ia64_imva (void *addr)
694{
695	void *result;
696	result = (void *) ia64_tpa(addr);
697	return __va(result);
698}
699
700#define ARCH_HAS_PREFETCH
701#define ARCH_HAS_PREFETCHW
702#define ARCH_HAS_SPINLOCK_PREFETCH
703#define PREFETCH_STRIDE			L1_CACHE_BYTES
704
705static inline void
706prefetch (const void *x)
707{
708	 ia64_lfetch(ia64_lfhint_none, x);
709}
710
711static inline void
712prefetchw (const void *x)
713{
714	ia64_lfetch_excl(ia64_lfhint_none, x);
715}
716
717#define spin_lock_prefetch(x)	prefetchw(x)
718
719extern unsigned long boot_option_idle_override;
720
721enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT,
722			 IDLE_NOMWAIT, IDLE_POLL};
 
 
723
724#endif /* !__ASSEMBLY__ */
725
726#endif /* _ASM_IA64_PROCESSOR_H */