Linux Audio

Check our new training course

Loading...
  1/*
  2 * Copyright (c) 2010 Broadcom Corporation
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17#include "phy_qmath.h"
 18
 19/*
 20 * Description: This function make 16 bit unsigned multiplication.
 21 * To fit the output into 16 bits the 32 bit multiplication result is right
 22 * shifted by 16 bits.
 23 */
 24u16 qm_mulu16(u16 op1, u16 op2)
 25{
 26	return (u16) (((u32) op1 * (u32) op2) >> 16);
 27}
 28
 29/*
 30 * Description: This function make 16 bit multiplication and return the result
 31 * in 16 bits. To fit the multiplication result into 16 bits the multiplication
 32 * result is right shifted by 15 bits. Right shifting 15 bits instead of 16 bits
 33 * is done to remove the extra sign bit formed due to the multiplication.
 34 * When both the 16bit inputs are 0x8000 then the output is saturated to
 35 * 0x7fffffff.
 36 */
 37s16 qm_muls16(s16 op1, s16 op2)
 38{
 39	s32 result;
 40	if (op1 == (s16) 0x8000 && op2 == (s16) 0x8000)
 41		result = 0x7fffffff;
 42	else
 43		result = ((s32) (op1) * (s32) (op2));
 44
 45	return (s16) (result >> 15);
 46}
 47
 48/*
 49 * Description: This function add two 32 bit numbers and return the 32bit
 50 * result. If the result overflow 32 bits, the output will be saturated to
 51 * 32bits.
 52 */
 53s32 qm_add32(s32 op1, s32 op2)
 54{
 55	s32 result;
 56	result = op1 + op2;
 57	if (op1 < 0 && op2 < 0 && result > 0)
 58		result = 0x80000000;
 59	else if (op1 > 0 && op2 > 0 && result < 0)
 60		result = 0x7fffffff;
 61
 62	return result;
 63}
 64
 65/*
 66 * Description: This function add two 16 bit numbers and return the 16bit
 67 * result. If the result overflow 16 bits, the output will be saturated to
 68 * 16bits.
 69 */
 70s16 qm_add16(s16 op1, s16 op2)
 71{
 72	s16 result;
 73	s32 temp = (s32) op1 + (s32) op2;
 74	if (temp > (s32) 0x7fff)
 75		result = (s16) 0x7fff;
 76	else if (temp < (s32) 0xffff8000)
 77		result = (s16) 0xffff8000;
 78	else
 79		result = (s16) temp;
 80
 81	return result;
 82}
 83
 84/*
 85 * Description: This function make 16 bit subtraction and return the 16bit
 86 * result. If the result overflow 16 bits, the output will be saturated to
 87 * 16bits.
 88 */
 89s16 qm_sub16(s16 op1, s16 op2)
 90{
 91	s16 result;
 92	s32 temp = (s32) op1 - (s32) op2;
 93	if (temp > (s32) 0x7fff)
 94		result = (s16) 0x7fff;
 95	else if (temp < (s32) 0xffff8000)
 96		result = (s16) 0xffff8000;
 97	else
 98		result = (s16) temp;
 99
100	return result;
101}
102
103/*
104 * Description: This function make a 32 bit saturated left shift when the
105 * specified shift is +ve. This function will make a 32 bit right shift when
106 * the specified shift is -ve. This function return the result after shifting
107 * operation.
108 */
109s32 qm_shl32(s32 op, int shift)
110{
111	int i;
112	s32 result;
113	result = op;
114	if (shift > 31)
115		shift = 31;
116	else if (shift < -31)
117		shift = -31;
118	if (shift >= 0) {
119		for (i = 0; i < shift; i++)
120			result = qm_add32(result, result);
121	} else {
122		result = result >> (-shift);
123	}
124
125	return result;
126}
127
128/*
129 * Description: This function make a 16 bit saturated left shift when the
130 * specified shift is +ve. This function will make a 16 bit right shift when
131 * the specified shift is -ve. This function return the result after shifting
132 * operation.
133 */
134s16 qm_shl16(s16 op, int shift)
135{
136	int i;
137	s16 result;
138	result = op;
139	if (shift > 15)
140		shift = 15;
141	else if (shift < -15)
142		shift = -15;
143	if (shift > 0) {
144		for (i = 0; i < shift; i++)
145			result = qm_add16(result, result);
146	} else {
147		result = result >> (-shift);
148	}
149
150	return result;
151}
152
153/*
154 * Description: This function make a 16 bit right shift when shift is +ve.
155 * This function make a 16 bit saturated left shift when shift is -ve. This
156 * function return the result of the shift operation.
157 */
158s16 qm_shr16(s16 op, int shift)
159{
160	return qm_shl16(op, -shift);
161}
162
163/*
164 * Description: This function return the number of redundant sign bits in a
165 * 32 bit number. Example: qm_norm32(0x00000080) = 23
166 */
167s16 qm_norm32(s32 op)
168{
169	u16 u16extraSignBits;
170	if (op == 0) {
171		return 31;
172	} else {
173		u16extraSignBits = 0;
174		while ((op >> 31) == (op >> 30)) {
175			u16extraSignBits++;
176			op = op << 1;
177		}
178	}
179	return u16extraSignBits;
180}
181
182/* This table is log2(1+(i/32)) where i=[0:1:32], in q.15 format */
183static const s16 log_table[] = {
184	0,
185	1455,
186	2866,
187	4236,
188	5568,
189	6863,
190	8124,
191	9352,
192	10549,
193	11716,
194	12855,
195	13968,
196	15055,
197	16117,
198	17156,
199	18173,
200	19168,
201	20143,
202	21098,
203	22034,
204	22952,
205	23852,
206	24736,
207	25604,
208	26455,
209	27292,
210	28114,
211	28922,
212	29717,
213	30498,
214	31267,
215	32024,
216	32768
217};
218
219#define LOG_TABLE_SIZE 32       /* log_table size */
220#define LOG2_LOG_TABLE_SIZE 5   /* log2(log_table size) */
221#define Q_LOG_TABLE 15          /* qformat of log_table */
222#define LOG10_2         19728   /* log10(2) in q.16 */
223
224/*
225 * Description:
226 * This routine takes the input number N and its q format qN and compute
227 * the log10(N). This routine first normalizes the input no N.	Then N is in
228 * mag*(2^x) format. mag is any number in the range 2^30-(2^31 - 1).
229 * Then log2(mag * 2^x) = log2(mag) + x is computed. From that
230 * log10(mag * 2^x) = log2(mag * 2^x) * log10(2) is computed.
231 * This routine looks the log2 value in the table considering
232 * LOG2_LOG_TABLE_SIZE+1 MSBs. As the MSB is always 1, only next
233 * LOG2_OF_LOG_TABLE_SIZE MSBs are used for table lookup. Next 16 MSBs are used
234 * for interpolation.
235 * Inputs:
236 * N - number to which log10 has to be found.
237 * qN - q format of N
238 * log10N - address where log10(N) will be written.
239 * qLog10N - address where log10N qformat will be written.
240 * Note/Problem:
241 * For accurate results input should be in normalized or near normalized form.
242 */
243void qm_log10(s32 N, s16 qN, s16 *log10N, s16 *qLog10N)
244{
245	s16 s16norm, s16tableIndex, s16errorApproximation;
246	u16 u16offset;
247	s32 s32log;
248
249	/* normalize the N. */
250	s16norm = qm_norm32(N);
251	N = N << s16norm;
252
253	/* The qformat of N after normalization.
254	 * -30 is added to treat the no as between 1.0 to 2.0
255	 * i.e. after adding the -30 to the qformat the decimal point will be
256	 * just rigtht of the MSB. (i.e. after sign bit and 1st MSB). i.e.
257	 * at the right side of 30th bit.
258	 */
259	qN = qN + s16norm - 30;
260
261	/* take the table index as the LOG2_OF_LOG_TABLE_SIZE bits right of the
262	 * MSB */
263	s16tableIndex = (s16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE)));
264
265	/* remove the MSB. the MSB is always 1 after normalization. */
266	s16tableIndex =
267		s16tableIndex & (s16) ((1 << LOG2_LOG_TABLE_SIZE) - 1);
268
269	/* remove the (1+LOG2_OF_LOG_TABLE_SIZE) MSBs in the N. */
270	N = N & ((1 << (32 - (2 + LOG2_LOG_TABLE_SIZE))) - 1);
271
272	/* take the offset as the 16 MSBS after table index.
273	 */
274	u16offset = (u16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE + 16)));
275
276	/* look the log value in the table. */
277	s32log = log_table[s16tableIndex];      /* q.15 format */
278
279	/* interpolate using the offset. q.15 format. */
280	s16errorApproximation = (s16) qm_mulu16(u16offset,
281				(u16) (log_table[s16tableIndex + 1] -
282				       log_table[s16tableIndex]));
283
284	 /* q.15 format */
285	s32log = qm_add16((s16) s32log, s16errorApproximation);
286
287	/* adjust for the qformat of the N as
288	 * log2(mag * 2^x) = log2(mag) + x
289	 */
290	s32log = qm_add32(s32log, ((s32) -qN) << 15);   /* q.15 format */
291
292	/* normalize the result. */
293	s16norm = qm_norm32(s32log);
294
295	/* bring all the important bits into lower 16 bits */
296	/* q.15+s16norm-16 format */
297	s32log = qm_shl32(s32log, s16norm - 16);
298
299	/* compute the log10(N) by multiplying log2(N) with log10(2).
300	 * as log10(mag * 2^x) = log2(mag * 2^x) * log10(2)
301	 * log10N in q.15+s16norm-16+1 (LOG10_2 is in q.16)
302	 */
303	*log10N = qm_muls16((s16) s32log, (s16) LOG10_2);
304
305	/* write the q format of the result. */
306	*qLog10N = 15 + s16norm - 16 + 1;
307
308	return;
309}