Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* linux/net/ipv4/arp.c
   3 *
   4 * Copyright (C) 1994 by Florian  La Roche
   5 *
   6 * This module implements the Address Resolution Protocol ARP (RFC 826),
   7 * which is used to convert IP addresses (or in the future maybe other
   8 * high-level addresses) into a low-level hardware address (like an Ethernet
   9 * address).
  10 *
 
 
 
 
 
  11 * Fixes:
  12 *		Alan Cox	:	Removed the Ethernet assumptions in
  13 *					Florian's code
  14 *		Alan Cox	:	Fixed some small errors in the ARP
  15 *					logic
  16 *		Alan Cox	:	Allow >4K in /proc
  17 *		Alan Cox	:	Make ARP add its own protocol entry
  18 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  19 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  20 *		Alan Cox	:	Drop data when a device is downed.
  21 *		Alan Cox	:	Use init_timer().
  22 *		Alan Cox	:	Double lock fixes.
  23 *		Martin Seine	:	Move the arphdr structure
  24 *					to if_arp.h for compatibility.
  25 *					with BSD based programs.
  26 *		Andrew Tridgell :       Added ARP netmask code and
  27 *					re-arranged proxy handling.
  28 *		Alan Cox	:	Changed to use notifiers.
  29 *		Niibe Yutaka	:	Reply for this device or proxies only.
  30 *		Alan Cox	:	Don't proxy across hardware types!
  31 *		Jonathan Naylor :	Added support for NET/ROM.
  32 *		Mike Shaver     :       RFC1122 checks.
  33 *		Jonathan Naylor :	Only lookup the hardware address for
  34 *					the correct hardware type.
  35 *		Germano Caronni	:	Assorted subtle races.
  36 *		Craig Schlenter :	Don't modify permanent entry
  37 *					during arp_rcv.
  38 *		Russ Nelson	:	Tidied up a few bits.
  39 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  40 *					eg intelligent arp probing and
  41 *					generation
  42 *					of host down events.
  43 *		Alan Cox	:	Missing unlock in device events.
  44 *		Eckes		:	ARP ioctl control errors.
  45 *		Alexey Kuznetsov:	Arp free fix.
  46 *		Manuel Rodriguez:	Gratuitous ARP.
  47 *              Jonathan Layes  :       Added arpd support through kerneld
  48 *                                      message queue (960314)
  49 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  50 *		Mike McLagan    :	Routing by source
  51 *		Stuart Cheshire	:	Metricom and grat arp fixes
  52 *					*** FOR 2.1 clean this up ***
  53 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  54 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  55 *					folded into the mainstream FDDI code.
  56 *					Ack spit, Linus how did you allow that
  57 *					one in...
  58 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  59 *					clean up the APFDDI & gen. FDDI bits.
  60 *		Alexey Kuznetsov:	new arp state machine;
  61 *					now it is in net/core/neighbour.c.
  62 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  63 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  64 *		Shmulik Hen:		Split arp_send to arp_create and
  65 *					arp_xmit so intermediate drivers like
  66 *					bonding can change the skb before
  67 *					sending (e.g. insert 8021q tag).
  68 *		Harald Welte	:	convert to make use of jenkins hash
  69 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  70 */
  71
  72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  73
  74#include <linux/module.h>
  75#include <linux/types.h>
  76#include <linux/string.h>
  77#include <linux/kernel.h>
  78#include <linux/capability.h>
  79#include <linux/socket.h>
  80#include <linux/sockios.h>
  81#include <linux/errno.h>
  82#include <linux/in.h>
  83#include <linux/mm.h>
  84#include <linux/inet.h>
  85#include <linux/inetdevice.h>
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/fddidevice.h>
  89#include <linux/if_arp.h>
 
  90#include <linux/skbuff.h>
  91#include <linux/proc_fs.h>
  92#include <linux/seq_file.h>
  93#include <linux/stat.h>
  94#include <linux/init.h>
  95#include <linux/net.h>
  96#include <linux/rcupdate.h>
  97#include <linux/slab.h>
  98#ifdef CONFIG_SYSCTL
  99#include <linux/sysctl.h>
 100#endif
 101
 102#include <net/net_namespace.h>
 103#include <net/ip.h>
 104#include <net/icmp.h>
 105#include <net/route.h>
 106#include <net/protocol.h>
 107#include <net/tcp.h>
 108#include <net/sock.h>
 109#include <net/arp.h>
 110#include <net/ax25.h>
 111#include <net/netrom.h>
 112#include <net/dst_metadata.h>
 113#include <net/ip_tunnels.h>
 
 
 
 114
 
 115#include <linux/uaccess.h>
 116
 117#include <linux/netfilter_arp.h>
 118
 119/*
 120 *	Interface to generic neighbour cache.
 121 */
 122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 124static int arp_constructor(struct neighbour *neigh);
 125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 127static void parp_redo(struct sk_buff *skb);
 128
 129static const struct neigh_ops arp_generic_ops = {
 130	.family =		AF_INET,
 131	.solicit =		arp_solicit,
 132	.error_report =		arp_error_report,
 133	.output =		neigh_resolve_output,
 134	.connected_output =	neigh_connected_output,
 135};
 136
 137static const struct neigh_ops arp_hh_ops = {
 138	.family =		AF_INET,
 139	.solicit =		arp_solicit,
 140	.error_report =		arp_error_report,
 141	.output =		neigh_resolve_output,
 142	.connected_output =	neigh_resolve_output,
 143};
 144
 145static const struct neigh_ops arp_direct_ops = {
 146	.family =		AF_INET,
 147	.output =		neigh_direct_output,
 148	.connected_output =	neigh_direct_output,
 149};
 150
 
 
 
 
 
 
 
 
 151struct neigh_table arp_tbl = {
 152	.family		= AF_INET,
 
 153	.key_len	= 4,
 154	.protocol	= cpu_to_be16(ETH_P_IP),
 155	.hash		= arp_hash,
 156	.key_eq		= arp_key_eq,
 157	.constructor	= arp_constructor,
 158	.proxy_redo	= parp_redo,
 159	.id		= "arp_cache",
 160	.parms		= {
 161		.tbl			= &arp_tbl,
 
 
 
 162		.reachable_time		= 30 * HZ,
 163		.data	= {
 164			[NEIGH_VAR_MCAST_PROBES] = 3,
 165			[NEIGH_VAR_UCAST_PROBES] = 3,
 166			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 167			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 168			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 169			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 170			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 171			[NEIGH_VAR_PROXY_QLEN] = 64,
 172			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 173			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 174			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 175		},
 176	},
 177	.gc_interval	= 30 * HZ,
 178	.gc_thresh1	= 128,
 179	.gc_thresh2	= 512,
 180	.gc_thresh3	= 1024,
 181};
 182EXPORT_SYMBOL(arp_tbl);
 183
 184int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 185{
 186	switch (dev->type) {
 187	case ARPHRD_ETHER:
 188	case ARPHRD_FDDI:
 189	case ARPHRD_IEEE802:
 190		ip_eth_mc_map(addr, haddr);
 191		return 0;
 
 
 
 192	case ARPHRD_INFINIBAND:
 193		ip_ib_mc_map(addr, dev->broadcast, haddr);
 194		return 0;
 195	case ARPHRD_IPGRE:
 196		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 197		return 0;
 198	default:
 199		if (dir) {
 200			memcpy(haddr, dev->broadcast, dev->addr_len);
 201			return 0;
 202		}
 203	}
 204	return -EINVAL;
 205}
 206
 207
 208static u32 arp_hash(const void *pkey,
 209		    const struct net_device *dev,
 210		    __u32 *hash_rnd)
 211{
 212	return arp_hashfn(pkey, dev, hash_rnd);
 213}
 214
 215static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 216{
 217	return neigh_key_eq32(neigh, pkey);
 218}
 219
 220static int arp_constructor(struct neighbour *neigh)
 221{
 222	__be32 addr;
 223	struct net_device *dev = neigh->dev;
 224	struct in_device *in_dev;
 225	struct neigh_parms *parms;
 226	u32 inaddr_any = INADDR_ANY;
 227
 228	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 229		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 230
 231	addr = *(__be32 *)neigh->primary_key;
 232	rcu_read_lock();
 233	in_dev = __in_dev_get_rcu(dev);
 234	if (!in_dev) {
 235		rcu_read_unlock();
 236		return -EINVAL;
 237	}
 238
 239	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 240
 241	parms = in_dev->arp_parms;
 242	__neigh_parms_put(neigh->parms);
 243	neigh->parms = neigh_parms_clone(parms);
 244	rcu_read_unlock();
 245
 246	if (!dev->header_ops) {
 247		neigh->nud_state = NUD_NOARP;
 248		neigh->ops = &arp_direct_ops;
 249		neigh->output = neigh_direct_output;
 250	} else {
 251		/* Good devices (checked by reading texts, but only Ethernet is
 252		   tested)
 253
 254		   ARPHRD_ETHER: (ethernet, apfddi)
 255		   ARPHRD_FDDI: (fddi)
 256		   ARPHRD_IEEE802: (tr)
 257		   ARPHRD_METRICOM: (strip)
 258		   ARPHRD_ARCNET:
 259		   etc. etc. etc.
 260
 261		   ARPHRD_IPDDP will also work, if author repairs it.
 262		   I did not it, because this driver does not work even
 263		   in old paradigm.
 264		 */
 265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266		if (neigh->type == RTN_MULTICAST) {
 267			neigh->nud_state = NUD_NOARP;
 268			arp_mc_map(addr, neigh->ha, dev, 1);
 269		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 270			neigh->nud_state = NUD_NOARP;
 271			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 272		} else if (neigh->type == RTN_BROADCAST ||
 273			   (dev->flags & IFF_POINTOPOINT)) {
 274			neigh->nud_state = NUD_NOARP;
 275			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 276		}
 277
 278		if (dev->header_ops->cache)
 279			neigh->ops = &arp_hh_ops;
 280		else
 281			neigh->ops = &arp_generic_ops;
 282
 283		if (neigh->nud_state & NUD_VALID)
 284			neigh->output = neigh->ops->connected_output;
 285		else
 286			neigh->output = neigh->ops->output;
 287	}
 288	return 0;
 289}
 290
 291static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 292{
 293	dst_link_failure(skb);
 294	kfree_skb(skb);
 295}
 296
 297/* Create and send an arp packet. */
 298static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 299			 struct net_device *dev, __be32 src_ip,
 300			 const unsigned char *dest_hw,
 301			 const unsigned char *src_hw,
 302			 const unsigned char *target_hw,
 303			 struct dst_entry *dst)
 304{
 305	struct sk_buff *skb;
 306
 307	/* arp on this interface. */
 308	if (dev->flags & IFF_NOARP)
 309		return;
 310
 311	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 312			 dest_hw, src_hw, target_hw);
 313	if (!skb)
 314		return;
 315
 316	skb_dst_set(skb, dst_clone(dst));
 317	arp_xmit(skb);
 318}
 319
 320void arp_send(int type, int ptype, __be32 dest_ip,
 321	      struct net_device *dev, __be32 src_ip,
 322	      const unsigned char *dest_hw, const unsigned char *src_hw,
 323	      const unsigned char *target_hw)
 324{
 325	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 326		     target_hw, NULL);
 327}
 328EXPORT_SYMBOL(arp_send);
 329
 330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 331{
 332	__be32 saddr = 0;
 333	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 334	struct net_device *dev = neigh->dev;
 335	__be32 target = *(__be32 *)neigh->primary_key;
 336	int probes = atomic_read(&neigh->probes);
 337	struct in_device *in_dev;
 338	struct dst_entry *dst = NULL;
 339
 340	rcu_read_lock();
 341	in_dev = __in_dev_get_rcu(dev);
 342	if (!in_dev) {
 343		rcu_read_unlock();
 344		return;
 345	}
 346	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 347	default:
 348	case 0:		/* By default announce any local IP */
 349		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 350					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 351			saddr = ip_hdr(skb)->saddr;
 352		break;
 353	case 1:		/* Restrict announcements of saddr in same subnet */
 354		if (!skb)
 355			break;
 356		saddr = ip_hdr(skb)->saddr;
 357		if (inet_addr_type_dev_table(dev_net(dev), dev,
 358					     saddr) == RTN_LOCAL) {
 359			/* saddr should be known to target */
 360			if (inet_addr_onlink(in_dev, target, saddr))
 361				break;
 362		}
 363		saddr = 0;
 364		break;
 365	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 366		break;
 367	}
 368	rcu_read_unlock();
 369
 370	if (!saddr)
 371		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 372
 373	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 374	if (probes < 0) {
 375		if (!(neigh->nud_state & NUD_VALID))
 376			pr_debug("trying to ucast probe in NUD_INVALID\n");
 377		neigh_ha_snapshot(dst_ha, neigh, dev);
 378		dst_hw = dst_ha;
 
 379	} else {
 380		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 381		if (probes < 0) {
 
 382			neigh_app_ns(neigh);
 
 383			return;
 384		}
 385	}
 386
 387	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 388		dst = skb_dst(skb);
 389	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 390		     dst_hw, dev->dev_addr, NULL, dst);
 391}
 392
 393static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 394{
 395	struct net *net = dev_net(in_dev->dev);
 396	int scope;
 397
 398	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 399	case 0:	/* Reply, the tip is already validated */
 400		return 0;
 401	case 1:	/* Reply only if tip is configured on the incoming interface */
 402		sip = 0;
 403		scope = RT_SCOPE_HOST;
 404		break;
 405	case 2:	/*
 406		 * Reply only if tip is configured on the incoming interface
 407		 * and is in same subnet as sip
 408		 */
 409		scope = RT_SCOPE_HOST;
 410		break;
 411	case 3:	/* Do not reply for scope host addresses */
 412		sip = 0;
 413		scope = RT_SCOPE_LINK;
 414		in_dev = NULL;
 415		break;
 416	case 4:	/* Reserved */
 417	case 5:
 418	case 6:
 419	case 7:
 420		return 0;
 421	case 8:	/* Do not reply */
 422		return 1;
 423	default:
 424		return 0;
 425	}
 426	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 427}
 428
 429static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 430{
 431	struct rtable *rt;
 432	int flag = 0;
 433	/*unsigned long now; */
 434	struct net *net = dev_net(dev);
 435
 436	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
 437	if (IS_ERR(rt))
 438		return 1;
 439	if (rt->dst.dev != dev) {
 440		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 441		flag = 1;
 442	}
 443	ip_rt_put(rt);
 444	return flag;
 445}
 446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447/*
 448 * Check if we can use proxy ARP for this path
 449 */
 450static inline int arp_fwd_proxy(struct in_device *in_dev,
 451				struct net_device *dev,	struct rtable *rt)
 452{
 453	struct in_device *out_dev;
 454	int imi, omi = -1;
 455
 456	if (rt->dst.dev == dev)
 457		return 0;
 458
 459	if (!IN_DEV_PROXY_ARP(in_dev))
 460		return 0;
 461	imi = IN_DEV_MEDIUM_ID(in_dev);
 462	if (imi == 0)
 463		return 1;
 464	if (imi == -1)
 465		return 0;
 466
 467	/* place to check for proxy_arp for routes */
 468
 469	out_dev = __in_dev_get_rcu(rt->dst.dev);
 470	if (out_dev)
 471		omi = IN_DEV_MEDIUM_ID(out_dev);
 472
 473	return omi != imi && omi != -1;
 474}
 475
 476/*
 477 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 478 *
 479 * RFC3069 supports proxy arp replies back to the same interface.  This
 480 * is done to support (ethernet) switch features, like RFC 3069, where
 481 * the individual ports are not allowed to communicate with each
 482 * other, BUT they are allowed to talk to the upstream router.  As
 483 * described in RFC 3069, it is possible to allow these hosts to
 484 * communicate through the upstream router, by proxy_arp'ing.
 485 *
 486 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 487 *
 488 *  This technology is known by different names:
 489 *    In RFC 3069 it is called VLAN Aggregation.
 490 *    Cisco and Allied Telesyn call it Private VLAN.
 491 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 492 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 493 *
 494 */
 495static inline int arp_fwd_pvlan(struct in_device *in_dev,
 496				struct net_device *dev,	struct rtable *rt,
 497				__be32 sip, __be32 tip)
 498{
 499	/* Private VLAN is only concerned about the same ethernet segment */
 500	if (rt->dst.dev != dev)
 501		return 0;
 502
 503	/* Don't reply on self probes (often done by windowz boxes)*/
 504	if (sip == tip)
 505		return 0;
 506
 507	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 508		return 1;
 509	else
 510		return 0;
 511}
 512
 513/*
 514 *	Interface to link layer: send routine and receive handler.
 515 */
 516
 517/*
 518 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 519 *	message.
 520 */
 521struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 522			   struct net_device *dev, __be32 src_ip,
 523			   const unsigned char *dest_hw,
 524			   const unsigned char *src_hw,
 525			   const unsigned char *target_hw)
 526{
 527	struct sk_buff *skb;
 528	struct arphdr *arp;
 529	unsigned char *arp_ptr;
 530	int hlen = LL_RESERVED_SPACE(dev);
 531	int tlen = dev->needed_tailroom;
 532
 533	/*
 534	 *	Allocate a buffer
 535	 */
 536
 537	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 538	if (!skb)
 539		return NULL;
 540
 541	skb_reserve(skb, hlen);
 542	skb_reset_network_header(skb);
 543	arp = skb_put(skb, arp_hdr_len(dev));
 544	skb->dev = dev;
 545	skb->protocol = htons(ETH_P_ARP);
 546	if (!src_hw)
 547		src_hw = dev->dev_addr;
 548	if (!dest_hw)
 549		dest_hw = dev->broadcast;
 550
 551	/*
 552	 *	Fill the device header for the ARP frame
 553	 */
 554	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 555		goto out;
 556
 557	/*
 558	 * Fill out the arp protocol part.
 559	 *
 560	 * The arp hardware type should match the device type, except for FDDI,
 561	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 562	 */
 563	/*
 564	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 565	 *	DIX code for the protocol. Make these device structure fields.
 566	 */
 567	switch (dev->type) {
 568	default:
 569		arp->ar_hrd = htons(dev->type);
 570		arp->ar_pro = htons(ETH_P_IP);
 571		break;
 572
 573#if IS_ENABLED(CONFIG_AX25)
 574	case ARPHRD_AX25:
 575		arp->ar_hrd = htons(ARPHRD_AX25);
 576		arp->ar_pro = htons(AX25_P_IP);
 577		break;
 578
 579#if IS_ENABLED(CONFIG_NETROM)
 580	case ARPHRD_NETROM:
 581		arp->ar_hrd = htons(ARPHRD_NETROM);
 582		arp->ar_pro = htons(AX25_P_IP);
 583		break;
 584#endif
 585#endif
 586
 587#if IS_ENABLED(CONFIG_FDDI)
 588	case ARPHRD_FDDI:
 589		arp->ar_hrd = htons(ARPHRD_ETHER);
 590		arp->ar_pro = htons(ETH_P_IP);
 591		break;
 592#endif
 
 
 
 
 
 
 593	}
 594
 595	arp->ar_hln = dev->addr_len;
 596	arp->ar_pln = 4;
 597	arp->ar_op = htons(type);
 598
 599	arp_ptr = (unsigned char *)(arp + 1);
 600
 601	memcpy(arp_ptr, src_hw, dev->addr_len);
 602	arp_ptr += dev->addr_len;
 603	memcpy(arp_ptr, &src_ip, 4);
 604	arp_ptr += 4;
 605
 606	switch (dev->type) {
 607#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 608	case ARPHRD_IEEE1394:
 609		break;
 610#endif
 611	default:
 612		if (target_hw)
 613			memcpy(arp_ptr, target_hw, dev->addr_len);
 614		else
 615			memset(arp_ptr, 0, dev->addr_len);
 616		arp_ptr += dev->addr_len;
 617	}
 618	memcpy(arp_ptr, &dest_ip, 4);
 619
 620	return skb;
 621
 622out:
 623	kfree_skb(skb);
 624	return NULL;
 625}
 626EXPORT_SYMBOL(arp_create);
 627
 628static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 629{
 630	return dev_queue_xmit(skb);
 631}
 632
 633/*
 634 *	Send an arp packet.
 635 */
 636void arp_xmit(struct sk_buff *skb)
 637{
 638	/* Send it off, maybe filter it using firewalling first.  */
 639	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 640		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 641		arp_xmit_finish);
 642}
 643EXPORT_SYMBOL(arp_xmit);
 644
 645static bool arp_is_garp(struct net *net, struct net_device *dev,
 646			int *addr_type, __be16 ar_op,
 647			__be32 sip, __be32 tip,
 648			unsigned char *sha, unsigned char *tha)
 
 
 
 649{
 650	bool is_garp = tip == sip;
 651
 652	/* Gratuitous ARP _replies_ also require target hwaddr to be
 653	 * the same as source.
 654	 */
 655	if (is_garp && ar_op == htons(ARPOP_REPLY))
 656		is_garp =
 657			/* IPv4 over IEEE 1394 doesn't provide target
 658			 * hardware address field in its ARP payload.
 659			 */
 660			tha &&
 661			!memcmp(tha, sha, dev->addr_len);
 662
 663	if (is_garp) {
 664		*addr_type = inet_addr_type_dev_table(net, dev, sip);
 665		if (*addr_type != RTN_UNICAST)
 666			is_garp = false;
 667	}
 668	return is_garp;
 669}
 
 670
 671/*
 672 *	Process an arp request.
 673 */
 674
 675static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 676{
 677	struct net_device *dev = skb->dev;
 678	struct in_device *in_dev = __in_dev_get_rcu(dev);
 679	struct arphdr *arp;
 680	unsigned char *arp_ptr;
 681	struct rtable *rt;
 682	unsigned char *sha;
 683	unsigned char *tha = NULL;
 684	__be32 sip, tip;
 685	u16 dev_type = dev->type;
 686	int addr_type;
 687	struct neighbour *n;
 688	struct dst_entry *reply_dst = NULL;
 689	bool is_garp = false;
 690
 691	/* arp_rcv below verifies the ARP header and verifies the device
 692	 * is ARP'able.
 693	 */
 694
 695	if (!in_dev)
 696		goto out_free_skb;
 697
 698	arp = arp_hdr(skb);
 699
 700	switch (dev_type) {
 701	default:
 702		if (arp->ar_pro != htons(ETH_P_IP) ||
 703		    htons(dev_type) != arp->ar_hrd)
 704			goto out_free_skb;
 705		break;
 706	case ARPHRD_ETHER:
 
 707	case ARPHRD_FDDI:
 708	case ARPHRD_IEEE802:
 709		/*
 710		 * ETHERNET, and Fibre Channel (which are IEEE 802
 711		 * devices, according to RFC 2625) devices will accept ARP
 712		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 713		 * This is the case also of FDDI, where the RFC 1390 says that
 714		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 715		 * however, to be more robust, we'll accept both 1 (Ethernet)
 716		 * or 6 (IEEE 802.2)
 717		 */
 718		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 719		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 720		    arp->ar_pro != htons(ETH_P_IP))
 721			goto out_free_skb;
 722		break;
 723	case ARPHRD_AX25:
 724		if (arp->ar_pro != htons(AX25_P_IP) ||
 725		    arp->ar_hrd != htons(ARPHRD_AX25))
 726			goto out_free_skb;
 727		break;
 728	case ARPHRD_NETROM:
 729		if (arp->ar_pro != htons(AX25_P_IP) ||
 730		    arp->ar_hrd != htons(ARPHRD_NETROM))
 731			goto out_free_skb;
 732		break;
 733	}
 734
 735	/* Understand only these message types */
 736
 737	if (arp->ar_op != htons(ARPOP_REPLY) &&
 738	    arp->ar_op != htons(ARPOP_REQUEST))
 739		goto out_free_skb;
 740
 741/*
 742 *	Extract fields
 743 */
 744	arp_ptr = (unsigned char *)(arp + 1);
 745	sha	= arp_ptr;
 746	arp_ptr += dev->addr_len;
 747	memcpy(&sip, arp_ptr, 4);
 748	arp_ptr += 4;
 749	switch (dev_type) {
 750#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 751	case ARPHRD_IEEE1394:
 752		break;
 753#endif
 754	default:
 755		tha = arp_ptr;
 756		arp_ptr += dev->addr_len;
 757	}
 758	memcpy(&tip, arp_ptr, 4);
 759/*
 760 *	Check for bad requests for 127.x.x.x and requests for multicast
 761 *	addresses.  If this is one such, delete it.
 762 */
 763	if (ipv4_is_multicast(tip) ||
 764	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 765		goto out_free_skb;
 766
 767 /*
 768  *	For some 802.11 wireless deployments (and possibly other networks),
 769  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 770  *	and thus should not be accepted.
 771  */
 772	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 773		goto out_free_skb;
 774
 775/*
 776 *     Special case: We must set Frame Relay source Q.922 address
 777 */
 778	if (dev_type == ARPHRD_DLCI)
 779		sha = dev->broadcast;
 780
 781/*
 782 *  Process entry.  The idea here is we want to send a reply if it is a
 783 *  request for us or if it is a request for someone else that we hold
 784 *  a proxy for.  We want to add an entry to our cache if it is a reply
 785 *  to us or if it is a request for our address.
 786 *  (The assumption for this last is that if someone is requesting our
 787 *  address, they are probably intending to talk to us, so it saves time
 788 *  if we cache their address.  Their address is also probably not in
 789 *  our cache, since ours is not in their cache.)
 790 *
 791 *  Putting this another way, we only care about replies if they are to
 792 *  us, in which case we add them to the cache.  For requests, we care
 793 *  about those for us and those for our proxies.  We reply to both,
 794 *  and in the case of requests for us we add the requester to the arp
 795 *  cache.
 796 */
 797
 798	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 799		reply_dst = (struct dst_entry *)
 800			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 801						    GFP_ATOMIC);
 802
 803	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 804	if (sip == 0) {
 805		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 806		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 807		    !arp_ignore(in_dev, sip, tip))
 808			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 809				     sha, dev->dev_addr, sha, reply_dst);
 810		goto out_consume_skb;
 811	}
 812
 813	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 814	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 815
 816		rt = skb_rtable(skb);
 817		addr_type = rt->rt_type;
 818
 819		if (addr_type == RTN_LOCAL) {
 820			int dont_send;
 821
 822			dont_send = arp_ignore(in_dev, sip, tip);
 823			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 824				dont_send = arp_filter(sip, tip, dev);
 825			if (!dont_send) {
 826				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 827				if (n) {
 828					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 829						     sip, dev, tip, sha,
 830						     dev->dev_addr, sha,
 831						     reply_dst);
 832					neigh_release(n);
 833				}
 834			}
 835			goto out_consume_skb;
 836		} else if (IN_DEV_FORWARD(in_dev)) {
 837			if (addr_type == RTN_UNICAST  &&
 838			    (arp_fwd_proxy(in_dev, dev, rt) ||
 839			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 840			     (rt->dst.dev != dev &&
 841			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 842				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 843				if (n)
 844					neigh_release(n);
 845
 846				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 847				    skb->pkt_type == PACKET_HOST ||
 848				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 849					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 850						     sip, dev, tip, sha,
 851						     dev->dev_addr, sha,
 852						     reply_dst);
 853				} else {
 854					pneigh_enqueue(&arp_tbl,
 855						       in_dev->arp_parms, skb);
 856					goto out_free_dst;
 857				}
 858				goto out_consume_skb;
 859			}
 860		}
 861	}
 862
 863	/* Update our ARP tables */
 864
 865	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 866
 867	addr_type = -1;
 868	if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
 869		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 870				      sip, tip, sha, tha);
 871	}
 872
 873	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 874		/* Unsolicited ARP is not accepted by default.
 875		   It is possible, that this option should be enabled for some
 876		   devices (strip is candidate)
 877		 */
 878		if (!n &&
 879		    (is_garp ||
 880		     (arp->ar_op == htons(ARPOP_REPLY) &&
 881		      (addr_type == RTN_UNICAST ||
 882		       (addr_type < 0 &&
 883			/* postpone calculation to as late as possible */
 884			inet_addr_type_dev_table(net, dev, sip) ==
 885				RTN_UNICAST)))))
 886			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 887	}
 888
 889	if (n) {
 890		int state = NUD_REACHABLE;
 891		int override;
 892
 893		/* If several different ARP replies follows back-to-back,
 894		   use the FIRST one. It is possible, if several proxy
 895		   agents are active. Taking the first reply prevents
 896		   arp trashing and chooses the fastest router.
 897		 */
 898		override = time_after(jiffies,
 899				      n->updated +
 900				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 901			   is_garp;
 902
 903		/* Broadcast replies and request packets
 904		   do not assert neighbour reachability.
 905		 */
 906		if (arp->ar_op != htons(ARPOP_REPLY) ||
 907		    skb->pkt_type != PACKET_HOST)
 908			state = NUD_STALE;
 909		neigh_update(n, sha, state,
 910			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 911		neigh_release(n);
 912	}
 913
 914out_consume_skb:
 915	consume_skb(skb);
 916
 917out_free_dst:
 918	dst_release(reply_dst);
 919	return NET_RX_SUCCESS;
 920
 921out_free_skb:
 922	kfree_skb(skb);
 923	return NET_RX_DROP;
 924}
 925
 926static void parp_redo(struct sk_buff *skb)
 927{
 928	arp_process(dev_net(skb->dev), NULL, skb);
 929}
 930
 931
 932/*
 933 *	Receive an arp request from the device layer.
 934 */
 935
 936static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 937		   struct packet_type *pt, struct net_device *orig_dev)
 938{
 939	const struct arphdr *arp;
 940
 941	/* do not tweak dropwatch on an ARP we will ignore */
 942	if (dev->flags & IFF_NOARP ||
 943	    skb->pkt_type == PACKET_OTHERHOST ||
 944	    skb->pkt_type == PACKET_LOOPBACK)
 945		goto consumeskb;
 946
 947	skb = skb_share_check(skb, GFP_ATOMIC);
 948	if (!skb)
 949		goto out_of_mem;
 950
 951	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 952	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 953		goto freeskb;
 954
 955	arp = arp_hdr(skb);
 956	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 
 
 
 
 957		goto freeskb;
 958
 
 
 
 
 959	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 960
 961	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 962		       dev_net(dev), NULL, skb, dev, NULL,
 963		       arp_process);
 964
 965consumeskb:
 966	consume_skb(skb);
 967	return NET_RX_SUCCESS;
 968freeskb:
 969	kfree_skb(skb);
 970out_of_mem:
 971	return NET_RX_DROP;
 972}
 973
 974/*
 975 *	User level interface (ioctl)
 976 */
 977
 978/*
 979 *	Set (create) an ARP cache entry.
 980 */
 981
 982static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 983{
 984	if (!dev) {
 985		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 986		return 0;
 987	}
 988	if (__in_dev_get_rtnl(dev)) {
 989		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 990		return 0;
 991	}
 992	return -ENXIO;
 993}
 994
 995static int arp_req_set_public(struct net *net, struct arpreq *r,
 996		struct net_device *dev)
 997{
 998	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
 999	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1000
1001	if (mask && mask != htonl(0xFFFFFFFF))
1002		return -EINVAL;
1003	if (!dev && (r->arp_flags & ATF_COM)) {
1004		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1005				      r->arp_ha.sa_data);
1006		if (!dev)
1007			return -ENODEV;
1008	}
1009	if (mask) {
1010		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1011			return -ENOBUFS;
1012		return 0;
1013	}
1014
1015	return arp_req_set_proxy(net, dev, 1);
1016}
1017
1018static int arp_req_set(struct net *net, struct arpreq *r,
1019		       struct net_device *dev)
1020{
1021	__be32 ip;
1022	struct neighbour *neigh;
1023	int err;
1024
1025	if (r->arp_flags & ATF_PUBL)
1026		return arp_req_set_public(net, r, dev);
1027
1028	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1029	if (r->arp_flags & ATF_PERM)
1030		r->arp_flags |= ATF_COM;
1031	if (!dev) {
1032		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1033
1034		if (IS_ERR(rt))
1035			return PTR_ERR(rt);
1036		dev = rt->dst.dev;
1037		ip_rt_put(rt);
1038		if (!dev)
1039			return -EINVAL;
1040	}
1041	switch (dev->type) {
1042#if IS_ENABLED(CONFIG_FDDI)
1043	case ARPHRD_FDDI:
1044		/*
1045		 * According to RFC 1390, FDDI devices should accept ARP
1046		 * hardware types of 1 (Ethernet).  However, to be more
1047		 * robust, we'll accept hardware types of either 1 (Ethernet)
1048		 * or 6 (IEEE 802.2).
1049		 */
1050		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1051		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1052		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1053			return -EINVAL;
1054		break;
1055#endif
1056	default:
1057		if (r->arp_ha.sa_family != dev->type)
1058			return -EINVAL;
1059		break;
1060	}
1061
1062	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1063	err = PTR_ERR(neigh);
1064	if (!IS_ERR(neigh)) {
1065		unsigned int state = NUD_STALE;
1066		if (r->arp_flags & ATF_PERM)
1067			state = NUD_PERMANENT;
1068		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1069				   r->arp_ha.sa_data : NULL, state,
1070				   NEIGH_UPDATE_F_OVERRIDE |
1071				   NEIGH_UPDATE_F_ADMIN, 0);
1072		neigh_release(neigh);
1073	}
1074	return err;
1075}
1076
1077static unsigned int arp_state_to_flags(struct neighbour *neigh)
1078{
1079	if (neigh->nud_state&NUD_PERMANENT)
1080		return ATF_PERM | ATF_COM;
1081	else if (neigh->nud_state&NUD_VALID)
1082		return ATF_COM;
1083	else
1084		return 0;
1085}
1086
1087/*
1088 *	Get an ARP cache entry.
1089 */
1090
1091static int arp_req_get(struct arpreq *r, struct net_device *dev)
1092{
1093	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1094	struct neighbour *neigh;
1095	int err = -ENXIO;
1096
1097	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1098	if (neigh) {
1099		if (!(neigh->nud_state & NUD_NOARP)) {
1100			read_lock_bh(&neigh->lock);
1101			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102			r->arp_flags = arp_state_to_flags(neigh);
1103			read_unlock_bh(&neigh->lock);
1104			r->arp_ha.sa_family = dev->type;
1105			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1106			err = 0;
1107		}
1108		neigh_release(neigh);
 
1109	}
1110	return err;
1111}
1112
1113static int arp_invalidate(struct net_device *dev, __be32 ip)
1114{
1115	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1116	int err = -ENXIO;
1117	struct neigh_table *tbl = &arp_tbl;
1118
1119	if (neigh) {
1120		if (neigh->nud_state & ~NUD_NOARP)
1121			err = neigh_update(neigh, NULL, NUD_FAILED,
1122					   NEIGH_UPDATE_F_OVERRIDE|
1123					   NEIGH_UPDATE_F_ADMIN, 0);
1124		write_lock_bh(&tbl->lock);
1125		neigh_release(neigh);
1126		neigh_remove_one(neigh, tbl);
1127		write_unlock_bh(&tbl->lock);
1128	}
1129
1130	return err;
1131}
 
1132
1133static int arp_req_delete_public(struct net *net, struct arpreq *r,
1134		struct net_device *dev)
1135{
1136	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1137	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1138
1139	if (mask == htonl(0xFFFFFFFF))
1140		return pneigh_delete(&arp_tbl, net, &ip, dev);
1141
1142	if (mask)
1143		return -EINVAL;
1144
1145	return arp_req_set_proxy(net, dev, 0);
1146}
1147
1148static int arp_req_delete(struct net *net, struct arpreq *r,
1149			  struct net_device *dev)
1150{
1151	__be32 ip;
1152
1153	if (r->arp_flags & ATF_PUBL)
1154		return arp_req_delete_public(net, r, dev);
1155
1156	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1157	if (!dev) {
1158		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1159		if (IS_ERR(rt))
1160			return PTR_ERR(rt);
1161		dev = rt->dst.dev;
1162		ip_rt_put(rt);
1163		if (!dev)
1164			return -EINVAL;
1165	}
1166	return arp_invalidate(dev, ip);
1167}
1168
1169/*
1170 *	Handle an ARP layer I/O control request.
1171 */
1172
1173int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1174{
1175	int err;
1176	struct arpreq r;
1177	struct net_device *dev = NULL;
1178
1179	switch (cmd) {
1180	case SIOCDARP:
1181	case SIOCSARP:
1182		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1183			return -EPERM;
1184		fallthrough;
1185	case SIOCGARP:
1186		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1187		if (err)
1188			return -EFAULT;
1189		break;
1190	default:
1191		return -EINVAL;
1192	}
1193
1194	if (r.arp_pa.sa_family != AF_INET)
1195		return -EPFNOSUPPORT;
1196
1197	if (!(r.arp_flags & ATF_PUBL) &&
1198	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1199		return -EINVAL;
1200	if (!(r.arp_flags & ATF_NETMASK))
1201		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1202							   htonl(0xFFFFFFFFUL);
1203	rtnl_lock();
1204	if (r.arp_dev[0]) {
1205		err = -ENODEV;
1206		dev = __dev_get_by_name(net, r.arp_dev);
1207		if (!dev)
1208			goto out;
1209
1210		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1211		if (!r.arp_ha.sa_family)
1212			r.arp_ha.sa_family = dev->type;
1213		err = -EINVAL;
1214		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1215			goto out;
1216	} else if (cmd == SIOCGARP) {
1217		err = -ENODEV;
1218		goto out;
1219	}
1220
1221	switch (cmd) {
1222	case SIOCDARP:
1223		err = arp_req_delete(net, &r, dev);
1224		break;
1225	case SIOCSARP:
1226		err = arp_req_set(net, &r, dev);
1227		break;
1228	case SIOCGARP:
1229		err = arp_req_get(&r, dev);
1230		break;
1231	}
1232out:
1233	rtnl_unlock();
1234	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1235		err = -EFAULT;
1236	return err;
1237}
1238
1239static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1240			    void *ptr)
1241{
1242	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1243	struct netdev_notifier_change_info *change_info;
1244
1245	switch (event) {
1246	case NETDEV_CHANGEADDR:
1247		neigh_changeaddr(&arp_tbl, dev);
1248		rt_cache_flush(dev_net(dev));
1249		break;
1250	case NETDEV_CHANGE:
1251		change_info = ptr;
1252		if (change_info->flags_changed & IFF_NOARP)
1253			neigh_changeaddr(&arp_tbl, dev);
1254		if (!netif_carrier_ok(dev))
1255			neigh_carrier_down(&arp_tbl, dev);
1256		break;
1257	default:
1258		break;
1259	}
1260
1261	return NOTIFY_DONE;
1262}
1263
1264static struct notifier_block arp_netdev_notifier = {
1265	.notifier_call = arp_netdev_event,
1266};
1267
1268/* Note, that it is not on notifier chain.
1269   It is necessary, that this routine was called after route cache will be
1270   flushed.
1271 */
1272void arp_ifdown(struct net_device *dev)
1273{
1274	neigh_ifdown(&arp_tbl, dev);
1275}
1276
1277
1278/*
1279 *	Called once on startup.
1280 */
1281
1282static struct packet_type arp_packet_type __read_mostly = {
1283	.type =	cpu_to_be16(ETH_P_ARP),
1284	.func =	arp_rcv,
1285};
1286
1287static int arp_proc_init(void);
1288
1289void __init arp_init(void)
1290{
1291	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1292
1293	dev_add_pack(&arp_packet_type);
1294	arp_proc_init();
1295#ifdef CONFIG_SYSCTL
1296	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1297#endif
1298	register_netdevice_notifier(&arp_netdev_notifier);
1299}
1300
1301#ifdef CONFIG_PROC_FS
1302#if IS_ENABLED(CONFIG_AX25)
1303
1304/* ------------------------------------------------------------------------ */
1305/*
1306 *	ax25 -> ASCII conversion
1307 */
1308static void ax2asc2(ax25_address *a, char *buf)
1309{
1310	char c, *s;
1311	int n;
1312
1313	for (n = 0, s = buf; n < 6; n++) {
1314		c = (a->ax25_call[n] >> 1) & 0x7F;
1315
1316		if (c != ' ')
1317			*s++ = c;
1318	}
1319
1320	*s++ = '-';
1321	n = (a->ax25_call[6] >> 1) & 0x0F;
1322	if (n > 9) {
1323		*s++ = '1';
1324		n -= 10;
1325	}
1326
1327	*s++ = n + '0';
1328	*s++ = '\0';
1329
1330	if (*buf == '\0' || *buf == '-') {
1331		buf[0] = '*';
1332		buf[1] = '\0';
1333	}
1334}
1335#endif /* CONFIG_AX25 */
1336
1337#define HBUFFERLEN 30
1338
1339static void arp_format_neigh_entry(struct seq_file *seq,
1340				   struct neighbour *n)
1341{
1342	char hbuffer[HBUFFERLEN];
1343	int k, j;
1344	char tbuf[16];
1345	struct net_device *dev = n->dev;
1346	int hatype = dev->type;
1347
1348	read_lock(&n->lock);
1349	/* Convert hardware address to XX:XX:XX:XX ... form. */
1350#if IS_ENABLED(CONFIG_AX25)
1351	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1352		ax2asc2((ax25_address *)n->ha, hbuffer);
1353	else {
1354#endif
1355	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1356		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1357		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1358		hbuffer[k++] = ':';
1359	}
1360	if (k != 0)
1361		--k;
1362	hbuffer[k] = 0;
1363#if IS_ENABLED(CONFIG_AX25)
1364	}
1365#endif
1366	sprintf(tbuf, "%pI4", n->primary_key);
1367	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1368		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1369	read_unlock(&n->lock);
1370}
1371
1372static void arp_format_pneigh_entry(struct seq_file *seq,
1373				    struct pneigh_entry *n)
1374{
1375	struct net_device *dev = n->dev;
1376	int hatype = dev ? dev->type : 0;
1377	char tbuf[16];
1378
1379	sprintf(tbuf, "%pI4", n->key);
1380	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1381		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1382		   dev ? dev->name : "*");
1383}
1384
1385static int arp_seq_show(struct seq_file *seq, void *v)
1386{
1387	if (v == SEQ_START_TOKEN) {
1388		seq_puts(seq, "IP address       HW type     Flags       "
1389			      "HW address            Mask     Device\n");
1390	} else {
1391		struct neigh_seq_state *state = seq->private;
1392
1393		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1394			arp_format_pneigh_entry(seq, v);
1395		else
1396			arp_format_neigh_entry(seq, v);
1397	}
1398
1399	return 0;
1400}
1401
1402static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1403{
1404	/* Don't want to confuse "arp -a" w/ magic entries,
1405	 * so we tell the generic iterator to skip NUD_NOARP.
1406	 */
1407	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1408}
1409
1410/* ------------------------------------------------------------------------ */
1411
1412static const struct seq_operations arp_seq_ops = {
1413	.start	= arp_seq_start,
1414	.next	= neigh_seq_next,
1415	.stop	= neigh_seq_stop,
1416	.show	= arp_seq_show,
1417};
1418
1419/* ------------------------------------------------------------------------ */
 
 
 
 
 
 
 
 
 
 
 
 
 
1420
1421static int __net_init arp_net_init(struct net *net)
1422{
1423	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1424			sizeof(struct neigh_seq_state)))
1425		return -ENOMEM;
1426	return 0;
1427}
1428
1429static void __net_exit arp_net_exit(struct net *net)
1430{
1431	remove_proc_entry("arp", net->proc_net);
1432}
1433
1434static struct pernet_operations arp_net_ops = {
1435	.init = arp_net_init,
1436	.exit = arp_net_exit,
1437};
1438
1439static int __init arp_proc_init(void)
1440{
1441	return register_pernet_subsys(&arp_net_ops);
1442}
1443
1444#else /* CONFIG_PROC_FS */
1445
1446static int __init arp_proc_init(void)
1447{
1448	return 0;
1449}
1450
1451#endif /* CONFIG_PROC_FS */
v3.1
 
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
 
 
  76#include <linux/module.h>
  77#include <linux/types.h>
  78#include <linux/string.h>
  79#include <linux/kernel.h>
  80#include <linux/capability.h>
  81#include <linux/socket.h>
  82#include <linux/sockios.h>
  83#include <linux/errno.h>
  84#include <linux/in.h>
  85#include <linux/mm.h>
  86#include <linux/inet.h>
  87#include <linux/inetdevice.h>
  88#include <linux/netdevice.h>
  89#include <linux/etherdevice.h>
  90#include <linux/fddidevice.h>
  91#include <linux/if_arp.h>
  92#include <linux/trdevice.h>
  93#include <linux/skbuff.h>
  94#include <linux/proc_fs.h>
  95#include <linux/seq_file.h>
  96#include <linux/stat.h>
  97#include <linux/init.h>
  98#include <linux/net.h>
  99#include <linux/rcupdate.h>
 100#include <linux/slab.h>
 101#ifdef CONFIG_SYSCTL
 102#include <linux/sysctl.h>
 103#endif
 104
 105#include <net/net_namespace.h>
 106#include <net/ip.h>
 107#include <net/icmp.h>
 108#include <net/route.h>
 109#include <net/protocol.h>
 110#include <net/tcp.h>
 111#include <net/sock.h>
 112#include <net/arp.h>
 113#include <net/ax25.h>
 114#include <net/netrom.h>
 115#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
 116#include <net/atmclip.h>
 117struct neigh_table *clip_tbl_hook;
 118EXPORT_SYMBOL(clip_tbl_hook);
 119#endif
 120
 121#include <asm/system.h>
 122#include <linux/uaccess.h>
 123
 124#include <linux/netfilter_arp.h>
 125
 126/*
 127 *	Interface to generic neighbour cache.
 128 */
 129static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 rnd);
 
 130static int arp_constructor(struct neighbour *neigh);
 131static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 132static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 133static void parp_redo(struct sk_buff *skb);
 134
 135static const struct neigh_ops arp_generic_ops = {
 136	.family =		AF_INET,
 137	.solicit =		arp_solicit,
 138	.error_report =		arp_error_report,
 139	.output =		neigh_resolve_output,
 140	.connected_output =	neigh_connected_output,
 141};
 142
 143static const struct neigh_ops arp_hh_ops = {
 144	.family =		AF_INET,
 145	.solicit =		arp_solicit,
 146	.error_report =		arp_error_report,
 147	.output =		neigh_resolve_output,
 148	.connected_output =	neigh_resolve_output,
 149};
 150
 151static const struct neigh_ops arp_direct_ops = {
 152	.family =		AF_INET,
 153	.output =		neigh_direct_output,
 154	.connected_output =	neigh_direct_output,
 155};
 156
 157static const struct neigh_ops arp_broken_ops = {
 158	.family =		AF_INET,
 159	.solicit =		arp_solicit,
 160	.error_report =		arp_error_report,
 161	.output =		neigh_compat_output,
 162	.connected_output =	neigh_compat_output,
 163};
 164
 165struct neigh_table arp_tbl = {
 166	.family		= AF_INET,
 167	.entry_size	= sizeof(struct neighbour) + 4,
 168	.key_len	= 4,
 
 169	.hash		= arp_hash,
 
 170	.constructor	= arp_constructor,
 171	.proxy_redo	= parp_redo,
 172	.id		= "arp_cache",
 173	.parms		= {
 174		.tbl			= &arp_tbl,
 175		.base_reachable_time	= 30 * HZ,
 176		.retrans_time		= 1 * HZ,
 177		.gc_staletime		= 60 * HZ,
 178		.reachable_time		= 30 * HZ,
 179		.delay_probe_time	= 5 * HZ,
 180		.queue_len		= 3,
 181		.ucast_probes		= 3,
 182		.mcast_probes		= 3,
 183		.anycast_delay		= 1 * HZ,
 184		.proxy_delay		= (8 * HZ) / 10,
 185		.proxy_qlen		= 64,
 186		.locktime		= 1 * HZ,
 
 
 
 
 
 187	},
 188	.gc_interval	= 30 * HZ,
 189	.gc_thresh1	= 128,
 190	.gc_thresh2	= 512,
 191	.gc_thresh3	= 1024,
 192};
 193EXPORT_SYMBOL(arp_tbl);
 194
 195int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 196{
 197	switch (dev->type) {
 198	case ARPHRD_ETHER:
 199	case ARPHRD_FDDI:
 200	case ARPHRD_IEEE802:
 201		ip_eth_mc_map(addr, haddr);
 202		return 0;
 203	case ARPHRD_IEEE802_TR:
 204		ip_tr_mc_map(addr, haddr);
 205		return 0;
 206	case ARPHRD_INFINIBAND:
 207		ip_ib_mc_map(addr, dev->broadcast, haddr);
 208		return 0;
 209	case ARPHRD_IPGRE:
 210		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 211		return 0;
 212	default:
 213		if (dir) {
 214			memcpy(haddr, dev->broadcast, dev->addr_len);
 215			return 0;
 216		}
 217	}
 218	return -EINVAL;
 219}
 220
 221
 222static u32 arp_hash(const void *pkey,
 223		    const struct net_device *dev,
 224		    __u32 hash_rnd)
 
 
 
 
 
 225{
 226	return arp_hashfn(*(u32 *)pkey, dev, hash_rnd);
 227}
 228
 229static int arp_constructor(struct neighbour *neigh)
 230{
 231	__be32 addr = *(__be32 *)neigh->primary_key;
 232	struct net_device *dev = neigh->dev;
 233	struct in_device *in_dev;
 234	struct neigh_parms *parms;
 
 
 
 
 235
 
 236	rcu_read_lock();
 237	in_dev = __in_dev_get_rcu(dev);
 238	if (in_dev == NULL) {
 239		rcu_read_unlock();
 240		return -EINVAL;
 241	}
 242
 243	neigh->type = inet_addr_type(dev_net(dev), addr);
 244
 245	parms = in_dev->arp_parms;
 246	__neigh_parms_put(neigh->parms);
 247	neigh->parms = neigh_parms_clone(parms);
 248	rcu_read_unlock();
 249
 250	if (!dev->header_ops) {
 251		neigh->nud_state = NUD_NOARP;
 252		neigh->ops = &arp_direct_ops;
 253		neigh->output = neigh_direct_output;
 254	} else {
 255		/* Good devices (checked by reading texts, but only Ethernet is
 256		   tested)
 257
 258		   ARPHRD_ETHER: (ethernet, apfddi)
 259		   ARPHRD_FDDI: (fddi)
 260		   ARPHRD_IEEE802: (tr)
 261		   ARPHRD_METRICOM: (strip)
 262		   ARPHRD_ARCNET:
 263		   etc. etc. etc.
 264
 265		   ARPHRD_IPDDP will also work, if author repairs it.
 266		   I did not it, because this driver does not work even
 267		   in old paradigm.
 268		 */
 269
 270#if 1
 271		/* So... these "amateur" devices are hopeless.
 272		   The only thing, that I can say now:
 273		   It is very sad that we need to keep ugly obsolete
 274		   code to make them happy.
 275
 276		   They should be moved to more reasonable state, now
 277		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 278		   Besides that, they are sort of out of date
 279		   (a lot of redundant clones/copies, useless in 2.1),
 280		   I wonder why people believe that they work.
 281		 */
 282		switch (dev->type) {
 283		default:
 284			break;
 285		case ARPHRD_ROSE:
 286#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 287		case ARPHRD_AX25:
 288#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
 289		case ARPHRD_NETROM:
 290#endif
 291			neigh->ops = &arp_broken_ops;
 292			neigh->output = neigh->ops->output;
 293			return 0;
 294#else
 295			break;
 296#endif
 297		}
 298#endif
 299		if (neigh->type == RTN_MULTICAST) {
 300			neigh->nud_state = NUD_NOARP;
 301			arp_mc_map(addr, neigh->ha, dev, 1);
 302		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 303			neigh->nud_state = NUD_NOARP;
 304			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 305		} else if (neigh->type == RTN_BROADCAST ||
 306			   (dev->flags & IFF_POINTOPOINT)) {
 307			neigh->nud_state = NUD_NOARP;
 308			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 309		}
 310
 311		if (dev->header_ops->cache)
 312			neigh->ops = &arp_hh_ops;
 313		else
 314			neigh->ops = &arp_generic_ops;
 315
 316		if (neigh->nud_state & NUD_VALID)
 317			neigh->output = neigh->ops->connected_output;
 318		else
 319			neigh->output = neigh->ops->output;
 320	}
 321	return 0;
 322}
 323
 324static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 325{
 326	dst_link_failure(skb);
 327	kfree_skb(skb);
 328}
 329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 331{
 332	__be32 saddr = 0;
 333	u8  *dst_ha = NULL;
 334	struct net_device *dev = neigh->dev;
 335	__be32 target = *(__be32 *)neigh->primary_key;
 336	int probes = atomic_read(&neigh->probes);
 337	struct in_device *in_dev;
 
 338
 339	rcu_read_lock();
 340	in_dev = __in_dev_get_rcu(dev);
 341	if (!in_dev) {
 342		rcu_read_unlock();
 343		return;
 344	}
 345	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 346	default:
 347	case 0:		/* By default announce any local IP */
 348		if (skb && inet_addr_type(dev_net(dev),
 349					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 350			saddr = ip_hdr(skb)->saddr;
 351		break;
 352	case 1:		/* Restrict announcements of saddr in same subnet */
 353		if (!skb)
 354			break;
 355		saddr = ip_hdr(skb)->saddr;
 356		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 
 357			/* saddr should be known to target */
 358			if (inet_addr_onlink(in_dev, target, saddr))
 359				break;
 360		}
 361		saddr = 0;
 362		break;
 363	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 364		break;
 365	}
 366	rcu_read_unlock();
 367
 368	if (!saddr)
 369		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 370
 371	probes -= neigh->parms->ucast_probes;
 372	if (probes < 0) {
 373		if (!(neigh->nud_state & NUD_VALID))
 374			printk(KERN_DEBUG
 375			       "trying to ucast probe in NUD_INVALID\n");
 376		dst_ha = neigh->ha;
 377		read_lock_bh(&neigh->lock);
 378	} else {
 379		probes -= neigh->parms->app_probes;
 380		if (probes < 0) {
 381#ifdef CONFIG_ARPD
 382			neigh_app_ns(neigh);
 383#endif
 384			return;
 385		}
 386	}
 387
 388	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 389		 dst_ha, dev->dev_addr, NULL);
 390	if (dst_ha)
 391		read_unlock_bh(&neigh->lock);
 392}
 393
 394static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 395{
 
 396	int scope;
 397
 398	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 399	case 0:	/* Reply, the tip is already validated */
 400		return 0;
 401	case 1:	/* Reply only if tip is configured on the incoming interface */
 402		sip = 0;
 403		scope = RT_SCOPE_HOST;
 404		break;
 405	case 2:	/*
 406		 * Reply only if tip is configured on the incoming interface
 407		 * and is in same subnet as sip
 408		 */
 409		scope = RT_SCOPE_HOST;
 410		break;
 411	case 3:	/* Do not reply for scope host addresses */
 412		sip = 0;
 413		scope = RT_SCOPE_LINK;
 
 414		break;
 415	case 4:	/* Reserved */
 416	case 5:
 417	case 6:
 418	case 7:
 419		return 0;
 420	case 8:	/* Do not reply */
 421		return 1;
 422	default:
 423		return 0;
 424	}
 425	return !inet_confirm_addr(in_dev, sip, tip, scope);
 426}
 427
 428static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 429{
 430	struct rtable *rt;
 431	int flag = 0;
 432	/*unsigned long now; */
 433	struct net *net = dev_net(dev);
 434
 435	rt = ip_route_output(net, sip, tip, 0, 0);
 436	if (IS_ERR(rt))
 437		return 1;
 438	if (rt->dst.dev != dev) {
 439		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 440		flag = 1;
 441	}
 442	ip_rt_put(rt);
 443	return flag;
 444}
 445
 446/* OBSOLETE FUNCTIONS */
 447
 448/*
 449 *	Find an arp mapping in the cache. If not found, post a request.
 450 *
 451 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 452 *	even if it exists. It is supposed that skb->dev was mangled
 453 *	by a virtual device (eql, shaper). Nobody but broken devices
 454 *	is allowed to use this function, it is scheduled to be removed. --ANK
 455 */
 456
 457static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 458			      __be32 paddr, struct net_device *dev)
 459{
 460	switch (addr_hint) {
 461	case RTN_LOCAL:
 462		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
 463		memcpy(haddr, dev->dev_addr, dev->addr_len);
 464		return 1;
 465	case RTN_MULTICAST:
 466		arp_mc_map(paddr, haddr, dev, 1);
 467		return 1;
 468	case RTN_BROADCAST:
 469		memcpy(haddr, dev->broadcast, dev->addr_len);
 470		return 1;
 471	}
 472	return 0;
 473}
 474
 475
 476int arp_find(unsigned char *haddr, struct sk_buff *skb)
 477{
 478	struct net_device *dev = skb->dev;
 479	__be32 paddr;
 480	struct neighbour *n;
 481
 482	if (!skb_dst(skb)) {
 483		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
 484		kfree_skb(skb);
 485		return 1;
 486	}
 487
 488	paddr = skb_rtable(skb)->rt_gateway;
 489
 490	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 491			       paddr, dev))
 492		return 0;
 493
 494	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 495
 496	if (n) {
 497		n->used = jiffies;
 498		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 499			neigh_ha_snapshot(haddr, n, dev);
 500			neigh_release(n);
 501			return 0;
 502		}
 503		neigh_release(n);
 504	} else
 505		kfree_skb(skb);
 506	return 1;
 507}
 508EXPORT_SYMBOL(arp_find);
 509
 510/* END OF OBSOLETE FUNCTIONS */
 511
 512/*
 513 * Check if we can use proxy ARP for this path
 514 */
 515static inline int arp_fwd_proxy(struct in_device *in_dev,
 516				struct net_device *dev,	struct rtable *rt)
 517{
 518	struct in_device *out_dev;
 519	int imi, omi = -1;
 520
 521	if (rt->dst.dev == dev)
 522		return 0;
 523
 524	if (!IN_DEV_PROXY_ARP(in_dev))
 525		return 0;
 526	imi = IN_DEV_MEDIUM_ID(in_dev);
 527	if (imi == 0)
 528		return 1;
 529	if (imi == -1)
 530		return 0;
 531
 532	/* place to check for proxy_arp for routes */
 533
 534	out_dev = __in_dev_get_rcu(rt->dst.dev);
 535	if (out_dev)
 536		omi = IN_DEV_MEDIUM_ID(out_dev);
 537
 538	return omi != imi && omi != -1;
 539}
 540
 541/*
 542 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 543 *
 544 * RFC3069 supports proxy arp replies back to the same interface.  This
 545 * is done to support (ethernet) switch features, like RFC 3069, where
 546 * the individual ports are not allowed to communicate with each
 547 * other, BUT they are allowed to talk to the upstream router.  As
 548 * described in RFC 3069, it is possible to allow these hosts to
 549 * communicate through the upstream router, by proxy_arp'ing.
 550 *
 551 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 552 *
 553 *  This technology is known by different names:
 554 *    In RFC 3069 it is called VLAN Aggregation.
 555 *    Cisco and Allied Telesyn call it Private VLAN.
 556 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 557 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 558 *
 559 */
 560static inline int arp_fwd_pvlan(struct in_device *in_dev,
 561				struct net_device *dev,	struct rtable *rt,
 562				__be32 sip, __be32 tip)
 563{
 564	/* Private VLAN is only concerned about the same ethernet segment */
 565	if (rt->dst.dev != dev)
 566		return 0;
 567
 568	/* Don't reply on self probes (often done by windowz boxes)*/
 569	if (sip == tip)
 570		return 0;
 571
 572	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 573		return 1;
 574	else
 575		return 0;
 576}
 577
 578/*
 579 *	Interface to link layer: send routine and receive handler.
 580 */
 581
 582/*
 583 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 584 *	message.
 585 */
 586struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 587			   struct net_device *dev, __be32 src_ip,
 588			   const unsigned char *dest_hw,
 589			   const unsigned char *src_hw,
 590			   const unsigned char *target_hw)
 591{
 592	struct sk_buff *skb;
 593	struct arphdr *arp;
 594	unsigned char *arp_ptr;
 
 
 595
 596	/*
 597	 *	Allocate a buffer
 598	 */
 599
 600	skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
 601	if (skb == NULL)
 602		return NULL;
 603
 604	skb_reserve(skb, LL_RESERVED_SPACE(dev));
 605	skb_reset_network_header(skb);
 606	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 607	skb->dev = dev;
 608	skb->protocol = htons(ETH_P_ARP);
 609	if (src_hw == NULL)
 610		src_hw = dev->dev_addr;
 611	if (dest_hw == NULL)
 612		dest_hw = dev->broadcast;
 613
 614	/*
 615	 *	Fill the device header for the ARP frame
 616	 */
 617	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 618		goto out;
 619
 620	/*
 621	 * Fill out the arp protocol part.
 622	 *
 623	 * The arp hardware type should match the device type, except for FDDI,
 624	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 625	 */
 626	/*
 627	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 628	 *	DIX code for the protocol. Make these device structure fields.
 629	 */
 630	switch (dev->type) {
 631	default:
 632		arp->ar_hrd = htons(dev->type);
 633		arp->ar_pro = htons(ETH_P_IP);
 634		break;
 635
 636#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 637	case ARPHRD_AX25:
 638		arp->ar_hrd = htons(ARPHRD_AX25);
 639		arp->ar_pro = htons(AX25_P_IP);
 640		break;
 641
 642#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
 643	case ARPHRD_NETROM:
 644		arp->ar_hrd = htons(ARPHRD_NETROM);
 645		arp->ar_pro = htons(AX25_P_IP);
 646		break;
 647#endif
 648#endif
 649
 650#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
 651	case ARPHRD_FDDI:
 652		arp->ar_hrd = htons(ARPHRD_ETHER);
 653		arp->ar_pro = htons(ETH_P_IP);
 654		break;
 655#endif
 656#if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
 657	case ARPHRD_IEEE802_TR:
 658		arp->ar_hrd = htons(ARPHRD_IEEE802);
 659		arp->ar_pro = htons(ETH_P_IP);
 660		break;
 661#endif
 662	}
 663
 664	arp->ar_hln = dev->addr_len;
 665	arp->ar_pln = 4;
 666	arp->ar_op = htons(type);
 667
 668	arp_ptr = (unsigned char *)(arp + 1);
 669
 670	memcpy(arp_ptr, src_hw, dev->addr_len);
 671	arp_ptr += dev->addr_len;
 672	memcpy(arp_ptr, &src_ip, 4);
 673	arp_ptr += 4;
 674	if (target_hw != NULL)
 675		memcpy(arp_ptr, target_hw, dev->addr_len);
 676	else
 677		memset(arp_ptr, 0, dev->addr_len);
 678	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 679	memcpy(arp_ptr, &dest_ip, 4);
 680
 681	return skb;
 682
 683out:
 684	kfree_skb(skb);
 685	return NULL;
 686}
 687EXPORT_SYMBOL(arp_create);
 688
 
 
 
 
 
 689/*
 690 *	Send an arp packet.
 691 */
 692void arp_xmit(struct sk_buff *skb)
 693{
 694	/* Send it off, maybe filter it using firewalling first.  */
 695	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 
 
 696}
 697EXPORT_SYMBOL(arp_xmit);
 698
 699/*
 700 *	Create and send an arp packet.
 701 */
 702void arp_send(int type, int ptype, __be32 dest_ip,
 703	      struct net_device *dev, __be32 src_ip,
 704	      const unsigned char *dest_hw, const unsigned char *src_hw,
 705	      const unsigned char *target_hw)
 706{
 707	struct sk_buff *skb;
 708
 709	/*
 710	 *	No arp on this interface.
 711	 */
 712
 713	if (dev->flags&IFF_NOARP)
 714		return;
 715
 716	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 717			 dest_hw, src_hw, target_hw);
 718	if (skb == NULL)
 719		return;
 720
 721	arp_xmit(skb);
 
 
 
 
 722}
 723EXPORT_SYMBOL(arp_send);
 724
 725/*
 726 *	Process an arp request.
 727 */
 728
 729static int arp_process(struct sk_buff *skb)
 730{
 731	struct net_device *dev = skb->dev;
 732	struct in_device *in_dev = __in_dev_get_rcu(dev);
 733	struct arphdr *arp;
 734	unsigned char *arp_ptr;
 735	struct rtable *rt;
 736	unsigned char *sha;
 
 737	__be32 sip, tip;
 738	u16 dev_type = dev->type;
 739	int addr_type;
 740	struct neighbour *n;
 741	struct net *net = dev_net(dev);
 
 742
 743	/* arp_rcv below verifies the ARP header and verifies the device
 744	 * is ARP'able.
 745	 */
 746
 747	if (in_dev == NULL)
 748		goto out;
 749
 750	arp = arp_hdr(skb);
 751
 752	switch (dev_type) {
 753	default:
 754		if (arp->ar_pro != htons(ETH_P_IP) ||
 755		    htons(dev_type) != arp->ar_hrd)
 756			goto out;
 757		break;
 758	case ARPHRD_ETHER:
 759	case ARPHRD_IEEE802_TR:
 760	case ARPHRD_FDDI:
 761	case ARPHRD_IEEE802:
 762		/*
 763		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
 764		 * devices, according to RFC 2625) devices will accept ARP
 765		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 766		 * This is the case also of FDDI, where the RFC 1390 says that
 767		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 768		 * however, to be more robust, we'll accept both 1 (Ethernet)
 769		 * or 6 (IEEE 802.2)
 770		 */
 771		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 772		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 773		    arp->ar_pro != htons(ETH_P_IP))
 774			goto out;
 775		break;
 776	case ARPHRD_AX25:
 777		if (arp->ar_pro != htons(AX25_P_IP) ||
 778		    arp->ar_hrd != htons(ARPHRD_AX25))
 779			goto out;
 780		break;
 781	case ARPHRD_NETROM:
 782		if (arp->ar_pro != htons(AX25_P_IP) ||
 783		    arp->ar_hrd != htons(ARPHRD_NETROM))
 784			goto out;
 785		break;
 786	}
 787
 788	/* Understand only these message types */
 789
 790	if (arp->ar_op != htons(ARPOP_REPLY) &&
 791	    arp->ar_op != htons(ARPOP_REQUEST))
 792		goto out;
 793
 794/*
 795 *	Extract fields
 796 */
 797	arp_ptr = (unsigned char *)(arp + 1);
 798	sha	= arp_ptr;
 799	arp_ptr += dev->addr_len;
 800	memcpy(&sip, arp_ptr, 4);
 801	arp_ptr += 4;
 802	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 803	memcpy(&tip, arp_ptr, 4);
 804/*
 805 *	Check for bad requests for 127.x.x.x and requests for multicast
 806 *	addresses.  If this is one such, delete it.
 807 */
 808	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
 809		goto out;
 
 
 
 
 
 
 
 
 
 810
 811/*
 812 *     Special case: We must set Frame Relay source Q.922 address
 813 */
 814	if (dev_type == ARPHRD_DLCI)
 815		sha = dev->broadcast;
 816
 817/*
 818 *  Process entry.  The idea here is we want to send a reply if it is a
 819 *  request for us or if it is a request for someone else that we hold
 820 *  a proxy for.  We want to add an entry to our cache if it is a reply
 821 *  to us or if it is a request for our address.
 822 *  (The assumption for this last is that if someone is requesting our
 823 *  address, they are probably intending to talk to us, so it saves time
 824 *  if we cache their address.  Their address is also probably not in
 825 *  our cache, since ours is not in their cache.)
 826 *
 827 *  Putting this another way, we only care about replies if they are to
 828 *  us, in which case we add them to the cache.  For requests, we care
 829 *  about those for us and those for our proxies.  We reply to both,
 830 *  and in the case of requests for us we add the requester to the arp
 831 *  cache.
 832 */
 833
 
 
 
 
 
 834	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 835	if (sip == 0) {
 836		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 837		    inet_addr_type(net, tip) == RTN_LOCAL &&
 838		    !arp_ignore(in_dev, sip, tip))
 839			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 840				 dev->dev_addr, sha);
 841		goto out;
 842	}
 843
 844	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 845	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 846
 847		rt = skb_rtable(skb);
 848		addr_type = rt->rt_type;
 849
 850		if (addr_type == RTN_LOCAL) {
 851			int dont_send;
 852
 853			dont_send = arp_ignore(in_dev, sip, tip);
 854			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 855				dont_send = arp_filter(sip, tip, dev);
 856			if (!dont_send) {
 857				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 858				if (n) {
 859					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 860						 dev, tip, sha, dev->dev_addr,
 861						 sha);
 
 862					neigh_release(n);
 863				}
 864			}
 865			goto out;
 866		} else if (IN_DEV_FORWARD(in_dev)) {
 867			if (addr_type == RTN_UNICAST  &&
 868			    (arp_fwd_proxy(in_dev, dev, rt) ||
 869			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 870			     pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
 
 871				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 872				if (n)
 873					neigh_release(n);
 874
 875				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 876				    skb->pkt_type == PACKET_HOST ||
 877				    in_dev->arp_parms->proxy_delay == 0) {
 878					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 879						 dev, tip, sha, dev->dev_addr,
 880						 sha);
 
 881				} else {
 882					pneigh_enqueue(&arp_tbl,
 883						       in_dev->arp_parms, skb);
 884					return 0;
 885				}
 886				goto out;
 887			}
 888		}
 889	}
 890
 891	/* Update our ARP tables */
 892
 893	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 894
 895	if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
 
 
 
 
 
 
 896		/* Unsolicited ARP is not accepted by default.
 897		   It is possible, that this option should be enabled for some
 898		   devices (strip is candidate)
 899		 */
 900		if (n == NULL &&
 901		    (arp->ar_op == htons(ARPOP_REPLY) ||
 902		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
 903		    inet_addr_type(net, sip) == RTN_UNICAST)
 
 
 
 
 904			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 905	}
 906
 907	if (n) {
 908		int state = NUD_REACHABLE;
 909		int override;
 910
 911		/* If several different ARP replies follows back-to-back,
 912		   use the FIRST one. It is possible, if several proxy
 913		   agents are active. Taking the first reply prevents
 914		   arp trashing and chooses the fastest router.
 915		 */
 916		override = time_after(jiffies, n->updated + n->parms->locktime);
 
 
 
 917
 918		/* Broadcast replies and request packets
 919		   do not assert neighbour reachability.
 920		 */
 921		if (arp->ar_op != htons(ARPOP_REPLY) ||
 922		    skb->pkt_type != PACKET_HOST)
 923			state = NUD_STALE;
 924		neigh_update(n, sha, state,
 925			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 926		neigh_release(n);
 927	}
 928
 929out:
 930	consume_skb(skb);
 931	return 0;
 
 
 
 
 
 
 
 932}
 933
 934static void parp_redo(struct sk_buff *skb)
 935{
 936	arp_process(skb);
 937}
 938
 939
 940/*
 941 *	Receive an arp request from the device layer.
 942 */
 943
 944static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 945		   struct packet_type *pt, struct net_device *orig_dev)
 946{
 947	struct arphdr *arp;
 
 
 
 
 
 
 
 
 
 
 948
 949	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 950	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 951		goto freeskb;
 952
 953	arp = arp_hdr(skb);
 954	if (arp->ar_hln != dev->addr_len ||
 955	    dev->flags & IFF_NOARP ||
 956	    skb->pkt_type == PACKET_OTHERHOST ||
 957	    skb->pkt_type == PACKET_LOOPBACK ||
 958	    arp->ar_pln != 4)
 959		goto freeskb;
 960
 961	skb = skb_share_check(skb, GFP_ATOMIC);
 962	if (skb == NULL)
 963		goto out_of_mem;
 964
 965	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 966
 967	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 
 
 968
 
 
 
 969freeskb:
 970	kfree_skb(skb);
 971out_of_mem:
 972	return 0;
 973}
 974
 975/*
 976 *	User level interface (ioctl)
 977 */
 978
 979/*
 980 *	Set (create) an ARP cache entry.
 981 */
 982
 983static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 984{
 985	if (dev == NULL) {
 986		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 987		return 0;
 988	}
 989	if (__in_dev_get_rtnl(dev)) {
 990		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 991		return 0;
 992	}
 993	return -ENXIO;
 994}
 995
 996static int arp_req_set_public(struct net *net, struct arpreq *r,
 997		struct net_device *dev)
 998{
 999	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1000	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1001
1002	if (mask && mask != htonl(0xFFFFFFFF))
1003		return -EINVAL;
1004	if (!dev && (r->arp_flags & ATF_COM)) {
1005		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1006				      r->arp_ha.sa_data);
1007		if (!dev)
1008			return -ENODEV;
1009	}
1010	if (mask) {
1011		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1012			return -ENOBUFS;
1013		return 0;
1014	}
1015
1016	return arp_req_set_proxy(net, dev, 1);
1017}
1018
1019static int arp_req_set(struct net *net, struct arpreq *r,
1020		       struct net_device *dev)
1021{
1022	__be32 ip;
1023	struct neighbour *neigh;
1024	int err;
1025
1026	if (r->arp_flags & ATF_PUBL)
1027		return arp_req_set_public(net, r, dev);
1028
1029	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1030	if (r->arp_flags & ATF_PERM)
1031		r->arp_flags |= ATF_COM;
1032	if (dev == NULL) {
1033		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1034
1035		if (IS_ERR(rt))
1036			return PTR_ERR(rt);
1037		dev = rt->dst.dev;
1038		ip_rt_put(rt);
1039		if (!dev)
1040			return -EINVAL;
1041	}
1042	switch (dev->type) {
1043#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1044	case ARPHRD_FDDI:
1045		/*
1046		 * According to RFC 1390, FDDI devices should accept ARP
1047		 * hardware types of 1 (Ethernet).  However, to be more
1048		 * robust, we'll accept hardware types of either 1 (Ethernet)
1049		 * or 6 (IEEE 802.2).
1050		 */
1051		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1052		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1053		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1054			return -EINVAL;
1055		break;
1056#endif
1057	default:
1058		if (r->arp_ha.sa_family != dev->type)
1059			return -EINVAL;
1060		break;
1061	}
1062
1063	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1064	err = PTR_ERR(neigh);
1065	if (!IS_ERR(neigh)) {
1066		unsigned state = NUD_STALE;
1067		if (r->arp_flags & ATF_PERM)
1068			state = NUD_PERMANENT;
1069		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1070				   r->arp_ha.sa_data : NULL, state,
1071				   NEIGH_UPDATE_F_OVERRIDE |
1072				   NEIGH_UPDATE_F_ADMIN);
1073		neigh_release(neigh);
1074	}
1075	return err;
1076}
1077
1078static unsigned arp_state_to_flags(struct neighbour *neigh)
1079{
1080	if (neigh->nud_state&NUD_PERMANENT)
1081		return ATF_PERM | ATF_COM;
1082	else if (neigh->nud_state&NUD_VALID)
1083		return ATF_COM;
1084	else
1085		return 0;
1086}
1087
1088/*
1089 *	Get an ARP cache entry.
1090 */
1091
1092static int arp_req_get(struct arpreq *r, struct net_device *dev)
1093{
1094	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1095	struct neighbour *neigh;
1096	int err = -ENXIO;
1097
1098	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1099	if (neigh) {
1100		read_lock_bh(&neigh->lock);
1101		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102		r->arp_flags = arp_state_to_flags(neigh);
1103		read_unlock_bh(&neigh->lock);
1104		r->arp_ha.sa_family = dev->type;
1105		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
 
 
 
1106		neigh_release(neigh);
1107		err = 0;
1108	}
1109	return err;
1110}
1111
1112int arp_invalidate(struct net_device *dev, __be32 ip)
1113{
1114	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1115	int err = -ENXIO;
 
1116
1117	if (neigh) {
1118		if (neigh->nud_state & ~NUD_NOARP)
1119			err = neigh_update(neigh, NULL, NUD_FAILED,
1120					   NEIGH_UPDATE_F_OVERRIDE|
1121					   NEIGH_UPDATE_F_ADMIN);
 
1122		neigh_release(neigh);
 
 
1123	}
1124
1125	return err;
1126}
1127EXPORT_SYMBOL(arp_invalidate);
1128
1129static int arp_req_delete_public(struct net *net, struct arpreq *r,
1130		struct net_device *dev)
1131{
1132	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1133	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1134
1135	if (mask == htonl(0xFFFFFFFF))
1136		return pneigh_delete(&arp_tbl, net, &ip, dev);
1137
1138	if (mask)
1139		return -EINVAL;
1140
1141	return arp_req_set_proxy(net, dev, 0);
1142}
1143
1144static int arp_req_delete(struct net *net, struct arpreq *r,
1145			  struct net_device *dev)
1146{
1147	__be32 ip;
1148
1149	if (r->arp_flags & ATF_PUBL)
1150		return arp_req_delete_public(net, r, dev);
1151
1152	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1153	if (dev == NULL) {
1154		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1155		if (IS_ERR(rt))
1156			return PTR_ERR(rt);
1157		dev = rt->dst.dev;
1158		ip_rt_put(rt);
1159		if (!dev)
1160			return -EINVAL;
1161	}
1162	return arp_invalidate(dev, ip);
1163}
1164
1165/*
1166 *	Handle an ARP layer I/O control request.
1167 */
1168
1169int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1170{
1171	int err;
1172	struct arpreq r;
1173	struct net_device *dev = NULL;
1174
1175	switch (cmd) {
1176	case SIOCDARP:
1177	case SIOCSARP:
1178		if (!capable(CAP_NET_ADMIN))
1179			return -EPERM;
 
1180	case SIOCGARP:
1181		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1182		if (err)
1183			return -EFAULT;
1184		break;
1185	default:
1186		return -EINVAL;
1187	}
1188
1189	if (r.arp_pa.sa_family != AF_INET)
1190		return -EPFNOSUPPORT;
1191
1192	if (!(r.arp_flags & ATF_PUBL) &&
1193	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1194		return -EINVAL;
1195	if (!(r.arp_flags & ATF_NETMASK))
1196		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1197							   htonl(0xFFFFFFFFUL);
1198	rtnl_lock();
1199	if (r.arp_dev[0]) {
1200		err = -ENODEV;
1201		dev = __dev_get_by_name(net, r.arp_dev);
1202		if (dev == NULL)
1203			goto out;
1204
1205		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1206		if (!r.arp_ha.sa_family)
1207			r.arp_ha.sa_family = dev->type;
1208		err = -EINVAL;
1209		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1210			goto out;
1211	} else if (cmd == SIOCGARP) {
1212		err = -ENODEV;
1213		goto out;
1214	}
1215
1216	switch (cmd) {
1217	case SIOCDARP:
1218		err = arp_req_delete(net, &r, dev);
1219		break;
1220	case SIOCSARP:
1221		err = arp_req_set(net, &r, dev);
1222		break;
1223	case SIOCGARP:
1224		err = arp_req_get(&r, dev);
1225		break;
1226	}
1227out:
1228	rtnl_unlock();
1229	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1230		err = -EFAULT;
1231	return err;
1232}
1233
1234static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1235			    void *ptr)
1236{
1237	struct net_device *dev = ptr;
 
1238
1239	switch (event) {
1240	case NETDEV_CHANGEADDR:
1241		neigh_changeaddr(&arp_tbl, dev);
1242		rt_cache_flush(dev_net(dev), 0);
 
 
 
 
 
 
 
1243		break;
1244	default:
1245		break;
1246	}
1247
1248	return NOTIFY_DONE;
1249}
1250
1251static struct notifier_block arp_netdev_notifier = {
1252	.notifier_call = arp_netdev_event,
1253};
1254
1255/* Note, that it is not on notifier chain.
1256   It is necessary, that this routine was called after route cache will be
1257   flushed.
1258 */
1259void arp_ifdown(struct net_device *dev)
1260{
1261	neigh_ifdown(&arp_tbl, dev);
1262}
1263
1264
1265/*
1266 *	Called once on startup.
1267 */
1268
1269static struct packet_type arp_packet_type __read_mostly = {
1270	.type =	cpu_to_be16(ETH_P_ARP),
1271	.func =	arp_rcv,
1272};
1273
1274static int arp_proc_init(void);
1275
1276void __init arp_init(void)
1277{
1278	neigh_table_init(&arp_tbl);
1279
1280	dev_add_pack(&arp_packet_type);
1281	arp_proc_init();
1282#ifdef CONFIG_SYSCTL
1283	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1284#endif
1285	register_netdevice_notifier(&arp_netdev_notifier);
1286}
1287
1288#ifdef CONFIG_PROC_FS
1289#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1290
1291/* ------------------------------------------------------------------------ */
1292/*
1293 *	ax25 -> ASCII conversion
1294 */
1295static char *ax2asc2(ax25_address *a, char *buf)
1296{
1297	char c, *s;
1298	int n;
1299
1300	for (n = 0, s = buf; n < 6; n++) {
1301		c = (a->ax25_call[n] >> 1) & 0x7F;
1302
1303		if (c != ' ')
1304			*s++ = c;
1305	}
1306
1307	*s++ = '-';
1308	n = (a->ax25_call[6] >> 1) & 0x0F;
1309	if (n > 9) {
1310		*s++ = '1';
1311		n -= 10;
1312	}
1313
1314	*s++ = n + '0';
1315	*s++ = '\0';
1316
1317	if (*buf == '\0' || *buf == '-')
1318		return "*";
1319
1320	return buf;
1321}
1322#endif /* CONFIG_AX25 */
1323
1324#define HBUFFERLEN 30
1325
1326static void arp_format_neigh_entry(struct seq_file *seq,
1327				   struct neighbour *n)
1328{
1329	char hbuffer[HBUFFERLEN];
1330	int k, j;
1331	char tbuf[16];
1332	struct net_device *dev = n->dev;
1333	int hatype = dev->type;
1334
1335	read_lock(&n->lock);
1336	/* Convert hardware address to XX:XX:XX:XX ... form. */
1337#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1338	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1339		ax2asc2((ax25_address *)n->ha, hbuffer);
1340	else {
1341#endif
1342	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1343		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1344		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1345		hbuffer[k++] = ':';
1346	}
1347	if (k != 0)
1348		--k;
1349	hbuffer[k] = 0;
1350#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1351	}
1352#endif
1353	sprintf(tbuf, "%pI4", n->primary_key);
1354	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1355		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1356	read_unlock(&n->lock);
1357}
1358
1359static void arp_format_pneigh_entry(struct seq_file *seq,
1360				    struct pneigh_entry *n)
1361{
1362	struct net_device *dev = n->dev;
1363	int hatype = dev ? dev->type : 0;
1364	char tbuf[16];
1365
1366	sprintf(tbuf, "%pI4", n->key);
1367	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1368		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1369		   dev ? dev->name : "*");
1370}
1371
1372static int arp_seq_show(struct seq_file *seq, void *v)
1373{
1374	if (v == SEQ_START_TOKEN) {
1375		seq_puts(seq, "IP address       HW type     Flags       "
1376			      "HW address            Mask     Device\n");
1377	} else {
1378		struct neigh_seq_state *state = seq->private;
1379
1380		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1381			arp_format_pneigh_entry(seq, v);
1382		else
1383			arp_format_neigh_entry(seq, v);
1384	}
1385
1386	return 0;
1387}
1388
1389static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1390{
1391	/* Don't want to confuse "arp -a" w/ magic entries,
1392	 * so we tell the generic iterator to skip NUD_NOARP.
1393	 */
1394	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1395}
1396
1397/* ------------------------------------------------------------------------ */
1398
1399static const struct seq_operations arp_seq_ops = {
1400	.start	= arp_seq_start,
1401	.next	= neigh_seq_next,
1402	.stop	= neigh_seq_stop,
1403	.show	= arp_seq_show,
1404};
1405
1406static int arp_seq_open(struct inode *inode, struct file *file)
1407{
1408	return seq_open_net(inode, file, &arp_seq_ops,
1409			    sizeof(struct neigh_seq_state));
1410}
1411
1412static const struct file_operations arp_seq_fops = {
1413	.owner		= THIS_MODULE,
1414	.open           = arp_seq_open,
1415	.read           = seq_read,
1416	.llseek         = seq_lseek,
1417	.release	= seq_release_net,
1418};
1419
1420
1421static int __net_init arp_net_init(struct net *net)
1422{
1423	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
 
1424		return -ENOMEM;
1425	return 0;
1426}
1427
1428static void __net_exit arp_net_exit(struct net *net)
1429{
1430	proc_net_remove(net, "arp");
1431}
1432
1433static struct pernet_operations arp_net_ops = {
1434	.init = arp_net_init,
1435	.exit = arp_net_exit,
1436};
1437
1438static int __init arp_proc_init(void)
1439{
1440	return register_pernet_subsys(&arp_net_ops);
1441}
1442
1443#else /* CONFIG_PROC_FS */
1444
1445static int __init arp_proc_init(void)
1446{
1447	return 0;
1448}
1449
1450#endif /* CONFIG_PROC_FS */