Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | // SPDX-License-Identifier: ISC /* * Copyright (c) 2010 Broadcom Corporation */ #include "phy_qmath.h" /* * Description: This function make 16 bit unsigned multiplication. * To fit the output into 16 bits the 32 bit multiplication result is right * shifted by 16 bits. */ u16 qm_mulu16(u16 op1, u16 op2) { return (u16) (((u32) op1 * (u32) op2) >> 16); } /* * Description: This function make 16 bit multiplication and return the result * in 16 bits. To fit the multiplication result into 16 bits the multiplication * result is right shifted by 15 bits. Right shifting 15 bits instead of 16 bits * is done to remove the extra sign bit formed due to the multiplication. * When both the 16bit inputs are 0x8000 then the output is saturated to * 0x7fffffff. */ s16 qm_muls16(s16 op1, s16 op2) { s32 result; if (op1 == (s16) 0x8000 && op2 == (s16) 0x8000) result = 0x7fffffff; else result = ((s32) (op1) * (s32) (op2)); return (s16) (result >> 15); } /* * Description: This function add two 32 bit numbers and return the 32bit * result. If the result overflow 32 bits, the output will be saturated to * 32bits. */ s32 qm_add32(s32 op1, s32 op2) { s32 result; result = op1 + op2; if (op1 < 0 && op2 < 0 && result > 0) result = 0x80000000; else if (op1 > 0 && op2 > 0 && result < 0) result = 0x7fffffff; return result; } /* * Description: This function add two 16 bit numbers and return the 16bit * result. If the result overflow 16 bits, the output will be saturated to * 16bits. */ s16 qm_add16(s16 op1, s16 op2) { s16 result; s32 temp = (s32) op1 + (s32) op2; if (temp > (s32) 0x7fff) result = (s16) 0x7fff; else if (temp < (s32) 0xffff8000) result = (s16) 0xffff8000; else result = (s16) temp; return result; } /* * Description: This function make 16 bit subtraction and return the 16bit * result. If the result overflow 16 bits, the output will be saturated to * 16bits. */ s16 qm_sub16(s16 op1, s16 op2) { s16 result; s32 temp = (s32) op1 - (s32) op2; if (temp > (s32) 0x7fff) result = (s16) 0x7fff; else if (temp < (s32) 0xffff8000) result = (s16) 0xffff8000; else result = (s16) temp; return result; } /* * Description: This function make a 32 bit saturated left shift when the * specified shift is +ve. This function will make a 32 bit right shift when * the specified shift is -ve. This function return the result after shifting * operation. */ s32 qm_shl32(s32 op, int shift) { int i; s32 result; result = op; if (shift > 31) shift = 31; else if (shift < -31) shift = -31; if (shift >= 0) { for (i = 0; i < shift; i++) result = qm_add32(result, result); } else { result = result >> (-shift); } return result; } /* * Description: This function make a 16 bit saturated left shift when the * specified shift is +ve. This function will make a 16 bit right shift when * the specified shift is -ve. This function return the result after shifting * operation. */ s16 qm_shl16(s16 op, int shift) { int i; s16 result; result = op; if (shift > 15) shift = 15; else if (shift < -15) shift = -15; if (shift > 0) { for (i = 0; i < shift; i++) result = qm_add16(result, result); } else { result = result >> (-shift); } return result; } /* * Description: This function make a 16 bit right shift when shift is +ve. * This function make a 16 bit saturated left shift when shift is -ve. This * function return the result of the shift operation. */ s16 qm_shr16(s16 op, int shift) { return qm_shl16(op, -shift); } /* * Description: This function return the number of redundant sign bits in a * 32 bit number. Example: qm_norm32(0x00000080) = 23 */ s16 qm_norm32(s32 op) { u16 u16extraSignBits; if (op == 0) { return 31; } else { u16extraSignBits = 0; while ((op >> 31) == (op >> 30)) { u16extraSignBits++; op = op << 1; } } return u16extraSignBits; } /* This table is log2(1+(i/32)) where i=[0:1:32], in q.15 format */ static const s16 log_table[] = { 0, 1455, 2866, 4236, 5568, 6863, 8124, 9352, 10549, 11716, 12855, 13968, 15055, 16117, 17156, 18173, 19168, 20143, 21098, 22034, 22952, 23852, 24736, 25604, 26455, 27292, 28114, 28922, 29717, 30498, 31267, 32024, 32767 }; #define LOG_TABLE_SIZE 32 /* log_table size */ #define LOG2_LOG_TABLE_SIZE 5 /* log2(log_table size) */ #define Q_LOG_TABLE 15 /* qformat of log_table */ #define LOG10_2 19728 /* log10(2) in q.16 */ /* * Description: * This routine takes the input number N and its q format qN and compute * the log10(N). This routine first normalizes the input no N. Then N is in * mag*(2^x) format. mag is any number in the range 2^30-(2^31 - 1). * Then log2(mag * 2^x) = log2(mag) + x is computed. From that * log10(mag * 2^x) = log2(mag * 2^x) * log10(2) is computed. * This routine looks the log2 value in the table considering * LOG2_LOG_TABLE_SIZE+1 MSBs. As the MSB is always 1, only next * LOG2_OF_LOG_TABLE_SIZE MSBs are used for table lookup. Next 16 MSBs are used * for interpolation. * Inputs: * N - number to which log10 has to be found. * qN - q format of N * log10N - address where log10(N) will be written. * qLog10N - address where log10N qformat will be written. * Note/Problem: * For accurate results input should be in normalized or near normalized form. */ void qm_log10(s32 N, s16 qN, s16 *log10N, s16 *qLog10N) { s16 s16norm, s16tableIndex, s16errorApproximation; u16 u16offset; s32 s32log; /* normalize the N. */ s16norm = qm_norm32(N); N = N << s16norm; /* The qformat of N after normalization. * -30 is added to treat the no as between 1.0 to 2.0 * i.e. after adding the -30 to the qformat the decimal point will be * just rigtht of the MSB. (i.e. after sign bit and 1st MSB). i.e. * at the right side of 30th bit. */ qN = qN + s16norm - 30; /* take the table index as the LOG2_OF_LOG_TABLE_SIZE bits right of the * MSB */ s16tableIndex = (s16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE))); /* remove the MSB. the MSB is always 1 after normalization. */ s16tableIndex = s16tableIndex & (s16) ((1 << LOG2_LOG_TABLE_SIZE) - 1); /* remove the (1+LOG2_OF_LOG_TABLE_SIZE) MSBs in the N. */ N = N & ((1 << (32 - (2 + LOG2_LOG_TABLE_SIZE))) - 1); /* take the offset as the 16 MSBS after table index. */ u16offset = (u16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE + 16))); /* look the log value in the table. */ s32log = log_table[s16tableIndex]; /* q.15 format */ /* interpolate using the offset. q.15 format. */ s16errorApproximation = (s16) qm_mulu16(u16offset, (u16) (log_table[s16tableIndex + 1] - log_table[s16tableIndex])); /* q.15 format */ s32log = qm_add16((s16) s32log, s16errorApproximation); /* adjust for the qformat of the N as * log2(mag * 2^x) = log2(mag) + x */ s32log = qm_add32(s32log, ((s32) -qN) << 15); /* q.15 format */ /* normalize the result. */ s16norm = qm_norm32(s32log); /* bring all the important bits into lower 16 bits */ /* q.15+s16norm-16 format */ s32log = qm_shl32(s32log, s16norm - 16); /* compute the log10(N) by multiplying log2(N) with log10(2). * as log10(mag * 2^x) = log2(mag * 2^x) * log10(2) * log10N in q.15+s16norm-16+1 (LOG10_2 is in q.16) */ *log10N = qm_muls16((s16) s32log, (s16) LOG10_2); /* write the q format of the result. */ *qLog10N = 15 + s16norm - 16 + 1; return; } |