Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/key.h>
  16#include <linux/bio.h>
  17#include <linux/blkdev.h>
  18#include <linux/mempool.h>
  19#include <linux/slab.h>
  20#include <linux/crypto.h>
  21#include <linux/workqueue.h>
  22#include <linux/kthread.h>
  23#include <linux/backing-dev.h>
 
  24#include <linux/atomic.h>
  25#include <linux/scatterlist.h>
  26#include <linux/rbtree.h>
  27#include <linux/ctype.h>
  28#include <asm/page.h>
  29#include <asm/unaligned.h>
  30#include <crypto/hash.h>
  31#include <crypto/md5.h>
  32#include <crypto/algapi.h>
  33#include <crypto/skcipher.h>
  34#include <crypto/aead.h>
  35#include <crypto/authenc.h>
  36#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
  37#include <linux/key-type.h>
  38#include <keys/user-type.h>
  39#include <keys/encrypted-type.h>
  40
  41#include <linux/device-mapper.h>
  42
  43#define DM_MSG_PREFIX "crypt"
  44
  45/*
  46 * context holding the current state of a multi-part conversion
  47 */
  48struct convert_context {
  49	struct completion restart;
  50	struct bio *bio_in;
  51	struct bio *bio_out;
  52	struct bvec_iter iter_in;
  53	struct bvec_iter iter_out;
  54	u64 cc_sector;
  55	atomic_t cc_pending;
  56	union {
  57		struct skcipher_request *req;
  58		struct aead_request *req_aead;
  59	} r;
  60
  61};
  62
  63/*
  64 * per bio private data
  65 */
  66struct dm_crypt_io {
  67	struct crypt_config *cc;
  68	struct bio *base_bio;
  69	u8 *integrity_metadata;
  70	bool integrity_metadata_from_pool;
  71	struct work_struct work;
  72	struct tasklet_struct tasklet;
  73
  74	struct convert_context ctx;
  75
  76	atomic_t io_pending;
  77	blk_status_t error;
  78	sector_t sector;
  79
  80	struct rb_node rb_node;
  81} CRYPTO_MINALIGN_ATTR;
  82
  83struct dm_crypt_request {
  84	struct convert_context *ctx;
  85	struct scatterlist sg_in[4];
  86	struct scatterlist sg_out[4];
  87	u64 iv_sector;
  88};
  89
  90struct crypt_config;
  91
  92struct crypt_iv_operations {
  93	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  94		   const char *opts);
  95	void (*dtr)(struct crypt_config *cc);
  96	int (*init)(struct crypt_config *cc);
  97	int (*wipe)(struct crypt_config *cc);
  98	int (*generator)(struct crypt_config *cc, u8 *iv,
  99			 struct dm_crypt_request *dmreq);
 100	int (*post)(struct crypt_config *cc, u8 *iv,
 101		    struct dm_crypt_request *dmreq);
 102};
 103
 
 
 
 
 
 104struct iv_benbi_private {
 105	int shift;
 106};
 107
 108#define LMK_SEED_SIZE 64 /* hash + 0 */
 109struct iv_lmk_private {
 110	struct crypto_shash *hash_tfm;
 111	u8 *seed;
 112};
 113
 114#define TCW_WHITENING_SIZE 16
 115struct iv_tcw_private {
 116	struct crypto_shash *crc32_tfm;
 117	u8 *iv_seed;
 118	u8 *whitening;
 119};
 120
 121#define ELEPHANT_MAX_KEY_SIZE 32
 122struct iv_elephant_private {
 123	struct crypto_skcipher *tfm;
 124};
 125
 126/*
 127 * Crypt: maps a linear range of a block device
 128 * and encrypts / decrypts at the same time.
 129 */
 130enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 131	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
 132	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
 133	     DM_CRYPT_WRITE_INLINE };
 134
 135enum cipher_flags {
 136	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cihper */
 137	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
 138	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
 
 139};
 140
 141/*
 142 * The fields in here must be read only after initialization.
 
 143 */
 144struct crypt_config {
 145	struct dm_dev *dev;
 146	sector_t start;
 147
 148	struct percpu_counter n_allocated_pages;
 
 
 
 
 
 
 
 149
 150	struct workqueue_struct *io_queue;
 151	struct workqueue_struct *crypt_queue;
 152
 153	spinlock_t write_thread_lock;
 154	struct task_struct *write_thread;
 155	struct rb_root write_tree;
 156
 157	char *cipher_string;
 158	char *cipher_auth;
 159	char *key_string;
 160
 161	const struct crypt_iv_operations *iv_gen_ops;
 162	union {
 
 163		struct iv_benbi_private benbi;
 164		struct iv_lmk_private lmk;
 165		struct iv_tcw_private tcw;
 166		struct iv_elephant_private elephant;
 167	} iv_gen_private;
 168	u64 iv_offset;
 169	unsigned int iv_size;
 170	unsigned short int sector_size;
 171	unsigned char sector_shift;
 172
 173	union {
 174		struct crypto_skcipher **tfms;
 175		struct crypto_aead **tfms_aead;
 176	} cipher_tfm;
 
 177	unsigned tfms_count;
 178	unsigned long cipher_flags;
 179
 180	/*
 181	 * Layout of each crypto request:
 182	 *
 183	 *   struct skcipher_request
 184	 *      context
 185	 *      padding
 186	 *   struct dm_crypt_request
 187	 *      padding
 188	 *   IV
 189	 *
 190	 * The padding is added so that dm_crypt_request and the IV are
 191	 * correctly aligned.
 192	 */
 193	unsigned int dmreq_start;
 194
 195	unsigned int per_bio_data_size;
 196
 197	unsigned long flags;
 198	unsigned int key_size;
 199	unsigned int key_parts;      /* independent parts in key buffer */
 200	unsigned int key_extra_size; /* additional keys length */
 201	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 202
 203	unsigned int integrity_tag_size;
 204	unsigned int integrity_iv_size;
 205	unsigned int on_disk_tag_size;
 206
 207	/*
 208	 * pool for per bio private data, crypto requests,
 209	 * encryption requeusts/buffer pages and integrity tags
 210	 */
 211	unsigned tag_pool_max_sectors;
 212	mempool_t tag_pool;
 213	mempool_t req_pool;
 214	mempool_t page_pool;
 215
 216	struct bio_set bs;
 217	struct mutex bio_alloc_lock;
 218
 219	u8 *authenc_key; /* space for keys in authenc() format (if used) */
 220	u8 key[];
 221};
 222
 223#define MIN_IOS		64
 224#define MAX_TAG_SIZE	480
 225#define POOL_ENTRY_SIZE	512
 226
 227static DEFINE_SPINLOCK(dm_crypt_clients_lock);
 228static unsigned dm_crypt_clients_n = 0;
 229static volatile unsigned long dm_crypt_pages_per_client;
 230#define DM_CRYPT_MEMORY_PERCENT			2
 231#define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_PAGES * 16)
 232
 233static void clone_init(struct dm_crypt_io *, struct bio *);
 234static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 235static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 236					     struct scatterlist *sg);
 237
 238static bool crypt_integrity_aead(struct crypt_config *cc);
 239
 240/*
 241 * Use this to access cipher attributes that are independent of the key.
 242 */
 243static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 244{
 245	return cc->cipher_tfm.tfms[0];
 246}
 247
 248static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 
 
 
 249{
 250	return cc->cipher_tfm.tfms_aead[0];
 251}
 252
 253/*
 254 * Different IV generation algorithms:
 255 *
 256 * plain: the initial vector is the 32-bit little-endian version of the sector
 257 *        number, padded with zeros if necessary.
 258 *
 259 * plain64: the initial vector is the 64-bit little-endian version of the sector
 260 *        number, padded with zeros if necessary.
 261 *
 262 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 263 *        number, padded with zeros if necessary.
 264 *
 265 * essiv: "encrypted sector|salt initial vector", the sector number is
 266 *        encrypted with the bulk cipher using a salt as key. The salt
 267 *        should be derived from the bulk cipher's key via hashing.
 268 *
 269 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 270 *        (needed for LRW-32-AES and possible other narrow block modes)
 271 *
 272 * null: the initial vector is always zero.  Provides compatibility with
 273 *       obsolete loop_fish2 devices.  Do not use for new devices.
 274 *
 275 * lmk:  Compatible implementation of the block chaining mode used
 276 *       by the Loop-AES block device encryption system
 277 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 278 *       It operates on full 512 byte sectors and uses CBC
 279 *       with an IV derived from the sector number, the data and
 280 *       optionally extra IV seed.
 281 *       This means that after decryption the first block
 282 *       of sector must be tweaked according to decrypted data.
 283 *       Loop-AES can use three encryption schemes:
 284 *         version 1: is plain aes-cbc mode
 285 *         version 2: uses 64 multikey scheme with lmk IV generator
 286 *         version 3: the same as version 2 with additional IV seed
 287 *                   (it uses 65 keys, last key is used as IV seed)
 288 *
 289 * tcw:  Compatible implementation of the block chaining mode used
 290 *       by the TrueCrypt device encryption system (prior to version 4.1).
 291 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 292 *       It operates on full 512 byte sectors and uses CBC
 293 *       with an IV derived from initial key and the sector number.
 294 *       In addition, whitening value is applied on every sector, whitening
 295 *       is calculated from initial key, sector number and mixed using CRC32.
 296 *       Note that this encryption scheme is vulnerable to watermarking attacks
 297 *       and should be used for old compatible containers access only.
 298 *
 299 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
 300 *        The IV is encrypted little-endian byte-offset (with the same key
 301 *        and cipher as the volume).
 302 *
 303 * elephant: The extended version of eboiv with additional Elephant diffuser
 304 *           used with Bitlocker CBC mode.
 305 *           This mode was used in older Windows systems
 306 *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
 307 */
 308
 309static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 310			      struct dm_crypt_request *dmreq)
 311{
 312	memset(iv, 0, cc->iv_size);
 313	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 314
 315	return 0;
 316}
 317
 318static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 319				struct dm_crypt_request *dmreq)
 320{
 321	memset(iv, 0, cc->iv_size);
 322	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 323
 324	return 0;
 325}
 326
 327static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 328				  struct dm_crypt_request *dmreq)
 329{
 330	memset(iv, 0, cc->iv_size);
 331	/* iv_size is at least of size u64; usually it is 16 bytes */
 332	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333
 334	return 0;
 
 
 
 
 
 
 335}
 336
 337static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 338			      struct dm_crypt_request *dmreq)
 339{
 340	/*
 341	 * ESSIV encryption of the IV is now handled by the crypto API,
 342	 * so just pass the plain sector number here.
 343	 */
 344	memset(iv, 0, cc->iv_size);
 345	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 
 346
 347	return 0;
 348}
 349
 350static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 351			      const char *opts)
 352{
 353	unsigned bs;
 354	int log;
 355
 356	if (crypt_integrity_aead(cc))
 357		bs = crypto_aead_blocksize(any_tfm_aead(cc));
 358	else
 359		bs = crypto_skcipher_blocksize(any_tfm(cc));
 360	log = ilog2(bs);
 361
 362	/* we need to calculate how far we must shift the sector count
 363	 * to get the cipher block count, we use this shift in _gen */
 364
 365	if (1 << log != bs) {
 366		ti->error = "cypher blocksize is not a power of 2";
 367		return -EINVAL;
 368	}
 369
 370	if (log > 9) {
 371		ti->error = "cypher blocksize is > 512";
 372		return -EINVAL;
 373	}
 374
 375	cc->iv_gen_private.benbi.shift = 9 - log;
 376
 377	return 0;
 378}
 379
 380static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 381{
 382}
 383
 384static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 385			      struct dm_crypt_request *dmreq)
 386{
 387	__be64 val;
 388
 389	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 390
 391	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 392	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 393
 394	return 0;
 395}
 396
 397static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 398			     struct dm_crypt_request *dmreq)
 399{
 400	memset(iv, 0, cc->iv_size);
 401
 402	return 0;
 403}
 404
 405static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 406{
 407	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 408
 409	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 410		crypto_free_shash(lmk->hash_tfm);
 411	lmk->hash_tfm = NULL;
 412
 413	kfree_sensitive(lmk->seed);
 414	lmk->seed = NULL;
 415}
 416
 417static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 418			    const char *opts)
 419{
 420	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 421
 422	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 423		ti->error = "Unsupported sector size for LMK";
 424		return -EINVAL;
 425	}
 426
 427	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 428	if (IS_ERR(lmk->hash_tfm)) {
 429		ti->error = "Error initializing LMK hash";
 430		return PTR_ERR(lmk->hash_tfm);
 431	}
 432
 433	/* No seed in LMK version 2 */
 434	if (cc->key_parts == cc->tfms_count) {
 435		lmk->seed = NULL;
 436		return 0;
 437	}
 438
 439	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 440	if (!lmk->seed) {
 441		crypt_iv_lmk_dtr(cc);
 442		ti->error = "Error kmallocing seed storage in LMK";
 443		return -ENOMEM;
 444	}
 445
 446	return 0;
 447}
 448
 449static int crypt_iv_lmk_init(struct crypt_config *cc)
 450{
 451	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 452	int subkey_size = cc->key_size / cc->key_parts;
 453
 454	/* LMK seed is on the position of LMK_KEYS + 1 key */
 455	if (lmk->seed)
 456		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 457		       crypto_shash_digestsize(lmk->hash_tfm));
 458
 459	return 0;
 460}
 461
 462static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 463{
 464	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 465
 466	if (lmk->seed)
 467		memset(lmk->seed, 0, LMK_SEED_SIZE);
 468
 469	return 0;
 470}
 471
 472static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 473			    struct dm_crypt_request *dmreq,
 474			    u8 *data)
 475{
 476	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 477	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 
 
 
 478	struct md5_state md5state;
 479	__le32 buf[4];
 480	int i, r;
 481
 482	desc->tfm = lmk->hash_tfm;
 
 483
 484	r = crypto_shash_init(desc);
 485	if (r)
 486		return r;
 487
 488	if (lmk->seed) {
 489		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 490		if (r)
 491			return r;
 492	}
 493
 494	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 495	r = crypto_shash_update(desc, data + 16, 16 * 31);
 496	if (r)
 497		return r;
 498
 499	/* Sector is cropped to 56 bits here */
 500	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 501	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 502	buf[2] = cpu_to_le32(4024);
 503	buf[3] = 0;
 504	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 505	if (r)
 506		return r;
 507
 508	/* No MD5 padding here */
 509	r = crypto_shash_export(desc, &md5state);
 510	if (r)
 511		return r;
 512
 513	for (i = 0; i < MD5_HASH_WORDS; i++)
 514		__cpu_to_le32s(&md5state.hash[i]);
 515	memcpy(iv, &md5state.hash, cc->iv_size);
 516
 517	return 0;
 518}
 519
 520static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 521			    struct dm_crypt_request *dmreq)
 522{
 523	struct scatterlist *sg;
 524	u8 *src;
 525	int r = 0;
 526
 527	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 528		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 529		src = kmap_atomic(sg_page(sg));
 530		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 531		kunmap_atomic(src);
 532	} else
 533		memset(iv, 0, cc->iv_size);
 534
 535	return r;
 536}
 537
 538static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 539			     struct dm_crypt_request *dmreq)
 540{
 541	struct scatterlist *sg;
 542	u8 *dst;
 543	int r;
 544
 545	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 546		return 0;
 547
 548	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 549	dst = kmap_atomic(sg_page(sg));
 550	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 551
 552	/* Tweak the first block of plaintext sector */
 553	if (!r)
 554		crypto_xor(dst + sg->offset, iv, cc->iv_size);
 555
 556	kunmap_atomic(dst);
 557	return r;
 558}
 559
 560static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 561{
 562	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 563
 564	kfree_sensitive(tcw->iv_seed);
 565	tcw->iv_seed = NULL;
 566	kfree_sensitive(tcw->whitening);
 567	tcw->whitening = NULL;
 568
 569	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 570		crypto_free_shash(tcw->crc32_tfm);
 571	tcw->crc32_tfm = NULL;
 572}
 573
 574static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 575			    const char *opts)
 576{
 577	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 578
 579	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 580		ti->error = "Unsupported sector size for TCW";
 581		return -EINVAL;
 582	}
 583
 584	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 585		ti->error = "Wrong key size for TCW";
 586		return -EINVAL;
 587	}
 588
 589	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 590	if (IS_ERR(tcw->crc32_tfm)) {
 591		ti->error = "Error initializing CRC32 in TCW";
 592		return PTR_ERR(tcw->crc32_tfm);
 593	}
 594
 595	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 596	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 597	if (!tcw->iv_seed || !tcw->whitening) {
 598		crypt_iv_tcw_dtr(cc);
 599		ti->error = "Error allocating seed storage in TCW";
 600		return -ENOMEM;
 601	}
 602
 603	return 0;
 604}
 605
 606static int crypt_iv_tcw_init(struct crypt_config *cc)
 607{
 608	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 609	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 610
 611	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 612	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 613	       TCW_WHITENING_SIZE);
 614
 615	return 0;
 616}
 617
 618static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 619{
 620	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 621
 622	memset(tcw->iv_seed, 0, cc->iv_size);
 623	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 624
 625	return 0;
 626}
 627
 628static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 629				  struct dm_crypt_request *dmreq,
 630				  u8 *data)
 631{
 632	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 633	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 634	u8 buf[TCW_WHITENING_SIZE];
 635	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 636	int i, r;
 637
 638	/* xor whitening with sector number */
 639	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 640	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 641
 642	/* calculate crc32 for every 32bit part and xor it */
 643	desc->tfm = tcw->crc32_tfm;
 644	for (i = 0; i < 4; i++) {
 645		r = crypto_shash_init(desc);
 646		if (r)
 647			goto out;
 648		r = crypto_shash_update(desc, &buf[i * 4], 4);
 649		if (r)
 650			goto out;
 651		r = crypto_shash_final(desc, &buf[i * 4]);
 652		if (r)
 653			goto out;
 654	}
 655	crypto_xor(&buf[0], &buf[12], 4);
 656	crypto_xor(&buf[4], &buf[8], 4);
 657
 658	/* apply whitening (8 bytes) to whole sector */
 659	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 660		crypto_xor(data + i * 8, buf, 8);
 661out:
 662	memzero_explicit(buf, sizeof(buf));
 663	return r;
 664}
 665
 666static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 667			    struct dm_crypt_request *dmreq)
 668{
 669	struct scatterlist *sg;
 670	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 671	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 672	u8 *src;
 673	int r = 0;
 674
 675	/* Remove whitening from ciphertext */
 676	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 677		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 678		src = kmap_atomic(sg_page(sg));
 679		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 680		kunmap_atomic(src);
 681	}
 682
 683	/* Calculate IV */
 684	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 685	if (cc->iv_size > 8)
 686		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 687			       cc->iv_size - 8);
 688
 689	return r;
 690}
 691
 692static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 693			     struct dm_crypt_request *dmreq)
 694{
 695	struct scatterlist *sg;
 696	u8 *dst;
 697	int r;
 698
 699	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 700		return 0;
 701
 702	/* Apply whitening on ciphertext */
 703	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 704	dst = kmap_atomic(sg_page(sg));
 705	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 706	kunmap_atomic(dst);
 707
 708	return r;
 709}
 710
 711static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 712				struct dm_crypt_request *dmreq)
 713{
 714	/* Used only for writes, there must be an additional space to store IV */
 715	get_random_bytes(iv, cc->iv_size);
 716	return 0;
 717}
 718
 719static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 720			    const char *opts)
 721{
 722	if (crypt_integrity_aead(cc)) {
 723		ti->error = "AEAD transforms not supported for EBOIV";
 724		return -EINVAL;
 725	}
 726
 727	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
 728		ti->error = "Block size of EBOIV cipher does "
 729			    "not match IV size of block cipher";
 730		return -EINVAL;
 731	}
 732
 733	return 0;
 734}
 735
 736static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
 737			    struct dm_crypt_request *dmreq)
 738{
 739	u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
 740	struct skcipher_request *req;
 741	struct scatterlist src, dst;
 742	DECLARE_CRYPTO_WAIT(wait);
 743	int err;
 744
 745	req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
 746	if (!req)
 747		return -ENOMEM;
 748
 749	memset(buf, 0, cc->iv_size);
 750	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 751
 752	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
 753	sg_init_one(&dst, iv, cc->iv_size);
 754	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
 755	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 756	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 757	skcipher_request_free(req);
 758
 759	return err;
 760}
 761
 762static void crypt_iv_elephant_dtr(struct crypt_config *cc)
 763{
 764	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 765
 766	crypto_free_skcipher(elephant->tfm);
 767	elephant->tfm = NULL;
 768}
 769
 770static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
 771			    const char *opts)
 772{
 773	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 774	int r;
 775
 776	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);
 777	if (IS_ERR(elephant->tfm)) {
 778		r = PTR_ERR(elephant->tfm);
 779		elephant->tfm = NULL;
 780		return r;
 781	}
 782
 783	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
 784	if (r)
 785		crypt_iv_elephant_dtr(cc);
 786	return r;
 787}
 788
 789static void diffuser_disk_to_cpu(u32 *d, size_t n)
 790{
 791#ifndef __LITTLE_ENDIAN
 792	int i;
 793
 794	for (i = 0; i < n; i++)
 795		d[i] = le32_to_cpu((__le32)d[i]);
 796#endif
 797}
 798
 799static void diffuser_cpu_to_disk(__le32 *d, size_t n)
 800{
 801#ifndef __LITTLE_ENDIAN
 802	int i;
 803
 804	for (i = 0; i < n; i++)
 805		d[i] = cpu_to_le32((u32)d[i]);
 806#endif
 807}
 808
 809static void diffuser_a_decrypt(u32 *d, size_t n)
 810{
 811	int i, i1, i2, i3;
 812
 813	for (i = 0; i < 5; i++) {
 814		i1 = 0;
 815		i2 = n - 2;
 816		i3 = n - 5;
 817
 818		while (i1 < (n - 1)) {
 819			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 820			i1++; i2++; i3++;
 821
 822			if (i3 >= n)
 823				i3 -= n;
 824
 825			d[i1] += d[i2] ^ d[i3];
 826			i1++; i2++; i3++;
 827
 828			if (i2 >= n)
 829				i2 -= n;
 830
 831			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 832			i1++; i2++; i3++;
 833
 834			d[i1] += d[i2] ^ d[i3];
 835			i1++; i2++; i3++;
 836		}
 837	}
 838}
 839
 840static void diffuser_a_encrypt(u32 *d, size_t n)
 841{
 842	int i, i1, i2, i3;
 843
 844	for (i = 0; i < 5; i++) {
 845		i1 = n - 1;
 846		i2 = n - 2 - 1;
 847		i3 = n - 5 - 1;
 848
 849		while (i1 > 0) {
 850			d[i1] -= d[i2] ^ d[i3];
 851			i1--; i2--; i3--;
 852
 853			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 854			i1--; i2--; i3--;
 855
 856			if (i2 < 0)
 857				i2 += n;
 858
 859			d[i1] -= d[i2] ^ d[i3];
 860			i1--; i2--; i3--;
 861
 862			if (i3 < 0)
 863				i3 += n;
 864
 865			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 866			i1--; i2--; i3--;
 867		}
 868	}
 869}
 870
 871static void diffuser_b_decrypt(u32 *d, size_t n)
 872{
 873	int i, i1, i2, i3;
 874
 875	for (i = 0; i < 3; i++) {
 876		i1 = 0;
 877		i2 = 2;
 878		i3 = 5;
 879
 880		while (i1 < (n - 1)) {
 881			d[i1] += d[i2] ^ d[i3];
 882			i1++; i2++; i3++;
 883
 884			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 885			i1++; i2++; i3++;
 886
 887			if (i2 >= n)
 888				i2 -= n;
 889
 890			d[i1] += d[i2] ^ d[i3];
 891			i1++; i2++; i3++;
 892
 893			if (i3 >= n)
 894				i3 -= n;
 895
 896			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 897			i1++; i2++; i3++;
 898		}
 899	}
 900}
 901
 902static void diffuser_b_encrypt(u32 *d, size_t n)
 903{
 904	int i, i1, i2, i3;
 905
 906	for (i = 0; i < 3; i++) {
 907		i1 = n - 1;
 908		i2 = 2 - 1;
 909		i3 = 5 - 1;
 910
 911		while (i1 > 0) {
 912			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 913			i1--; i2--; i3--;
 914
 915			if (i3 < 0)
 916				i3 += n;
 917
 918			d[i1] -= d[i2] ^ d[i3];
 919			i1--; i2--; i3--;
 920
 921			if (i2 < 0)
 922				i2 += n;
 923
 924			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 925			i1--; i2--; i3--;
 926
 927			d[i1] -= d[i2] ^ d[i3];
 928			i1--; i2--; i3--;
 929		}
 930	}
 931}
 932
 933static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 934{
 935	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 936	u8 *es, *ks, *data, *data2, *data_offset;
 937	struct skcipher_request *req;
 938	struct scatterlist *sg, *sg2, src, dst;
 939	DECLARE_CRYPTO_WAIT(wait);
 940	int i, r;
 941
 942	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
 943	es = kzalloc(16, GFP_NOIO); /* Key for AES */
 944	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
 945
 946	if (!req || !es || !ks) {
 947		r = -ENOMEM;
 948		goto out;
 949	}
 950
 951	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 952
 953	/* E(Ks, e(s)) */
 954	sg_init_one(&src, es, 16);
 955	sg_init_one(&dst, ks, 16);
 956	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
 957	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 958	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 959	if (r)
 960		goto out;
 961
 962	/* E(Ks, e'(s)) */
 963	es[15] = 0x80;
 964	sg_init_one(&dst, &ks[16], 16);
 965	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 966	if (r)
 967		goto out;
 968
 969	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 970	data = kmap_atomic(sg_page(sg));
 971	data_offset = data + sg->offset;
 972
 973	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
 974	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 975		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
 976		data2 = kmap_atomic(sg_page(sg2));
 977		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
 978		kunmap_atomic(data2);
 979	}
 980
 981	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 982		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
 983		diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
 984		diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
 985		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
 986	}
 987
 988	for (i = 0; i < (cc->sector_size / 32); i++)
 989		crypto_xor(data_offset + i * 32, ks, 32);
 990
 991	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 992		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
 993		diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
 994		diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
 995		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
 996	}
 997
 998	kunmap_atomic(data);
 999out:
1000	kfree_sensitive(ks);
1001	kfree_sensitive(es);
1002	skcipher_request_free(req);
1003	return r;
1004}
1005
1006static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1007			    struct dm_crypt_request *dmreq)
1008{
1009	int r;
1010
1011	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1012		r = crypt_iv_elephant(cc, dmreq);
1013		if (r)
1014			return r;
1015	}
1016
1017	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1018}
1019
1020static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1021				  struct dm_crypt_request *dmreq)
1022{
1023	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1024		return crypt_iv_elephant(cc, dmreq);
1025
1026	return 0;
1027}
1028
1029static int crypt_iv_elephant_init(struct crypt_config *cc)
1030{
1031	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1032	int key_offset = cc->key_size - cc->key_extra_size;
1033
1034	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1035}
1036
1037static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1038{
1039	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1040	u8 key[ELEPHANT_MAX_KEY_SIZE];
1041
1042	memset(key, 0, cc->key_extra_size);
1043	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1044}
1045
1046static const struct crypt_iv_operations crypt_iv_plain_ops = {
1047	.generator = crypt_iv_plain_gen
1048};
1049
1050static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1051	.generator = crypt_iv_plain64_gen
1052};
1053
1054static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1055	.generator = crypt_iv_plain64be_gen
1056};
1057
1058static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1059	.generator = crypt_iv_essiv_gen
1060};
1061
1062static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1063	.ctr	   = crypt_iv_benbi_ctr,
1064	.dtr	   = crypt_iv_benbi_dtr,
1065	.generator = crypt_iv_benbi_gen
1066};
1067
1068static const struct crypt_iv_operations crypt_iv_null_ops = {
1069	.generator = crypt_iv_null_gen
1070};
1071
1072static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1073	.ctr	   = crypt_iv_lmk_ctr,
1074	.dtr	   = crypt_iv_lmk_dtr,
1075	.init	   = crypt_iv_lmk_init,
1076	.wipe	   = crypt_iv_lmk_wipe,
1077	.generator = crypt_iv_lmk_gen,
1078	.post	   = crypt_iv_lmk_post
1079};
1080
1081static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1082	.ctr	   = crypt_iv_tcw_ctr,
1083	.dtr	   = crypt_iv_tcw_dtr,
1084	.init	   = crypt_iv_tcw_init,
1085	.wipe	   = crypt_iv_tcw_wipe,
1086	.generator = crypt_iv_tcw_gen,
1087	.post	   = crypt_iv_tcw_post
1088};
1089
1090static struct crypt_iv_operations crypt_iv_random_ops = {
1091	.generator = crypt_iv_random_gen
1092};
1093
1094static struct crypt_iv_operations crypt_iv_eboiv_ops = {
1095	.ctr	   = crypt_iv_eboiv_ctr,
1096	.generator = crypt_iv_eboiv_gen
1097};
1098
1099static struct crypt_iv_operations crypt_iv_elephant_ops = {
1100	.ctr	   = crypt_iv_elephant_ctr,
1101	.dtr	   = crypt_iv_elephant_dtr,
1102	.init	   = crypt_iv_elephant_init,
1103	.wipe	   = crypt_iv_elephant_wipe,
1104	.generator = crypt_iv_elephant_gen,
1105	.post	   = crypt_iv_elephant_post
1106};
1107
1108/*
1109 * Integrity extensions
1110 */
1111static bool crypt_integrity_aead(struct crypt_config *cc)
1112{
1113	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1114}
1115
1116static bool crypt_integrity_hmac(struct crypt_config *cc)
1117{
1118	return crypt_integrity_aead(cc) && cc->key_mac_size;
1119}
1120
1121/* Get sg containing data */
1122static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1123					     struct scatterlist *sg)
1124{
1125	if (unlikely(crypt_integrity_aead(cc)))
1126		return &sg[2];
1127
1128	return sg;
1129}
1130
1131static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1132{
1133	struct bio_integrity_payload *bip;
1134	unsigned int tag_len;
1135	int ret;
1136
1137	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1138		return 0;
1139
1140	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1141	if (IS_ERR(bip))
1142		return PTR_ERR(bip);
1143
1144	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1145
1146	bip->bip_iter.bi_size = tag_len;
1147	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1148
1149	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1150				     tag_len, offset_in_page(io->integrity_metadata));
1151	if (unlikely(ret != tag_len))
1152		return -ENOMEM;
1153
1154	return 0;
1155}
1156
1157static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1158{
1159#ifdef CONFIG_BLK_DEV_INTEGRITY
1160	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1161	struct mapped_device *md = dm_table_get_md(ti->table);
1162
1163	/* From now we require underlying device with our integrity profile */
1164	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1165		ti->error = "Integrity profile not supported.";
1166		return -EINVAL;
1167	}
1168
1169	if (bi->tag_size != cc->on_disk_tag_size ||
1170	    bi->tuple_size != cc->on_disk_tag_size) {
1171		ti->error = "Integrity profile tag size mismatch.";
1172		return -EINVAL;
1173	}
1174	if (1 << bi->interval_exp != cc->sector_size) {
1175		ti->error = "Integrity profile sector size mismatch.";
1176		return -EINVAL;
1177	}
1178
1179	if (crypt_integrity_aead(cc)) {
1180		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1181		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1182		       cc->integrity_tag_size, cc->integrity_iv_size);
1183
1184		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1185			ti->error = "Integrity AEAD auth tag size is not supported.";
1186			return -EINVAL;
1187		}
1188	} else if (cc->integrity_iv_size)
1189		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1190		       cc->integrity_iv_size);
1191
1192	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1193		ti->error = "Not enough space for integrity tag in the profile.";
1194		return -EINVAL;
1195	}
1196
1197	return 0;
1198#else
1199	ti->error = "Integrity profile not supported.";
1200	return -EINVAL;
1201#endif
1202}
1203
1204static void crypt_convert_init(struct crypt_config *cc,
1205			       struct convert_context *ctx,
1206			       struct bio *bio_out, struct bio *bio_in,
1207			       sector_t sector)
1208{
1209	ctx->bio_in = bio_in;
1210	ctx->bio_out = bio_out;
1211	if (bio_in)
1212		ctx->iter_in = bio_in->bi_iter;
1213	if (bio_out)
1214		ctx->iter_out = bio_out->bi_iter;
1215	ctx->cc_sector = sector + cc->iv_offset;
1216	init_completion(&ctx->restart);
1217}
1218
1219static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1220					     void *req)
1221{
1222	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1223}
1224
1225static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 
1226{
1227	return (void *)((char *)dmreq - cc->dmreq_start);
1228}
1229
1230static u8 *iv_of_dmreq(struct crypt_config *cc,
1231		       struct dm_crypt_request *dmreq)
1232{
1233	if (crypt_integrity_aead(cc))
1234		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1235			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1236	else
1237		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1238			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1239}
1240
1241static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1242		       struct dm_crypt_request *dmreq)
1243{
1244	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1245}
1246
1247static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1248		       struct dm_crypt_request *dmreq)
1249{
1250	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1251	return (__le64 *) ptr;
1252}
1253
1254static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1255		       struct dm_crypt_request *dmreq)
1256{
1257	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1258		  cc->iv_size + sizeof(uint64_t);
1259	return (unsigned int*)ptr;
1260}
1261
1262static void *tag_from_dmreq(struct crypt_config *cc,
1263				struct dm_crypt_request *dmreq)
1264{
1265	struct convert_context *ctx = dmreq->ctx;
1266	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1267
1268	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1269		cc->on_disk_tag_size];
1270}
1271
1272static void *iv_tag_from_dmreq(struct crypt_config *cc,
1273			       struct dm_crypt_request *dmreq)
1274{
1275	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1276}
1277
1278static int crypt_convert_block_aead(struct crypt_config *cc,
1279				     struct convert_context *ctx,
1280				     struct aead_request *req,
1281				     unsigned int tag_offset)
1282{
1283	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1284	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1285	struct dm_crypt_request *dmreq;
1286	u8 *iv, *org_iv, *tag_iv, *tag;
1287	__le64 *sector;
1288	int r = 0;
1289
1290	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1291
1292	/* Reject unexpected unaligned bio. */
1293	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1294		return -EIO;
1295
1296	dmreq = dmreq_of_req(cc, req);
1297	dmreq->iv_sector = ctx->cc_sector;
1298	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1299		dmreq->iv_sector >>= cc->sector_shift;
1300	dmreq->ctx = ctx;
1301
1302	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1303
1304	sector = org_sector_of_dmreq(cc, dmreq);
1305	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1306
1307	iv = iv_of_dmreq(cc, dmreq);
1308	org_iv = org_iv_of_dmreq(cc, dmreq);
1309	tag = tag_from_dmreq(cc, dmreq);
1310	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1311
1312	/* AEAD request:
1313	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1314	 *  | (authenticated) | (auth+encryption) |              |
1315	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1316	 */
1317	sg_init_table(dmreq->sg_in, 4);
1318	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1319	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1320	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1321	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1322
1323	sg_init_table(dmreq->sg_out, 4);
1324	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1325	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1326	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1327	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1328
1329	if (cc->iv_gen_ops) {
1330		/* For READs use IV stored in integrity metadata */
1331		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1332			memcpy(org_iv, tag_iv, cc->iv_size);
1333		} else {
1334			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1335			if (r < 0)
1336				return r;
1337			/* Store generated IV in integrity metadata */
1338			if (cc->integrity_iv_size)
1339				memcpy(tag_iv, org_iv, cc->iv_size);
1340		}
1341		/* Working copy of IV, to be modified in crypto API */
1342		memcpy(iv, org_iv, cc->iv_size);
1343	}
1344
1345	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1346	if (bio_data_dir(ctx->bio_in) == WRITE) {
1347		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1348				       cc->sector_size, iv);
1349		r = crypto_aead_encrypt(req);
1350		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1351			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1352			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1353	} else {
1354		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1355				       cc->sector_size + cc->integrity_tag_size, iv);
1356		r = crypto_aead_decrypt(req);
1357	}
1358
1359	if (r == -EBADMSG) {
1360		char b[BDEVNAME_SIZE];
1361		DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1362			    (unsigned long long)le64_to_cpu(*sector));
1363	}
1364
1365	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1366		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1367
1368	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1369	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1370
1371	return r;
1372}
1373
1374static int crypt_convert_block_skcipher(struct crypt_config *cc,
1375					struct convert_context *ctx,
1376					struct skcipher_request *req,
1377					unsigned int tag_offset)
1378{
1379	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1380	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1381	struct scatterlist *sg_in, *sg_out;
1382	struct dm_crypt_request *dmreq;
1383	u8 *iv, *org_iv, *tag_iv;
1384	__le64 *sector;
1385	int r = 0;
1386
1387	/* Reject unexpected unaligned bio. */
1388	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1389		return -EIO;
1390
1391	dmreq = dmreq_of_req(cc, req);
1392	dmreq->iv_sector = ctx->cc_sector;
1393	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1394		dmreq->iv_sector >>= cc->sector_shift;
1395	dmreq->ctx = ctx;
1396
1397	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1398
1399	iv = iv_of_dmreq(cc, dmreq);
1400	org_iv = org_iv_of_dmreq(cc, dmreq);
1401	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1402
1403	sector = org_sector_of_dmreq(cc, dmreq);
1404	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1405
1406	/* For skcipher we use only the first sg item */
1407	sg_in  = &dmreq->sg_in[0];
1408	sg_out = &dmreq->sg_out[0];
1409
1410	sg_init_table(sg_in, 1);
1411	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1412
1413	sg_init_table(sg_out, 1);
1414	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1415
1416	if (cc->iv_gen_ops) {
1417		/* For READs use IV stored in integrity metadata */
1418		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1419			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1420		} else {
1421			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1422			if (r < 0)
1423				return r;
1424			/* Data can be already preprocessed in generator */
1425			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1426				sg_in = sg_out;
1427			/* Store generated IV in integrity metadata */
1428			if (cc->integrity_iv_size)
1429				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1430		}
1431		/* Working copy of IV, to be modified in crypto API */
1432		memcpy(iv, org_iv, cc->iv_size);
1433	}
1434
1435	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
 
1436
1437	if (bio_data_dir(ctx->bio_in) == WRITE)
1438		r = crypto_skcipher_encrypt(req);
1439	else
1440		r = crypto_skcipher_decrypt(req);
1441
1442	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1443		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1444
1445	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1446	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1447
1448	return r;
1449}
1450
1451static void kcryptd_async_done(struct crypto_async_request *async_req,
1452			       int error);
1453
1454static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1455				     struct convert_context *ctx)
1456{
1457	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1458
1459	if (!ctx->r.req)
1460		ctx->r.req = mempool_alloc(&cc->req_pool, GFP_NOIO);
1461
1462	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1463
1464	/*
1465	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1466	 * requests if driver request queue is full.
1467	 */
1468	skcipher_request_set_callback(ctx->r.req,
1469	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1470	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1471}
1472
1473static void crypt_alloc_req_aead(struct crypt_config *cc,
1474				 struct convert_context *ctx)
1475{
1476	if (!ctx->r.req_aead)
1477		ctx->r.req_aead = mempool_alloc(&cc->req_pool, GFP_NOIO);
1478
1479	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1480
1481	/*
1482	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1483	 * requests if driver request queue is full.
1484	 */
1485	aead_request_set_callback(ctx->r.req_aead,
1486	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1487	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1488}
1489
1490static void crypt_alloc_req(struct crypt_config *cc,
1491			    struct convert_context *ctx)
1492{
1493	if (crypt_integrity_aead(cc))
1494		crypt_alloc_req_aead(cc, ctx);
1495	else
1496		crypt_alloc_req_skcipher(cc, ctx);
1497}
1498
1499static void crypt_free_req_skcipher(struct crypt_config *cc,
1500				    struct skcipher_request *req, struct bio *base_bio)
1501{
1502	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1503
1504	if ((struct skcipher_request *)(io + 1) != req)
1505		mempool_free(req, &cc->req_pool);
1506}
1507
1508static void crypt_free_req_aead(struct crypt_config *cc,
1509				struct aead_request *req, struct bio *base_bio)
1510{
1511	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1512
1513	if ((struct aead_request *)(io + 1) != req)
1514		mempool_free(req, &cc->req_pool);
1515}
1516
1517static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1518{
1519	if (crypt_integrity_aead(cc))
1520		crypt_free_req_aead(cc, req, base_bio);
1521	else
1522		crypt_free_req_skcipher(cc, req, base_bio);
1523}
1524
1525/*
1526 * Encrypt / decrypt data from one bio to another one (can be the same one)
1527 */
1528static blk_status_t crypt_convert(struct crypt_config *cc,
1529			 struct convert_context *ctx, bool atomic)
1530{
1531	unsigned int tag_offset = 0;
1532	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1533	int r;
1534
1535	atomic_set(&ctx->cc_pending, 1);
1536
1537	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
 
1538
1539		crypt_alloc_req(cc, ctx);
1540		atomic_inc(&ctx->cc_pending);
1541
1542		if (crypt_integrity_aead(cc))
1543			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1544		else
1545			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1546
1547		switch (r) {
1548		/*
1549		 * The request was queued by a crypto driver
1550		 * but the driver request queue is full, let's wait.
1551		 */
1552		case -EBUSY:
1553			wait_for_completion(&ctx->restart);
1554			reinit_completion(&ctx->restart);
1555			fallthrough;
1556		/*
1557		 * The request is queued and processed asynchronously,
1558		 * completion function kcryptd_async_done() will be called.
1559		 */
1560		case -EINPROGRESS:
1561			ctx->r.req = NULL;
1562			ctx->cc_sector += sector_step;
1563			tag_offset++;
1564			continue;
1565		/*
1566		 * The request was already processed (synchronously).
1567		 */
1568		case 0:
1569			atomic_dec(&ctx->cc_pending);
1570			ctx->cc_sector += sector_step;
1571			tag_offset++;
1572			if (!atomic)
1573				cond_resched();
1574			continue;
1575		/*
1576		 * There was a data integrity error.
1577		 */
1578		case -EBADMSG:
1579			atomic_dec(&ctx->cc_pending);
1580			return BLK_STS_PROTECTION;
1581		/*
1582		 * There was an error while processing the request.
1583		 */
1584		default:
1585			atomic_dec(&ctx->cc_pending);
1586			return BLK_STS_IOERR;
1587		}
1588	}
1589
1590	return 0;
1591}
1592
1593static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
 
 
 
 
 
 
1594
1595/*
1596 * Generate a new unfragmented bio with the given size
1597 * This should never violate the device limitations (but only because
1598 * max_segment_size is being constrained to PAGE_SIZE).
1599 *
1600 * This function may be called concurrently. If we allocate from the mempool
1601 * concurrently, there is a possibility of deadlock. For example, if we have
1602 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1603 * the mempool concurrently, it may deadlock in a situation where both processes
1604 * have allocated 128 pages and the mempool is exhausted.
1605 *
1606 * In order to avoid this scenario we allocate the pages under a mutex.
1607 *
1608 * In order to not degrade performance with excessive locking, we try
1609 * non-blocking allocations without a mutex first but on failure we fallback
1610 * to blocking allocations with a mutex.
1611 */
1612static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
 
1613{
1614	struct crypt_config *cc = io->cc;
1615	struct bio *clone;
1616	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1617	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1618	unsigned i, len, remaining_size;
1619	struct page *page;
1620
1621retry:
1622	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1623		mutex_lock(&cc->bio_alloc_lock);
1624
1625	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1626	if (!clone)
1627		goto out;
1628
1629	clone_init(io, clone);
1630
1631	remaining_size = size;
1632
1633	for (i = 0; i < nr_iovecs; i++) {
1634		page = mempool_alloc(&cc->page_pool, gfp_mask);
1635		if (!page) {
1636			crypt_free_buffer_pages(cc, clone);
1637			bio_put(clone);
1638			gfp_mask |= __GFP_DIRECT_RECLAIM;
1639			goto retry;
1640		}
1641
1642		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
 
 
 
 
 
 
1643
1644		bio_add_page(clone, page, len, 0);
 
 
 
 
 
1645
1646		remaining_size -= len;
1647	}
1648
1649	/* Allocate space for integrity tags */
1650	if (dm_crypt_integrity_io_alloc(io, clone)) {
1651		crypt_free_buffer_pages(cc, clone);
1652		bio_put(clone);
1653		clone = NULL;
1654	}
1655out:
1656	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1657		mutex_unlock(&cc->bio_alloc_lock);
1658
1659	return clone;
1660}
1661
1662static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1663{
 
1664	struct bio_vec *bv;
1665	struct bvec_iter_all iter_all;
1666
1667	bio_for_each_segment_all(bv, clone, iter_all) {
 
1668		BUG_ON(!bv->bv_page);
1669		mempool_free(bv->bv_page, &cc->page_pool);
 
1670	}
1671}
1672
1673static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1674			  struct bio *bio, sector_t sector)
1675{
1676	io->cc = cc;
 
 
 
 
1677	io->base_bio = bio;
1678	io->sector = sector;
1679	io->error = 0;
1680	io->ctx.r.req = NULL;
1681	io->integrity_metadata = NULL;
1682	io->integrity_metadata_from_pool = false;
1683	atomic_set(&io->io_pending, 0);
1684}
1685
1686static void crypt_inc_pending(struct dm_crypt_io *io)
1687{
1688	atomic_inc(&io->io_pending);
1689}
1690
1691/*
1692 * One of the bios was finished. Check for completion of
1693 * the whole request and correctly clean up the buffer.
 
1694 */
1695static void crypt_dec_pending(struct dm_crypt_io *io)
1696{
1697	struct crypt_config *cc = io->cc;
1698	struct bio *base_bio = io->base_bio;
1699	blk_status_t error = io->error;
 
1700
1701	if (!atomic_dec_and_test(&io->io_pending))
1702		return;
1703
1704	if (io->ctx.r.req)
1705		crypt_free_req(cc, io->ctx.r.req, base_bio);
1706
1707	if (unlikely(io->integrity_metadata_from_pool))
1708		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1709	else
1710		kfree(io->integrity_metadata);
1711
1712	base_bio->bi_status = error;
1713	bio_endio(base_bio);
1714}
1715
1716/*
1717 * kcryptd/kcryptd_io:
1718 *
1719 * Needed because it would be very unwise to do decryption in an
1720 * interrupt context.
1721 *
1722 * kcryptd performs the actual encryption or decryption.
1723 *
1724 * kcryptd_io performs the IO submission.
1725 *
1726 * They must be separated as otherwise the final stages could be
1727 * starved by new requests which can block in the first stages due
1728 * to memory allocation.
1729 *
1730 * The work is done per CPU global for all dm-crypt instances.
1731 * They should not depend on each other and do not block.
1732 */
1733static void crypt_endio(struct bio *clone)
1734{
1735	struct dm_crypt_io *io = clone->bi_private;
1736	struct crypt_config *cc = io->cc;
1737	unsigned rw = bio_data_dir(clone);
1738	blk_status_t error;
 
 
1739
1740	/*
1741	 * free the processed pages
1742	 */
1743	if (rw == WRITE)
1744		crypt_free_buffer_pages(cc, clone);
1745
1746	error = clone->bi_status;
1747	bio_put(clone);
1748
1749	if (rw == READ && !error) {
1750		kcryptd_queue_crypt(io);
1751		return;
1752	}
1753
1754	if (unlikely(error))
1755		io->error = error;
1756
1757	crypt_dec_pending(io);
1758}
1759
1760static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1761{
1762	struct crypt_config *cc = io->cc;
1763
1764	clone->bi_private = io;
1765	clone->bi_end_io  = crypt_endio;
1766	bio_set_dev(clone, cc->dev->bdev);
1767	clone->bi_opf	  = io->base_bio->bi_opf;
 
1768}
1769
1770static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1771{
1772	struct crypt_config *cc = io->cc;
 
1773	struct bio *clone;
1774
1775	/*
1776	 * We need the original biovec array in order to decrypt
1777	 * the whole bio data *afterwards* -- thanks to immutable
1778	 * biovecs we don't need to worry about the block layer
1779	 * modifying the biovec array; so leverage bio_clone_fast().
1780	 */
1781	clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1782	if (!clone)
1783		return 1;
1784
1785	crypt_inc_pending(io);
1786
1787	clone_init(io, clone);
1788	clone->bi_iter.bi_sector = cc->start + io->sector;
 
 
 
 
 
1789
1790	if (dm_crypt_integrity_io_alloc(io, clone)) {
1791		crypt_dec_pending(io);
1792		bio_put(clone);
1793		return 1;
1794	}
1795
1796	submit_bio_noacct(clone);
1797	return 0;
1798}
1799
1800static void kcryptd_io_read_work(struct work_struct *work)
1801{
1802	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1803
1804	crypt_inc_pending(io);
1805	if (kcryptd_io_read(io, GFP_NOIO))
1806		io->error = BLK_STS_RESOURCE;
1807	crypt_dec_pending(io);
1808}
1809
1810static void kcryptd_queue_read(struct dm_crypt_io *io)
1811{
1812	struct crypt_config *cc = io->cc;
1813
1814	INIT_WORK(&io->work, kcryptd_io_read_work);
1815	queue_work(cc->io_queue, &io->work);
1816}
1817
1818static void kcryptd_io_write(struct dm_crypt_io *io)
1819{
1820	struct bio *clone = io->ctx.bio_out;
1821
1822	submit_bio_noacct(clone);
1823}
1824
1825#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1826
1827static int dmcrypt_write(void *data)
1828{
1829	struct crypt_config *cc = data;
1830	struct dm_crypt_io *io;
1831
1832	while (1) {
1833		struct rb_root write_tree;
1834		struct blk_plug plug;
1835
1836		spin_lock_irq(&cc->write_thread_lock);
1837continue_locked:
1838
1839		if (!RB_EMPTY_ROOT(&cc->write_tree))
1840			goto pop_from_list;
1841
1842		set_current_state(TASK_INTERRUPTIBLE);
1843
1844		spin_unlock_irq(&cc->write_thread_lock);
1845
1846		if (unlikely(kthread_should_stop())) {
1847			set_current_state(TASK_RUNNING);
1848			break;
1849		}
1850
1851		schedule();
1852
1853		set_current_state(TASK_RUNNING);
1854		spin_lock_irq(&cc->write_thread_lock);
1855		goto continue_locked;
1856
1857pop_from_list:
1858		write_tree = cc->write_tree;
1859		cc->write_tree = RB_ROOT;
1860		spin_unlock_irq(&cc->write_thread_lock);
1861
1862		BUG_ON(rb_parent(write_tree.rb_node));
 
 
1863
1864		/*
1865		 * Note: we cannot walk the tree here with rb_next because
1866		 * the structures may be freed when kcryptd_io_write is called.
1867		 */
1868		blk_start_plug(&plug);
1869		do {
1870			io = crypt_io_from_node(rb_first(&write_tree));
1871			rb_erase(&io->rb_node, &write_tree);
1872			kcryptd_io_write(io);
1873		} while (!RB_EMPTY_ROOT(&write_tree));
1874		blk_finish_plug(&plug);
1875	}
1876	return 0;
1877}
1878
1879static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
 
1880{
1881	struct bio *clone = io->ctx.bio_out;
1882	struct crypt_config *cc = io->cc;
1883	unsigned long flags;
1884	sector_t sector;
1885	struct rb_node **rbp, *parent;
1886
1887	if (unlikely(io->error)) {
1888		crypt_free_buffer_pages(cc, clone);
1889		bio_put(clone);
 
1890		crypt_dec_pending(io);
1891		return;
1892	}
1893
1894	/* crypt_convert should have filled the clone bio */
1895	BUG_ON(io->ctx.iter_out.bi_size);
1896
1897	clone->bi_iter.bi_sector = cc->start + io->sector;
1898
1899	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1900	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
1901		submit_bio_noacct(clone);
1902		return;
1903	}
1904
1905	spin_lock_irqsave(&cc->write_thread_lock, flags);
1906	if (RB_EMPTY_ROOT(&cc->write_tree))
1907		wake_up_process(cc->write_thread);
1908	rbp = &cc->write_tree.rb_node;
1909	parent = NULL;
1910	sector = io->sector;
1911	while (*rbp) {
1912		parent = *rbp;
1913		if (sector < crypt_io_from_node(parent)->sector)
1914			rbp = &(*rbp)->rb_left;
1915		else
1916			rbp = &(*rbp)->rb_right;
1917	}
1918	rb_link_node(&io->rb_node, parent, rbp);
1919	rb_insert_color(&io->rb_node, &cc->write_tree);
1920	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1921}
1922
1923static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
1924				       struct convert_context *ctx)
1925
1926{
1927	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
1928		return false;
1929
1930	/*
1931	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
1932	 * constraints so they do not need to be issued inline by
1933	 * kcryptd_crypt_write_convert().
1934	 */
1935	switch (bio_op(ctx->bio_in)) {
1936	case REQ_OP_WRITE:
1937	case REQ_OP_WRITE_SAME:
1938	case REQ_OP_WRITE_ZEROES:
1939		return true;
1940	default:
1941		return false;
1942	}
1943}
1944
1945static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1946{
1947	struct crypt_config *cc = io->cc;
1948	struct convert_context *ctx = &io->ctx;
1949	struct bio *clone;
 
1950	int crypt_finished;
 
 
1951	sector_t sector = io->sector;
1952	blk_status_t r;
1953
1954	/*
1955	 * Prevent io from disappearing until this function completes.
1956	 */
1957	crypt_inc_pending(io);
1958	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
1959
1960	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1961	if (unlikely(!clone)) {
1962		io->error = BLK_STS_IOERR;
1963		goto dec;
1964	}
 
 
 
 
 
1965
1966	io->ctx.bio_out = clone;
1967	io->ctx.iter_out = clone->bi_iter;
1968
1969	sector += bio_sectors(clone);
 
1970
1971	crypt_inc_pending(io);
1972	r = crypt_convert(cc, ctx,
1973			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags));
1974	if (r)
1975		io->error = r;
1976	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
1977	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
1978		/* Wait for completion signaled by kcryptd_async_done() */
1979		wait_for_completion(&ctx->restart);
1980		crypt_finished = 1;
1981	}
 
 
 
 
 
 
1982
1983	/* Encryption was already finished, submit io now */
1984	if (crypt_finished) {
1985		kcryptd_crypt_write_io_submit(io, 0);
1986		io->sector = sector;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987	}
1988
1989dec:
1990	crypt_dec_pending(io);
1991}
1992
1993static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1994{
 
 
 
1995	crypt_dec_pending(io);
1996}
1997
1998static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1999{
2000	struct crypt_config *cc = io->cc;
2001	blk_status_t r;
2002
2003	crypt_inc_pending(io);
2004
2005	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2006			   io->sector);
2007
2008	r = crypt_convert(cc, &io->ctx,
2009			  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags));
2010	if (r)
2011		io->error = r;
2012
2013	if (atomic_dec_and_test(&io->ctx.cc_pending))
2014		kcryptd_crypt_read_done(io);
2015
2016	crypt_dec_pending(io);
2017}
2018
2019static void kcryptd_async_done(struct crypto_async_request *async_req,
2020			       int error)
2021{
2022	struct dm_crypt_request *dmreq = async_req->data;
2023	struct convert_context *ctx = dmreq->ctx;
2024	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2025	struct crypt_config *cc = io->cc;
2026
2027	/*
2028	 * A request from crypto driver backlog is going to be processed now,
2029	 * finish the completion and continue in crypt_convert().
2030	 * (Callback will be called for the second time for this request.)
2031	 */
2032	if (error == -EINPROGRESS) {
2033		complete(&ctx->restart);
2034		return;
2035	}
2036
2037	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2038		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2039
2040	if (error == -EBADMSG) {
2041		char b[BDEVNAME_SIZE];
2042		DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
2043			    (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
2044		io->error = BLK_STS_PROTECTION;
2045	} else if (error < 0)
2046		io->error = BLK_STS_IOERR;
2047
2048	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2049
2050	if (!atomic_dec_and_test(&ctx->cc_pending))
2051		return;
2052
2053	/*
2054	 * The request is fully completed: for inline writes, let
2055	 * kcryptd_crypt_write_convert() do the IO submission.
2056	 */
2057	if (bio_data_dir(io->base_bio) == READ) {
2058		kcryptd_crypt_read_done(io);
2059		return;
2060	}
2061
2062	if (kcryptd_crypt_write_inline(cc, ctx)) {
2063		complete(&ctx->restart);
2064		return;
2065	}
2066
2067	kcryptd_crypt_write_io_submit(io, 1);
2068}
2069
2070static void kcryptd_crypt(struct work_struct *work)
2071{
2072	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2073
2074	if (bio_data_dir(io->base_bio) == READ)
2075		kcryptd_crypt_read_convert(io);
2076	else
2077		kcryptd_crypt_write_convert(io);
2078}
2079
2080static void kcryptd_crypt_tasklet(unsigned long work)
2081{
2082	kcryptd_crypt((struct work_struct *)work);
2083}
2084
2085static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2086{
2087	struct crypt_config *cc = io->cc;
2088
2089	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2090	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2091		if (in_irq()) {
2092			/* Crypto API's "skcipher_walk_first() refuses to work in hard IRQ context */
2093			tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
2094			tasklet_schedule(&io->tasklet);
2095			return;
2096		}
2097
2098		kcryptd_crypt(&io->work);
2099		return;
2100	}
2101
2102	INIT_WORK(&io->work, kcryptd_crypt);
2103	queue_work(cc->crypt_queue, &io->work);
2104}
2105
2106static void crypt_free_tfms_aead(struct crypt_config *cc)
2107{
2108	if (!cc->cipher_tfm.tfms_aead)
2109		return;
2110
2111	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2112		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2113		cc->cipher_tfm.tfms_aead[0] = NULL;
2114	}
2115
2116	kfree(cc->cipher_tfm.tfms_aead);
2117	cc->cipher_tfm.tfms_aead = NULL;
2118}
2119
2120static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2121{
2122	unsigned i;
2123
2124	if (!cc->cipher_tfm.tfms)
2125		return;
2126
2127	for (i = 0; i < cc->tfms_count; i++)
2128		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2129			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2130			cc->cipher_tfm.tfms[i] = NULL;
2131		}
2132
2133	kfree(cc->cipher_tfm.tfms);
2134	cc->cipher_tfm.tfms = NULL;
2135}
2136
2137static void crypt_free_tfms(struct crypt_config *cc)
2138{
2139	if (crypt_integrity_aead(cc))
2140		crypt_free_tfms_aead(cc);
2141	else
2142		crypt_free_tfms_skcipher(cc);
2143}
2144
2145static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2146{
2147	unsigned i;
2148	int err;
2149
2150	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2151				      sizeof(struct crypto_skcipher *),
2152				      GFP_KERNEL);
2153	if (!cc->cipher_tfm.tfms)
2154		return -ENOMEM;
2155
2156	for (i = 0; i < cc->tfms_count; i++) {
2157		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
2158		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2159			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2160			crypt_free_tfms(cc);
2161			return err;
2162		}
2163	}
2164
2165	/*
2166	 * dm-crypt performance can vary greatly depending on which crypto
2167	 * algorithm implementation is used.  Help people debug performance
2168	 * problems by logging the ->cra_driver_name.
2169	 */
2170	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2171	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2172	return 0;
2173}
2174
2175static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2176{
2177	int err;
2178
2179	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2180	if (!cc->cipher_tfm.tfms)
2181		return -ENOMEM;
2182
2183	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
2184	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2185		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2186		crypt_free_tfms(cc);
2187		return err;
2188	}
2189
2190	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2191	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2192	return 0;
2193}
2194
2195static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2196{
2197	if (crypt_integrity_aead(cc))
2198		return crypt_alloc_tfms_aead(cc, ciphermode);
2199	else
2200		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2201}
2202
2203static unsigned crypt_subkey_size(struct crypt_config *cc)
2204{
2205	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2206}
2207
2208static unsigned crypt_authenckey_size(struct crypt_config *cc)
2209{
2210	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2211}
2212
2213/*
2214 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2215 * the key must be for some reason in special format.
2216 * This funcion converts cc->key to this special format.
2217 */
2218static void crypt_copy_authenckey(char *p, const void *key,
2219				  unsigned enckeylen, unsigned authkeylen)
2220{
2221	struct crypto_authenc_key_param *param;
2222	struct rtattr *rta;
2223
2224	rta = (struct rtattr *)p;
2225	param = RTA_DATA(rta);
2226	param->enckeylen = cpu_to_be32(enckeylen);
2227	rta->rta_len = RTA_LENGTH(sizeof(*param));
2228	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2229	p += RTA_SPACE(sizeof(*param));
2230	memcpy(p, key + enckeylen, authkeylen);
2231	p += authkeylen;
2232	memcpy(p, key, enckeylen);
2233}
2234
2235static int crypt_setkey(struct crypt_config *cc)
2236{
2237	unsigned subkey_size;
2238	int err = 0, i, r;
2239
2240	/* Ignore extra keys (which are used for IV etc) */
2241	subkey_size = crypt_subkey_size(cc);
2242
2243	if (crypt_integrity_hmac(cc)) {
2244		if (subkey_size < cc->key_mac_size)
2245			return -EINVAL;
2246
2247		crypt_copy_authenckey(cc->authenc_key, cc->key,
2248				      subkey_size - cc->key_mac_size,
2249				      cc->key_mac_size);
2250	}
2251
2252	for (i = 0; i < cc->tfms_count; i++) {
2253		if (crypt_integrity_hmac(cc))
2254			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2255				cc->authenc_key, crypt_authenckey_size(cc));
2256		else if (crypt_integrity_aead(cc))
2257			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2258					       cc->key + (i * subkey_size),
2259					       subkey_size);
2260		else
2261			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2262						   cc->key + (i * subkey_size),
2263						   subkey_size);
2264		if (r)
2265			err = r;
2266	}
2267
2268	if (crypt_integrity_hmac(cc))
2269		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2270
2271	return err;
2272}
2273
2274#ifdef CONFIG_KEYS
2275
2276static bool contains_whitespace(const char *str)
2277{
2278	while (*str)
2279		if (isspace(*str++))
2280			return true;
2281	return false;
2282}
2283
2284static int set_key_user(struct crypt_config *cc, struct key *key)
2285{
2286	const struct user_key_payload *ukp;
2287
2288	ukp = user_key_payload_locked(key);
2289	if (!ukp)
2290		return -EKEYREVOKED;
2291
2292	if (cc->key_size != ukp->datalen)
2293		return -EINVAL;
2294
2295	memcpy(cc->key, ukp->data, cc->key_size);
2296
2297	return 0;
 
 
 
 
2298}
2299
2300#if defined(CONFIG_ENCRYPTED_KEYS) || defined(CONFIG_ENCRYPTED_KEYS_MODULE)
2301static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2302{
2303	const struct encrypted_key_payload *ekp;
2304
2305	ekp = key->payload.data[0];
2306	if (!ekp)
2307		return -EKEYREVOKED;
2308
2309	if (cc->key_size != ekp->decrypted_datalen)
2310		return -EINVAL;
2311
2312	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
 
 
 
 
 
 
 
2313
2314	return 0;
2315}
2316#endif /* CONFIG_ENCRYPTED_KEYS */
2317
2318static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2319{
2320	char *new_key_string, *key_desc;
2321	int ret;
2322	struct key_type *type;
2323	struct key *key;
2324	int (*set_key)(struct crypt_config *cc, struct key *key);
2325
2326	/*
2327	 * Reject key_string with whitespace. dm core currently lacks code for
2328	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2329	 */
2330	if (contains_whitespace(key_string)) {
2331		DMERR("whitespace chars not allowed in key string");
2332		return -EINVAL;
2333	}
2334
2335	/* look for next ':' separating key_type from key_description */
2336	key_desc = strpbrk(key_string, ":");
2337	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2338		return -EINVAL;
2339
2340	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2341		type = &key_type_logon;
2342		set_key = set_key_user;
2343	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2344		type = &key_type_user;
2345		set_key = set_key_user;
2346#if defined(CONFIG_ENCRYPTED_KEYS) || defined(CONFIG_ENCRYPTED_KEYS_MODULE)
2347	} else if (!strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2348		type = &key_type_encrypted;
2349		set_key = set_key_encrypted;
2350#endif
2351	} else {
2352		return -EINVAL;
2353	}
2354
2355	new_key_string = kstrdup(key_string, GFP_KERNEL);
2356	if (!new_key_string)
2357		return -ENOMEM;
2358
2359	key = request_key(type, key_desc + 1, NULL);
2360	if (IS_ERR(key)) {
2361		kfree_sensitive(new_key_string);
2362		return PTR_ERR(key);
2363	}
2364
2365	down_read(&key->sem);
2366
2367	ret = set_key(cc, key);
2368	if (ret < 0) {
2369		up_read(&key->sem);
2370		key_put(key);
2371		kfree_sensitive(new_key_string);
2372		return ret;
2373	}
2374
2375	up_read(&key->sem);
2376	key_put(key);
2377
2378	/* clear the flag since following operations may invalidate previously valid key */
2379	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2380
2381	ret = crypt_setkey(cc);
2382
2383	if (!ret) {
2384		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2385		kfree_sensitive(cc->key_string);
2386		cc->key_string = new_key_string;
2387	} else
2388		kfree_sensitive(new_key_string);
2389
2390	return ret;
2391}
2392
2393static int get_key_size(char **key_string)
2394{
2395	char *colon, dummy;
2396	int ret;
2397
2398	if (*key_string[0] != ':')
2399		return strlen(*key_string) >> 1;
2400
2401	/* look for next ':' in key string */
2402	colon = strpbrk(*key_string + 1, ":");
2403	if (!colon)
2404		return -EINVAL;
2405
2406	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2407		return -EINVAL;
2408
2409	*key_string = colon;
2410
2411	/* remaining key string should be :<logon|user>:<key_desc> */
2412
2413	return ret;
2414}
2415
2416#else
2417
2418static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2419{
2420	return -EINVAL;
2421}
2422
2423static int get_key_size(char **key_string)
2424{
2425	return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2426}
2427
2428#endif /* CONFIG_KEYS */
2429
2430static int crypt_set_key(struct crypt_config *cc, char *key)
2431{
2432	int r = -EINVAL;
2433	int key_string_len = strlen(key);
2434
 
 
 
 
2435	/* Hyphen (which gives a key_size of zero) means there is no key. */
2436	if (!cc->key_size && strcmp(key, "-"))
2437		goto out;
2438
2439	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2440	if (key[0] == ':') {
2441		r = crypt_set_keyring_key(cc, key + 1);
2442		goto out;
2443	}
2444
2445	/* clear the flag since following operations may invalidate previously valid key */
2446	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2447
2448	/* wipe references to any kernel keyring key */
2449	kfree_sensitive(cc->key_string);
2450	cc->key_string = NULL;
2451
2452	/* Decode key from its hex representation. */
2453	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2454		goto out;
2455
2456	r = crypt_setkey(cc);
2457	if (!r)
2458		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2459
2460out:
2461	/* Hex key string not needed after here, so wipe it. */
2462	memset(key, '0', key_string_len);
2463
2464	return r;
2465}
2466
2467static int crypt_wipe_key(struct crypt_config *cc)
2468{
2469	int r;
2470
2471	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2472	get_random_bytes(&cc->key, cc->key_size);
2473
2474	/* Wipe IV private keys */
2475	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2476		r = cc->iv_gen_ops->wipe(cc);
2477		if (r)
2478			return r;
2479	}
2480
2481	kfree_sensitive(cc->key_string);
2482	cc->key_string = NULL;
2483	r = crypt_setkey(cc);
2484	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2485
2486	return r;
2487}
2488
2489static void crypt_calculate_pages_per_client(void)
2490{
2491	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2492
2493	if (!dm_crypt_clients_n)
2494		return;
2495
2496	pages /= dm_crypt_clients_n;
2497	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2498		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2499	dm_crypt_pages_per_client = pages;
2500}
2501
2502static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2503{
2504	struct crypt_config *cc = pool_data;
2505	struct page *page;
2506
2507	if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
2508	    likely(gfp_mask & __GFP_NORETRY))
2509		return NULL;
2510
2511	page = alloc_page(gfp_mask);
2512	if (likely(page != NULL))
2513		percpu_counter_add(&cc->n_allocated_pages, 1);
2514
2515	return page;
2516}
2517
2518static void crypt_page_free(void *page, void *pool_data)
2519{
2520	struct crypt_config *cc = pool_data;
2521
2522	__free_page(page);
2523	percpu_counter_sub(&cc->n_allocated_pages, 1);
2524}
2525
2526static void crypt_dtr(struct dm_target *ti)
2527{
2528	struct crypt_config *cc = ti->private;
 
 
2529
2530	ti->private = NULL;
2531
2532	if (!cc)
2533		return;
2534
2535	if (cc->write_thread)
2536		kthread_stop(cc->write_thread);
2537
2538	if (cc->io_queue)
2539		destroy_workqueue(cc->io_queue);
2540	if (cc->crypt_queue)
2541		destroy_workqueue(cc->crypt_queue);
2542
2543	crypt_free_tfms(cc);
2544
2545	bioset_exit(&cc->bs);
2546
2547	mempool_exit(&cc->page_pool);
2548	mempool_exit(&cc->req_pool);
2549	mempool_exit(&cc->tag_pool);
2550
2551	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2552	percpu_counter_destroy(&cc->n_allocated_pages);
 
 
 
 
 
 
 
2553
2554	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2555		cc->iv_gen_ops->dtr(cc);
2556
2557	if (cc->dev)
2558		dm_put_device(ti, cc->dev);
2559
2560	kfree_sensitive(cc->cipher_string);
2561	kfree_sensitive(cc->key_string);
2562	kfree_sensitive(cc->cipher_auth);
2563	kfree_sensitive(cc->authenc_key);
2564
2565	mutex_destroy(&cc->bio_alloc_lock);
 
2566
2567	/* Must zero key material before freeing */
2568	kfree_sensitive(cc);
2569
2570	spin_lock(&dm_crypt_clients_lock);
2571	WARN_ON(!dm_crypt_clients_n);
2572	dm_crypt_clients_n--;
2573	crypt_calculate_pages_per_client();
2574	spin_unlock(&dm_crypt_clients_lock);
2575}
2576
2577static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2578{
2579	struct crypt_config *cc = ti->private;
2580
2581	if (crypt_integrity_aead(cc))
2582		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2583	else
2584		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2585
2586	if (cc->iv_size)
2587		/* at least a 64 bit sector number should fit in our buffer */
2588		cc->iv_size = max(cc->iv_size,
2589				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2590	else if (ivmode) {
2591		DMWARN("Selected cipher does not support IVs");
2592		ivmode = NULL;
2593	}
2594
2595	/* Choose ivmode, see comments at iv code. */
2596	if (ivmode == NULL)
2597		cc->iv_gen_ops = NULL;
2598	else if (strcmp(ivmode, "plain") == 0)
2599		cc->iv_gen_ops = &crypt_iv_plain_ops;
2600	else if (strcmp(ivmode, "plain64") == 0)
2601		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2602	else if (strcmp(ivmode, "plain64be") == 0)
2603		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2604	else if (strcmp(ivmode, "essiv") == 0)
2605		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2606	else if (strcmp(ivmode, "benbi") == 0)
2607		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2608	else if (strcmp(ivmode, "null") == 0)
2609		cc->iv_gen_ops = &crypt_iv_null_ops;
2610	else if (strcmp(ivmode, "eboiv") == 0)
2611		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2612	else if (strcmp(ivmode, "elephant") == 0) {
2613		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2614		cc->key_parts = 2;
2615		cc->key_extra_size = cc->key_size / 2;
2616		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2617			return -EINVAL;
2618		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2619	} else if (strcmp(ivmode, "lmk") == 0) {
2620		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2621		/*
2622		 * Version 2 and 3 is recognised according
2623		 * to length of provided multi-key string.
2624		 * If present (version 3), last key is used as IV seed.
2625		 * All keys (including IV seed) are always the same size.
2626		 */
2627		if (cc->key_size % cc->key_parts) {
2628			cc->key_parts++;
2629			cc->key_extra_size = cc->key_size / cc->key_parts;
2630		}
2631	} else if (strcmp(ivmode, "tcw") == 0) {
2632		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2633		cc->key_parts += 2; /* IV + whitening */
2634		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2635	} else if (strcmp(ivmode, "random") == 0) {
2636		cc->iv_gen_ops = &crypt_iv_random_ops;
2637		/* Need storage space in integrity fields. */
2638		cc->integrity_iv_size = cc->iv_size;
2639	} else {
2640		ti->error = "Invalid IV mode";
2641		return -EINVAL;
2642	}
2643
2644	return 0;
2645}
2646
2647/*
2648 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2649 * The HMAC is needed to calculate tag size (HMAC digest size).
2650 * This should be probably done by crypto-api calls (once available...)
2651 */
2652static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2653{
2654	char *start, *end, *mac_alg = NULL;
2655	struct crypto_ahash *mac;
2656
2657	if (!strstarts(cipher_api, "authenc("))
2658		return 0;
2659
2660	start = strchr(cipher_api, '(');
2661	end = strchr(cipher_api, ',');
2662	if (!start || !end || ++start > end)
2663		return -EINVAL;
2664
2665	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2666	if (!mac_alg)
2667		return -ENOMEM;
2668	strncpy(mac_alg, start, end - start);
2669
2670	mac = crypto_alloc_ahash(mac_alg, 0, 0);
2671	kfree(mac_alg);
2672
2673	if (IS_ERR(mac))
2674		return PTR_ERR(mac);
2675
2676	cc->key_mac_size = crypto_ahash_digestsize(mac);
2677	crypto_free_ahash(mac);
2678
2679	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2680	if (!cc->authenc_key)
2681		return -ENOMEM;
2682
2683	return 0;
2684}
2685
2686static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2687				char **ivmode, char **ivopts)
2688{
2689	struct crypt_config *cc = ti->private;
2690	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2691	int ret = -EINVAL;
2692
2693	cc->tfms_count = 1;
2694
2695	/*
2696	 * New format (capi: prefix)
2697	 * capi:cipher_api_spec-iv:ivopts
2698	 */
2699	tmp = &cipher_in[strlen("capi:")];
2700
2701	/* Separate IV options if present, it can contain another '-' in hash name */
2702	*ivopts = strrchr(tmp, ':');
2703	if (*ivopts) {
2704		**ivopts = '\0';
2705		(*ivopts)++;
2706	}
2707	/* Parse IV mode */
2708	*ivmode = strrchr(tmp, '-');
2709	if (*ivmode) {
2710		**ivmode = '\0';
2711		(*ivmode)++;
2712	}
2713	/* The rest is crypto API spec */
2714	cipher_api = tmp;
2715
2716	/* Alloc AEAD, can be used only in new format. */
2717	if (crypt_integrity_aead(cc)) {
2718		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2719		if (ret < 0) {
2720			ti->error = "Invalid AEAD cipher spec";
2721			return -ENOMEM;
2722		}
2723	}
2724
2725	if (*ivmode && !strcmp(*ivmode, "lmk"))
2726		cc->tfms_count = 64;
2727
2728	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2729		if (!*ivopts) {
2730			ti->error = "Digest algorithm missing for ESSIV mode";
2731			return -EINVAL;
2732		}
2733		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2734			       cipher_api, *ivopts);
2735		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2736			ti->error = "Cannot allocate cipher string";
2737			return -ENOMEM;
2738		}
2739		cipher_api = buf;
2740	}
2741
2742	cc->key_parts = cc->tfms_count;
2743
2744	/* Allocate cipher */
2745	ret = crypt_alloc_tfms(cc, cipher_api);
2746	if (ret < 0) {
2747		ti->error = "Error allocating crypto tfm";
2748		return ret;
2749	}
2750
2751	if (crypt_integrity_aead(cc))
2752		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2753	else
2754		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2755
2756	return 0;
2757}
2758
2759static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2760				char **ivmode, char **ivopts)
2761{
2762	struct crypt_config *cc = ti->private;
2763	char *tmp, *cipher, *chainmode, *keycount;
2764	char *cipher_api = NULL;
2765	int ret = -EINVAL;
2766	char dummy;
2767
2768	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
 
2769		ti->error = "Bad cipher specification";
2770		return -EINVAL;
2771	}
2772
 
 
 
 
2773	/*
2774	 * Legacy dm-crypt cipher specification
2775	 * cipher[:keycount]-mode-iv:ivopts
2776	 */
2777	tmp = cipher_in;
2778	keycount = strsep(&tmp, "-");
2779	cipher = strsep(&keycount, ":");
2780
2781	if (!keycount)
2782		cc->tfms_count = 1;
2783	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2784		 !is_power_of_2(cc->tfms_count)) {
2785		ti->error = "Bad cipher key count specification";
2786		return -EINVAL;
2787	}
2788	cc->key_parts = cc->tfms_count;
2789
 
 
 
 
2790	chainmode = strsep(&tmp, "-");
2791	*ivmode = strsep(&tmp, ":");
2792	*ivopts = tmp;
 
 
 
 
 
 
 
 
 
 
 
2793
2794	/*
2795	 * For compatibility with the original dm-crypt mapping format, if
2796	 * only the cipher name is supplied, use cbc-plain.
2797	 */
2798	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2799		chainmode = "cbc";
2800		*ivmode = "plain";
2801	}
2802
2803	if (strcmp(chainmode, "ecb") && !*ivmode) {
2804		ti->error = "IV mechanism required";
2805		return -EINVAL;
2806	}
2807
2808	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2809	if (!cipher_api)
2810		goto bad_mem;
2811
2812	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2813		if (!*ivopts) {
2814			ti->error = "Digest algorithm missing for ESSIV mode";
2815			kfree(cipher_api);
2816			return -EINVAL;
2817		}
2818		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2819			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2820	} else {
2821		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2822			       "%s(%s)", chainmode, cipher);
2823	}
2824	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2825		kfree(cipher_api);
2826		goto bad_mem;
2827	}
2828
2829	/* Allocate cipher */
2830	ret = crypt_alloc_tfms(cc, cipher_api);
2831	if (ret < 0) {
2832		ti->error = "Error allocating crypto tfm";
2833		kfree(cipher_api);
2834		return ret;
2835	}
2836	kfree(cipher_api);
2837
2838	return 0;
2839bad_mem:
2840	ti->error = "Cannot allocate cipher strings";
2841	return -ENOMEM;
2842}
2843
2844static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2845{
2846	struct crypt_config *cc = ti->private;
2847	char *ivmode = NULL, *ivopts = NULL;
2848	int ret;
2849
2850	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2851	if (!cc->cipher_string) {
2852		ti->error = "Cannot allocate cipher strings";
2853		return -ENOMEM;
2854	}
2855
2856	if (strstarts(cipher_in, "capi:"))
2857		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2858	else
2859		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2860	if (ret)
2861		return ret;
2862
2863	/* Initialize IV */
2864	ret = crypt_ctr_ivmode(ti, ivmode);
2865	if (ret < 0)
2866		return ret;
2867
2868	/* Initialize and set key */
2869	ret = crypt_set_key(cc, key);
2870	if (ret < 0) {
2871		ti->error = "Error decoding and setting key";
2872		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2873	}
2874
2875	/* Allocate IV */
2876	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2877		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2878		if (ret < 0) {
2879			ti->error = "Error creating IV";
2880			return ret;
2881		}
2882	}
2883
2884	/* Initialize IV (set keys for ESSIV etc) */
2885	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2886		ret = cc->iv_gen_ops->init(cc);
2887		if (ret < 0) {
2888			ti->error = "Error initialising IV";
2889			return ret;
2890		}
2891	}
2892
2893	/* wipe the kernel key payload copy */
2894	if (cc->key_string)
2895		memset(cc->key, 0, cc->key_size * sizeof(u8));
2896
2897	return ret;
2898}
2899
2900static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2901{
2902	struct crypt_config *cc = ti->private;
2903	struct dm_arg_set as;
2904	static const struct dm_arg _args[] = {
2905		{0, 8, "Invalid number of feature args"},
2906	};
2907	unsigned int opt_params, val;
2908	const char *opt_string, *sval;
2909	char dummy;
2910	int ret;
2911
2912	/* Optional parameters */
2913	as.argc = argc;
2914	as.argv = argv;
2915
2916	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2917	if (ret)
2918		return ret;
2919
2920	while (opt_params--) {
2921		opt_string = dm_shift_arg(&as);
2922		if (!opt_string) {
2923			ti->error = "Not enough feature arguments";
2924			return -EINVAL;
2925		}
2926
2927		if (!strcasecmp(opt_string, "allow_discards"))
2928			ti->num_discard_bios = 1;
2929
2930		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2931			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2932
2933		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2934			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2935		else if (!strcasecmp(opt_string, "no_read_workqueue"))
2936			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
2937		else if (!strcasecmp(opt_string, "no_write_workqueue"))
2938			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
2939		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2940			if (val == 0 || val > MAX_TAG_SIZE) {
2941				ti->error = "Invalid integrity arguments";
2942				return -EINVAL;
2943			}
2944			cc->on_disk_tag_size = val;
2945			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2946			if (!strcasecmp(sval, "aead")) {
2947				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2948			} else  if (strcasecmp(sval, "none")) {
2949				ti->error = "Unknown integrity profile";
2950				return -EINVAL;
2951			}
2952
2953			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2954			if (!cc->cipher_auth)
2955				return -ENOMEM;
2956		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2957			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2958			    cc->sector_size > 4096 ||
2959			    (cc->sector_size & (cc->sector_size - 1))) {
2960				ti->error = "Invalid feature value for sector_size";
2961				return -EINVAL;
2962			}
2963			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2964				ti->error = "Device size is not multiple of sector_size feature";
2965				return -EINVAL;
2966			}
2967			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2968		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
2969			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2970		else {
2971			ti->error = "Invalid feature arguments";
2972			return -EINVAL;
2973		}
2974	}
2975
2976	return 0;
2977}
2978
2979#ifdef CONFIG_BLK_DEV_ZONED
2980
2981static int crypt_report_zones(struct dm_target *ti,
2982		struct dm_report_zones_args *args, unsigned int nr_zones)
2983{
2984	struct crypt_config *cc = ti->private;
2985	sector_t sector = cc->start + dm_target_offset(ti, args->next_sector);
2986
2987	args->start = cc->start;
2988	return blkdev_report_zones(cc->dev->bdev, sector, nr_zones,
2989				   dm_report_zones_cb, args);
2990}
2991
2992#endif
2993
2994/*
2995 * Construct an encryption mapping:
2996 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2997 */
2998static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2999{
3000	struct crypt_config *cc;
3001	const char *devname = dm_table_device_name(ti->table);
3002	int key_size;
3003	unsigned int align_mask;
3004	unsigned long long tmpll;
3005	int ret;
3006	size_t iv_size_padding, additional_req_size;
3007	char dummy;
 
 
 
 
3008
3009	if (argc < 5) {
3010		ti->error = "Not enough arguments";
3011		return -EINVAL;
3012	}
3013
3014	key_size = get_key_size(&argv[1]);
3015	if (key_size < 0) {
3016		ti->error = "Cannot parse key size";
3017		return -EINVAL;
3018	}
3019
3020	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3021	if (!cc) {
3022		ti->error = "Cannot allocate encryption context";
3023		return -ENOMEM;
3024	}
3025	cc->key_size = key_size;
3026	cc->sector_size = (1 << SECTOR_SHIFT);
3027	cc->sector_shift = 0;
3028
3029	ti->private = cc;
3030
3031	spin_lock(&dm_crypt_clients_lock);
3032	dm_crypt_clients_n++;
3033	crypt_calculate_pages_per_client();
3034	spin_unlock(&dm_crypt_clients_lock);
3035
3036	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3037	if (ret < 0)
3038		goto bad;
3039
3040	/* Optional parameters need to be read before cipher constructor */
3041	if (argc > 5) {
3042		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3043		if (ret)
3044			goto bad;
3045	}
3046
3047	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3048	if (ret < 0)
3049		goto bad;
3050
3051	if (crypt_integrity_aead(cc)) {
3052		cc->dmreq_start = sizeof(struct aead_request);
3053		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3054		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3055	} else {
3056		cc->dmreq_start = sizeof(struct skcipher_request);
3057		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3058		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3059	}
3060	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3061
3062	if (align_mask < CRYPTO_MINALIGN) {
3063		/* Allocate the padding exactly */
3064		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3065				& align_mask;
3066	} else {
3067		/*
3068		 * If the cipher requires greater alignment than kmalloc
3069		 * alignment, we don't know the exact position of the
3070		 * initialization vector. We must assume worst case.
3071		 */
3072		iv_size_padding = align_mask;
3073	}
3074
3075	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3076	additional_req_size = sizeof(struct dm_crypt_request) +
3077		iv_size_padding + cc->iv_size +
3078		cc->iv_size +
3079		sizeof(uint64_t) +
3080		sizeof(unsigned int);
3081
3082	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3083	if (ret) {
3084		ti->error = "Cannot allocate crypt request mempool";
3085		goto bad;
3086	}
3087
3088	cc->per_bio_data_size = ti->per_io_data_size =
3089		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3090		      ARCH_KMALLOC_MINALIGN);
3091
3092	ret = mempool_init(&cc->page_pool, BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
3093	if (ret) {
3094		ti->error = "Cannot allocate page mempool";
3095		goto bad;
3096	}
3097
3098	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3099	if (ret) {
3100		ti->error = "Cannot allocate crypt bioset";
3101		goto bad;
3102	}
3103
3104	mutex_init(&cc->bio_alloc_lock);
3105
3106	ret = -EINVAL;
3107	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3108	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3109		ti->error = "Invalid iv_offset sector";
3110		goto bad;
3111	}
3112	cc->iv_offset = tmpll;
3113
3114	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3115	if (ret) {
3116		ti->error = "Device lookup failed";
3117		goto bad;
3118	}
3119
3120	ret = -EINVAL;
3121	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3122		ti->error = "Invalid device sector";
3123		goto bad;
3124	}
3125	cc->start = tmpll;
3126
3127	/*
3128	 * For zoned block devices, we need to preserve the issuer write
3129	 * ordering. To do so, disable write workqueues and force inline
3130	 * encryption completion.
3131	 */
3132	if (bdev_is_zoned(cc->dev->bdev)) {
3133		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3134		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3135	}
3136
3137	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3138		ret = crypt_integrity_ctr(cc, ti);
3139		if (ret)
3140			goto bad;
3141
3142		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3143		if (!cc->tag_pool_max_sectors)
3144			cc->tag_pool_max_sectors = 1;
3145
3146		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3147			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3148		if (ret) {
3149			ti->error = "Cannot allocate integrity tags mempool";
3150			goto bad;
3151		}
3152
3153		cc->tag_pool_max_sectors <<= cc->sector_shift;
3154	}
3155
3156	ret = -ENOMEM;
3157	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
 
 
 
3158	if (!cc->io_queue) {
3159		ti->error = "Couldn't create kcryptd io queue";
3160		goto bad;
3161	}
3162
3163	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3164		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3165						  1, devname);
3166	else
3167		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3168						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3169						  num_online_cpus(), devname);
3170	if (!cc->crypt_queue) {
3171		ti->error = "Couldn't create kcryptd queue";
3172		goto bad;
3173	}
3174
3175	spin_lock_init(&cc->write_thread_lock);
3176	cc->write_tree = RB_ROOT;
3177
3178	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3179	if (IS_ERR(cc->write_thread)) {
3180		ret = PTR_ERR(cc->write_thread);
3181		cc->write_thread = NULL;
3182		ti->error = "Couldn't spawn write thread";
3183		goto bad;
3184	}
3185	wake_up_process(cc->write_thread);
3186
3187	ti->num_flush_bios = 1;
3188
3189	return 0;
3190
3191bad:
3192	crypt_dtr(ti);
3193	return ret;
3194}
3195
3196static int crypt_map(struct dm_target *ti, struct bio *bio)
 
3197{
3198	struct dm_crypt_io *io;
3199	struct crypt_config *cc = ti->private;
3200
3201	/*
3202	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3203	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3204	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3205	 */
3206	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3207	    bio_op(bio) == REQ_OP_DISCARD)) {
3208		bio_set_dev(bio, cc->dev->bdev);
3209		if (bio_sectors(bio))
3210			bio->bi_iter.bi_sector = cc->start +
3211				dm_target_offset(ti, bio->bi_iter.bi_sector);
3212		return DM_MAPIO_REMAPPED;
3213	}
3214
3215	/*
3216	 * Check if bio is too large, split as needed.
3217	 */
3218	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
3219	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3220		dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
3221
3222	/*
3223	 * Ensure that bio is a multiple of internal sector encryption size
3224	 * and is aligned to this size as defined in IO hints.
3225	 */
3226	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3227		return DM_MAPIO_KILL;
3228
3229	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3230		return DM_MAPIO_KILL;
3231
3232	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3233	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3234
3235	if (cc->on_disk_tag_size) {
3236		unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3237
3238		if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
3239		    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
3240				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
3241			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3242				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3243			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3244			io->integrity_metadata_from_pool = true;
3245		}
3246	}
3247
3248	if (crypt_integrity_aead(cc))
3249		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3250	else
3251		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3252
3253	if (bio_data_dir(io->base_bio) == READ) {
3254		if (kcryptd_io_read(io, GFP_NOWAIT))
3255			kcryptd_queue_read(io);
3256	} else
3257		kcryptd_queue_crypt(io);
3258
3259	return DM_MAPIO_SUBMITTED;
3260}
3261
3262static void crypt_status(struct dm_target *ti, status_type_t type,
3263			 unsigned status_flags, char *result, unsigned maxlen)
3264{
3265	struct crypt_config *cc = ti->private;
3266	unsigned i, sz = 0;
3267	int num_feature_args = 0;
3268
3269	switch (type) {
3270	case STATUSTYPE_INFO:
3271		result[0] = '\0';
3272		break;
3273
3274	case STATUSTYPE_TABLE:
3275		DMEMIT("%s ", cc->cipher_string);
3276
3277		if (cc->key_size > 0) {
3278			if (cc->key_string)
3279				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3280			else
3281				for (i = 0; i < cc->key_size; i++)
3282					DMEMIT("%02x", cc->key[i]);
3283		} else
3284			DMEMIT("-");
 
 
 
3285
3286		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3287				cc->dev->name, (unsigned long long)cc->start);
3288
3289		num_feature_args += !!ti->num_discard_bios;
3290		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3291		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3292		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3293		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3294		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3295		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3296		if (cc->on_disk_tag_size)
3297			num_feature_args++;
3298		if (num_feature_args) {
3299			DMEMIT(" %d", num_feature_args);
3300			if (ti->num_discard_bios)
3301				DMEMIT(" allow_discards");
3302			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3303				DMEMIT(" same_cpu_crypt");
3304			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3305				DMEMIT(" submit_from_crypt_cpus");
3306			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3307				DMEMIT(" no_read_workqueue");
3308			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3309				DMEMIT(" no_write_workqueue");
3310			if (cc->on_disk_tag_size)
3311				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3312			if (cc->sector_size != (1 << SECTOR_SHIFT))
3313				DMEMIT(" sector_size:%d", cc->sector_size);
3314			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3315				DMEMIT(" iv_large_sectors");
3316		}
3317
3318		break;
3319	}
 
3320}
3321
3322static void crypt_postsuspend(struct dm_target *ti)
3323{
3324	struct crypt_config *cc = ti->private;
3325
3326	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3327}
3328
3329static int crypt_preresume(struct dm_target *ti)
3330{
3331	struct crypt_config *cc = ti->private;
3332
3333	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3334		DMERR("aborting resume - crypt key is not set.");
3335		return -EAGAIN;
3336	}
3337
3338	return 0;
3339}
3340
3341static void crypt_resume(struct dm_target *ti)
3342{
3343	struct crypt_config *cc = ti->private;
3344
3345	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3346}
3347
3348/* Message interface
3349 *	key set <key>
3350 *	key wipe
3351 */
3352static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3353			 char *result, unsigned maxlen)
3354{
3355	struct crypt_config *cc = ti->private;
3356	int key_size, ret = -EINVAL;
3357
3358	if (argc < 2)
3359		goto error;
3360
3361	if (!strcasecmp(argv[0], "key")) {
3362		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3363			DMWARN("not suspended during key manipulation.");
3364			return -EINVAL;
3365		}
3366		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3367			/* The key size may not be changed. */
3368			key_size = get_key_size(&argv[2]);
3369			if (key_size < 0 || cc->key_size != key_size) {
3370				memset(argv[2], '0', strlen(argv[2]));
3371				return -EINVAL;
3372			}
3373
3374			ret = crypt_set_key(cc, argv[2]);
3375			if (ret)
3376				return ret;
3377			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3378				ret = cc->iv_gen_ops->init(cc);
3379			/* wipe the kernel key payload copy */
3380			if (cc->key_string)
3381				memset(cc->key, 0, cc->key_size * sizeof(u8));
3382			return ret;
3383		}
3384		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
 
 
 
 
 
3385			return crypt_wipe_key(cc);
 
3386	}
3387
3388error:
3389	DMWARN("unrecognised message received.");
3390	return -EINVAL;
3391}
3392
3393static int crypt_iterate_devices(struct dm_target *ti,
3394				 iterate_devices_callout_fn fn, void *data)
3395{
3396	struct crypt_config *cc = ti->private;
 
3397
3398	return fn(ti, cc->dev, cc->start, ti->len, data);
 
 
 
 
 
 
3399}
3400
3401static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
 
3402{
3403	struct crypt_config *cc = ti->private;
3404
3405	/*
3406	 * Unfortunate constraint that is required to avoid the potential
3407	 * for exceeding underlying device's max_segments limits -- due to
3408	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3409	 * bio that are not as physically contiguous as the original bio.
3410	 */
3411	limits->max_segment_size = PAGE_SIZE;
3412
3413	limits->logical_block_size =
3414		max_t(unsigned, limits->logical_block_size, cc->sector_size);
3415	limits->physical_block_size =
3416		max_t(unsigned, limits->physical_block_size, cc->sector_size);
3417	limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
3418}
3419
3420static struct target_type crypt_target = {
3421	.name   = "crypt",
3422	.version = {1, 22, 0},
3423	.module = THIS_MODULE,
3424	.ctr    = crypt_ctr,
3425	.dtr    = crypt_dtr,
3426#ifdef CONFIG_BLK_DEV_ZONED
3427	.features = DM_TARGET_ZONED_HM,
3428	.report_zones = crypt_report_zones,
3429#endif
3430	.map    = crypt_map,
3431	.status = crypt_status,
3432	.postsuspend = crypt_postsuspend,
3433	.preresume = crypt_preresume,
3434	.resume = crypt_resume,
3435	.message = crypt_message,
 
3436	.iterate_devices = crypt_iterate_devices,
3437	.io_hints = crypt_io_hints,
3438};
3439
3440static int __init dm_crypt_init(void)
3441{
3442	int r;
3443
 
 
 
 
3444	r = dm_register_target(&crypt_target);
3445	if (r < 0)
3446		DMERR("register failed %d", r);
 
 
3447
3448	return r;
3449}
3450
3451static void __exit dm_crypt_exit(void)
3452{
3453	dm_unregister_target(&crypt_target);
 
3454}
3455
3456module_init(dm_crypt_init);
3457module_exit(dm_crypt_exit);
3458
3459MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3460MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3461MODULE_LICENSE("GPL");
v3.1
   1/*
   2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
 
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include <linux/completion.h>
  10#include <linux/err.h>
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
 
  14#include <linux/bio.h>
  15#include <linux/blkdev.h>
  16#include <linux/mempool.h>
  17#include <linux/slab.h>
  18#include <linux/crypto.h>
  19#include <linux/workqueue.h>
 
  20#include <linux/backing-dev.h>
  21#include <linux/percpu.h>
  22#include <linux/atomic.h>
  23#include <linux/scatterlist.h>
 
 
  24#include <asm/page.h>
  25#include <asm/unaligned.h>
  26#include <crypto/hash.h>
  27#include <crypto/md5.h>
  28#include <crypto/algapi.h>
 
 
 
 
 
 
 
  29
  30#include <linux/device-mapper.h>
  31
  32#define DM_MSG_PREFIX "crypt"
  33
  34/*
  35 * context holding the current state of a multi-part conversion
  36 */
  37struct convert_context {
  38	struct completion restart;
  39	struct bio *bio_in;
  40	struct bio *bio_out;
  41	unsigned int offset_in;
  42	unsigned int offset_out;
  43	unsigned int idx_in;
  44	unsigned int idx_out;
  45	sector_t sector;
  46	atomic_t pending;
 
 
 
  47};
  48
  49/*
  50 * per bio private data
  51 */
  52struct dm_crypt_io {
  53	struct dm_target *target;
  54	struct bio *base_bio;
 
 
  55	struct work_struct work;
 
  56
  57	struct convert_context ctx;
  58
  59	atomic_t pending;
  60	int error;
  61	sector_t sector;
  62	struct dm_crypt_io *base_io;
  63};
 
  64
  65struct dm_crypt_request {
  66	struct convert_context *ctx;
  67	struct scatterlist sg_in;
  68	struct scatterlist sg_out;
  69	sector_t iv_sector;
  70};
  71
  72struct crypt_config;
  73
  74struct crypt_iv_operations {
  75	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  76		   const char *opts);
  77	void (*dtr)(struct crypt_config *cc);
  78	int (*init)(struct crypt_config *cc);
  79	int (*wipe)(struct crypt_config *cc);
  80	int (*generator)(struct crypt_config *cc, u8 *iv,
  81			 struct dm_crypt_request *dmreq);
  82	int (*post)(struct crypt_config *cc, u8 *iv,
  83		    struct dm_crypt_request *dmreq);
  84};
  85
  86struct iv_essiv_private {
  87	struct crypto_hash *hash_tfm;
  88	u8 *salt;
  89};
  90
  91struct iv_benbi_private {
  92	int shift;
  93};
  94
  95#define LMK_SEED_SIZE 64 /* hash + 0 */
  96struct iv_lmk_private {
  97	struct crypto_shash *hash_tfm;
  98	u8 *seed;
  99};
 100
 
 
 
 
 
 
 
 
 
 
 
 
 101/*
 102 * Crypt: maps a linear range of a block device
 103 * and encrypts / decrypts at the same time.
 104 */
 105enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
 106
 107/*
 108 * Duplicated per-CPU state for cipher.
 109 */
 110struct crypt_cpu {
 111	struct ablkcipher_request *req;
 112	/* ESSIV: struct crypto_cipher *essiv_tfm */
 113	void *iv_private;
 114	struct crypto_ablkcipher *tfms[0];
 115};
 116
 117/*
 118 * The fields in here must be read only after initialization,
 119 * changing state should be in crypt_cpu.
 120 */
 121struct crypt_config {
 122	struct dm_dev *dev;
 123	sector_t start;
 124
 125	/*
 126	 * pool for per bio private data, crypto requests and
 127	 * encryption requeusts/buffer pages
 128	 */
 129	mempool_t *io_pool;
 130	mempool_t *req_pool;
 131	mempool_t *page_pool;
 132	struct bio_set *bs;
 133
 134	struct workqueue_struct *io_queue;
 135	struct workqueue_struct *crypt_queue;
 136
 137	char *cipher;
 
 
 
 138	char *cipher_string;
 
 
 139
 140	struct crypt_iv_operations *iv_gen_ops;
 141	union {
 142		struct iv_essiv_private essiv;
 143		struct iv_benbi_private benbi;
 144		struct iv_lmk_private lmk;
 
 
 145	} iv_gen_private;
 146	sector_t iv_offset;
 147	unsigned int iv_size;
 
 
 148
 149	/*
 150	 * Duplicated per cpu state. Access through
 151	 * per_cpu_ptr() only.
 152	 */
 153	struct crypt_cpu __percpu *cpu;
 154	unsigned tfms_count;
 
 155
 156	/*
 157	 * Layout of each crypto request:
 158	 *
 159	 *   struct ablkcipher_request
 160	 *      context
 161	 *      padding
 162	 *   struct dm_crypt_request
 163	 *      padding
 164	 *   IV
 165	 *
 166	 * The padding is added so that dm_crypt_request and the IV are
 167	 * correctly aligned.
 168	 */
 169	unsigned int dmreq_start;
 170
 
 
 171	unsigned long flags;
 172	unsigned int key_size;
 173	unsigned int key_parts;
 174	u8 key[0];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175};
 176
 177#define MIN_IOS        16
 178#define MIN_POOL_PAGES 32
 179#define MIN_BIO_PAGES  8
 180
 181static struct kmem_cache *_crypt_io_pool;
 
 
 
 
 182
 183static void clone_init(struct dm_crypt_io *, struct bio *);
 184static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 185static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
 
 186
 187static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
 
 
 
 
 
 188{
 189	return this_cpu_ptr(cc->cpu);
 190}
 191
 192/*
 193 * Use this to access cipher attributes that are the same for each CPU.
 194 */
 195static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
 196{
 197	return __this_cpu_ptr(cc->cpu)->tfms[0];
 198}
 199
 200/*
 201 * Different IV generation algorithms:
 202 *
 203 * plain: the initial vector is the 32-bit little-endian version of the sector
 204 *        number, padded with zeros if necessary.
 205 *
 206 * plain64: the initial vector is the 64-bit little-endian version of the sector
 207 *        number, padded with zeros if necessary.
 208 *
 
 
 
 209 * essiv: "encrypted sector|salt initial vector", the sector number is
 210 *        encrypted with the bulk cipher using a salt as key. The salt
 211 *        should be derived from the bulk cipher's key via hashing.
 212 *
 213 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 214 *        (needed for LRW-32-AES and possible other narrow block modes)
 215 *
 216 * null: the initial vector is always zero.  Provides compatibility with
 217 *       obsolete loop_fish2 devices.  Do not use for new devices.
 218 *
 219 * lmk:  Compatible implementation of the block chaining mode used
 220 *       by the Loop-AES block device encryption system
 221 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 222 *       It operates on full 512 byte sectors and uses CBC
 223 *       with an IV derived from the sector number, the data and
 224 *       optionally extra IV seed.
 225 *       This means that after decryption the first block
 226 *       of sector must be tweaked according to decrypted data.
 227 *       Loop-AES can use three encryption schemes:
 228 *         version 1: is plain aes-cbc mode
 229 *         version 2: uses 64 multikey scheme with lmk IV generator
 230 *         version 3: the same as version 2 with additional IV seed
 231 *                   (it uses 65 keys, last key is used as IV seed)
 232 *
 233 * plumb: unimplemented, see:
 234 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235 */
 236
 237static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 238			      struct dm_crypt_request *dmreq)
 239{
 240	memset(iv, 0, cc->iv_size);
 241	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 242
 243	return 0;
 244}
 245
 246static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 247				struct dm_crypt_request *dmreq)
 248{
 249	memset(iv, 0, cc->iv_size);
 250	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 251
 252	return 0;
 253}
 254
 255/* Initialise ESSIV - compute salt but no local memory allocations */
 256static int crypt_iv_essiv_init(struct crypt_config *cc)
 257{
 258	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 259	struct hash_desc desc;
 260	struct scatterlist sg;
 261	struct crypto_cipher *essiv_tfm;
 262	int err, cpu;
 263
 264	sg_init_one(&sg, cc->key, cc->key_size);
 265	desc.tfm = essiv->hash_tfm;
 266	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 267
 268	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
 269	if (err)
 270		return err;
 271
 272	for_each_possible_cpu(cpu) {
 273		essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private,
 274
 275		err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 276				    crypto_hash_digestsize(essiv->hash_tfm));
 277		if (err)
 278			return err;
 279	}
 280
 281	return 0;
 282}
 283
 284/* Wipe salt and reset key derived from volume key */
 285static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 286{
 287	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 288	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
 289	struct crypto_cipher *essiv_tfm;
 290	int cpu, r, err = 0;
 291
 292	memset(essiv->salt, 0, salt_size);
 293
 294	for_each_possible_cpu(cpu) {
 295		essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private;
 296		r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 297		if (r)
 298			err = r;
 299	}
 300
 301	return err;
 302}
 303
 304/* Set up per cpu cipher state */
 305static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
 306					     struct dm_target *ti,
 307					     u8 *salt, unsigned saltsize)
 308{
 309	struct crypto_cipher *essiv_tfm;
 310	int err;
 311
 312	/* Setup the essiv_tfm with the given salt */
 313	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 314	if (IS_ERR(essiv_tfm)) {
 315		ti->error = "Error allocating crypto tfm for ESSIV";
 316		return essiv_tfm;
 317	}
 318
 319	if (crypto_cipher_blocksize(essiv_tfm) !=
 320	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
 321		ti->error = "Block size of ESSIV cipher does "
 322			    "not match IV size of block cipher";
 323		crypto_free_cipher(essiv_tfm);
 324		return ERR_PTR(-EINVAL);
 325	}
 326
 327	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 328	if (err) {
 329		ti->error = "Failed to set key for ESSIV cipher";
 330		crypto_free_cipher(essiv_tfm);
 331		return ERR_PTR(err);
 332	}
 333
 334	return essiv_tfm;
 335}
 336
 337static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 338{
 339	int cpu;
 340	struct crypt_cpu *cpu_cc;
 341	struct crypto_cipher *essiv_tfm;
 342	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 343
 344	crypto_free_hash(essiv->hash_tfm);
 345	essiv->hash_tfm = NULL;
 346
 347	kzfree(essiv->salt);
 348	essiv->salt = NULL;
 349
 350	for_each_possible_cpu(cpu) {
 351		cpu_cc = per_cpu_ptr(cc->cpu, cpu);
 352		essiv_tfm = cpu_cc->iv_private;
 353
 354		if (essiv_tfm)
 355			crypto_free_cipher(essiv_tfm);
 356
 357		cpu_cc->iv_private = NULL;
 358	}
 359}
 360
 361static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 362			      const char *opts)
 363{
 364	struct crypto_cipher *essiv_tfm = NULL;
 365	struct crypto_hash *hash_tfm = NULL;
 366	u8 *salt = NULL;
 367	int err, cpu;
 368
 369	if (!opts) {
 370		ti->error = "Digest algorithm missing for ESSIV mode";
 371		return -EINVAL;
 372	}
 373
 374	/* Allocate hash algorithm */
 375	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
 376	if (IS_ERR(hash_tfm)) {
 377		ti->error = "Error initializing ESSIV hash";
 378		err = PTR_ERR(hash_tfm);
 379		goto bad;
 380	}
 381
 382	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
 383	if (!salt) {
 384		ti->error = "Error kmallocing salt storage in ESSIV";
 385		err = -ENOMEM;
 386		goto bad;
 387	}
 388
 389	cc->iv_gen_private.essiv.salt = salt;
 390	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 391
 392	for_each_possible_cpu(cpu) {
 393		essiv_tfm = setup_essiv_cpu(cc, ti, salt,
 394					crypto_hash_digestsize(hash_tfm));
 395		if (IS_ERR(essiv_tfm)) {
 396			crypt_iv_essiv_dtr(cc);
 397			return PTR_ERR(essiv_tfm);
 398		}
 399		per_cpu_ptr(cc->cpu, cpu)->iv_private = essiv_tfm;
 400	}
 401
 402	return 0;
 403
 404bad:
 405	if (hash_tfm && !IS_ERR(hash_tfm))
 406		crypto_free_hash(hash_tfm);
 407	kfree(salt);
 408	return err;
 409}
 410
 411static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 412			      struct dm_crypt_request *dmreq)
 413{
 414	struct crypto_cipher *essiv_tfm = this_crypt_config(cc)->iv_private;
 415
 
 
 416	memset(iv, 0, cc->iv_size);
 417	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 418	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 419
 420	return 0;
 421}
 422
 423static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 424			      const char *opts)
 425{
 426	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
 427	int log = ilog2(bs);
 
 
 
 
 
 
 428
 429	/* we need to calculate how far we must shift the sector count
 430	 * to get the cipher block count, we use this shift in _gen */
 431
 432	if (1 << log != bs) {
 433		ti->error = "cypher blocksize is not a power of 2";
 434		return -EINVAL;
 435	}
 436
 437	if (log > 9) {
 438		ti->error = "cypher blocksize is > 512";
 439		return -EINVAL;
 440	}
 441
 442	cc->iv_gen_private.benbi.shift = 9 - log;
 443
 444	return 0;
 445}
 446
 447static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 448{
 449}
 450
 451static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 452			      struct dm_crypt_request *dmreq)
 453{
 454	__be64 val;
 455
 456	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 457
 458	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 459	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 460
 461	return 0;
 462}
 463
 464static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 465			     struct dm_crypt_request *dmreq)
 466{
 467	memset(iv, 0, cc->iv_size);
 468
 469	return 0;
 470}
 471
 472static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 473{
 474	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 475
 476	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 477		crypto_free_shash(lmk->hash_tfm);
 478	lmk->hash_tfm = NULL;
 479
 480	kzfree(lmk->seed);
 481	lmk->seed = NULL;
 482}
 483
 484static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 485			    const char *opts)
 486{
 487	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 488
 
 
 
 
 
 489	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 490	if (IS_ERR(lmk->hash_tfm)) {
 491		ti->error = "Error initializing LMK hash";
 492		return PTR_ERR(lmk->hash_tfm);
 493	}
 494
 495	/* No seed in LMK version 2 */
 496	if (cc->key_parts == cc->tfms_count) {
 497		lmk->seed = NULL;
 498		return 0;
 499	}
 500
 501	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 502	if (!lmk->seed) {
 503		crypt_iv_lmk_dtr(cc);
 504		ti->error = "Error kmallocing seed storage in LMK";
 505		return -ENOMEM;
 506	}
 507
 508	return 0;
 509}
 510
 511static int crypt_iv_lmk_init(struct crypt_config *cc)
 512{
 513	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 514	int subkey_size = cc->key_size / cc->key_parts;
 515
 516	/* LMK seed is on the position of LMK_KEYS + 1 key */
 517	if (lmk->seed)
 518		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 519		       crypto_shash_digestsize(lmk->hash_tfm));
 520
 521	return 0;
 522}
 523
 524static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 525{
 526	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 527
 528	if (lmk->seed)
 529		memset(lmk->seed, 0, LMK_SEED_SIZE);
 530
 531	return 0;
 532}
 533
 534static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 535			    struct dm_crypt_request *dmreq,
 536			    u8 *data)
 537{
 538	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 539	struct {
 540		struct shash_desc desc;
 541		char ctx[crypto_shash_descsize(lmk->hash_tfm)];
 542	} sdesc;
 543	struct md5_state md5state;
 544	u32 buf[4];
 545	int i, r;
 546
 547	sdesc.desc.tfm = lmk->hash_tfm;
 548	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 549
 550	r = crypto_shash_init(&sdesc.desc);
 551	if (r)
 552		return r;
 553
 554	if (lmk->seed) {
 555		r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
 556		if (r)
 557			return r;
 558	}
 559
 560	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 561	r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
 562	if (r)
 563		return r;
 564
 565	/* Sector is cropped to 56 bits here */
 566	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 567	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 568	buf[2] = cpu_to_le32(4024);
 569	buf[3] = 0;
 570	r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
 571	if (r)
 572		return r;
 573
 574	/* No MD5 padding here */
 575	r = crypto_shash_export(&sdesc.desc, &md5state);
 576	if (r)
 577		return r;
 578
 579	for (i = 0; i < MD5_HASH_WORDS; i++)
 580		__cpu_to_le32s(&md5state.hash[i]);
 581	memcpy(iv, &md5state.hash, cc->iv_size);
 582
 583	return 0;
 584}
 585
 586static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 587			    struct dm_crypt_request *dmreq)
 588{
 
 589	u8 *src;
 590	int r = 0;
 591
 592	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 593		src = kmap_atomic(sg_page(&dmreq->sg_in), KM_USER0);
 594		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
 595		kunmap_atomic(src, KM_USER0);
 
 596	} else
 597		memset(iv, 0, cc->iv_size);
 598
 599	return r;
 600}
 601
 602static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 603			     struct dm_crypt_request *dmreq)
 604{
 
 605	u8 *dst;
 606	int r;
 607
 608	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 609		return 0;
 610
 611	dst = kmap_atomic(sg_page(&dmreq->sg_out), KM_USER0);
 612	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
 
 613
 614	/* Tweak the first block of plaintext sector */
 615	if (!r)
 616		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 617
 618	kunmap_atomic(dst, KM_USER0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619	return r;
 620}
 621
 622static struct crypt_iv_operations crypt_iv_plain_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 623	.generator = crypt_iv_plain_gen
 624};
 625
 626static struct crypt_iv_operations crypt_iv_plain64_ops = {
 627	.generator = crypt_iv_plain64_gen
 628};
 629
 630static struct crypt_iv_operations crypt_iv_essiv_ops = {
 631	.ctr       = crypt_iv_essiv_ctr,
 632	.dtr       = crypt_iv_essiv_dtr,
 633	.init      = crypt_iv_essiv_init,
 634	.wipe      = crypt_iv_essiv_wipe,
 635	.generator = crypt_iv_essiv_gen
 636};
 637
 638static struct crypt_iv_operations crypt_iv_benbi_ops = {
 639	.ctr	   = crypt_iv_benbi_ctr,
 640	.dtr	   = crypt_iv_benbi_dtr,
 641	.generator = crypt_iv_benbi_gen
 642};
 643
 644static struct crypt_iv_operations crypt_iv_null_ops = {
 645	.generator = crypt_iv_null_gen
 646};
 647
 648static struct crypt_iv_operations crypt_iv_lmk_ops = {
 649	.ctr	   = crypt_iv_lmk_ctr,
 650	.dtr	   = crypt_iv_lmk_dtr,
 651	.init	   = crypt_iv_lmk_init,
 652	.wipe	   = crypt_iv_lmk_wipe,
 653	.generator = crypt_iv_lmk_gen,
 654	.post	   = crypt_iv_lmk_post
 655};
 656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657static void crypt_convert_init(struct crypt_config *cc,
 658			       struct convert_context *ctx,
 659			       struct bio *bio_out, struct bio *bio_in,
 660			       sector_t sector)
 661{
 662	ctx->bio_in = bio_in;
 663	ctx->bio_out = bio_out;
 664	ctx->offset_in = 0;
 665	ctx->offset_out = 0;
 666	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
 667	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
 668	ctx->sector = sector + cc->iv_offset;
 669	init_completion(&ctx->restart);
 670}
 671
 672static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 673					     struct ablkcipher_request *req)
 674{
 675	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 676}
 677
 678static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
 679					       struct dm_crypt_request *dmreq)
 680{
 681	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
 682}
 683
 684static u8 *iv_of_dmreq(struct crypt_config *cc,
 685		       struct dm_crypt_request *dmreq)
 686{
 687	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 688		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
 
 
 
 
 689}
 690
 691static int crypt_convert_block(struct crypt_config *cc,
 692			       struct convert_context *ctx,
 693			       struct ablkcipher_request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 694{
 695	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
 696	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
 697	struct dm_crypt_request *dmreq;
 698	u8 *iv;
 
 699	int r = 0;
 700
 
 
 
 
 
 
 701	dmreq = dmreq_of_req(cc, req);
 
 
 
 
 
 
 
 
 
 
 702	iv = iv_of_dmreq(cc, dmreq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703
 704	dmreq->iv_sector = ctx->sector;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705	dmreq->ctx = ctx;
 706	sg_init_table(&dmreq->sg_in, 1);
 707	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
 708		    bv_in->bv_offset + ctx->offset_in);
 709
 710	sg_init_table(&dmreq->sg_out, 1);
 711	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
 712		    bv_out->bv_offset + ctx->offset_out);
 713
 714	ctx->offset_in += 1 << SECTOR_SHIFT;
 715	if (ctx->offset_in >= bv_in->bv_len) {
 716		ctx->offset_in = 0;
 717		ctx->idx_in++;
 718	}
 719
 720	ctx->offset_out += 1 << SECTOR_SHIFT;
 721	if (ctx->offset_out >= bv_out->bv_len) {
 722		ctx->offset_out = 0;
 723		ctx->idx_out++;
 724	}
 725
 726	if (cc->iv_gen_ops) {
 727		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
 728		if (r < 0)
 729			return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 730	}
 731
 732	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 733				     1 << SECTOR_SHIFT, iv);
 734
 735	if (bio_data_dir(ctx->bio_in) == WRITE)
 736		r = crypto_ablkcipher_encrypt(req);
 737	else
 738		r = crypto_ablkcipher_decrypt(req);
 739
 740	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
 741		r = cc->iv_gen_ops->post(cc, iv, dmreq);
 
 
 
 742
 743	return r;
 744}
 745
 746static void kcryptd_async_done(struct crypto_async_request *async_req,
 747			       int error);
 748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749static void crypt_alloc_req(struct crypt_config *cc,
 750			    struct convert_context *ctx)
 751{
 752	struct crypt_cpu *this_cc = this_crypt_config(cc);
 753	unsigned key_index = ctx->sector & (cc->tfms_count - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754
 755	if (!this_cc->req)
 756		this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 
 757
 758	ablkcipher_request_set_tfm(this_cc->req, this_cc->tfms[key_index]);
 759	ablkcipher_request_set_callback(this_cc->req,
 760	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 761	    kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
 
 
 762}
 763
 764/*
 765 * Encrypt / decrypt data from one bio to another one (can be the same one)
 766 */
 767static int crypt_convert(struct crypt_config *cc,
 768			 struct convert_context *ctx)
 769{
 770	struct crypt_cpu *this_cc = this_crypt_config(cc);
 
 771	int r;
 772
 773	atomic_set(&ctx->pending, 1);
 774
 775	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
 776	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
 777
 778		crypt_alloc_req(cc, ctx);
 
 779
 780		atomic_inc(&ctx->pending);
 781
 782		r = crypt_convert_block(cc, ctx, this_cc->req);
 
 783
 784		switch (r) {
 785		/* async */
 
 
 
 786		case -EBUSY:
 787			wait_for_completion(&ctx->restart);
 788			INIT_COMPLETION(ctx->restart);
 789			/* fall through*/
 
 
 
 
 790		case -EINPROGRESS:
 791			this_cc->req = NULL;
 792			ctx->sector++;
 
 793			continue;
 794
 795		/* sync */
 
 796		case 0:
 797			atomic_dec(&ctx->pending);
 798			ctx->sector++;
 799			cond_resched();
 
 
 800			continue;
 801
 802		/* error */
 
 
 
 
 
 
 
 803		default:
 804			atomic_dec(&ctx->pending);
 805			return r;
 806		}
 807	}
 808
 809	return 0;
 810}
 811
 812static void dm_crypt_bio_destructor(struct bio *bio)
 813{
 814	struct dm_crypt_io *io = bio->bi_private;
 815	struct crypt_config *cc = io->target->private;
 816
 817	bio_free(bio, cc->bs);
 818}
 819
 820/*
 821 * Generate a new unfragmented bio with the given size
 822 * This should never violate the device limitations
 823 * May return a smaller bio when running out of pages, indicated by
 824 * *out_of_pages set to 1.
 
 
 
 
 
 
 
 
 
 
 
 825 */
 826static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
 827				      unsigned *out_of_pages)
 828{
 829	struct crypt_config *cc = io->target->private;
 830	struct bio *clone;
 831	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 832	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
 833	unsigned i, len;
 834	struct page *page;
 835
 836	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
 
 
 
 
 837	if (!clone)
 838		return NULL;
 839
 840	clone_init(io, clone);
 841	*out_of_pages = 0;
 
 842
 843	for (i = 0; i < nr_iovecs; i++) {
 844		page = mempool_alloc(cc->page_pool, gfp_mask);
 845		if (!page) {
 846			*out_of_pages = 1;
 847			break;
 
 
 848		}
 849
 850		/*
 851		 * if additional pages cannot be allocated without waiting,
 852		 * return a partially allocated bio, the caller will then try
 853		 * to allocate additional bios while submitting this partial bio
 854		 */
 855		if (i == (MIN_BIO_PAGES - 1))
 856			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
 857
 858		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
 859
 860		if (!bio_add_page(clone, page, len, 0)) {
 861			mempool_free(page, cc->page_pool);
 862			break;
 863		}
 864
 865		size -= len;
 866	}
 867
 868	if (!clone->bi_size) {
 
 
 869		bio_put(clone);
 870		return NULL;
 871	}
 
 
 
 872
 873	return clone;
 874}
 875
 876static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
 877{
 878	unsigned int i;
 879	struct bio_vec *bv;
 
 880
 881	for (i = 0; i < clone->bi_vcnt; i++) {
 882		bv = bio_iovec_idx(clone, i);
 883		BUG_ON(!bv->bv_page);
 884		mempool_free(bv->bv_page, cc->page_pool);
 885		bv->bv_page = NULL;
 886	}
 887}
 888
 889static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
 890					  struct bio *bio, sector_t sector)
 891{
 892	struct crypt_config *cc = ti->private;
 893	struct dm_crypt_io *io;
 894
 895	io = mempool_alloc(cc->io_pool, GFP_NOIO);
 896	io->target = ti;
 897	io->base_bio = bio;
 898	io->sector = sector;
 899	io->error = 0;
 900	io->base_io = NULL;
 901	atomic_set(&io->pending, 0);
 902
 903	return io;
 904}
 905
 906static void crypt_inc_pending(struct dm_crypt_io *io)
 907{
 908	atomic_inc(&io->pending);
 909}
 910
 911/*
 912 * One of the bios was finished. Check for completion of
 913 * the whole request and correctly clean up the buffer.
 914 * If base_io is set, wait for the last fragment to complete.
 915 */
 916static void crypt_dec_pending(struct dm_crypt_io *io)
 917{
 918	struct crypt_config *cc = io->target->private;
 919	struct bio *base_bio = io->base_bio;
 920	struct dm_crypt_io *base_io = io->base_io;
 921	int error = io->error;
 922
 923	if (!atomic_dec_and_test(&io->pending))
 924		return;
 925
 926	mempool_free(io, cc->io_pool);
 
 927
 928	if (likely(!base_io))
 929		bio_endio(base_bio, error);
 930	else {
 931		if (error && !base_io->error)
 932			base_io->error = error;
 933		crypt_dec_pending(base_io);
 934	}
 935}
 936
 937/*
 938 * kcryptd/kcryptd_io:
 939 *
 940 * Needed because it would be very unwise to do decryption in an
 941 * interrupt context.
 942 *
 943 * kcryptd performs the actual encryption or decryption.
 944 *
 945 * kcryptd_io performs the IO submission.
 946 *
 947 * They must be separated as otherwise the final stages could be
 948 * starved by new requests which can block in the first stages due
 949 * to memory allocation.
 950 *
 951 * The work is done per CPU global for all dm-crypt instances.
 952 * They should not depend on each other and do not block.
 953 */
 954static void crypt_endio(struct bio *clone, int error)
 955{
 956	struct dm_crypt_io *io = clone->bi_private;
 957	struct crypt_config *cc = io->target->private;
 958	unsigned rw = bio_data_dir(clone);
 959
 960	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
 961		error = -EIO;
 962
 963	/*
 964	 * free the processed pages
 965	 */
 966	if (rw == WRITE)
 967		crypt_free_buffer_pages(cc, clone);
 968
 
 969	bio_put(clone);
 970
 971	if (rw == READ && !error) {
 972		kcryptd_queue_crypt(io);
 973		return;
 974	}
 975
 976	if (unlikely(error))
 977		io->error = error;
 978
 979	crypt_dec_pending(io);
 980}
 981
 982static void clone_init(struct dm_crypt_io *io, struct bio *clone)
 983{
 984	struct crypt_config *cc = io->target->private;
 985
 986	clone->bi_private = io;
 987	clone->bi_end_io  = crypt_endio;
 988	clone->bi_bdev    = cc->dev->bdev;
 989	clone->bi_rw      = io->base_bio->bi_rw;
 990	clone->bi_destructor = dm_crypt_bio_destructor;
 991}
 992
 993static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
 994{
 995	struct crypt_config *cc = io->target->private;
 996	struct bio *base_bio = io->base_bio;
 997	struct bio *clone;
 998
 999	/*
1000	 * The block layer might modify the bvec array, so always
1001	 * copy the required bvecs because we need the original
1002	 * one in order to decrypt the whole bio data *afterwards*.
 
1003	 */
1004	clone = bio_alloc_bioset(gfp, bio_segments(base_bio), cc->bs);
1005	if (!clone)
1006		return 1;
1007
1008	crypt_inc_pending(io);
1009
1010	clone_init(io, clone);
1011	clone->bi_idx = 0;
1012	clone->bi_vcnt = bio_segments(base_bio);
1013	clone->bi_size = base_bio->bi_size;
1014	clone->bi_sector = cc->start + io->sector;
1015	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
1016	       sizeof(struct bio_vec) * clone->bi_vcnt);
1017
1018	generic_make_request(clone);
 
 
 
 
 
 
1019	return 0;
1020}
1021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022static void kcryptd_io_write(struct dm_crypt_io *io)
1023{
1024	struct bio *clone = io->ctx.bio_out;
1025	generic_make_request(clone);
 
1026}
1027
1028static void kcryptd_io(struct work_struct *work)
 
 
1029{
1030	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031
1032	if (bio_data_dir(io->base_bio) == READ) {
1033		crypt_inc_pending(io);
1034		if (kcryptd_io_read(io, GFP_NOIO))
1035			io->error = -ENOMEM;
1036		crypt_dec_pending(io);
1037	} else
1038		kcryptd_io_write(io);
1039}
1040
1041static void kcryptd_queue_io(struct dm_crypt_io *io)
1042{
1043	struct crypt_config *cc = io->target->private;
1044
1045	INIT_WORK(&io->work, kcryptd_io);
1046	queue_work(cc->io_queue, &io->work);
 
 
 
 
 
 
 
 
 
 
 
1047}
1048
1049static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
1050					  int error, int async)
1051{
1052	struct bio *clone = io->ctx.bio_out;
1053	struct crypt_config *cc = io->target->private;
 
 
 
1054
1055	if (unlikely(error < 0)) {
1056		crypt_free_buffer_pages(cc, clone);
1057		bio_put(clone);
1058		io->error = -EIO;
1059		crypt_dec_pending(io);
1060		return;
1061	}
1062
1063	/* crypt_convert should have filled the clone bio */
1064	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1065
1066	clone->bi_sector = cc->start + io->sector;
 
 
 
 
 
1067
1068	if (async)
1069		kcryptd_queue_io(io);
1070	else
1071		generic_make_request(clone);
 
 
 
 
 
 
 
 
 
1072}
1073
1074static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1075{
1076	struct crypt_config *cc = io->target->private;
 
1077	struct bio *clone;
1078	struct dm_crypt_io *new_io;
1079	int crypt_finished;
1080	unsigned out_of_pages = 0;
1081	unsigned remaining = io->base_bio->bi_size;
1082	sector_t sector = io->sector;
1083	int r;
1084
1085	/*
1086	 * Prevent io from disappearing until this function completes.
1087	 */
1088	crypt_inc_pending(io);
1089	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1090
1091	/*
1092	 * The allocated buffers can be smaller than the whole bio,
1093	 * so repeat the whole process until all the data can be handled.
1094	 */
1095	while (remaining) {
1096		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1097		if (unlikely(!clone)) {
1098			io->error = -ENOMEM;
1099			break;
1100		}
1101
1102		io->ctx.bio_out = clone;
1103		io->ctx.idx_out = 0;
1104
1105		remaining -= clone->bi_size;
1106		sector += bio_sectors(clone);
1107
1108		crypt_inc_pending(io);
1109		r = crypt_convert(cc, &io->ctx);
1110		crypt_finished = atomic_dec_and_test(&io->ctx.pending);
1111
1112		/* Encryption was already finished, submit io now */
1113		if (crypt_finished) {
1114			kcryptd_crypt_write_io_submit(io, r, 0);
1115
1116			/*
1117			 * If there was an error, do not try next fragments.
1118			 * For async, error is processed in async handler.
1119			 */
1120			if (unlikely(r < 0))
1121				break;
1122
1123			io->sector = sector;
1124		}
1125
1126		/*
1127		 * Out of memory -> run queues
1128		 * But don't wait if split was due to the io size restriction
1129		 */
1130		if (unlikely(out_of_pages))
1131			congestion_wait(BLK_RW_ASYNC, HZ/100);
1132
1133		/*
1134		 * With async crypto it is unsafe to share the crypto context
1135		 * between fragments, so switch to a new dm_crypt_io structure.
1136		 */
1137		if (unlikely(!crypt_finished && remaining)) {
1138			new_io = crypt_io_alloc(io->target, io->base_bio,
1139						sector);
1140			crypt_inc_pending(new_io);
1141			crypt_convert_init(cc, &new_io->ctx, NULL,
1142					   io->base_bio, sector);
1143			new_io->ctx.idx_in = io->ctx.idx_in;
1144			new_io->ctx.offset_in = io->ctx.offset_in;
1145
1146			/*
1147			 * Fragments after the first use the base_io
1148			 * pending count.
1149			 */
1150			if (!io->base_io)
1151				new_io->base_io = io;
1152			else {
1153				new_io->base_io = io->base_io;
1154				crypt_inc_pending(io->base_io);
1155				crypt_dec_pending(io);
1156			}
1157
1158			io = new_io;
1159		}
1160	}
1161
 
1162	crypt_dec_pending(io);
1163}
1164
1165static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
1166{
1167	if (unlikely(error < 0))
1168		io->error = -EIO;
1169
1170	crypt_dec_pending(io);
1171}
1172
1173static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1174{
1175	struct crypt_config *cc = io->target->private;
1176	int r = 0;
1177
1178	crypt_inc_pending(io);
1179
1180	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1181			   io->sector);
1182
1183	r = crypt_convert(cc, &io->ctx);
 
 
 
1184
1185	if (atomic_dec_and_test(&io->ctx.pending))
1186		kcryptd_crypt_read_done(io, r);
1187
1188	crypt_dec_pending(io);
1189}
1190
1191static void kcryptd_async_done(struct crypto_async_request *async_req,
1192			       int error)
1193{
1194	struct dm_crypt_request *dmreq = async_req->data;
1195	struct convert_context *ctx = dmreq->ctx;
1196	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1197	struct crypt_config *cc = io->target->private;
1198
 
 
 
 
 
1199	if (error == -EINPROGRESS) {
1200		complete(&ctx->restart);
1201		return;
1202	}
1203
1204	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1205		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
 
 
 
 
 
 
 
 
1206
1207	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1208
1209	if (!atomic_dec_and_test(&ctx->pending))
1210		return;
1211
1212	if (bio_data_dir(io->base_bio) == READ)
1213		kcryptd_crypt_read_done(io, error);
1214	else
1215		kcryptd_crypt_write_io_submit(io, error, 1);
 
 
 
 
 
 
 
 
 
 
 
1216}
1217
1218static void kcryptd_crypt(struct work_struct *work)
1219{
1220	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1221
1222	if (bio_data_dir(io->base_bio) == READ)
1223		kcryptd_crypt_read_convert(io);
1224	else
1225		kcryptd_crypt_write_convert(io);
1226}
1227
 
 
 
 
 
1228static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1229{
1230	struct crypt_config *cc = io->target->private;
 
 
 
 
 
 
 
 
 
 
 
 
 
1231
1232	INIT_WORK(&io->work, kcryptd_crypt);
1233	queue_work(cc->crypt_queue, &io->work);
1234}
1235
1236/*
1237 * Decode key from its hex representation
1238 */
1239static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
 
 
 
 
 
 
 
 
 
 
 
1240{
1241	char buffer[3];
1242	char *endp;
1243	unsigned int i;
 
 
 
 
 
 
 
1244
1245	buffer[2] = '\0';
 
 
1246
1247	for (i = 0; i < size; i++) {
1248		buffer[0] = *hex++;
1249		buffer[1] = *hex++;
 
 
 
 
1250
1251		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
 
 
 
1252
1253		if (endp != &buffer[2])
1254			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
1255	}
1256
1257	if (*hex != '\0')
1258		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259
 
 
1260	return 0;
1261}
1262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263/*
1264 * Encode key into its hex representation
 
 
1265 */
1266static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267{
1268	unsigned int i;
 
1269
1270	for (i = 0; i < size; i++) {
1271		sprintf(hex, "%02x", *key);
1272		hex += 2;
1273		key++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1274	}
 
 
 
 
 
1275}
1276
1277static void crypt_free_tfms(struct crypt_config *cc, int cpu)
 
 
1278{
1279	struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1280	unsigned i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1281
1282	for (i = 0; i < cc->tfms_count; i++)
1283		if (cpu_cc->tfms[i] && !IS_ERR(cpu_cc->tfms[i])) {
1284			crypto_free_ablkcipher(cpu_cc->tfms[i]);
1285			cpu_cc->tfms[i] = NULL;
1286		}
1287}
1288
1289static int crypt_alloc_tfms(struct crypt_config *cc, int cpu, char *ciphermode)
 
1290{
1291	struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1292	unsigned i;
1293	int err;
 
 
 
 
 
1294
1295	for (i = 0; i < cc->tfms_count; i++) {
1296		cpu_cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1297		if (IS_ERR(cpu_cc->tfms[i])) {
1298			err = PTR_ERR(cpu_cc->tfms[i]);
1299			crypt_free_tfms(cc, cpu);
1300			return err;
1301		}
1302	}
1303
1304	return 0;
1305}
 
1306
1307static int crypt_setkey_allcpus(struct crypt_config *cc)
1308{
1309	unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1310	int cpu, err = 0, i, r;
 
 
 
1311
1312	for_each_possible_cpu(cpu) {
1313		for (i = 0; i < cc->tfms_count; i++) {
1314			r = crypto_ablkcipher_setkey(per_cpu_ptr(cc->cpu, cpu)->tfms[i],
1315						     cc->key + (i * subkey_size), subkey_size);
1316			if (r)
1317				err = r;
1318		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319	}
1320
1321	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322}
1323
 
 
1324static int crypt_set_key(struct crypt_config *cc, char *key)
1325{
1326	int r = -EINVAL;
1327	int key_string_len = strlen(key);
1328
1329	/* The key size may not be changed. */
1330	if (cc->key_size != (key_string_len >> 1))
1331		goto out;
1332
1333	/* Hyphen (which gives a key_size of zero) means there is no key. */
1334	if (!cc->key_size && strcmp(key, "-"))
1335		goto out;
1336
1337	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
 
 
1338		goto out;
 
1339
1340	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
 
 
 
 
 
 
 
 
 
1341
1342	r = crypt_setkey_allcpus(cc);
 
 
1343
1344out:
1345	/* Hex key string not needed after here, so wipe it. */
1346	memset(key, '0', key_string_len);
1347
1348	return r;
1349}
1350
1351static int crypt_wipe_key(struct crypt_config *cc)
1352{
 
 
1353	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
 
 
 
 
 
 
 
 
 
 
 
 
1354	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1355
1356	return crypt_setkey_allcpus(cc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1357}
1358
1359static void crypt_dtr(struct dm_target *ti)
1360{
1361	struct crypt_config *cc = ti->private;
1362	struct crypt_cpu *cpu_cc;
1363	int cpu;
1364
1365	ti->private = NULL;
1366
1367	if (!cc)
1368		return;
1369
 
 
 
1370	if (cc->io_queue)
1371		destroy_workqueue(cc->io_queue);
1372	if (cc->crypt_queue)
1373		destroy_workqueue(cc->crypt_queue);
1374
1375	if (cc->cpu)
1376		for_each_possible_cpu(cpu) {
1377			cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1378			if (cpu_cc->req)
1379				mempool_free(cpu_cc->req, cc->req_pool);
1380			crypt_free_tfms(cc, cpu);
1381		}
1382
1383	if (cc->bs)
1384		bioset_free(cc->bs);
1385
1386	if (cc->page_pool)
1387		mempool_destroy(cc->page_pool);
1388	if (cc->req_pool)
1389		mempool_destroy(cc->req_pool);
1390	if (cc->io_pool)
1391		mempool_destroy(cc->io_pool);
1392
1393	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1394		cc->iv_gen_ops->dtr(cc);
1395
1396	if (cc->dev)
1397		dm_put_device(ti, cc->dev);
1398
1399	if (cc->cpu)
1400		free_percpu(cc->cpu);
 
 
1401
1402	kzfree(cc->cipher);
1403	kzfree(cc->cipher_string);
1404
1405	/* Must zero key material before freeing */
1406	kzfree(cc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407}
1408
1409static int crypt_ctr_cipher(struct dm_target *ti,
1410			    char *cipher_in, char *key)
1411{
1412	struct crypt_config *cc = ti->private;
1413	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1414	char *cipher_api = NULL;
1415	int cpu, ret = -EINVAL;
 
1416
1417	/* Convert to crypto api definition? */
1418	if (strchr(cipher_in, '(')) {
1419		ti->error = "Bad cipher specification";
1420		return -EINVAL;
1421	}
1422
1423	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1424	if (!cc->cipher_string)
1425		goto bad_mem;
1426
1427	/*
1428	 * Legacy dm-crypt cipher specification
1429	 * cipher[:keycount]-mode-iv:ivopts
1430	 */
1431	tmp = cipher_in;
1432	keycount = strsep(&tmp, "-");
1433	cipher = strsep(&keycount, ":");
1434
1435	if (!keycount)
1436		cc->tfms_count = 1;
1437	else if (sscanf(keycount, "%u", &cc->tfms_count) != 1 ||
1438		 !is_power_of_2(cc->tfms_count)) {
1439		ti->error = "Bad cipher key count specification";
1440		return -EINVAL;
1441	}
1442	cc->key_parts = cc->tfms_count;
1443
1444	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1445	if (!cc->cipher)
1446		goto bad_mem;
1447
1448	chainmode = strsep(&tmp, "-");
1449	ivopts = strsep(&tmp, "-");
1450	ivmode = strsep(&ivopts, ":");
1451
1452	if (tmp)
1453		DMWARN("Ignoring unexpected additional cipher options");
1454
1455	cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)) +
1456				 cc->tfms_count * sizeof(*(cc->cpu->tfms)),
1457				 __alignof__(struct crypt_cpu));
1458	if (!cc->cpu) {
1459		ti->error = "Cannot allocate per cpu state";
1460		goto bad_mem;
1461	}
1462
1463	/*
1464	 * For compatibility with the original dm-crypt mapping format, if
1465	 * only the cipher name is supplied, use cbc-plain.
1466	 */
1467	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1468		chainmode = "cbc";
1469		ivmode = "plain";
1470	}
1471
1472	if (strcmp(chainmode, "ecb") && !ivmode) {
1473		ti->error = "IV mechanism required";
1474		return -EINVAL;
1475	}
1476
1477	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1478	if (!cipher_api)
1479		goto bad_mem;
1480
1481	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1482		       "%s(%s)", chainmode, cipher);
1483	if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
1484		kfree(cipher_api);
1485		goto bad_mem;
1486	}
1487
1488	/* Allocate cipher */
1489	for_each_possible_cpu(cpu) {
1490		ret = crypt_alloc_tfms(cc, cpu, cipher_api);
1491		if (ret < 0) {
1492			ti->error = "Error allocating crypto tfm";
1493			goto bad;
1494		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495	}
1496
 
 
 
 
 
 
 
 
 
 
 
 
1497	/* Initialize and set key */
1498	ret = crypt_set_key(cc, key);
1499	if (ret < 0) {
1500		ti->error = "Error decoding and setting key";
1501		goto bad;
1502	}
1503
1504	/* Initialize IV */
1505	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1506	if (cc->iv_size)
1507		/* at least a 64 bit sector number should fit in our buffer */
1508		cc->iv_size = max(cc->iv_size,
1509				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1510	else if (ivmode) {
1511		DMWARN("Selected cipher does not support IVs");
1512		ivmode = NULL;
1513	}
1514
1515	/* Choose ivmode, see comments at iv code. */
1516	if (ivmode == NULL)
1517		cc->iv_gen_ops = NULL;
1518	else if (strcmp(ivmode, "plain") == 0)
1519		cc->iv_gen_ops = &crypt_iv_plain_ops;
1520	else if (strcmp(ivmode, "plain64") == 0)
1521		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1522	else if (strcmp(ivmode, "essiv") == 0)
1523		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1524	else if (strcmp(ivmode, "benbi") == 0)
1525		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1526	else if (strcmp(ivmode, "null") == 0)
1527		cc->iv_gen_ops = &crypt_iv_null_ops;
1528	else if (strcmp(ivmode, "lmk") == 0) {
1529		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1530		/* Version 2 and 3 is recognised according
1531		 * to length of provided multi-key string.
1532		 * If present (version 3), last key is used as IV seed.
1533		 */
1534		if (cc->key_size % cc->key_parts)
1535			cc->key_parts++;
1536	} else {
1537		ret = -EINVAL;
1538		ti->error = "Invalid IV mode";
1539		goto bad;
1540	}
1541
1542	/* Allocate IV */
1543	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1544		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1545		if (ret < 0) {
1546			ti->error = "Error creating IV";
1547			goto bad;
1548		}
1549	}
1550
1551	/* Initialize IV (set keys for ESSIV etc) */
1552	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1553		ret = cc->iv_gen_ops->init(cc);
1554		if (ret < 0) {
1555			ti->error = "Error initialising IV";
1556			goto bad;
1557		}
1558	}
1559
1560	ret = 0;
1561bad:
1562	kfree(cipher_api);
 
1563	return ret;
 
1564
1565bad_mem:
1566	ti->error = "Cannot allocate cipher strings";
1567	return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568}
1569
 
 
1570/*
1571 * Construct an encryption mapping:
1572 * <cipher> <key> <iv_offset> <dev_path> <start>
1573 */
1574static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1575{
1576	struct crypt_config *cc;
1577	unsigned int key_size, opt_params;
 
 
1578	unsigned long long tmpll;
1579	int ret;
1580	struct dm_arg_set as;
1581	const char *opt_string;
1582
1583	static struct dm_arg _args[] = {
1584		{0, 1, "Invalid number of feature args"},
1585	};
1586
1587	if (argc < 5) {
1588		ti->error = "Not enough arguments";
1589		return -EINVAL;
1590	}
1591
1592	key_size = strlen(argv[1]) >> 1;
 
 
 
 
1593
1594	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1595	if (!cc) {
1596		ti->error = "Cannot allocate encryption context";
1597		return -ENOMEM;
1598	}
1599	cc->key_size = key_size;
 
 
1600
1601	ti->private = cc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1603	if (ret < 0)
1604		goto bad;
1605
1606	ret = -ENOMEM;
1607	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1608	if (!cc->io_pool) {
1609		ti->error = "Cannot allocate crypt io mempool";
1610		goto bad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1611	}
1612
1613	cc->dmreq_start = sizeof(struct ablkcipher_request);
1614	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1615	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1616	cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1617			   ~(crypto_tfm_ctx_alignment() - 1);
1618
1619	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1620			sizeof(struct dm_crypt_request) + cc->iv_size);
1621	if (!cc->req_pool) {
1622		ti->error = "Cannot allocate crypt request mempool";
1623		goto bad;
1624	}
1625
1626	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1627	if (!cc->page_pool) {
 
 
 
 
1628		ti->error = "Cannot allocate page mempool";
1629		goto bad;
1630	}
1631
1632	cc->bs = bioset_create(MIN_IOS, 0);
1633	if (!cc->bs) {
1634		ti->error = "Cannot allocate crypt bioset";
1635		goto bad;
1636	}
1637
 
 
1638	ret = -EINVAL;
1639	if (sscanf(argv[2], "%llu", &tmpll) != 1) {
 
1640		ti->error = "Invalid iv_offset sector";
1641		goto bad;
1642	}
1643	cc->iv_offset = tmpll;
1644
1645	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
 
1646		ti->error = "Device lookup failed";
1647		goto bad;
1648	}
1649
1650	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
 
1651		ti->error = "Invalid device sector";
1652		goto bad;
1653	}
1654	cc->start = tmpll;
1655
1656	argv += 5;
1657	argc -= 5;
1658
1659	/* Optional parameters */
1660	if (argc) {
1661		as.argc = argc;
1662		as.argv = argv;
 
 
1663
1664		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
 
1665		if (ret)
1666			goto bad;
1667
1668		opt_string = dm_shift_arg(&as);
1669
1670		if (opt_params == 1 && opt_string &&
1671		    !strcasecmp(opt_string, "allow_discards"))
1672			ti->num_discard_requests = 1;
1673		else if (opt_params) {
1674			ret = -EINVAL;
1675			ti->error = "Invalid feature arguments";
1676			goto bad;
1677		}
 
 
1678	}
1679
1680	ret = -ENOMEM;
1681	cc->io_queue = alloc_workqueue("kcryptd_io",
1682				       WQ_NON_REENTRANT|
1683				       WQ_MEM_RECLAIM,
1684				       1);
1685	if (!cc->io_queue) {
1686		ti->error = "Couldn't create kcryptd io queue";
1687		goto bad;
1688	}
1689
1690	cc->crypt_queue = alloc_workqueue("kcryptd",
1691					  WQ_NON_REENTRANT|
1692					  WQ_CPU_INTENSIVE|
1693					  WQ_MEM_RECLAIM,
1694					  1);
 
 
1695	if (!cc->crypt_queue) {
1696		ti->error = "Couldn't create kcryptd queue";
1697		goto bad;
1698	}
1699
1700	ti->num_flush_requests = 1;
1701	ti->discard_zeroes_data_unsupported = 1;
 
 
 
 
 
 
 
 
 
 
 
1702
1703	return 0;
1704
1705bad:
1706	crypt_dtr(ti);
1707	return ret;
1708}
1709
1710static int crypt_map(struct dm_target *ti, struct bio *bio,
1711		     union map_info *map_context)
1712{
1713	struct dm_crypt_io *io;
1714	struct crypt_config *cc;
1715
1716	/*
1717	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1718	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1719	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1720	 */
1721	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1722		cc = ti->private;
1723		bio->bi_bdev = cc->dev->bdev;
1724		if (bio_sectors(bio))
1725			bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
 
1726		return DM_MAPIO_REMAPPED;
1727	}
1728
1729	io = crypt_io_alloc(ti, bio, dm_target_offset(ti, bio->bi_sector));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1730
1731	if (bio_data_dir(io->base_bio) == READ) {
1732		if (kcryptd_io_read(io, GFP_NOWAIT))
1733			kcryptd_queue_io(io);
1734	} else
1735		kcryptd_queue_crypt(io);
1736
1737	return DM_MAPIO_SUBMITTED;
1738}
1739
1740static int crypt_status(struct dm_target *ti, status_type_t type,
1741			char *result, unsigned int maxlen)
1742{
1743	struct crypt_config *cc = ti->private;
1744	unsigned int sz = 0;
 
1745
1746	switch (type) {
1747	case STATUSTYPE_INFO:
1748		result[0] = '\0';
1749		break;
1750
1751	case STATUSTYPE_TABLE:
1752		DMEMIT("%s ", cc->cipher_string);
1753
1754		if (cc->key_size > 0) {
1755			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1756				return -ENOMEM;
1757
1758			crypt_encode_key(result + sz, cc->key, cc->key_size);
1759			sz += cc->key_size << 1;
1760		} else {
1761			if (sz >= maxlen)
1762				return -ENOMEM;
1763			result[sz++] = '-';
1764		}
1765
1766		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1767				cc->dev->name, (unsigned long long)cc->start);
1768
1769		if (ti->num_discard_requests)
1770			DMEMIT(" 1 allow_discards");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1771
1772		break;
1773	}
1774	return 0;
1775}
1776
1777static void crypt_postsuspend(struct dm_target *ti)
1778{
1779	struct crypt_config *cc = ti->private;
1780
1781	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1782}
1783
1784static int crypt_preresume(struct dm_target *ti)
1785{
1786	struct crypt_config *cc = ti->private;
1787
1788	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1789		DMERR("aborting resume - crypt key is not set.");
1790		return -EAGAIN;
1791	}
1792
1793	return 0;
1794}
1795
1796static void crypt_resume(struct dm_target *ti)
1797{
1798	struct crypt_config *cc = ti->private;
1799
1800	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1801}
1802
1803/* Message interface
1804 *	key set <key>
1805 *	key wipe
1806 */
1807static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
 
1808{
1809	struct crypt_config *cc = ti->private;
1810	int ret = -EINVAL;
1811
1812	if (argc < 2)
1813		goto error;
1814
1815	if (!strcasecmp(argv[0], "key")) {
1816		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1817			DMWARN("not suspended during key manipulation.");
1818			return -EINVAL;
1819		}
1820		if (argc == 3 && !strcasecmp(argv[1], "set")) {
 
 
 
 
 
 
 
1821			ret = crypt_set_key(cc, argv[2]);
1822			if (ret)
1823				return ret;
1824			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1825				ret = cc->iv_gen_ops->init(cc);
 
 
 
1826			return ret;
1827		}
1828		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1829			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1830				ret = cc->iv_gen_ops->wipe(cc);
1831				if (ret)
1832					return ret;
1833			}
1834			return crypt_wipe_key(cc);
1835		}
1836	}
1837
1838error:
1839	DMWARN("unrecognised message received.");
1840	return -EINVAL;
1841}
1842
1843static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1844		       struct bio_vec *biovec, int max_size)
1845{
1846	struct crypt_config *cc = ti->private;
1847	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1848
1849	if (!q->merge_bvec_fn)
1850		return max_size;
1851
1852	bvm->bi_bdev = cc->dev->bdev;
1853	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1854
1855	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1856}
1857
1858static int crypt_iterate_devices(struct dm_target *ti,
1859				 iterate_devices_callout_fn fn, void *data)
1860{
1861	struct crypt_config *cc = ti->private;
1862
1863	return fn(ti, cc->dev, cc->start, ti->len, data);
 
 
 
 
 
 
 
 
 
 
 
 
1864}
1865
1866static struct target_type crypt_target = {
1867	.name   = "crypt",
1868	.version = {1, 11, 0},
1869	.module = THIS_MODULE,
1870	.ctr    = crypt_ctr,
1871	.dtr    = crypt_dtr,
 
 
 
 
1872	.map    = crypt_map,
1873	.status = crypt_status,
1874	.postsuspend = crypt_postsuspend,
1875	.preresume = crypt_preresume,
1876	.resume = crypt_resume,
1877	.message = crypt_message,
1878	.merge  = crypt_merge,
1879	.iterate_devices = crypt_iterate_devices,
 
1880};
1881
1882static int __init dm_crypt_init(void)
1883{
1884	int r;
1885
1886	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1887	if (!_crypt_io_pool)
1888		return -ENOMEM;
1889
1890	r = dm_register_target(&crypt_target);
1891	if (r < 0) {
1892		DMERR("register failed %d", r);
1893		kmem_cache_destroy(_crypt_io_pool);
1894	}
1895
1896	return r;
1897}
1898
1899static void __exit dm_crypt_exit(void)
1900{
1901	dm_unregister_target(&crypt_target);
1902	kmem_cache_destroy(_crypt_io_pool);
1903}
1904
1905module_init(dm_crypt_init);
1906module_exit(dm_crypt_exit);
1907
1908MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1909MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1910MODULE_LICENSE("GPL");