Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* linux/net/ipv4/arp.c
3 *
4 * Copyright (C) 1994 by Florian La Roche
5 *
6 * This module implements the Address Resolution Protocol ARP (RFC 826),
7 * which is used to convert IP addresses (or in the future maybe other
8 * high-level addresses) into a low-level hardware address (like an Ethernet
9 * address).
10 *
11 * Fixes:
12 * Alan Cox : Removed the Ethernet assumptions in
13 * Florian's code
14 * Alan Cox : Fixed some small errors in the ARP
15 * logic
16 * Alan Cox : Allow >4K in /proc
17 * Alan Cox : Make ARP add its own protocol entry
18 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
19 * Stephen Henson : Add AX25 support to arp_get_info()
20 * Alan Cox : Drop data when a device is downed.
21 * Alan Cox : Use init_timer().
22 * Alan Cox : Double lock fixes.
23 * Martin Seine : Move the arphdr structure
24 * to if_arp.h for compatibility.
25 * with BSD based programs.
26 * Andrew Tridgell : Added ARP netmask code and
27 * re-arranged proxy handling.
28 * Alan Cox : Changed to use notifiers.
29 * Niibe Yutaka : Reply for this device or proxies only.
30 * Alan Cox : Don't proxy across hardware types!
31 * Jonathan Naylor : Added support for NET/ROM.
32 * Mike Shaver : RFC1122 checks.
33 * Jonathan Naylor : Only lookup the hardware address for
34 * the correct hardware type.
35 * Germano Caronni : Assorted subtle races.
36 * Craig Schlenter : Don't modify permanent entry
37 * during arp_rcv.
38 * Russ Nelson : Tidied up a few bits.
39 * Alexey Kuznetsov: Major changes to caching and behaviour,
40 * eg intelligent arp probing and
41 * generation
42 * of host down events.
43 * Alan Cox : Missing unlock in device events.
44 * Eckes : ARP ioctl control errors.
45 * Alexey Kuznetsov: Arp free fix.
46 * Manuel Rodriguez: Gratuitous ARP.
47 * Jonathan Layes : Added arpd support through kerneld
48 * message queue (960314)
49 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
50 * Mike McLagan : Routing by source
51 * Stuart Cheshire : Metricom and grat arp fixes
52 * *** FOR 2.1 clean this up ***
53 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
54 * Alan Cox : Took the AP1000 nasty FDDI hack and
55 * folded into the mainstream FDDI code.
56 * Ack spit, Linus how did you allow that
57 * one in...
58 * Jes Sorensen : Make FDDI work again in 2.1.x and
59 * clean up the APFDDI & gen. FDDI bits.
60 * Alexey Kuznetsov: new arp state machine;
61 * now it is in net/core/neighbour.c.
62 * Krzysztof Halasa: Added Frame Relay ARP support.
63 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
64 * Shmulik Hen: Split arp_send to arp_create and
65 * arp_xmit so intermediate drivers like
66 * bonding can change the skb before
67 * sending (e.g. insert 8021q tag).
68 * Harald Welte : convert to make use of jenkins hash
69 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
70 */
71
72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73
74#include <linux/module.h>
75#include <linux/types.h>
76#include <linux/string.h>
77#include <linux/kernel.h>
78#include <linux/capability.h>
79#include <linux/socket.h>
80#include <linux/sockios.h>
81#include <linux/errno.h>
82#include <linux/in.h>
83#include <linux/mm.h>
84#include <linux/inet.h>
85#include <linux/inetdevice.h>
86#include <linux/netdevice.h>
87#include <linux/etherdevice.h>
88#include <linux/fddidevice.h>
89#include <linux/if_arp.h>
90#include <linux/skbuff.h>
91#include <linux/proc_fs.h>
92#include <linux/seq_file.h>
93#include <linux/stat.h>
94#include <linux/init.h>
95#include <linux/net.h>
96#include <linux/rcupdate.h>
97#include <linux/slab.h>
98#ifdef CONFIG_SYSCTL
99#include <linux/sysctl.h>
100#endif
101
102#include <net/net_namespace.h>
103#include <net/ip.h>
104#include <net/icmp.h>
105#include <net/route.h>
106#include <net/protocol.h>
107#include <net/tcp.h>
108#include <net/sock.h>
109#include <net/arp.h>
110#include <net/ax25.h>
111#include <net/netrom.h>
112#include <net/dst_metadata.h>
113#include <net/ip_tunnels.h>
114
115#include <linux/uaccess.h>
116
117#include <linux/netfilter_arp.h>
118
119/*
120 * Interface to generic neighbour cache.
121 */
122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
124static int arp_constructor(struct neighbour *neigh);
125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
127static void parp_redo(struct sk_buff *skb);
128
129static const struct neigh_ops arp_generic_ops = {
130 .family = AF_INET,
131 .solicit = arp_solicit,
132 .error_report = arp_error_report,
133 .output = neigh_resolve_output,
134 .connected_output = neigh_connected_output,
135};
136
137static const struct neigh_ops arp_hh_ops = {
138 .family = AF_INET,
139 .solicit = arp_solicit,
140 .error_report = arp_error_report,
141 .output = neigh_resolve_output,
142 .connected_output = neigh_resolve_output,
143};
144
145static const struct neigh_ops arp_direct_ops = {
146 .family = AF_INET,
147 .output = neigh_direct_output,
148 .connected_output = neigh_direct_output,
149};
150
151struct neigh_table arp_tbl = {
152 .family = AF_INET,
153 .key_len = 4,
154 .protocol = cpu_to_be16(ETH_P_IP),
155 .hash = arp_hash,
156 .key_eq = arp_key_eq,
157 .constructor = arp_constructor,
158 .proxy_redo = parp_redo,
159 .id = "arp_cache",
160 .parms = {
161 .tbl = &arp_tbl,
162 .reachable_time = 30 * HZ,
163 .data = {
164 [NEIGH_VAR_MCAST_PROBES] = 3,
165 [NEIGH_VAR_UCAST_PROBES] = 3,
166 [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
167 [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
168 [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
169 [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
170 [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
171 [NEIGH_VAR_PROXY_QLEN] = 64,
172 [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
173 [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
174 [NEIGH_VAR_LOCKTIME] = 1 * HZ,
175 },
176 },
177 .gc_interval = 30 * HZ,
178 .gc_thresh1 = 128,
179 .gc_thresh2 = 512,
180 .gc_thresh3 = 1024,
181};
182EXPORT_SYMBOL(arp_tbl);
183
184int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
185{
186 switch (dev->type) {
187 case ARPHRD_ETHER:
188 case ARPHRD_FDDI:
189 case ARPHRD_IEEE802:
190 ip_eth_mc_map(addr, haddr);
191 return 0;
192 case ARPHRD_INFINIBAND:
193 ip_ib_mc_map(addr, dev->broadcast, haddr);
194 return 0;
195 case ARPHRD_IPGRE:
196 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
197 return 0;
198 default:
199 if (dir) {
200 memcpy(haddr, dev->broadcast, dev->addr_len);
201 return 0;
202 }
203 }
204 return -EINVAL;
205}
206
207
208static u32 arp_hash(const void *pkey,
209 const struct net_device *dev,
210 __u32 *hash_rnd)
211{
212 return arp_hashfn(pkey, dev, hash_rnd);
213}
214
215static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
216{
217 return neigh_key_eq32(neigh, pkey);
218}
219
220static int arp_constructor(struct neighbour *neigh)
221{
222 __be32 addr;
223 struct net_device *dev = neigh->dev;
224 struct in_device *in_dev;
225 struct neigh_parms *parms;
226 u32 inaddr_any = INADDR_ANY;
227
228 if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
229 memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
230
231 addr = *(__be32 *)neigh->primary_key;
232 rcu_read_lock();
233 in_dev = __in_dev_get_rcu(dev);
234 if (!in_dev) {
235 rcu_read_unlock();
236 return -EINVAL;
237 }
238
239 neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
240
241 parms = in_dev->arp_parms;
242 __neigh_parms_put(neigh->parms);
243 neigh->parms = neigh_parms_clone(parms);
244 rcu_read_unlock();
245
246 if (!dev->header_ops) {
247 neigh->nud_state = NUD_NOARP;
248 neigh->ops = &arp_direct_ops;
249 neigh->output = neigh_direct_output;
250 } else {
251 /* Good devices (checked by reading texts, but only Ethernet is
252 tested)
253
254 ARPHRD_ETHER: (ethernet, apfddi)
255 ARPHRD_FDDI: (fddi)
256 ARPHRD_IEEE802: (tr)
257 ARPHRD_METRICOM: (strip)
258 ARPHRD_ARCNET:
259 etc. etc. etc.
260
261 ARPHRD_IPDDP will also work, if author repairs it.
262 I did not it, because this driver does not work even
263 in old paradigm.
264 */
265
266 if (neigh->type == RTN_MULTICAST) {
267 neigh->nud_state = NUD_NOARP;
268 arp_mc_map(addr, neigh->ha, dev, 1);
269 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
270 neigh->nud_state = NUD_NOARP;
271 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
272 } else if (neigh->type == RTN_BROADCAST ||
273 (dev->flags & IFF_POINTOPOINT)) {
274 neigh->nud_state = NUD_NOARP;
275 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
276 }
277
278 if (dev->header_ops->cache)
279 neigh->ops = &arp_hh_ops;
280 else
281 neigh->ops = &arp_generic_ops;
282
283 if (neigh->nud_state & NUD_VALID)
284 neigh->output = neigh->ops->connected_output;
285 else
286 neigh->output = neigh->ops->output;
287 }
288 return 0;
289}
290
291static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
292{
293 dst_link_failure(skb);
294 kfree_skb(skb);
295}
296
297/* Create and send an arp packet. */
298static void arp_send_dst(int type, int ptype, __be32 dest_ip,
299 struct net_device *dev, __be32 src_ip,
300 const unsigned char *dest_hw,
301 const unsigned char *src_hw,
302 const unsigned char *target_hw,
303 struct dst_entry *dst)
304{
305 struct sk_buff *skb;
306
307 /* arp on this interface. */
308 if (dev->flags & IFF_NOARP)
309 return;
310
311 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
312 dest_hw, src_hw, target_hw);
313 if (!skb)
314 return;
315
316 skb_dst_set(skb, dst_clone(dst));
317 arp_xmit(skb);
318}
319
320void arp_send(int type, int ptype, __be32 dest_ip,
321 struct net_device *dev, __be32 src_ip,
322 const unsigned char *dest_hw, const unsigned char *src_hw,
323 const unsigned char *target_hw)
324{
325 arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
326 target_hw, NULL);
327}
328EXPORT_SYMBOL(arp_send);
329
330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
331{
332 __be32 saddr = 0;
333 u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
334 struct net_device *dev = neigh->dev;
335 __be32 target = *(__be32 *)neigh->primary_key;
336 int probes = atomic_read(&neigh->probes);
337 struct in_device *in_dev;
338 struct dst_entry *dst = NULL;
339
340 rcu_read_lock();
341 in_dev = __in_dev_get_rcu(dev);
342 if (!in_dev) {
343 rcu_read_unlock();
344 return;
345 }
346 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
347 default:
348 case 0: /* By default announce any local IP */
349 if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
350 ip_hdr(skb)->saddr) == RTN_LOCAL)
351 saddr = ip_hdr(skb)->saddr;
352 break;
353 case 1: /* Restrict announcements of saddr in same subnet */
354 if (!skb)
355 break;
356 saddr = ip_hdr(skb)->saddr;
357 if (inet_addr_type_dev_table(dev_net(dev), dev,
358 saddr) == RTN_LOCAL) {
359 /* saddr should be known to target */
360 if (inet_addr_onlink(in_dev, target, saddr))
361 break;
362 }
363 saddr = 0;
364 break;
365 case 2: /* Avoid secondary IPs, get a primary/preferred one */
366 break;
367 }
368 rcu_read_unlock();
369
370 if (!saddr)
371 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
372
373 probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
374 if (probes < 0) {
375 if (!(neigh->nud_state & NUD_VALID))
376 pr_debug("trying to ucast probe in NUD_INVALID\n");
377 neigh_ha_snapshot(dst_ha, neigh, dev);
378 dst_hw = dst_ha;
379 } else {
380 probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
381 if (probes < 0) {
382 neigh_app_ns(neigh);
383 return;
384 }
385 }
386
387 if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
388 dst = skb_dst(skb);
389 arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
390 dst_hw, dev->dev_addr, NULL, dst);
391}
392
393static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
394{
395 struct net *net = dev_net(in_dev->dev);
396 int scope;
397
398 switch (IN_DEV_ARP_IGNORE(in_dev)) {
399 case 0: /* Reply, the tip is already validated */
400 return 0;
401 case 1: /* Reply only if tip is configured on the incoming interface */
402 sip = 0;
403 scope = RT_SCOPE_HOST;
404 break;
405 case 2: /*
406 * Reply only if tip is configured on the incoming interface
407 * and is in same subnet as sip
408 */
409 scope = RT_SCOPE_HOST;
410 break;
411 case 3: /* Do not reply for scope host addresses */
412 sip = 0;
413 scope = RT_SCOPE_LINK;
414 in_dev = NULL;
415 break;
416 case 4: /* Reserved */
417 case 5:
418 case 6:
419 case 7:
420 return 0;
421 case 8: /* Do not reply */
422 return 1;
423 default:
424 return 0;
425 }
426 return !inet_confirm_addr(net, in_dev, sip, tip, scope);
427}
428
429static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
430{
431 struct rtable *rt;
432 int flag = 0;
433 /*unsigned long now; */
434 struct net *net = dev_net(dev);
435
436 rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
437 if (IS_ERR(rt))
438 return 1;
439 if (rt->dst.dev != dev) {
440 __NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
441 flag = 1;
442 }
443 ip_rt_put(rt);
444 return flag;
445}
446
447/*
448 * Check if we can use proxy ARP for this path
449 */
450static inline int arp_fwd_proxy(struct in_device *in_dev,
451 struct net_device *dev, struct rtable *rt)
452{
453 struct in_device *out_dev;
454 int imi, omi = -1;
455
456 if (rt->dst.dev == dev)
457 return 0;
458
459 if (!IN_DEV_PROXY_ARP(in_dev))
460 return 0;
461 imi = IN_DEV_MEDIUM_ID(in_dev);
462 if (imi == 0)
463 return 1;
464 if (imi == -1)
465 return 0;
466
467 /* place to check for proxy_arp for routes */
468
469 out_dev = __in_dev_get_rcu(rt->dst.dev);
470 if (out_dev)
471 omi = IN_DEV_MEDIUM_ID(out_dev);
472
473 return omi != imi && omi != -1;
474}
475
476/*
477 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
478 *
479 * RFC3069 supports proxy arp replies back to the same interface. This
480 * is done to support (ethernet) switch features, like RFC 3069, where
481 * the individual ports are not allowed to communicate with each
482 * other, BUT they are allowed to talk to the upstream router. As
483 * described in RFC 3069, it is possible to allow these hosts to
484 * communicate through the upstream router, by proxy_arp'ing.
485 *
486 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
487 *
488 * This technology is known by different names:
489 * In RFC 3069 it is called VLAN Aggregation.
490 * Cisco and Allied Telesyn call it Private VLAN.
491 * Hewlett-Packard call it Source-Port filtering or port-isolation.
492 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
493 *
494 */
495static inline int arp_fwd_pvlan(struct in_device *in_dev,
496 struct net_device *dev, struct rtable *rt,
497 __be32 sip, __be32 tip)
498{
499 /* Private VLAN is only concerned about the same ethernet segment */
500 if (rt->dst.dev != dev)
501 return 0;
502
503 /* Don't reply on self probes (often done by windowz boxes)*/
504 if (sip == tip)
505 return 0;
506
507 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
508 return 1;
509 else
510 return 0;
511}
512
513/*
514 * Interface to link layer: send routine and receive handler.
515 */
516
517/*
518 * Create an arp packet. If dest_hw is not set, we create a broadcast
519 * message.
520 */
521struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
522 struct net_device *dev, __be32 src_ip,
523 const unsigned char *dest_hw,
524 const unsigned char *src_hw,
525 const unsigned char *target_hw)
526{
527 struct sk_buff *skb;
528 struct arphdr *arp;
529 unsigned char *arp_ptr;
530 int hlen = LL_RESERVED_SPACE(dev);
531 int tlen = dev->needed_tailroom;
532
533 /*
534 * Allocate a buffer
535 */
536
537 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
538 if (!skb)
539 return NULL;
540
541 skb_reserve(skb, hlen);
542 skb_reset_network_header(skb);
543 arp = skb_put(skb, arp_hdr_len(dev));
544 skb->dev = dev;
545 skb->protocol = htons(ETH_P_ARP);
546 if (!src_hw)
547 src_hw = dev->dev_addr;
548 if (!dest_hw)
549 dest_hw = dev->broadcast;
550
551 /*
552 * Fill the device header for the ARP frame
553 */
554 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
555 goto out;
556
557 /*
558 * Fill out the arp protocol part.
559 *
560 * The arp hardware type should match the device type, except for FDDI,
561 * which (according to RFC 1390) should always equal 1 (Ethernet).
562 */
563 /*
564 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
565 * DIX code for the protocol. Make these device structure fields.
566 */
567 switch (dev->type) {
568 default:
569 arp->ar_hrd = htons(dev->type);
570 arp->ar_pro = htons(ETH_P_IP);
571 break;
572
573#if IS_ENABLED(CONFIG_AX25)
574 case ARPHRD_AX25:
575 arp->ar_hrd = htons(ARPHRD_AX25);
576 arp->ar_pro = htons(AX25_P_IP);
577 break;
578
579#if IS_ENABLED(CONFIG_NETROM)
580 case ARPHRD_NETROM:
581 arp->ar_hrd = htons(ARPHRD_NETROM);
582 arp->ar_pro = htons(AX25_P_IP);
583 break;
584#endif
585#endif
586
587#if IS_ENABLED(CONFIG_FDDI)
588 case ARPHRD_FDDI:
589 arp->ar_hrd = htons(ARPHRD_ETHER);
590 arp->ar_pro = htons(ETH_P_IP);
591 break;
592#endif
593 }
594
595 arp->ar_hln = dev->addr_len;
596 arp->ar_pln = 4;
597 arp->ar_op = htons(type);
598
599 arp_ptr = (unsigned char *)(arp + 1);
600
601 memcpy(arp_ptr, src_hw, dev->addr_len);
602 arp_ptr += dev->addr_len;
603 memcpy(arp_ptr, &src_ip, 4);
604 arp_ptr += 4;
605
606 switch (dev->type) {
607#if IS_ENABLED(CONFIG_FIREWIRE_NET)
608 case ARPHRD_IEEE1394:
609 break;
610#endif
611 default:
612 if (target_hw)
613 memcpy(arp_ptr, target_hw, dev->addr_len);
614 else
615 memset(arp_ptr, 0, dev->addr_len);
616 arp_ptr += dev->addr_len;
617 }
618 memcpy(arp_ptr, &dest_ip, 4);
619
620 return skb;
621
622out:
623 kfree_skb(skb);
624 return NULL;
625}
626EXPORT_SYMBOL(arp_create);
627
628static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
629{
630 return dev_queue_xmit(skb);
631}
632
633/*
634 * Send an arp packet.
635 */
636void arp_xmit(struct sk_buff *skb)
637{
638 /* Send it off, maybe filter it using firewalling first. */
639 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
640 dev_net(skb->dev), NULL, skb, NULL, skb->dev,
641 arp_xmit_finish);
642}
643EXPORT_SYMBOL(arp_xmit);
644
645static bool arp_is_garp(struct net *net, struct net_device *dev,
646 int *addr_type, __be16 ar_op,
647 __be32 sip, __be32 tip,
648 unsigned char *sha, unsigned char *tha)
649{
650 bool is_garp = tip == sip;
651
652 /* Gratuitous ARP _replies_ also require target hwaddr to be
653 * the same as source.
654 */
655 if (is_garp && ar_op == htons(ARPOP_REPLY))
656 is_garp =
657 /* IPv4 over IEEE 1394 doesn't provide target
658 * hardware address field in its ARP payload.
659 */
660 tha &&
661 !memcmp(tha, sha, dev->addr_len);
662
663 if (is_garp) {
664 *addr_type = inet_addr_type_dev_table(net, dev, sip);
665 if (*addr_type != RTN_UNICAST)
666 is_garp = false;
667 }
668 return is_garp;
669}
670
671/*
672 * Process an arp request.
673 */
674
675static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
676{
677 struct net_device *dev = skb->dev;
678 struct in_device *in_dev = __in_dev_get_rcu(dev);
679 struct arphdr *arp;
680 unsigned char *arp_ptr;
681 struct rtable *rt;
682 unsigned char *sha;
683 unsigned char *tha = NULL;
684 __be32 sip, tip;
685 u16 dev_type = dev->type;
686 int addr_type;
687 struct neighbour *n;
688 struct dst_entry *reply_dst = NULL;
689 bool is_garp = false;
690
691 /* arp_rcv below verifies the ARP header and verifies the device
692 * is ARP'able.
693 */
694
695 if (!in_dev)
696 goto out_free_skb;
697
698 arp = arp_hdr(skb);
699
700 switch (dev_type) {
701 default:
702 if (arp->ar_pro != htons(ETH_P_IP) ||
703 htons(dev_type) != arp->ar_hrd)
704 goto out_free_skb;
705 break;
706 case ARPHRD_ETHER:
707 case ARPHRD_FDDI:
708 case ARPHRD_IEEE802:
709 /*
710 * ETHERNET, and Fibre Channel (which are IEEE 802
711 * devices, according to RFC 2625) devices will accept ARP
712 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
713 * This is the case also of FDDI, where the RFC 1390 says that
714 * FDDI devices should accept ARP hardware of (1) Ethernet,
715 * however, to be more robust, we'll accept both 1 (Ethernet)
716 * or 6 (IEEE 802.2)
717 */
718 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
719 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
720 arp->ar_pro != htons(ETH_P_IP))
721 goto out_free_skb;
722 break;
723 case ARPHRD_AX25:
724 if (arp->ar_pro != htons(AX25_P_IP) ||
725 arp->ar_hrd != htons(ARPHRD_AX25))
726 goto out_free_skb;
727 break;
728 case ARPHRD_NETROM:
729 if (arp->ar_pro != htons(AX25_P_IP) ||
730 arp->ar_hrd != htons(ARPHRD_NETROM))
731 goto out_free_skb;
732 break;
733 }
734
735 /* Understand only these message types */
736
737 if (arp->ar_op != htons(ARPOP_REPLY) &&
738 arp->ar_op != htons(ARPOP_REQUEST))
739 goto out_free_skb;
740
741/*
742 * Extract fields
743 */
744 arp_ptr = (unsigned char *)(arp + 1);
745 sha = arp_ptr;
746 arp_ptr += dev->addr_len;
747 memcpy(&sip, arp_ptr, 4);
748 arp_ptr += 4;
749 switch (dev_type) {
750#if IS_ENABLED(CONFIG_FIREWIRE_NET)
751 case ARPHRD_IEEE1394:
752 break;
753#endif
754 default:
755 tha = arp_ptr;
756 arp_ptr += dev->addr_len;
757 }
758 memcpy(&tip, arp_ptr, 4);
759/*
760 * Check for bad requests for 127.x.x.x and requests for multicast
761 * addresses. If this is one such, delete it.
762 */
763 if (ipv4_is_multicast(tip) ||
764 (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
765 goto out_free_skb;
766
767 /*
768 * For some 802.11 wireless deployments (and possibly other networks),
769 * there will be an ARP proxy and gratuitous ARP frames are attacks
770 * and thus should not be accepted.
771 */
772 if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
773 goto out_free_skb;
774
775/*
776 * Special case: We must set Frame Relay source Q.922 address
777 */
778 if (dev_type == ARPHRD_DLCI)
779 sha = dev->broadcast;
780
781/*
782 * Process entry. The idea here is we want to send a reply if it is a
783 * request for us or if it is a request for someone else that we hold
784 * a proxy for. We want to add an entry to our cache if it is a reply
785 * to us or if it is a request for our address.
786 * (The assumption for this last is that if someone is requesting our
787 * address, they are probably intending to talk to us, so it saves time
788 * if we cache their address. Their address is also probably not in
789 * our cache, since ours is not in their cache.)
790 *
791 * Putting this another way, we only care about replies if they are to
792 * us, in which case we add them to the cache. For requests, we care
793 * about those for us and those for our proxies. We reply to both,
794 * and in the case of requests for us we add the requester to the arp
795 * cache.
796 */
797
798 if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
799 reply_dst = (struct dst_entry *)
800 iptunnel_metadata_reply(skb_metadata_dst(skb),
801 GFP_ATOMIC);
802
803 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
804 if (sip == 0) {
805 if (arp->ar_op == htons(ARPOP_REQUEST) &&
806 inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
807 !arp_ignore(in_dev, sip, tip))
808 arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
809 sha, dev->dev_addr, sha, reply_dst);
810 goto out_consume_skb;
811 }
812
813 if (arp->ar_op == htons(ARPOP_REQUEST) &&
814 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
815
816 rt = skb_rtable(skb);
817 addr_type = rt->rt_type;
818
819 if (addr_type == RTN_LOCAL) {
820 int dont_send;
821
822 dont_send = arp_ignore(in_dev, sip, tip);
823 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
824 dont_send = arp_filter(sip, tip, dev);
825 if (!dont_send) {
826 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
827 if (n) {
828 arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
829 sip, dev, tip, sha,
830 dev->dev_addr, sha,
831 reply_dst);
832 neigh_release(n);
833 }
834 }
835 goto out_consume_skb;
836 } else if (IN_DEV_FORWARD(in_dev)) {
837 if (addr_type == RTN_UNICAST &&
838 (arp_fwd_proxy(in_dev, dev, rt) ||
839 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
840 (rt->dst.dev != dev &&
841 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
842 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
843 if (n)
844 neigh_release(n);
845
846 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
847 skb->pkt_type == PACKET_HOST ||
848 NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
849 arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
850 sip, dev, tip, sha,
851 dev->dev_addr, sha,
852 reply_dst);
853 } else {
854 pneigh_enqueue(&arp_tbl,
855 in_dev->arp_parms, skb);
856 goto out_free_dst;
857 }
858 goto out_consume_skb;
859 }
860 }
861 }
862
863 /* Update our ARP tables */
864
865 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
866
867 addr_type = -1;
868 if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
869 is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
870 sip, tip, sha, tha);
871 }
872
873 if (IN_DEV_ARP_ACCEPT(in_dev)) {
874 /* Unsolicited ARP is not accepted by default.
875 It is possible, that this option should be enabled for some
876 devices (strip is candidate)
877 */
878 if (!n &&
879 (is_garp ||
880 (arp->ar_op == htons(ARPOP_REPLY) &&
881 (addr_type == RTN_UNICAST ||
882 (addr_type < 0 &&
883 /* postpone calculation to as late as possible */
884 inet_addr_type_dev_table(net, dev, sip) ==
885 RTN_UNICAST)))))
886 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
887 }
888
889 if (n) {
890 int state = NUD_REACHABLE;
891 int override;
892
893 /* If several different ARP replies follows back-to-back,
894 use the FIRST one. It is possible, if several proxy
895 agents are active. Taking the first reply prevents
896 arp trashing and chooses the fastest router.
897 */
898 override = time_after(jiffies,
899 n->updated +
900 NEIGH_VAR(n->parms, LOCKTIME)) ||
901 is_garp;
902
903 /* Broadcast replies and request packets
904 do not assert neighbour reachability.
905 */
906 if (arp->ar_op != htons(ARPOP_REPLY) ||
907 skb->pkt_type != PACKET_HOST)
908 state = NUD_STALE;
909 neigh_update(n, sha, state,
910 override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
911 neigh_release(n);
912 }
913
914out_consume_skb:
915 consume_skb(skb);
916
917out_free_dst:
918 dst_release(reply_dst);
919 return NET_RX_SUCCESS;
920
921out_free_skb:
922 kfree_skb(skb);
923 return NET_RX_DROP;
924}
925
926static void parp_redo(struct sk_buff *skb)
927{
928 arp_process(dev_net(skb->dev), NULL, skb);
929}
930
931
932/*
933 * Receive an arp request from the device layer.
934 */
935
936static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
937 struct packet_type *pt, struct net_device *orig_dev)
938{
939 const struct arphdr *arp;
940
941 /* do not tweak dropwatch on an ARP we will ignore */
942 if (dev->flags & IFF_NOARP ||
943 skb->pkt_type == PACKET_OTHERHOST ||
944 skb->pkt_type == PACKET_LOOPBACK)
945 goto consumeskb;
946
947 skb = skb_share_check(skb, GFP_ATOMIC);
948 if (!skb)
949 goto out_of_mem;
950
951 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
952 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
953 goto freeskb;
954
955 arp = arp_hdr(skb);
956 if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
957 goto freeskb;
958
959 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
960
961 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
962 dev_net(dev), NULL, skb, dev, NULL,
963 arp_process);
964
965consumeskb:
966 consume_skb(skb);
967 return NET_RX_SUCCESS;
968freeskb:
969 kfree_skb(skb);
970out_of_mem:
971 return NET_RX_DROP;
972}
973
974/*
975 * User level interface (ioctl)
976 */
977
978/*
979 * Set (create) an ARP cache entry.
980 */
981
982static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
983{
984 if (!dev) {
985 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
986 return 0;
987 }
988 if (__in_dev_get_rtnl(dev)) {
989 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
990 return 0;
991 }
992 return -ENXIO;
993}
994
995static int arp_req_set_public(struct net *net, struct arpreq *r,
996 struct net_device *dev)
997{
998 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
999 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1000
1001 if (mask && mask != htonl(0xFFFFFFFF))
1002 return -EINVAL;
1003 if (!dev && (r->arp_flags & ATF_COM)) {
1004 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1005 r->arp_ha.sa_data);
1006 if (!dev)
1007 return -ENODEV;
1008 }
1009 if (mask) {
1010 if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1011 return -ENOBUFS;
1012 return 0;
1013 }
1014
1015 return arp_req_set_proxy(net, dev, 1);
1016}
1017
1018static int arp_req_set(struct net *net, struct arpreq *r,
1019 struct net_device *dev)
1020{
1021 __be32 ip;
1022 struct neighbour *neigh;
1023 int err;
1024
1025 if (r->arp_flags & ATF_PUBL)
1026 return arp_req_set_public(net, r, dev);
1027
1028 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1029 if (r->arp_flags & ATF_PERM)
1030 r->arp_flags |= ATF_COM;
1031 if (!dev) {
1032 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1033
1034 if (IS_ERR(rt))
1035 return PTR_ERR(rt);
1036 dev = rt->dst.dev;
1037 ip_rt_put(rt);
1038 if (!dev)
1039 return -EINVAL;
1040 }
1041 switch (dev->type) {
1042#if IS_ENABLED(CONFIG_FDDI)
1043 case ARPHRD_FDDI:
1044 /*
1045 * According to RFC 1390, FDDI devices should accept ARP
1046 * hardware types of 1 (Ethernet). However, to be more
1047 * robust, we'll accept hardware types of either 1 (Ethernet)
1048 * or 6 (IEEE 802.2).
1049 */
1050 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1051 r->arp_ha.sa_family != ARPHRD_ETHER &&
1052 r->arp_ha.sa_family != ARPHRD_IEEE802)
1053 return -EINVAL;
1054 break;
1055#endif
1056 default:
1057 if (r->arp_ha.sa_family != dev->type)
1058 return -EINVAL;
1059 break;
1060 }
1061
1062 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1063 err = PTR_ERR(neigh);
1064 if (!IS_ERR(neigh)) {
1065 unsigned int state = NUD_STALE;
1066 if (r->arp_flags & ATF_PERM)
1067 state = NUD_PERMANENT;
1068 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1069 r->arp_ha.sa_data : NULL, state,
1070 NEIGH_UPDATE_F_OVERRIDE |
1071 NEIGH_UPDATE_F_ADMIN, 0);
1072 neigh_release(neigh);
1073 }
1074 return err;
1075}
1076
1077static unsigned int arp_state_to_flags(struct neighbour *neigh)
1078{
1079 if (neigh->nud_state&NUD_PERMANENT)
1080 return ATF_PERM | ATF_COM;
1081 else if (neigh->nud_state&NUD_VALID)
1082 return ATF_COM;
1083 else
1084 return 0;
1085}
1086
1087/*
1088 * Get an ARP cache entry.
1089 */
1090
1091static int arp_req_get(struct arpreq *r, struct net_device *dev)
1092{
1093 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1094 struct neighbour *neigh;
1095 int err = -ENXIO;
1096
1097 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1098 if (neigh) {
1099 if (!(neigh->nud_state & NUD_NOARP)) {
1100 read_lock_bh(&neigh->lock);
1101 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102 r->arp_flags = arp_state_to_flags(neigh);
1103 read_unlock_bh(&neigh->lock);
1104 r->arp_ha.sa_family = dev->type;
1105 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1106 err = 0;
1107 }
1108 neigh_release(neigh);
1109 }
1110 return err;
1111}
1112
1113static int arp_invalidate(struct net_device *dev, __be32 ip)
1114{
1115 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1116 int err = -ENXIO;
1117 struct neigh_table *tbl = &arp_tbl;
1118
1119 if (neigh) {
1120 if (neigh->nud_state & ~NUD_NOARP)
1121 err = neigh_update(neigh, NULL, NUD_FAILED,
1122 NEIGH_UPDATE_F_OVERRIDE|
1123 NEIGH_UPDATE_F_ADMIN, 0);
1124 write_lock_bh(&tbl->lock);
1125 neigh_release(neigh);
1126 neigh_remove_one(neigh, tbl);
1127 write_unlock_bh(&tbl->lock);
1128 }
1129
1130 return err;
1131}
1132
1133static int arp_req_delete_public(struct net *net, struct arpreq *r,
1134 struct net_device *dev)
1135{
1136 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1137 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1138
1139 if (mask == htonl(0xFFFFFFFF))
1140 return pneigh_delete(&arp_tbl, net, &ip, dev);
1141
1142 if (mask)
1143 return -EINVAL;
1144
1145 return arp_req_set_proxy(net, dev, 0);
1146}
1147
1148static int arp_req_delete(struct net *net, struct arpreq *r,
1149 struct net_device *dev)
1150{
1151 __be32 ip;
1152
1153 if (r->arp_flags & ATF_PUBL)
1154 return arp_req_delete_public(net, r, dev);
1155
1156 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1157 if (!dev) {
1158 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1159 if (IS_ERR(rt))
1160 return PTR_ERR(rt);
1161 dev = rt->dst.dev;
1162 ip_rt_put(rt);
1163 if (!dev)
1164 return -EINVAL;
1165 }
1166 return arp_invalidate(dev, ip);
1167}
1168
1169/*
1170 * Handle an ARP layer I/O control request.
1171 */
1172
1173int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1174{
1175 int err;
1176 struct arpreq r;
1177 struct net_device *dev = NULL;
1178
1179 switch (cmd) {
1180 case SIOCDARP:
1181 case SIOCSARP:
1182 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1183 return -EPERM;
1184 fallthrough;
1185 case SIOCGARP:
1186 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1187 if (err)
1188 return -EFAULT;
1189 break;
1190 default:
1191 return -EINVAL;
1192 }
1193
1194 if (r.arp_pa.sa_family != AF_INET)
1195 return -EPFNOSUPPORT;
1196
1197 if (!(r.arp_flags & ATF_PUBL) &&
1198 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1199 return -EINVAL;
1200 if (!(r.arp_flags & ATF_NETMASK))
1201 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1202 htonl(0xFFFFFFFFUL);
1203 rtnl_lock();
1204 if (r.arp_dev[0]) {
1205 err = -ENODEV;
1206 dev = __dev_get_by_name(net, r.arp_dev);
1207 if (!dev)
1208 goto out;
1209
1210 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1211 if (!r.arp_ha.sa_family)
1212 r.arp_ha.sa_family = dev->type;
1213 err = -EINVAL;
1214 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1215 goto out;
1216 } else if (cmd == SIOCGARP) {
1217 err = -ENODEV;
1218 goto out;
1219 }
1220
1221 switch (cmd) {
1222 case SIOCDARP:
1223 err = arp_req_delete(net, &r, dev);
1224 break;
1225 case SIOCSARP:
1226 err = arp_req_set(net, &r, dev);
1227 break;
1228 case SIOCGARP:
1229 err = arp_req_get(&r, dev);
1230 break;
1231 }
1232out:
1233 rtnl_unlock();
1234 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1235 err = -EFAULT;
1236 return err;
1237}
1238
1239static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1240 void *ptr)
1241{
1242 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1243 struct netdev_notifier_change_info *change_info;
1244
1245 switch (event) {
1246 case NETDEV_CHANGEADDR:
1247 neigh_changeaddr(&arp_tbl, dev);
1248 rt_cache_flush(dev_net(dev));
1249 break;
1250 case NETDEV_CHANGE:
1251 change_info = ptr;
1252 if (change_info->flags_changed & IFF_NOARP)
1253 neigh_changeaddr(&arp_tbl, dev);
1254 if (!netif_carrier_ok(dev))
1255 neigh_carrier_down(&arp_tbl, dev);
1256 break;
1257 default:
1258 break;
1259 }
1260
1261 return NOTIFY_DONE;
1262}
1263
1264static struct notifier_block arp_netdev_notifier = {
1265 .notifier_call = arp_netdev_event,
1266};
1267
1268/* Note, that it is not on notifier chain.
1269 It is necessary, that this routine was called after route cache will be
1270 flushed.
1271 */
1272void arp_ifdown(struct net_device *dev)
1273{
1274 neigh_ifdown(&arp_tbl, dev);
1275}
1276
1277
1278/*
1279 * Called once on startup.
1280 */
1281
1282static struct packet_type arp_packet_type __read_mostly = {
1283 .type = cpu_to_be16(ETH_P_ARP),
1284 .func = arp_rcv,
1285};
1286
1287static int arp_proc_init(void);
1288
1289void __init arp_init(void)
1290{
1291 neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1292
1293 dev_add_pack(&arp_packet_type);
1294 arp_proc_init();
1295#ifdef CONFIG_SYSCTL
1296 neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1297#endif
1298 register_netdevice_notifier(&arp_netdev_notifier);
1299}
1300
1301#ifdef CONFIG_PROC_FS
1302#if IS_ENABLED(CONFIG_AX25)
1303
1304/* ------------------------------------------------------------------------ */
1305/*
1306 * ax25 -> ASCII conversion
1307 */
1308static void ax2asc2(ax25_address *a, char *buf)
1309{
1310 char c, *s;
1311 int n;
1312
1313 for (n = 0, s = buf; n < 6; n++) {
1314 c = (a->ax25_call[n] >> 1) & 0x7F;
1315
1316 if (c != ' ')
1317 *s++ = c;
1318 }
1319
1320 *s++ = '-';
1321 n = (a->ax25_call[6] >> 1) & 0x0F;
1322 if (n > 9) {
1323 *s++ = '1';
1324 n -= 10;
1325 }
1326
1327 *s++ = n + '0';
1328 *s++ = '\0';
1329
1330 if (*buf == '\0' || *buf == '-') {
1331 buf[0] = '*';
1332 buf[1] = '\0';
1333 }
1334}
1335#endif /* CONFIG_AX25 */
1336
1337#define HBUFFERLEN 30
1338
1339static void arp_format_neigh_entry(struct seq_file *seq,
1340 struct neighbour *n)
1341{
1342 char hbuffer[HBUFFERLEN];
1343 int k, j;
1344 char tbuf[16];
1345 struct net_device *dev = n->dev;
1346 int hatype = dev->type;
1347
1348 read_lock(&n->lock);
1349 /* Convert hardware address to XX:XX:XX:XX ... form. */
1350#if IS_ENABLED(CONFIG_AX25)
1351 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1352 ax2asc2((ax25_address *)n->ha, hbuffer);
1353 else {
1354#endif
1355 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1356 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1357 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1358 hbuffer[k++] = ':';
1359 }
1360 if (k != 0)
1361 --k;
1362 hbuffer[k] = 0;
1363#if IS_ENABLED(CONFIG_AX25)
1364 }
1365#endif
1366 sprintf(tbuf, "%pI4", n->primary_key);
1367 seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s * %s\n",
1368 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1369 read_unlock(&n->lock);
1370}
1371
1372static void arp_format_pneigh_entry(struct seq_file *seq,
1373 struct pneigh_entry *n)
1374{
1375 struct net_device *dev = n->dev;
1376 int hatype = dev ? dev->type : 0;
1377 char tbuf[16];
1378
1379 sprintf(tbuf, "%pI4", n->key);
1380 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1381 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1382 dev ? dev->name : "*");
1383}
1384
1385static int arp_seq_show(struct seq_file *seq, void *v)
1386{
1387 if (v == SEQ_START_TOKEN) {
1388 seq_puts(seq, "IP address HW type Flags "
1389 "HW address Mask Device\n");
1390 } else {
1391 struct neigh_seq_state *state = seq->private;
1392
1393 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1394 arp_format_pneigh_entry(seq, v);
1395 else
1396 arp_format_neigh_entry(seq, v);
1397 }
1398
1399 return 0;
1400}
1401
1402static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1403{
1404 /* Don't want to confuse "arp -a" w/ magic entries,
1405 * so we tell the generic iterator to skip NUD_NOARP.
1406 */
1407 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1408}
1409
1410/* ------------------------------------------------------------------------ */
1411
1412static const struct seq_operations arp_seq_ops = {
1413 .start = arp_seq_start,
1414 .next = neigh_seq_next,
1415 .stop = neigh_seq_stop,
1416 .show = arp_seq_show,
1417};
1418
1419/* ------------------------------------------------------------------------ */
1420
1421static int __net_init arp_net_init(struct net *net)
1422{
1423 if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1424 sizeof(struct neigh_seq_state)))
1425 return -ENOMEM;
1426 return 0;
1427}
1428
1429static void __net_exit arp_net_exit(struct net *net)
1430{
1431 remove_proc_entry("arp", net->proc_net);
1432}
1433
1434static struct pernet_operations arp_net_ops = {
1435 .init = arp_net_init,
1436 .exit = arp_net_exit,
1437};
1438
1439static int __init arp_proc_init(void)
1440{
1441 return register_pernet_subsys(&arp_net_ops);
1442}
1443
1444#else /* CONFIG_PROC_FS */
1445
1446static int __init arp_proc_init(void)
1447{
1448 return 0;
1449}
1450
1451#endif /* CONFIG_PROC_FS */
1/* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
74 */
75
76#include <linux/module.h>
77#include <linux/types.h>
78#include <linux/string.h>
79#include <linux/kernel.h>
80#include <linux/capability.h>
81#include <linux/socket.h>
82#include <linux/sockios.h>
83#include <linux/errno.h>
84#include <linux/in.h>
85#include <linux/mm.h>
86#include <linux/inet.h>
87#include <linux/inetdevice.h>
88#include <linux/netdevice.h>
89#include <linux/etherdevice.h>
90#include <linux/fddidevice.h>
91#include <linux/if_arp.h>
92#include <linux/trdevice.h>
93#include <linux/skbuff.h>
94#include <linux/proc_fs.h>
95#include <linux/seq_file.h>
96#include <linux/stat.h>
97#include <linux/init.h>
98#include <linux/net.h>
99#include <linux/rcupdate.h>
100#include <linux/slab.h>
101#ifdef CONFIG_SYSCTL
102#include <linux/sysctl.h>
103#endif
104
105#include <net/net_namespace.h>
106#include <net/ip.h>
107#include <net/icmp.h>
108#include <net/route.h>
109#include <net/protocol.h>
110#include <net/tcp.h>
111#include <net/sock.h>
112#include <net/arp.h>
113#include <net/ax25.h>
114#include <net/netrom.h>
115#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
116#include <net/atmclip.h>
117struct neigh_table *clip_tbl_hook;
118EXPORT_SYMBOL(clip_tbl_hook);
119#endif
120
121#include <asm/system.h>
122#include <linux/uaccess.h>
123
124#include <linux/netfilter_arp.h>
125
126/*
127 * Interface to generic neighbour cache.
128 */
129static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 rnd);
130static int arp_constructor(struct neighbour *neigh);
131static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133static void parp_redo(struct sk_buff *skb);
134
135static const struct neigh_ops arp_generic_ops = {
136 .family = AF_INET,
137 .solicit = arp_solicit,
138 .error_report = arp_error_report,
139 .output = neigh_resolve_output,
140 .connected_output = neigh_connected_output,
141};
142
143static const struct neigh_ops arp_hh_ops = {
144 .family = AF_INET,
145 .solicit = arp_solicit,
146 .error_report = arp_error_report,
147 .output = neigh_resolve_output,
148 .connected_output = neigh_resolve_output,
149};
150
151static const struct neigh_ops arp_direct_ops = {
152 .family = AF_INET,
153 .output = neigh_direct_output,
154 .connected_output = neigh_direct_output,
155};
156
157static const struct neigh_ops arp_broken_ops = {
158 .family = AF_INET,
159 .solicit = arp_solicit,
160 .error_report = arp_error_report,
161 .output = neigh_compat_output,
162 .connected_output = neigh_compat_output,
163};
164
165struct neigh_table arp_tbl = {
166 .family = AF_INET,
167 .entry_size = sizeof(struct neighbour) + 4,
168 .key_len = 4,
169 .hash = arp_hash,
170 .constructor = arp_constructor,
171 .proxy_redo = parp_redo,
172 .id = "arp_cache",
173 .parms = {
174 .tbl = &arp_tbl,
175 .base_reachable_time = 30 * HZ,
176 .retrans_time = 1 * HZ,
177 .gc_staletime = 60 * HZ,
178 .reachable_time = 30 * HZ,
179 .delay_probe_time = 5 * HZ,
180 .queue_len = 3,
181 .ucast_probes = 3,
182 .mcast_probes = 3,
183 .anycast_delay = 1 * HZ,
184 .proxy_delay = (8 * HZ) / 10,
185 .proxy_qlen = 64,
186 .locktime = 1 * HZ,
187 },
188 .gc_interval = 30 * HZ,
189 .gc_thresh1 = 128,
190 .gc_thresh2 = 512,
191 .gc_thresh3 = 1024,
192};
193EXPORT_SYMBOL(arp_tbl);
194
195int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
196{
197 switch (dev->type) {
198 case ARPHRD_ETHER:
199 case ARPHRD_FDDI:
200 case ARPHRD_IEEE802:
201 ip_eth_mc_map(addr, haddr);
202 return 0;
203 case ARPHRD_IEEE802_TR:
204 ip_tr_mc_map(addr, haddr);
205 return 0;
206 case ARPHRD_INFINIBAND:
207 ip_ib_mc_map(addr, dev->broadcast, haddr);
208 return 0;
209 case ARPHRD_IPGRE:
210 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
211 return 0;
212 default:
213 if (dir) {
214 memcpy(haddr, dev->broadcast, dev->addr_len);
215 return 0;
216 }
217 }
218 return -EINVAL;
219}
220
221
222static u32 arp_hash(const void *pkey,
223 const struct net_device *dev,
224 __u32 hash_rnd)
225{
226 return arp_hashfn(*(u32 *)pkey, dev, hash_rnd);
227}
228
229static int arp_constructor(struct neighbour *neigh)
230{
231 __be32 addr = *(__be32 *)neigh->primary_key;
232 struct net_device *dev = neigh->dev;
233 struct in_device *in_dev;
234 struct neigh_parms *parms;
235
236 rcu_read_lock();
237 in_dev = __in_dev_get_rcu(dev);
238 if (in_dev == NULL) {
239 rcu_read_unlock();
240 return -EINVAL;
241 }
242
243 neigh->type = inet_addr_type(dev_net(dev), addr);
244
245 parms = in_dev->arp_parms;
246 __neigh_parms_put(neigh->parms);
247 neigh->parms = neigh_parms_clone(parms);
248 rcu_read_unlock();
249
250 if (!dev->header_ops) {
251 neigh->nud_state = NUD_NOARP;
252 neigh->ops = &arp_direct_ops;
253 neigh->output = neigh_direct_output;
254 } else {
255 /* Good devices (checked by reading texts, but only Ethernet is
256 tested)
257
258 ARPHRD_ETHER: (ethernet, apfddi)
259 ARPHRD_FDDI: (fddi)
260 ARPHRD_IEEE802: (tr)
261 ARPHRD_METRICOM: (strip)
262 ARPHRD_ARCNET:
263 etc. etc. etc.
264
265 ARPHRD_IPDDP will also work, if author repairs it.
266 I did not it, because this driver does not work even
267 in old paradigm.
268 */
269
270#if 1
271 /* So... these "amateur" devices are hopeless.
272 The only thing, that I can say now:
273 It is very sad that we need to keep ugly obsolete
274 code to make them happy.
275
276 They should be moved to more reasonable state, now
277 they use rebuild_header INSTEAD OF hard_start_xmit!!!
278 Besides that, they are sort of out of date
279 (a lot of redundant clones/copies, useless in 2.1),
280 I wonder why people believe that they work.
281 */
282 switch (dev->type) {
283 default:
284 break;
285 case ARPHRD_ROSE:
286#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
287 case ARPHRD_AX25:
288#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
289 case ARPHRD_NETROM:
290#endif
291 neigh->ops = &arp_broken_ops;
292 neigh->output = neigh->ops->output;
293 return 0;
294#else
295 break;
296#endif
297 }
298#endif
299 if (neigh->type == RTN_MULTICAST) {
300 neigh->nud_state = NUD_NOARP;
301 arp_mc_map(addr, neigh->ha, dev, 1);
302 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
303 neigh->nud_state = NUD_NOARP;
304 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
305 } else if (neigh->type == RTN_BROADCAST ||
306 (dev->flags & IFF_POINTOPOINT)) {
307 neigh->nud_state = NUD_NOARP;
308 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
309 }
310
311 if (dev->header_ops->cache)
312 neigh->ops = &arp_hh_ops;
313 else
314 neigh->ops = &arp_generic_ops;
315
316 if (neigh->nud_state & NUD_VALID)
317 neigh->output = neigh->ops->connected_output;
318 else
319 neigh->output = neigh->ops->output;
320 }
321 return 0;
322}
323
324static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
325{
326 dst_link_failure(skb);
327 kfree_skb(skb);
328}
329
330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
331{
332 __be32 saddr = 0;
333 u8 *dst_ha = NULL;
334 struct net_device *dev = neigh->dev;
335 __be32 target = *(__be32 *)neigh->primary_key;
336 int probes = atomic_read(&neigh->probes);
337 struct in_device *in_dev;
338
339 rcu_read_lock();
340 in_dev = __in_dev_get_rcu(dev);
341 if (!in_dev) {
342 rcu_read_unlock();
343 return;
344 }
345 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
346 default:
347 case 0: /* By default announce any local IP */
348 if (skb && inet_addr_type(dev_net(dev),
349 ip_hdr(skb)->saddr) == RTN_LOCAL)
350 saddr = ip_hdr(skb)->saddr;
351 break;
352 case 1: /* Restrict announcements of saddr in same subnet */
353 if (!skb)
354 break;
355 saddr = ip_hdr(skb)->saddr;
356 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
357 /* saddr should be known to target */
358 if (inet_addr_onlink(in_dev, target, saddr))
359 break;
360 }
361 saddr = 0;
362 break;
363 case 2: /* Avoid secondary IPs, get a primary/preferred one */
364 break;
365 }
366 rcu_read_unlock();
367
368 if (!saddr)
369 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
370
371 probes -= neigh->parms->ucast_probes;
372 if (probes < 0) {
373 if (!(neigh->nud_state & NUD_VALID))
374 printk(KERN_DEBUG
375 "trying to ucast probe in NUD_INVALID\n");
376 dst_ha = neigh->ha;
377 read_lock_bh(&neigh->lock);
378 } else {
379 probes -= neigh->parms->app_probes;
380 if (probes < 0) {
381#ifdef CONFIG_ARPD
382 neigh_app_ns(neigh);
383#endif
384 return;
385 }
386 }
387
388 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
389 dst_ha, dev->dev_addr, NULL);
390 if (dst_ha)
391 read_unlock_bh(&neigh->lock);
392}
393
394static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
395{
396 int scope;
397
398 switch (IN_DEV_ARP_IGNORE(in_dev)) {
399 case 0: /* Reply, the tip is already validated */
400 return 0;
401 case 1: /* Reply only if tip is configured on the incoming interface */
402 sip = 0;
403 scope = RT_SCOPE_HOST;
404 break;
405 case 2: /*
406 * Reply only if tip is configured on the incoming interface
407 * and is in same subnet as sip
408 */
409 scope = RT_SCOPE_HOST;
410 break;
411 case 3: /* Do not reply for scope host addresses */
412 sip = 0;
413 scope = RT_SCOPE_LINK;
414 break;
415 case 4: /* Reserved */
416 case 5:
417 case 6:
418 case 7:
419 return 0;
420 case 8: /* Do not reply */
421 return 1;
422 default:
423 return 0;
424 }
425 return !inet_confirm_addr(in_dev, sip, tip, scope);
426}
427
428static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
429{
430 struct rtable *rt;
431 int flag = 0;
432 /*unsigned long now; */
433 struct net *net = dev_net(dev);
434
435 rt = ip_route_output(net, sip, tip, 0, 0);
436 if (IS_ERR(rt))
437 return 1;
438 if (rt->dst.dev != dev) {
439 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
440 flag = 1;
441 }
442 ip_rt_put(rt);
443 return flag;
444}
445
446/* OBSOLETE FUNCTIONS */
447
448/*
449 * Find an arp mapping in the cache. If not found, post a request.
450 *
451 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
452 * even if it exists. It is supposed that skb->dev was mangled
453 * by a virtual device (eql, shaper). Nobody but broken devices
454 * is allowed to use this function, it is scheduled to be removed. --ANK
455 */
456
457static int arp_set_predefined(int addr_hint, unsigned char *haddr,
458 __be32 paddr, struct net_device *dev)
459{
460 switch (addr_hint) {
461 case RTN_LOCAL:
462 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
463 memcpy(haddr, dev->dev_addr, dev->addr_len);
464 return 1;
465 case RTN_MULTICAST:
466 arp_mc_map(paddr, haddr, dev, 1);
467 return 1;
468 case RTN_BROADCAST:
469 memcpy(haddr, dev->broadcast, dev->addr_len);
470 return 1;
471 }
472 return 0;
473}
474
475
476int arp_find(unsigned char *haddr, struct sk_buff *skb)
477{
478 struct net_device *dev = skb->dev;
479 __be32 paddr;
480 struct neighbour *n;
481
482 if (!skb_dst(skb)) {
483 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
484 kfree_skb(skb);
485 return 1;
486 }
487
488 paddr = skb_rtable(skb)->rt_gateway;
489
490 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
491 paddr, dev))
492 return 0;
493
494 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
495
496 if (n) {
497 n->used = jiffies;
498 if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
499 neigh_ha_snapshot(haddr, n, dev);
500 neigh_release(n);
501 return 0;
502 }
503 neigh_release(n);
504 } else
505 kfree_skb(skb);
506 return 1;
507}
508EXPORT_SYMBOL(arp_find);
509
510/* END OF OBSOLETE FUNCTIONS */
511
512/*
513 * Check if we can use proxy ARP for this path
514 */
515static inline int arp_fwd_proxy(struct in_device *in_dev,
516 struct net_device *dev, struct rtable *rt)
517{
518 struct in_device *out_dev;
519 int imi, omi = -1;
520
521 if (rt->dst.dev == dev)
522 return 0;
523
524 if (!IN_DEV_PROXY_ARP(in_dev))
525 return 0;
526 imi = IN_DEV_MEDIUM_ID(in_dev);
527 if (imi == 0)
528 return 1;
529 if (imi == -1)
530 return 0;
531
532 /* place to check for proxy_arp for routes */
533
534 out_dev = __in_dev_get_rcu(rt->dst.dev);
535 if (out_dev)
536 omi = IN_DEV_MEDIUM_ID(out_dev);
537
538 return omi != imi && omi != -1;
539}
540
541/*
542 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
543 *
544 * RFC3069 supports proxy arp replies back to the same interface. This
545 * is done to support (ethernet) switch features, like RFC 3069, where
546 * the individual ports are not allowed to communicate with each
547 * other, BUT they are allowed to talk to the upstream router. As
548 * described in RFC 3069, it is possible to allow these hosts to
549 * communicate through the upstream router, by proxy_arp'ing.
550 *
551 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
552 *
553 * This technology is known by different names:
554 * In RFC 3069 it is called VLAN Aggregation.
555 * Cisco and Allied Telesyn call it Private VLAN.
556 * Hewlett-Packard call it Source-Port filtering or port-isolation.
557 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
558 *
559 */
560static inline int arp_fwd_pvlan(struct in_device *in_dev,
561 struct net_device *dev, struct rtable *rt,
562 __be32 sip, __be32 tip)
563{
564 /* Private VLAN is only concerned about the same ethernet segment */
565 if (rt->dst.dev != dev)
566 return 0;
567
568 /* Don't reply on self probes (often done by windowz boxes)*/
569 if (sip == tip)
570 return 0;
571
572 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
573 return 1;
574 else
575 return 0;
576}
577
578/*
579 * Interface to link layer: send routine and receive handler.
580 */
581
582/*
583 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
584 * message.
585 */
586struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
587 struct net_device *dev, __be32 src_ip,
588 const unsigned char *dest_hw,
589 const unsigned char *src_hw,
590 const unsigned char *target_hw)
591{
592 struct sk_buff *skb;
593 struct arphdr *arp;
594 unsigned char *arp_ptr;
595
596 /*
597 * Allocate a buffer
598 */
599
600 skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
601 if (skb == NULL)
602 return NULL;
603
604 skb_reserve(skb, LL_RESERVED_SPACE(dev));
605 skb_reset_network_header(skb);
606 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
607 skb->dev = dev;
608 skb->protocol = htons(ETH_P_ARP);
609 if (src_hw == NULL)
610 src_hw = dev->dev_addr;
611 if (dest_hw == NULL)
612 dest_hw = dev->broadcast;
613
614 /*
615 * Fill the device header for the ARP frame
616 */
617 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
618 goto out;
619
620 /*
621 * Fill out the arp protocol part.
622 *
623 * The arp hardware type should match the device type, except for FDDI,
624 * which (according to RFC 1390) should always equal 1 (Ethernet).
625 */
626 /*
627 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
628 * DIX code for the protocol. Make these device structure fields.
629 */
630 switch (dev->type) {
631 default:
632 arp->ar_hrd = htons(dev->type);
633 arp->ar_pro = htons(ETH_P_IP);
634 break;
635
636#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
637 case ARPHRD_AX25:
638 arp->ar_hrd = htons(ARPHRD_AX25);
639 arp->ar_pro = htons(AX25_P_IP);
640 break;
641
642#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
643 case ARPHRD_NETROM:
644 arp->ar_hrd = htons(ARPHRD_NETROM);
645 arp->ar_pro = htons(AX25_P_IP);
646 break;
647#endif
648#endif
649
650#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
651 case ARPHRD_FDDI:
652 arp->ar_hrd = htons(ARPHRD_ETHER);
653 arp->ar_pro = htons(ETH_P_IP);
654 break;
655#endif
656#if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
657 case ARPHRD_IEEE802_TR:
658 arp->ar_hrd = htons(ARPHRD_IEEE802);
659 arp->ar_pro = htons(ETH_P_IP);
660 break;
661#endif
662 }
663
664 arp->ar_hln = dev->addr_len;
665 arp->ar_pln = 4;
666 arp->ar_op = htons(type);
667
668 arp_ptr = (unsigned char *)(arp + 1);
669
670 memcpy(arp_ptr, src_hw, dev->addr_len);
671 arp_ptr += dev->addr_len;
672 memcpy(arp_ptr, &src_ip, 4);
673 arp_ptr += 4;
674 if (target_hw != NULL)
675 memcpy(arp_ptr, target_hw, dev->addr_len);
676 else
677 memset(arp_ptr, 0, dev->addr_len);
678 arp_ptr += dev->addr_len;
679 memcpy(arp_ptr, &dest_ip, 4);
680
681 return skb;
682
683out:
684 kfree_skb(skb);
685 return NULL;
686}
687EXPORT_SYMBOL(arp_create);
688
689/*
690 * Send an arp packet.
691 */
692void arp_xmit(struct sk_buff *skb)
693{
694 /* Send it off, maybe filter it using firewalling first. */
695 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
696}
697EXPORT_SYMBOL(arp_xmit);
698
699/*
700 * Create and send an arp packet.
701 */
702void arp_send(int type, int ptype, __be32 dest_ip,
703 struct net_device *dev, __be32 src_ip,
704 const unsigned char *dest_hw, const unsigned char *src_hw,
705 const unsigned char *target_hw)
706{
707 struct sk_buff *skb;
708
709 /*
710 * No arp on this interface.
711 */
712
713 if (dev->flags&IFF_NOARP)
714 return;
715
716 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
717 dest_hw, src_hw, target_hw);
718 if (skb == NULL)
719 return;
720
721 arp_xmit(skb);
722}
723EXPORT_SYMBOL(arp_send);
724
725/*
726 * Process an arp request.
727 */
728
729static int arp_process(struct sk_buff *skb)
730{
731 struct net_device *dev = skb->dev;
732 struct in_device *in_dev = __in_dev_get_rcu(dev);
733 struct arphdr *arp;
734 unsigned char *arp_ptr;
735 struct rtable *rt;
736 unsigned char *sha;
737 __be32 sip, tip;
738 u16 dev_type = dev->type;
739 int addr_type;
740 struct neighbour *n;
741 struct net *net = dev_net(dev);
742
743 /* arp_rcv below verifies the ARP header and verifies the device
744 * is ARP'able.
745 */
746
747 if (in_dev == NULL)
748 goto out;
749
750 arp = arp_hdr(skb);
751
752 switch (dev_type) {
753 default:
754 if (arp->ar_pro != htons(ETH_P_IP) ||
755 htons(dev_type) != arp->ar_hrd)
756 goto out;
757 break;
758 case ARPHRD_ETHER:
759 case ARPHRD_IEEE802_TR:
760 case ARPHRD_FDDI:
761 case ARPHRD_IEEE802:
762 /*
763 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
764 * devices, according to RFC 2625) devices will accept ARP
765 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
766 * This is the case also of FDDI, where the RFC 1390 says that
767 * FDDI devices should accept ARP hardware of (1) Ethernet,
768 * however, to be more robust, we'll accept both 1 (Ethernet)
769 * or 6 (IEEE 802.2)
770 */
771 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
772 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
773 arp->ar_pro != htons(ETH_P_IP))
774 goto out;
775 break;
776 case ARPHRD_AX25:
777 if (arp->ar_pro != htons(AX25_P_IP) ||
778 arp->ar_hrd != htons(ARPHRD_AX25))
779 goto out;
780 break;
781 case ARPHRD_NETROM:
782 if (arp->ar_pro != htons(AX25_P_IP) ||
783 arp->ar_hrd != htons(ARPHRD_NETROM))
784 goto out;
785 break;
786 }
787
788 /* Understand only these message types */
789
790 if (arp->ar_op != htons(ARPOP_REPLY) &&
791 arp->ar_op != htons(ARPOP_REQUEST))
792 goto out;
793
794/*
795 * Extract fields
796 */
797 arp_ptr = (unsigned char *)(arp + 1);
798 sha = arp_ptr;
799 arp_ptr += dev->addr_len;
800 memcpy(&sip, arp_ptr, 4);
801 arp_ptr += 4;
802 arp_ptr += dev->addr_len;
803 memcpy(&tip, arp_ptr, 4);
804/*
805 * Check for bad requests for 127.x.x.x and requests for multicast
806 * addresses. If this is one such, delete it.
807 */
808 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
809 goto out;
810
811/*
812 * Special case: We must set Frame Relay source Q.922 address
813 */
814 if (dev_type == ARPHRD_DLCI)
815 sha = dev->broadcast;
816
817/*
818 * Process entry. The idea here is we want to send a reply if it is a
819 * request for us or if it is a request for someone else that we hold
820 * a proxy for. We want to add an entry to our cache if it is a reply
821 * to us or if it is a request for our address.
822 * (The assumption for this last is that if someone is requesting our
823 * address, they are probably intending to talk to us, so it saves time
824 * if we cache their address. Their address is also probably not in
825 * our cache, since ours is not in their cache.)
826 *
827 * Putting this another way, we only care about replies if they are to
828 * us, in which case we add them to the cache. For requests, we care
829 * about those for us and those for our proxies. We reply to both,
830 * and in the case of requests for us we add the requester to the arp
831 * cache.
832 */
833
834 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
835 if (sip == 0) {
836 if (arp->ar_op == htons(ARPOP_REQUEST) &&
837 inet_addr_type(net, tip) == RTN_LOCAL &&
838 !arp_ignore(in_dev, sip, tip))
839 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
840 dev->dev_addr, sha);
841 goto out;
842 }
843
844 if (arp->ar_op == htons(ARPOP_REQUEST) &&
845 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
846
847 rt = skb_rtable(skb);
848 addr_type = rt->rt_type;
849
850 if (addr_type == RTN_LOCAL) {
851 int dont_send;
852
853 dont_send = arp_ignore(in_dev, sip, tip);
854 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
855 dont_send = arp_filter(sip, tip, dev);
856 if (!dont_send) {
857 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
858 if (n) {
859 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
860 dev, tip, sha, dev->dev_addr,
861 sha);
862 neigh_release(n);
863 }
864 }
865 goto out;
866 } else if (IN_DEV_FORWARD(in_dev)) {
867 if (addr_type == RTN_UNICAST &&
868 (arp_fwd_proxy(in_dev, dev, rt) ||
869 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
870 pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
871 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
872 if (n)
873 neigh_release(n);
874
875 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
876 skb->pkt_type == PACKET_HOST ||
877 in_dev->arp_parms->proxy_delay == 0) {
878 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
879 dev, tip, sha, dev->dev_addr,
880 sha);
881 } else {
882 pneigh_enqueue(&arp_tbl,
883 in_dev->arp_parms, skb);
884 return 0;
885 }
886 goto out;
887 }
888 }
889 }
890
891 /* Update our ARP tables */
892
893 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
894
895 if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
896 /* Unsolicited ARP is not accepted by default.
897 It is possible, that this option should be enabled for some
898 devices (strip is candidate)
899 */
900 if (n == NULL &&
901 (arp->ar_op == htons(ARPOP_REPLY) ||
902 (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
903 inet_addr_type(net, sip) == RTN_UNICAST)
904 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
905 }
906
907 if (n) {
908 int state = NUD_REACHABLE;
909 int override;
910
911 /* If several different ARP replies follows back-to-back,
912 use the FIRST one. It is possible, if several proxy
913 agents are active. Taking the first reply prevents
914 arp trashing and chooses the fastest router.
915 */
916 override = time_after(jiffies, n->updated + n->parms->locktime);
917
918 /* Broadcast replies and request packets
919 do not assert neighbour reachability.
920 */
921 if (arp->ar_op != htons(ARPOP_REPLY) ||
922 skb->pkt_type != PACKET_HOST)
923 state = NUD_STALE;
924 neigh_update(n, sha, state,
925 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
926 neigh_release(n);
927 }
928
929out:
930 consume_skb(skb);
931 return 0;
932}
933
934static void parp_redo(struct sk_buff *skb)
935{
936 arp_process(skb);
937}
938
939
940/*
941 * Receive an arp request from the device layer.
942 */
943
944static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
945 struct packet_type *pt, struct net_device *orig_dev)
946{
947 struct arphdr *arp;
948
949 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
950 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
951 goto freeskb;
952
953 arp = arp_hdr(skb);
954 if (arp->ar_hln != dev->addr_len ||
955 dev->flags & IFF_NOARP ||
956 skb->pkt_type == PACKET_OTHERHOST ||
957 skb->pkt_type == PACKET_LOOPBACK ||
958 arp->ar_pln != 4)
959 goto freeskb;
960
961 skb = skb_share_check(skb, GFP_ATOMIC);
962 if (skb == NULL)
963 goto out_of_mem;
964
965 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
966
967 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
968
969freeskb:
970 kfree_skb(skb);
971out_of_mem:
972 return 0;
973}
974
975/*
976 * User level interface (ioctl)
977 */
978
979/*
980 * Set (create) an ARP cache entry.
981 */
982
983static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
984{
985 if (dev == NULL) {
986 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
987 return 0;
988 }
989 if (__in_dev_get_rtnl(dev)) {
990 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
991 return 0;
992 }
993 return -ENXIO;
994}
995
996static int arp_req_set_public(struct net *net, struct arpreq *r,
997 struct net_device *dev)
998{
999 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1000 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1001
1002 if (mask && mask != htonl(0xFFFFFFFF))
1003 return -EINVAL;
1004 if (!dev && (r->arp_flags & ATF_COM)) {
1005 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1006 r->arp_ha.sa_data);
1007 if (!dev)
1008 return -ENODEV;
1009 }
1010 if (mask) {
1011 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1012 return -ENOBUFS;
1013 return 0;
1014 }
1015
1016 return arp_req_set_proxy(net, dev, 1);
1017}
1018
1019static int arp_req_set(struct net *net, struct arpreq *r,
1020 struct net_device *dev)
1021{
1022 __be32 ip;
1023 struct neighbour *neigh;
1024 int err;
1025
1026 if (r->arp_flags & ATF_PUBL)
1027 return arp_req_set_public(net, r, dev);
1028
1029 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1030 if (r->arp_flags & ATF_PERM)
1031 r->arp_flags |= ATF_COM;
1032 if (dev == NULL) {
1033 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1034
1035 if (IS_ERR(rt))
1036 return PTR_ERR(rt);
1037 dev = rt->dst.dev;
1038 ip_rt_put(rt);
1039 if (!dev)
1040 return -EINVAL;
1041 }
1042 switch (dev->type) {
1043#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1044 case ARPHRD_FDDI:
1045 /*
1046 * According to RFC 1390, FDDI devices should accept ARP
1047 * hardware types of 1 (Ethernet). However, to be more
1048 * robust, we'll accept hardware types of either 1 (Ethernet)
1049 * or 6 (IEEE 802.2).
1050 */
1051 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1052 r->arp_ha.sa_family != ARPHRD_ETHER &&
1053 r->arp_ha.sa_family != ARPHRD_IEEE802)
1054 return -EINVAL;
1055 break;
1056#endif
1057 default:
1058 if (r->arp_ha.sa_family != dev->type)
1059 return -EINVAL;
1060 break;
1061 }
1062
1063 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1064 err = PTR_ERR(neigh);
1065 if (!IS_ERR(neigh)) {
1066 unsigned state = NUD_STALE;
1067 if (r->arp_flags & ATF_PERM)
1068 state = NUD_PERMANENT;
1069 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1070 r->arp_ha.sa_data : NULL, state,
1071 NEIGH_UPDATE_F_OVERRIDE |
1072 NEIGH_UPDATE_F_ADMIN);
1073 neigh_release(neigh);
1074 }
1075 return err;
1076}
1077
1078static unsigned arp_state_to_flags(struct neighbour *neigh)
1079{
1080 if (neigh->nud_state&NUD_PERMANENT)
1081 return ATF_PERM | ATF_COM;
1082 else if (neigh->nud_state&NUD_VALID)
1083 return ATF_COM;
1084 else
1085 return 0;
1086}
1087
1088/*
1089 * Get an ARP cache entry.
1090 */
1091
1092static int arp_req_get(struct arpreq *r, struct net_device *dev)
1093{
1094 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1095 struct neighbour *neigh;
1096 int err = -ENXIO;
1097
1098 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1099 if (neigh) {
1100 read_lock_bh(&neigh->lock);
1101 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102 r->arp_flags = arp_state_to_flags(neigh);
1103 read_unlock_bh(&neigh->lock);
1104 r->arp_ha.sa_family = dev->type;
1105 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1106 neigh_release(neigh);
1107 err = 0;
1108 }
1109 return err;
1110}
1111
1112int arp_invalidate(struct net_device *dev, __be32 ip)
1113{
1114 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1115 int err = -ENXIO;
1116
1117 if (neigh) {
1118 if (neigh->nud_state & ~NUD_NOARP)
1119 err = neigh_update(neigh, NULL, NUD_FAILED,
1120 NEIGH_UPDATE_F_OVERRIDE|
1121 NEIGH_UPDATE_F_ADMIN);
1122 neigh_release(neigh);
1123 }
1124
1125 return err;
1126}
1127EXPORT_SYMBOL(arp_invalidate);
1128
1129static int arp_req_delete_public(struct net *net, struct arpreq *r,
1130 struct net_device *dev)
1131{
1132 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1133 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1134
1135 if (mask == htonl(0xFFFFFFFF))
1136 return pneigh_delete(&arp_tbl, net, &ip, dev);
1137
1138 if (mask)
1139 return -EINVAL;
1140
1141 return arp_req_set_proxy(net, dev, 0);
1142}
1143
1144static int arp_req_delete(struct net *net, struct arpreq *r,
1145 struct net_device *dev)
1146{
1147 __be32 ip;
1148
1149 if (r->arp_flags & ATF_PUBL)
1150 return arp_req_delete_public(net, r, dev);
1151
1152 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1153 if (dev == NULL) {
1154 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1155 if (IS_ERR(rt))
1156 return PTR_ERR(rt);
1157 dev = rt->dst.dev;
1158 ip_rt_put(rt);
1159 if (!dev)
1160 return -EINVAL;
1161 }
1162 return arp_invalidate(dev, ip);
1163}
1164
1165/*
1166 * Handle an ARP layer I/O control request.
1167 */
1168
1169int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1170{
1171 int err;
1172 struct arpreq r;
1173 struct net_device *dev = NULL;
1174
1175 switch (cmd) {
1176 case SIOCDARP:
1177 case SIOCSARP:
1178 if (!capable(CAP_NET_ADMIN))
1179 return -EPERM;
1180 case SIOCGARP:
1181 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1182 if (err)
1183 return -EFAULT;
1184 break;
1185 default:
1186 return -EINVAL;
1187 }
1188
1189 if (r.arp_pa.sa_family != AF_INET)
1190 return -EPFNOSUPPORT;
1191
1192 if (!(r.arp_flags & ATF_PUBL) &&
1193 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1194 return -EINVAL;
1195 if (!(r.arp_flags & ATF_NETMASK))
1196 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1197 htonl(0xFFFFFFFFUL);
1198 rtnl_lock();
1199 if (r.arp_dev[0]) {
1200 err = -ENODEV;
1201 dev = __dev_get_by_name(net, r.arp_dev);
1202 if (dev == NULL)
1203 goto out;
1204
1205 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1206 if (!r.arp_ha.sa_family)
1207 r.arp_ha.sa_family = dev->type;
1208 err = -EINVAL;
1209 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1210 goto out;
1211 } else if (cmd == SIOCGARP) {
1212 err = -ENODEV;
1213 goto out;
1214 }
1215
1216 switch (cmd) {
1217 case SIOCDARP:
1218 err = arp_req_delete(net, &r, dev);
1219 break;
1220 case SIOCSARP:
1221 err = arp_req_set(net, &r, dev);
1222 break;
1223 case SIOCGARP:
1224 err = arp_req_get(&r, dev);
1225 break;
1226 }
1227out:
1228 rtnl_unlock();
1229 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1230 err = -EFAULT;
1231 return err;
1232}
1233
1234static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1235 void *ptr)
1236{
1237 struct net_device *dev = ptr;
1238
1239 switch (event) {
1240 case NETDEV_CHANGEADDR:
1241 neigh_changeaddr(&arp_tbl, dev);
1242 rt_cache_flush(dev_net(dev), 0);
1243 break;
1244 default:
1245 break;
1246 }
1247
1248 return NOTIFY_DONE;
1249}
1250
1251static struct notifier_block arp_netdev_notifier = {
1252 .notifier_call = arp_netdev_event,
1253};
1254
1255/* Note, that it is not on notifier chain.
1256 It is necessary, that this routine was called after route cache will be
1257 flushed.
1258 */
1259void arp_ifdown(struct net_device *dev)
1260{
1261 neigh_ifdown(&arp_tbl, dev);
1262}
1263
1264
1265/*
1266 * Called once on startup.
1267 */
1268
1269static struct packet_type arp_packet_type __read_mostly = {
1270 .type = cpu_to_be16(ETH_P_ARP),
1271 .func = arp_rcv,
1272};
1273
1274static int arp_proc_init(void);
1275
1276void __init arp_init(void)
1277{
1278 neigh_table_init(&arp_tbl);
1279
1280 dev_add_pack(&arp_packet_type);
1281 arp_proc_init();
1282#ifdef CONFIG_SYSCTL
1283 neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1284#endif
1285 register_netdevice_notifier(&arp_netdev_notifier);
1286}
1287
1288#ifdef CONFIG_PROC_FS
1289#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1290
1291/* ------------------------------------------------------------------------ */
1292/*
1293 * ax25 -> ASCII conversion
1294 */
1295static char *ax2asc2(ax25_address *a, char *buf)
1296{
1297 char c, *s;
1298 int n;
1299
1300 for (n = 0, s = buf; n < 6; n++) {
1301 c = (a->ax25_call[n] >> 1) & 0x7F;
1302
1303 if (c != ' ')
1304 *s++ = c;
1305 }
1306
1307 *s++ = '-';
1308 n = (a->ax25_call[6] >> 1) & 0x0F;
1309 if (n > 9) {
1310 *s++ = '1';
1311 n -= 10;
1312 }
1313
1314 *s++ = n + '0';
1315 *s++ = '\0';
1316
1317 if (*buf == '\0' || *buf == '-')
1318 return "*";
1319
1320 return buf;
1321}
1322#endif /* CONFIG_AX25 */
1323
1324#define HBUFFERLEN 30
1325
1326static void arp_format_neigh_entry(struct seq_file *seq,
1327 struct neighbour *n)
1328{
1329 char hbuffer[HBUFFERLEN];
1330 int k, j;
1331 char tbuf[16];
1332 struct net_device *dev = n->dev;
1333 int hatype = dev->type;
1334
1335 read_lock(&n->lock);
1336 /* Convert hardware address to XX:XX:XX:XX ... form. */
1337#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1338 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1339 ax2asc2((ax25_address *)n->ha, hbuffer);
1340 else {
1341#endif
1342 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1343 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1344 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1345 hbuffer[k++] = ':';
1346 }
1347 if (k != 0)
1348 --k;
1349 hbuffer[k] = 0;
1350#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1351 }
1352#endif
1353 sprintf(tbuf, "%pI4", n->primary_key);
1354 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1355 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1356 read_unlock(&n->lock);
1357}
1358
1359static void arp_format_pneigh_entry(struct seq_file *seq,
1360 struct pneigh_entry *n)
1361{
1362 struct net_device *dev = n->dev;
1363 int hatype = dev ? dev->type : 0;
1364 char tbuf[16];
1365
1366 sprintf(tbuf, "%pI4", n->key);
1367 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1368 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1369 dev ? dev->name : "*");
1370}
1371
1372static int arp_seq_show(struct seq_file *seq, void *v)
1373{
1374 if (v == SEQ_START_TOKEN) {
1375 seq_puts(seq, "IP address HW type Flags "
1376 "HW address Mask Device\n");
1377 } else {
1378 struct neigh_seq_state *state = seq->private;
1379
1380 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1381 arp_format_pneigh_entry(seq, v);
1382 else
1383 arp_format_neigh_entry(seq, v);
1384 }
1385
1386 return 0;
1387}
1388
1389static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1390{
1391 /* Don't want to confuse "arp -a" w/ magic entries,
1392 * so we tell the generic iterator to skip NUD_NOARP.
1393 */
1394 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1395}
1396
1397/* ------------------------------------------------------------------------ */
1398
1399static const struct seq_operations arp_seq_ops = {
1400 .start = arp_seq_start,
1401 .next = neigh_seq_next,
1402 .stop = neigh_seq_stop,
1403 .show = arp_seq_show,
1404};
1405
1406static int arp_seq_open(struct inode *inode, struct file *file)
1407{
1408 return seq_open_net(inode, file, &arp_seq_ops,
1409 sizeof(struct neigh_seq_state));
1410}
1411
1412static const struct file_operations arp_seq_fops = {
1413 .owner = THIS_MODULE,
1414 .open = arp_seq_open,
1415 .read = seq_read,
1416 .llseek = seq_lseek,
1417 .release = seq_release_net,
1418};
1419
1420
1421static int __net_init arp_net_init(struct net *net)
1422{
1423 if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1424 return -ENOMEM;
1425 return 0;
1426}
1427
1428static void __net_exit arp_net_exit(struct net *net)
1429{
1430 proc_net_remove(net, "arp");
1431}
1432
1433static struct pernet_operations arp_net_ops = {
1434 .init = arp_net_init,
1435 .exit = arp_net_exit,
1436};
1437
1438static int __init arp_proc_init(void)
1439{
1440 return register_pernet_subsys(&arp_net_ops);
1441}
1442
1443#else /* CONFIG_PROC_FS */
1444
1445static int __init arp_proc_init(void)
1446{
1447 return 0;
1448}
1449
1450#endif /* CONFIG_PROC_FS */