Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include "iavf.h"
   5#include "iavf_prototype.h"
   6#include "iavf_client.h"
   7/* All iavf tracepoints are defined by the include below, which must
   8 * be included exactly once across the whole kernel with
   9 * CREATE_TRACE_POINTS defined
  10 */
  11#define CREATE_TRACE_POINTS
  12#include "iavf_trace.h"
  13
  14static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
  15static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
  16static int iavf_close(struct net_device *netdev);
  17static int iavf_init_get_resources(struct iavf_adapter *adapter);
  18static int iavf_check_reset_complete(struct iavf_hw *hw);
  19
  20char iavf_driver_name[] = "iavf";
  21static const char iavf_driver_string[] =
  22	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
  23
  24#define DRV_KERN "-k"
  25
  26#define DRV_VERSION_MAJOR 3
  27#define DRV_VERSION_MINOR 2
  28#define DRV_VERSION_BUILD 3
  29#define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
  30	     __stringify(DRV_VERSION_MINOR) "." \
  31	     __stringify(DRV_VERSION_BUILD) \
  32	     DRV_KERN
  33const char iavf_driver_version[] = DRV_VERSION;
  34static const char iavf_copyright[] =
  35	"Copyright (c) 2013 - 2018 Intel Corporation.";
  36
  37/* iavf_pci_tbl - PCI Device ID Table
  38 *
  39 * Wildcard entries (PCI_ANY_ID) should come last
  40 * Last entry must be all 0s
  41 *
  42 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  43 *   Class, Class Mask, private data (not used) }
  44 */
  45static const struct pci_device_id iavf_pci_tbl[] = {
  46	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
  47	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
  48	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
  49	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
  50	/* required last entry */
  51	{0, }
  52};
  53
  54MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
  55
  56MODULE_ALIAS("i40evf");
  57MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  58MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
  59MODULE_LICENSE("GPL v2");
  60MODULE_VERSION(DRV_VERSION);
  61
  62static const struct net_device_ops iavf_netdev_ops;
  63struct workqueue_struct *iavf_wq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64
  65/**
  66 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
  67 * @hw:   pointer to the HW structure
  68 * @mem:  ptr to mem struct to fill out
  69 * @size: size of memory requested
  70 * @alignment: what to align the allocation to
  71 **/
  72enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
  73					 struct iavf_dma_mem *mem,
  74					 u64 size, u32 alignment)
  75{
  76	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
  77
  78	if (!mem)
  79		return IAVF_ERR_PARAM;
  80
  81	mem->size = ALIGN(size, alignment);
  82	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
  83				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
  84	if (mem->va)
  85		return 0;
  86	else
  87		return IAVF_ERR_NO_MEMORY;
  88}
  89
  90/**
  91 * iavf_free_dma_mem_d - OS specific memory free for shared code
  92 * @hw:   pointer to the HW structure
  93 * @mem:  ptr to mem struct to free
  94 **/
  95enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
  96				     struct iavf_dma_mem *mem)
  97{
  98	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
  99
 100	if (!mem || !mem->va)
 101		return IAVF_ERR_PARAM;
 102	dma_free_coherent(&adapter->pdev->dev, mem->size,
 103			  mem->va, (dma_addr_t)mem->pa);
 104	return 0;
 105}
 106
 107/**
 108 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
 109 * @hw:   pointer to the HW structure
 110 * @mem:  ptr to mem struct to fill out
 111 * @size: size of memory requested
 112 **/
 113enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
 114					  struct iavf_virt_mem *mem, u32 size)
 115{
 116	if (!mem)
 117		return IAVF_ERR_PARAM;
 118
 119	mem->size = size;
 120	mem->va = kzalloc(size, GFP_KERNEL);
 121
 122	if (mem->va)
 123		return 0;
 124	else
 125		return IAVF_ERR_NO_MEMORY;
 126}
 127
 128/**
 129 * iavf_free_virt_mem_d - OS specific memory free for shared code
 130 * @hw:   pointer to the HW structure
 131 * @mem:  ptr to mem struct to free
 132 **/
 133enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
 134				      struct iavf_virt_mem *mem)
 135{
 136	if (!mem)
 137		return IAVF_ERR_PARAM;
 138
 139	/* it's ok to kfree a NULL pointer */
 140	kfree(mem->va);
 141
 142	return 0;
 143}
 144
 145/**
 146 * iavf_schedule_reset - Set the flags and schedule a reset event
 147 * @adapter: board private structure
 
 148 **/
 149void iavf_schedule_reset(struct iavf_adapter *adapter)
 150{
 151	if (!(adapter->flags &
 152	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
 153		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
 154		queue_work(iavf_wq, &adapter->reset_task);
 
 155	}
 156}
 157
 158/**
 
 
 
 
 
 
 
 
 
 
 
 159 * iavf_tx_timeout - Respond to a Tx Hang
 160 * @netdev: network interface device structure
 
 161 **/
 162static void iavf_tx_timeout(struct net_device *netdev)
 163{
 164	struct iavf_adapter *adapter = netdev_priv(netdev);
 165
 166	adapter->tx_timeout_count++;
 167	iavf_schedule_reset(adapter);
 168}
 169
 170/**
 171 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
 172 * @adapter: board private structure
 173 **/
 174static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
 175{
 176	struct iavf_hw *hw = &adapter->hw;
 177
 178	if (!adapter->msix_entries)
 179		return;
 180
 181	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
 182
 183	iavf_flush(hw);
 184
 185	synchronize_irq(adapter->msix_entries[0].vector);
 186}
 187
 188/**
 189 * iavf_misc_irq_enable - Enable default interrupt generation settings
 190 * @adapter: board private structure
 191 **/
 192static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
 193{
 194	struct iavf_hw *hw = &adapter->hw;
 195
 196	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
 197				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
 198	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
 199
 200	iavf_flush(hw);
 201}
 202
 203/**
 204 * iavf_irq_disable - Mask off interrupt generation on the NIC
 205 * @adapter: board private structure
 206 **/
 207static void iavf_irq_disable(struct iavf_adapter *adapter)
 208{
 209	int i;
 210	struct iavf_hw *hw = &adapter->hw;
 211
 212	if (!adapter->msix_entries)
 213		return;
 214
 215	for (i = 1; i < adapter->num_msix_vectors; i++) {
 216		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
 217		synchronize_irq(adapter->msix_entries[i].vector);
 218	}
 219	iavf_flush(hw);
 220}
 221
 222/**
 223 * iavf_irq_enable_queues - Enable interrupt for specified queues
 224 * @adapter: board private structure
 225 * @mask: bitmap of queues to enable
 226 **/
 227void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
 228{
 229	struct iavf_hw *hw = &adapter->hw;
 230	int i;
 231
 232	for (i = 1; i < adapter->num_msix_vectors; i++) {
 233		if (mask & BIT(i - 1)) {
 234			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
 235			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 236			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
 237		}
 238	}
 239}
 240
 241/**
 242 * iavf_irq_enable - Enable default interrupt generation settings
 243 * @adapter: board private structure
 244 * @flush: boolean value whether to run rd32()
 245 **/
 246void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
 247{
 248	struct iavf_hw *hw = &adapter->hw;
 249
 250	iavf_misc_irq_enable(adapter);
 251	iavf_irq_enable_queues(adapter, ~0);
 252
 253	if (flush)
 254		iavf_flush(hw);
 255}
 256
 257/**
 258 * iavf_msix_aq - Interrupt handler for vector 0
 259 * @irq: interrupt number
 260 * @data: pointer to netdev
 261 **/
 262static irqreturn_t iavf_msix_aq(int irq, void *data)
 263{
 264	struct net_device *netdev = data;
 265	struct iavf_adapter *adapter = netdev_priv(netdev);
 266	struct iavf_hw *hw = &adapter->hw;
 267
 268	/* handle non-queue interrupts, these reads clear the registers */
 269	rd32(hw, IAVF_VFINT_ICR01);
 270	rd32(hw, IAVF_VFINT_ICR0_ENA1);
 271
 272	/* schedule work on the private workqueue */
 273	queue_work(iavf_wq, &adapter->adminq_task);
 
 274
 275	return IRQ_HANDLED;
 276}
 277
 278/**
 279 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
 280 * @irq: interrupt number
 281 * @data: pointer to a q_vector
 282 **/
 283static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
 284{
 285	struct iavf_q_vector *q_vector = data;
 286
 287	if (!q_vector->tx.ring && !q_vector->rx.ring)
 288		return IRQ_HANDLED;
 289
 290	napi_schedule_irqoff(&q_vector->napi);
 291
 292	return IRQ_HANDLED;
 293}
 294
 295/**
 296 * iavf_map_vector_to_rxq - associate irqs with rx queues
 297 * @adapter: board private structure
 298 * @v_idx: interrupt number
 299 * @r_idx: queue number
 300 **/
 301static void
 302iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
 303{
 304	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 305	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
 306	struct iavf_hw *hw = &adapter->hw;
 307
 308	rx_ring->q_vector = q_vector;
 309	rx_ring->next = q_vector->rx.ring;
 310	rx_ring->vsi = &adapter->vsi;
 311	q_vector->rx.ring = rx_ring;
 312	q_vector->rx.count++;
 313	q_vector->rx.next_update = jiffies + 1;
 314	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
 315	q_vector->ring_mask |= BIT(r_idx);
 316	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
 317	     q_vector->rx.current_itr >> 1);
 318	q_vector->rx.current_itr = q_vector->rx.target_itr;
 319}
 320
 321/**
 322 * iavf_map_vector_to_txq - associate irqs with tx queues
 323 * @adapter: board private structure
 324 * @v_idx: interrupt number
 325 * @t_idx: queue number
 326 **/
 327static void
 328iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
 329{
 330	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 331	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
 332	struct iavf_hw *hw = &adapter->hw;
 333
 334	tx_ring->q_vector = q_vector;
 335	tx_ring->next = q_vector->tx.ring;
 336	tx_ring->vsi = &adapter->vsi;
 337	q_vector->tx.ring = tx_ring;
 338	q_vector->tx.count++;
 339	q_vector->tx.next_update = jiffies + 1;
 340	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
 341	q_vector->num_ringpairs++;
 342	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
 343	     q_vector->tx.target_itr >> 1);
 344	q_vector->tx.current_itr = q_vector->tx.target_itr;
 345}
 346
 347/**
 348 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
 349 * @adapter: board private structure to initialize
 350 *
 351 * This function maps descriptor rings to the queue-specific vectors
 352 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
 353 * one vector per ring/queue, but on a constrained vector budget, we
 354 * group the rings as "efficiently" as possible.  You would add new
 355 * mapping configurations in here.
 356 **/
 357static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
 358{
 359	int rings_remaining = adapter->num_active_queues;
 360	int ridx = 0, vidx = 0;
 361	int q_vectors;
 362
 363	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 364
 365	for (; ridx < rings_remaining; ridx++) {
 366		iavf_map_vector_to_rxq(adapter, vidx, ridx);
 367		iavf_map_vector_to_txq(adapter, vidx, ridx);
 368
 369		/* In the case where we have more queues than vectors, continue
 370		 * round-robin on vectors until all queues are mapped.
 371		 */
 372		if (++vidx >= q_vectors)
 373			vidx = 0;
 374	}
 375
 376	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
 377}
 378
 379/**
 380 * iavf_irq_affinity_notify - Callback for affinity changes
 381 * @notify: context as to what irq was changed
 382 * @mask: the new affinity mask
 383 *
 384 * This is a callback function used by the irq_set_affinity_notifier function
 385 * so that we may register to receive changes to the irq affinity masks.
 386 **/
 387static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
 388				     const cpumask_t *mask)
 389{
 390	struct iavf_q_vector *q_vector =
 391		container_of(notify, struct iavf_q_vector, affinity_notify);
 392
 393	cpumask_copy(&q_vector->affinity_mask, mask);
 394}
 395
 396/**
 397 * iavf_irq_affinity_release - Callback for affinity notifier release
 398 * @ref: internal core kernel usage
 399 *
 400 * This is a callback function used by the irq_set_affinity_notifier function
 401 * to inform the current notification subscriber that they will no longer
 402 * receive notifications.
 403 **/
 404static void iavf_irq_affinity_release(struct kref *ref) {}
 405
 406/**
 407 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
 408 * @adapter: board private structure
 409 * @basename: device basename
 410 *
 411 * Allocates MSI-X vectors for tx and rx handling, and requests
 412 * interrupts from the kernel.
 413 **/
 414static int
 415iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
 416{
 417	unsigned int vector, q_vectors;
 418	unsigned int rx_int_idx = 0, tx_int_idx = 0;
 419	int irq_num, err;
 420	int cpu;
 421
 422	iavf_irq_disable(adapter);
 423	/* Decrement for Other and TCP Timer vectors */
 424	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 425
 426	for (vector = 0; vector < q_vectors; vector++) {
 427		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
 428
 429		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 430
 431		if (q_vector->tx.ring && q_vector->rx.ring) {
 432			snprintf(q_vector->name, sizeof(q_vector->name),
 433				 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
 434			tx_int_idx++;
 435		} else if (q_vector->rx.ring) {
 436			snprintf(q_vector->name, sizeof(q_vector->name),
 437				 "iavf-%s-rx-%d", basename, rx_int_idx++);
 438		} else if (q_vector->tx.ring) {
 439			snprintf(q_vector->name, sizeof(q_vector->name),
 440				 "iavf-%s-tx-%d", basename, tx_int_idx++);
 441		} else {
 442			/* skip this unused q_vector */
 443			continue;
 444		}
 445		err = request_irq(irq_num,
 446				  iavf_msix_clean_rings,
 447				  0,
 448				  q_vector->name,
 449				  q_vector);
 450		if (err) {
 451			dev_info(&adapter->pdev->dev,
 452				 "Request_irq failed, error: %d\n", err);
 453			goto free_queue_irqs;
 454		}
 455		/* register for affinity change notifications */
 456		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
 457		q_vector->affinity_notify.release =
 458						   iavf_irq_affinity_release;
 459		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
 460		/* Spread the IRQ affinity hints across online CPUs. Note that
 461		 * get_cpu_mask returns a mask with a permanent lifetime so
 462		 * it's safe to use as a hint for irq_set_affinity_hint.
 463		 */
 464		cpu = cpumask_local_spread(q_vector->v_idx, -1);
 465		irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
 466	}
 467
 468	return 0;
 469
 470free_queue_irqs:
 471	while (vector) {
 472		vector--;
 473		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 474		irq_set_affinity_notifier(irq_num, NULL);
 475		irq_set_affinity_hint(irq_num, NULL);
 476		free_irq(irq_num, &adapter->q_vectors[vector]);
 477	}
 478	return err;
 479}
 480
 481/**
 482 * iavf_request_misc_irq - Initialize MSI-X interrupts
 483 * @adapter: board private structure
 484 *
 485 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
 486 * vector is only for the admin queue, and stays active even when the netdev
 487 * is closed.
 488 **/
 489static int iavf_request_misc_irq(struct iavf_adapter *adapter)
 490{
 491	struct net_device *netdev = adapter->netdev;
 492	int err;
 493
 494	snprintf(adapter->misc_vector_name,
 495		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
 496		 dev_name(&adapter->pdev->dev));
 497	err = request_irq(adapter->msix_entries[0].vector,
 498			  &iavf_msix_aq, 0,
 499			  adapter->misc_vector_name, netdev);
 500	if (err) {
 501		dev_err(&adapter->pdev->dev,
 502			"request_irq for %s failed: %d\n",
 503			adapter->misc_vector_name, err);
 504		free_irq(adapter->msix_entries[0].vector, netdev);
 505	}
 506	return err;
 507}
 508
 509/**
 510 * iavf_free_traffic_irqs - Free MSI-X interrupts
 511 * @adapter: board private structure
 512 *
 513 * Frees all MSI-X vectors other than 0.
 514 **/
 515static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
 516{
 517	int vector, irq_num, q_vectors;
 518
 519	if (!adapter->msix_entries)
 520		return;
 521
 522	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 523
 524	for (vector = 0; vector < q_vectors; vector++) {
 525		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 526		irq_set_affinity_notifier(irq_num, NULL);
 527		irq_set_affinity_hint(irq_num, NULL);
 528		free_irq(irq_num, &adapter->q_vectors[vector]);
 529	}
 530}
 531
 532/**
 533 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
 534 * @adapter: board private structure
 535 *
 536 * Frees MSI-X vector 0.
 537 **/
 538static void iavf_free_misc_irq(struct iavf_adapter *adapter)
 539{
 540	struct net_device *netdev = adapter->netdev;
 541
 542	if (!adapter->msix_entries)
 543		return;
 544
 545	free_irq(adapter->msix_entries[0].vector, netdev);
 546}
 547
 548/**
 549 * iavf_configure_tx - Configure Transmit Unit after Reset
 550 * @adapter: board private structure
 551 *
 552 * Configure the Tx unit of the MAC after a reset.
 553 **/
 554static void iavf_configure_tx(struct iavf_adapter *adapter)
 555{
 556	struct iavf_hw *hw = &adapter->hw;
 557	int i;
 558
 559	for (i = 0; i < adapter->num_active_queues; i++)
 560		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
 561}
 562
 563/**
 564 * iavf_configure_rx - Configure Receive Unit after Reset
 565 * @adapter: board private structure
 566 *
 567 * Configure the Rx unit of the MAC after a reset.
 568 **/
 569static void iavf_configure_rx(struct iavf_adapter *adapter)
 570{
 571	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
 572	struct iavf_hw *hw = &adapter->hw;
 573	int i;
 574
 575	/* Legacy Rx will always default to a 2048 buffer size. */
 576#if (PAGE_SIZE < 8192)
 577	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
 578		struct net_device *netdev = adapter->netdev;
 579
 580		/* For jumbo frames on systems with 4K pages we have to use
 581		 * an order 1 page, so we might as well increase the size
 582		 * of our Rx buffer to make better use of the available space
 583		 */
 584		rx_buf_len = IAVF_RXBUFFER_3072;
 585
 586		/* We use a 1536 buffer size for configurations with
 587		 * standard Ethernet mtu.  On x86 this gives us enough room
 588		 * for shared info and 192 bytes of padding.
 589		 */
 590		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
 591		    (netdev->mtu <= ETH_DATA_LEN))
 592			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
 593	}
 594#endif
 595
 596	for (i = 0; i < adapter->num_active_queues; i++) {
 597		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
 598		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
 599
 600		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
 601			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
 602		else
 603			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
 604	}
 605}
 606
 607/**
 608 * iavf_find_vlan - Search filter list for specific vlan filter
 609 * @adapter: board private structure
 610 * @vlan: vlan tag
 611 *
 612 * Returns ptr to the filter object or NULL. Must be called while holding the
 613 * mac_vlan_list_lock.
 614 **/
 615static struct
 616iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
 
 617{
 618	struct iavf_vlan_filter *f;
 619
 620	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
 621		if (vlan == f->vlan)
 
 622			return f;
 623	}
 
 624	return NULL;
 625}
 626
 627/**
 628 * iavf_add_vlan - Add a vlan filter to the list
 629 * @adapter: board private structure
 630 * @vlan: VLAN tag
 631 *
 632 * Returns ptr to the filter object or NULL when no memory available.
 633 **/
 634static struct
 635iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
 
 636{
 637	struct iavf_vlan_filter *f = NULL;
 638
 639	spin_lock_bh(&adapter->mac_vlan_list_lock);
 640
 641	f = iavf_find_vlan(adapter, vlan);
 642	if (!f) {
 643		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 644		if (!f)
 645			goto clearout;
 646
 647		f->vlan = vlan;
 648
 649		list_add_tail(&f->list, &adapter->vlan_filter_list);
 650		f->add = true;
 651		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
 
 652	}
 653
 654clearout:
 655	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 656	return f;
 657}
 658
 659/**
 660 * iavf_del_vlan - Remove a vlan filter from the list
 661 * @adapter: board private structure
 662 * @vlan: VLAN tag
 663 **/
 664static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
 665{
 666	struct iavf_vlan_filter *f;
 667
 668	spin_lock_bh(&adapter->mac_vlan_list_lock);
 669
 670	f = iavf_find_vlan(adapter, vlan);
 671	if (f) {
 672		f->remove = true;
 673		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
 674	}
 675
 676	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 677}
 678
 679/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
 681 * @netdev: network device struct
 682 * @proto: unused protocol data
 683 * @vid: VLAN tag
 684 **/
 685static int iavf_vlan_rx_add_vid(struct net_device *netdev,
 686				__always_unused __be16 proto, u16 vid)
 687{
 688	struct iavf_adapter *adapter = netdev_priv(netdev);
 689
 690	if (!VLAN_ALLOWED(adapter))
 
 
 
 
 691		return -EIO;
 692	if (iavf_add_vlan(adapter, vid) == NULL)
 
 
 
 
 
 
 
 693		return -ENOMEM;
 
 694	return 0;
 695}
 696
 697/**
 698 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
 699 * @netdev: network device struct
 700 * @proto: unused protocol data
 701 * @vid: VLAN tag
 702 **/
 703static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
 704				 __always_unused __be16 proto, u16 vid)
 705{
 706	struct iavf_adapter *adapter = netdev_priv(netdev);
 707
 708	if (VLAN_ALLOWED(adapter)) {
 709		iavf_del_vlan(adapter, vid);
 710		return 0;
 711	}
 712	return -EIO;
 
 713}
 714
 715/**
 716 * iavf_find_filter - Search filter list for specific mac filter
 717 * @adapter: board private structure
 718 * @macaddr: the MAC address
 719 *
 720 * Returns ptr to the filter object or NULL. Must be called while holding the
 721 * mac_vlan_list_lock.
 722 **/
 723static struct
 724iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
 725				  const u8 *macaddr)
 726{
 727	struct iavf_mac_filter *f;
 728
 729	if (!macaddr)
 730		return NULL;
 731
 732	list_for_each_entry(f, &adapter->mac_filter_list, list) {
 733		if (ether_addr_equal(macaddr, f->macaddr))
 734			return f;
 735	}
 736	return NULL;
 737}
 738
 739/**
 740 * iavf_add_filter - Add a mac filter to the filter list
 741 * @adapter: board private structure
 742 * @macaddr: the MAC address
 743 *
 744 * Returns ptr to the filter object or NULL when no memory available.
 745 **/
 746static struct
 747iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
 748				 const u8 *macaddr)
 749{
 750	struct iavf_mac_filter *f;
 751
 752	if (!macaddr)
 753		return NULL;
 754
 755	f = iavf_find_filter(adapter, macaddr);
 756	if (!f) {
 757		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 758		if (!f)
 759			return f;
 760
 761		ether_addr_copy(f->macaddr, macaddr);
 762
 763		list_add_tail(&f->list, &adapter->mac_filter_list);
 764		f->add = true;
 
 
 
 765		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
 766	} else {
 767		f->remove = false;
 768	}
 769
 770	return f;
 771}
 772
 773/**
 774 * iavf_set_mac - NDO callback to set port mac address
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775 * @netdev: network interface device structure
 776 * @p: pointer to an address structure
 777 *
 778 * Returns 0 on success, negative on failure
 779 **/
 780static int iavf_set_mac(struct net_device *netdev, void *p)
 781{
 782	struct iavf_adapter *adapter = netdev_priv(netdev);
 783	struct iavf_hw *hw = &adapter->hw;
 784	struct iavf_mac_filter *f;
 785	struct sockaddr *addr = p;
 
 786
 787	if (!is_valid_ether_addr(addr->sa_data))
 788		return -EADDRNOTAVAIL;
 789
 790	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
 791		return 0;
 792
 793	spin_lock_bh(&adapter->mac_vlan_list_lock);
 794
 795	f = iavf_find_filter(adapter, hw->mac.addr);
 796	if (f) {
 797		f->remove = true;
 798		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
 799	}
 800
 801	f = iavf_add_filter(adapter, addr->sa_data);
 
 
 
 
 
 
 
 
 
 
 
 802
 803	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 
 804
 805	if (f) {
 806		ether_addr_copy(hw->mac.addr, addr->sa_data);
 807	}
 808
 809	return (f == NULL) ? -ENOMEM : 0;
 810}
 811
 812/**
 813 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
 814 * @netdev: the netdevice
 815 * @addr: address to add
 816 *
 817 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
 818 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
 819 */
 820static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
 821{
 822	struct iavf_adapter *adapter = netdev_priv(netdev);
 823
 824	if (iavf_add_filter(adapter, addr))
 825		return 0;
 826	else
 827		return -ENOMEM;
 828}
 829
 830/**
 831 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
 832 * @netdev: the netdevice
 833 * @addr: address to add
 834 *
 835 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
 836 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
 837 */
 838static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
 839{
 840	struct iavf_adapter *adapter = netdev_priv(netdev);
 841	struct iavf_mac_filter *f;
 842
 843	/* Under some circumstances, we might receive a request to delete
 844	 * our own device address from our uc list. Because we store the
 845	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
 846	 * such requests and not delete our device address from this list.
 847	 */
 848	if (ether_addr_equal(addr, netdev->dev_addr))
 849		return 0;
 850
 851	f = iavf_find_filter(adapter, addr);
 852	if (f) {
 853		f->remove = true;
 854		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
 855	}
 856	return 0;
 857}
 858
 859/**
 
 
 
 
 
 
 
 
 
 
 860 * iavf_set_rx_mode - NDO callback to set the netdev filters
 861 * @netdev: network interface device structure
 862 **/
 863static void iavf_set_rx_mode(struct net_device *netdev)
 864{
 865	struct iavf_adapter *adapter = netdev_priv(netdev);
 866
 867	spin_lock_bh(&adapter->mac_vlan_list_lock);
 868	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
 869	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
 870	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 871
 872	if (netdev->flags & IFF_PROMISC &&
 873	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
 874		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
 875	else if (!(netdev->flags & IFF_PROMISC) &&
 876		 adapter->flags & IAVF_FLAG_PROMISC_ON)
 877		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
 878
 879	if (netdev->flags & IFF_ALLMULTI &&
 880	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
 881		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
 882	else if (!(netdev->flags & IFF_ALLMULTI) &&
 883		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
 884		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
 885}
 886
 887/**
 888 * iavf_napi_enable_all - enable NAPI on all queue vectors
 889 * @adapter: board private structure
 890 **/
 891static void iavf_napi_enable_all(struct iavf_adapter *adapter)
 892{
 893	int q_idx;
 894	struct iavf_q_vector *q_vector;
 895	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 896
 897	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
 898		struct napi_struct *napi;
 899
 900		q_vector = &adapter->q_vectors[q_idx];
 901		napi = &q_vector->napi;
 902		napi_enable(napi);
 903	}
 904}
 905
 906/**
 907 * iavf_napi_disable_all - disable NAPI on all queue vectors
 908 * @adapter: board private structure
 909 **/
 910static void iavf_napi_disable_all(struct iavf_adapter *adapter)
 911{
 912	int q_idx;
 913	struct iavf_q_vector *q_vector;
 914	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 915
 916	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
 917		q_vector = &adapter->q_vectors[q_idx];
 918		napi_disable(&q_vector->napi);
 919	}
 920}
 921
 922/**
 923 * iavf_configure - set up transmit and receive data structures
 924 * @adapter: board private structure
 925 **/
 926static void iavf_configure(struct iavf_adapter *adapter)
 927{
 928	struct net_device *netdev = adapter->netdev;
 929	int i;
 930
 931	iavf_set_rx_mode(netdev);
 932
 933	iavf_configure_tx(adapter);
 934	iavf_configure_rx(adapter);
 935	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
 936
 937	for (i = 0; i < adapter->num_active_queues; i++) {
 938		struct iavf_ring *ring = &adapter->rx_rings[i];
 939
 940		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
 941	}
 942}
 943
 944/**
 945 * iavf_up_complete - Finish the last steps of bringing up a connection
 946 * @adapter: board private structure
 947 *
 948 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
 949 **/
 950static void iavf_up_complete(struct iavf_adapter *adapter)
 951{
 952	adapter->state = __IAVF_RUNNING;
 953	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
 954
 955	iavf_napi_enable_all(adapter);
 956
 957	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
 958	if (CLIENT_ENABLED(adapter))
 959		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
 960	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
 961}
 962
 963/**
 964 * iavf_down - Shutdown the connection processing
 
 965 * @adapter: board private structure
 966 *
 967 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
 968 **/
 969void iavf_down(struct iavf_adapter *adapter)
 970{
 971	struct net_device *netdev = adapter->netdev;
 972	struct iavf_vlan_filter *vlf;
 973	struct iavf_mac_filter *f;
 974	struct iavf_cloud_filter *cf;
 975
 976	if (adapter->state <= __IAVF_DOWN_PENDING)
 977		return;
 978
 979	netif_carrier_off(netdev);
 980	netif_tx_disable(netdev);
 981	adapter->link_up = false;
 982	iavf_napi_disable_all(adapter);
 983	iavf_irq_disable(adapter);
 984
 985	spin_lock_bh(&adapter->mac_vlan_list_lock);
 986
 987	/* clear the sync flag on all filters */
 988	__dev_uc_unsync(adapter->netdev, NULL);
 989	__dev_mc_unsync(adapter->netdev, NULL);
 990
 991	/* remove all MAC filters */
 992	list_for_each_entry(f, &adapter->mac_filter_list, list) {
 993		f->remove = true;
 
 
 
 
 
 
 994	}
 995
 996	/* remove all VLAN filters */
 997	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
 998		vlf->remove = true;
 999	}
1000
1001	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 
 
 
 
 
 
 
 
 
 
1002
1003	/* remove all cloud filters */
1004	spin_lock_bh(&adapter->cloud_filter_list_lock);
1005	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1006		cf->del = true;
 
 
 
 
 
 
 
1007	}
1008	spin_unlock_bh(&adapter->cloud_filter_list_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009
1010	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1011	    adapter->state != __IAVF_RESETTING) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1012		/* cancel any current operation */
1013		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1014		/* Schedule operations to close down the HW. Don't wait
1015		 * here for this to complete. The watchdog is still running
1016		 * and it will take care of this.
1017		 */
1018		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1019		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1020		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1021		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
 
 
 
 
 
 
1022	}
1023
1024	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1025}
1026
1027/**
1028 * iavf_acquire_msix_vectors - Setup the MSIX capability
1029 * @adapter: board private structure
1030 * @vectors: number of vectors to request
1031 *
1032 * Work with the OS to set up the MSIX vectors needed.
1033 *
1034 * Returns 0 on success, negative on failure
1035 **/
1036static int
1037iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1038{
1039	int err, vector_threshold;
1040
1041	/* We'll want at least 3 (vector_threshold):
1042	 * 0) Other (Admin Queue and link, mostly)
1043	 * 1) TxQ[0] Cleanup
1044	 * 2) RxQ[0] Cleanup
1045	 */
1046	vector_threshold = MIN_MSIX_COUNT;
1047
1048	/* The more we get, the more we will assign to Tx/Rx Cleanup
1049	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1050	 * Right now, we simply care about how many we'll get; we'll
1051	 * set them up later while requesting irq's.
1052	 */
1053	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1054				    vector_threshold, vectors);
1055	if (err < 0) {
1056		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1057		kfree(adapter->msix_entries);
1058		adapter->msix_entries = NULL;
1059		return err;
1060	}
1061
1062	/* Adjust for only the vectors we'll use, which is minimum
1063	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1064	 * vectors we were allocated.
1065	 */
1066	adapter->num_msix_vectors = err;
1067	return 0;
1068}
1069
1070/**
1071 * iavf_free_queues - Free memory for all rings
1072 * @adapter: board private structure to initialize
1073 *
1074 * Free all of the memory associated with queue pairs.
1075 **/
1076static void iavf_free_queues(struct iavf_adapter *adapter)
1077{
1078	if (!adapter->vsi_res)
1079		return;
1080	adapter->num_active_queues = 0;
1081	kfree(adapter->tx_rings);
1082	adapter->tx_rings = NULL;
1083	kfree(adapter->rx_rings);
1084	adapter->rx_rings = NULL;
1085}
1086
1087/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088 * iavf_alloc_queues - Allocate memory for all rings
1089 * @adapter: board private structure to initialize
1090 *
1091 * We allocate one ring per queue at run-time since we don't know the
1092 * number of queues at compile-time.  The polling_netdev array is
1093 * intended for Multiqueue, but should work fine with a single queue.
1094 **/
1095static int iavf_alloc_queues(struct iavf_adapter *adapter)
1096{
1097	int i, num_active_queues;
1098
1099	/* If we're in reset reallocating queues we don't actually know yet for
1100	 * certain the PF gave us the number of queues we asked for but we'll
1101	 * assume it did.  Once basic reset is finished we'll confirm once we
1102	 * start negotiating config with PF.
1103	 */
1104	if (adapter->num_req_queues)
1105		num_active_queues = adapter->num_req_queues;
1106	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1107		 adapter->num_tc)
1108		num_active_queues = adapter->ch_config.total_qps;
1109	else
1110		num_active_queues = min_t(int,
1111					  adapter->vsi_res->num_queue_pairs,
1112					  (int)(num_online_cpus()));
1113
1114
1115	adapter->tx_rings = kcalloc(num_active_queues,
1116				    sizeof(struct iavf_ring), GFP_KERNEL);
1117	if (!adapter->tx_rings)
1118		goto err_out;
1119	adapter->rx_rings = kcalloc(num_active_queues,
1120				    sizeof(struct iavf_ring), GFP_KERNEL);
1121	if (!adapter->rx_rings)
1122		goto err_out;
1123
1124	for (i = 0; i < num_active_queues; i++) {
1125		struct iavf_ring *tx_ring;
1126		struct iavf_ring *rx_ring;
1127
1128		tx_ring = &adapter->tx_rings[i];
1129
1130		tx_ring->queue_index = i;
1131		tx_ring->netdev = adapter->netdev;
1132		tx_ring->dev = &adapter->pdev->dev;
1133		tx_ring->count = adapter->tx_desc_count;
1134		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1135		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1136			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1137
1138		rx_ring = &adapter->rx_rings[i];
1139		rx_ring->queue_index = i;
1140		rx_ring->netdev = adapter->netdev;
1141		rx_ring->dev = &adapter->pdev->dev;
1142		rx_ring->count = adapter->rx_desc_count;
1143		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1144	}
1145
1146	adapter->num_active_queues = num_active_queues;
1147
 
 
1148	return 0;
1149
1150err_out:
1151	iavf_free_queues(adapter);
1152	return -ENOMEM;
1153}
1154
1155/**
1156 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1157 * @adapter: board private structure to initialize
1158 *
1159 * Attempt to configure the interrupts using the best available
1160 * capabilities of the hardware and the kernel.
1161 **/
1162static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1163{
1164	int vector, v_budget;
1165	int pairs = 0;
1166	int err = 0;
1167
1168	if (!adapter->vsi_res) {
1169		err = -EIO;
1170		goto out;
1171	}
1172	pairs = adapter->num_active_queues;
1173
1174	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1175	 * us much good if we have more vectors than CPUs. However, we already
1176	 * limit the total number of queues by the number of CPUs so we do not
1177	 * need any further limiting here.
1178	 */
1179	v_budget = min_t(int, pairs + NONQ_VECS,
1180			 (int)adapter->vf_res->max_vectors);
1181
1182	adapter->msix_entries = kcalloc(v_budget,
1183					sizeof(struct msix_entry), GFP_KERNEL);
1184	if (!adapter->msix_entries) {
1185		err = -ENOMEM;
1186		goto out;
1187	}
1188
1189	for (vector = 0; vector < v_budget; vector++)
1190		adapter->msix_entries[vector].entry = vector;
1191
1192	err = iavf_acquire_msix_vectors(adapter, v_budget);
 
 
1193
1194out:
1195	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1196	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1197	return err;
1198}
1199
1200/**
1201 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1202 * @adapter: board private structure
1203 *
1204 * Return 0 on success, negative on failure
1205 **/
1206static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1207{
1208	struct iavf_aqc_get_set_rss_key_data *rss_key =
1209		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1210	struct iavf_hw *hw = &adapter->hw;
1211	int ret = 0;
1212
1213	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1214		/* bail because we already have a command pending */
1215		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1216			adapter->current_op);
1217		return -EBUSY;
1218	}
1219
1220	ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1221	if (ret) {
1222		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1223			iavf_stat_str(hw, ret),
1224			iavf_aq_str(hw, hw->aq.asq_last_status));
1225		return ret;
1226
1227	}
1228
1229	ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1230				  adapter->rss_lut, adapter->rss_lut_size);
1231	if (ret) {
1232		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1233			iavf_stat_str(hw, ret),
1234			iavf_aq_str(hw, hw->aq.asq_last_status));
 
1235	}
1236
1237	return ret;
1238
1239}
1240
1241/**
1242 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1243 * @adapter: board private structure
1244 *
1245 * Returns 0 on success, negative on failure
1246 **/
1247static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1248{
1249	struct iavf_hw *hw = &adapter->hw;
1250	u32 *dw;
1251	u16 i;
1252
1253	dw = (u32 *)adapter->rss_key;
1254	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1255		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1256
1257	dw = (u32 *)adapter->rss_lut;
1258	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1259		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1260
1261	iavf_flush(hw);
1262
1263	return 0;
1264}
1265
1266/**
1267 * iavf_config_rss - Configure RSS keys and lut
1268 * @adapter: board private structure
1269 *
1270 * Returns 0 on success, negative on failure
1271 **/
1272int iavf_config_rss(struct iavf_adapter *adapter)
1273{
1274
1275	if (RSS_PF(adapter)) {
1276		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1277					IAVF_FLAG_AQ_SET_RSS_KEY;
1278		return 0;
1279	} else if (RSS_AQ(adapter)) {
1280		return iavf_config_rss_aq(adapter);
1281	} else {
1282		return iavf_config_rss_reg(adapter);
1283	}
1284}
1285
1286/**
1287 * iavf_fill_rss_lut - Fill the lut with default values
1288 * @adapter: board private structure
1289 **/
1290static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1291{
1292	u16 i;
1293
1294	for (i = 0; i < adapter->rss_lut_size; i++)
1295		adapter->rss_lut[i] = i % adapter->num_active_queues;
1296}
1297
1298/**
1299 * iavf_init_rss - Prepare for RSS
1300 * @adapter: board private structure
1301 *
1302 * Return 0 on success, negative on failure
1303 **/
1304static int iavf_init_rss(struct iavf_adapter *adapter)
1305{
1306	struct iavf_hw *hw = &adapter->hw;
1307	int ret;
1308
1309	if (!RSS_PF(adapter)) {
1310		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1311		if (adapter->vf_res->vf_cap_flags &
1312		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1313			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1314		else
1315			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1316
1317		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1318		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1319	}
1320
1321	iavf_fill_rss_lut(adapter);
1322	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1323	ret = iavf_config_rss(adapter);
1324
1325	return ret;
1326}
1327
1328/**
1329 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1330 * @adapter: board private structure to initialize
1331 *
1332 * We allocate one q_vector per queue interrupt.  If allocation fails we
1333 * return -ENOMEM.
1334 **/
1335static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1336{
1337	int q_idx = 0, num_q_vectors;
1338	struct iavf_q_vector *q_vector;
1339
1340	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1341	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1342				     GFP_KERNEL);
1343	if (!adapter->q_vectors)
1344		return -ENOMEM;
1345
1346	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1347		q_vector = &adapter->q_vectors[q_idx];
1348		q_vector->adapter = adapter;
1349		q_vector->vsi = &adapter->vsi;
1350		q_vector->v_idx = q_idx;
1351		q_vector->reg_idx = q_idx;
1352		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1353		netif_napi_add(adapter->netdev, &q_vector->napi,
1354			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1355	}
1356
1357	return 0;
1358}
1359
1360/**
1361 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1362 * @adapter: board private structure to initialize
1363 *
1364 * This function frees the memory allocated to the q_vectors.  In addition if
1365 * NAPI is enabled it will delete any references to the NAPI struct prior
1366 * to freeing the q_vector.
1367 **/
1368static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1369{
1370	int q_idx, num_q_vectors;
1371	int napi_vectors;
1372
1373	if (!adapter->q_vectors)
1374		return;
1375
1376	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1377	napi_vectors = adapter->num_active_queues;
1378
1379	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1380		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1381
1382		if (q_idx < napi_vectors)
1383			netif_napi_del(&q_vector->napi);
1384	}
1385	kfree(adapter->q_vectors);
1386	adapter->q_vectors = NULL;
1387}
1388
1389/**
1390 * iavf_reset_interrupt_capability - Reset MSIX setup
1391 * @adapter: board private structure
1392 *
1393 **/
1394void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1395{
1396	if (!adapter->msix_entries)
1397		return;
1398
1399	pci_disable_msix(adapter->pdev);
1400	kfree(adapter->msix_entries);
1401	adapter->msix_entries = NULL;
1402}
1403
1404/**
1405 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1406 * @adapter: board private structure to initialize
1407 *
1408 **/
1409int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1410{
1411	int err;
1412
1413	err = iavf_alloc_queues(adapter);
1414	if (err) {
1415		dev_err(&adapter->pdev->dev,
1416			"Unable to allocate memory for queues\n");
1417		goto err_alloc_queues;
1418	}
1419
1420	rtnl_lock();
1421	err = iavf_set_interrupt_capability(adapter);
1422	rtnl_unlock();
1423	if (err) {
1424		dev_err(&adapter->pdev->dev,
1425			"Unable to setup interrupt capabilities\n");
1426		goto err_set_interrupt;
1427	}
1428
1429	err = iavf_alloc_q_vectors(adapter);
1430	if (err) {
1431		dev_err(&adapter->pdev->dev,
1432			"Unable to allocate memory for queue vectors\n");
1433		goto err_alloc_q_vectors;
1434	}
1435
1436	/* If we've made it so far while ADq flag being ON, then we haven't
1437	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1438	 * resources have been allocated in the reset path.
1439	 * Now we can truly claim that ADq is enabled.
1440	 */
1441	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1442	    adapter->num_tc)
1443		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1444			 adapter->num_tc);
1445
1446	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1447		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1448		 adapter->num_active_queues);
1449
1450	return 0;
1451err_alloc_q_vectors:
1452	iavf_reset_interrupt_capability(adapter);
1453err_set_interrupt:
1454	iavf_free_queues(adapter);
1455err_alloc_queues:
1456	return err;
1457}
1458
1459/**
 
 
 
 
 
 
 
 
 
 
 
1460 * iavf_free_rss - Free memory used by RSS structs
1461 * @adapter: board private structure
1462 **/
1463static void iavf_free_rss(struct iavf_adapter *adapter)
1464{
1465	kfree(adapter->rss_key);
1466	adapter->rss_key = NULL;
1467
1468	kfree(adapter->rss_lut);
1469	adapter->rss_lut = NULL;
1470}
1471
1472/**
1473 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1474 * @adapter: board private structure
 
1475 *
1476 * Returns 0 on success, negative on failure
1477 **/
1478static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1479{
1480	struct net_device *netdev = adapter->netdev;
1481	int err;
1482
1483	if (netif_running(netdev))
1484		iavf_free_traffic_irqs(adapter);
1485	iavf_free_misc_irq(adapter);
1486	iavf_reset_interrupt_capability(adapter);
1487	iavf_free_q_vectors(adapter);
1488	iavf_free_queues(adapter);
1489
1490	err =  iavf_init_interrupt_scheme(adapter);
1491	if (err)
1492		goto err;
1493
1494	netif_tx_stop_all_queues(netdev);
1495
1496	err = iavf_request_misc_irq(adapter);
1497	if (err)
1498		goto err;
1499
1500	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1501
1502	iavf_map_rings_to_vectors(adapter);
1503
1504	if (RSS_AQ(adapter))
1505		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1506	else
1507		err = iavf_init_rss(adapter);
1508err:
1509	return err;
1510}
1511
1512/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1513 * iavf_process_aq_command - process aq_required flags
1514 * and sends aq command
1515 * @adapter: pointer to iavf adapter structure
1516 *
1517 * Returns 0 on success
1518 * Returns error code if no command was sent
1519 * or error code if the command failed.
1520 **/
1521static int iavf_process_aq_command(struct iavf_adapter *adapter)
1522{
1523	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1524		return iavf_send_vf_config_msg(adapter);
 
 
1525	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1526		iavf_disable_queues(adapter);
1527		return 0;
1528	}
1529
1530	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1531		iavf_map_queues(adapter);
1532		return 0;
1533	}
1534
1535	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1536		iavf_add_ether_addrs(adapter);
1537		return 0;
1538	}
1539
1540	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1541		iavf_add_vlans(adapter);
1542		return 0;
1543	}
1544
1545	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1546		iavf_del_ether_addrs(adapter);
1547		return 0;
1548	}
1549
1550	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1551		iavf_del_vlans(adapter);
1552		return 0;
1553	}
1554
1555	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1556		iavf_enable_vlan_stripping(adapter);
1557		return 0;
1558	}
1559
1560	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1561		iavf_disable_vlan_stripping(adapter);
1562		return 0;
1563	}
1564
1565	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1566		iavf_configure_queues(adapter);
1567		return 0;
1568	}
1569
1570	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1571		iavf_enable_queues(adapter);
1572		return 0;
1573	}
1574
1575	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1576		/* This message goes straight to the firmware, not the
1577		 * PF, so we don't have to set current_op as we will
1578		 * not get a response through the ARQ.
1579		 */
1580		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1581		return 0;
1582	}
1583	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1584		iavf_get_hena(adapter);
1585		return 0;
1586	}
1587	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1588		iavf_set_hena(adapter);
1589		return 0;
1590	}
1591	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1592		iavf_set_rss_key(adapter);
1593		return 0;
1594	}
1595	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1596		iavf_set_rss_lut(adapter);
1597		return 0;
1598	}
1599
1600	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1601		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1602				       FLAG_VF_MULTICAST_PROMISC);
1603		return 0;
1604	}
1605
1606	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1607		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1608		return 0;
1609	}
1610
1611	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1612	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1613		iavf_set_promiscuous(adapter, 0);
1614		return 0;
1615	}
1616
1617	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1618		iavf_enable_channels(adapter);
1619		return 0;
1620	}
1621
1622	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1623		iavf_disable_channels(adapter);
1624		return 0;
1625	}
1626	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1627		iavf_add_cloud_filter(adapter);
1628		return 0;
1629	}
1630
1631	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1632		iavf_del_cloud_filter(adapter);
1633		return 0;
1634	}
1635	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1636		iavf_del_cloud_filter(adapter);
 
 
 
 
 
 
 
 
1637		return 0;
1638	}
1639	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1640		iavf_add_cloud_filter(adapter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1641		return 0;
1642	}
 
1643	return -EAGAIN;
1644}
1645
1646/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1647 * iavf_startup - first step of driver startup
1648 * @adapter: board private structure
1649 *
1650 * Function process __IAVF_STARTUP driver state.
1651 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1652 * when fails it returns -EAGAIN
1653 **/
1654static int iavf_startup(struct iavf_adapter *adapter)
1655{
1656	struct pci_dev *pdev = adapter->pdev;
1657	struct iavf_hw *hw = &adapter->hw;
1658	int err;
 
1659
1660	WARN_ON(adapter->state != __IAVF_STARTUP);
1661
1662	/* driver loaded, probe complete */
1663	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1664	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1665	err = iavf_set_mac_type(hw);
1666	if (err) {
1667		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1668		goto err;
1669	}
1670
1671	err = iavf_check_reset_complete(hw);
1672	if (err) {
1673		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1674			 err);
1675		goto err;
1676	}
1677	hw->aq.num_arq_entries = IAVF_AQ_LEN;
1678	hw->aq.num_asq_entries = IAVF_AQ_LEN;
1679	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1680	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1681
1682	err = iavf_init_adminq(hw);
1683	if (err) {
1684		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
 
1685		goto err;
1686	}
1687	err = iavf_send_api_ver(adapter);
1688	if (err) {
1689		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1690		iavf_shutdown_adminq(hw);
1691		goto err;
1692	}
1693	adapter->state = __IAVF_INIT_VERSION_CHECK;
 
1694err:
1695	return err;
1696}
1697
1698/**
1699 * iavf_init_version_check - second step of driver startup
1700 * @adapter: board private structure
1701 *
1702 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1703 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1704 * when fails it returns -EAGAIN
1705 **/
1706static int iavf_init_version_check(struct iavf_adapter *adapter)
1707{
1708	struct pci_dev *pdev = adapter->pdev;
1709	struct iavf_hw *hw = &adapter->hw;
1710	int err = -EAGAIN;
1711
1712	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1713
1714	if (!iavf_asq_done(hw)) {
1715		dev_err(&pdev->dev, "Admin queue command never completed\n");
1716		iavf_shutdown_adminq(hw);
1717		adapter->state = __IAVF_STARTUP;
1718		goto err;
1719	}
1720
1721	/* aq msg sent, awaiting reply */
1722	err = iavf_verify_api_ver(adapter);
1723	if (err) {
1724		if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1725			err = iavf_send_api_ver(adapter);
1726		else
1727			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1728				adapter->pf_version.major,
1729				adapter->pf_version.minor,
1730				VIRTCHNL_VERSION_MAJOR,
1731				VIRTCHNL_VERSION_MINOR);
1732		goto err;
1733	}
1734	err = iavf_send_vf_config_msg(adapter);
1735	if (err) {
1736		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1737			err);
1738		goto err;
1739	}
1740	adapter->state = __IAVF_INIT_GET_RESOURCES;
1741
1742err:
1743	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744}
1745
1746/**
1747 * iavf_init_get_resources - third step of driver startup
1748 * @adapter: board private structure
1749 *
1750 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1751 * finishes driver initialization procedure.
1752 * When success the state is changed to __IAVF_DOWN
1753 * when fails it returns -EAGAIN
1754 **/
1755static int iavf_init_get_resources(struct iavf_adapter *adapter)
1756{
1757	struct net_device *netdev = adapter->netdev;
1758	struct pci_dev *pdev = adapter->pdev;
1759	struct iavf_hw *hw = &adapter->hw;
1760	int err = 0, bufsz;
1761
1762	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1763	/* aq msg sent, awaiting reply */
1764	if (!adapter->vf_res) {
1765		bufsz = sizeof(struct virtchnl_vf_resource) +
1766			(IAVF_MAX_VF_VSI *
1767			sizeof(struct virtchnl_vsi_resource));
1768		adapter->vf_res = kzalloc(bufsz, GFP_KERNEL);
1769		if (!adapter->vf_res)
1770			goto err;
 
1771	}
1772	err = iavf_get_vf_config(adapter);
1773	if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1774		err = iavf_send_vf_config_msg(adapter);
1775		goto err;
1776	} else if (err == IAVF_ERR_PARAM) {
1777		/* We only get ERR_PARAM if the device is in a very bad
1778		 * state or if we've been disabled for previous bad
1779		 * behavior. Either way, we're done now.
1780		 */
1781		iavf_shutdown_adminq(hw);
1782		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1783		return 0;
1784	}
1785	if (err) {
1786		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1787		goto err_alloc;
1788	}
1789
1790	if (iavf_process_config(adapter))
 
 
 
1791		goto err_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1792	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1793
1794	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1795
1796	netdev->netdev_ops = &iavf_netdev_ops;
1797	iavf_set_ethtool_ops(netdev);
1798	netdev->watchdog_timeo = 5 * HZ;
1799
1800	/* MTU range: 68 - 9710 */
1801	netdev->min_mtu = ETH_MIN_MTU;
1802	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1803
1804	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1805		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1806			 adapter->hw.mac.addr);
1807		eth_hw_addr_random(netdev);
1808		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1809	} else {
1810		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1811		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1812	}
1813
1814	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1815	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1816	err = iavf_init_interrupt_scheme(adapter);
1817	if (err)
1818		goto err_sw_init;
1819	iavf_map_rings_to_vectors(adapter);
1820	if (adapter->vf_res->vf_cap_flags &
1821		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1822		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1823
1824	err = iavf_request_misc_irq(adapter);
1825	if (err)
1826		goto err_sw_init;
1827
1828	netif_carrier_off(netdev);
1829	adapter->link_up = false;
1830
1831	/* set the semaphore to prevent any callbacks after device registration
1832	 * up to time when state of driver will be set to __IAVF_DOWN
1833	 */
1834	rtnl_lock();
1835	if (!adapter->netdev_registered) {
1836		err = register_netdevice(netdev);
1837		if (err) {
1838			rtnl_unlock();
1839			goto err_register;
1840		}
1841	}
1842
1843	adapter->netdev_registered = true;
1844
1845	netif_tx_stop_all_queues(netdev);
1846	if (CLIENT_ALLOWED(adapter)) {
1847		err = iavf_lan_add_device(adapter);
1848		if (err) {
1849			rtnl_unlock();
1850			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1851				 err);
1852		}
1853	}
1854	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1855	if (netdev->features & NETIF_F_GRO)
1856		dev_info(&pdev->dev, "GRO is enabled\n");
1857
1858	adapter->state = __IAVF_DOWN;
1859	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1860	rtnl_unlock();
1861
1862	iavf_misc_irq_enable(adapter);
1863	wake_up(&adapter->down_waitqueue);
1864
1865	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1866	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1867	if (!adapter->rss_key || !adapter->rss_lut)
 
1868		goto err_mem;
 
1869	if (RSS_AQ(adapter))
1870		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1871	else
1872		iavf_init_rss(adapter);
1873
1874	return err;
 
 
 
 
 
 
1875err_mem:
1876	iavf_free_rss(adapter);
1877err_register:
1878	iavf_free_misc_irq(adapter);
1879err_sw_init:
1880	iavf_reset_interrupt_capability(adapter);
1881err_alloc:
1882	kfree(adapter->vf_res);
1883	adapter->vf_res = NULL;
1884err:
1885	return err;
1886}
1887
1888/**
1889 * iavf_watchdog_task - Periodic call-back task
1890 * @work: pointer to work_struct
1891 **/
1892static void iavf_watchdog_task(struct work_struct *work)
1893{
1894	struct iavf_adapter *adapter = container_of(work,
1895						    struct iavf_adapter,
1896						    watchdog_task.work);
1897	struct iavf_hw *hw = &adapter->hw;
1898	u32 reg_val;
1899
1900	if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
 
 
 
1901		goto restart_watchdog;
 
1902
1903	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1904		adapter->state = __IAVF_COMM_FAILED;
1905
1906	switch (adapter->state) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1907	case __IAVF_COMM_FAILED:
 
 
 
 
 
 
 
 
 
 
 
1908		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1909			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1910		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1911		    reg_val == VIRTCHNL_VFR_COMPLETED) {
1912			/* A chance for redemption! */
1913			dev_err(&adapter->pdev->dev,
1914				"Hardware came out of reset. Attempting reinit.\n");
1915			adapter->state = __IAVF_STARTUP;
1916			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1917			queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1918			clear_bit(__IAVF_IN_CRITICAL_TASK,
1919				  &adapter->crit_section);
1920			/* Don't reschedule the watchdog, since we've restarted
1921			 * the init task. When init_task contacts the PF and
1922			 * gets everything set up again, it'll restart the
1923			 * watchdog for us. Down, boy. Sit. Stay. Woof.
1924			 */
1925			return;
 
1926		}
1927		adapter->aq_required = 0;
1928		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1929		clear_bit(__IAVF_IN_CRITICAL_TASK,
1930			  &adapter->crit_section);
1931		queue_delayed_work(iavf_wq,
1932				   &adapter->watchdog_task,
1933				   msecs_to_jiffies(10));
1934		goto watchdog_done;
1935	case __IAVF_RESETTING:
1936		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1937		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
 
1938		return;
1939	case __IAVF_DOWN:
1940	case __IAVF_DOWN_PENDING:
1941	case __IAVF_TESTING:
1942	case __IAVF_RUNNING:
1943		if (adapter->current_op) {
1944			if (!iavf_asq_done(hw)) {
1945				dev_dbg(&adapter->pdev->dev,
1946					"Admin queue timeout\n");
1947				iavf_send_api_ver(adapter);
1948			}
1949		} else {
1950			if (!iavf_process_aq_command(adapter) &&
 
 
 
 
 
 
1951			    adapter->state == __IAVF_RUNNING)
1952				iavf_request_stats(adapter);
1953		}
 
 
1954		break;
1955	case __IAVF_REMOVE:
1956		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1957		return;
1958	default:
1959		goto restart_watchdog;
 
1960	}
1961
1962		/* check for hw reset */
1963	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1964	if (!reg_val) {
1965		adapter->state = __IAVF_RESETTING;
1966		adapter->flags |= IAVF_FLAG_RESET_PENDING;
1967		adapter->aq_required = 0;
1968		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1969		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1970		queue_work(iavf_wq, &adapter->reset_task);
1971		goto watchdog_done;
 
 
 
1972	}
1973
1974	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1975watchdog_done:
1976	if (adapter->state == __IAVF_RUNNING ||
1977	    adapter->state == __IAVF_COMM_FAILED)
1978		iavf_detect_recover_hung(&adapter->vsi);
1979	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1980restart_watchdog:
 
 
1981	if (adapter->aq_required)
1982		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1983				   msecs_to_jiffies(20));
1984	else
1985		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1986	queue_work(iavf_wq, &adapter->adminq_task);
1987}
1988
 
 
 
 
 
 
 
1989static void iavf_disable_vf(struct iavf_adapter *adapter)
1990{
1991	struct iavf_mac_filter *f, *ftmp;
1992	struct iavf_vlan_filter *fv, *fvtmp;
1993	struct iavf_cloud_filter *cf, *cftmp;
1994
1995	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1996
1997	/* We don't use netif_running() because it may be true prior to
1998	 * ndo_open() returning, so we can't assume it means all our open
1999	 * tasks have finished, since we're not holding the rtnl_lock here.
2000	 */
2001	if (adapter->state == __IAVF_RUNNING) {
2002		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2003		netif_carrier_off(adapter->netdev);
2004		netif_tx_disable(adapter->netdev);
2005		adapter->link_up = false;
2006		iavf_napi_disable_all(adapter);
2007		iavf_irq_disable(adapter);
2008		iavf_free_traffic_irqs(adapter);
2009		iavf_free_all_tx_resources(adapter);
2010		iavf_free_all_rx_resources(adapter);
2011	}
2012
2013	spin_lock_bh(&adapter->mac_vlan_list_lock);
2014
2015	/* Delete all of the filters */
2016	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2017		list_del(&f->list);
2018		kfree(f);
2019	}
2020
2021	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2022		list_del(&fv->list);
2023		kfree(fv);
2024	}
 
2025
2026	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2027
2028	spin_lock_bh(&adapter->cloud_filter_list_lock);
2029	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2030		list_del(&cf->list);
2031		kfree(cf);
2032		adapter->num_cloud_filters--;
2033	}
2034	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2035
2036	iavf_free_misc_irq(adapter);
2037	iavf_reset_interrupt_capability(adapter);
2038	iavf_free_queues(adapter);
2039	iavf_free_q_vectors(adapter);
2040	kfree(adapter->vf_res);
2041	iavf_shutdown_adminq(&adapter->hw);
2042	adapter->netdev->flags &= ~IFF_UP;
2043	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2044	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2045	adapter->state = __IAVF_DOWN;
2046	wake_up(&adapter->down_waitqueue);
2047	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2048}
2049
2050#define IAVF_RESET_WAIT_MS 10
2051#define IAVF_RESET_WAIT_COUNT 500
2052/**
2053 * iavf_reset_task - Call-back task to handle hardware reset
2054 * @work: pointer to work_struct
2055 *
2056 * During reset we need to shut down and reinitialize the admin queue
2057 * before we can use it to communicate with the PF again. We also clear
2058 * and reinit the rings because that context is lost as well.
2059 **/
2060static void iavf_reset_task(struct work_struct *work)
2061{
2062	struct iavf_adapter *adapter = container_of(work,
2063						      struct iavf_adapter,
2064						      reset_task);
2065	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2066	struct net_device *netdev = adapter->netdev;
2067	struct iavf_hw *hw = &adapter->hw;
2068	struct iavf_vlan_filter *vlf;
2069	struct iavf_cloud_filter *cf;
2070	struct iavf_mac_filter *f;
2071	u32 reg_val;
2072	int i = 0, err;
2073	bool running;
2074
2075	/* When device is being removed it doesn't make sense to run the reset
2076	 * task, just return in such a case.
2077	 */
2078	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2079		return;
 
2080
2081	while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2082				&adapter->crit_section))
2083		usleep_range(500, 1000);
2084	if (CLIENT_ENABLED(adapter)) {
2085		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2086				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2087				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2088				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2089		cancel_delayed_work_sync(&adapter->client_task);
2090		iavf_notify_client_close(&adapter->vsi, true);
2091	}
 
2092	iavf_misc_irq_disable(adapter);
2093	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2094		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2095		/* Restart the AQ here. If we have been reset but didn't
2096		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2097		 */
2098		iavf_shutdown_adminq(hw);
2099		iavf_init_adminq(hw);
2100		iavf_request_reset(adapter);
2101	}
2102	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2103
2104	/* poll until we see the reset actually happen */
2105	for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2106		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2107			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2108		if (!reg_val)
2109			break;
2110		usleep_range(5000, 10000);
2111	}
2112	if (i == IAVF_RESET_WAIT_COUNT) {
2113		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2114		goto continue_reset; /* act like the reset happened */
2115	}
2116
2117	/* wait until the reset is complete and the PF is responding to us */
2118	for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2119		/* sleep first to make sure a minimum wait time is met */
2120		msleep(IAVF_RESET_WAIT_MS);
2121
2122		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2123			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2124		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2125			break;
2126	}
2127
2128	pci_set_master(adapter->pdev);
 
2129
2130	if (i == IAVF_RESET_WAIT_COUNT) {
2131		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2132			reg_val);
2133		iavf_disable_vf(adapter);
2134		clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2135		return; /* Do not attempt to reinit. It's dead, Jim. */
2136	}
2137
2138continue_reset:
2139	/* We don't use netif_running() because it may be true prior to
2140	 * ndo_open() returning, so we can't assume it means all our open
2141	 * tasks have finished, since we're not holding the rtnl_lock here.
2142	 */
2143	running = ((adapter->state == __IAVF_RUNNING) ||
2144		   (adapter->state == __IAVF_RESETTING));
2145
2146	if (running) {
2147		netif_carrier_off(netdev);
2148		netif_tx_stop_all_queues(netdev);
2149		adapter->link_up = false;
2150		iavf_napi_disable_all(adapter);
2151	}
2152	iavf_irq_disable(adapter);
2153
2154	adapter->state = __IAVF_RESETTING;
2155	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2156
2157	/* free the Tx/Rx rings and descriptors, might be better to just
2158	 * re-use them sometime in the future
2159	 */
2160	iavf_free_all_rx_resources(adapter);
2161	iavf_free_all_tx_resources(adapter);
2162
2163	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2164	/* kill and reinit the admin queue */
2165	iavf_shutdown_adminq(hw);
2166	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2167	err = iavf_init_adminq(hw);
2168	if (err)
2169		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2170			 err);
 
 
2171	adapter->aq_required = 0;
2172
2173	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2174		err = iavf_reinit_interrupt_scheme(adapter);
 
 
 
 
 
 
 
 
 
2175		if (err)
2176			goto reset_err;
2177	}
2178
2179	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
 
 
 
 
 
 
 
2180	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2181
2182	spin_lock_bh(&adapter->mac_vlan_list_lock);
2183
 
 
 
 
 
 
 
 
 
 
2184	/* re-add all MAC filters */
2185	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2186		f->add = true;
2187	}
2188	/* re-add all VLAN filters */
2189	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2190		vlf->add = true;
2191	}
2192
2193	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2194
2195	/* check if TCs are running and re-add all cloud filters */
2196	spin_lock_bh(&adapter->cloud_filter_list_lock);
2197	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2198	    adapter->num_tc) {
2199		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2200			cf->add = true;
2201		}
2202	}
2203	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2204
2205	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2206	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2207	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2208	iavf_misc_irq_enable(adapter);
2209
2210	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2211
2212	/* We were running when the reset started, so we need to restore some
2213	 * state here.
2214	 */
2215	if (running) {
2216		/* allocate transmit descriptors */
2217		err = iavf_setup_all_tx_resources(adapter);
2218		if (err)
2219			goto reset_err;
2220
2221		/* allocate receive descriptors */
2222		err = iavf_setup_all_rx_resources(adapter);
2223		if (err)
2224			goto reset_err;
2225
2226		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
 
2227			err = iavf_request_traffic_irqs(adapter, netdev->name);
2228			if (err)
2229				goto reset_err;
2230
2231			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2232		}
2233
2234		iavf_configure(adapter);
2235
 
 
 
2236		iavf_up_complete(adapter);
2237
2238		iavf_irq_enable(adapter, true);
2239	} else {
2240		adapter->state = __IAVF_DOWN;
2241		wake_up(&adapter->down_waitqueue);
2242	}
2243	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2244	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
 
 
 
2245
2246	return;
2247reset_err:
2248	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2249	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
 
 
 
 
 
2250	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2251	iavf_close(netdev);
2252}
2253
2254/**
2255 * iavf_adminq_task - worker thread to clean the admin queue
2256 * @work: pointer to work_struct containing our data
2257 **/
2258static void iavf_adminq_task(struct work_struct *work)
2259{
2260	struct iavf_adapter *adapter =
2261		container_of(work, struct iavf_adapter, adminq_task);
2262	struct iavf_hw *hw = &adapter->hw;
2263	struct iavf_arq_event_info event;
2264	enum virtchnl_ops v_op;
2265	enum iavf_status ret, v_ret;
2266	u32 val, oldval;
2267	u16 pending;
2268
2269	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
 
 
 
 
2270		goto out;
 
 
 
 
2271
2272	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2273	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2274	if (!event.msg_buf)
2275		goto out;
2276
2277	do {
2278		ret = iavf_clean_arq_element(hw, &event, &pending);
2279		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2280		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2281
2282		if (ret || !v_op)
2283			break; /* No event to process or error cleaning ARQ */
2284
2285		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2286					 event.msg_len);
2287		if (pending != 0)
2288			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2289	} while (pending);
2290
2291	if ((adapter->flags &
2292	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2293	    adapter->state == __IAVF_RESETTING)
2294		goto freedom;
2295
2296	/* check for error indications */
2297	val = rd32(hw, hw->aq.arq.len);
2298	if (val == 0xdeadbeef) /* indicates device in reset */
2299		goto freedom;
2300	oldval = val;
2301	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2302		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2303		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2304	}
2305	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2306		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2307		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2308	}
2309	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2310		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2311		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2312	}
2313	if (oldval != val)
2314		wr32(hw, hw->aq.arq.len, val);
2315
2316	val = rd32(hw, hw->aq.asq.len);
2317	oldval = val;
2318	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2319		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2320		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2321	}
2322	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2323		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2324		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2325	}
2326	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2327		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2328		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2329	}
2330	if (oldval != val)
2331		wr32(hw, hw->aq.asq.len, val);
2332
2333freedom:
2334	kfree(event.msg_buf);
 
 
2335out:
2336	/* re-enable Admin queue interrupt cause */
2337	iavf_misc_irq_enable(adapter);
2338}
2339
2340/**
2341 * iavf_client_task - worker thread to perform client work
2342 * @work: pointer to work_struct containing our data
2343 *
2344 * This task handles client interactions. Because client calls can be
2345 * reentrant, we can't handle them in the watchdog.
2346 **/
2347static void iavf_client_task(struct work_struct *work)
2348{
2349	struct iavf_adapter *adapter =
2350		container_of(work, struct iavf_adapter, client_task.work);
2351
2352	/* If we can't get the client bit, just give up. We'll be rescheduled
2353	 * later.
2354	 */
2355
2356	if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2357		return;
2358
2359	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2360		iavf_client_subtask(adapter);
2361		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2362		goto out;
2363	}
2364	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2365		iavf_notify_client_l2_params(&adapter->vsi);
2366		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2367		goto out;
2368	}
2369	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2370		iavf_notify_client_close(&adapter->vsi, false);
2371		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2372		goto out;
2373	}
2374	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2375		iavf_notify_client_open(&adapter->vsi);
2376		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2377	}
2378out:
2379	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2380}
2381
2382/**
2383 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2384 * @adapter: board private structure
2385 *
2386 * Free all transmit software resources
2387 **/
2388void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2389{
2390	int i;
2391
2392	if (!adapter->tx_rings)
2393		return;
2394
2395	for (i = 0; i < adapter->num_active_queues; i++)
2396		if (adapter->tx_rings[i].desc)
2397			iavf_free_tx_resources(&adapter->tx_rings[i]);
2398}
2399
2400/**
2401 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2402 * @adapter: board private structure
2403 *
2404 * If this function returns with an error, then it's possible one or
2405 * more of the rings is populated (while the rest are not).  It is the
2406 * callers duty to clean those orphaned rings.
2407 *
2408 * Return 0 on success, negative on failure
2409 **/
2410static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2411{
2412	int i, err = 0;
2413
2414	for (i = 0; i < adapter->num_active_queues; i++) {
2415		adapter->tx_rings[i].count = adapter->tx_desc_count;
2416		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2417		if (!err)
2418			continue;
2419		dev_err(&adapter->pdev->dev,
2420			"Allocation for Tx Queue %u failed\n", i);
2421		break;
2422	}
2423
2424	return err;
2425}
2426
2427/**
2428 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2429 * @adapter: board private structure
2430 *
2431 * If this function returns with an error, then it's possible one or
2432 * more of the rings is populated (while the rest are not).  It is the
2433 * callers duty to clean those orphaned rings.
2434 *
2435 * Return 0 on success, negative on failure
2436 **/
2437static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2438{
2439	int i, err = 0;
2440
2441	for (i = 0; i < adapter->num_active_queues; i++) {
2442		adapter->rx_rings[i].count = adapter->rx_desc_count;
2443		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2444		if (!err)
2445			continue;
2446		dev_err(&adapter->pdev->dev,
2447			"Allocation for Rx Queue %u failed\n", i);
2448		break;
2449	}
2450	return err;
2451}
2452
2453/**
2454 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2455 * @adapter: board private structure
2456 *
2457 * Free all receive software resources
2458 **/
2459void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2460{
2461	int i;
2462
2463	if (!adapter->rx_rings)
2464		return;
2465
2466	for (i = 0; i < adapter->num_active_queues; i++)
2467		if (adapter->rx_rings[i].desc)
2468			iavf_free_rx_resources(&adapter->rx_rings[i]);
2469}
2470
2471/**
2472 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2473 * @adapter: board private structure
2474 * @max_tx_rate: max Tx bw for a tc
2475 **/
2476static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2477				      u64 max_tx_rate)
2478{
2479	int speed = 0, ret = 0;
2480
 
 
 
 
 
 
 
 
 
 
2481	switch (adapter->link_speed) {
2482	case IAVF_LINK_SPEED_40GB:
2483		speed = 40000;
 
 
 
2484		break;
2485	case IAVF_LINK_SPEED_25GB:
2486		speed = 25000;
2487		break;
2488	case IAVF_LINK_SPEED_20GB:
2489		speed = 20000;
2490		break;
2491	case IAVF_LINK_SPEED_10GB:
2492		speed = 10000;
2493		break;
2494	case IAVF_LINK_SPEED_1GB:
2495		speed = 1000;
2496		break;
2497	case IAVF_LINK_SPEED_100MB:
2498		speed = 100;
 
 
 
2499		break;
2500	default:
2501		break;
2502	}
2503
 
2504	if (max_tx_rate > speed) {
2505		dev_err(&adapter->pdev->dev,
2506			"Invalid tx rate specified\n");
2507		ret = -EINVAL;
2508	}
2509
2510	return ret;
2511}
2512
2513/**
2514 * iavf_validate_channel_config - validate queue mapping info
2515 * @adapter: board private structure
2516 * @mqprio_qopt: queue parameters
2517 *
2518 * This function validates if the config provided by the user to
2519 * configure queue channels is valid or not. Returns 0 on a valid
2520 * config.
2521 **/
2522static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2523				   struct tc_mqprio_qopt_offload *mqprio_qopt)
2524{
2525	u64 total_max_rate = 0;
 
2526	int i, num_qps = 0;
2527	u64 tx_rate = 0;
2528	int ret = 0;
2529
2530	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2531	    mqprio_qopt->qopt.num_tc < 1)
2532		return -EINVAL;
2533
2534	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2535		if (!mqprio_qopt->qopt.count[i] ||
2536		    mqprio_qopt->qopt.offset[i] != num_qps)
2537			return -EINVAL;
2538		if (mqprio_qopt->min_rate[i]) {
2539			dev_err(&adapter->pdev->dev,
2540				"Invalid min tx rate (greater than 0) specified\n");
 
2541			return -EINVAL;
2542		}
2543		/*convert to Mbps */
 
2544		tx_rate = div_u64(mqprio_qopt->max_rate[i],
2545				  IAVF_MBPS_DIVISOR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2546		total_max_rate += tx_rate;
2547		num_qps += mqprio_qopt->qopt.count[i];
2548	}
2549	if (num_qps > IAVF_MAX_REQ_QUEUES)
 
 
2550		return -EINVAL;
 
2551
2552	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2553	return ret;
2554}
2555
2556/**
2557 * iavf_del_all_cloud_filters - delete all cloud filters
2558 * on the traffic classes
2559 **/
2560static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2561{
2562	struct iavf_cloud_filter *cf, *cftmp;
2563
2564	spin_lock_bh(&adapter->cloud_filter_list_lock);
2565	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2566				 list) {
2567		list_del(&cf->list);
2568		kfree(cf);
2569		adapter->num_cloud_filters--;
2570	}
2571	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2572}
2573
2574/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2575 * __iavf_setup_tc - configure multiple traffic classes
2576 * @netdev: network interface device structure
2577 * @type_date: tc offload data
2578 *
2579 * This function processes the config information provided by the
2580 * user to configure traffic classes/queue channels and packages the
2581 * information to request the PF to setup traffic classes.
2582 *
2583 * Returns 0 on success.
2584 **/
2585static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2586{
2587	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2588	struct iavf_adapter *adapter = netdev_priv(netdev);
2589	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2590	u8 num_tc = 0, total_qps = 0;
2591	int ret = 0, netdev_tc = 0;
2592	u64 max_tx_rate;
2593	u16 mode;
2594	int i;
2595
2596	num_tc = mqprio_qopt->qopt.num_tc;
2597	mode = mqprio_qopt->mode;
2598
2599	/* delete queue_channel */
2600	if (!mqprio_qopt->qopt.hw) {
2601		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2602			/* reset the tc configuration */
2603			netdev_reset_tc(netdev);
2604			adapter->num_tc = 0;
2605			netif_tx_stop_all_queues(netdev);
2606			netif_tx_disable(netdev);
2607			iavf_del_all_cloud_filters(adapter);
2608			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
 
2609			goto exit;
2610		} else {
2611			return -EINVAL;
2612		}
2613	}
2614
2615	/* add queue channel */
2616	if (mode == TC_MQPRIO_MODE_CHANNEL) {
2617		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2618			dev_err(&adapter->pdev->dev, "ADq not supported\n");
2619			return -EOPNOTSUPP;
2620		}
2621		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2622			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2623			return -EINVAL;
2624		}
2625
2626		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2627		if (ret)
2628			return ret;
2629		/* Return if same TC config is requested */
2630		if (adapter->num_tc == num_tc)
2631			return 0;
2632		adapter->num_tc = num_tc;
2633
2634		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2635			if (i < num_tc) {
2636				adapter->ch_config.ch_info[i].count =
2637					mqprio_qopt->qopt.count[i];
2638				adapter->ch_config.ch_info[i].offset =
2639					mqprio_qopt->qopt.offset[i];
2640				total_qps += mqprio_qopt->qopt.count[i];
2641				max_tx_rate = mqprio_qopt->max_rate[i];
2642				/* convert to Mbps */
2643				max_tx_rate = div_u64(max_tx_rate,
2644						      IAVF_MBPS_DIVISOR);
2645				adapter->ch_config.ch_info[i].max_tx_rate =
2646					max_tx_rate;
2647			} else {
2648				adapter->ch_config.ch_info[i].count = 1;
2649				adapter->ch_config.ch_info[i].offset = 0;
2650			}
2651		}
 
 
 
 
 
 
 
 
 
 
 
 
 
2652		adapter->ch_config.total_qps = total_qps;
 
2653		netif_tx_stop_all_queues(netdev);
2654		netif_tx_disable(netdev);
2655		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2656		netdev_reset_tc(netdev);
2657		/* Report the tc mapping up the stack */
2658		netdev_set_num_tc(adapter->netdev, num_tc);
2659		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2660			u16 qcount = mqprio_qopt->qopt.count[i];
2661			u16 qoffset = mqprio_qopt->qopt.offset[i];
2662
2663			if (i < num_tc)
2664				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2665						    qoffset);
2666		}
2667	}
2668exit:
 
 
 
 
 
 
2669	return ret;
2670}
2671
2672/**
2673 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2674 * @adapter: board private structure
2675 * @cls_flower: pointer to struct flow_cls_offload
2676 * @filter: pointer to cloud filter structure
2677 */
2678static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2679				 struct flow_cls_offload *f,
2680				 struct iavf_cloud_filter *filter)
2681{
2682	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2683	struct flow_dissector *dissector = rule->match.dissector;
2684	u16 n_proto_mask = 0;
2685	u16 n_proto_key = 0;
2686	u8 field_flags = 0;
2687	u16 addr_type = 0;
2688	u16 n_proto = 0;
2689	int i = 0;
2690	struct virtchnl_filter *vf = &filter->f;
2691
2692	if (dissector->used_keys &
2693	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2694	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
2695	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2696	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
2697	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2698	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2699	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
2700	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2701		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2702			dissector->used_keys);
2703		return -EOPNOTSUPP;
2704	}
2705
2706	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2707		struct flow_match_enc_keyid match;
2708
2709		flow_rule_match_enc_keyid(rule, &match);
2710		if (match.mask->keyid != 0)
2711			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2712	}
2713
2714	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2715		struct flow_match_basic match;
2716
2717		flow_rule_match_basic(rule, &match);
2718		n_proto_key = ntohs(match.key->n_proto);
2719		n_proto_mask = ntohs(match.mask->n_proto);
2720
2721		if (n_proto_key == ETH_P_ALL) {
2722			n_proto_key = 0;
2723			n_proto_mask = 0;
2724		}
2725		n_proto = n_proto_key & n_proto_mask;
2726		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2727			return -EINVAL;
2728		if (n_proto == ETH_P_IPV6) {
2729			/* specify flow type as TCP IPv6 */
2730			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2731		}
2732
2733		if (match.key->ip_proto != IPPROTO_TCP) {
2734			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2735			return -EINVAL;
2736		}
2737	}
2738
2739	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2740		struct flow_match_eth_addrs match;
2741
2742		flow_rule_match_eth_addrs(rule, &match);
2743
2744		/* use is_broadcast and is_zero to check for all 0xf or 0 */
2745		if (!is_zero_ether_addr(match.mask->dst)) {
2746			if (is_broadcast_ether_addr(match.mask->dst)) {
2747				field_flags |= IAVF_CLOUD_FIELD_OMAC;
2748			} else {
2749				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2750					match.mask->dst);
2751				return IAVF_ERR_CONFIG;
2752			}
2753		}
2754
2755		if (!is_zero_ether_addr(match.mask->src)) {
2756			if (is_broadcast_ether_addr(match.mask->src)) {
2757				field_flags |= IAVF_CLOUD_FIELD_IMAC;
2758			} else {
2759				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2760					match.mask->src);
2761				return IAVF_ERR_CONFIG;
2762			}
2763		}
2764
2765		if (!is_zero_ether_addr(match.key->dst))
2766			if (is_valid_ether_addr(match.key->dst) ||
2767			    is_multicast_ether_addr(match.key->dst)) {
2768				/* set the mask if a valid dst_mac address */
2769				for (i = 0; i < ETH_ALEN; i++)
2770					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2771				ether_addr_copy(vf->data.tcp_spec.dst_mac,
2772						match.key->dst);
2773			}
2774
2775		if (!is_zero_ether_addr(match.key->src))
2776			if (is_valid_ether_addr(match.key->src) ||
2777			    is_multicast_ether_addr(match.key->src)) {
2778				/* set the mask if a valid dst_mac address */
2779				for (i = 0; i < ETH_ALEN; i++)
2780					vf->mask.tcp_spec.src_mac[i] |= 0xff;
2781				ether_addr_copy(vf->data.tcp_spec.src_mac,
2782						match.key->src);
2783		}
2784	}
2785
2786	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2787		struct flow_match_vlan match;
2788
2789		flow_rule_match_vlan(rule, &match);
2790		if (match.mask->vlan_id) {
2791			if (match.mask->vlan_id == VLAN_VID_MASK) {
2792				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2793			} else {
2794				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2795					match.mask->vlan_id);
2796				return IAVF_ERR_CONFIG;
2797			}
2798		}
2799		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2800		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2801	}
2802
2803	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2804		struct flow_match_control match;
2805
2806		flow_rule_match_control(rule, &match);
2807		addr_type = match.key->addr_type;
2808	}
2809
2810	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2811		struct flow_match_ipv4_addrs match;
2812
2813		flow_rule_match_ipv4_addrs(rule, &match);
2814		if (match.mask->dst) {
2815			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2816				field_flags |= IAVF_CLOUD_FIELD_IIP;
2817			} else {
2818				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2819					be32_to_cpu(match.mask->dst));
2820				return IAVF_ERR_CONFIG;
2821			}
2822		}
2823
2824		if (match.mask->src) {
2825			if (match.mask->src == cpu_to_be32(0xffffffff)) {
2826				field_flags |= IAVF_CLOUD_FIELD_IIP;
2827			} else {
2828				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2829					be32_to_cpu(match.mask->dst));
2830				return IAVF_ERR_CONFIG;
2831			}
2832		}
2833
2834		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2835			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2836			return IAVF_ERR_CONFIG;
2837		}
2838		if (match.key->dst) {
2839			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2840			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2841		}
2842		if (match.key->src) {
2843			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2844			vf->data.tcp_spec.src_ip[0] = match.key->src;
2845		}
2846	}
2847
2848	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2849		struct flow_match_ipv6_addrs match;
2850
2851		flow_rule_match_ipv6_addrs(rule, &match);
2852
2853		/* validate mask, make sure it is not IPV6_ADDR_ANY */
2854		if (ipv6_addr_any(&match.mask->dst)) {
2855			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2856				IPV6_ADDR_ANY);
2857			return IAVF_ERR_CONFIG;
2858		}
2859
2860		/* src and dest IPv6 address should not be LOOPBACK
2861		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2862		 */
2863		if (ipv6_addr_loopback(&match.key->dst) ||
2864		    ipv6_addr_loopback(&match.key->src)) {
2865			dev_err(&adapter->pdev->dev,
2866				"ipv6 addr should not be loopback\n");
2867			return IAVF_ERR_CONFIG;
2868		}
2869		if (!ipv6_addr_any(&match.mask->dst) ||
2870		    !ipv6_addr_any(&match.mask->src))
2871			field_flags |= IAVF_CLOUD_FIELD_IIP;
2872
2873		for (i = 0; i < 4; i++)
2874			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2875		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2876		       sizeof(vf->data.tcp_spec.dst_ip));
2877		for (i = 0; i < 4; i++)
2878			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2879		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2880		       sizeof(vf->data.tcp_spec.src_ip));
2881	}
2882	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2883		struct flow_match_ports match;
2884
2885		flow_rule_match_ports(rule, &match);
2886		if (match.mask->src) {
2887			if (match.mask->src == cpu_to_be16(0xffff)) {
2888				field_flags |= IAVF_CLOUD_FIELD_IIP;
2889			} else {
2890				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2891					be16_to_cpu(match.mask->src));
2892				return IAVF_ERR_CONFIG;
2893			}
2894		}
2895
2896		if (match.mask->dst) {
2897			if (match.mask->dst == cpu_to_be16(0xffff)) {
2898				field_flags |= IAVF_CLOUD_FIELD_IIP;
2899			} else {
2900				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2901					be16_to_cpu(match.mask->dst));
2902				return IAVF_ERR_CONFIG;
2903			}
2904		}
2905		if (match.key->dst) {
2906			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2907			vf->data.tcp_spec.dst_port = match.key->dst;
2908		}
2909
2910		if (match.key->src) {
2911			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2912			vf->data.tcp_spec.src_port = match.key->src;
2913		}
2914	}
2915	vf->field_flags = field_flags;
2916
2917	return 0;
2918}
2919
2920/**
2921 * iavf_handle_tclass - Forward to a traffic class on the device
2922 * @adapter: board private structure
2923 * @tc: traffic class index on the device
2924 * @filter: pointer to cloud filter structure
2925 */
2926static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2927			      struct iavf_cloud_filter *filter)
2928{
2929	if (tc == 0)
2930		return 0;
2931	if (tc < adapter->num_tc) {
2932		if (!filter->f.data.tcp_spec.dst_port) {
2933			dev_err(&adapter->pdev->dev,
2934				"Specify destination port to redirect to traffic class other than TC0\n");
2935			return -EINVAL;
2936		}
2937	}
2938	/* redirect to a traffic class on the same device */
2939	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2940	filter->f.action_meta = tc;
2941	return 0;
2942}
2943
2944/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2945 * iavf_configure_clsflower - Add tc flower filters
2946 * @adapter: board private structure
2947 * @cls_flower: Pointer to struct flow_cls_offload
2948 */
2949static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2950				    struct flow_cls_offload *cls_flower)
2951{
2952	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2953	struct iavf_cloud_filter *filter = NULL;
2954	int err = -EINVAL, count = 50;
2955
2956	if (tc < 0) {
2957		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2958		return -EINVAL;
2959	}
2960
2961	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2962	if (!filter)
2963		return -ENOMEM;
2964
2965	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2966				&adapter->crit_section)) {
2967		if (--count == 0)
2968			goto err;
 
2969		udelay(1);
2970	}
2971
2972	filter->cookie = cls_flower->cookie;
2973
 
 
 
 
 
 
 
 
 
2974	/* set the mask to all zeroes to begin with */
2975	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2976	/* start out with flow type and eth type IPv4 to begin with */
2977	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2978	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2979	if (err < 0)
2980		goto err;
2981
2982	err = iavf_handle_tclass(adapter, tc, filter);
2983	if (err < 0)
2984		goto err;
2985
2986	/* add filter to the list */
2987	spin_lock_bh(&adapter->cloud_filter_list_lock);
2988	list_add_tail(&filter->list, &adapter->cloud_filter_list);
2989	adapter->num_cloud_filters++;
2990	filter->add = true;
2991	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
 
2992	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2993err:
2994	if (err)
2995		kfree(filter);
2996
2997	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2998	return err;
2999}
3000
3001/* iavf_find_cf - Find the cloud filter in the list
3002 * @adapter: Board private structure
3003 * @cookie: filter specific cookie
3004 *
3005 * Returns ptr to the filter object or NULL. Must be called while holding the
3006 * cloud_filter_list_lock.
3007 */
3008static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3009					      unsigned long *cookie)
3010{
3011	struct iavf_cloud_filter *filter = NULL;
3012
3013	if (!cookie)
3014		return NULL;
3015
3016	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3017		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3018			return filter;
3019	}
3020	return NULL;
3021}
3022
3023/**
3024 * iavf_delete_clsflower - Remove tc flower filters
3025 * @adapter: board private structure
3026 * @cls_flower: Pointer to struct flow_cls_offload
3027 */
3028static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3029				 struct flow_cls_offload *cls_flower)
3030{
3031	struct iavf_cloud_filter *filter = NULL;
3032	int err = 0;
3033
3034	spin_lock_bh(&adapter->cloud_filter_list_lock);
3035	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3036	if (filter) {
3037		filter->del = true;
3038		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3039	} else {
3040		err = -EINVAL;
3041	}
3042	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3043
3044	return err;
3045}
3046
3047/**
3048 * iavf_setup_tc_cls_flower - flower classifier offloads
3049 * @netdev: net device to configure
3050 * @type_data: offload data
3051 */
3052static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3053				    struct flow_cls_offload *cls_flower)
3054{
3055	if (cls_flower->common.chain_index)
3056		return -EOPNOTSUPP;
3057
3058	switch (cls_flower->command) {
3059	case FLOW_CLS_REPLACE:
3060		return iavf_configure_clsflower(adapter, cls_flower);
3061	case FLOW_CLS_DESTROY:
3062		return iavf_delete_clsflower(adapter, cls_flower);
3063	case FLOW_CLS_STATS:
3064		return -EOPNOTSUPP;
3065	default:
3066		return -EOPNOTSUPP;
3067	}
3068}
3069
3070/**
3071 * iavf_setup_tc_block_cb - block callback for tc
3072 * @type: type of offload
3073 * @type_data: offload data
3074 * @cb_priv:
3075 *
3076 * This function is the block callback for traffic classes
3077 **/
3078static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3079				  void *cb_priv)
3080{
 
 
 
 
 
3081	switch (type) {
3082	case TC_SETUP_CLSFLOWER:
3083		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3084	default:
3085		return -EOPNOTSUPP;
3086	}
3087}
3088
3089static LIST_HEAD(iavf_block_cb_list);
3090
3091/**
3092 * iavf_setup_tc - configure multiple traffic classes
3093 * @netdev: network interface device structure
3094 * @type: type of offload
3095 * @type_date: tc offload data
3096 *
3097 * This function is the callback to ndo_setup_tc in the
3098 * netdev_ops.
3099 *
3100 * Returns 0 on success
3101 **/
3102static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3103			 void *type_data)
3104{
3105	struct iavf_adapter *adapter = netdev_priv(netdev);
3106
3107	switch (type) {
3108	case TC_SETUP_QDISC_MQPRIO:
3109		return __iavf_setup_tc(netdev, type_data);
3110	case TC_SETUP_BLOCK:
3111		return flow_block_cb_setup_simple(type_data,
3112						  &iavf_block_cb_list,
3113						  iavf_setup_tc_block_cb,
3114						  adapter, adapter, true);
3115	default:
3116		return -EOPNOTSUPP;
3117	}
3118}
3119
3120/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3121 * iavf_open - Called when a network interface is made active
3122 * @netdev: network interface device structure
3123 *
3124 * Returns 0 on success, negative value on failure
3125 *
3126 * The open entry point is called when a network interface is made
3127 * active by the system (IFF_UP).  At this point all resources needed
3128 * for transmit and receive operations are allocated, the interrupt
3129 * handler is registered with the OS, the watchdog is started,
3130 * and the stack is notified that the interface is ready.
3131 **/
3132static int iavf_open(struct net_device *netdev)
3133{
3134	struct iavf_adapter *adapter = netdev_priv(netdev);
3135	int err;
3136
3137	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3138		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3139		return -EIO;
3140	}
3141
3142	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3143				&adapter->crit_section))
 
 
 
 
 
 
 
3144		usleep_range(500, 1000);
 
3145
3146	if (adapter->state != __IAVF_DOWN) {
3147		err = -EBUSY;
3148		goto err_unlock;
3149	}
3150
 
 
 
 
 
 
 
3151	/* allocate transmit descriptors */
3152	err = iavf_setup_all_tx_resources(adapter);
3153	if (err)
3154		goto err_setup_tx;
3155
3156	/* allocate receive descriptors */
3157	err = iavf_setup_all_rx_resources(adapter);
3158	if (err)
3159		goto err_setup_rx;
3160
3161	/* clear any pending interrupts, may auto mask */
3162	err = iavf_request_traffic_irqs(adapter, netdev->name);
3163	if (err)
3164		goto err_req_irq;
3165
3166	spin_lock_bh(&adapter->mac_vlan_list_lock);
3167
3168	iavf_add_filter(adapter, adapter->hw.mac.addr);
3169
3170	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3171
 
 
 
 
3172	iavf_configure(adapter);
3173
3174	iavf_up_complete(adapter);
3175
3176	iavf_irq_enable(adapter, true);
3177
3178	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3179
3180	return 0;
3181
3182err_req_irq:
3183	iavf_down(adapter);
3184	iavf_free_traffic_irqs(adapter);
3185err_setup_rx:
3186	iavf_free_all_rx_resources(adapter);
3187err_setup_tx:
3188	iavf_free_all_tx_resources(adapter);
3189err_unlock:
3190	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3191
3192	return err;
3193}
3194
3195/**
3196 * iavf_close - Disables a network interface
3197 * @netdev: network interface device structure
3198 *
3199 * Returns 0, this is not allowed to fail
3200 *
3201 * The close entry point is called when an interface is de-activated
3202 * by the OS.  The hardware is still under the drivers control, but
3203 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3204 * are freed, along with all transmit and receive resources.
3205 **/
3206static int iavf_close(struct net_device *netdev)
3207{
3208	struct iavf_adapter *adapter = netdev_priv(netdev);
 
3209	int status;
3210
3211	if (adapter->state <= __IAVF_DOWN_PENDING)
3212		return 0;
3213
3214	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3215				&adapter->crit_section))
3216		usleep_range(500, 1000);
 
3217
3218	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3219	if (CLIENT_ENABLED(adapter))
3220		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3221
3222	iavf_down(adapter);
3223	adapter->state = __IAVF_DOWN_PENDING;
3224	iavf_free_traffic_irqs(adapter);
3225
3226	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3227
3228	/* We explicitly don't free resources here because the hardware is
3229	 * still active and can DMA into memory. Resources are cleared in
3230	 * iavf_virtchnl_completion() after we get confirmation from the PF
3231	 * driver that the rings have been stopped.
3232	 *
3233	 * Also, we wait for state to transition to __IAVF_DOWN before
3234	 * returning. State change occurs in iavf_virtchnl_completion() after
3235	 * VF resources are released (which occurs after PF driver processes and
3236	 * responds to admin queue commands).
3237	 */
3238
3239	status = wait_event_timeout(adapter->down_waitqueue,
3240				    adapter->state == __IAVF_DOWN,
3241				    msecs_to_jiffies(500));
3242	if (!status)
3243		netdev_warn(netdev, "Device resources not yet released\n");
 
 
 
 
3244	return 0;
3245}
3246
3247/**
3248 * iavf_change_mtu - Change the Maximum Transfer Unit
3249 * @netdev: network interface device structure
3250 * @new_mtu: new value for maximum frame size
3251 *
3252 * Returns 0 on success, negative on failure
3253 **/
3254static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3255{
3256	struct iavf_adapter *adapter = netdev_priv(netdev);
 
3257
 
 
3258	netdev->mtu = new_mtu;
3259	if (CLIENT_ENABLED(adapter)) {
3260		iavf_notify_client_l2_params(&adapter->vsi);
3261		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
 
 
 
 
 
3262	}
3263	adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3264	queue_work(iavf_wq, &adapter->reset_task);
3265
3266	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3267}
3268
 
 
 
 
 
3269/**
3270 * iavf_set_features - set the netdev feature flags
3271 * @netdev: ptr to the netdev being adjusted
3272 * @features: the feature set that the stack is suggesting
3273 * Note: expects to be called while under rtnl_lock()
3274 **/
3275static int iavf_set_features(struct net_device *netdev,
3276			     netdev_features_t features)
3277{
3278	struct iavf_adapter *adapter = netdev_priv(netdev);
3279
3280	/* Don't allow changing VLAN_RX flag when adapter is not capable
3281	 * of VLAN offload
3282	 */
3283	if (!VLAN_ALLOWED(adapter)) {
3284		if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3285			return -EINVAL;
3286	} else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3287		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3288			adapter->aq_required |=
3289				IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
 
 
3290		else
3291			adapter->aq_required |=
3292				IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3293	}
3294
3295	return 0;
3296}
3297
3298/**
3299 * iavf_features_check - Validate encapsulated packet conforms to limits
3300 * @skb: skb buff
3301 * @dev: This physical port's netdev
3302 * @features: Offload features that the stack believes apply
3303 **/
3304static netdev_features_t iavf_features_check(struct sk_buff *skb,
3305					     struct net_device *dev,
3306					     netdev_features_t features)
3307{
3308	size_t len;
3309
3310	/* No point in doing any of this if neither checksum nor GSO are
3311	 * being requested for this frame.  We can rule out both by just
3312	 * checking for CHECKSUM_PARTIAL
3313	 */
3314	if (skb->ip_summed != CHECKSUM_PARTIAL)
3315		return features;
3316
3317	/* We cannot support GSO if the MSS is going to be less than
3318	 * 64 bytes.  If it is then we need to drop support for GSO.
3319	 */
3320	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3321		features &= ~NETIF_F_GSO_MASK;
3322
3323	/* MACLEN can support at most 63 words */
3324	len = skb_network_header(skb) - skb->data;
3325	if (len & ~(63 * 2))
3326		goto out_err;
3327
3328	/* IPLEN and EIPLEN can support at most 127 dwords */
3329	len = skb_transport_header(skb) - skb_network_header(skb);
3330	if (len & ~(127 * 4))
3331		goto out_err;
3332
3333	if (skb->encapsulation) {
3334		/* L4TUNLEN can support 127 words */
3335		len = skb_inner_network_header(skb) - skb_transport_header(skb);
3336		if (len & ~(127 * 2))
3337			goto out_err;
3338
3339		/* IPLEN can support at most 127 dwords */
3340		len = skb_inner_transport_header(skb) -
3341		      skb_inner_network_header(skb);
3342		if (len & ~(127 * 4))
3343			goto out_err;
3344	}
3345
3346	/* No need to validate L4LEN as TCP is the only protocol with a
3347	 * a flexible value and we support all possible values supported
3348	 * by TCP, which is at most 15 dwords
3349	 */
3350
3351	return features;
3352out_err:
3353	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3354}
3355
3356/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3357 * iavf_fix_features - fix up the netdev feature bits
3358 * @netdev: our net device
3359 * @features: desired feature bits
3360 *
3361 * Returns fixed-up features bits
3362 **/
3363static netdev_features_t iavf_fix_features(struct net_device *netdev,
3364					   netdev_features_t features)
3365{
3366	struct iavf_adapter *adapter = netdev_priv(netdev);
3367
3368	if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3369		features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3370			      NETIF_F_HW_VLAN_CTAG_RX |
3371			      NETIF_F_HW_VLAN_CTAG_FILTER);
3372
3373	return features;
 
 
 
3374}
3375
3376static const struct net_device_ops iavf_netdev_ops = {
3377	.ndo_open		= iavf_open,
3378	.ndo_stop		= iavf_close,
3379	.ndo_start_xmit		= iavf_xmit_frame,
3380	.ndo_set_rx_mode	= iavf_set_rx_mode,
3381	.ndo_validate_addr	= eth_validate_addr,
3382	.ndo_set_mac_address	= iavf_set_mac,
3383	.ndo_change_mtu		= iavf_change_mtu,
3384	.ndo_tx_timeout		= iavf_tx_timeout,
3385	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
3386	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
3387	.ndo_features_check	= iavf_features_check,
3388	.ndo_fix_features	= iavf_fix_features,
3389	.ndo_set_features	= iavf_set_features,
3390	.ndo_setup_tc		= iavf_setup_tc,
3391};
3392
3393/**
3394 * iavf_check_reset_complete - check that VF reset is complete
3395 * @hw: pointer to hw struct
3396 *
3397 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3398 **/
3399static int iavf_check_reset_complete(struct iavf_hw *hw)
3400{
3401	u32 rstat;
3402	int i;
3403
3404	for (i = 0; i < 100; i++) {
3405		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3406			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3407		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3408		    (rstat == VIRTCHNL_VFR_COMPLETED))
3409			return 0;
3410		usleep_range(10, 20);
3411	}
3412	return -EBUSY;
3413}
3414
3415/**
3416 * iavf_process_config - Process the config information we got from the PF
3417 * @adapter: board private structure
3418 *
3419 * Verify that we have a valid config struct, and set up our netdev features
3420 * and our VSI struct.
3421 **/
3422int iavf_process_config(struct iavf_adapter *adapter)
3423{
3424	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3425	int i, num_req_queues = adapter->num_req_queues;
3426	struct net_device *netdev = adapter->netdev;
3427	struct iavf_vsi *vsi = &adapter->vsi;
3428	netdev_features_t hw_enc_features;
3429	netdev_features_t hw_features;
3430
3431	/* got VF config message back from PF, now we can parse it */
3432	for (i = 0; i < vfres->num_vsis; i++) {
3433		if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3434			adapter->vsi_res = &vfres->vsi_res[i];
3435	}
3436	if (!adapter->vsi_res) {
3437		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3438		return -ENODEV;
3439	}
3440
3441	if (num_req_queues &&
3442	    num_req_queues != adapter->vsi_res->num_queue_pairs) {
3443		/* Problem.  The PF gave us fewer queues than what we had
3444		 * negotiated in our request.  Need a reset to see if we can't
3445		 * get back to a working state.
3446		 */
3447		dev_err(&adapter->pdev->dev,
3448			"Requested %d queues, but PF only gave us %d.\n",
3449			num_req_queues,
3450			adapter->vsi_res->num_queue_pairs);
3451		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3452		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3453		iavf_schedule_reset(adapter);
3454		return -ENODEV;
3455	}
3456	adapter->num_req_queues = 0;
3457
3458	hw_enc_features = NETIF_F_SG			|
3459			  NETIF_F_IP_CSUM		|
3460			  NETIF_F_IPV6_CSUM		|
3461			  NETIF_F_HIGHDMA		|
3462			  NETIF_F_SOFT_FEATURES	|
3463			  NETIF_F_TSO			|
3464			  NETIF_F_TSO_ECN		|
3465			  NETIF_F_TSO6			|
3466			  NETIF_F_SCTP_CRC		|
3467			  NETIF_F_RXHASH		|
3468			  NETIF_F_RXCSUM		|
3469			  0;
3470
3471	/* advertise to stack only if offloads for encapsulated packets is
3472	 * supported
3473	 */
3474	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3475		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
3476				   NETIF_F_GSO_GRE		|
3477				   NETIF_F_GSO_GRE_CSUM		|
3478				   NETIF_F_GSO_IPXIP4		|
3479				   NETIF_F_GSO_IPXIP6		|
3480				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3481				   NETIF_F_GSO_PARTIAL		|
3482				   0;
3483
3484		if (!(vfres->vf_cap_flags &
3485		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3486			netdev->gso_partial_features |=
3487				NETIF_F_GSO_UDP_TUNNEL_CSUM;
3488
3489		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3490		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3491		netdev->hw_enc_features |= hw_enc_features;
3492	}
3493	/* record features VLANs can make use of */
3494	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3495
3496	/* Write features and hw_features separately to avoid polluting
3497	 * with, or dropping, features that are set when we registered.
3498	 */
3499	hw_features = hw_enc_features;
3500
3501	/* Enable VLAN features if supported */
3502	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3503		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3504				NETIF_F_HW_VLAN_CTAG_RX);
3505	/* Enable cloud filter if ADQ is supported */
3506	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3507		hw_features |= NETIF_F_HW_TC;
 
 
3508
3509	netdev->hw_features |= hw_features;
 
3510
3511	netdev->features |= hw_features;
3512
3513	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3514		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3515
 
 
 
 
 
 
3516	netdev->priv_flags |= IFF_UNICAST_FLT;
3517
3518	/* Do not turn on offloads when they are requested to be turned off.
3519	 * TSO needs minimum 576 bytes to work correctly.
3520	 */
3521	if (netdev->wanted_features) {
3522		if (!(netdev->wanted_features & NETIF_F_TSO) ||
3523		    netdev->mtu < 576)
3524			netdev->features &= ~NETIF_F_TSO;
3525		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3526		    netdev->mtu < 576)
3527			netdev->features &= ~NETIF_F_TSO6;
3528		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3529			netdev->features &= ~NETIF_F_TSO_ECN;
3530		if (!(netdev->wanted_features & NETIF_F_GRO))
3531			netdev->features &= ~NETIF_F_GRO;
3532		if (!(netdev->wanted_features & NETIF_F_GSO))
3533			netdev->features &= ~NETIF_F_GSO;
3534	}
3535
3536	adapter->vsi.id = adapter->vsi_res->vsi_id;
3537
3538	adapter->vsi.back = adapter;
3539	adapter->vsi.base_vector = 1;
3540	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3541	vsi->netdev = adapter->netdev;
3542	vsi->qs_handle = adapter->vsi_res->qset_handle;
3543	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3544		adapter->rss_key_size = vfres->rss_key_size;
3545		adapter->rss_lut_size = vfres->rss_lut_size;
3546	} else {
3547		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3548		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3549	}
3550
3551	return 0;
3552}
3553
3554/**
3555 * iavf_init_task - worker thread to perform delayed initialization
3556 * @work: pointer to work_struct containing our data
3557 *
3558 * This task completes the work that was begun in probe. Due to the nature
3559 * of VF-PF communications, we may need to wait tens of milliseconds to get
3560 * responses back from the PF. Rather than busy-wait in probe and bog down the
3561 * whole system, we'll do it in a task so we can sleep.
3562 * This task only runs during driver init. Once we've established
3563 * communications with the PF driver and set up our netdev, the watchdog
3564 * takes over.
3565 **/
3566static void iavf_init_task(struct work_struct *work)
3567{
3568	struct iavf_adapter *adapter = container_of(work,
3569						    struct iavf_adapter,
3570						    init_task.work);
3571	struct iavf_hw *hw = &adapter->hw;
3572
3573	switch (adapter->state) {
3574	case __IAVF_STARTUP:
3575		if (iavf_startup(adapter) < 0)
3576			goto init_failed;
3577		break;
3578	case __IAVF_INIT_VERSION_CHECK:
3579		if (iavf_init_version_check(adapter) < 0)
3580			goto init_failed;
3581		break;
3582	case __IAVF_INIT_GET_RESOURCES:
3583		if (iavf_init_get_resources(adapter) < 0)
3584			goto init_failed;
3585		return;
3586	default:
3587		goto init_failed;
3588	}
3589
3590	queue_delayed_work(iavf_wq, &adapter->init_task,
3591			   msecs_to_jiffies(30));
3592	return;
3593init_failed:
3594	if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3595		dev_err(&adapter->pdev->dev,
3596			"Failed to communicate with PF; waiting before retry\n");
3597		adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3598		iavf_shutdown_adminq(hw);
3599		adapter->state = __IAVF_STARTUP;
3600		queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3601		return;
3602	}
3603	queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3604}
3605
3606/**
3607 * iavf_shutdown - Shutdown the device in preparation for a reboot
3608 * @pdev: pci device structure
3609 **/
3610static void iavf_shutdown(struct pci_dev *pdev)
3611{
3612	struct net_device *netdev = pci_get_drvdata(pdev);
3613	struct iavf_adapter *adapter = netdev_priv(netdev);
3614
3615	netif_device_detach(netdev);
3616
3617	if (netif_running(netdev))
3618		iavf_close(netdev);
3619
3620	/* Prevent the watchdog from running. */
3621	adapter->state = __IAVF_REMOVE;
3622	adapter->aq_required = 0;
3623
3624#ifdef CONFIG_PM
3625	pci_save_state(pdev);
3626
3627#endif
3628	pci_disable_device(pdev);
3629}
3630
3631/**
3632 * iavf_probe - Device Initialization Routine
3633 * @pdev: PCI device information struct
3634 * @ent: entry in iavf_pci_tbl
3635 *
3636 * Returns 0 on success, negative on failure
3637 *
3638 * iavf_probe initializes an adapter identified by a pci_dev structure.
3639 * The OS initialization, configuring of the adapter private structure,
3640 * and a hardware reset occur.
3641 **/
3642static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3643{
3644	struct net_device *netdev;
3645	struct iavf_adapter *adapter = NULL;
3646	struct iavf_hw *hw = NULL;
3647	int err;
3648
3649	err = pci_enable_device(pdev);
3650	if (err)
3651		return err;
3652
3653	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3654	if (err) {
3655		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3656		if (err) {
3657			dev_err(&pdev->dev,
3658				"DMA configuration failed: 0x%x\n", err);
3659			goto err_dma;
3660		}
3661	}
3662
3663	err = pci_request_regions(pdev, iavf_driver_name);
3664	if (err) {
3665		dev_err(&pdev->dev,
3666			"pci_request_regions failed 0x%x\n", err);
3667		goto err_pci_reg;
3668	}
3669
3670	pci_enable_pcie_error_reporting(pdev);
3671
3672	pci_set_master(pdev);
3673
3674	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3675				   IAVF_MAX_REQ_QUEUES);
3676	if (!netdev) {
3677		err = -ENOMEM;
3678		goto err_alloc_etherdev;
3679	}
3680
3681	SET_NETDEV_DEV(netdev, &pdev->dev);
3682
3683	pci_set_drvdata(pdev, netdev);
3684	adapter = netdev_priv(netdev);
3685
3686	adapter->netdev = netdev;
3687	adapter->pdev = pdev;
3688
3689	hw = &adapter->hw;
3690	hw->back = adapter;
3691
 
 
 
 
 
 
 
3692	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3693	adapter->state = __IAVF_STARTUP;
3694
3695	/* Call save state here because it relies on the adapter struct. */
3696	pci_save_state(pdev);
3697
3698	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3699			      pci_resource_len(pdev, 0));
3700	if (!hw->hw_addr) {
3701		err = -EIO;
3702		goto err_ioremap;
3703	}
3704	hw->vendor_id = pdev->vendor;
3705	hw->device_id = pdev->device;
3706	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3707	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3708	hw->subsystem_device_id = pdev->subsystem_device;
3709	hw->bus.device = PCI_SLOT(pdev->devfn);
3710	hw->bus.func = PCI_FUNC(pdev->devfn);
3711	hw->bus.bus_id = pdev->bus->number;
3712
3713	/* set up the locks for the AQ, do this only once in probe
3714	 * and destroy them only once in remove
3715	 */
 
3716	mutex_init(&hw->aq.asq_mutex);
3717	mutex_init(&hw->aq.arq_mutex);
3718
3719	spin_lock_init(&adapter->mac_vlan_list_lock);
3720	spin_lock_init(&adapter->cloud_filter_list_lock);
 
 
 
3721
3722	INIT_LIST_HEAD(&adapter->mac_filter_list);
3723	INIT_LIST_HEAD(&adapter->vlan_filter_list);
3724	INIT_LIST_HEAD(&adapter->cloud_filter_list);
 
 
3725
3726	INIT_WORK(&adapter->reset_task, iavf_reset_task);
3727	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
 
3728	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3729	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3730	INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3731	queue_delayed_work(iavf_wq, &adapter->init_task,
3732			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3733
3734	/* Setup the wait queue for indicating transition to down status */
3735	init_waitqueue_head(&adapter->down_waitqueue);
3736
 
 
 
 
 
 
 
 
 
3737	return 0;
3738
3739err_ioremap:
 
 
3740	free_netdev(netdev);
3741err_alloc_etherdev:
3742	pci_release_regions(pdev);
3743err_pci_reg:
3744err_dma:
3745	pci_disable_device(pdev);
3746	return err;
3747}
3748
3749#ifdef CONFIG_PM
3750/**
3751 * iavf_suspend - Power management suspend routine
3752 * @pdev: PCI device information struct
3753 * @state: unused
3754 *
3755 * Called when the system (VM) is entering sleep/suspend.
3756 **/
3757static int iavf_suspend(struct pci_dev *pdev, pm_message_t state)
3758{
3759	struct net_device *netdev = pci_get_drvdata(pdev);
3760	struct iavf_adapter *adapter = netdev_priv(netdev);
3761	int retval = 0;
3762
3763	netif_device_detach(netdev);
3764
3765	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3766				&adapter->crit_section))
3767		usleep_range(500, 1000);
3768
3769	if (netif_running(netdev)) {
3770		rtnl_lock();
3771		iavf_down(adapter);
3772		rtnl_unlock();
3773	}
3774	iavf_free_misc_irq(adapter);
3775	iavf_reset_interrupt_capability(adapter);
3776
3777	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3778
3779	retval = pci_save_state(pdev);
3780	if (retval)
3781		return retval;
3782
3783	pci_disable_device(pdev);
3784
3785	return 0;
3786}
3787
3788/**
3789 * iavf_resume - Power management resume routine
3790 * @pdev: PCI device information struct
3791 *
3792 * Called when the system (VM) is resumed from sleep/suspend.
3793 **/
3794static int iavf_resume(struct pci_dev *pdev)
3795{
3796	struct iavf_adapter *adapter = pci_get_drvdata(pdev);
3797	struct net_device *netdev = adapter->netdev;
3798	u32 err;
3799
3800	pci_set_power_state(pdev, PCI_D0);
3801	pci_restore_state(pdev);
3802	/* pci_restore_state clears dev->state_saved so call
3803	 * pci_save_state to restore it.
3804	 */
3805	pci_save_state(pdev);
3806
3807	err = pci_enable_device_mem(pdev);
3808	if (err) {
3809		dev_err(&pdev->dev, "Cannot enable PCI device from suspend.\n");
3810		return err;
3811	}
3812	pci_set_master(pdev);
3813
3814	rtnl_lock();
3815	err = iavf_set_interrupt_capability(adapter);
3816	if (err) {
3817		rtnl_unlock();
3818		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3819		return err;
3820	}
3821	err = iavf_request_misc_irq(adapter);
3822	rtnl_unlock();
3823	if (err) {
3824		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3825		return err;
3826	}
3827
3828	queue_work(iavf_wq, &adapter->reset_task);
3829
3830	netif_device_attach(netdev);
3831
3832	return err;
3833}
3834
3835#endif /* CONFIG_PM */
3836/**
3837 * iavf_remove - Device Removal Routine
3838 * @pdev: PCI device information struct
3839 *
3840 * iavf_remove is called by the PCI subsystem to alert the driver
3841 * that it should release a PCI device.  The could be caused by a
3842 * Hot-Plug event, or because the driver is going to be removed from
3843 * memory.
3844 **/
3845static void iavf_remove(struct pci_dev *pdev)
3846{
3847	struct net_device *netdev = pci_get_drvdata(pdev);
3848	struct iavf_adapter *adapter = netdev_priv(netdev);
3849	struct iavf_vlan_filter *vlf, *vlftmp;
3850	struct iavf_mac_filter *f, *ftmp;
3851	struct iavf_cloud_filter *cf, *cftmp;
3852	struct iavf_hw *hw = &adapter->hw;
3853	int err;
3854	/* Indicate we are in remove and not to run reset_task */
3855	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3856	cancel_delayed_work_sync(&adapter->init_task);
3857	cancel_work_sync(&adapter->reset_task);
3858	cancel_delayed_work_sync(&adapter->client_task);
3859	if (adapter->netdev_registered) {
3860		unregister_netdev(netdev);
3861		adapter->netdev_registered = false;
3862	}
3863	if (CLIENT_ALLOWED(adapter)) {
3864		err = iavf_lan_del_device(adapter);
3865		if (err)
3866			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3867				 err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3868	}
 
 
 
 
 
 
 
 
 
3869
3870	/* Shut down all the garbage mashers on the detention level */
3871	adapter->state = __IAVF_REMOVE;
3872	adapter->aq_required = 0;
3873	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3874	iavf_request_reset(adapter);
3875	msleep(50);
3876	/* If the FW isn't responding, kick it once, but only once. */
3877	if (!iavf_asq_done(hw)) {
3878		iavf_request_reset(adapter);
3879		msleep(50);
3880	}
3881	iavf_free_all_tx_resources(adapter);
3882	iavf_free_all_rx_resources(adapter);
3883	iavf_misc_irq_disable(adapter);
3884	iavf_free_misc_irq(adapter);
3885	iavf_reset_interrupt_capability(adapter);
3886	iavf_free_q_vectors(adapter);
3887
 
 
 
3888	cancel_delayed_work_sync(&adapter->watchdog_task);
3889
3890	cancel_work_sync(&adapter->adminq_task);
3891
 
 
 
 
 
 
 
 
3892	iavf_free_rss(adapter);
3893
3894	if (hw->aq.asq.count)
3895		iavf_shutdown_adminq(hw);
3896
3897	/* destroy the locks only once, here */
3898	mutex_destroy(&hw->aq.arq_mutex);
3899	mutex_destroy(&hw->aq.asq_mutex);
 
 
3900
3901	iounmap(hw->hw_addr);
3902	pci_release_regions(pdev);
3903	iavf_free_all_tx_resources(adapter);
3904	iavf_free_all_rx_resources(adapter);
3905	iavf_free_queues(adapter);
3906	kfree(adapter->vf_res);
3907	spin_lock_bh(&adapter->mac_vlan_list_lock);
3908	/* If we got removed before an up/down sequence, we've got a filter
3909	 * hanging out there that we need to get rid of.
3910	 */
3911	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3912		list_del(&f->list);
3913		kfree(f);
3914	}
3915	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3916				 list) {
3917		list_del(&vlf->list);
3918		kfree(vlf);
3919	}
3920
3921	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3922
3923	spin_lock_bh(&adapter->cloud_filter_list_lock);
3924	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3925		list_del(&cf->list);
3926		kfree(cf);
3927	}
3928	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3929
3930	free_netdev(netdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3931
3932	pci_disable_pcie_error_reporting(pdev);
 
 
3933
3934	pci_disable_device(pdev);
3935}
3936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3937static struct pci_driver iavf_driver = {
3938	.name     = iavf_driver_name,
3939	.id_table = iavf_pci_tbl,
3940	.probe    = iavf_probe,
3941	.remove   = iavf_remove,
3942#ifdef CONFIG_PM
3943	.suspend  = iavf_suspend,
3944	.resume   = iavf_resume,
3945#endif
3946	.shutdown = iavf_shutdown,
3947};
3948
3949/**
3950 * iavf_init_module - Driver Registration Routine
3951 *
3952 * iavf_init_module is the first routine called when the driver is
3953 * loaded. All it does is register with the PCI subsystem.
3954 **/
3955static int __init iavf_init_module(void)
3956{
3957	int ret;
3958
3959	pr_info("iavf: %s - version %s\n", iavf_driver_string,
3960		iavf_driver_version);
3961
3962	pr_info("%s\n", iavf_copyright);
3963
3964	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3965				  iavf_driver_name);
3966	if (!iavf_wq) {
3967		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3968		return -ENOMEM;
3969	}
3970	ret = pci_register_driver(&iavf_driver);
3971	return ret;
3972}
3973
3974module_init(iavf_init_module);
3975
3976/**
3977 * iavf_exit_module - Driver Exit Cleanup Routine
3978 *
3979 * iavf_exit_module is called just before the driver is removed
3980 * from memory.
3981 **/
3982static void __exit iavf_exit_module(void)
3983{
3984	pci_unregister_driver(&iavf_driver);
3985	destroy_workqueue(iavf_wq);
3986}
3987
3988module_exit(iavf_exit_module);
3989
3990/* iavf_main.c */
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include "iavf.h"
   5#include "iavf_prototype.h"
 
   6/* All iavf tracepoints are defined by the include below, which must
   7 * be included exactly once across the whole kernel with
   8 * CREATE_TRACE_POINTS defined
   9 */
  10#define CREATE_TRACE_POINTS
  11#include "iavf_trace.h"
  12
  13static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
  14static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
  15static int iavf_close(struct net_device *netdev);
  16static void iavf_init_get_resources(struct iavf_adapter *adapter);
  17static int iavf_check_reset_complete(struct iavf_hw *hw);
  18
  19char iavf_driver_name[] = "iavf";
  20static const char iavf_driver_string[] =
  21	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
  22
 
 
 
 
 
 
 
 
 
 
  23static const char iavf_copyright[] =
  24	"Copyright (c) 2013 - 2018 Intel Corporation.";
  25
  26/* iavf_pci_tbl - PCI Device ID Table
  27 *
  28 * Wildcard entries (PCI_ANY_ID) should come last
  29 * Last entry must be all 0s
  30 *
  31 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  32 *   Class, Class Mask, private data (not used) }
  33 */
  34static const struct pci_device_id iavf_pci_tbl[] = {
  35	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
  36	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
  37	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
  38	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
  39	/* required last entry */
  40	{0, }
  41};
  42
  43MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
  44
  45MODULE_ALIAS("i40evf");
  46MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  47MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
  48MODULE_LICENSE("GPL v2");
 
  49
  50static const struct net_device_ops iavf_netdev_ops;
  51
  52int iavf_status_to_errno(enum iavf_status status)
  53{
  54	switch (status) {
  55	case IAVF_SUCCESS:
  56		return 0;
  57	case IAVF_ERR_PARAM:
  58	case IAVF_ERR_MAC_TYPE:
  59	case IAVF_ERR_INVALID_MAC_ADDR:
  60	case IAVF_ERR_INVALID_LINK_SETTINGS:
  61	case IAVF_ERR_INVALID_PD_ID:
  62	case IAVF_ERR_INVALID_QP_ID:
  63	case IAVF_ERR_INVALID_CQ_ID:
  64	case IAVF_ERR_INVALID_CEQ_ID:
  65	case IAVF_ERR_INVALID_AEQ_ID:
  66	case IAVF_ERR_INVALID_SIZE:
  67	case IAVF_ERR_INVALID_ARP_INDEX:
  68	case IAVF_ERR_INVALID_FPM_FUNC_ID:
  69	case IAVF_ERR_QP_INVALID_MSG_SIZE:
  70	case IAVF_ERR_INVALID_FRAG_COUNT:
  71	case IAVF_ERR_INVALID_ALIGNMENT:
  72	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
  73	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
  74	case IAVF_ERR_INVALID_VF_ID:
  75	case IAVF_ERR_INVALID_HMCFN_ID:
  76	case IAVF_ERR_INVALID_PBLE_INDEX:
  77	case IAVF_ERR_INVALID_SD_INDEX:
  78	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
  79	case IAVF_ERR_INVALID_SD_TYPE:
  80	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
  81	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
  82	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
  83		return -EINVAL;
  84	case IAVF_ERR_NVM:
  85	case IAVF_ERR_NVM_CHECKSUM:
  86	case IAVF_ERR_PHY:
  87	case IAVF_ERR_CONFIG:
  88	case IAVF_ERR_UNKNOWN_PHY:
  89	case IAVF_ERR_LINK_SETUP:
  90	case IAVF_ERR_ADAPTER_STOPPED:
  91	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
  92	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
  93	case IAVF_ERR_RESET_FAILED:
  94	case IAVF_ERR_BAD_PTR:
  95	case IAVF_ERR_SWFW_SYNC:
  96	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
  97	case IAVF_ERR_QUEUE_EMPTY:
  98	case IAVF_ERR_FLUSHED_QUEUE:
  99	case IAVF_ERR_OPCODE_MISMATCH:
 100	case IAVF_ERR_CQP_COMPL_ERROR:
 101	case IAVF_ERR_BACKING_PAGE_ERROR:
 102	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
 103	case IAVF_ERR_MEMCPY_FAILED:
 104	case IAVF_ERR_SRQ_ENABLED:
 105	case IAVF_ERR_ADMIN_QUEUE_ERROR:
 106	case IAVF_ERR_ADMIN_QUEUE_FULL:
 107	case IAVF_ERR_BAD_RDMA_CQE:
 108	case IAVF_ERR_NVM_BLANK_MODE:
 109	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
 110	case IAVF_ERR_DIAG_TEST_FAILED:
 111	case IAVF_ERR_FIRMWARE_API_VERSION:
 112	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
 113		return -EIO;
 114	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
 115		return -ENODEV;
 116	case IAVF_ERR_NO_AVAILABLE_VSI:
 117	case IAVF_ERR_RING_FULL:
 118		return -ENOSPC;
 119	case IAVF_ERR_NO_MEMORY:
 120		return -ENOMEM;
 121	case IAVF_ERR_TIMEOUT:
 122	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
 123		return -ETIMEDOUT;
 124	case IAVF_ERR_NOT_IMPLEMENTED:
 125	case IAVF_NOT_SUPPORTED:
 126		return -EOPNOTSUPP;
 127	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
 128		return -EALREADY;
 129	case IAVF_ERR_NOT_READY:
 130		return -EBUSY;
 131	case IAVF_ERR_BUF_TOO_SHORT:
 132		return -EMSGSIZE;
 133	}
 134
 135	return -EIO;
 136}
 137
 138int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
 139{
 140	switch (v_status) {
 141	case VIRTCHNL_STATUS_SUCCESS:
 142		return 0;
 143	case VIRTCHNL_STATUS_ERR_PARAM:
 144	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
 145		return -EINVAL;
 146	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
 147		return -ENOMEM;
 148	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
 149	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
 150	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
 151		return -EIO;
 152	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
 153		return -EOPNOTSUPP;
 154	}
 155
 156	return -EIO;
 157}
 158
 159/**
 160 * iavf_pdev_to_adapter - go from pci_dev to adapter
 161 * @pdev: pci_dev pointer
 162 */
 163static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
 164{
 165	return netdev_priv(pci_get_drvdata(pdev));
 166}
 167
 168/**
 169 * iavf_is_reset_in_progress - Check if a reset is in progress
 170 * @adapter: board private structure
 171 */
 172static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
 173{
 174	if (adapter->state == __IAVF_RESETTING ||
 175	    adapter->flags & (IAVF_FLAG_RESET_PENDING |
 176			      IAVF_FLAG_RESET_NEEDED))
 177		return true;
 178
 179	return false;
 180}
 181
 182/**
 183 * iavf_wait_for_reset - Wait for reset to finish.
 184 * @adapter: board private structure
 185 *
 186 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
 187 */
 188int iavf_wait_for_reset(struct iavf_adapter *adapter)
 189{
 190	int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
 191					!iavf_is_reset_in_progress(adapter),
 192					msecs_to_jiffies(5000));
 193
 194	/* If ret < 0 then it means wait was interrupted.
 195	 * If ret == 0 then it means we got a timeout while waiting
 196	 * for reset to finish.
 197	 * If ret > 0 it means reset has finished.
 198	 */
 199	if (ret > 0)
 200		return 0;
 201	else if (ret < 0)
 202		return -EINTR;
 203	else
 204		return -EBUSY;
 205}
 206
 207/**
 208 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
 209 * @hw:   pointer to the HW structure
 210 * @mem:  ptr to mem struct to fill out
 211 * @size: size of memory requested
 212 * @alignment: what to align the allocation to
 213 **/
 214enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
 215					 struct iavf_dma_mem *mem,
 216					 u64 size, u32 alignment)
 217{
 218	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
 219
 220	if (!mem)
 221		return IAVF_ERR_PARAM;
 222
 223	mem->size = ALIGN(size, alignment);
 224	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
 225				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
 226	if (mem->va)
 227		return 0;
 228	else
 229		return IAVF_ERR_NO_MEMORY;
 230}
 231
 232/**
 233 * iavf_free_dma_mem - wrapper for DMA memory freeing
 234 * @hw:   pointer to the HW structure
 235 * @mem:  ptr to mem struct to free
 236 **/
 237enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
 
 238{
 239	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
 240
 241	if (!mem || !mem->va)
 242		return IAVF_ERR_PARAM;
 243	dma_free_coherent(&adapter->pdev->dev, mem->size,
 244			  mem->va, (dma_addr_t)mem->pa);
 245	return 0;
 246}
 247
 248/**
 249 * iavf_allocate_virt_mem - virt memory alloc wrapper
 250 * @hw:   pointer to the HW structure
 251 * @mem:  ptr to mem struct to fill out
 252 * @size: size of memory requested
 253 **/
 254enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
 255					struct iavf_virt_mem *mem, u32 size)
 256{
 257	if (!mem)
 258		return IAVF_ERR_PARAM;
 259
 260	mem->size = size;
 261	mem->va = kzalloc(size, GFP_KERNEL);
 262
 263	if (mem->va)
 264		return 0;
 265	else
 266		return IAVF_ERR_NO_MEMORY;
 267}
 268
 269/**
 270 * iavf_free_virt_mem - virt memory free wrapper
 271 * @hw:   pointer to the HW structure
 272 * @mem:  ptr to mem struct to free
 273 **/
 274void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
 
 275{
 
 
 
 
 276	kfree(mem->va);
 
 
 277}
 278
 279/**
 280 * iavf_schedule_reset - Set the flags and schedule a reset event
 281 * @adapter: board private structure
 282 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
 283 **/
 284void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
 285{
 286	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
 287	    !(adapter->flags &
 288	    (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
 289		adapter->flags |= flags;
 290		queue_work(adapter->wq, &adapter->reset_task);
 291	}
 292}
 293
 294/**
 295 * iavf_schedule_aq_request - Set the flags and schedule aq request
 296 * @adapter: board private structure
 297 * @flags: requested aq flags
 298 **/
 299void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
 300{
 301	adapter->aq_required |= flags;
 302	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
 303}
 304
 305/**
 306 * iavf_tx_timeout - Respond to a Tx Hang
 307 * @netdev: network interface device structure
 308 * @txqueue: queue number that is timing out
 309 **/
 310static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
 311{
 312	struct iavf_adapter *adapter = netdev_priv(netdev);
 313
 314	adapter->tx_timeout_count++;
 315	iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
 316}
 317
 318/**
 319 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
 320 * @adapter: board private structure
 321 **/
 322static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
 323{
 324	struct iavf_hw *hw = &adapter->hw;
 325
 326	if (!adapter->msix_entries)
 327		return;
 328
 329	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
 330
 331	iavf_flush(hw);
 332
 333	synchronize_irq(adapter->msix_entries[0].vector);
 334}
 335
 336/**
 337 * iavf_misc_irq_enable - Enable default interrupt generation settings
 338 * @adapter: board private structure
 339 **/
 340static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
 341{
 342	struct iavf_hw *hw = &adapter->hw;
 343
 344	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
 345				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
 346	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
 347
 348	iavf_flush(hw);
 349}
 350
 351/**
 352 * iavf_irq_disable - Mask off interrupt generation on the NIC
 353 * @adapter: board private structure
 354 **/
 355static void iavf_irq_disable(struct iavf_adapter *adapter)
 356{
 357	int i;
 358	struct iavf_hw *hw = &adapter->hw;
 359
 360	if (!adapter->msix_entries)
 361		return;
 362
 363	for (i = 1; i < adapter->num_msix_vectors; i++) {
 364		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
 365		synchronize_irq(adapter->msix_entries[i].vector);
 366	}
 367	iavf_flush(hw);
 368}
 369
 370/**
 371 * iavf_irq_enable_queues - Enable interrupt for all queues
 372 * @adapter: board private structure
 
 373 **/
 374static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
 375{
 376	struct iavf_hw *hw = &adapter->hw;
 377	int i;
 378
 379	for (i = 1; i < adapter->num_msix_vectors; i++) {
 380		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
 381		     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 382		     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
 
 
 383	}
 384}
 385
 386/**
 387 * iavf_irq_enable - Enable default interrupt generation settings
 388 * @adapter: board private structure
 389 * @flush: boolean value whether to run rd32()
 390 **/
 391void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
 392{
 393	struct iavf_hw *hw = &adapter->hw;
 394
 395	iavf_misc_irq_enable(adapter);
 396	iavf_irq_enable_queues(adapter);
 397
 398	if (flush)
 399		iavf_flush(hw);
 400}
 401
 402/**
 403 * iavf_msix_aq - Interrupt handler for vector 0
 404 * @irq: interrupt number
 405 * @data: pointer to netdev
 406 **/
 407static irqreturn_t iavf_msix_aq(int irq, void *data)
 408{
 409	struct net_device *netdev = data;
 410	struct iavf_adapter *adapter = netdev_priv(netdev);
 411	struct iavf_hw *hw = &adapter->hw;
 412
 413	/* handle non-queue interrupts, these reads clear the registers */
 414	rd32(hw, IAVF_VFINT_ICR01);
 415	rd32(hw, IAVF_VFINT_ICR0_ENA1);
 416
 417	if (adapter->state != __IAVF_REMOVE)
 418		/* schedule work on the private workqueue */
 419		queue_work(adapter->wq, &adapter->adminq_task);
 420
 421	return IRQ_HANDLED;
 422}
 423
 424/**
 425 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
 426 * @irq: interrupt number
 427 * @data: pointer to a q_vector
 428 **/
 429static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
 430{
 431	struct iavf_q_vector *q_vector = data;
 432
 433	if (!q_vector->tx.ring && !q_vector->rx.ring)
 434		return IRQ_HANDLED;
 435
 436	napi_schedule_irqoff(&q_vector->napi);
 437
 438	return IRQ_HANDLED;
 439}
 440
 441/**
 442 * iavf_map_vector_to_rxq - associate irqs with rx queues
 443 * @adapter: board private structure
 444 * @v_idx: interrupt number
 445 * @r_idx: queue number
 446 **/
 447static void
 448iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
 449{
 450	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 451	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
 452	struct iavf_hw *hw = &adapter->hw;
 453
 454	rx_ring->q_vector = q_vector;
 455	rx_ring->next = q_vector->rx.ring;
 456	rx_ring->vsi = &adapter->vsi;
 457	q_vector->rx.ring = rx_ring;
 458	q_vector->rx.count++;
 459	q_vector->rx.next_update = jiffies + 1;
 460	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
 461	q_vector->ring_mask |= BIT(r_idx);
 462	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
 463	     q_vector->rx.current_itr >> 1);
 464	q_vector->rx.current_itr = q_vector->rx.target_itr;
 465}
 466
 467/**
 468 * iavf_map_vector_to_txq - associate irqs with tx queues
 469 * @adapter: board private structure
 470 * @v_idx: interrupt number
 471 * @t_idx: queue number
 472 **/
 473static void
 474iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
 475{
 476	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 477	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
 478	struct iavf_hw *hw = &adapter->hw;
 479
 480	tx_ring->q_vector = q_vector;
 481	tx_ring->next = q_vector->tx.ring;
 482	tx_ring->vsi = &adapter->vsi;
 483	q_vector->tx.ring = tx_ring;
 484	q_vector->tx.count++;
 485	q_vector->tx.next_update = jiffies + 1;
 486	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
 487	q_vector->num_ringpairs++;
 488	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
 489	     q_vector->tx.target_itr >> 1);
 490	q_vector->tx.current_itr = q_vector->tx.target_itr;
 491}
 492
 493/**
 494 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
 495 * @adapter: board private structure to initialize
 496 *
 497 * This function maps descriptor rings to the queue-specific vectors
 498 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
 499 * one vector per ring/queue, but on a constrained vector budget, we
 500 * group the rings as "efficiently" as possible.  You would add new
 501 * mapping configurations in here.
 502 **/
 503static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
 504{
 505	int rings_remaining = adapter->num_active_queues;
 506	int ridx = 0, vidx = 0;
 507	int q_vectors;
 508
 509	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 510
 511	for (; ridx < rings_remaining; ridx++) {
 512		iavf_map_vector_to_rxq(adapter, vidx, ridx);
 513		iavf_map_vector_to_txq(adapter, vidx, ridx);
 514
 515		/* In the case where we have more queues than vectors, continue
 516		 * round-robin on vectors until all queues are mapped.
 517		 */
 518		if (++vidx >= q_vectors)
 519			vidx = 0;
 520	}
 521
 522	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
 523}
 524
 525/**
 526 * iavf_irq_affinity_notify - Callback for affinity changes
 527 * @notify: context as to what irq was changed
 528 * @mask: the new affinity mask
 529 *
 530 * This is a callback function used by the irq_set_affinity_notifier function
 531 * so that we may register to receive changes to the irq affinity masks.
 532 **/
 533static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
 534				     const cpumask_t *mask)
 535{
 536	struct iavf_q_vector *q_vector =
 537		container_of(notify, struct iavf_q_vector, affinity_notify);
 538
 539	cpumask_copy(&q_vector->affinity_mask, mask);
 540}
 541
 542/**
 543 * iavf_irq_affinity_release - Callback for affinity notifier release
 544 * @ref: internal core kernel usage
 545 *
 546 * This is a callback function used by the irq_set_affinity_notifier function
 547 * to inform the current notification subscriber that they will no longer
 548 * receive notifications.
 549 **/
 550static void iavf_irq_affinity_release(struct kref *ref) {}
 551
 552/**
 553 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
 554 * @adapter: board private structure
 555 * @basename: device basename
 556 *
 557 * Allocates MSI-X vectors for tx and rx handling, and requests
 558 * interrupts from the kernel.
 559 **/
 560static int
 561iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
 562{
 563	unsigned int vector, q_vectors;
 564	unsigned int rx_int_idx = 0, tx_int_idx = 0;
 565	int irq_num, err;
 566	int cpu;
 567
 568	iavf_irq_disable(adapter);
 569	/* Decrement for Other and TCP Timer vectors */
 570	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 571
 572	for (vector = 0; vector < q_vectors; vector++) {
 573		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
 574
 575		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 576
 577		if (q_vector->tx.ring && q_vector->rx.ring) {
 578			snprintf(q_vector->name, sizeof(q_vector->name),
 579				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
 580			tx_int_idx++;
 581		} else if (q_vector->rx.ring) {
 582			snprintf(q_vector->name, sizeof(q_vector->name),
 583				 "iavf-%s-rx-%u", basename, rx_int_idx++);
 584		} else if (q_vector->tx.ring) {
 585			snprintf(q_vector->name, sizeof(q_vector->name),
 586				 "iavf-%s-tx-%u", basename, tx_int_idx++);
 587		} else {
 588			/* skip this unused q_vector */
 589			continue;
 590		}
 591		err = request_irq(irq_num,
 592				  iavf_msix_clean_rings,
 593				  0,
 594				  q_vector->name,
 595				  q_vector);
 596		if (err) {
 597			dev_info(&adapter->pdev->dev,
 598				 "Request_irq failed, error: %d\n", err);
 599			goto free_queue_irqs;
 600		}
 601		/* register for affinity change notifications */
 602		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
 603		q_vector->affinity_notify.release =
 604						   iavf_irq_affinity_release;
 605		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
 606		/* Spread the IRQ affinity hints across online CPUs. Note that
 607		 * get_cpu_mask returns a mask with a permanent lifetime so
 608		 * it's safe to use as a hint for irq_update_affinity_hint.
 609		 */
 610		cpu = cpumask_local_spread(q_vector->v_idx, -1);
 611		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
 612	}
 613
 614	return 0;
 615
 616free_queue_irqs:
 617	while (vector) {
 618		vector--;
 619		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 620		irq_set_affinity_notifier(irq_num, NULL);
 621		irq_update_affinity_hint(irq_num, NULL);
 622		free_irq(irq_num, &adapter->q_vectors[vector]);
 623	}
 624	return err;
 625}
 626
 627/**
 628 * iavf_request_misc_irq - Initialize MSI-X interrupts
 629 * @adapter: board private structure
 630 *
 631 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
 632 * vector is only for the admin queue, and stays active even when the netdev
 633 * is closed.
 634 **/
 635static int iavf_request_misc_irq(struct iavf_adapter *adapter)
 636{
 637	struct net_device *netdev = adapter->netdev;
 638	int err;
 639
 640	snprintf(adapter->misc_vector_name,
 641		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
 642		 dev_name(&adapter->pdev->dev));
 643	err = request_irq(adapter->msix_entries[0].vector,
 644			  &iavf_msix_aq, 0,
 645			  adapter->misc_vector_name, netdev);
 646	if (err) {
 647		dev_err(&adapter->pdev->dev,
 648			"request_irq for %s failed: %d\n",
 649			adapter->misc_vector_name, err);
 650		free_irq(adapter->msix_entries[0].vector, netdev);
 651	}
 652	return err;
 653}
 654
 655/**
 656 * iavf_free_traffic_irqs - Free MSI-X interrupts
 657 * @adapter: board private structure
 658 *
 659 * Frees all MSI-X vectors other than 0.
 660 **/
 661static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
 662{
 663	int vector, irq_num, q_vectors;
 664
 665	if (!adapter->msix_entries)
 666		return;
 667
 668	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 669
 670	for (vector = 0; vector < q_vectors; vector++) {
 671		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 672		irq_set_affinity_notifier(irq_num, NULL);
 673		irq_update_affinity_hint(irq_num, NULL);
 674		free_irq(irq_num, &adapter->q_vectors[vector]);
 675	}
 676}
 677
 678/**
 679 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
 680 * @adapter: board private structure
 681 *
 682 * Frees MSI-X vector 0.
 683 **/
 684static void iavf_free_misc_irq(struct iavf_adapter *adapter)
 685{
 686	struct net_device *netdev = adapter->netdev;
 687
 688	if (!adapter->msix_entries)
 689		return;
 690
 691	free_irq(adapter->msix_entries[0].vector, netdev);
 692}
 693
 694/**
 695 * iavf_configure_tx - Configure Transmit Unit after Reset
 696 * @adapter: board private structure
 697 *
 698 * Configure the Tx unit of the MAC after a reset.
 699 **/
 700static void iavf_configure_tx(struct iavf_adapter *adapter)
 701{
 702	struct iavf_hw *hw = &adapter->hw;
 703	int i;
 704
 705	for (i = 0; i < adapter->num_active_queues; i++)
 706		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
 707}
 708
 709/**
 710 * iavf_configure_rx - Configure Receive Unit after Reset
 711 * @adapter: board private structure
 712 *
 713 * Configure the Rx unit of the MAC after a reset.
 714 **/
 715static void iavf_configure_rx(struct iavf_adapter *adapter)
 716{
 717	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
 718	struct iavf_hw *hw = &adapter->hw;
 719	int i;
 720
 721	/* Legacy Rx will always default to a 2048 buffer size. */
 722#if (PAGE_SIZE < 8192)
 723	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
 724		struct net_device *netdev = adapter->netdev;
 725
 726		/* For jumbo frames on systems with 4K pages we have to use
 727		 * an order 1 page, so we might as well increase the size
 728		 * of our Rx buffer to make better use of the available space
 729		 */
 730		rx_buf_len = IAVF_RXBUFFER_3072;
 731
 732		/* We use a 1536 buffer size for configurations with
 733		 * standard Ethernet mtu.  On x86 this gives us enough room
 734		 * for shared info and 192 bytes of padding.
 735		 */
 736		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
 737		    (netdev->mtu <= ETH_DATA_LEN))
 738			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
 739	}
 740#endif
 741
 742	for (i = 0; i < adapter->num_active_queues; i++) {
 743		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
 744		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
 745
 746		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
 747			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
 748		else
 749			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
 750	}
 751}
 752
 753/**
 754 * iavf_find_vlan - Search filter list for specific vlan filter
 755 * @adapter: board private structure
 756 * @vlan: vlan tag
 757 *
 758 * Returns ptr to the filter object or NULL. Must be called while holding the
 759 * mac_vlan_list_lock.
 760 **/
 761static struct
 762iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
 763				 struct iavf_vlan vlan)
 764{
 765	struct iavf_vlan_filter *f;
 766
 767	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
 768		if (f->vlan.vid == vlan.vid &&
 769		    f->vlan.tpid == vlan.tpid)
 770			return f;
 771	}
 772
 773	return NULL;
 774}
 775
 776/**
 777 * iavf_add_vlan - Add a vlan filter to the list
 778 * @adapter: board private structure
 779 * @vlan: VLAN tag
 780 *
 781 * Returns ptr to the filter object or NULL when no memory available.
 782 **/
 783static struct
 784iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
 785				struct iavf_vlan vlan)
 786{
 787	struct iavf_vlan_filter *f = NULL;
 788
 789	spin_lock_bh(&adapter->mac_vlan_list_lock);
 790
 791	f = iavf_find_vlan(adapter, vlan);
 792	if (!f) {
 793		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 794		if (!f)
 795			goto clearout;
 796
 797		f->vlan = vlan;
 798
 799		list_add_tail(&f->list, &adapter->vlan_filter_list);
 800		f->state = IAVF_VLAN_ADD;
 801		adapter->num_vlan_filters++;
 802		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
 803	}
 804
 805clearout:
 806	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 807	return f;
 808}
 809
 810/**
 811 * iavf_del_vlan - Remove a vlan filter from the list
 812 * @adapter: board private structure
 813 * @vlan: VLAN tag
 814 **/
 815static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
 816{
 817	struct iavf_vlan_filter *f;
 818
 819	spin_lock_bh(&adapter->mac_vlan_list_lock);
 820
 821	f = iavf_find_vlan(adapter, vlan);
 822	if (f) {
 823		f->state = IAVF_VLAN_REMOVE;
 824		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
 825	}
 826
 827	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 828}
 829
 830/**
 831 * iavf_restore_filters
 832 * @adapter: board private structure
 833 *
 834 * Restore existing non MAC filters when VF netdev comes back up
 835 **/
 836static void iavf_restore_filters(struct iavf_adapter *adapter)
 837{
 838	struct iavf_vlan_filter *f;
 839
 840	/* re-add all VLAN filters */
 841	spin_lock_bh(&adapter->mac_vlan_list_lock);
 842
 843	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
 844		if (f->state == IAVF_VLAN_INACTIVE)
 845			f->state = IAVF_VLAN_ADD;
 846	}
 847
 848	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 849	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
 850}
 851
 852/**
 853 * iavf_get_num_vlans_added - get number of VLANs added
 854 * @adapter: board private structure
 855 */
 856u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
 857{
 858	return adapter->num_vlan_filters;
 859}
 860
 861/**
 862 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
 863 * @adapter: board private structure
 864 *
 865 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
 866 * do not impose a limit as that maintains current behavior and for
 867 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
 868 **/
 869static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
 870{
 871	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
 872	 * never been a limit on the VF driver side
 873	 */
 874	if (VLAN_ALLOWED(adapter))
 875		return VLAN_N_VID;
 876	else if (VLAN_V2_ALLOWED(adapter))
 877		return adapter->vlan_v2_caps.filtering.max_filters;
 878
 879	return 0;
 880}
 881
 882/**
 883 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
 884 * @adapter: board private structure
 885 **/
 886static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
 887{
 888	if (iavf_get_num_vlans_added(adapter) <
 889	    iavf_get_max_vlans_allowed(adapter))
 890		return false;
 891
 892	return true;
 893}
 894
 895/**
 896 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
 897 * @netdev: network device struct
 898 * @proto: unused protocol data
 899 * @vid: VLAN tag
 900 **/
 901static int iavf_vlan_rx_add_vid(struct net_device *netdev,
 902				__always_unused __be16 proto, u16 vid)
 903{
 904	struct iavf_adapter *adapter = netdev_priv(netdev);
 905
 906	/* Do not track VLAN 0 filter, always added by the PF on VF init */
 907	if (!vid)
 908		return 0;
 909
 910	if (!VLAN_FILTERING_ALLOWED(adapter))
 911		return -EIO;
 912
 913	if (iavf_max_vlans_added(adapter)) {
 914		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
 915			   iavf_get_max_vlans_allowed(adapter));
 916		return -EIO;
 917	}
 918
 919	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
 920		return -ENOMEM;
 921
 922	return 0;
 923}
 924
 925/**
 926 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
 927 * @netdev: network device struct
 928 * @proto: unused protocol data
 929 * @vid: VLAN tag
 930 **/
 931static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
 932				 __always_unused __be16 proto, u16 vid)
 933{
 934	struct iavf_adapter *adapter = netdev_priv(netdev);
 935
 936	/* We do not track VLAN 0 filter */
 937	if (!vid)
 938		return 0;
 939
 940	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
 941	return 0;
 942}
 943
 944/**
 945 * iavf_find_filter - Search filter list for specific mac filter
 946 * @adapter: board private structure
 947 * @macaddr: the MAC address
 948 *
 949 * Returns ptr to the filter object or NULL. Must be called while holding the
 950 * mac_vlan_list_lock.
 951 **/
 952static struct
 953iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
 954				  const u8 *macaddr)
 955{
 956	struct iavf_mac_filter *f;
 957
 958	if (!macaddr)
 959		return NULL;
 960
 961	list_for_each_entry(f, &adapter->mac_filter_list, list) {
 962		if (ether_addr_equal(macaddr, f->macaddr))
 963			return f;
 964	}
 965	return NULL;
 966}
 967
 968/**
 969 * iavf_add_filter - Add a mac filter to the filter list
 970 * @adapter: board private structure
 971 * @macaddr: the MAC address
 972 *
 973 * Returns ptr to the filter object or NULL when no memory available.
 974 **/
 975struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
 976					const u8 *macaddr)
 
 977{
 978	struct iavf_mac_filter *f;
 979
 980	if (!macaddr)
 981		return NULL;
 982
 983	f = iavf_find_filter(adapter, macaddr);
 984	if (!f) {
 985		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 986		if (!f)
 987			return f;
 988
 989		ether_addr_copy(f->macaddr, macaddr);
 990
 991		list_add_tail(&f->list, &adapter->mac_filter_list);
 992		f->add = true;
 993		f->add_handled = false;
 994		f->is_new_mac = true;
 995		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
 996		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
 997	} else {
 998		f->remove = false;
 999	}
1000
1001	return f;
1002}
1003
1004/**
1005 * iavf_replace_primary_mac - Replace current primary address
1006 * @adapter: board private structure
1007 * @new_mac: new MAC address to be applied
1008 *
1009 * Replace current dev_addr and send request to PF for removal of previous
1010 * primary MAC address filter and addition of new primary MAC filter.
1011 * Return 0 for success, -ENOMEM for failure.
1012 *
1013 * Do not call this with mac_vlan_list_lock!
1014 **/
1015static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1016				    const u8 *new_mac)
1017{
1018	struct iavf_hw *hw = &adapter->hw;
1019	struct iavf_mac_filter *new_f;
1020	struct iavf_mac_filter *old_f;
1021
1022	spin_lock_bh(&adapter->mac_vlan_list_lock);
1023
1024	new_f = iavf_add_filter(adapter, new_mac);
1025	if (!new_f) {
1026		spin_unlock_bh(&adapter->mac_vlan_list_lock);
1027		return -ENOMEM;
1028	}
1029
1030	old_f = iavf_find_filter(adapter, hw->mac.addr);
1031	if (old_f) {
1032		old_f->is_primary = false;
1033		old_f->remove = true;
1034		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1035	}
1036	/* Always send the request to add if changing primary MAC,
1037	 * even if filter is already present on the list
1038	 */
1039	new_f->is_primary = true;
1040	new_f->add = true;
1041	ether_addr_copy(hw->mac.addr, new_mac);
1042
1043	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1044
1045	/* schedule the watchdog task to immediately process the request */
1046	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1047	return 0;
1048}
1049
1050/**
1051 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1052 * @netdev: network interface device structure
1053 * @macaddr: MAC address to set
1054 *
1055 * Returns true on success, false on failure
1056 */
1057static bool iavf_is_mac_set_handled(struct net_device *netdev,
1058				    const u8 *macaddr)
1059{
1060	struct iavf_adapter *adapter = netdev_priv(netdev);
1061	struct iavf_mac_filter *f;
1062	bool ret = false;
1063
1064	spin_lock_bh(&adapter->mac_vlan_list_lock);
1065
1066	f = iavf_find_filter(adapter, macaddr);
1067
1068	if (!f || (!f->add && f->add_handled))
1069		ret = true;
1070
1071	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1072
1073	return ret;
1074}
1075
1076/**
1077 * iavf_set_mac - NDO callback to set port MAC address
1078 * @netdev: network interface device structure
1079 * @p: pointer to an address structure
1080 *
1081 * Returns 0 on success, negative on failure
1082 */
1083static int iavf_set_mac(struct net_device *netdev, void *p)
1084{
1085	struct iavf_adapter *adapter = netdev_priv(netdev);
 
 
1086	struct sockaddr *addr = p;
1087	int ret;
1088
1089	if (!is_valid_ether_addr(addr->sa_data))
1090		return -EADDRNOTAVAIL;
1091
1092	ret = iavf_replace_primary_mac(adapter, addr->sa_data);
 
 
 
1093
1094	if (ret)
1095		return ret;
 
 
 
1096
1097	ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1098					       iavf_is_mac_set_handled(netdev, addr->sa_data),
1099					       msecs_to_jiffies(2500));
1100
1101	/* If ret < 0 then it means wait was interrupted.
1102	 * If ret == 0 then it means we got a timeout.
1103	 * else it means we got response for set MAC from PF,
1104	 * check if netdev MAC was updated to requested MAC,
1105	 * if yes then set MAC succeeded otherwise it failed return -EACCES
1106	 */
1107	if (ret < 0)
1108		return ret;
1109
1110	if (!ret)
1111		return -EAGAIN;
1112
1113	if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1114		return -EACCES;
 
1115
1116	return 0;
1117}
1118
1119/**
1120 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1121 * @netdev: the netdevice
1122 * @addr: address to add
1123 *
1124 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1125 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1126 */
1127static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1128{
1129	struct iavf_adapter *adapter = netdev_priv(netdev);
1130
1131	if (iavf_add_filter(adapter, addr))
1132		return 0;
1133	else
1134		return -ENOMEM;
1135}
1136
1137/**
1138 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1139 * @netdev: the netdevice
1140 * @addr: address to add
1141 *
1142 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1143 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1144 */
1145static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1146{
1147	struct iavf_adapter *adapter = netdev_priv(netdev);
1148	struct iavf_mac_filter *f;
1149
1150	/* Under some circumstances, we might receive a request to delete
1151	 * our own device address from our uc list. Because we store the
1152	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1153	 * such requests and not delete our device address from this list.
1154	 */
1155	if (ether_addr_equal(addr, netdev->dev_addr))
1156		return 0;
1157
1158	f = iavf_find_filter(adapter, addr);
1159	if (f) {
1160		f->remove = true;
1161		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1162	}
1163	return 0;
1164}
1165
1166/**
1167 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1168 * @adapter: device specific adapter
1169 */
1170bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1171{
1172	return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1173		(IFF_PROMISC | IFF_ALLMULTI);
1174}
1175
1176/**
1177 * iavf_set_rx_mode - NDO callback to set the netdev filters
1178 * @netdev: network interface device structure
1179 **/
1180static void iavf_set_rx_mode(struct net_device *netdev)
1181{
1182	struct iavf_adapter *adapter = netdev_priv(netdev);
1183
1184	spin_lock_bh(&adapter->mac_vlan_list_lock);
1185	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1186	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1187	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1188
1189	spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1190	if (iavf_promiscuous_mode_changed(adapter))
1191		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1192	spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
 
 
 
 
 
 
 
 
 
1193}
1194
1195/**
1196 * iavf_napi_enable_all - enable NAPI on all queue vectors
1197 * @adapter: board private structure
1198 **/
1199static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1200{
1201	int q_idx;
1202	struct iavf_q_vector *q_vector;
1203	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1204
1205	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1206		struct napi_struct *napi;
1207
1208		q_vector = &adapter->q_vectors[q_idx];
1209		napi = &q_vector->napi;
1210		napi_enable(napi);
1211	}
1212}
1213
1214/**
1215 * iavf_napi_disable_all - disable NAPI on all queue vectors
1216 * @adapter: board private structure
1217 **/
1218static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1219{
1220	int q_idx;
1221	struct iavf_q_vector *q_vector;
1222	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1223
1224	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1225		q_vector = &adapter->q_vectors[q_idx];
1226		napi_disable(&q_vector->napi);
1227	}
1228}
1229
1230/**
1231 * iavf_configure - set up transmit and receive data structures
1232 * @adapter: board private structure
1233 **/
1234static void iavf_configure(struct iavf_adapter *adapter)
1235{
1236	struct net_device *netdev = adapter->netdev;
1237	int i;
1238
1239	iavf_set_rx_mode(netdev);
1240
1241	iavf_configure_tx(adapter);
1242	iavf_configure_rx(adapter);
1243	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1244
1245	for (i = 0; i < adapter->num_active_queues; i++) {
1246		struct iavf_ring *ring = &adapter->rx_rings[i];
1247
1248		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1249	}
1250}
1251
1252/**
1253 * iavf_up_complete - Finish the last steps of bringing up a connection
1254 * @adapter: board private structure
1255 *
1256 * Expects to be called while holding crit_lock.
1257 **/
1258static void iavf_up_complete(struct iavf_adapter *adapter)
1259{
1260	iavf_change_state(adapter, __IAVF_RUNNING);
1261	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1262
1263	iavf_napi_enable_all(adapter);
1264
1265	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
 
 
 
1266}
1267
1268/**
1269 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1270 * yet and mark other to be removed.
1271 * @adapter: board private structure
 
 
1272 **/
1273static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1274{
1275	struct iavf_vlan_filter *vlf, *vlftmp;
1276	struct iavf_mac_filter *f, *ftmp;
 
 
 
 
 
 
 
 
 
 
 
1277
1278	spin_lock_bh(&adapter->mac_vlan_list_lock);
 
1279	/* clear the sync flag on all filters */
1280	__dev_uc_unsync(adapter->netdev, NULL);
1281	__dev_mc_unsync(adapter->netdev, NULL);
1282
1283	/* remove all MAC filters */
1284	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1285				 list) {
1286		if (f->add) {
1287			list_del(&f->list);
1288			kfree(f);
1289		} else {
1290			f->remove = true;
1291		}
1292	}
1293
1294	/* disable all VLAN filters */
1295	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1296				 list)
1297		vlf->state = IAVF_VLAN_DISABLE;
1298
1299	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1300}
1301
1302/**
1303 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1304 * mark other to be removed.
1305 * @adapter: board private structure
1306 **/
1307static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1308{
1309	struct iavf_cloud_filter *cf, *cftmp;
1310
1311	/* remove all cloud filters */
1312	spin_lock_bh(&adapter->cloud_filter_list_lock);
1313	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1314				 list) {
1315		if (cf->add) {
1316			list_del(&cf->list);
1317			kfree(cf);
1318			adapter->num_cloud_filters--;
1319		} else {
1320			cf->del = true;
1321		}
1322	}
1323	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1324}
1325
1326/**
1327 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1328 * other to be removed.
1329 * @adapter: board private structure
1330 **/
1331static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1332{
1333	struct iavf_fdir_fltr *fdir;
1334
1335	/* remove all Flow Director filters */
1336	spin_lock_bh(&adapter->fdir_fltr_lock);
1337	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1338		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1339			/* Cancel a request, keep filter as inactive */
1340			fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1341		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1342			 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1343			/* Disable filters which are active or have a pending
1344			 * request to PF to be added
1345			 */
1346			fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1347		}
1348	}
1349	spin_unlock_bh(&adapter->fdir_fltr_lock);
1350}
1351
1352/**
1353 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1354 * other to be removed.
1355 * @adapter: board private structure
1356 **/
1357static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1358{
1359	struct iavf_adv_rss *rss, *rsstmp;
1360
1361	/* remove all advance RSS configuration */
1362	spin_lock_bh(&adapter->adv_rss_lock);
1363	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1364				 list) {
1365		if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1366			list_del(&rss->list);
1367			kfree(rss);
1368		} else {
1369			rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1370		}
1371	}
1372	spin_unlock_bh(&adapter->adv_rss_lock);
1373}
1374
1375/**
1376 * iavf_down - Shutdown the connection processing
1377 * @adapter: board private structure
1378 *
1379 * Expects to be called while holding crit_lock.
1380 **/
1381void iavf_down(struct iavf_adapter *adapter)
1382{
1383	struct net_device *netdev = adapter->netdev;
1384
1385	if (adapter->state <= __IAVF_DOWN_PENDING)
1386		return;
1387
1388	netif_carrier_off(netdev);
1389	netif_tx_disable(netdev);
1390	adapter->link_up = false;
1391	iavf_napi_disable_all(adapter);
1392	iavf_irq_disable(adapter);
1393
1394	iavf_clear_mac_vlan_filters(adapter);
1395	iavf_clear_cloud_filters(adapter);
1396	iavf_clear_fdir_filters(adapter);
1397	iavf_clear_adv_rss_conf(adapter);
1398
1399	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1400		return;
1401
1402	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1403		/* cancel any current operation */
1404		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1405		/* Schedule operations to close down the HW. Don't wait
1406		 * here for this to complete. The watchdog is still running
1407		 * and it will take care of this.
1408		 */
1409		if (!list_empty(&adapter->mac_filter_list))
1410			adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1411		if (!list_empty(&adapter->vlan_filter_list))
1412			adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1413		if (!list_empty(&adapter->cloud_filter_list))
1414			adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1415		if (!list_empty(&adapter->fdir_list_head))
1416			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1417		if (!list_empty(&adapter->adv_rss_list_head))
1418			adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1419	}
1420
1421	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1422}
1423
1424/**
1425 * iavf_acquire_msix_vectors - Setup the MSIX capability
1426 * @adapter: board private structure
1427 * @vectors: number of vectors to request
1428 *
1429 * Work with the OS to set up the MSIX vectors needed.
1430 *
1431 * Returns 0 on success, negative on failure
1432 **/
1433static int
1434iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1435{
1436	int err, vector_threshold;
1437
1438	/* We'll want at least 3 (vector_threshold):
1439	 * 0) Other (Admin Queue and link, mostly)
1440	 * 1) TxQ[0] Cleanup
1441	 * 2) RxQ[0] Cleanup
1442	 */
1443	vector_threshold = MIN_MSIX_COUNT;
1444
1445	/* The more we get, the more we will assign to Tx/Rx Cleanup
1446	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1447	 * Right now, we simply care about how many we'll get; we'll
1448	 * set them up later while requesting irq's.
1449	 */
1450	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1451				    vector_threshold, vectors);
1452	if (err < 0) {
1453		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1454		kfree(adapter->msix_entries);
1455		adapter->msix_entries = NULL;
1456		return err;
1457	}
1458
1459	/* Adjust for only the vectors we'll use, which is minimum
1460	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1461	 * vectors we were allocated.
1462	 */
1463	adapter->num_msix_vectors = err;
1464	return 0;
1465}
1466
1467/**
1468 * iavf_free_queues - Free memory for all rings
1469 * @adapter: board private structure to initialize
1470 *
1471 * Free all of the memory associated with queue pairs.
1472 **/
1473static void iavf_free_queues(struct iavf_adapter *adapter)
1474{
1475	if (!adapter->vsi_res)
1476		return;
1477	adapter->num_active_queues = 0;
1478	kfree(adapter->tx_rings);
1479	adapter->tx_rings = NULL;
1480	kfree(adapter->rx_rings);
1481	adapter->rx_rings = NULL;
1482}
1483
1484/**
1485 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1486 * @adapter: board private structure
1487 *
1488 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1489 * stripped in certain descriptor fields. Instead of checking the offload
1490 * capability bits in the hot path, cache the location the ring specific
1491 * flags.
1492 */
1493void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1494{
1495	int i;
1496
1497	for (i = 0; i < adapter->num_active_queues; i++) {
1498		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1499		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1500
1501		/* prevent multiple L2TAG bits being set after VFR */
1502		tx_ring->flags &=
1503			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1504			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1505		rx_ring->flags &=
1506			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1507			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1508
1509		if (VLAN_ALLOWED(adapter)) {
1510			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1511			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1512		} else if (VLAN_V2_ALLOWED(adapter)) {
1513			struct virtchnl_vlan_supported_caps *stripping_support;
1514			struct virtchnl_vlan_supported_caps *insertion_support;
1515
1516			stripping_support =
1517				&adapter->vlan_v2_caps.offloads.stripping_support;
1518			insertion_support =
1519				&adapter->vlan_v2_caps.offloads.insertion_support;
1520
1521			if (stripping_support->outer) {
1522				if (stripping_support->outer &
1523				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1524					rx_ring->flags |=
1525						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1526				else if (stripping_support->outer &
1527					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1528					rx_ring->flags |=
1529						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1530			} else if (stripping_support->inner) {
1531				if (stripping_support->inner &
1532				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1533					rx_ring->flags |=
1534						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1535				else if (stripping_support->inner &
1536					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1537					rx_ring->flags |=
1538						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1539			}
1540
1541			if (insertion_support->outer) {
1542				if (insertion_support->outer &
1543				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1544					tx_ring->flags |=
1545						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1546				else if (insertion_support->outer &
1547					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1548					tx_ring->flags |=
1549						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1550			} else if (insertion_support->inner) {
1551				if (insertion_support->inner &
1552				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1553					tx_ring->flags |=
1554						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1555				else if (insertion_support->inner &
1556					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1557					tx_ring->flags |=
1558						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1559			}
1560		}
1561	}
1562}
1563
1564/**
1565 * iavf_alloc_queues - Allocate memory for all rings
1566 * @adapter: board private structure to initialize
1567 *
1568 * We allocate one ring per queue at run-time since we don't know the
1569 * number of queues at compile-time.  The polling_netdev array is
1570 * intended for Multiqueue, but should work fine with a single queue.
1571 **/
1572static int iavf_alloc_queues(struct iavf_adapter *adapter)
1573{
1574	int i, num_active_queues;
1575
1576	/* If we're in reset reallocating queues we don't actually know yet for
1577	 * certain the PF gave us the number of queues we asked for but we'll
1578	 * assume it did.  Once basic reset is finished we'll confirm once we
1579	 * start negotiating config with PF.
1580	 */
1581	if (adapter->num_req_queues)
1582		num_active_queues = adapter->num_req_queues;
1583	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1584		 adapter->num_tc)
1585		num_active_queues = adapter->ch_config.total_qps;
1586	else
1587		num_active_queues = min_t(int,
1588					  adapter->vsi_res->num_queue_pairs,
1589					  (int)(num_online_cpus()));
1590
1591
1592	adapter->tx_rings = kcalloc(num_active_queues,
1593				    sizeof(struct iavf_ring), GFP_KERNEL);
1594	if (!adapter->tx_rings)
1595		goto err_out;
1596	adapter->rx_rings = kcalloc(num_active_queues,
1597				    sizeof(struct iavf_ring), GFP_KERNEL);
1598	if (!adapter->rx_rings)
1599		goto err_out;
1600
1601	for (i = 0; i < num_active_queues; i++) {
1602		struct iavf_ring *tx_ring;
1603		struct iavf_ring *rx_ring;
1604
1605		tx_ring = &adapter->tx_rings[i];
1606
1607		tx_ring->queue_index = i;
1608		tx_ring->netdev = adapter->netdev;
1609		tx_ring->dev = &adapter->pdev->dev;
1610		tx_ring->count = adapter->tx_desc_count;
1611		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1612		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1613			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1614
1615		rx_ring = &adapter->rx_rings[i];
1616		rx_ring->queue_index = i;
1617		rx_ring->netdev = adapter->netdev;
1618		rx_ring->dev = &adapter->pdev->dev;
1619		rx_ring->count = adapter->rx_desc_count;
1620		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1621	}
1622
1623	adapter->num_active_queues = num_active_queues;
1624
1625	iavf_set_queue_vlan_tag_loc(adapter);
1626
1627	return 0;
1628
1629err_out:
1630	iavf_free_queues(adapter);
1631	return -ENOMEM;
1632}
1633
1634/**
1635 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1636 * @adapter: board private structure to initialize
1637 *
1638 * Attempt to configure the interrupts using the best available
1639 * capabilities of the hardware and the kernel.
1640 **/
1641static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1642{
1643	int vector, v_budget;
1644	int pairs = 0;
1645	int err = 0;
1646
1647	if (!adapter->vsi_res) {
1648		err = -EIO;
1649		goto out;
1650	}
1651	pairs = adapter->num_active_queues;
1652
1653	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1654	 * us much good if we have more vectors than CPUs. However, we already
1655	 * limit the total number of queues by the number of CPUs so we do not
1656	 * need any further limiting here.
1657	 */
1658	v_budget = min_t(int, pairs + NONQ_VECS,
1659			 (int)adapter->vf_res->max_vectors);
1660
1661	adapter->msix_entries = kcalloc(v_budget,
1662					sizeof(struct msix_entry), GFP_KERNEL);
1663	if (!adapter->msix_entries) {
1664		err = -ENOMEM;
1665		goto out;
1666	}
1667
1668	for (vector = 0; vector < v_budget; vector++)
1669		adapter->msix_entries[vector].entry = vector;
1670
1671	err = iavf_acquire_msix_vectors(adapter, v_budget);
1672	if (!err)
1673		iavf_schedule_finish_config(adapter);
1674
1675out:
 
 
1676	return err;
1677}
1678
1679/**
1680 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1681 * @adapter: board private structure
1682 *
1683 * Return 0 on success, negative on failure
1684 **/
1685static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1686{
1687	struct iavf_aqc_get_set_rss_key_data *rss_key =
1688		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1689	struct iavf_hw *hw = &adapter->hw;
1690	enum iavf_status status;
1691
1692	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1693		/* bail because we already have a command pending */
1694		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1695			adapter->current_op);
1696		return -EBUSY;
1697	}
1698
1699	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1700	if (status) {
1701		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1702			iavf_stat_str(hw, status),
1703			iavf_aq_str(hw, hw->aq.asq_last_status));
1704		return iavf_status_to_errno(status);
1705
1706	}
1707
1708	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1709				     adapter->rss_lut, adapter->rss_lut_size);
1710	if (status) {
1711		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1712			iavf_stat_str(hw, status),
1713			iavf_aq_str(hw, hw->aq.asq_last_status));
1714		return iavf_status_to_errno(status);
1715	}
1716
1717	return 0;
1718
1719}
1720
1721/**
1722 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1723 * @adapter: board private structure
1724 *
1725 * Returns 0 on success, negative on failure
1726 **/
1727static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1728{
1729	struct iavf_hw *hw = &adapter->hw;
1730	u32 *dw;
1731	u16 i;
1732
1733	dw = (u32 *)adapter->rss_key;
1734	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1735		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1736
1737	dw = (u32 *)adapter->rss_lut;
1738	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1739		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1740
1741	iavf_flush(hw);
1742
1743	return 0;
1744}
1745
1746/**
1747 * iavf_config_rss - Configure RSS keys and lut
1748 * @adapter: board private structure
1749 *
1750 * Returns 0 on success, negative on failure
1751 **/
1752int iavf_config_rss(struct iavf_adapter *adapter)
1753{
1754
1755	if (RSS_PF(adapter)) {
1756		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1757					IAVF_FLAG_AQ_SET_RSS_KEY;
1758		return 0;
1759	} else if (RSS_AQ(adapter)) {
1760		return iavf_config_rss_aq(adapter);
1761	} else {
1762		return iavf_config_rss_reg(adapter);
1763	}
1764}
1765
1766/**
1767 * iavf_fill_rss_lut - Fill the lut with default values
1768 * @adapter: board private structure
1769 **/
1770static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1771{
1772	u16 i;
1773
1774	for (i = 0; i < adapter->rss_lut_size; i++)
1775		adapter->rss_lut[i] = i % adapter->num_active_queues;
1776}
1777
1778/**
1779 * iavf_init_rss - Prepare for RSS
1780 * @adapter: board private structure
1781 *
1782 * Return 0 on success, negative on failure
1783 **/
1784static int iavf_init_rss(struct iavf_adapter *adapter)
1785{
1786	struct iavf_hw *hw = &adapter->hw;
 
1787
1788	if (!RSS_PF(adapter)) {
1789		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1790		if (adapter->vf_res->vf_cap_flags &
1791		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1792			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1793		else
1794			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1795
1796		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1797		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1798	}
1799
1800	iavf_fill_rss_lut(adapter);
1801	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
 
1802
1803	return iavf_config_rss(adapter);
1804}
1805
1806/**
1807 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1808 * @adapter: board private structure to initialize
1809 *
1810 * We allocate one q_vector per queue interrupt.  If allocation fails we
1811 * return -ENOMEM.
1812 **/
1813static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1814{
1815	int q_idx = 0, num_q_vectors;
1816	struct iavf_q_vector *q_vector;
1817
1818	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1819	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1820				     GFP_KERNEL);
1821	if (!adapter->q_vectors)
1822		return -ENOMEM;
1823
1824	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1825		q_vector = &adapter->q_vectors[q_idx];
1826		q_vector->adapter = adapter;
1827		q_vector->vsi = &adapter->vsi;
1828		q_vector->v_idx = q_idx;
1829		q_vector->reg_idx = q_idx;
1830		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1831		netif_napi_add(adapter->netdev, &q_vector->napi,
1832			       iavf_napi_poll);
1833	}
1834
1835	return 0;
1836}
1837
1838/**
1839 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1840 * @adapter: board private structure to initialize
1841 *
1842 * This function frees the memory allocated to the q_vectors.  In addition if
1843 * NAPI is enabled it will delete any references to the NAPI struct prior
1844 * to freeing the q_vector.
1845 **/
1846static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1847{
1848	int q_idx, num_q_vectors;
 
1849
1850	if (!adapter->q_vectors)
1851		return;
1852
1853	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 
1854
1855	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1856		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1857
1858		netif_napi_del(&q_vector->napi);
 
1859	}
1860	kfree(adapter->q_vectors);
1861	adapter->q_vectors = NULL;
1862}
1863
1864/**
1865 * iavf_reset_interrupt_capability - Reset MSIX setup
1866 * @adapter: board private structure
1867 *
1868 **/
1869static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1870{
1871	if (!adapter->msix_entries)
1872		return;
1873
1874	pci_disable_msix(adapter->pdev);
1875	kfree(adapter->msix_entries);
1876	adapter->msix_entries = NULL;
1877}
1878
1879/**
1880 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1881 * @adapter: board private structure to initialize
1882 *
1883 **/
1884static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1885{
1886	int err;
1887
1888	err = iavf_alloc_queues(adapter);
1889	if (err) {
1890		dev_err(&adapter->pdev->dev,
1891			"Unable to allocate memory for queues\n");
1892		goto err_alloc_queues;
1893	}
1894
 
1895	err = iavf_set_interrupt_capability(adapter);
 
1896	if (err) {
1897		dev_err(&adapter->pdev->dev,
1898			"Unable to setup interrupt capabilities\n");
1899		goto err_set_interrupt;
1900	}
1901
1902	err = iavf_alloc_q_vectors(adapter);
1903	if (err) {
1904		dev_err(&adapter->pdev->dev,
1905			"Unable to allocate memory for queue vectors\n");
1906		goto err_alloc_q_vectors;
1907	}
1908
1909	/* If we've made it so far while ADq flag being ON, then we haven't
1910	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1911	 * resources have been allocated in the reset path.
1912	 * Now we can truly claim that ADq is enabled.
1913	 */
1914	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1915	    adapter->num_tc)
1916		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1917			 adapter->num_tc);
1918
1919	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1920		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1921		 adapter->num_active_queues);
1922
1923	return 0;
1924err_alloc_q_vectors:
1925	iavf_reset_interrupt_capability(adapter);
1926err_set_interrupt:
1927	iavf_free_queues(adapter);
1928err_alloc_queues:
1929	return err;
1930}
1931
1932/**
1933 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1934 * @adapter: board private structure
1935 **/
1936static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1937{
1938	iavf_free_q_vectors(adapter);
1939	iavf_reset_interrupt_capability(adapter);
1940	iavf_free_queues(adapter);
1941}
1942
1943/**
1944 * iavf_free_rss - Free memory used by RSS structs
1945 * @adapter: board private structure
1946 **/
1947static void iavf_free_rss(struct iavf_adapter *adapter)
1948{
1949	kfree(adapter->rss_key);
1950	adapter->rss_key = NULL;
1951
1952	kfree(adapter->rss_lut);
1953	adapter->rss_lut = NULL;
1954}
1955
1956/**
1957 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1958 * @adapter: board private structure
1959 * @running: true if adapter->state == __IAVF_RUNNING
1960 *
1961 * Returns 0 on success, negative on failure
1962 **/
1963static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1964{
1965	struct net_device *netdev = adapter->netdev;
1966	int err;
1967
1968	if (running)
1969		iavf_free_traffic_irqs(adapter);
1970	iavf_free_misc_irq(adapter);
1971	iavf_free_interrupt_scheme(adapter);
 
 
1972
1973	err = iavf_init_interrupt_scheme(adapter);
1974	if (err)
1975		goto err;
1976
1977	netif_tx_stop_all_queues(netdev);
1978
1979	err = iavf_request_misc_irq(adapter);
1980	if (err)
1981		goto err;
1982
1983	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1984
1985	iavf_map_rings_to_vectors(adapter);
 
 
 
 
 
1986err:
1987	return err;
1988}
1989
1990/**
1991 * iavf_finish_config - do all netdev work that needs RTNL
1992 * @work: our work_struct
1993 *
1994 * Do work that needs both RTNL and crit_lock.
1995 **/
1996static void iavf_finish_config(struct work_struct *work)
1997{
1998	struct iavf_adapter *adapter;
1999	int pairs, err;
2000
2001	adapter = container_of(work, struct iavf_adapter, finish_config);
2002
2003	/* Always take RTNL first to prevent circular lock dependency */
2004	rtnl_lock();
2005	mutex_lock(&adapter->crit_lock);
2006
2007	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
2008	    adapter->netdev->reg_state == NETREG_REGISTERED &&
2009	    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2010		netdev_update_features(adapter->netdev);
2011		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2012	}
2013
2014	switch (adapter->state) {
2015	case __IAVF_DOWN:
2016		if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2017			err = register_netdevice(adapter->netdev);
2018			if (err) {
2019				dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2020					err);
2021
2022				/* go back and try again.*/
2023				iavf_free_rss(adapter);
2024				iavf_free_misc_irq(adapter);
2025				iavf_reset_interrupt_capability(adapter);
2026				iavf_change_state(adapter,
2027						  __IAVF_INIT_CONFIG_ADAPTER);
2028				goto out;
2029			}
2030		}
2031
2032		/* Set the real number of queues when reset occurs while
2033		 * state == __IAVF_DOWN
2034		 */
2035		fallthrough;
2036	case __IAVF_RUNNING:
2037		pairs = adapter->num_active_queues;
2038		netif_set_real_num_rx_queues(adapter->netdev, pairs);
2039		netif_set_real_num_tx_queues(adapter->netdev, pairs);
2040		break;
2041
2042	default:
2043		break;
2044	}
2045
2046out:
2047	mutex_unlock(&adapter->crit_lock);
2048	rtnl_unlock();
2049}
2050
2051/**
2052 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2053 * @adapter: board private structure
2054 **/
2055void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2056{
2057	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2058		queue_work(adapter->wq, &adapter->finish_config);
2059}
2060
2061/**
2062 * iavf_process_aq_command - process aq_required flags
2063 * and sends aq command
2064 * @adapter: pointer to iavf adapter structure
2065 *
2066 * Returns 0 on success
2067 * Returns error code if no command was sent
2068 * or error code if the command failed.
2069 **/
2070static int iavf_process_aq_command(struct iavf_adapter *adapter)
2071{
2072	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2073		return iavf_send_vf_config_msg(adapter);
2074	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2075		return iavf_send_vf_offload_vlan_v2_msg(adapter);
2076	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2077		iavf_disable_queues(adapter);
2078		return 0;
2079	}
2080
2081	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2082		iavf_map_queues(adapter);
2083		return 0;
2084	}
2085
2086	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2087		iavf_add_ether_addrs(adapter);
2088		return 0;
2089	}
2090
2091	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2092		iavf_add_vlans(adapter);
2093		return 0;
2094	}
2095
2096	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2097		iavf_del_ether_addrs(adapter);
2098		return 0;
2099	}
2100
2101	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2102		iavf_del_vlans(adapter);
2103		return 0;
2104	}
2105
2106	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2107		iavf_enable_vlan_stripping(adapter);
2108		return 0;
2109	}
2110
2111	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2112		iavf_disable_vlan_stripping(adapter);
2113		return 0;
2114	}
2115
2116	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2117		iavf_configure_queues(adapter);
2118		return 0;
2119	}
2120
2121	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2122		iavf_enable_queues(adapter);
2123		return 0;
2124	}
2125
2126	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2127		/* This message goes straight to the firmware, not the
2128		 * PF, so we don't have to set current_op as we will
2129		 * not get a response through the ARQ.
2130		 */
2131		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2132		return 0;
2133	}
2134	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2135		iavf_get_hena(adapter);
2136		return 0;
2137	}
2138	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2139		iavf_set_hena(adapter);
2140		return 0;
2141	}
2142	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2143		iavf_set_rss_key(adapter);
2144		return 0;
2145	}
2146	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2147		iavf_set_rss_lut(adapter);
2148		return 0;
2149	}
2150	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2151		iavf_set_rss_hfunc(adapter);
 
 
2152		return 0;
2153	}
2154
2155	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2156		iavf_set_promiscuous(adapter);
 
 
 
 
 
 
2157		return 0;
2158	}
2159
2160	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2161		iavf_enable_channels(adapter);
2162		return 0;
2163	}
2164
2165	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2166		iavf_disable_channels(adapter);
2167		return 0;
2168	}
2169	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2170		iavf_add_cloud_filter(adapter);
2171		return 0;
2172	}
 
2173	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2174		iavf_del_cloud_filter(adapter);
2175		return 0;
2176	}
2177	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2178		iavf_add_fdir_filter(adapter);
2179		return IAVF_SUCCESS;
2180	}
2181	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2182		iavf_del_fdir_filter(adapter);
2183		return IAVF_SUCCESS;
2184	}
2185	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2186		iavf_add_adv_rss_cfg(adapter);
2187		return 0;
2188	}
2189	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2190		iavf_del_adv_rss_cfg(adapter);
2191		return 0;
2192	}
2193	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2194		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2195		return 0;
2196	}
2197	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2198		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2199		return 0;
2200	}
2201	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2202		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2203		return 0;
2204	}
2205	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2206		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2207		return 0;
2208	}
2209	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2210		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2211		return 0;
2212	}
2213	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2214		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2215		return 0;
2216	}
2217	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2218		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2219		return 0;
2220	}
2221	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2222		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2223		return 0;
2224	}
2225
2226	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2227		iavf_request_stats(adapter);
2228		return 0;
2229	}
2230
2231	return -EAGAIN;
2232}
2233
2234/**
2235 * iavf_set_vlan_offload_features - set VLAN offload configuration
2236 * @adapter: board private structure
2237 * @prev_features: previous features used for comparison
2238 * @features: updated features used for configuration
2239 *
2240 * Set the aq_required bit(s) based on the requested features passed in to
2241 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2242 * the watchdog if any changes are requested to expedite the request via
2243 * virtchnl.
2244 **/
2245static void
2246iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2247			       netdev_features_t prev_features,
2248			       netdev_features_t features)
2249{
2250	bool enable_stripping = true, enable_insertion = true;
2251	u16 vlan_ethertype = 0;
2252	u64 aq_required = 0;
2253
2254	/* keep cases separate because one ethertype for offloads can be
2255	 * disabled at the same time as another is disabled, so check for an
2256	 * enabled ethertype first, then check for disabled. Default to
2257	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2258	 * stripping.
2259	 */
2260	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2261		vlan_ethertype = ETH_P_8021AD;
2262	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2263		vlan_ethertype = ETH_P_8021Q;
2264	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2265		vlan_ethertype = ETH_P_8021AD;
2266	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2267		vlan_ethertype = ETH_P_8021Q;
2268	else
2269		vlan_ethertype = ETH_P_8021Q;
2270
2271	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2272		enable_stripping = false;
2273	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2274		enable_insertion = false;
2275
2276	if (VLAN_ALLOWED(adapter)) {
2277		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2278		 * stripping via virtchnl. VLAN insertion can be toggled on the
2279		 * netdev, but it doesn't require a virtchnl message
2280		 */
2281		if (enable_stripping)
2282			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2283		else
2284			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2285
2286	} else if (VLAN_V2_ALLOWED(adapter)) {
2287		switch (vlan_ethertype) {
2288		case ETH_P_8021Q:
2289			if (enable_stripping)
2290				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2291			else
2292				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2293
2294			if (enable_insertion)
2295				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2296			else
2297				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2298			break;
2299		case ETH_P_8021AD:
2300			if (enable_stripping)
2301				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2302			else
2303				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2304
2305			if (enable_insertion)
2306				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2307			else
2308				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2309			break;
2310		}
2311	}
2312
2313	if (aq_required)
2314		iavf_schedule_aq_request(adapter, aq_required);
2315}
2316
2317/**
2318 * iavf_startup - first step of driver startup
2319 * @adapter: board private structure
2320 *
2321 * Function process __IAVF_STARTUP driver state.
2322 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2323 * when fails the state is changed to __IAVF_INIT_FAILED
2324 **/
2325static void iavf_startup(struct iavf_adapter *adapter)
2326{
2327	struct pci_dev *pdev = adapter->pdev;
2328	struct iavf_hw *hw = &adapter->hw;
2329	enum iavf_status status;
2330	int ret;
2331
2332	WARN_ON(adapter->state != __IAVF_STARTUP);
2333
2334	/* driver loaded, probe complete */
2335	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2336	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
 
 
 
 
 
2337
2338	ret = iavf_check_reset_complete(hw);
2339	if (ret) {
2340		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2341			 ret);
2342		goto err;
2343	}
2344	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2345	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2346	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2347	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2348
2349	status = iavf_init_adminq(hw);
2350	if (status) {
2351		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2352			status);
2353		goto err;
2354	}
2355	ret = iavf_send_api_ver(adapter);
2356	if (ret) {
2357		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2358		iavf_shutdown_adminq(hw);
2359		goto err;
2360	}
2361	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2362	return;
2363err:
2364	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2365}
2366
2367/**
2368 * iavf_init_version_check - second step of driver startup
2369 * @adapter: board private structure
2370 *
2371 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2372 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2373 * when fails the state is changed to __IAVF_INIT_FAILED
2374 **/
2375static void iavf_init_version_check(struct iavf_adapter *adapter)
2376{
2377	struct pci_dev *pdev = adapter->pdev;
2378	struct iavf_hw *hw = &adapter->hw;
2379	int err = -EAGAIN;
2380
2381	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2382
2383	if (!iavf_asq_done(hw)) {
2384		dev_err(&pdev->dev, "Admin queue command never completed\n");
2385		iavf_shutdown_adminq(hw);
2386		iavf_change_state(adapter, __IAVF_STARTUP);
2387		goto err;
2388	}
2389
2390	/* aq msg sent, awaiting reply */
2391	err = iavf_verify_api_ver(adapter);
2392	if (err) {
2393		if (err == -EALREADY)
2394			err = iavf_send_api_ver(adapter);
2395		else
2396			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2397				adapter->pf_version.major,
2398				adapter->pf_version.minor,
2399				VIRTCHNL_VERSION_MAJOR,
2400				VIRTCHNL_VERSION_MINOR);
2401		goto err;
2402	}
2403	err = iavf_send_vf_config_msg(adapter);
2404	if (err) {
2405		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2406			err);
2407		goto err;
2408	}
2409	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2410	return;
2411err:
2412	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2413}
2414
2415/**
2416 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2417 * @adapter: board private structure
2418 */
2419int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2420{
2421	int i, num_req_queues = adapter->num_req_queues;
2422	struct iavf_vsi *vsi = &adapter->vsi;
2423
2424	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2425		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2426			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2427	}
2428	if (!adapter->vsi_res) {
2429		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2430		return -ENODEV;
2431	}
2432
2433	if (num_req_queues &&
2434	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2435		/* Problem.  The PF gave us fewer queues than what we had
2436		 * negotiated in our request.  Need a reset to see if we can't
2437		 * get back to a working state.
2438		 */
2439		dev_err(&adapter->pdev->dev,
2440			"Requested %d queues, but PF only gave us %d.\n",
2441			num_req_queues,
2442			adapter->vsi_res->num_queue_pairs);
2443		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2444		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2445		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2446
2447		return -EAGAIN;
2448	}
2449	adapter->num_req_queues = 0;
2450	adapter->vsi.id = adapter->vsi_res->vsi_id;
2451
2452	adapter->vsi.back = adapter;
2453	adapter->vsi.base_vector = 1;
2454	vsi->netdev = adapter->netdev;
2455	vsi->qs_handle = adapter->vsi_res->qset_handle;
2456	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2457		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2458		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2459	} else {
2460		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2461		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2462	}
2463
2464	return 0;
2465}
2466
2467/**
2468 * iavf_init_get_resources - third step of driver startup
2469 * @adapter: board private structure
2470 *
2471 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2472 * finishes driver initialization procedure.
2473 * When success the state is changed to __IAVF_DOWN
2474 * when fails the state is changed to __IAVF_INIT_FAILED
2475 **/
2476static void iavf_init_get_resources(struct iavf_adapter *adapter)
2477{
 
2478	struct pci_dev *pdev = adapter->pdev;
2479	struct iavf_hw *hw = &adapter->hw;
2480	int err;
2481
2482	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2483	/* aq msg sent, awaiting reply */
2484	if (!adapter->vf_res) {
2485		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2486					  GFP_KERNEL);
2487		if (!adapter->vf_res) {
2488			err = -ENOMEM;
 
2489			goto err;
2490		}
2491	}
2492	err = iavf_get_vf_config(adapter);
2493	if (err == -EALREADY) {
2494		err = iavf_send_vf_config_msg(adapter);
2495		goto err;
2496	} else if (err == -EINVAL) {
2497		/* We only get -EINVAL if the device is in a very bad
2498		 * state or if we've been disabled for previous bad
2499		 * behavior. Either way, we're done now.
2500		 */
2501		iavf_shutdown_adminq(hw);
2502		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2503		return;
2504	}
2505	if (err) {
2506		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2507		goto err_alloc;
2508	}
2509
2510	err = iavf_parse_vf_resource_msg(adapter);
2511	if (err) {
2512		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2513			err);
2514		goto err_alloc;
2515	}
2516	/* Some features require additional messages to negotiate extended
2517	 * capabilities. These are processed in sequence by the
2518	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2519	 */
2520	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2521
2522	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2523	return;
2524
2525err_alloc:
2526	kfree(adapter->vf_res);
2527	adapter->vf_res = NULL;
2528err:
2529	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2530}
2531
2532/**
2533 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2534 * @adapter: board private structure
2535 *
2536 * Function processes send of the extended VLAN V2 capability message to the
2537 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2538 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2539 */
2540static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2541{
2542	int ret;
2543
2544	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2545
2546	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2547	if (ret && ret == -EOPNOTSUPP) {
2548		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2549		 * we did not send the capability exchange message and do not
2550		 * expect a response.
2551		 */
2552		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2553	}
2554
2555	/* We sent the message, so move on to the next step */
2556	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2557}
2558
2559/**
2560 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2561 * @adapter: board private structure
2562 *
2563 * Function processes receipt of the extended VLAN V2 capability message from
2564 * the PF.
2565 **/
2566static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2567{
2568	int ret;
2569
2570	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2571
2572	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2573
2574	ret = iavf_get_vf_vlan_v2_caps(adapter);
2575	if (ret)
2576		goto err;
2577
2578	/* We've processed receipt of the VLAN V2 caps message */
2579	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2580	return;
2581err:
2582	/* We didn't receive a reply. Make sure we try sending again when
2583	 * __IAVF_INIT_FAILED attempts to recover.
2584	 */
2585	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2586	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2587}
2588
2589/**
2590 * iavf_init_process_extended_caps - Part of driver startup
2591 * @adapter: board private structure
2592 *
2593 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2594 * handles negotiating capabilities for features which require an additional
2595 * message.
2596 *
2597 * Once all extended capabilities exchanges are finished, the driver will
2598 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2599 */
2600static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2601{
2602	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2603
2604	/* Process capability exchange for VLAN V2 */
2605	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2606		iavf_init_send_offload_vlan_v2_caps(adapter);
2607		return;
2608	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2609		iavf_init_recv_offload_vlan_v2_caps(adapter);
2610		return;
2611	}
2612
2613	/* When we reach here, no further extended capabilities exchanges are
2614	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2615	 */
2616	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2617}
2618
2619/**
2620 * iavf_init_config_adapter - last part of driver startup
2621 * @adapter: board private structure
2622 *
2623 * After all the supported capabilities are negotiated, then the
2624 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2625 */
2626static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2627{
2628	struct net_device *netdev = adapter->netdev;
2629	struct pci_dev *pdev = adapter->pdev;
2630	int err;
2631
2632	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2633
2634	if (iavf_process_config(adapter))
2635		goto err;
2636
2637	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2638
2639	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2640
2641	netdev->netdev_ops = &iavf_netdev_ops;
2642	iavf_set_ethtool_ops(netdev);
2643	netdev->watchdog_timeo = 5 * HZ;
2644
2645	/* MTU range: 68 - 9710 */
2646	netdev->min_mtu = ETH_MIN_MTU;
2647	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2648
2649	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2650		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2651			 adapter->hw.mac.addr);
2652		eth_hw_addr_random(netdev);
2653		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2654	} else {
2655		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2656		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2657	}
2658
2659	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2660	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2661	err = iavf_init_interrupt_scheme(adapter);
2662	if (err)
2663		goto err_sw_init;
2664	iavf_map_rings_to_vectors(adapter);
2665	if (adapter->vf_res->vf_cap_flags &
2666		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2667		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2668
2669	err = iavf_request_misc_irq(adapter);
2670	if (err)
2671		goto err_sw_init;
2672
2673	netif_carrier_off(netdev);
2674	adapter->link_up = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2675	netif_tx_stop_all_queues(netdev);
2676
 
 
 
 
 
 
 
2677	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2678	if (netdev->features & NETIF_F_GRO)
2679		dev_info(&pdev->dev, "GRO is enabled\n");
2680
2681	iavf_change_state(adapter, __IAVF_DOWN);
2682	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
 
2683
2684	iavf_misc_irq_enable(adapter);
2685	wake_up(&adapter->down_waitqueue);
2686
2687	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2688	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2689	if (!adapter->rss_key || !adapter->rss_lut) {
2690		err = -ENOMEM;
2691		goto err_mem;
2692	}
2693	if (RSS_AQ(adapter))
2694		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2695	else
2696		iavf_init_rss(adapter);
2697
2698	if (VLAN_V2_ALLOWED(adapter))
2699		/* request initial VLAN offload settings */
2700		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2701
2702	iavf_schedule_finish_config(adapter);
2703	return;
2704
2705err_mem:
2706	iavf_free_rss(adapter);
 
2707	iavf_free_misc_irq(adapter);
2708err_sw_init:
2709	iavf_reset_interrupt_capability(adapter);
 
 
 
2710err:
2711	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2712}
2713
2714/**
2715 * iavf_watchdog_task - Periodic call-back task
2716 * @work: pointer to work_struct
2717 **/
2718static void iavf_watchdog_task(struct work_struct *work)
2719{
2720	struct iavf_adapter *adapter = container_of(work,
2721						    struct iavf_adapter,
2722						    watchdog_task.work);
2723	struct iavf_hw *hw = &adapter->hw;
2724	u32 reg_val;
2725
2726	if (!mutex_trylock(&adapter->crit_lock)) {
2727		if (adapter->state == __IAVF_REMOVE)
2728			return;
2729
2730		goto restart_watchdog;
2731	}
2732
2733	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2734		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2735
2736	switch (adapter->state) {
2737	case __IAVF_STARTUP:
2738		iavf_startup(adapter);
2739		mutex_unlock(&adapter->crit_lock);
2740		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2741				   msecs_to_jiffies(30));
2742		return;
2743	case __IAVF_INIT_VERSION_CHECK:
2744		iavf_init_version_check(adapter);
2745		mutex_unlock(&adapter->crit_lock);
2746		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2747				   msecs_to_jiffies(30));
2748		return;
2749	case __IAVF_INIT_GET_RESOURCES:
2750		iavf_init_get_resources(adapter);
2751		mutex_unlock(&adapter->crit_lock);
2752		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2753				   msecs_to_jiffies(1));
2754		return;
2755	case __IAVF_INIT_EXTENDED_CAPS:
2756		iavf_init_process_extended_caps(adapter);
2757		mutex_unlock(&adapter->crit_lock);
2758		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2759				   msecs_to_jiffies(1));
2760		return;
2761	case __IAVF_INIT_CONFIG_ADAPTER:
2762		iavf_init_config_adapter(adapter);
2763		mutex_unlock(&adapter->crit_lock);
2764		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2765				   msecs_to_jiffies(1));
2766		return;
2767	case __IAVF_INIT_FAILED:
2768		if (test_bit(__IAVF_IN_REMOVE_TASK,
2769			     &adapter->crit_section)) {
2770			/* Do not update the state and do not reschedule
2771			 * watchdog task, iavf_remove should handle this state
2772			 * as it can loop forever
2773			 */
2774			mutex_unlock(&adapter->crit_lock);
2775			return;
2776		}
2777		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2778			dev_err(&adapter->pdev->dev,
2779				"Failed to communicate with PF; waiting before retry\n");
2780			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2781			iavf_shutdown_adminq(hw);
2782			mutex_unlock(&adapter->crit_lock);
2783			queue_delayed_work(adapter->wq,
2784					   &adapter->watchdog_task, (5 * HZ));
2785			return;
2786		}
2787		/* Try again from failed step*/
2788		iavf_change_state(adapter, adapter->last_state);
2789		mutex_unlock(&adapter->crit_lock);
2790		queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2791		return;
2792	case __IAVF_COMM_FAILED:
2793		if (test_bit(__IAVF_IN_REMOVE_TASK,
2794			     &adapter->crit_section)) {
2795			/* Set state to __IAVF_INIT_FAILED and perform remove
2796			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2797			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2798			 */
2799			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2800			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2801			mutex_unlock(&adapter->crit_lock);
2802			return;
2803		}
2804		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2805			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2806		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2807		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2808			/* A chance for redemption! */
2809			dev_err(&adapter->pdev->dev,
2810				"Hardware came out of reset. Attempting reinit.\n");
2811			/* When init task contacts the PF and
 
 
 
 
 
 
2812			 * gets everything set up again, it'll restart the
2813			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2814			 */
2815			iavf_change_state(adapter, __IAVF_STARTUP);
2816			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2817		}
2818		adapter->aq_required = 0;
2819		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2820		mutex_unlock(&adapter->crit_lock);
2821		queue_delayed_work(adapter->wq,
 
2822				   &adapter->watchdog_task,
2823				   msecs_to_jiffies(10));
2824		return;
2825	case __IAVF_RESETTING:
2826		mutex_unlock(&adapter->crit_lock);
2827		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2828				   HZ * 2);
2829		return;
2830	case __IAVF_DOWN:
2831	case __IAVF_DOWN_PENDING:
2832	case __IAVF_TESTING:
2833	case __IAVF_RUNNING:
2834		if (adapter->current_op) {
2835			if (!iavf_asq_done(hw)) {
2836				dev_dbg(&adapter->pdev->dev,
2837					"Admin queue timeout\n");
2838				iavf_send_api_ver(adapter);
2839			}
2840		} else {
2841			int ret = iavf_process_aq_command(adapter);
2842
2843			/* An error will be returned if no commands were
2844			 * processed; use this opportunity to update stats
2845			 * if the error isn't -ENOTSUPP
2846			 */
2847			if (ret && ret != -EOPNOTSUPP &&
2848			    adapter->state == __IAVF_RUNNING)
2849				iavf_request_stats(adapter);
2850		}
2851		if (adapter->state == __IAVF_RUNNING)
2852			iavf_detect_recover_hung(&adapter->vsi);
2853		break;
2854	case __IAVF_REMOVE:
 
 
2855	default:
2856		mutex_unlock(&adapter->crit_lock);
2857		return;
2858	}
2859
2860	/* check for hw reset */
2861	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2862	if (!reg_val) {
 
 
2863		adapter->aq_required = 0;
2864		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2865		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2866		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2867		mutex_unlock(&adapter->crit_lock);
2868		queue_delayed_work(adapter->wq,
2869				   &adapter->watchdog_task, HZ * 2);
2870		return;
2871	}
2872
2873	mutex_unlock(&adapter->crit_lock);
 
 
 
 
 
2874restart_watchdog:
2875	if (adapter->state >= __IAVF_DOWN)
2876		queue_work(adapter->wq, &adapter->adminq_task);
2877	if (adapter->aq_required)
2878		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2879				   msecs_to_jiffies(20));
2880	else
2881		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2882				   HZ * 2);
2883}
2884
2885/**
2886 * iavf_disable_vf - disable VF
2887 * @adapter: board private structure
2888 *
2889 * Set communication failed flag and free all resources.
2890 * NOTE: This function is expected to be called with crit_lock being held.
2891 **/
2892static void iavf_disable_vf(struct iavf_adapter *adapter)
2893{
2894	struct iavf_mac_filter *f, *ftmp;
2895	struct iavf_vlan_filter *fv, *fvtmp;
2896	struct iavf_cloud_filter *cf, *cftmp;
2897
2898	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2899
2900	/* We don't use netif_running() because it may be true prior to
2901	 * ndo_open() returning, so we can't assume it means all our open
2902	 * tasks have finished, since we're not holding the rtnl_lock here.
2903	 */
2904	if (adapter->state == __IAVF_RUNNING) {
2905		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2906		netif_carrier_off(adapter->netdev);
2907		netif_tx_disable(adapter->netdev);
2908		adapter->link_up = false;
2909		iavf_napi_disable_all(adapter);
2910		iavf_irq_disable(adapter);
2911		iavf_free_traffic_irqs(adapter);
2912		iavf_free_all_tx_resources(adapter);
2913		iavf_free_all_rx_resources(adapter);
2914	}
2915
2916	spin_lock_bh(&adapter->mac_vlan_list_lock);
2917
2918	/* Delete all of the filters */
2919	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2920		list_del(&f->list);
2921		kfree(f);
2922	}
2923
2924	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2925		list_del(&fv->list);
2926		kfree(fv);
2927	}
2928	adapter->num_vlan_filters = 0;
2929
2930	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2931
2932	spin_lock_bh(&adapter->cloud_filter_list_lock);
2933	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2934		list_del(&cf->list);
2935		kfree(cf);
2936		adapter->num_cloud_filters--;
2937	}
2938	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2939
2940	iavf_free_misc_irq(adapter);
2941	iavf_free_interrupt_scheme(adapter);
2942	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
 
 
2943	iavf_shutdown_adminq(&adapter->hw);
 
 
2944	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2945	iavf_change_state(adapter, __IAVF_DOWN);
2946	wake_up(&adapter->down_waitqueue);
2947	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2948}
2949
 
 
2950/**
2951 * iavf_reset_task - Call-back task to handle hardware reset
2952 * @work: pointer to work_struct
2953 *
2954 * During reset we need to shut down and reinitialize the admin queue
2955 * before we can use it to communicate with the PF again. We also clear
2956 * and reinit the rings because that context is lost as well.
2957 **/
2958static void iavf_reset_task(struct work_struct *work)
2959{
2960	struct iavf_adapter *adapter = container_of(work,
2961						      struct iavf_adapter,
2962						      reset_task);
2963	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2964	struct net_device *netdev = adapter->netdev;
2965	struct iavf_hw *hw = &adapter->hw;
2966	struct iavf_mac_filter *f, *ftmp;
2967	struct iavf_cloud_filter *cf;
2968	enum iavf_status status;
2969	u32 reg_val;
2970	int i = 0, err;
2971	bool running;
2972
2973	/* When device is being removed it doesn't make sense to run the reset
2974	 * task, just return in such a case.
2975	 */
2976	if (!mutex_trylock(&adapter->crit_lock)) {
2977		if (adapter->state != __IAVF_REMOVE)
2978			queue_work(adapter->wq, &adapter->reset_task);
2979
2980		return;
 
 
 
 
 
 
 
 
 
2981	}
2982
2983	iavf_misc_irq_disable(adapter);
2984	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2985		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2986		/* Restart the AQ here. If we have been reset but didn't
2987		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2988		 */
2989		iavf_shutdown_adminq(hw);
2990		iavf_init_adminq(hw);
2991		iavf_request_reset(adapter);
2992	}
2993	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2994
2995	/* poll until we see the reset actually happen */
2996	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2997		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2998			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2999		if (!reg_val)
3000			break;
3001		usleep_range(5000, 10000);
3002	}
3003	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3004		dev_info(&adapter->pdev->dev, "Never saw reset\n");
3005		goto continue_reset; /* act like the reset happened */
3006	}
3007
3008	/* wait until the reset is complete and the PF is responding to us */
3009	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3010		/* sleep first to make sure a minimum wait time is met */
3011		msleep(IAVF_RESET_WAIT_MS);
3012
3013		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3014			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3015		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3016			break;
3017	}
3018
3019	pci_set_master(adapter->pdev);
3020	pci_restore_msi_state(adapter->pdev);
3021
3022	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3023		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3024			reg_val);
3025		iavf_disable_vf(adapter);
3026		mutex_unlock(&adapter->crit_lock);
3027		return; /* Do not attempt to reinit. It's dead, Jim. */
3028	}
3029
3030continue_reset:
3031	/* We don't use netif_running() because it may be true prior to
3032	 * ndo_open() returning, so we can't assume it means all our open
3033	 * tasks have finished, since we're not holding the rtnl_lock here.
3034	 */
3035	running = adapter->state == __IAVF_RUNNING;
 
3036
3037	if (running) {
3038		netif_carrier_off(netdev);
3039		netif_tx_stop_all_queues(netdev);
3040		adapter->link_up = false;
3041		iavf_napi_disable_all(adapter);
3042	}
3043	iavf_irq_disable(adapter);
3044
3045	iavf_change_state(adapter, __IAVF_RESETTING);
3046	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3047
3048	/* free the Tx/Rx rings and descriptors, might be better to just
3049	 * re-use them sometime in the future
3050	 */
3051	iavf_free_all_rx_resources(adapter);
3052	iavf_free_all_tx_resources(adapter);
3053
3054	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3055	/* kill and reinit the admin queue */
3056	iavf_shutdown_adminq(hw);
3057	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3058	status = iavf_init_adminq(hw);
3059	if (status) {
3060		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3061			 status);
3062		goto reset_err;
3063	}
3064	adapter->aq_required = 0;
3065
3066	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3067	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3068		err = iavf_reinit_interrupt_scheme(adapter, running);
3069		if (err)
3070			goto reset_err;
3071	}
3072
3073	if (RSS_AQ(adapter)) {
3074		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3075	} else {
3076		err = iavf_init_rss(adapter);
3077		if (err)
3078			goto reset_err;
3079	}
3080
3081	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3082	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3083	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3084	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3085	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3086	 * been successfully sent and negotiated
3087	 */
3088	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3089	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3090
3091	spin_lock_bh(&adapter->mac_vlan_list_lock);
3092
3093	/* Delete filter for the current MAC address, it could have
3094	 * been changed by the PF via administratively set MAC.
3095	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3096	 */
3097	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3098		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3099			list_del(&f->list);
3100			kfree(f);
3101		}
3102	}
3103	/* re-add all MAC filters */
3104	list_for_each_entry(f, &adapter->mac_filter_list, list) {
3105		f->add = true;
3106	}
 
 
 
 
 
3107	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3108
3109	/* check if TCs are running and re-add all cloud filters */
3110	spin_lock_bh(&adapter->cloud_filter_list_lock);
3111	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3112	    adapter->num_tc) {
3113		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3114			cf->add = true;
3115		}
3116	}
3117	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3118
3119	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
 
3120	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3121	iavf_misc_irq_enable(adapter);
3122
3123	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3124
3125	/* We were running when the reset started, so we need to restore some
3126	 * state here.
3127	 */
3128	if (running) {
3129		/* allocate transmit descriptors */
3130		err = iavf_setup_all_tx_resources(adapter);
3131		if (err)
3132			goto reset_err;
3133
3134		/* allocate receive descriptors */
3135		err = iavf_setup_all_rx_resources(adapter);
3136		if (err)
3137			goto reset_err;
3138
3139		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3140		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3141			err = iavf_request_traffic_irqs(adapter, netdev->name);
3142			if (err)
3143				goto reset_err;
3144
3145			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3146		}
3147
3148		iavf_configure(adapter);
3149
3150		/* iavf_up_complete() will switch device back
3151		 * to __IAVF_RUNNING
3152		 */
3153		iavf_up_complete(adapter);
3154
3155		iavf_irq_enable(adapter, true);
3156	} else {
3157		iavf_change_state(adapter, __IAVF_DOWN);
3158		wake_up(&adapter->down_waitqueue);
3159	}
3160
3161	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3162
3163	wake_up(&adapter->reset_waitqueue);
3164	mutex_unlock(&adapter->crit_lock);
3165
3166	return;
3167reset_err:
3168	if (running) {
3169		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3170		iavf_free_traffic_irqs(adapter);
3171	}
3172	iavf_disable_vf(adapter);
3173
3174	mutex_unlock(&adapter->crit_lock);
3175	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
 
3176}
3177
3178/**
3179 * iavf_adminq_task - worker thread to clean the admin queue
3180 * @work: pointer to work_struct containing our data
3181 **/
3182static void iavf_adminq_task(struct work_struct *work)
3183{
3184	struct iavf_adapter *adapter =
3185		container_of(work, struct iavf_adapter, adminq_task);
3186	struct iavf_hw *hw = &adapter->hw;
3187	struct iavf_arq_event_info event;
3188	enum virtchnl_ops v_op;
3189	enum iavf_status ret, v_ret;
3190	u32 val, oldval;
3191	u16 pending;
3192
3193	if (!mutex_trylock(&adapter->crit_lock)) {
3194		if (adapter->state == __IAVF_REMOVE)
3195			return;
3196
3197		queue_work(adapter->wq, &adapter->adminq_task);
3198		goto out;
3199	}
3200
3201	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3202		goto unlock;
3203
3204	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3205	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3206	if (!event.msg_buf)
3207		goto unlock;
3208
3209	do {
3210		ret = iavf_clean_arq_element(hw, &event, &pending);
3211		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3212		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3213
3214		if (ret || !v_op)
3215			break; /* No event to process or error cleaning ARQ */
3216
3217		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3218					 event.msg_len);
3219		if (pending != 0)
3220			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3221	} while (pending);
3222
3223	if (iavf_is_reset_in_progress(adapter))
 
 
3224		goto freedom;
3225
3226	/* check for error indications */
3227	val = rd32(hw, IAVF_VF_ARQLEN1);
3228	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3229		goto freedom;
3230	oldval = val;
3231	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3232		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3233		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3234	}
3235	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3236		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3237		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3238	}
3239	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3240		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3241		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3242	}
3243	if (oldval != val)
3244		wr32(hw, IAVF_VF_ARQLEN1, val);
3245
3246	val = rd32(hw, IAVF_VF_ATQLEN1);
3247	oldval = val;
3248	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3249		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3250		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3251	}
3252	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3253		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3254		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3255	}
3256	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3257		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3258		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3259	}
3260	if (oldval != val)
3261		wr32(hw, IAVF_VF_ATQLEN1, val);
3262
3263freedom:
3264	kfree(event.msg_buf);
3265unlock:
3266	mutex_unlock(&adapter->crit_lock);
3267out:
3268	/* re-enable Admin queue interrupt cause */
3269	iavf_misc_irq_enable(adapter);
3270}
3271
3272/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3273 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3274 * @adapter: board private structure
3275 *
3276 * Free all transmit software resources
3277 **/
3278void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3279{
3280	int i;
3281
3282	if (!adapter->tx_rings)
3283		return;
3284
3285	for (i = 0; i < adapter->num_active_queues; i++)
3286		if (adapter->tx_rings[i].desc)
3287			iavf_free_tx_resources(&adapter->tx_rings[i]);
3288}
3289
3290/**
3291 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3292 * @adapter: board private structure
3293 *
3294 * If this function returns with an error, then it's possible one or
3295 * more of the rings is populated (while the rest are not).  It is the
3296 * callers duty to clean those orphaned rings.
3297 *
3298 * Return 0 on success, negative on failure
3299 **/
3300static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3301{
3302	int i, err = 0;
3303
3304	for (i = 0; i < adapter->num_active_queues; i++) {
3305		adapter->tx_rings[i].count = adapter->tx_desc_count;
3306		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3307		if (!err)
3308			continue;
3309		dev_err(&adapter->pdev->dev,
3310			"Allocation for Tx Queue %u failed\n", i);
3311		break;
3312	}
3313
3314	return err;
3315}
3316
3317/**
3318 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3319 * @adapter: board private structure
3320 *
3321 * If this function returns with an error, then it's possible one or
3322 * more of the rings is populated (while the rest are not).  It is the
3323 * callers duty to clean those orphaned rings.
3324 *
3325 * Return 0 on success, negative on failure
3326 **/
3327static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3328{
3329	int i, err = 0;
3330
3331	for (i = 0; i < adapter->num_active_queues; i++) {
3332		adapter->rx_rings[i].count = adapter->rx_desc_count;
3333		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3334		if (!err)
3335			continue;
3336		dev_err(&adapter->pdev->dev,
3337			"Allocation for Rx Queue %u failed\n", i);
3338		break;
3339	}
3340	return err;
3341}
3342
3343/**
3344 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3345 * @adapter: board private structure
3346 *
3347 * Free all receive software resources
3348 **/
3349void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3350{
3351	int i;
3352
3353	if (!adapter->rx_rings)
3354		return;
3355
3356	for (i = 0; i < adapter->num_active_queues; i++)
3357		if (adapter->rx_rings[i].desc)
3358			iavf_free_rx_resources(&adapter->rx_rings[i]);
3359}
3360
3361/**
3362 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3363 * @adapter: board private structure
3364 * @max_tx_rate: max Tx bw for a tc
3365 **/
3366static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3367				      u64 max_tx_rate)
3368{
3369	int speed = 0, ret = 0;
3370
3371	if (ADV_LINK_SUPPORT(adapter)) {
3372		if (adapter->link_speed_mbps < U32_MAX) {
3373			speed = adapter->link_speed_mbps;
3374			goto validate_bw;
3375		} else {
3376			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3377			return -EINVAL;
3378		}
3379	}
3380
3381	switch (adapter->link_speed) {
3382	case VIRTCHNL_LINK_SPEED_40GB:
3383		speed = SPEED_40000;
3384		break;
3385	case VIRTCHNL_LINK_SPEED_25GB:
3386		speed = SPEED_25000;
3387		break;
3388	case VIRTCHNL_LINK_SPEED_20GB:
3389		speed = SPEED_20000;
3390		break;
3391	case VIRTCHNL_LINK_SPEED_10GB:
3392		speed = SPEED_10000;
3393		break;
3394	case VIRTCHNL_LINK_SPEED_5GB:
3395		speed = SPEED_5000;
3396		break;
3397	case VIRTCHNL_LINK_SPEED_2_5GB:
3398		speed = SPEED_2500;
3399		break;
3400	case VIRTCHNL_LINK_SPEED_1GB:
3401		speed = SPEED_1000;
3402		break;
3403	case VIRTCHNL_LINK_SPEED_100MB:
3404		speed = SPEED_100;
3405		break;
3406	default:
3407		break;
3408	}
3409
3410validate_bw:
3411	if (max_tx_rate > speed) {
3412		dev_err(&adapter->pdev->dev,
3413			"Invalid tx rate specified\n");
3414		ret = -EINVAL;
3415	}
3416
3417	return ret;
3418}
3419
3420/**
3421 * iavf_validate_ch_config - validate queue mapping info
3422 * @adapter: board private structure
3423 * @mqprio_qopt: queue parameters
3424 *
3425 * This function validates if the config provided by the user to
3426 * configure queue channels is valid or not. Returns 0 on a valid
3427 * config.
3428 **/
3429static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3430				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3431{
3432	u64 total_max_rate = 0;
3433	u32 tx_rate_rem = 0;
3434	int i, num_qps = 0;
3435	u64 tx_rate = 0;
3436	int ret = 0;
3437
3438	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3439	    mqprio_qopt->qopt.num_tc < 1)
3440		return -EINVAL;
3441
3442	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3443		if (!mqprio_qopt->qopt.count[i] ||
3444		    mqprio_qopt->qopt.offset[i] != num_qps)
3445			return -EINVAL;
3446		if (mqprio_qopt->min_rate[i]) {
3447			dev_err(&adapter->pdev->dev,
3448				"Invalid min tx rate (greater than 0) specified for TC%d\n",
3449				i);
3450			return -EINVAL;
3451		}
3452
3453		/* convert to Mbps */
3454		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3455				  IAVF_MBPS_DIVISOR);
3456
3457		if (mqprio_qopt->max_rate[i] &&
3458		    tx_rate < IAVF_MBPS_QUANTA) {
3459			dev_err(&adapter->pdev->dev,
3460				"Invalid max tx rate for TC%d, minimum %dMbps\n",
3461				i, IAVF_MBPS_QUANTA);
3462			return -EINVAL;
3463		}
3464
3465		(void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3466
3467		if (tx_rate_rem != 0) {
3468			dev_err(&adapter->pdev->dev,
3469				"Invalid max tx rate for TC%d, not divisible by %d\n",
3470				i, IAVF_MBPS_QUANTA);
3471			return -EINVAL;
3472		}
3473
3474		total_max_rate += tx_rate;
3475		num_qps += mqprio_qopt->qopt.count[i];
3476	}
3477	if (num_qps > adapter->num_active_queues) {
3478		dev_err(&adapter->pdev->dev,
3479			"Cannot support requested number of queues\n");
3480		return -EINVAL;
3481	}
3482
3483	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3484	return ret;
3485}
3486
3487/**
3488 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3489 * @adapter: board private structure
3490 **/
3491static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3492{
3493	struct iavf_cloud_filter *cf, *cftmp;
3494
3495	spin_lock_bh(&adapter->cloud_filter_list_lock);
3496	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3497				 list) {
3498		list_del(&cf->list);
3499		kfree(cf);
3500		adapter->num_cloud_filters--;
3501	}
3502	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3503}
3504
3505/**
3506 * iavf_is_tc_config_same - Compare the mqprio TC config with the
3507 * TC config already configured on this adapter.
3508 * @adapter: board private structure
3509 * @mqprio_qopt: TC config received from kernel.
3510 *
3511 * This function compares the TC config received from the kernel
3512 * with the config already configured on the adapter.
3513 *
3514 * Return: True if configuration is same, false otherwise.
3515 **/
3516static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3517				   struct tc_mqprio_qopt *mqprio_qopt)
3518{
3519	struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3520	int i;
3521
3522	if (adapter->num_tc != mqprio_qopt->num_tc)
3523		return false;
3524
3525	for (i = 0; i < adapter->num_tc; i++) {
3526		if (ch[i].count != mqprio_qopt->count[i] ||
3527		    ch[i].offset != mqprio_qopt->offset[i])
3528			return false;
3529	}
3530	return true;
3531}
3532
3533/**
3534 * __iavf_setup_tc - configure multiple traffic classes
3535 * @netdev: network interface device structure
3536 * @type_data: tc offload data
3537 *
3538 * This function processes the config information provided by the
3539 * user to configure traffic classes/queue channels and packages the
3540 * information to request the PF to setup traffic classes.
3541 *
3542 * Returns 0 on success.
3543 **/
3544static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3545{
3546	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3547	struct iavf_adapter *adapter = netdev_priv(netdev);
3548	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3549	u8 num_tc = 0, total_qps = 0;
3550	int ret = 0, netdev_tc = 0;
3551	u64 max_tx_rate;
3552	u16 mode;
3553	int i;
3554
3555	num_tc = mqprio_qopt->qopt.num_tc;
3556	mode = mqprio_qopt->mode;
3557
3558	/* delete queue_channel */
3559	if (!mqprio_qopt->qopt.hw) {
3560		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3561			/* reset the tc configuration */
3562			netdev_reset_tc(netdev);
3563			adapter->num_tc = 0;
3564			netif_tx_stop_all_queues(netdev);
3565			netif_tx_disable(netdev);
3566			iavf_del_all_cloud_filters(adapter);
3567			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3568			total_qps = adapter->orig_num_active_queues;
3569			goto exit;
3570		} else {
3571			return -EINVAL;
3572		}
3573	}
3574
3575	/* add queue channel */
3576	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3577		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3578			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3579			return -EOPNOTSUPP;
3580		}
3581		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3582			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3583			return -EINVAL;
3584		}
3585
3586		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3587		if (ret)
3588			return ret;
3589		/* Return if same TC config is requested */
3590		if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3591			return 0;
3592		adapter->num_tc = num_tc;
3593
3594		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3595			if (i < num_tc) {
3596				adapter->ch_config.ch_info[i].count =
3597					mqprio_qopt->qopt.count[i];
3598				adapter->ch_config.ch_info[i].offset =
3599					mqprio_qopt->qopt.offset[i];
3600				total_qps += mqprio_qopt->qopt.count[i];
3601				max_tx_rate = mqprio_qopt->max_rate[i];
3602				/* convert to Mbps */
3603				max_tx_rate = div_u64(max_tx_rate,
3604						      IAVF_MBPS_DIVISOR);
3605				adapter->ch_config.ch_info[i].max_tx_rate =
3606					max_tx_rate;
3607			} else {
3608				adapter->ch_config.ch_info[i].count = 1;
3609				adapter->ch_config.ch_info[i].offset = 0;
3610			}
3611		}
3612
3613		/* Take snapshot of original config such as "num_active_queues"
3614		 * It is used later when delete ADQ flow is exercised, so that
3615		 * once delete ADQ flow completes, VF shall go back to its
3616		 * original queue configuration
3617		 */
3618
3619		adapter->orig_num_active_queues = adapter->num_active_queues;
3620
3621		/* Store queue info based on TC so that VF gets configured
3622		 * with correct number of queues when VF completes ADQ config
3623		 * flow
3624		 */
3625		adapter->ch_config.total_qps = total_qps;
3626
3627		netif_tx_stop_all_queues(netdev);
3628		netif_tx_disable(netdev);
3629		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3630		netdev_reset_tc(netdev);
3631		/* Report the tc mapping up the stack */
3632		netdev_set_num_tc(adapter->netdev, num_tc);
3633		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3634			u16 qcount = mqprio_qopt->qopt.count[i];
3635			u16 qoffset = mqprio_qopt->qopt.offset[i];
3636
3637			if (i < num_tc)
3638				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3639						    qoffset);
3640		}
3641	}
3642exit:
3643	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3644		return 0;
3645
3646	netif_set_real_num_rx_queues(netdev, total_qps);
3647	netif_set_real_num_tx_queues(netdev, total_qps);
3648
3649	return ret;
3650}
3651
3652/**
3653 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3654 * @adapter: board private structure
3655 * @f: pointer to struct flow_cls_offload
3656 * @filter: pointer to cloud filter structure
3657 */
3658static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3659				 struct flow_cls_offload *f,
3660				 struct iavf_cloud_filter *filter)
3661{
3662	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3663	struct flow_dissector *dissector = rule->match.dissector;
3664	u16 n_proto_mask = 0;
3665	u16 n_proto_key = 0;
3666	u8 field_flags = 0;
3667	u16 addr_type = 0;
3668	u16 n_proto = 0;
3669	int i = 0;
3670	struct virtchnl_filter *vf = &filter->f;
3671
3672	if (dissector->used_keys &
3673	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3674	      BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3675	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3676	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3677	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3678	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3679	      BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3680	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3681		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3682			dissector->used_keys);
3683		return -EOPNOTSUPP;
3684	}
3685
3686	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3687		struct flow_match_enc_keyid match;
3688
3689		flow_rule_match_enc_keyid(rule, &match);
3690		if (match.mask->keyid != 0)
3691			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3692	}
3693
3694	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3695		struct flow_match_basic match;
3696
3697		flow_rule_match_basic(rule, &match);
3698		n_proto_key = ntohs(match.key->n_proto);
3699		n_proto_mask = ntohs(match.mask->n_proto);
3700
3701		if (n_proto_key == ETH_P_ALL) {
3702			n_proto_key = 0;
3703			n_proto_mask = 0;
3704		}
3705		n_proto = n_proto_key & n_proto_mask;
3706		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3707			return -EINVAL;
3708		if (n_proto == ETH_P_IPV6) {
3709			/* specify flow type as TCP IPv6 */
3710			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3711		}
3712
3713		if (match.key->ip_proto != IPPROTO_TCP) {
3714			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3715			return -EINVAL;
3716		}
3717	}
3718
3719	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3720		struct flow_match_eth_addrs match;
3721
3722		flow_rule_match_eth_addrs(rule, &match);
3723
3724		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3725		if (!is_zero_ether_addr(match.mask->dst)) {
3726			if (is_broadcast_ether_addr(match.mask->dst)) {
3727				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3728			} else {
3729				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3730					match.mask->dst);
3731				return -EINVAL;
3732			}
3733		}
3734
3735		if (!is_zero_ether_addr(match.mask->src)) {
3736			if (is_broadcast_ether_addr(match.mask->src)) {
3737				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3738			} else {
3739				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3740					match.mask->src);
3741				return -EINVAL;
3742			}
3743		}
3744
3745		if (!is_zero_ether_addr(match.key->dst))
3746			if (is_valid_ether_addr(match.key->dst) ||
3747			    is_multicast_ether_addr(match.key->dst)) {
3748				/* set the mask if a valid dst_mac address */
3749				for (i = 0; i < ETH_ALEN; i++)
3750					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3751				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3752						match.key->dst);
3753			}
3754
3755		if (!is_zero_ether_addr(match.key->src))
3756			if (is_valid_ether_addr(match.key->src) ||
3757			    is_multicast_ether_addr(match.key->src)) {
3758				/* set the mask if a valid dst_mac address */
3759				for (i = 0; i < ETH_ALEN; i++)
3760					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3761				ether_addr_copy(vf->data.tcp_spec.src_mac,
3762						match.key->src);
3763		}
3764	}
3765
3766	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3767		struct flow_match_vlan match;
3768
3769		flow_rule_match_vlan(rule, &match);
3770		if (match.mask->vlan_id) {
3771			if (match.mask->vlan_id == VLAN_VID_MASK) {
3772				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3773			} else {
3774				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3775					match.mask->vlan_id);
3776				return -EINVAL;
3777			}
3778		}
3779		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3780		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3781	}
3782
3783	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3784		struct flow_match_control match;
3785
3786		flow_rule_match_control(rule, &match);
3787		addr_type = match.key->addr_type;
3788	}
3789
3790	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3791		struct flow_match_ipv4_addrs match;
3792
3793		flow_rule_match_ipv4_addrs(rule, &match);
3794		if (match.mask->dst) {
3795			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3796				field_flags |= IAVF_CLOUD_FIELD_IIP;
3797			} else {
3798				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3799					be32_to_cpu(match.mask->dst));
3800				return -EINVAL;
3801			}
3802		}
3803
3804		if (match.mask->src) {
3805			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3806				field_flags |= IAVF_CLOUD_FIELD_IIP;
3807			} else {
3808				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3809					be32_to_cpu(match.mask->src));
3810				return -EINVAL;
3811			}
3812		}
3813
3814		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3815			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3816			return -EINVAL;
3817		}
3818		if (match.key->dst) {
3819			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3820			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3821		}
3822		if (match.key->src) {
3823			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3824			vf->data.tcp_spec.src_ip[0] = match.key->src;
3825		}
3826	}
3827
3828	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3829		struct flow_match_ipv6_addrs match;
3830
3831		flow_rule_match_ipv6_addrs(rule, &match);
3832
3833		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3834		if (ipv6_addr_any(&match.mask->dst)) {
3835			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3836				IPV6_ADDR_ANY);
3837			return -EINVAL;
3838		}
3839
3840		/* src and dest IPv6 address should not be LOOPBACK
3841		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3842		 */
3843		if (ipv6_addr_loopback(&match.key->dst) ||
3844		    ipv6_addr_loopback(&match.key->src)) {
3845			dev_err(&adapter->pdev->dev,
3846				"ipv6 addr should not be loopback\n");
3847			return -EINVAL;
3848		}
3849		if (!ipv6_addr_any(&match.mask->dst) ||
3850		    !ipv6_addr_any(&match.mask->src))
3851			field_flags |= IAVF_CLOUD_FIELD_IIP;
3852
3853		for (i = 0; i < 4; i++)
3854			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3855		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3856		       sizeof(vf->data.tcp_spec.dst_ip));
3857		for (i = 0; i < 4; i++)
3858			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3859		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3860		       sizeof(vf->data.tcp_spec.src_ip));
3861	}
3862	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3863		struct flow_match_ports match;
3864
3865		flow_rule_match_ports(rule, &match);
3866		if (match.mask->src) {
3867			if (match.mask->src == cpu_to_be16(0xffff)) {
3868				field_flags |= IAVF_CLOUD_FIELD_IIP;
3869			} else {
3870				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3871					be16_to_cpu(match.mask->src));
3872				return -EINVAL;
3873			}
3874		}
3875
3876		if (match.mask->dst) {
3877			if (match.mask->dst == cpu_to_be16(0xffff)) {
3878				field_flags |= IAVF_CLOUD_FIELD_IIP;
3879			} else {
3880				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3881					be16_to_cpu(match.mask->dst));
3882				return -EINVAL;
3883			}
3884		}
3885		if (match.key->dst) {
3886			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3887			vf->data.tcp_spec.dst_port = match.key->dst;
3888		}
3889
3890		if (match.key->src) {
3891			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3892			vf->data.tcp_spec.src_port = match.key->src;
3893		}
3894	}
3895	vf->field_flags = field_flags;
3896
3897	return 0;
3898}
3899
3900/**
3901 * iavf_handle_tclass - Forward to a traffic class on the device
3902 * @adapter: board private structure
3903 * @tc: traffic class index on the device
3904 * @filter: pointer to cloud filter structure
3905 */
3906static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3907			      struct iavf_cloud_filter *filter)
3908{
3909	if (tc == 0)
3910		return 0;
3911	if (tc < adapter->num_tc) {
3912		if (!filter->f.data.tcp_spec.dst_port) {
3913			dev_err(&adapter->pdev->dev,
3914				"Specify destination port to redirect to traffic class other than TC0\n");
3915			return -EINVAL;
3916		}
3917	}
3918	/* redirect to a traffic class on the same device */
3919	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3920	filter->f.action_meta = tc;
3921	return 0;
3922}
3923
3924/**
3925 * iavf_find_cf - Find the cloud filter in the list
3926 * @adapter: Board private structure
3927 * @cookie: filter specific cookie
3928 *
3929 * Returns ptr to the filter object or NULL. Must be called while holding the
3930 * cloud_filter_list_lock.
3931 */
3932static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3933					      unsigned long *cookie)
3934{
3935	struct iavf_cloud_filter *filter = NULL;
3936
3937	if (!cookie)
3938		return NULL;
3939
3940	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3941		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3942			return filter;
3943	}
3944	return NULL;
3945}
3946
3947/**
3948 * iavf_configure_clsflower - Add tc flower filters
3949 * @adapter: board private structure
3950 * @cls_flower: Pointer to struct flow_cls_offload
3951 */
3952static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3953				    struct flow_cls_offload *cls_flower)
3954{
3955	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3956	struct iavf_cloud_filter *filter = NULL;
3957	int err = -EINVAL, count = 50;
3958
3959	if (tc < 0) {
3960		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3961		return -EINVAL;
3962	}
3963
3964	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3965	if (!filter)
3966		return -ENOMEM;
3967
3968	while (!mutex_trylock(&adapter->crit_lock)) {
3969		if (--count == 0) {
3970			kfree(filter);
3971			return err;
3972		}
3973		udelay(1);
3974	}
3975
3976	filter->cookie = cls_flower->cookie;
3977
3978	/* bail out here if filter already exists */
3979	spin_lock_bh(&adapter->cloud_filter_list_lock);
3980	if (iavf_find_cf(adapter, &cls_flower->cookie)) {
3981		dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
3982		err = -EEXIST;
3983		goto spin_unlock;
3984	}
3985	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3986
3987	/* set the mask to all zeroes to begin with */
3988	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3989	/* start out with flow type and eth type IPv4 to begin with */
3990	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3991	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3992	if (err)
3993		goto err;
3994
3995	err = iavf_handle_tclass(adapter, tc, filter);
3996	if (err)
3997		goto err;
3998
3999	/* add filter to the list */
4000	spin_lock_bh(&adapter->cloud_filter_list_lock);
4001	list_add_tail(&filter->list, &adapter->cloud_filter_list);
4002	adapter->num_cloud_filters++;
4003	filter->add = true;
4004	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4005spin_unlock:
4006	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4007err:
4008	if (err)
4009		kfree(filter);
4010
4011	mutex_unlock(&adapter->crit_lock);
4012	return err;
4013}
4014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4015/**
4016 * iavf_delete_clsflower - Remove tc flower filters
4017 * @adapter: board private structure
4018 * @cls_flower: Pointer to struct flow_cls_offload
4019 */
4020static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4021				 struct flow_cls_offload *cls_flower)
4022{
4023	struct iavf_cloud_filter *filter = NULL;
4024	int err = 0;
4025
4026	spin_lock_bh(&adapter->cloud_filter_list_lock);
4027	filter = iavf_find_cf(adapter, &cls_flower->cookie);
4028	if (filter) {
4029		filter->del = true;
4030		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4031	} else {
4032		err = -EINVAL;
4033	}
4034	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4035
4036	return err;
4037}
4038
4039/**
4040 * iavf_setup_tc_cls_flower - flower classifier offloads
4041 * @adapter: board private structure
4042 * @cls_flower: pointer to flow_cls_offload struct with flow info
4043 */
4044static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4045				    struct flow_cls_offload *cls_flower)
4046{
 
 
 
4047	switch (cls_flower->command) {
4048	case FLOW_CLS_REPLACE:
4049		return iavf_configure_clsflower(adapter, cls_flower);
4050	case FLOW_CLS_DESTROY:
4051		return iavf_delete_clsflower(adapter, cls_flower);
4052	case FLOW_CLS_STATS:
4053		return -EOPNOTSUPP;
4054	default:
4055		return -EOPNOTSUPP;
4056	}
4057}
4058
4059/**
4060 * iavf_setup_tc_block_cb - block callback for tc
4061 * @type: type of offload
4062 * @type_data: offload data
4063 * @cb_priv:
4064 *
4065 * This function is the block callback for traffic classes
4066 **/
4067static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4068				  void *cb_priv)
4069{
4070	struct iavf_adapter *adapter = cb_priv;
4071
4072	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4073		return -EOPNOTSUPP;
4074
4075	switch (type) {
4076	case TC_SETUP_CLSFLOWER:
4077		return iavf_setup_tc_cls_flower(cb_priv, type_data);
4078	default:
4079		return -EOPNOTSUPP;
4080	}
4081}
4082
4083static LIST_HEAD(iavf_block_cb_list);
4084
4085/**
4086 * iavf_setup_tc - configure multiple traffic classes
4087 * @netdev: network interface device structure
4088 * @type: type of offload
4089 * @type_data: tc offload data
4090 *
4091 * This function is the callback to ndo_setup_tc in the
4092 * netdev_ops.
4093 *
4094 * Returns 0 on success
4095 **/
4096static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4097			 void *type_data)
4098{
4099	struct iavf_adapter *adapter = netdev_priv(netdev);
4100
4101	switch (type) {
4102	case TC_SETUP_QDISC_MQPRIO:
4103		return __iavf_setup_tc(netdev, type_data);
4104	case TC_SETUP_BLOCK:
4105		return flow_block_cb_setup_simple(type_data,
4106						  &iavf_block_cb_list,
4107						  iavf_setup_tc_block_cb,
4108						  adapter, adapter, true);
4109	default:
4110		return -EOPNOTSUPP;
4111	}
4112}
4113
4114/**
4115 * iavf_restore_fdir_filters
4116 * @adapter: board private structure
4117 *
4118 * Restore existing FDIR filters when VF netdev comes back up.
4119 **/
4120static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4121{
4122	struct iavf_fdir_fltr *f;
4123
4124	spin_lock_bh(&adapter->fdir_fltr_lock);
4125	list_for_each_entry(f, &adapter->fdir_list_head, list) {
4126		if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4127			/* Cancel a request, keep filter as active */
4128			f->state = IAVF_FDIR_FLTR_ACTIVE;
4129		} else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4130			   f->state == IAVF_FDIR_FLTR_INACTIVE) {
4131			/* Add filters which are inactive or have a pending
4132			 * request to PF to be deleted
4133			 */
4134			f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4135			adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4136		}
4137	}
4138	spin_unlock_bh(&adapter->fdir_fltr_lock);
4139}
4140
4141/**
4142 * iavf_open - Called when a network interface is made active
4143 * @netdev: network interface device structure
4144 *
4145 * Returns 0 on success, negative value on failure
4146 *
4147 * The open entry point is called when a network interface is made
4148 * active by the system (IFF_UP).  At this point all resources needed
4149 * for transmit and receive operations are allocated, the interrupt
4150 * handler is registered with the OS, the watchdog is started,
4151 * and the stack is notified that the interface is ready.
4152 **/
4153static int iavf_open(struct net_device *netdev)
4154{
4155	struct iavf_adapter *adapter = netdev_priv(netdev);
4156	int err;
4157
4158	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4159		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4160		return -EIO;
4161	}
4162
4163	while (!mutex_trylock(&adapter->crit_lock)) {
4164		/* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4165		 * is already taken and iavf_open is called from an upper
4166		 * device's notifier reacting on NETDEV_REGISTER event.
4167		 * We have to leave here to avoid dead lock.
4168		 */
4169		if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4170			return -EBUSY;
4171
4172		usleep_range(500, 1000);
4173	}
4174
4175	if (adapter->state != __IAVF_DOWN) {
4176		err = -EBUSY;
4177		goto err_unlock;
4178	}
4179
4180	if (adapter->state == __IAVF_RUNNING &&
4181	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4182		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4183		err = 0;
4184		goto err_unlock;
4185	}
4186
4187	/* allocate transmit descriptors */
4188	err = iavf_setup_all_tx_resources(adapter);
4189	if (err)
4190		goto err_setup_tx;
4191
4192	/* allocate receive descriptors */
4193	err = iavf_setup_all_rx_resources(adapter);
4194	if (err)
4195		goto err_setup_rx;
4196
4197	/* clear any pending interrupts, may auto mask */
4198	err = iavf_request_traffic_irqs(adapter, netdev->name);
4199	if (err)
4200		goto err_req_irq;
4201
4202	spin_lock_bh(&adapter->mac_vlan_list_lock);
4203
4204	iavf_add_filter(adapter, adapter->hw.mac.addr);
4205
4206	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4207
4208	/* Restore filters that were removed with IFF_DOWN */
4209	iavf_restore_filters(adapter);
4210	iavf_restore_fdir_filters(adapter);
4211
4212	iavf_configure(adapter);
4213
4214	iavf_up_complete(adapter);
4215
4216	iavf_irq_enable(adapter, true);
4217
4218	mutex_unlock(&adapter->crit_lock);
4219
4220	return 0;
4221
4222err_req_irq:
4223	iavf_down(adapter);
4224	iavf_free_traffic_irqs(adapter);
4225err_setup_rx:
4226	iavf_free_all_rx_resources(adapter);
4227err_setup_tx:
4228	iavf_free_all_tx_resources(adapter);
4229err_unlock:
4230	mutex_unlock(&adapter->crit_lock);
4231
4232	return err;
4233}
4234
4235/**
4236 * iavf_close - Disables a network interface
4237 * @netdev: network interface device structure
4238 *
4239 * Returns 0, this is not allowed to fail
4240 *
4241 * The close entry point is called when an interface is de-activated
4242 * by the OS.  The hardware is still under the drivers control, but
4243 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4244 * are freed, along with all transmit and receive resources.
4245 **/
4246static int iavf_close(struct net_device *netdev)
4247{
4248	struct iavf_adapter *adapter = netdev_priv(netdev);
4249	u64 aq_to_restore;
4250	int status;
4251
4252	mutex_lock(&adapter->crit_lock);
 
4253
4254	if (adapter->state <= __IAVF_DOWN_PENDING) {
4255		mutex_unlock(&adapter->crit_lock);
4256		return 0;
4257	}
4258
4259	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4260	/* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4261	 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4262	 * deadlock with adminq_task() until iavf_close timeouts. We must send
4263	 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4264	 * disable queues possible for vf. Give only necessary flags to
4265	 * iavf_down and save other to set them right before iavf_close()
4266	 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4267	 * iavf will be in DOWN state.
4268	 */
4269	aq_to_restore = adapter->aq_required;
4270	adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4271
4272	/* Remove flags which we do not want to send after close or we want to
4273	 * send before disable queues.
4274	 */
4275	aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG		|
4276			   IAVF_FLAG_AQ_ENABLE_QUEUES		|
4277			   IAVF_FLAG_AQ_CONFIGURE_QUEUES	|
4278			   IAVF_FLAG_AQ_ADD_VLAN_FILTER		|
4279			   IAVF_FLAG_AQ_ADD_MAC_FILTER		|
4280			   IAVF_FLAG_AQ_ADD_CLOUD_FILTER	|
4281			   IAVF_FLAG_AQ_ADD_FDIR_FILTER		|
4282			   IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4283
4284	iavf_down(adapter);
4285	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4286	iavf_free_traffic_irqs(adapter);
4287
4288	mutex_unlock(&adapter->crit_lock);
4289
4290	/* We explicitly don't free resources here because the hardware is
4291	 * still active and can DMA into memory. Resources are cleared in
4292	 * iavf_virtchnl_completion() after we get confirmation from the PF
4293	 * driver that the rings have been stopped.
4294	 *
4295	 * Also, we wait for state to transition to __IAVF_DOWN before
4296	 * returning. State change occurs in iavf_virtchnl_completion() after
4297	 * VF resources are released (which occurs after PF driver processes and
4298	 * responds to admin queue commands).
4299	 */
4300
4301	status = wait_event_timeout(adapter->down_waitqueue,
4302				    adapter->state == __IAVF_DOWN,
4303				    msecs_to_jiffies(500));
4304	if (!status)
4305		netdev_warn(netdev, "Device resources not yet released\n");
4306
4307	mutex_lock(&adapter->crit_lock);
4308	adapter->aq_required |= aq_to_restore;
4309	mutex_unlock(&adapter->crit_lock);
4310	return 0;
4311}
4312
4313/**
4314 * iavf_change_mtu - Change the Maximum Transfer Unit
4315 * @netdev: network interface device structure
4316 * @new_mtu: new value for maximum frame size
4317 *
4318 * Returns 0 on success, negative on failure
4319 **/
4320static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4321{
4322	struct iavf_adapter *adapter = netdev_priv(netdev);
4323	int ret = 0;
4324
4325	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4326		   netdev->mtu, new_mtu);
4327	netdev->mtu = new_mtu;
4328
4329	if (netif_running(netdev)) {
4330		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4331		ret = iavf_wait_for_reset(adapter);
4332		if (ret < 0)
4333			netdev_warn(netdev, "MTU change interrupted waiting for reset");
4334		else if (ret)
4335			netdev_warn(netdev, "MTU change timed out waiting for reset");
4336	}
 
 
4337
4338	return ret;
4339}
4340
4341/**
4342 * iavf_disable_fdir - disable Flow Director and clear existing filters
4343 * @adapter: board private structure
4344 **/
4345static void iavf_disable_fdir(struct iavf_adapter *adapter)
4346{
4347	struct iavf_fdir_fltr *fdir, *fdirtmp;
4348	bool del_filters = false;
4349
4350	adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4351
4352	/* remove all Flow Director filters */
4353	spin_lock_bh(&adapter->fdir_fltr_lock);
4354	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4355				 list) {
4356		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4357		    fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4358			/* Delete filters not registered in PF */
4359			list_del(&fdir->list);
4360			kfree(fdir);
4361			adapter->fdir_active_fltr--;
4362		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4363			   fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4364			   fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4365			/* Filters registered in PF, schedule their deletion */
4366			fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4367			del_filters = true;
4368		} else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4369			/* Request to delete filter already sent to PF, change
4370			 * state to DEL_PENDING to delete filter after PF's
4371			 * response, not set as INACTIVE
4372			 */
4373			fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4374		}
4375	}
4376	spin_unlock_bh(&adapter->fdir_fltr_lock);
4377
4378	if (del_filters) {
4379		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4380		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4381	}
4382}
4383
4384#define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4385					 NETIF_F_HW_VLAN_CTAG_TX | \
4386					 NETIF_F_HW_VLAN_STAG_RX | \
4387					 NETIF_F_HW_VLAN_STAG_TX)
4388
4389/**
4390 * iavf_set_features - set the netdev feature flags
4391 * @netdev: ptr to the netdev being adjusted
4392 * @features: the feature set that the stack is suggesting
4393 * Note: expects to be called while under rtnl_lock()
4394 **/
4395static int iavf_set_features(struct net_device *netdev,
4396			     netdev_features_t features)
4397{
4398	struct iavf_adapter *adapter = netdev_priv(netdev);
4399
4400	/* trigger update on any VLAN feature change */
4401	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4402	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4403		iavf_set_vlan_offload_features(adapter, netdev->features,
4404					       features);
4405	if (CRC_OFFLOAD_ALLOWED(adapter) &&
4406	    ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4407		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4408
4409	if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4410		if (features & NETIF_F_NTUPLE)
4411			adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4412		else
4413			iavf_disable_fdir(adapter);
 
4414	}
4415
4416	return 0;
4417}
4418
4419/**
4420 * iavf_features_check - Validate encapsulated packet conforms to limits
4421 * @skb: skb buff
4422 * @dev: This physical port's netdev
4423 * @features: Offload features that the stack believes apply
4424 **/
4425static netdev_features_t iavf_features_check(struct sk_buff *skb,
4426					     struct net_device *dev,
4427					     netdev_features_t features)
4428{
4429	size_t len;
4430
4431	/* No point in doing any of this if neither checksum nor GSO are
4432	 * being requested for this frame.  We can rule out both by just
4433	 * checking for CHECKSUM_PARTIAL
4434	 */
4435	if (skb->ip_summed != CHECKSUM_PARTIAL)
4436		return features;
4437
4438	/* We cannot support GSO if the MSS is going to be less than
4439	 * 64 bytes.  If it is then we need to drop support for GSO.
4440	 */
4441	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4442		features &= ~NETIF_F_GSO_MASK;
4443
4444	/* MACLEN can support at most 63 words */
4445	len = skb_network_offset(skb);
4446	if (len & ~(63 * 2))
4447		goto out_err;
4448
4449	/* IPLEN and EIPLEN can support at most 127 dwords */
4450	len = skb_network_header_len(skb);
4451	if (len & ~(127 * 4))
4452		goto out_err;
4453
4454	if (skb->encapsulation) {
4455		/* L4TUNLEN can support 127 words */
4456		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4457		if (len & ~(127 * 2))
4458			goto out_err;
4459
4460		/* IPLEN can support at most 127 dwords */
4461		len = skb_inner_transport_header(skb) -
4462		      skb_inner_network_header(skb);
4463		if (len & ~(127 * 4))
4464			goto out_err;
4465	}
4466
4467	/* No need to validate L4LEN as TCP is the only protocol with a
4468	 * flexible value and we support all possible values supported
4469	 * by TCP, which is at most 15 dwords
4470	 */
4471
4472	return features;
4473out_err:
4474	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4475}
4476
4477/**
4478 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4479 * @adapter: board private structure
4480 *
4481 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4482 * were negotiated determine the VLAN features that can be toggled on and off.
4483 **/
4484static netdev_features_t
4485iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4486{
4487	netdev_features_t hw_features = 0;
4488
4489	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4490		return hw_features;
4491
4492	/* Enable VLAN features if supported */
4493	if (VLAN_ALLOWED(adapter)) {
4494		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4495				NETIF_F_HW_VLAN_CTAG_RX);
4496	} else if (VLAN_V2_ALLOWED(adapter)) {
4497		struct virtchnl_vlan_caps *vlan_v2_caps =
4498			&adapter->vlan_v2_caps;
4499		struct virtchnl_vlan_supported_caps *stripping_support =
4500			&vlan_v2_caps->offloads.stripping_support;
4501		struct virtchnl_vlan_supported_caps *insertion_support =
4502			&vlan_v2_caps->offloads.insertion_support;
4503
4504		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4505		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4506			if (stripping_support->outer &
4507			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4508				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4509			if (stripping_support->outer &
4510			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4511				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4512		} else if (stripping_support->inner !=
4513			   VIRTCHNL_VLAN_UNSUPPORTED &&
4514			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4515			if (stripping_support->inner &
4516			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4517				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4518		}
4519
4520		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4521		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4522			if (insertion_support->outer &
4523			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4524				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4525			if (insertion_support->outer &
4526			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4527				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4528		} else if (insertion_support->inner &&
4529			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4530			if (insertion_support->inner &
4531			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4532				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4533		}
4534	}
4535
4536	if (CRC_OFFLOAD_ALLOWED(adapter))
4537		hw_features |= NETIF_F_RXFCS;
4538
4539	return hw_features;
4540}
4541
4542/**
4543 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4544 * @adapter: board private structure
4545 *
4546 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4547 * were negotiated determine the VLAN features that are enabled by default.
4548 **/
4549static netdev_features_t
4550iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4551{
4552	netdev_features_t features = 0;
4553
4554	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4555		return features;
4556
4557	if (VLAN_ALLOWED(adapter)) {
4558		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4559			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4560	} else if (VLAN_V2_ALLOWED(adapter)) {
4561		struct virtchnl_vlan_caps *vlan_v2_caps =
4562			&adapter->vlan_v2_caps;
4563		struct virtchnl_vlan_supported_caps *filtering_support =
4564			&vlan_v2_caps->filtering.filtering_support;
4565		struct virtchnl_vlan_supported_caps *stripping_support =
4566			&vlan_v2_caps->offloads.stripping_support;
4567		struct virtchnl_vlan_supported_caps *insertion_support =
4568			&vlan_v2_caps->offloads.insertion_support;
4569		u32 ethertype_init;
4570
4571		/* give priority to outer stripping and don't support both outer
4572		 * and inner stripping
4573		 */
4574		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4575		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4576			if (stripping_support->outer &
4577			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4578			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4579				features |= NETIF_F_HW_VLAN_CTAG_RX;
4580			else if (stripping_support->outer &
4581				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4582				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4583				features |= NETIF_F_HW_VLAN_STAG_RX;
4584		} else if (stripping_support->inner !=
4585			   VIRTCHNL_VLAN_UNSUPPORTED) {
4586			if (stripping_support->inner &
4587			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4588			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4589				features |= NETIF_F_HW_VLAN_CTAG_RX;
4590		}
4591
4592		/* give priority to outer insertion and don't support both outer
4593		 * and inner insertion
4594		 */
4595		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4596			if (insertion_support->outer &
4597			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4598			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4599				features |= NETIF_F_HW_VLAN_CTAG_TX;
4600			else if (insertion_support->outer &
4601				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4602				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4603				features |= NETIF_F_HW_VLAN_STAG_TX;
4604		} else if (insertion_support->inner !=
4605			   VIRTCHNL_VLAN_UNSUPPORTED) {
4606			if (insertion_support->inner &
4607			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4608			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4609				features |= NETIF_F_HW_VLAN_CTAG_TX;
4610		}
4611
4612		/* give priority to outer filtering and don't bother if both
4613		 * outer and inner filtering are enabled
4614		 */
4615		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4616		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4617			if (filtering_support->outer &
4618			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4619			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4620				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4621			if (filtering_support->outer &
4622			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4623			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4624				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4625		} else if (filtering_support->inner !=
4626			   VIRTCHNL_VLAN_UNSUPPORTED) {
4627			if (filtering_support->inner &
4628			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4629			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4630				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4631			if (filtering_support->inner &
4632			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4633			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4634				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4635		}
4636	}
4637
4638	return features;
4639}
4640
4641#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4642	(!(((requested) & (feature_bit)) && \
4643	   !((allowed) & (feature_bit))))
4644
4645/**
4646 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4647 * @adapter: board private structure
4648 * @requested_features: stack requested NETDEV features
4649 **/
4650static netdev_features_t
4651iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4652			      netdev_features_t requested_features)
4653{
4654	netdev_features_t allowed_features;
4655
4656	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4657		iavf_get_netdev_vlan_features(adapter);
4658
4659	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4660					      allowed_features,
4661					      NETIF_F_HW_VLAN_CTAG_TX))
4662		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4663
4664	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4665					      allowed_features,
4666					      NETIF_F_HW_VLAN_CTAG_RX))
4667		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4668
4669	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4670					      allowed_features,
4671					      NETIF_F_HW_VLAN_STAG_TX))
4672		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4673	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4674					      allowed_features,
4675					      NETIF_F_HW_VLAN_STAG_RX))
4676		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4677
4678	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4679					      allowed_features,
4680					      NETIF_F_HW_VLAN_CTAG_FILTER))
4681		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4682
4683	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4684					      allowed_features,
4685					      NETIF_F_HW_VLAN_STAG_FILTER))
4686		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4687
4688	if ((requested_features &
4689	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4690	    (requested_features &
4691	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4692	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4693	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4694		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4695		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4696					NETIF_F_HW_VLAN_STAG_TX);
4697	}
4698
4699	return requested_features;
4700}
4701
4702/**
4703 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4704 * @adapter: board private structure
4705 * @requested_features: stack requested NETDEV features
4706 *
4707 * Returns fixed-up features bits
4708 **/
4709static netdev_features_t
4710iavf_fix_strip_features(struct iavf_adapter *adapter,
4711			netdev_features_t requested_features)
4712{
4713	struct net_device *netdev = adapter->netdev;
4714	bool crc_offload_req, is_vlan_strip;
4715	netdev_features_t vlan_strip;
4716	int num_non_zero_vlan;
4717
4718	crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4719			  (requested_features & NETIF_F_RXFCS);
4720	num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4721	vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4722	is_vlan_strip = requested_features & vlan_strip;
4723
4724	if (!crc_offload_req)
4725		return requested_features;
4726
4727	if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4728	    !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4729		requested_features &= ~vlan_strip;
4730		netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4731		return requested_features;
4732	}
4733
4734	if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4735		requested_features &= ~vlan_strip;
4736		if (!(netdev->features & vlan_strip))
4737			netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4738
4739		return requested_features;
4740	}
4741
4742	if (num_non_zero_vlan && is_vlan_strip &&
4743	    !(netdev->features & NETIF_F_RXFCS)) {
4744		requested_features &= ~NETIF_F_RXFCS;
4745		netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4746	}
4747
4748	return requested_features;
4749}
4750
4751/**
4752 * iavf_fix_features - fix up the netdev feature bits
4753 * @netdev: our net device
4754 * @features: desired feature bits
4755 *
4756 * Returns fixed-up features bits
4757 **/
4758static netdev_features_t iavf_fix_features(struct net_device *netdev,
4759					   netdev_features_t features)
4760{
4761	struct iavf_adapter *adapter = netdev_priv(netdev);
4762
4763	features = iavf_fix_netdev_vlan_features(adapter, features);
 
 
 
4764
4765	if (!FDIR_FLTR_SUPPORT(adapter))
4766		features &= ~NETIF_F_NTUPLE;
4767
4768	return iavf_fix_strip_features(adapter, features);
4769}
4770
4771static const struct net_device_ops iavf_netdev_ops = {
4772	.ndo_open		= iavf_open,
4773	.ndo_stop		= iavf_close,
4774	.ndo_start_xmit		= iavf_xmit_frame,
4775	.ndo_set_rx_mode	= iavf_set_rx_mode,
4776	.ndo_validate_addr	= eth_validate_addr,
4777	.ndo_set_mac_address	= iavf_set_mac,
4778	.ndo_change_mtu		= iavf_change_mtu,
4779	.ndo_tx_timeout		= iavf_tx_timeout,
4780	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4781	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4782	.ndo_features_check	= iavf_features_check,
4783	.ndo_fix_features	= iavf_fix_features,
4784	.ndo_set_features	= iavf_set_features,
4785	.ndo_setup_tc		= iavf_setup_tc,
4786};
4787
4788/**
4789 * iavf_check_reset_complete - check that VF reset is complete
4790 * @hw: pointer to hw struct
4791 *
4792 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4793 **/
4794static int iavf_check_reset_complete(struct iavf_hw *hw)
4795{
4796	u32 rstat;
4797	int i;
4798
4799	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4800		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4801			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4802		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4803		    (rstat == VIRTCHNL_VFR_COMPLETED))
4804			return 0;
4805		msleep(IAVF_RESET_WAIT_MS);
4806	}
4807	return -EBUSY;
4808}
4809
4810/**
4811 * iavf_process_config - Process the config information we got from the PF
4812 * @adapter: board private structure
4813 *
4814 * Verify that we have a valid config struct, and set up our netdev features
4815 * and our VSI struct.
4816 **/
4817int iavf_process_config(struct iavf_adapter *adapter)
4818{
4819	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4820	netdev_features_t hw_vlan_features, vlan_features;
4821	struct net_device *netdev = adapter->netdev;
 
4822	netdev_features_t hw_enc_features;
4823	netdev_features_t hw_features;
4824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4825	hw_enc_features = NETIF_F_SG			|
4826			  NETIF_F_IP_CSUM		|
4827			  NETIF_F_IPV6_CSUM		|
4828			  NETIF_F_HIGHDMA		|
4829			  NETIF_F_SOFT_FEATURES	|
4830			  NETIF_F_TSO			|
4831			  NETIF_F_TSO_ECN		|
4832			  NETIF_F_TSO6			|
4833			  NETIF_F_SCTP_CRC		|
4834			  NETIF_F_RXHASH		|
4835			  NETIF_F_RXCSUM		|
4836			  0;
4837
4838	/* advertise to stack only if offloads for encapsulated packets is
4839	 * supported
4840	 */
4841	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4842		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4843				   NETIF_F_GSO_GRE		|
4844				   NETIF_F_GSO_GRE_CSUM		|
4845				   NETIF_F_GSO_IPXIP4		|
4846				   NETIF_F_GSO_IPXIP6		|
4847				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4848				   NETIF_F_GSO_PARTIAL		|
4849				   0;
4850
4851		if (!(vfres->vf_cap_flags &
4852		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4853			netdev->gso_partial_features |=
4854				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4855
4856		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4857		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4858		netdev->hw_enc_features |= hw_enc_features;
4859	}
4860	/* record features VLANs can make use of */
4861	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4862
4863	/* Write features and hw_features separately to avoid polluting
4864	 * with, or dropping, features that are set when we registered.
4865	 */
4866	hw_features = hw_enc_features;
4867
4868	/* get HW VLAN features that can be toggled */
4869	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4870
 
4871	/* Enable cloud filter if ADQ is supported */
4872	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4873		hw_features |= NETIF_F_HW_TC;
4874	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4875		hw_features |= NETIF_F_GSO_UDP_L4;
4876
4877	netdev->hw_features |= hw_features | hw_vlan_features;
4878	vlan_features = iavf_get_netdev_vlan_features(adapter);
4879
4880	netdev->features |= hw_features | vlan_features;
4881
4882	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4883		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4884
4885	if (FDIR_FLTR_SUPPORT(adapter)) {
4886		netdev->hw_features |= NETIF_F_NTUPLE;
4887		netdev->features |= NETIF_F_NTUPLE;
4888		adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4889	}
4890
4891	netdev->priv_flags |= IFF_UNICAST_FLT;
4892
4893	/* Do not turn on offloads when they are requested to be turned off.
4894	 * TSO needs minimum 576 bytes to work correctly.
4895	 */
4896	if (netdev->wanted_features) {
4897		if (!(netdev->wanted_features & NETIF_F_TSO) ||
4898		    netdev->mtu < 576)
4899			netdev->features &= ~NETIF_F_TSO;
4900		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4901		    netdev->mtu < 576)
4902			netdev->features &= ~NETIF_F_TSO6;
4903		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4904			netdev->features &= ~NETIF_F_TSO_ECN;
4905		if (!(netdev->wanted_features & NETIF_F_GRO))
4906			netdev->features &= ~NETIF_F_GRO;
4907		if (!(netdev->wanted_features & NETIF_F_GSO))
4908			netdev->features &= ~NETIF_F_GSO;
4909	}
4910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4911	return 0;
4912}
4913
4914/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4915 * iavf_probe - Device Initialization Routine
4916 * @pdev: PCI device information struct
4917 * @ent: entry in iavf_pci_tbl
4918 *
4919 * Returns 0 on success, negative on failure
4920 *
4921 * iavf_probe initializes an adapter identified by a pci_dev structure.
4922 * The OS initialization, configuring of the adapter private structure,
4923 * and a hardware reset occur.
4924 **/
4925static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4926{
4927	struct net_device *netdev;
4928	struct iavf_adapter *adapter = NULL;
4929	struct iavf_hw *hw = NULL;
4930	int err;
4931
4932	err = pci_enable_device(pdev);
4933	if (err)
4934		return err;
4935
4936	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4937	if (err) {
4938		dev_err(&pdev->dev,
4939			"DMA configuration failed: 0x%x\n", err);
4940		goto err_dma;
 
 
 
4941	}
4942
4943	err = pci_request_regions(pdev, iavf_driver_name);
4944	if (err) {
4945		dev_err(&pdev->dev,
4946			"pci_request_regions failed 0x%x\n", err);
4947		goto err_pci_reg;
4948	}
4949
 
 
4950	pci_set_master(pdev);
4951
4952	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4953				   IAVF_MAX_REQ_QUEUES);
4954	if (!netdev) {
4955		err = -ENOMEM;
4956		goto err_alloc_etherdev;
4957	}
4958
4959	SET_NETDEV_DEV(netdev, &pdev->dev);
4960
4961	pci_set_drvdata(pdev, netdev);
4962	adapter = netdev_priv(netdev);
4963
4964	adapter->netdev = netdev;
4965	adapter->pdev = pdev;
4966
4967	hw = &adapter->hw;
4968	hw->back = adapter;
4969
4970	adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4971					      iavf_driver_name);
4972	if (!adapter->wq) {
4973		err = -ENOMEM;
4974		goto err_alloc_wq;
4975	}
4976
4977	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4978	iavf_change_state(adapter, __IAVF_STARTUP);
4979
4980	/* Call save state here because it relies on the adapter struct. */
4981	pci_save_state(pdev);
4982
4983	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4984			      pci_resource_len(pdev, 0));
4985	if (!hw->hw_addr) {
4986		err = -EIO;
4987		goto err_ioremap;
4988	}
4989	hw->vendor_id = pdev->vendor;
4990	hw->device_id = pdev->device;
4991	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4992	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4993	hw->subsystem_device_id = pdev->subsystem_device;
4994	hw->bus.device = PCI_SLOT(pdev->devfn);
4995	hw->bus.func = PCI_FUNC(pdev->devfn);
4996	hw->bus.bus_id = pdev->bus->number;
4997
4998	/* set up the locks for the AQ, do this only once in probe
4999	 * and destroy them only once in remove
5000	 */
5001	mutex_init(&adapter->crit_lock);
5002	mutex_init(&hw->aq.asq_mutex);
5003	mutex_init(&hw->aq.arq_mutex);
5004
5005	spin_lock_init(&adapter->mac_vlan_list_lock);
5006	spin_lock_init(&adapter->cloud_filter_list_lock);
5007	spin_lock_init(&adapter->fdir_fltr_lock);
5008	spin_lock_init(&adapter->adv_rss_lock);
5009	spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5010
5011	INIT_LIST_HEAD(&adapter->mac_filter_list);
5012	INIT_LIST_HEAD(&adapter->vlan_filter_list);
5013	INIT_LIST_HEAD(&adapter->cloud_filter_list);
5014	INIT_LIST_HEAD(&adapter->fdir_list_head);
5015	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5016
5017	INIT_WORK(&adapter->reset_task, iavf_reset_task);
5018	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5019	INIT_WORK(&adapter->finish_config, iavf_finish_config);
5020	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
 
 
 
 
5021
5022	/* Setup the wait queue for indicating transition to down status */
5023	init_waitqueue_head(&adapter->down_waitqueue);
5024
5025	/* Setup the wait queue for indicating transition to running state */
5026	init_waitqueue_head(&adapter->reset_waitqueue);
5027
5028	/* Setup the wait queue for indicating virtchannel events */
5029	init_waitqueue_head(&adapter->vc_waitqueue);
5030
5031	queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5032			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5033	/* Initialization goes on in the work. Do not add more of it below. */
5034	return 0;
5035
5036err_ioremap:
5037	destroy_workqueue(adapter->wq);
5038err_alloc_wq:
5039	free_netdev(netdev);
5040err_alloc_etherdev:
5041	pci_release_regions(pdev);
5042err_pci_reg:
5043err_dma:
5044	pci_disable_device(pdev);
5045	return err;
5046}
5047
 
5048/**
5049 * iavf_suspend - Power management suspend routine
5050 * @dev_d: device info pointer
 
5051 *
5052 * Called when the system (VM) is entering sleep/suspend.
5053 **/
5054static int __maybe_unused iavf_suspend(struct device *dev_d)
5055{
5056	struct net_device *netdev = dev_get_drvdata(dev_d);
5057	struct iavf_adapter *adapter = netdev_priv(netdev);
 
5058
5059	netif_device_detach(netdev);
5060
5061	mutex_lock(&adapter->crit_lock);
 
 
5062
5063	if (netif_running(netdev)) {
5064		rtnl_lock();
5065		iavf_down(adapter);
5066		rtnl_unlock();
5067	}
5068	iavf_free_misc_irq(adapter);
5069	iavf_reset_interrupt_capability(adapter);
5070
5071	mutex_unlock(&adapter->crit_lock);
 
 
 
 
 
 
5072
5073	return 0;
5074}
5075
5076/**
5077 * iavf_resume - Power management resume routine
5078 * @dev_d: device info pointer
5079 *
5080 * Called when the system (VM) is resumed from sleep/suspend.
5081 **/
5082static int __maybe_unused iavf_resume(struct device *dev_d)
5083{
5084	struct pci_dev *pdev = to_pci_dev(dev_d);
5085	struct iavf_adapter *adapter;
5086	u32 err;
5087
5088	adapter = iavf_pdev_to_adapter(pdev);
 
 
 
 
 
5089
 
 
 
 
 
5090	pci_set_master(pdev);
5091
5092	rtnl_lock();
5093	err = iavf_set_interrupt_capability(adapter);
5094	if (err) {
5095		rtnl_unlock();
5096		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5097		return err;
5098	}
5099	err = iavf_request_misc_irq(adapter);
5100	rtnl_unlock();
5101	if (err) {
5102		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5103		return err;
5104	}
5105
5106	queue_work(adapter->wq, &adapter->reset_task);
5107
5108	netif_device_attach(adapter->netdev);
5109
5110	return err;
5111}
5112
 
5113/**
5114 * iavf_remove - Device Removal Routine
5115 * @pdev: PCI device information struct
5116 *
5117 * iavf_remove is called by the PCI subsystem to alert the driver
5118 * that it should release a PCI device.  The could be caused by a
5119 * Hot-Plug event, or because the driver is going to be removed from
5120 * memory.
5121 **/
5122static void iavf_remove(struct pci_dev *pdev)
5123{
5124	struct iavf_fdir_fltr *fdir, *fdirtmp;
 
5125	struct iavf_vlan_filter *vlf, *vlftmp;
 
5126	struct iavf_cloud_filter *cf, *cftmp;
5127	struct iavf_adv_rss *rss, *rsstmp;
5128	struct iavf_mac_filter *f, *ftmp;
5129	struct iavf_adapter *adapter;
5130	struct net_device *netdev;
5131	struct iavf_hw *hw;
5132
5133	/* Don't proceed with remove if netdev is already freed */
5134	netdev = pci_get_drvdata(pdev);
5135	if (!netdev)
5136		return;
5137
5138	adapter = iavf_pdev_to_adapter(pdev);
5139	hw = &adapter->hw;
5140
5141	if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5142		return;
5143
5144	/* Wait until port initialization is complete.
5145	 * There are flows where register/unregister netdev may race.
5146	 */
5147	while (1) {
5148		mutex_lock(&adapter->crit_lock);
5149		if (adapter->state == __IAVF_RUNNING ||
5150		    adapter->state == __IAVF_DOWN ||
5151		    adapter->state == __IAVF_INIT_FAILED) {
5152			mutex_unlock(&adapter->crit_lock);
5153			break;
5154		}
5155		/* Simply return if we already went through iavf_shutdown */
5156		if (adapter->state == __IAVF_REMOVE) {
5157			mutex_unlock(&adapter->crit_lock);
5158			return;
5159		}
5160
5161		mutex_unlock(&adapter->crit_lock);
5162		usleep_range(500, 1000);
5163	}
5164	cancel_delayed_work_sync(&adapter->watchdog_task);
5165	cancel_work_sync(&adapter->finish_config);
5166
5167	if (netdev->reg_state == NETREG_REGISTERED)
5168		unregister_netdev(netdev);
5169
5170	mutex_lock(&adapter->crit_lock);
5171	dev_info(&adapter->pdev->dev, "Removing device\n");
5172	iavf_change_state(adapter, __IAVF_REMOVE);
5173
 
 
 
 
5174	iavf_request_reset(adapter);
5175	msleep(50);
5176	/* If the FW isn't responding, kick it once, but only once. */
5177	if (!iavf_asq_done(hw)) {
5178		iavf_request_reset(adapter);
5179		msleep(50);
5180	}
 
 
 
 
 
 
5181
5182	iavf_misc_irq_disable(adapter);
5183	/* Shut down all the garbage mashers on the detention level */
5184	cancel_work_sync(&adapter->reset_task);
5185	cancel_delayed_work_sync(&adapter->watchdog_task);
 
5186	cancel_work_sync(&adapter->adminq_task);
5187
5188	adapter->aq_required = 0;
5189	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5190
5191	iavf_free_all_tx_resources(adapter);
5192	iavf_free_all_rx_resources(adapter);
5193	iavf_free_misc_irq(adapter);
5194	iavf_free_interrupt_scheme(adapter);
5195
5196	iavf_free_rss(adapter);
5197
5198	if (hw->aq.asq.count)
5199		iavf_shutdown_adminq(hw);
5200
5201	/* destroy the locks only once, here */
5202	mutex_destroy(&hw->aq.arq_mutex);
5203	mutex_destroy(&hw->aq.asq_mutex);
5204	mutex_unlock(&adapter->crit_lock);
5205	mutex_destroy(&adapter->crit_lock);
5206
5207	iounmap(hw->hw_addr);
5208	pci_release_regions(pdev);
 
 
 
5209	kfree(adapter->vf_res);
5210	spin_lock_bh(&adapter->mac_vlan_list_lock);
5211	/* If we got removed before an up/down sequence, we've got a filter
5212	 * hanging out there that we need to get rid of.
5213	 */
5214	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5215		list_del(&f->list);
5216		kfree(f);
5217	}
5218	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5219				 list) {
5220		list_del(&vlf->list);
5221		kfree(vlf);
5222	}
5223
5224	spin_unlock_bh(&adapter->mac_vlan_list_lock);
5225
5226	spin_lock_bh(&adapter->cloud_filter_list_lock);
5227	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5228		list_del(&cf->list);
5229		kfree(cf);
5230	}
5231	spin_unlock_bh(&adapter->cloud_filter_list_lock);
5232
5233	spin_lock_bh(&adapter->fdir_fltr_lock);
5234	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5235		list_del(&fdir->list);
5236		kfree(fdir);
5237	}
5238	spin_unlock_bh(&adapter->fdir_fltr_lock);
5239
5240	spin_lock_bh(&adapter->adv_rss_lock);
5241	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5242				 list) {
5243		list_del(&rss->list);
5244		kfree(rss);
5245	}
5246	spin_unlock_bh(&adapter->adv_rss_lock);
5247
5248	destroy_workqueue(adapter->wq);
5249
5250	pci_set_drvdata(pdev, NULL);
5251
5252	free_netdev(netdev);
5253
5254	pci_disable_device(pdev);
5255}
5256
5257/**
5258 * iavf_shutdown - Shutdown the device in preparation for a reboot
5259 * @pdev: pci device structure
5260 **/
5261static void iavf_shutdown(struct pci_dev *pdev)
5262{
5263	iavf_remove(pdev);
5264
5265	if (system_state == SYSTEM_POWER_OFF)
5266		pci_set_power_state(pdev, PCI_D3hot);
5267}
5268
5269static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5270
5271static struct pci_driver iavf_driver = {
5272	.name      = iavf_driver_name,
5273	.id_table  = iavf_pci_tbl,
5274	.probe     = iavf_probe,
5275	.remove    = iavf_remove,
5276	.driver.pm = &iavf_pm_ops,
5277	.shutdown  = iavf_shutdown,
 
 
 
5278};
5279
5280/**
5281 * iavf_init_module - Driver Registration Routine
5282 *
5283 * iavf_init_module is the first routine called when the driver is
5284 * loaded. All it does is register with the PCI subsystem.
5285 **/
5286static int __init iavf_init_module(void)
5287{
5288	pr_info("iavf: %s\n", iavf_driver_string);
 
 
 
5289
5290	pr_info("%s\n", iavf_copyright);
5291
5292	return pci_register_driver(&iavf_driver);
 
 
 
 
 
 
 
5293}
5294
5295module_init(iavf_init_module);
5296
5297/**
5298 * iavf_exit_module - Driver Exit Cleanup Routine
5299 *
5300 * iavf_exit_module is called just before the driver is removed
5301 * from memory.
5302 **/
5303static void __exit iavf_exit_module(void)
5304{
5305	pci_unregister_driver(&iavf_driver);
 
5306}
5307
5308module_exit(iavf_exit_module);
5309
5310/* iavf_main.c */