Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *	linux/mm/mlock.c
  4 *
  5 *  (C) Copyright 1995 Linus Torvalds
  6 *  (C) Copyright 2002 Christoph Hellwig
  7 */
  8
  9#include <linux/capability.h>
 10#include <linux/mman.h>
 11#include <linux/mm.h>
 12#include <linux/sched/user.h>
 13#include <linux/swap.h>
 14#include <linux/swapops.h>
 15#include <linux/pagemap.h>
 16#include <linux/pagevec.h>
 
 17#include <linux/mempolicy.h>
 18#include <linux/syscalls.h>
 19#include <linux/sched.h>
 20#include <linux/export.h>
 21#include <linux/rmap.h>
 22#include <linux/mmzone.h>
 23#include <linux/hugetlb.h>
 24#include <linux/memcontrol.h>
 25#include <linux/mm_inline.h>
 
 26
 27#include "internal.h"
 28
 
 
 
 
 
 
 
 
 
 29bool can_do_mlock(void)
 30{
 31	if (rlimit(RLIMIT_MEMLOCK) != 0)
 32		return true;
 33	if (capable(CAP_IPC_LOCK))
 34		return true;
 35	return false;
 36}
 37EXPORT_SYMBOL(can_do_mlock);
 38
 39/*
 40 * Mlocked pages are marked with PageMlocked() flag for efficient testing
 41 * in vmscan and, possibly, the fault path; and to support semi-accurate
 42 * statistics.
 43 *
 44 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
 45 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
 46 * The unevictable list is an LRU sibling list to the [in]active lists.
 47 * PageUnevictable is set to indicate the unevictable state.
 48 *
 49 * When lazy mlocking via vmscan, it is important to ensure that the
 50 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
 51 * may have mlocked a page that is being munlocked. So lazy mlock must take
 52 * the mmap_sem for read, and verify that the vma really is locked
 53 * (see mm/rmap.c).
 54 */
 55
 56/*
 57 *  LRU accounting for clear_page_mlock()
 58 */
 59void clear_page_mlock(struct page *page)
 60{
 61	if (!TestClearPageMlocked(page))
 62		return;
 
 63
 64	mod_zone_page_state(page_zone(page), NR_MLOCK,
 65			    -hpage_nr_pages(page));
 66	count_vm_event(UNEVICTABLE_PGCLEARED);
 67	/*
 68	 * The previous TestClearPageMlocked() corresponds to the smp_mb()
 69	 * in __pagevec_lru_add_fn().
 70	 *
 71	 * See __pagevec_lru_add_fn for more explanation.
 72	 */
 73	if (!isolate_lru_page(page)) {
 74		putback_lru_page(page);
 75	} else {
 76		/*
 77		 * We lost the race. the page already moved to evictable list.
 
 
 78		 */
 79		if (PageUnevictable(page))
 80			count_vm_event(UNEVICTABLE_PGSTRANDED);
 
 
 
 
 
 
 
 81	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 82}
 83
 84/*
 85 * Mark page as mlocked if not already.
 86 * If page on LRU, isolate and putback to move to unevictable list.
 87 */
 88void mlock_vma_page(struct page *page)
 89{
 90	/* Serialize with page migration */
 91	BUG_ON(!PageLocked(page));
 92
 93	VM_BUG_ON_PAGE(PageTail(page), page);
 94	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
 95
 96	if (!TestSetPageMlocked(page)) {
 97		mod_zone_page_state(page_zone(page), NR_MLOCK,
 98				    hpage_nr_pages(page));
 99		count_vm_event(UNEVICTABLE_PGMLOCKED);
100		if (!isolate_lru_page(page))
101			putback_lru_page(page);
102	}
 
 
 
103}
104
105/*
106 * Isolate a page from LRU with optional get_page() pin.
107 * Assumes lru_lock already held and page already pinned.
108 */
109static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
110{
111	if (PageLRU(page)) {
112		struct lruvec *lruvec;
113
114		lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
115		if (getpage)
116			get_page(page);
117		ClearPageLRU(page);
118		del_page_from_lru_list(page, lruvec, page_lru(page));
119		return true;
 
 
 
 
 
 
120	}
 
121
122	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123}
124
125/*
126 * Finish munlock after successful page isolation
127 *
128 * Page must be locked. This is a wrapper for try_to_munlock()
129 * and putback_lru_page() with munlock accounting.
130 */
131static void __munlock_isolated_page(struct page *page)
 
 
132{
133	/*
134	 * Optimization: if the page was mapped just once, that's our mapping
135	 * and we don't need to check all the other vmas.
136	 */
137	if (page_mapcount(page) > 1)
138		try_to_munlock(page);
139
140	/* Did try_to_unlock() succeed or punt? */
141	if (!PageMlocked(page))
142		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
143
144	putback_lru_page(page);
145}
146
147/*
148 * Accounting for page isolation fail during munlock
149 *
150 * Performs accounting when page isolation fails in munlock. There is nothing
151 * else to do because it means some other task has already removed the page
152 * from the LRU. putback_lru_page() will take care of removing the page from
153 * the unevictable list, if necessary. vmscan [page_referenced()] will move
154 * the page back to the unevictable list if some other vma has it mlocked.
155 */
156static void __munlock_isolation_failed(struct page *page)
157{
158	if (PageUnevictable(page))
159		__count_vm_event(UNEVICTABLE_PGSTRANDED);
160	else
161		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
162}
163
164/**
165 * munlock_vma_page - munlock a vma page
166 * @page: page to be unlocked, either a normal page or THP page head
167 *
168 * returns the size of the page as a page mask (0 for normal page,
169 *         HPAGE_PMD_NR - 1 for THP head page)
170 *
171 * called from munlock()/munmap() path with page supposedly on the LRU.
172 * When we munlock a page, because the vma where we found the page is being
173 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
174 * page locked so that we can leave it on the unevictable lru list and not
175 * bother vmscan with it.  However, to walk the page's rmap list in
176 * try_to_munlock() we must isolate the page from the LRU.  If some other
177 * task has removed the page from the LRU, we won't be able to do that.
178 * So we clear the PageMlocked as we might not get another chance.  If we
179 * can't isolate the page, we leave it for putback_lru_page() and vmscan
180 * [page_referenced()/try_to_unmap()] to deal with.
181 */
182unsigned int munlock_vma_page(struct page *page)
183{
184	int nr_pages;
185	pg_data_t *pgdat = page_pgdat(page);
186
187	/* For try_to_munlock() and to serialize with page migration */
188	BUG_ON(!PageLocked(page));
189
190	VM_BUG_ON_PAGE(PageTail(page), page);
 
 
 
 
191
192	/*
193	 * Serialize with any parallel __split_huge_page_refcount() which
194	 * might otherwise copy PageMlocked to part of the tail pages before
195	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
196	 */
197	spin_lock_irq(&pgdat->lru_lock);
198
199	if (!TestClearPageMlocked(page)) {
200		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
201		nr_pages = 1;
202		goto unlock_out;
203	}
204
205	nr_pages = hpage_nr_pages(page);
206	__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
 
 
207
208	if (__munlock_isolate_lru_page(page, true)) {
209		spin_unlock_irq(&pgdat->lru_lock);
210		__munlock_isolated_page(page);
211		goto out;
212	}
213	__munlock_isolation_failed(page);
214
215unlock_out:
216	spin_unlock_irq(&pgdat->lru_lock);
 
 
 
 
217
218out:
219	return nr_pages - 1;
 
 
 
 
 
 
220}
221
222/*
223 * convert get_user_pages() return value to posix mlock() error
224 */
225static int __mlock_posix_error_return(long retval)
226{
227	if (retval == -EFAULT)
228		retval = -ENOMEM;
229	else if (retval == -ENOMEM)
230		retval = -EAGAIN;
231	return retval;
232}
233
234/*
235 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
236 *
237 * The fast path is available only for evictable pages with single mapping.
238 * Then we can bypass the per-cpu pvec and get better performance.
239 * when mapcount > 1 we need try_to_munlock() which can fail.
240 * when !page_evictable(), we need the full redo logic of putback_lru_page to
241 * avoid leaving evictable page in unevictable list.
242 *
243 * In case of success, @page is added to @pvec and @pgrescued is incremented
244 * in case that the page was previously unevictable. @page is also unlocked.
245 */
246static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
247		int *pgrescued)
248{
249	VM_BUG_ON_PAGE(PageLRU(page), page);
250	VM_BUG_ON_PAGE(!PageLocked(page), page);
251
252	if (page_mapcount(page) <= 1 && page_evictable(page)) {
253		pagevec_add(pvec, page);
254		if (TestClearPageUnevictable(page))
255			(*pgrescued)++;
256		unlock_page(page);
257		return true;
 
 
258	}
259
260	return false;
 
 
 
 
261}
262
263/*
264 * Putback multiple evictable pages to the LRU
265 *
266 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
267 * the pages might have meanwhile become unevictable but that is OK.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268 */
269static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
270{
271	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
 
 
 
272	/*
273	 *__pagevec_lru_add() calls release_pages() so we don't call
274	 * put_page() explicitly
275	 */
276	__pagevec_lru_add(pvec);
277	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
 
 
 
278}
279
280/*
281 * Munlock a batch of pages from the same zone
282 *
283 * The work is split to two main phases. First phase clears the Mlocked flag
284 * and attempts to isolate the pages, all under a single zone lru lock.
285 * The second phase finishes the munlock only for pages where isolation
286 * succeeded.
287 *
288 * Note that the pagevec may be modified during the process.
289 */
290static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
291{
292	int i;
293	int nr = pagevec_count(pvec);
294	int delta_munlocked = -nr;
295	struct pagevec pvec_putback;
296	int pgrescued = 0;
297
298	pagevec_init(&pvec_putback);
299
300	/* Phase 1: page isolation */
301	spin_lock_irq(&zone->zone_pgdat->lru_lock);
302	for (i = 0; i < nr; i++) {
303		struct page *page = pvec->pages[i];
304
305		if (TestClearPageMlocked(page)) {
306			/*
307			 * We already have pin from follow_page_mask()
308			 * so we can spare the get_page() here.
309			 */
310			if (__munlock_isolate_lru_page(page, false))
311				continue;
312			else
313				__munlock_isolation_failed(page);
314		} else {
315			delta_munlocked++;
316		}
317
318		/*
319		 * We won't be munlocking this page in the next phase
320		 * but we still need to release the follow_page_mask()
321		 * pin. We cannot do it under lru_lock however. If it's
322		 * the last pin, __page_cache_release() would deadlock.
323		 */
324		pagevec_add(&pvec_putback, pvec->pages[i]);
325		pvec->pages[i] = NULL;
326	}
327	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
328	spin_unlock_irq(&zone->zone_pgdat->lru_lock);
329
330	/* Now we can release pins of pages that we are not munlocking */
331	pagevec_release(&pvec_putback);
332
333	/* Phase 2: page munlock */
334	for (i = 0; i < nr; i++) {
335		struct page *page = pvec->pages[i];
336
337		if (page) {
338			lock_page(page);
339			if (!__putback_lru_fast_prepare(page, &pvec_putback,
340					&pgrescued)) {
341				/*
342				 * Slow path. We don't want to lose the last
343				 * pin before unlock_page()
344				 */
345				get_page(page); /* for putback_lru_page() */
346				__munlock_isolated_page(page);
347				unlock_page(page);
348				put_page(page); /* from follow_page_mask() */
349			}
350		}
351	}
352
 
 
 
 
 
 
 
353	/*
354	 * Phase 3: page putback for pages that qualified for the fast path
355	 * This will also call put_page() to return pin from follow_page_mask()
 
 
 
 
 
356	 */
357	if (pagevec_count(&pvec_putback))
358		__putback_lru_fast(&pvec_putback, pgrescued);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359}
360
361/*
362 * Fill up pagevec for __munlock_pagevec using pte walk
363 *
364 * The function expects that the struct page corresponding to @start address is
365 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
366 *
367 * The rest of @pvec is filled by subsequent pages within the same pmd and same
368 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
369 * pages also get pinned.
370 *
371 * Returns the address of the next page that should be scanned. This equals
372 * @start + PAGE_SIZE when no page could be added by the pte walk.
373 */
374static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
375			struct vm_area_struct *vma, struct zone *zone,
376			unsigned long start, unsigned long end)
377{
378	pte_t *pte;
379	spinlock_t *ptl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
380
381	/*
382	 * Initialize pte walk starting at the already pinned page where we
383	 * are sure that there is a pte, as it was pinned under the same
384	 * mmap_sem write op.
385	 */
386	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
387	/* Make sure we do not cross the page table boundary */
388	end = pgd_addr_end(start, end);
389	end = p4d_addr_end(start, end);
390	end = pud_addr_end(start, end);
391	end = pmd_addr_end(start, end);
392
393	/* The page next to the pinned page is the first we will try to get */
394	start += PAGE_SIZE;
395	while (start < end) {
396		struct page *page = NULL;
397		pte++;
398		if (pte_present(*pte))
399			page = vm_normal_page(vma, start, *pte);
400		/*
401		 * Break if page could not be obtained or the page's node+zone does not
402		 * match
403		 */
404		if (!page || page_zone(page) != zone)
405			break;
406
407		/*
408		 * Do not use pagevec for PTE-mapped THP,
409		 * munlock_vma_pages_range() will handle them.
410		 */
411		if (PageTransCompound(page))
412			break;
 
413
414		get_page(page);
415		/*
416		 * Increase the address that will be returned *before* the
417		 * eventual break due to pvec becoming full by adding the page
418		 */
419		start += PAGE_SIZE;
420		if (pagevec_add(pvec, page) == 0)
421			break;
 
 
 
 
422	}
423	pte_unmap_unlock(pte, ptl);
424	return start;
 
 
 
425}
426
427/*
428 * munlock_vma_pages_range() - munlock all pages in the vma range.'
429 * @vma - vma containing range to be munlock()ed.
 
430 * @start - start address in @vma of the range
431 * @end - end of range in @vma.
432 *
433 *  For mremap(), munmap() and exit().
434 *
435 * Called with @vma VM_LOCKED.
436 *
437 * Returns with VM_LOCKED cleared.  Callers must be prepared to
438 * deal with this.
439 *
440 * We don't save and restore VM_LOCKED here because pages are
441 * still on lru.  In unmap path, pages might be scanned by reclaim
442 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
443 * free them.  This will result in freeing mlocked pages.
444 */
445void munlock_vma_pages_range(struct vm_area_struct *vma,
446			     unsigned long start, unsigned long end)
447{
448	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
449
450	while (start < end) {
451		struct page *page;
452		unsigned int page_mask = 0;
453		unsigned long page_increm;
454		struct pagevec pvec;
455		struct zone *zone;
456
457		pagevec_init(&pvec);
458		/*
459		 * Although FOLL_DUMP is intended for get_dump_page(),
460		 * it just so happens that its special treatment of the
461		 * ZERO_PAGE (returning an error instead of doing get_page)
462		 * suits munlock very well (and if somehow an abnormal page
463		 * has sneaked into the range, we won't oops here: great).
464		 */
465		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
466
467		if (page && !IS_ERR(page)) {
468			if (PageTransTail(page)) {
469				VM_BUG_ON_PAGE(PageMlocked(page), page);
470				put_page(page); /* follow_page_mask() */
471			} else if (PageTransHuge(page)) {
472				lock_page(page);
473				/*
474				 * Any THP page found by follow_page_mask() may
475				 * have gotten split before reaching
476				 * munlock_vma_page(), so we need to compute
477				 * the page_mask here instead.
478				 */
479				page_mask = munlock_vma_page(page);
480				unlock_page(page);
481				put_page(page); /* follow_page_mask() */
482			} else {
483				/*
484				 * Non-huge pages are handled in batches via
485				 * pagevec. The pin from follow_page_mask()
486				 * prevents them from collapsing by THP.
487				 */
488				pagevec_add(&pvec, page);
489				zone = page_zone(page);
490
491				/*
492				 * Try to fill the rest of pagevec using fast
493				 * pte walk. This will also update start to
494				 * the next page to process. Then munlock the
495				 * pagevec.
496				 */
497				start = __munlock_pagevec_fill(&pvec, vma,
498						zone, start, end);
499				__munlock_pagevec(&pvec, zone);
500				goto next;
501			}
502		}
503		page_increm = 1 + page_mask;
504		start += page_increm * PAGE_SIZE;
505next:
506		cond_resched();
507	}
508}
509
510/*
511 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
512 *
513 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
514 * munlock is a no-op.  However, for some special vmas, we go ahead and
515 * populate the ptes.
516 *
517 * For vmas that pass the filters, merge/split as appropriate.
518 */
519static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
520	unsigned long start, unsigned long end, vm_flags_t newflags)
 
521{
522	struct mm_struct *mm = vma->vm_mm;
523	pgoff_t pgoff;
524	int nr_pages;
525	int ret = 0;
526	int lock = !!(newflags & VM_LOCKED);
527	vm_flags_t old_flags = vma->vm_flags;
528
529	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
530	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
531	    vma_is_dax(vma))
532		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
533		goto out;
534
535	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
536	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
537			  vma->vm_file, pgoff, vma_policy(vma),
538			  vma->vm_userfaultfd_ctx);
539	if (*prev) {
540		vma = *prev;
541		goto success;
542	}
543
544	if (start != vma->vm_start) {
545		ret = split_vma(mm, vma, start, 1);
546		if (ret)
547			goto out;
548	}
549
550	if (end != vma->vm_end) {
551		ret = split_vma(mm, vma, end, 0);
552		if (ret)
553			goto out;
554	}
555
556success:
557	/*
558	 * Keep track of amount of locked VM.
559	 */
560	nr_pages = (end - start) >> PAGE_SHIFT;
561	if (!lock)
562		nr_pages = -nr_pages;
563	else if (old_flags & VM_LOCKED)
564		nr_pages = 0;
565	mm->locked_vm += nr_pages;
566
567	/*
568	 * vm_flags is protected by the mmap_sem held in write mode.
569	 * It's okay if try_to_unmap_one unmaps a page just after we
570	 * set VM_LOCKED, populate_vma_page_range will bring it back.
571	 */
572
573	if (lock)
574		vma->vm_flags = newflags;
575	else
576		munlock_vma_pages_range(vma, start, end);
577
 
578out:
579	*prev = vma;
580	return ret;
581}
582
583static int apply_vma_lock_flags(unsigned long start, size_t len,
584				vm_flags_t flags)
585{
586	unsigned long nstart, end, tmp;
587	struct vm_area_struct * vma, * prev;
588	int error;
589
590	VM_BUG_ON(offset_in_page(start));
591	VM_BUG_ON(len != PAGE_ALIGN(len));
592	end = start + len;
593	if (end < start)
594		return -EINVAL;
595	if (end == start)
596		return 0;
597	vma = find_vma(current->mm, start);
598	if (!vma || vma->vm_start > start)
599		return -ENOMEM;
600
601	prev = vma->vm_prev;
602	if (start > vma->vm_start)
603		prev = vma;
604
605	for (nstart = start ; ; ) {
606		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 
 
 
607
608		newflags |= flags;
 
609
 
 
610		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
611		tmp = vma->vm_end;
612		if (tmp > end)
613			tmp = end;
614		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
615		if (error)
616			break;
 
617		nstart = tmp;
618		if (nstart < prev->vm_end)
619			nstart = prev->vm_end;
620		if (nstart >= end)
621			break;
622
623		vma = prev->vm_next;
624		if (!vma || vma->vm_start != nstart) {
625			error = -ENOMEM;
626			break;
627		}
628	}
629	return error;
 
 
 
 
630}
631
632/*
633 * Go through vma areas and sum size of mlocked
634 * vma pages, as return value.
635 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
636 * is also counted.
637 * Return value: previously mlocked page counts
638 */
639static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
640		unsigned long start, size_t len)
641{
642	struct vm_area_struct *vma;
643	unsigned long count = 0;
 
 
644
645	if (mm == NULL)
646		mm = current->mm;
647
648	vma = find_vma(mm, start);
649	if (vma == NULL)
650		vma = mm->mmap;
651
652	for (; vma ; vma = vma->vm_next) {
653		if (start >= vma->vm_end)
654			continue;
655		if (start + len <=  vma->vm_start)
656			break;
657		if (vma->vm_flags & VM_LOCKED) {
658			if (start > vma->vm_start)
659				count -= (start - vma->vm_start);
660			if (start + len < vma->vm_end) {
661				count += start + len - vma->vm_start;
662				break;
663			}
664			count += vma->vm_end - vma->vm_start;
665		}
666	}
667
668	return count >> PAGE_SHIFT;
669}
670
 
 
 
 
 
 
 
 
 
 
 
 
671static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
672{
673	unsigned long locked;
674	unsigned long lock_limit;
675	int error = -ENOMEM;
676
677	start = untagged_addr(start);
678
679	if (!can_do_mlock())
680		return -EPERM;
681
682	len = PAGE_ALIGN(len + (offset_in_page(start)));
683	start &= PAGE_MASK;
684
685	lock_limit = rlimit(RLIMIT_MEMLOCK);
686	lock_limit >>= PAGE_SHIFT;
687	locked = len >> PAGE_SHIFT;
688
689	if (down_write_killable(&current->mm->mmap_sem))
690		return -EINTR;
691
692	locked += current->mm->locked_vm;
693	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
694		/*
695		 * It is possible that the regions requested intersect with
696		 * previously mlocked areas, that part area in "mm->locked_vm"
697		 * should not be counted to new mlock increment count. So check
698		 * and adjust locked count if necessary.
699		 */
700		locked -= count_mm_mlocked_page_nr(current->mm,
701				start, len);
702	}
703
704	/* check against resource limits */
705	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
706		error = apply_vma_lock_flags(start, len, flags);
707
708	up_write(&current->mm->mmap_sem);
709	if (error)
710		return error;
711
712	error = __mm_populate(start, len, 0);
713	if (error)
714		return __mlock_posix_error_return(error);
715	return 0;
716}
717
718SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
719{
720	return do_mlock(start, len, VM_LOCKED);
721}
722
723SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
724{
725	vm_flags_t vm_flags = VM_LOCKED;
726
727	if (flags & ~MLOCK_ONFAULT)
728		return -EINVAL;
729
730	if (flags & MLOCK_ONFAULT)
731		vm_flags |= VM_LOCKONFAULT;
732
733	return do_mlock(start, len, vm_flags);
734}
735
736SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
737{
738	int ret;
739
740	start = untagged_addr(start);
741
742	len = PAGE_ALIGN(len + (offset_in_page(start)));
743	start &= PAGE_MASK;
744
745	if (down_write_killable(&current->mm->mmap_sem))
746		return -EINTR;
747	ret = apply_vma_lock_flags(start, len, 0);
748	up_write(&current->mm->mmap_sem);
749
750	return ret;
751}
752
753/*
754 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
755 * and translate into the appropriate modifications to mm->def_flags and/or the
756 * flags for all current VMAs.
757 *
758 * There are a couple of subtleties with this.  If mlockall() is called multiple
759 * times with different flags, the values do not necessarily stack.  If mlockall
760 * is called once including the MCL_FUTURE flag and then a second time without
761 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
762 */
763static int apply_mlockall_flags(int flags)
764{
765	struct vm_area_struct * vma, * prev = NULL;
 
766	vm_flags_t to_add = 0;
767
768	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
769	if (flags & MCL_FUTURE) {
770		current->mm->def_flags |= VM_LOCKED;
771
772		if (flags & MCL_ONFAULT)
773			current->mm->def_flags |= VM_LOCKONFAULT;
774
775		if (!(flags & MCL_CURRENT))
776			goto out;
777	}
778
779	if (flags & MCL_CURRENT) {
780		to_add |= VM_LOCKED;
781		if (flags & MCL_ONFAULT)
782			to_add |= VM_LOCKONFAULT;
783	}
784
785	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
786		vm_flags_t newflags;
787
788		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
789		newflags |= to_add;
790
791		/* Ignore errors */
792		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
 
793		cond_resched();
794	}
795out:
796	return 0;
797}
798
799SYSCALL_DEFINE1(mlockall, int, flags)
800{
801	unsigned long lock_limit;
802	int ret;
803
804	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
805	    flags == MCL_ONFAULT)
806		return -EINVAL;
807
808	if (!can_do_mlock())
809		return -EPERM;
810
811	lock_limit = rlimit(RLIMIT_MEMLOCK);
812	lock_limit >>= PAGE_SHIFT;
813
814	if (down_write_killable(&current->mm->mmap_sem))
815		return -EINTR;
816
817	ret = -ENOMEM;
818	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
819	    capable(CAP_IPC_LOCK))
820		ret = apply_mlockall_flags(flags);
821	up_write(&current->mm->mmap_sem);
822	if (!ret && (flags & MCL_CURRENT))
823		mm_populate(0, TASK_SIZE);
824
825	return ret;
826}
827
828SYSCALL_DEFINE0(munlockall)
829{
830	int ret;
831
832	if (down_write_killable(&current->mm->mmap_sem))
833		return -EINTR;
834	ret = apply_mlockall_flags(0);
835	up_write(&current->mm->mmap_sem);
836	return ret;
837}
838
839/*
840 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
841 * shm segments) get accounted against the user_struct instead.
842 */
843static DEFINE_SPINLOCK(shmlock_user_lock);
844
845int user_shm_lock(size_t size, struct user_struct *user)
846{
847	unsigned long lock_limit, locked;
 
848	int allowed = 0;
849
850	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
851	lock_limit = rlimit(RLIMIT_MEMLOCK);
852	if (lock_limit == RLIM_INFINITY)
853		allowed = 1;
854	lock_limit >>= PAGE_SHIFT;
855	spin_lock(&shmlock_user_lock);
856	if (!allowed &&
857	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
 
 
858		goto out;
859	get_uid(user);
860	user->locked_shm += locked;
 
 
 
 
861	allowed = 1;
862out:
863	spin_unlock(&shmlock_user_lock);
864	return allowed;
865}
866
867void user_shm_unlock(size_t size, struct user_struct *user)
868{
869	spin_lock(&shmlock_user_lock);
870	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
871	spin_unlock(&shmlock_user_lock);
872	free_uid(user);
873}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *	linux/mm/mlock.c
  4 *
  5 *  (C) Copyright 1995 Linus Torvalds
  6 *  (C) Copyright 2002 Christoph Hellwig
  7 */
  8
  9#include <linux/capability.h>
 10#include <linux/mman.h>
 11#include <linux/mm.h>
 12#include <linux/sched/user.h>
 13#include <linux/swap.h>
 14#include <linux/swapops.h>
 15#include <linux/pagemap.h>
 16#include <linux/pagevec.h>
 17#include <linux/pagewalk.h>
 18#include <linux/mempolicy.h>
 19#include <linux/syscalls.h>
 20#include <linux/sched.h>
 21#include <linux/export.h>
 22#include <linux/rmap.h>
 23#include <linux/mmzone.h>
 24#include <linux/hugetlb.h>
 25#include <linux/memcontrol.h>
 26#include <linux/mm_inline.h>
 27#include <linux/secretmem.h>
 28
 29#include "internal.h"
 30
 31struct mlock_fbatch {
 32	local_lock_t lock;
 33	struct folio_batch fbatch;
 34};
 35
 36static DEFINE_PER_CPU(struct mlock_fbatch, mlock_fbatch) = {
 37	.lock = INIT_LOCAL_LOCK(lock),
 38};
 39
 40bool can_do_mlock(void)
 41{
 42	if (rlimit(RLIMIT_MEMLOCK) != 0)
 43		return true;
 44	if (capable(CAP_IPC_LOCK))
 45		return true;
 46	return false;
 47}
 48EXPORT_SYMBOL(can_do_mlock);
 49
 50/*
 51 * Mlocked folios are marked with the PG_mlocked flag for efficient testing
 52 * in vmscan and, possibly, the fault path; and to support semi-accurate
 53 * statistics.
 54 *
 55 * An mlocked folio [folio_test_mlocked(folio)] is unevictable.  As such, it
 56 * will be ostensibly placed on the LRU "unevictable" list (actually no such
 57 * list exists), rather than the [in]active lists. PG_unevictable is set to
 58 * indicate the unevictable state.
 
 
 
 
 
 
 59 */
 60
 61static struct lruvec *__mlock_folio(struct folio *folio, struct lruvec *lruvec)
 
 
 
 62{
 63	/* There is nothing more we can do while it's off LRU */
 64	if (!folio_test_clear_lru(folio))
 65		return lruvec;
 66
 67	lruvec = folio_lruvec_relock_irq(folio, lruvec);
 68
 69	if (unlikely(folio_evictable(folio))) {
 
 
 
 
 
 
 
 
 
 70		/*
 71		 * This is a little surprising, but quite possible: PG_mlocked
 72		 * must have got cleared already by another CPU.  Could this
 73		 * folio be unevictable?  I'm not sure, but move it now if so.
 74		 */
 75		if (folio_test_unevictable(folio)) {
 76			lruvec_del_folio(lruvec, folio);
 77			folio_clear_unevictable(folio);
 78			lruvec_add_folio(lruvec, folio);
 79
 80			__count_vm_events(UNEVICTABLE_PGRESCUED,
 81					  folio_nr_pages(folio));
 82		}
 83		goto out;
 84	}
 85
 86	if (folio_test_unevictable(folio)) {
 87		if (folio_test_mlocked(folio))
 88			folio->mlock_count++;
 89		goto out;
 90	}
 91
 92	lruvec_del_folio(lruvec, folio);
 93	folio_clear_active(folio);
 94	folio_set_unevictable(folio);
 95	folio->mlock_count = !!folio_test_mlocked(folio);
 96	lruvec_add_folio(lruvec, folio);
 97	__count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio));
 98out:
 99	folio_set_lru(folio);
100	return lruvec;
101}
102
103static struct lruvec *__mlock_new_folio(struct folio *folio, struct lruvec *lruvec)
 
 
 
 
104{
105	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 
106
107	lruvec = folio_lruvec_relock_irq(folio, lruvec);
108
109	/* As above, this is a little surprising, but possible */
110	if (unlikely(folio_evictable(folio)))
111		goto out;
112
113	folio_set_unevictable(folio);
114	folio->mlock_count = !!folio_test_mlocked(folio);
115	__count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio));
116out:
117	lruvec_add_folio(lruvec, folio);
118	folio_set_lru(folio);
119	return lruvec;
120}
121
122static struct lruvec *__munlock_folio(struct folio *folio, struct lruvec *lruvec)
 
 
 
 
123{
124	int nr_pages = folio_nr_pages(folio);
125	bool isolated = false;
126
127	if (!folio_test_clear_lru(folio))
128		goto munlock;
129
130	isolated = true;
131	lruvec = folio_lruvec_relock_irq(folio, lruvec);
132
133	if (folio_test_unevictable(folio)) {
134		/* Then mlock_count is maintained, but might undercount */
135		if (folio->mlock_count)
136			folio->mlock_count--;
137		if (folio->mlock_count)
138			goto out;
139	}
140	/* else assume that was the last mlock: reclaim will fix it if not */
141
142munlock:
143	if (folio_test_clear_mlocked(folio)) {
144		__zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
145		if (isolated || !folio_test_unevictable(folio))
146			__count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
147		else
148			__count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
149	}
150
151	/* folio_evictable() has to be checked *after* clearing Mlocked */
152	if (isolated && folio_test_unevictable(folio) && folio_evictable(folio)) {
153		lruvec_del_folio(lruvec, folio);
154		folio_clear_unevictable(folio);
155		lruvec_add_folio(lruvec, folio);
156		__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
157	}
158out:
159	if (isolated)
160		folio_set_lru(folio);
161	return lruvec;
162}
163
164/*
165 * Flags held in the low bits of a struct folio pointer on the mlock_fbatch.
 
 
 
166 */
167#define LRU_FOLIO 0x1
168#define NEW_FOLIO 0x2
169static inline struct folio *mlock_lru(struct folio *folio)
170{
171	return (struct folio *)((unsigned long)folio + LRU_FOLIO);
 
 
 
 
 
 
 
 
 
 
 
172}
173
174static inline struct folio *mlock_new(struct folio *folio)
 
 
 
 
 
 
 
 
 
175{
176	return (struct folio *)((unsigned long)folio + NEW_FOLIO);
 
 
 
177}
178
179/*
180 * mlock_folio_batch() is derived from folio_batch_move_lru(): perhaps that can
181 * make use of such folio pointer flags in future, but for now just keep it for
182 * mlock.  We could use three separate folio batches instead, but one feels
183 * better (munlocking a full folio batch does not need to drain mlocking folio
184 * batches first).
 
 
 
 
 
 
 
 
 
 
 
185 */
186static void mlock_folio_batch(struct folio_batch *fbatch)
187{
188	struct lruvec *lruvec = NULL;
189	unsigned long mlock;
190	struct folio *folio;
191	int i;
 
192
193	for (i = 0; i < folio_batch_count(fbatch); i++) {
194		folio = fbatch->folios[i];
195		mlock = (unsigned long)folio & (LRU_FOLIO | NEW_FOLIO);
196		folio = (struct folio *)((unsigned long)folio - mlock);
197		fbatch->folios[i] = folio;
198
199		if (mlock & LRU_FOLIO)
200			lruvec = __mlock_folio(folio, lruvec);
201		else if (mlock & NEW_FOLIO)
202			lruvec = __mlock_new_folio(folio, lruvec);
203		else
204			lruvec = __munlock_folio(folio, lruvec);
 
 
 
 
 
205	}
206
207	if (lruvec)
208		unlock_page_lruvec_irq(lruvec);
209	folios_put(fbatch);
210}
211
212void mlock_drain_local(void)
213{
214	struct folio_batch *fbatch;
 
 
 
215
216	local_lock(&mlock_fbatch.lock);
217	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
218	if (folio_batch_count(fbatch))
219		mlock_folio_batch(fbatch);
220	local_unlock(&mlock_fbatch.lock);
221}
222
223void mlock_drain_remote(int cpu)
224{
225	struct folio_batch *fbatch;
226
227	WARN_ON_ONCE(cpu_online(cpu));
228	fbatch = &per_cpu(mlock_fbatch.fbatch, cpu);
229	if (folio_batch_count(fbatch))
230		mlock_folio_batch(fbatch);
231}
232
233bool need_mlock_drain(int cpu)
 
 
 
234{
235	return folio_batch_count(&per_cpu(mlock_fbatch.fbatch, cpu));
 
 
 
 
236}
237
238/**
239 * mlock_folio - mlock a folio already on (or temporarily off) LRU
240 * @folio: folio to be mlocked.
 
 
 
 
 
 
 
 
241 */
242void mlock_folio(struct folio *folio)
 
243{
244	struct folio_batch *fbatch;
 
245
246	local_lock(&mlock_fbatch.lock);
247	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
248
249	if (!folio_test_set_mlocked(folio)) {
250		int nr_pages = folio_nr_pages(folio);
251
252		zone_stat_mod_folio(folio, NR_MLOCK, nr_pages);
253		__count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
254	}
255
256	folio_get(folio);
257	if (!folio_batch_add(fbatch, mlock_lru(folio)) ||
258	    folio_test_large(folio) || lru_cache_disabled())
259		mlock_folio_batch(fbatch);
260	local_unlock(&mlock_fbatch.lock);
261}
262
263/**
264 * mlock_new_folio - mlock a newly allocated folio not yet on LRU
265 * @folio: folio to be mlocked, either normal or a THP head.
266 */
267void mlock_new_folio(struct folio *folio)
268{
269	struct folio_batch *fbatch;
270	int nr_pages = folio_nr_pages(folio);
271
272	local_lock(&mlock_fbatch.lock);
273	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
274	folio_set_mlocked(folio);
275
276	zone_stat_mod_folio(folio, NR_MLOCK, nr_pages);
277	__count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
278
279	folio_get(folio);
280	if (!folio_batch_add(fbatch, mlock_new(folio)) ||
281	    folio_test_large(folio) || lru_cache_disabled())
282		mlock_folio_batch(fbatch);
283	local_unlock(&mlock_fbatch.lock);
284}
285
286/**
287 * munlock_folio - munlock a folio
288 * @folio: folio to be munlocked, either normal or a THP head.
289 */
290void munlock_folio(struct folio *folio)
291{
292	struct folio_batch *fbatch;
293
294	local_lock(&mlock_fbatch.lock);
295	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
296	/*
297	 * folio_test_clear_mlocked(folio) must be left to __munlock_folio(),
298	 * which will check whether the folio is multiply mlocked.
299	 */
300	folio_get(folio);
301	if (!folio_batch_add(fbatch, folio) ||
302	    folio_test_large(folio) || lru_cache_disabled())
303		mlock_folio_batch(fbatch);
304	local_unlock(&mlock_fbatch.lock);
305}
306
307static inline unsigned int folio_mlock_step(struct folio *folio,
308		pte_t *pte, unsigned long addr, unsigned long end)
 
 
 
 
 
 
 
 
 
309{
310	unsigned int count, i, nr = folio_nr_pages(folio);
311	unsigned long pfn = folio_pfn(folio);
312	pte_t ptent = ptep_get(pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313
314	if (!folio_test_large(folio))
315		return 1;
 
 
 
 
 
 
 
 
 
316
317	count = pfn + nr - pte_pfn(ptent);
318	count = min_t(unsigned int, count, (end - addr) >> PAGE_SHIFT);
319
320	for (i = 0; i < count; i++, pte++) {
321		pte_t entry = ptep_get(pte);
322
323		if (!pte_present(entry))
324			break;
325		if (pte_pfn(entry) - pfn >= nr)
326			break;
 
 
 
 
 
 
 
 
 
 
 
327	}
328
329	return i;
330}
331
332static inline bool allow_mlock_munlock(struct folio *folio,
333		struct vm_area_struct *vma, unsigned long start,
334		unsigned long end, unsigned int step)
335{
336	/*
337	 * For unlock, allow munlock large folio which is partially
338	 * mapped to VMA. As it's possible that large folio is
339	 * mlocked and VMA is split later.
340	 *
341	 * During memory pressure, such kind of large folio can
342	 * be split. And the pages are not in VM_LOCKed VMA
343	 * can be reclaimed.
344	 */
345	if (!(vma->vm_flags & VM_LOCKED))
346		return true;
347
348	/* folio_within_range() cannot take KSM, but any small folio is OK */
349	if (!folio_test_large(folio))
350		return true;
351
352	/* folio not in range [start, end), skip mlock */
353	if (!folio_within_range(folio, vma, start, end))
354		return false;
355
356	/* folio is not fully mapped, skip mlock */
357	if (step != folio_nr_pages(folio))
358		return false;
359
360	return true;
361}
362
363static int mlock_pte_range(pmd_t *pmd, unsigned long addr,
364			   unsigned long end, struct mm_walk *walk)
365
 
 
 
 
 
 
 
 
 
 
 
 
 
366{
367	struct vm_area_struct *vma = walk->vma;
368	spinlock_t *ptl;
369	pte_t *start_pte, *pte;
370	pte_t ptent;
371	struct folio *folio;
372	unsigned int step = 1;
373	unsigned long start = addr;
374
375	ptl = pmd_trans_huge_lock(pmd, vma);
376	if (ptl) {
377		if (!pmd_present(*pmd))
378			goto out;
379		if (is_huge_zero_pmd(*pmd))
380			goto out;
381		folio = page_folio(pmd_page(*pmd));
382		if (vma->vm_flags & VM_LOCKED)
383			mlock_folio(folio);
384		else
385			munlock_folio(folio);
386		goto out;
387	}
388
389	start_pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
390	if (!start_pte) {
391		walk->action = ACTION_AGAIN;
392		return 0;
393	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394
395	for (pte = start_pte; addr != end; pte++, addr += PAGE_SIZE) {
396		ptent = ptep_get(pte);
397		if (!pte_present(ptent))
398			continue;
399		folio = vm_normal_folio(vma, addr, ptent);
400		if (!folio || folio_is_zone_device(folio))
401			continue;
402
403		step = folio_mlock_step(folio, pte, addr, end);
404		if (!allow_mlock_munlock(folio, vma, start, end, step))
405			goto next_entry;
406
407		if (vma->vm_flags & VM_LOCKED)
408			mlock_folio(folio);
409		else
410			munlock_folio(folio);
411
412next_entry:
413		pte += step - 1;
414		addr += (step - 1) << PAGE_SHIFT;
415	}
416	pte_unmap(start_pte);
417out:
418	spin_unlock(ptl);
419	cond_resched();
420	return 0;
421}
422
423/*
424 * mlock_vma_pages_range() - mlock any pages already in the range,
425 *                           or munlock all pages in the range.
426 * @vma - vma containing range to be mlock()ed or munlock()ed
427 * @start - start address in @vma of the range
428 * @end - end of range in @vma
429 * @newflags - the new set of flags for @vma.
 
 
 
430 *
431 * Called for mlock(), mlock2() and mlockall(), to set @vma VM_LOCKED;
432 * called for munlock() and munlockall(), to clear VM_LOCKED from @vma.
433 */
434static void mlock_vma_pages_range(struct vm_area_struct *vma,
435	unsigned long start, unsigned long end, vm_flags_t newflags)
436{
437	static const struct mm_walk_ops mlock_walk_ops = {
438		.pmd_entry = mlock_pte_range,
439		.walk_lock = PGWALK_WRLOCK_VERIFY,
440	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
441
442	/*
443	 * There is a slight chance that concurrent page migration,
444	 * or page reclaim finding a page of this now-VM_LOCKED vma,
445	 * will call mlock_vma_folio() and raise page's mlock_count:
446	 * double counting, leaving the page unevictable indefinitely.
447	 * Communicate this danger to mlock_vma_folio() with VM_IO,
448	 * which is a VM_SPECIAL flag not allowed on VM_LOCKED vmas.
449	 * mmap_lock is held in write mode here, so this weird
450	 * combination should not be visible to other mmap_lock users;
451	 * but WRITE_ONCE so rmap walkers must see VM_IO if VM_LOCKED.
452	 */
453	if (newflags & VM_LOCKED)
454		newflags |= VM_IO;
455	vma_start_write(vma);
456	vm_flags_reset_once(vma, newflags);
457
458	lru_add_drain();
459	walk_page_range(vma->vm_mm, start, end, &mlock_walk_ops, NULL);
460	lru_add_drain();
461
462	if (newflags & VM_IO) {
463		newflags &= ~VM_IO;
464		vm_flags_reset_once(vma, newflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
465	}
466}
467
468/*
469 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
470 *
471 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
472 * munlock is a no-op.  However, for some special vmas, we go ahead and
473 * populate the ptes.
474 *
475 * For vmas that pass the filters, merge/split as appropriate.
476 */
477static int mlock_fixup(struct vma_iterator *vmi, struct vm_area_struct *vma,
478	       struct vm_area_struct **prev, unsigned long start,
479	       unsigned long end, vm_flags_t newflags)
480{
481	struct mm_struct *mm = vma->vm_mm;
 
482	int nr_pages;
483	int ret = 0;
484	vm_flags_t oldflags = vma->vm_flags;
 
485
486	if (newflags == oldflags || (oldflags & VM_SPECIAL) ||
487	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
488	    vma_is_dax(vma) || vma_is_secretmem(vma))
489		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
490		goto out;
491
492	vma = vma_modify_flags(vmi, *prev, vma, start, end, newflags);
493	if (IS_ERR(vma)) {
494		ret = PTR_ERR(vma);
495		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496	}
497
 
498	/*
499	 * Keep track of amount of locked VM.
500	 */
501	nr_pages = (end - start) >> PAGE_SHIFT;
502	if (!(newflags & VM_LOCKED))
503		nr_pages = -nr_pages;
504	else if (oldflags & VM_LOCKED)
505		nr_pages = 0;
506	mm->locked_vm += nr_pages;
507
508	/*
509	 * vm_flags is protected by the mmap_lock held in write mode.
510	 * It's okay if try_to_unmap_one unmaps a page just after we
511	 * set VM_LOCKED, populate_vma_page_range will bring it back.
512	 */
513	if ((newflags & VM_LOCKED) && (oldflags & VM_LOCKED)) {
514		/* No work to do, and mlocking twice would be wrong */
515		vma_start_write(vma);
516		vm_flags_reset(vma, newflags);
517	} else {
518		mlock_vma_pages_range(vma, start, end, newflags);
519	}
520out:
521	*prev = vma;
522	return ret;
523}
524
525static int apply_vma_lock_flags(unsigned long start, size_t len,
526				vm_flags_t flags)
527{
528	unsigned long nstart, end, tmp;
529	struct vm_area_struct *vma, *prev;
530	VMA_ITERATOR(vmi, current->mm, start);
531
532	VM_BUG_ON(offset_in_page(start));
533	VM_BUG_ON(len != PAGE_ALIGN(len));
534	end = start + len;
535	if (end < start)
536		return -EINVAL;
537	if (end == start)
538		return 0;
539	vma = vma_iter_load(&vmi);
540	if (!vma)
541		return -ENOMEM;
542
543	prev = vma_prev(&vmi);
544	if (start > vma->vm_start)
545		prev = vma;
546
547	nstart = start;
548	tmp = vma->vm_start;
549	for_each_vma_range(vmi, vma, end) {
550		int error;
551		vm_flags_t newflags;
552
553		if (vma->vm_start != tmp)
554			return -ENOMEM;
555
556		newflags = vma->vm_flags & ~VM_LOCKED_MASK;
557		newflags |= flags;
558		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
559		tmp = vma->vm_end;
560		if (tmp > end)
561			tmp = end;
562		error = mlock_fixup(&vmi, vma, &prev, nstart, tmp, newflags);
563		if (error)
564			return error;
565		tmp = vma_iter_end(&vmi);
566		nstart = tmp;
 
 
 
 
 
 
 
 
 
 
567	}
568
569	if (tmp < end)
570		return -ENOMEM;
571
572	return 0;
573}
574
575/*
576 * Go through vma areas and sum size of mlocked
577 * vma pages, as return value.
578 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
579 * is also counted.
580 * Return value: previously mlocked page counts
581 */
582static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
583		unsigned long start, size_t len)
584{
585	struct vm_area_struct *vma;
586	unsigned long count = 0;
587	unsigned long end;
588	VMA_ITERATOR(vmi, mm, start);
589
590	/* Don't overflow past ULONG_MAX */
591	if (unlikely(ULONG_MAX - len < start))
592		end = ULONG_MAX;
593	else
594		end = start + len;
 
595
596	for_each_vma_range(vmi, vma, end) {
 
 
 
 
597		if (vma->vm_flags & VM_LOCKED) {
598			if (start > vma->vm_start)
599				count -= (start - vma->vm_start);
600			if (end < vma->vm_end) {
601				count += end - vma->vm_start;
602				break;
603			}
604			count += vma->vm_end - vma->vm_start;
605		}
606	}
607
608	return count >> PAGE_SHIFT;
609}
610
611/*
612 * convert get_user_pages() return value to posix mlock() error
613 */
614static int __mlock_posix_error_return(long retval)
615{
616	if (retval == -EFAULT)
617		retval = -ENOMEM;
618	else if (retval == -ENOMEM)
619		retval = -EAGAIN;
620	return retval;
621}
622
623static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
624{
625	unsigned long locked;
626	unsigned long lock_limit;
627	int error = -ENOMEM;
628
629	start = untagged_addr(start);
630
631	if (!can_do_mlock())
632		return -EPERM;
633
634	len = PAGE_ALIGN(len + (offset_in_page(start)));
635	start &= PAGE_MASK;
636
637	lock_limit = rlimit(RLIMIT_MEMLOCK);
638	lock_limit >>= PAGE_SHIFT;
639	locked = len >> PAGE_SHIFT;
640
641	if (mmap_write_lock_killable(current->mm))
642		return -EINTR;
643
644	locked += current->mm->locked_vm;
645	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
646		/*
647		 * It is possible that the regions requested intersect with
648		 * previously mlocked areas, that part area in "mm->locked_vm"
649		 * should not be counted to new mlock increment count. So check
650		 * and adjust locked count if necessary.
651		 */
652		locked -= count_mm_mlocked_page_nr(current->mm,
653				start, len);
654	}
655
656	/* check against resource limits */
657	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
658		error = apply_vma_lock_flags(start, len, flags);
659
660	mmap_write_unlock(current->mm);
661	if (error)
662		return error;
663
664	error = __mm_populate(start, len, 0);
665	if (error)
666		return __mlock_posix_error_return(error);
667	return 0;
668}
669
670SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
671{
672	return do_mlock(start, len, VM_LOCKED);
673}
674
675SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
676{
677	vm_flags_t vm_flags = VM_LOCKED;
678
679	if (flags & ~MLOCK_ONFAULT)
680		return -EINVAL;
681
682	if (flags & MLOCK_ONFAULT)
683		vm_flags |= VM_LOCKONFAULT;
684
685	return do_mlock(start, len, vm_flags);
686}
687
688SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
689{
690	int ret;
691
692	start = untagged_addr(start);
693
694	len = PAGE_ALIGN(len + (offset_in_page(start)));
695	start &= PAGE_MASK;
696
697	if (mmap_write_lock_killable(current->mm))
698		return -EINTR;
699	ret = apply_vma_lock_flags(start, len, 0);
700	mmap_write_unlock(current->mm);
701
702	return ret;
703}
704
705/*
706 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
707 * and translate into the appropriate modifications to mm->def_flags and/or the
708 * flags for all current VMAs.
709 *
710 * There are a couple of subtleties with this.  If mlockall() is called multiple
711 * times with different flags, the values do not necessarily stack.  If mlockall
712 * is called once including the MCL_FUTURE flag and then a second time without
713 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
714 */
715static int apply_mlockall_flags(int flags)
716{
717	VMA_ITERATOR(vmi, current->mm, 0);
718	struct vm_area_struct *vma, *prev = NULL;
719	vm_flags_t to_add = 0;
720
721	current->mm->def_flags &= ~VM_LOCKED_MASK;
722	if (flags & MCL_FUTURE) {
723		current->mm->def_flags |= VM_LOCKED;
724
725		if (flags & MCL_ONFAULT)
726			current->mm->def_flags |= VM_LOCKONFAULT;
727
728		if (!(flags & MCL_CURRENT))
729			goto out;
730	}
731
732	if (flags & MCL_CURRENT) {
733		to_add |= VM_LOCKED;
734		if (flags & MCL_ONFAULT)
735			to_add |= VM_LOCKONFAULT;
736	}
737
738	for_each_vma(vmi, vma) {
739		vm_flags_t newflags;
740
741		newflags = vma->vm_flags & ~VM_LOCKED_MASK;
742		newflags |= to_add;
743
744		/* Ignore errors */
745		mlock_fixup(&vmi, vma, &prev, vma->vm_start, vma->vm_end,
746			    newflags);
747		cond_resched();
748	}
749out:
750	return 0;
751}
752
753SYSCALL_DEFINE1(mlockall, int, flags)
754{
755	unsigned long lock_limit;
756	int ret;
757
758	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
759	    flags == MCL_ONFAULT)
760		return -EINVAL;
761
762	if (!can_do_mlock())
763		return -EPERM;
764
765	lock_limit = rlimit(RLIMIT_MEMLOCK);
766	lock_limit >>= PAGE_SHIFT;
767
768	if (mmap_write_lock_killable(current->mm))
769		return -EINTR;
770
771	ret = -ENOMEM;
772	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
773	    capable(CAP_IPC_LOCK))
774		ret = apply_mlockall_flags(flags);
775	mmap_write_unlock(current->mm);
776	if (!ret && (flags & MCL_CURRENT))
777		mm_populate(0, TASK_SIZE);
778
779	return ret;
780}
781
782SYSCALL_DEFINE0(munlockall)
783{
784	int ret;
785
786	if (mmap_write_lock_killable(current->mm))
787		return -EINTR;
788	ret = apply_mlockall_flags(0);
789	mmap_write_unlock(current->mm);
790	return ret;
791}
792
793/*
794 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
795 * shm segments) get accounted against the user_struct instead.
796 */
797static DEFINE_SPINLOCK(shmlock_user_lock);
798
799int user_shm_lock(size_t size, struct ucounts *ucounts)
800{
801	unsigned long lock_limit, locked;
802	long memlock;
803	int allowed = 0;
804
805	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
806	lock_limit = rlimit(RLIMIT_MEMLOCK);
807	if (lock_limit != RLIM_INFINITY)
808		lock_limit >>= PAGE_SHIFT;
 
809	spin_lock(&shmlock_user_lock);
810	memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
811
812	if ((memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
813		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
814		goto out;
815	}
816	if (!get_ucounts(ucounts)) {
817		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
818		allowed = 0;
819		goto out;
820	}
821	allowed = 1;
822out:
823	spin_unlock(&shmlock_user_lock);
824	return allowed;
825}
826
827void user_shm_unlock(size_t size, struct ucounts *ucounts)
828{
829	spin_lock(&shmlock_user_lock);
830	dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
831	spin_unlock(&shmlock_user_lock);
832	put_ucounts(ucounts);
833}