Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include "iavf.h"
5#include "iavf_prototype.h"
6#include "iavf_client.h"
7/* All iavf tracepoints are defined by the include below, which must
8 * be included exactly once across the whole kernel with
9 * CREATE_TRACE_POINTS defined
10 */
11#define CREATE_TRACE_POINTS
12#include "iavf_trace.h"
13
14static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16static int iavf_close(struct net_device *netdev);
17static int iavf_init_get_resources(struct iavf_adapter *adapter);
18static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20char iavf_driver_name[] = "iavf";
21static const char iavf_driver_string[] =
22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24#define DRV_KERN "-k"
25
26#define DRV_VERSION_MAJOR 3
27#define DRV_VERSION_MINOR 2
28#define DRV_VERSION_BUILD 3
29#define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
30 __stringify(DRV_VERSION_MINOR) "." \
31 __stringify(DRV_VERSION_BUILD) \
32 DRV_KERN
33const char iavf_driver_version[] = DRV_VERSION;
34static const char iavf_copyright[] =
35 "Copyright (c) 2013 - 2018 Intel Corporation.";
36
37/* iavf_pci_tbl - PCI Device ID Table
38 *
39 * Wildcard entries (PCI_ANY_ID) should come last
40 * Last entry must be all 0s
41 *
42 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
43 * Class, Class Mask, private data (not used) }
44 */
45static const struct pci_device_id iavf_pci_tbl[] = {
46 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
47 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
48 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
49 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
50 /* required last entry */
51 {0, }
52};
53
54MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
55
56MODULE_ALIAS("i40evf");
57MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
58MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
59MODULE_LICENSE("GPL v2");
60MODULE_VERSION(DRV_VERSION);
61
62static const struct net_device_ops iavf_netdev_ops;
63struct workqueue_struct *iavf_wq;
64
65/**
66 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
67 * @hw: pointer to the HW structure
68 * @mem: ptr to mem struct to fill out
69 * @size: size of memory requested
70 * @alignment: what to align the allocation to
71 **/
72enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
73 struct iavf_dma_mem *mem,
74 u64 size, u32 alignment)
75{
76 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
77
78 if (!mem)
79 return IAVF_ERR_PARAM;
80
81 mem->size = ALIGN(size, alignment);
82 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
83 (dma_addr_t *)&mem->pa, GFP_KERNEL);
84 if (mem->va)
85 return 0;
86 else
87 return IAVF_ERR_NO_MEMORY;
88}
89
90/**
91 * iavf_free_dma_mem_d - OS specific memory free for shared code
92 * @hw: pointer to the HW structure
93 * @mem: ptr to mem struct to free
94 **/
95enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
96 struct iavf_dma_mem *mem)
97{
98 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
99
100 if (!mem || !mem->va)
101 return IAVF_ERR_PARAM;
102 dma_free_coherent(&adapter->pdev->dev, mem->size,
103 mem->va, (dma_addr_t)mem->pa);
104 return 0;
105}
106
107/**
108 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
109 * @hw: pointer to the HW structure
110 * @mem: ptr to mem struct to fill out
111 * @size: size of memory requested
112 **/
113enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
114 struct iavf_virt_mem *mem, u32 size)
115{
116 if (!mem)
117 return IAVF_ERR_PARAM;
118
119 mem->size = size;
120 mem->va = kzalloc(size, GFP_KERNEL);
121
122 if (mem->va)
123 return 0;
124 else
125 return IAVF_ERR_NO_MEMORY;
126}
127
128/**
129 * iavf_free_virt_mem_d - OS specific memory free for shared code
130 * @hw: pointer to the HW structure
131 * @mem: ptr to mem struct to free
132 **/
133enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
134 struct iavf_virt_mem *mem)
135{
136 if (!mem)
137 return IAVF_ERR_PARAM;
138
139 /* it's ok to kfree a NULL pointer */
140 kfree(mem->va);
141
142 return 0;
143}
144
145/**
146 * iavf_schedule_reset - Set the flags and schedule a reset event
147 * @adapter: board private structure
148 **/
149void iavf_schedule_reset(struct iavf_adapter *adapter)
150{
151 if (!(adapter->flags &
152 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
153 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
154 queue_work(iavf_wq, &adapter->reset_task);
155 }
156}
157
158/**
159 * iavf_tx_timeout - Respond to a Tx Hang
160 * @netdev: network interface device structure
161 **/
162static void iavf_tx_timeout(struct net_device *netdev)
163{
164 struct iavf_adapter *adapter = netdev_priv(netdev);
165
166 adapter->tx_timeout_count++;
167 iavf_schedule_reset(adapter);
168}
169
170/**
171 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
172 * @adapter: board private structure
173 **/
174static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
175{
176 struct iavf_hw *hw = &adapter->hw;
177
178 if (!adapter->msix_entries)
179 return;
180
181 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
182
183 iavf_flush(hw);
184
185 synchronize_irq(adapter->msix_entries[0].vector);
186}
187
188/**
189 * iavf_misc_irq_enable - Enable default interrupt generation settings
190 * @adapter: board private structure
191 **/
192static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
193{
194 struct iavf_hw *hw = &adapter->hw;
195
196 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
197 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
198 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
199
200 iavf_flush(hw);
201}
202
203/**
204 * iavf_irq_disable - Mask off interrupt generation on the NIC
205 * @adapter: board private structure
206 **/
207static void iavf_irq_disable(struct iavf_adapter *adapter)
208{
209 int i;
210 struct iavf_hw *hw = &adapter->hw;
211
212 if (!adapter->msix_entries)
213 return;
214
215 for (i = 1; i < adapter->num_msix_vectors; i++) {
216 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
217 synchronize_irq(adapter->msix_entries[i].vector);
218 }
219 iavf_flush(hw);
220}
221
222/**
223 * iavf_irq_enable_queues - Enable interrupt for specified queues
224 * @adapter: board private structure
225 * @mask: bitmap of queues to enable
226 **/
227void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
228{
229 struct iavf_hw *hw = &adapter->hw;
230 int i;
231
232 for (i = 1; i < adapter->num_msix_vectors; i++) {
233 if (mask & BIT(i - 1)) {
234 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
235 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
236 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
237 }
238 }
239}
240
241/**
242 * iavf_irq_enable - Enable default interrupt generation settings
243 * @adapter: board private structure
244 * @flush: boolean value whether to run rd32()
245 **/
246void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
247{
248 struct iavf_hw *hw = &adapter->hw;
249
250 iavf_misc_irq_enable(adapter);
251 iavf_irq_enable_queues(adapter, ~0);
252
253 if (flush)
254 iavf_flush(hw);
255}
256
257/**
258 * iavf_msix_aq - Interrupt handler for vector 0
259 * @irq: interrupt number
260 * @data: pointer to netdev
261 **/
262static irqreturn_t iavf_msix_aq(int irq, void *data)
263{
264 struct net_device *netdev = data;
265 struct iavf_adapter *adapter = netdev_priv(netdev);
266 struct iavf_hw *hw = &adapter->hw;
267
268 /* handle non-queue interrupts, these reads clear the registers */
269 rd32(hw, IAVF_VFINT_ICR01);
270 rd32(hw, IAVF_VFINT_ICR0_ENA1);
271
272 /* schedule work on the private workqueue */
273 queue_work(iavf_wq, &adapter->adminq_task);
274
275 return IRQ_HANDLED;
276}
277
278/**
279 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
280 * @irq: interrupt number
281 * @data: pointer to a q_vector
282 **/
283static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
284{
285 struct iavf_q_vector *q_vector = data;
286
287 if (!q_vector->tx.ring && !q_vector->rx.ring)
288 return IRQ_HANDLED;
289
290 napi_schedule_irqoff(&q_vector->napi);
291
292 return IRQ_HANDLED;
293}
294
295/**
296 * iavf_map_vector_to_rxq - associate irqs with rx queues
297 * @adapter: board private structure
298 * @v_idx: interrupt number
299 * @r_idx: queue number
300 **/
301static void
302iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
303{
304 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
305 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
306 struct iavf_hw *hw = &adapter->hw;
307
308 rx_ring->q_vector = q_vector;
309 rx_ring->next = q_vector->rx.ring;
310 rx_ring->vsi = &adapter->vsi;
311 q_vector->rx.ring = rx_ring;
312 q_vector->rx.count++;
313 q_vector->rx.next_update = jiffies + 1;
314 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
315 q_vector->ring_mask |= BIT(r_idx);
316 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
317 q_vector->rx.current_itr >> 1);
318 q_vector->rx.current_itr = q_vector->rx.target_itr;
319}
320
321/**
322 * iavf_map_vector_to_txq - associate irqs with tx queues
323 * @adapter: board private structure
324 * @v_idx: interrupt number
325 * @t_idx: queue number
326 **/
327static void
328iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
329{
330 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
331 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
332 struct iavf_hw *hw = &adapter->hw;
333
334 tx_ring->q_vector = q_vector;
335 tx_ring->next = q_vector->tx.ring;
336 tx_ring->vsi = &adapter->vsi;
337 q_vector->tx.ring = tx_ring;
338 q_vector->tx.count++;
339 q_vector->tx.next_update = jiffies + 1;
340 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
341 q_vector->num_ringpairs++;
342 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
343 q_vector->tx.target_itr >> 1);
344 q_vector->tx.current_itr = q_vector->tx.target_itr;
345}
346
347/**
348 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
349 * @adapter: board private structure to initialize
350 *
351 * This function maps descriptor rings to the queue-specific vectors
352 * we were allotted through the MSI-X enabling code. Ideally, we'd have
353 * one vector per ring/queue, but on a constrained vector budget, we
354 * group the rings as "efficiently" as possible. You would add new
355 * mapping configurations in here.
356 **/
357static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
358{
359 int rings_remaining = adapter->num_active_queues;
360 int ridx = 0, vidx = 0;
361 int q_vectors;
362
363 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
364
365 for (; ridx < rings_remaining; ridx++) {
366 iavf_map_vector_to_rxq(adapter, vidx, ridx);
367 iavf_map_vector_to_txq(adapter, vidx, ridx);
368
369 /* In the case where we have more queues than vectors, continue
370 * round-robin on vectors until all queues are mapped.
371 */
372 if (++vidx >= q_vectors)
373 vidx = 0;
374 }
375
376 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
377}
378
379/**
380 * iavf_irq_affinity_notify - Callback for affinity changes
381 * @notify: context as to what irq was changed
382 * @mask: the new affinity mask
383 *
384 * This is a callback function used by the irq_set_affinity_notifier function
385 * so that we may register to receive changes to the irq affinity masks.
386 **/
387static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
388 const cpumask_t *mask)
389{
390 struct iavf_q_vector *q_vector =
391 container_of(notify, struct iavf_q_vector, affinity_notify);
392
393 cpumask_copy(&q_vector->affinity_mask, mask);
394}
395
396/**
397 * iavf_irq_affinity_release - Callback for affinity notifier release
398 * @ref: internal core kernel usage
399 *
400 * This is a callback function used by the irq_set_affinity_notifier function
401 * to inform the current notification subscriber that they will no longer
402 * receive notifications.
403 **/
404static void iavf_irq_affinity_release(struct kref *ref) {}
405
406/**
407 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
408 * @adapter: board private structure
409 * @basename: device basename
410 *
411 * Allocates MSI-X vectors for tx and rx handling, and requests
412 * interrupts from the kernel.
413 **/
414static int
415iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
416{
417 unsigned int vector, q_vectors;
418 unsigned int rx_int_idx = 0, tx_int_idx = 0;
419 int irq_num, err;
420 int cpu;
421
422 iavf_irq_disable(adapter);
423 /* Decrement for Other and TCP Timer vectors */
424 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
425
426 for (vector = 0; vector < q_vectors; vector++) {
427 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
428
429 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
430
431 if (q_vector->tx.ring && q_vector->rx.ring) {
432 snprintf(q_vector->name, sizeof(q_vector->name),
433 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
434 tx_int_idx++;
435 } else if (q_vector->rx.ring) {
436 snprintf(q_vector->name, sizeof(q_vector->name),
437 "iavf-%s-rx-%d", basename, rx_int_idx++);
438 } else if (q_vector->tx.ring) {
439 snprintf(q_vector->name, sizeof(q_vector->name),
440 "iavf-%s-tx-%d", basename, tx_int_idx++);
441 } else {
442 /* skip this unused q_vector */
443 continue;
444 }
445 err = request_irq(irq_num,
446 iavf_msix_clean_rings,
447 0,
448 q_vector->name,
449 q_vector);
450 if (err) {
451 dev_info(&adapter->pdev->dev,
452 "Request_irq failed, error: %d\n", err);
453 goto free_queue_irqs;
454 }
455 /* register for affinity change notifications */
456 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
457 q_vector->affinity_notify.release =
458 iavf_irq_affinity_release;
459 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
460 /* Spread the IRQ affinity hints across online CPUs. Note that
461 * get_cpu_mask returns a mask with a permanent lifetime so
462 * it's safe to use as a hint for irq_set_affinity_hint.
463 */
464 cpu = cpumask_local_spread(q_vector->v_idx, -1);
465 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
466 }
467
468 return 0;
469
470free_queue_irqs:
471 while (vector) {
472 vector--;
473 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
474 irq_set_affinity_notifier(irq_num, NULL);
475 irq_set_affinity_hint(irq_num, NULL);
476 free_irq(irq_num, &adapter->q_vectors[vector]);
477 }
478 return err;
479}
480
481/**
482 * iavf_request_misc_irq - Initialize MSI-X interrupts
483 * @adapter: board private structure
484 *
485 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
486 * vector is only for the admin queue, and stays active even when the netdev
487 * is closed.
488 **/
489static int iavf_request_misc_irq(struct iavf_adapter *adapter)
490{
491 struct net_device *netdev = adapter->netdev;
492 int err;
493
494 snprintf(adapter->misc_vector_name,
495 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
496 dev_name(&adapter->pdev->dev));
497 err = request_irq(adapter->msix_entries[0].vector,
498 &iavf_msix_aq, 0,
499 adapter->misc_vector_name, netdev);
500 if (err) {
501 dev_err(&adapter->pdev->dev,
502 "request_irq for %s failed: %d\n",
503 adapter->misc_vector_name, err);
504 free_irq(adapter->msix_entries[0].vector, netdev);
505 }
506 return err;
507}
508
509/**
510 * iavf_free_traffic_irqs - Free MSI-X interrupts
511 * @adapter: board private structure
512 *
513 * Frees all MSI-X vectors other than 0.
514 **/
515static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
516{
517 int vector, irq_num, q_vectors;
518
519 if (!adapter->msix_entries)
520 return;
521
522 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
523
524 for (vector = 0; vector < q_vectors; vector++) {
525 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
526 irq_set_affinity_notifier(irq_num, NULL);
527 irq_set_affinity_hint(irq_num, NULL);
528 free_irq(irq_num, &adapter->q_vectors[vector]);
529 }
530}
531
532/**
533 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
534 * @adapter: board private structure
535 *
536 * Frees MSI-X vector 0.
537 **/
538static void iavf_free_misc_irq(struct iavf_adapter *adapter)
539{
540 struct net_device *netdev = adapter->netdev;
541
542 if (!adapter->msix_entries)
543 return;
544
545 free_irq(adapter->msix_entries[0].vector, netdev);
546}
547
548/**
549 * iavf_configure_tx - Configure Transmit Unit after Reset
550 * @adapter: board private structure
551 *
552 * Configure the Tx unit of the MAC after a reset.
553 **/
554static void iavf_configure_tx(struct iavf_adapter *adapter)
555{
556 struct iavf_hw *hw = &adapter->hw;
557 int i;
558
559 for (i = 0; i < adapter->num_active_queues; i++)
560 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
561}
562
563/**
564 * iavf_configure_rx - Configure Receive Unit after Reset
565 * @adapter: board private structure
566 *
567 * Configure the Rx unit of the MAC after a reset.
568 **/
569static void iavf_configure_rx(struct iavf_adapter *adapter)
570{
571 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
572 struct iavf_hw *hw = &adapter->hw;
573 int i;
574
575 /* Legacy Rx will always default to a 2048 buffer size. */
576#if (PAGE_SIZE < 8192)
577 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
578 struct net_device *netdev = adapter->netdev;
579
580 /* For jumbo frames on systems with 4K pages we have to use
581 * an order 1 page, so we might as well increase the size
582 * of our Rx buffer to make better use of the available space
583 */
584 rx_buf_len = IAVF_RXBUFFER_3072;
585
586 /* We use a 1536 buffer size for configurations with
587 * standard Ethernet mtu. On x86 this gives us enough room
588 * for shared info and 192 bytes of padding.
589 */
590 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
591 (netdev->mtu <= ETH_DATA_LEN))
592 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
593 }
594#endif
595
596 for (i = 0; i < adapter->num_active_queues; i++) {
597 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
598 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
599
600 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
601 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
602 else
603 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
604 }
605}
606
607/**
608 * iavf_find_vlan - Search filter list for specific vlan filter
609 * @adapter: board private structure
610 * @vlan: vlan tag
611 *
612 * Returns ptr to the filter object or NULL. Must be called while holding the
613 * mac_vlan_list_lock.
614 **/
615static struct
616iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
617{
618 struct iavf_vlan_filter *f;
619
620 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
621 if (vlan == f->vlan)
622 return f;
623 }
624 return NULL;
625}
626
627/**
628 * iavf_add_vlan - Add a vlan filter to the list
629 * @adapter: board private structure
630 * @vlan: VLAN tag
631 *
632 * Returns ptr to the filter object or NULL when no memory available.
633 **/
634static struct
635iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
636{
637 struct iavf_vlan_filter *f = NULL;
638
639 spin_lock_bh(&adapter->mac_vlan_list_lock);
640
641 f = iavf_find_vlan(adapter, vlan);
642 if (!f) {
643 f = kzalloc(sizeof(*f), GFP_ATOMIC);
644 if (!f)
645 goto clearout;
646
647 f->vlan = vlan;
648
649 list_add_tail(&f->list, &adapter->vlan_filter_list);
650 f->add = true;
651 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
652 }
653
654clearout:
655 spin_unlock_bh(&adapter->mac_vlan_list_lock);
656 return f;
657}
658
659/**
660 * iavf_del_vlan - Remove a vlan filter from the list
661 * @adapter: board private structure
662 * @vlan: VLAN tag
663 **/
664static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
665{
666 struct iavf_vlan_filter *f;
667
668 spin_lock_bh(&adapter->mac_vlan_list_lock);
669
670 f = iavf_find_vlan(adapter, vlan);
671 if (f) {
672 f->remove = true;
673 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
674 }
675
676 spin_unlock_bh(&adapter->mac_vlan_list_lock);
677}
678
679/**
680 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
681 * @netdev: network device struct
682 * @proto: unused protocol data
683 * @vid: VLAN tag
684 **/
685static int iavf_vlan_rx_add_vid(struct net_device *netdev,
686 __always_unused __be16 proto, u16 vid)
687{
688 struct iavf_adapter *adapter = netdev_priv(netdev);
689
690 if (!VLAN_ALLOWED(adapter))
691 return -EIO;
692 if (iavf_add_vlan(adapter, vid) == NULL)
693 return -ENOMEM;
694 return 0;
695}
696
697/**
698 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
699 * @netdev: network device struct
700 * @proto: unused protocol data
701 * @vid: VLAN tag
702 **/
703static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
704 __always_unused __be16 proto, u16 vid)
705{
706 struct iavf_adapter *adapter = netdev_priv(netdev);
707
708 if (VLAN_ALLOWED(adapter)) {
709 iavf_del_vlan(adapter, vid);
710 return 0;
711 }
712 return -EIO;
713}
714
715/**
716 * iavf_find_filter - Search filter list for specific mac filter
717 * @adapter: board private structure
718 * @macaddr: the MAC address
719 *
720 * Returns ptr to the filter object or NULL. Must be called while holding the
721 * mac_vlan_list_lock.
722 **/
723static struct
724iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
725 const u8 *macaddr)
726{
727 struct iavf_mac_filter *f;
728
729 if (!macaddr)
730 return NULL;
731
732 list_for_each_entry(f, &adapter->mac_filter_list, list) {
733 if (ether_addr_equal(macaddr, f->macaddr))
734 return f;
735 }
736 return NULL;
737}
738
739/**
740 * iavf_add_filter - Add a mac filter to the filter list
741 * @adapter: board private structure
742 * @macaddr: the MAC address
743 *
744 * Returns ptr to the filter object or NULL when no memory available.
745 **/
746static struct
747iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
748 const u8 *macaddr)
749{
750 struct iavf_mac_filter *f;
751
752 if (!macaddr)
753 return NULL;
754
755 f = iavf_find_filter(adapter, macaddr);
756 if (!f) {
757 f = kzalloc(sizeof(*f), GFP_ATOMIC);
758 if (!f)
759 return f;
760
761 ether_addr_copy(f->macaddr, macaddr);
762
763 list_add_tail(&f->list, &adapter->mac_filter_list);
764 f->add = true;
765 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
766 } else {
767 f->remove = false;
768 }
769
770 return f;
771}
772
773/**
774 * iavf_set_mac - NDO callback to set port mac address
775 * @netdev: network interface device structure
776 * @p: pointer to an address structure
777 *
778 * Returns 0 on success, negative on failure
779 **/
780static int iavf_set_mac(struct net_device *netdev, void *p)
781{
782 struct iavf_adapter *adapter = netdev_priv(netdev);
783 struct iavf_hw *hw = &adapter->hw;
784 struct iavf_mac_filter *f;
785 struct sockaddr *addr = p;
786
787 if (!is_valid_ether_addr(addr->sa_data))
788 return -EADDRNOTAVAIL;
789
790 if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
791 return 0;
792
793 spin_lock_bh(&adapter->mac_vlan_list_lock);
794
795 f = iavf_find_filter(adapter, hw->mac.addr);
796 if (f) {
797 f->remove = true;
798 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
799 }
800
801 f = iavf_add_filter(adapter, addr->sa_data);
802
803 spin_unlock_bh(&adapter->mac_vlan_list_lock);
804
805 if (f) {
806 ether_addr_copy(hw->mac.addr, addr->sa_data);
807 }
808
809 return (f == NULL) ? -ENOMEM : 0;
810}
811
812/**
813 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
814 * @netdev: the netdevice
815 * @addr: address to add
816 *
817 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
818 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
819 */
820static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
821{
822 struct iavf_adapter *adapter = netdev_priv(netdev);
823
824 if (iavf_add_filter(adapter, addr))
825 return 0;
826 else
827 return -ENOMEM;
828}
829
830/**
831 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
832 * @netdev: the netdevice
833 * @addr: address to add
834 *
835 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
836 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
837 */
838static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
839{
840 struct iavf_adapter *adapter = netdev_priv(netdev);
841 struct iavf_mac_filter *f;
842
843 /* Under some circumstances, we might receive a request to delete
844 * our own device address from our uc list. Because we store the
845 * device address in the VSI's MAC/VLAN filter list, we need to ignore
846 * such requests and not delete our device address from this list.
847 */
848 if (ether_addr_equal(addr, netdev->dev_addr))
849 return 0;
850
851 f = iavf_find_filter(adapter, addr);
852 if (f) {
853 f->remove = true;
854 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
855 }
856 return 0;
857}
858
859/**
860 * iavf_set_rx_mode - NDO callback to set the netdev filters
861 * @netdev: network interface device structure
862 **/
863static void iavf_set_rx_mode(struct net_device *netdev)
864{
865 struct iavf_adapter *adapter = netdev_priv(netdev);
866
867 spin_lock_bh(&adapter->mac_vlan_list_lock);
868 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
869 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
870 spin_unlock_bh(&adapter->mac_vlan_list_lock);
871
872 if (netdev->flags & IFF_PROMISC &&
873 !(adapter->flags & IAVF_FLAG_PROMISC_ON))
874 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
875 else if (!(netdev->flags & IFF_PROMISC) &&
876 adapter->flags & IAVF_FLAG_PROMISC_ON)
877 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
878
879 if (netdev->flags & IFF_ALLMULTI &&
880 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
881 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
882 else if (!(netdev->flags & IFF_ALLMULTI) &&
883 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
884 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
885}
886
887/**
888 * iavf_napi_enable_all - enable NAPI on all queue vectors
889 * @adapter: board private structure
890 **/
891static void iavf_napi_enable_all(struct iavf_adapter *adapter)
892{
893 int q_idx;
894 struct iavf_q_vector *q_vector;
895 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
896
897 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
898 struct napi_struct *napi;
899
900 q_vector = &adapter->q_vectors[q_idx];
901 napi = &q_vector->napi;
902 napi_enable(napi);
903 }
904}
905
906/**
907 * iavf_napi_disable_all - disable NAPI on all queue vectors
908 * @adapter: board private structure
909 **/
910static void iavf_napi_disable_all(struct iavf_adapter *adapter)
911{
912 int q_idx;
913 struct iavf_q_vector *q_vector;
914 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
915
916 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
917 q_vector = &adapter->q_vectors[q_idx];
918 napi_disable(&q_vector->napi);
919 }
920}
921
922/**
923 * iavf_configure - set up transmit and receive data structures
924 * @adapter: board private structure
925 **/
926static void iavf_configure(struct iavf_adapter *adapter)
927{
928 struct net_device *netdev = adapter->netdev;
929 int i;
930
931 iavf_set_rx_mode(netdev);
932
933 iavf_configure_tx(adapter);
934 iavf_configure_rx(adapter);
935 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
936
937 for (i = 0; i < adapter->num_active_queues; i++) {
938 struct iavf_ring *ring = &adapter->rx_rings[i];
939
940 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
941 }
942}
943
944/**
945 * iavf_up_complete - Finish the last steps of bringing up a connection
946 * @adapter: board private structure
947 *
948 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
949 **/
950static void iavf_up_complete(struct iavf_adapter *adapter)
951{
952 adapter->state = __IAVF_RUNNING;
953 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
954
955 iavf_napi_enable_all(adapter);
956
957 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
958 if (CLIENT_ENABLED(adapter))
959 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
960 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
961}
962
963/**
964 * iavf_down - Shutdown the connection processing
965 * @adapter: board private structure
966 *
967 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
968 **/
969void iavf_down(struct iavf_adapter *adapter)
970{
971 struct net_device *netdev = adapter->netdev;
972 struct iavf_vlan_filter *vlf;
973 struct iavf_mac_filter *f;
974 struct iavf_cloud_filter *cf;
975
976 if (adapter->state <= __IAVF_DOWN_PENDING)
977 return;
978
979 netif_carrier_off(netdev);
980 netif_tx_disable(netdev);
981 adapter->link_up = false;
982 iavf_napi_disable_all(adapter);
983 iavf_irq_disable(adapter);
984
985 spin_lock_bh(&adapter->mac_vlan_list_lock);
986
987 /* clear the sync flag on all filters */
988 __dev_uc_unsync(adapter->netdev, NULL);
989 __dev_mc_unsync(adapter->netdev, NULL);
990
991 /* remove all MAC filters */
992 list_for_each_entry(f, &adapter->mac_filter_list, list) {
993 f->remove = true;
994 }
995
996 /* remove all VLAN filters */
997 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
998 vlf->remove = true;
999 }
1000
1001 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1002
1003 /* remove all cloud filters */
1004 spin_lock_bh(&adapter->cloud_filter_list_lock);
1005 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1006 cf->del = true;
1007 }
1008 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1009
1010 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1011 adapter->state != __IAVF_RESETTING) {
1012 /* cancel any current operation */
1013 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1014 /* Schedule operations to close down the HW. Don't wait
1015 * here for this to complete. The watchdog is still running
1016 * and it will take care of this.
1017 */
1018 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1019 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1020 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1021 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1022 }
1023
1024 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1025}
1026
1027/**
1028 * iavf_acquire_msix_vectors - Setup the MSIX capability
1029 * @adapter: board private structure
1030 * @vectors: number of vectors to request
1031 *
1032 * Work with the OS to set up the MSIX vectors needed.
1033 *
1034 * Returns 0 on success, negative on failure
1035 **/
1036static int
1037iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1038{
1039 int err, vector_threshold;
1040
1041 /* We'll want at least 3 (vector_threshold):
1042 * 0) Other (Admin Queue and link, mostly)
1043 * 1) TxQ[0] Cleanup
1044 * 2) RxQ[0] Cleanup
1045 */
1046 vector_threshold = MIN_MSIX_COUNT;
1047
1048 /* The more we get, the more we will assign to Tx/Rx Cleanup
1049 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1050 * Right now, we simply care about how many we'll get; we'll
1051 * set them up later while requesting irq's.
1052 */
1053 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1054 vector_threshold, vectors);
1055 if (err < 0) {
1056 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1057 kfree(adapter->msix_entries);
1058 adapter->msix_entries = NULL;
1059 return err;
1060 }
1061
1062 /* Adjust for only the vectors we'll use, which is minimum
1063 * of max_msix_q_vectors + NONQ_VECS, or the number of
1064 * vectors we were allocated.
1065 */
1066 adapter->num_msix_vectors = err;
1067 return 0;
1068}
1069
1070/**
1071 * iavf_free_queues - Free memory for all rings
1072 * @adapter: board private structure to initialize
1073 *
1074 * Free all of the memory associated with queue pairs.
1075 **/
1076static void iavf_free_queues(struct iavf_adapter *adapter)
1077{
1078 if (!adapter->vsi_res)
1079 return;
1080 adapter->num_active_queues = 0;
1081 kfree(adapter->tx_rings);
1082 adapter->tx_rings = NULL;
1083 kfree(adapter->rx_rings);
1084 adapter->rx_rings = NULL;
1085}
1086
1087/**
1088 * iavf_alloc_queues - Allocate memory for all rings
1089 * @adapter: board private structure to initialize
1090 *
1091 * We allocate one ring per queue at run-time since we don't know the
1092 * number of queues at compile-time. The polling_netdev array is
1093 * intended for Multiqueue, but should work fine with a single queue.
1094 **/
1095static int iavf_alloc_queues(struct iavf_adapter *adapter)
1096{
1097 int i, num_active_queues;
1098
1099 /* If we're in reset reallocating queues we don't actually know yet for
1100 * certain the PF gave us the number of queues we asked for but we'll
1101 * assume it did. Once basic reset is finished we'll confirm once we
1102 * start negotiating config with PF.
1103 */
1104 if (adapter->num_req_queues)
1105 num_active_queues = adapter->num_req_queues;
1106 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1107 adapter->num_tc)
1108 num_active_queues = adapter->ch_config.total_qps;
1109 else
1110 num_active_queues = min_t(int,
1111 adapter->vsi_res->num_queue_pairs,
1112 (int)(num_online_cpus()));
1113
1114
1115 adapter->tx_rings = kcalloc(num_active_queues,
1116 sizeof(struct iavf_ring), GFP_KERNEL);
1117 if (!adapter->tx_rings)
1118 goto err_out;
1119 adapter->rx_rings = kcalloc(num_active_queues,
1120 sizeof(struct iavf_ring), GFP_KERNEL);
1121 if (!adapter->rx_rings)
1122 goto err_out;
1123
1124 for (i = 0; i < num_active_queues; i++) {
1125 struct iavf_ring *tx_ring;
1126 struct iavf_ring *rx_ring;
1127
1128 tx_ring = &adapter->tx_rings[i];
1129
1130 tx_ring->queue_index = i;
1131 tx_ring->netdev = adapter->netdev;
1132 tx_ring->dev = &adapter->pdev->dev;
1133 tx_ring->count = adapter->tx_desc_count;
1134 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1135 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1136 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1137
1138 rx_ring = &adapter->rx_rings[i];
1139 rx_ring->queue_index = i;
1140 rx_ring->netdev = adapter->netdev;
1141 rx_ring->dev = &adapter->pdev->dev;
1142 rx_ring->count = adapter->rx_desc_count;
1143 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1144 }
1145
1146 adapter->num_active_queues = num_active_queues;
1147
1148 return 0;
1149
1150err_out:
1151 iavf_free_queues(adapter);
1152 return -ENOMEM;
1153}
1154
1155/**
1156 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1157 * @adapter: board private structure to initialize
1158 *
1159 * Attempt to configure the interrupts using the best available
1160 * capabilities of the hardware and the kernel.
1161 **/
1162static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1163{
1164 int vector, v_budget;
1165 int pairs = 0;
1166 int err = 0;
1167
1168 if (!adapter->vsi_res) {
1169 err = -EIO;
1170 goto out;
1171 }
1172 pairs = adapter->num_active_queues;
1173
1174 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1175 * us much good if we have more vectors than CPUs. However, we already
1176 * limit the total number of queues by the number of CPUs so we do not
1177 * need any further limiting here.
1178 */
1179 v_budget = min_t(int, pairs + NONQ_VECS,
1180 (int)adapter->vf_res->max_vectors);
1181
1182 adapter->msix_entries = kcalloc(v_budget,
1183 sizeof(struct msix_entry), GFP_KERNEL);
1184 if (!adapter->msix_entries) {
1185 err = -ENOMEM;
1186 goto out;
1187 }
1188
1189 for (vector = 0; vector < v_budget; vector++)
1190 adapter->msix_entries[vector].entry = vector;
1191
1192 err = iavf_acquire_msix_vectors(adapter, v_budget);
1193
1194out:
1195 netif_set_real_num_rx_queues(adapter->netdev, pairs);
1196 netif_set_real_num_tx_queues(adapter->netdev, pairs);
1197 return err;
1198}
1199
1200/**
1201 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1202 * @adapter: board private structure
1203 *
1204 * Return 0 on success, negative on failure
1205 **/
1206static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1207{
1208 struct iavf_aqc_get_set_rss_key_data *rss_key =
1209 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1210 struct iavf_hw *hw = &adapter->hw;
1211 int ret = 0;
1212
1213 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1214 /* bail because we already have a command pending */
1215 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1216 adapter->current_op);
1217 return -EBUSY;
1218 }
1219
1220 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1221 if (ret) {
1222 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1223 iavf_stat_str(hw, ret),
1224 iavf_aq_str(hw, hw->aq.asq_last_status));
1225 return ret;
1226
1227 }
1228
1229 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1230 adapter->rss_lut, adapter->rss_lut_size);
1231 if (ret) {
1232 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1233 iavf_stat_str(hw, ret),
1234 iavf_aq_str(hw, hw->aq.asq_last_status));
1235 }
1236
1237 return ret;
1238
1239}
1240
1241/**
1242 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1243 * @adapter: board private structure
1244 *
1245 * Returns 0 on success, negative on failure
1246 **/
1247static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1248{
1249 struct iavf_hw *hw = &adapter->hw;
1250 u32 *dw;
1251 u16 i;
1252
1253 dw = (u32 *)adapter->rss_key;
1254 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1255 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1256
1257 dw = (u32 *)adapter->rss_lut;
1258 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1259 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1260
1261 iavf_flush(hw);
1262
1263 return 0;
1264}
1265
1266/**
1267 * iavf_config_rss - Configure RSS keys and lut
1268 * @adapter: board private structure
1269 *
1270 * Returns 0 on success, negative on failure
1271 **/
1272int iavf_config_rss(struct iavf_adapter *adapter)
1273{
1274
1275 if (RSS_PF(adapter)) {
1276 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1277 IAVF_FLAG_AQ_SET_RSS_KEY;
1278 return 0;
1279 } else if (RSS_AQ(adapter)) {
1280 return iavf_config_rss_aq(adapter);
1281 } else {
1282 return iavf_config_rss_reg(adapter);
1283 }
1284}
1285
1286/**
1287 * iavf_fill_rss_lut - Fill the lut with default values
1288 * @adapter: board private structure
1289 **/
1290static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1291{
1292 u16 i;
1293
1294 for (i = 0; i < adapter->rss_lut_size; i++)
1295 adapter->rss_lut[i] = i % adapter->num_active_queues;
1296}
1297
1298/**
1299 * iavf_init_rss - Prepare for RSS
1300 * @adapter: board private structure
1301 *
1302 * Return 0 on success, negative on failure
1303 **/
1304static int iavf_init_rss(struct iavf_adapter *adapter)
1305{
1306 struct iavf_hw *hw = &adapter->hw;
1307 int ret;
1308
1309 if (!RSS_PF(adapter)) {
1310 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1311 if (adapter->vf_res->vf_cap_flags &
1312 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1313 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1314 else
1315 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1316
1317 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1318 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1319 }
1320
1321 iavf_fill_rss_lut(adapter);
1322 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1323 ret = iavf_config_rss(adapter);
1324
1325 return ret;
1326}
1327
1328/**
1329 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1330 * @adapter: board private structure to initialize
1331 *
1332 * We allocate one q_vector per queue interrupt. If allocation fails we
1333 * return -ENOMEM.
1334 **/
1335static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1336{
1337 int q_idx = 0, num_q_vectors;
1338 struct iavf_q_vector *q_vector;
1339
1340 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1341 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1342 GFP_KERNEL);
1343 if (!adapter->q_vectors)
1344 return -ENOMEM;
1345
1346 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1347 q_vector = &adapter->q_vectors[q_idx];
1348 q_vector->adapter = adapter;
1349 q_vector->vsi = &adapter->vsi;
1350 q_vector->v_idx = q_idx;
1351 q_vector->reg_idx = q_idx;
1352 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1353 netif_napi_add(adapter->netdev, &q_vector->napi,
1354 iavf_napi_poll, NAPI_POLL_WEIGHT);
1355 }
1356
1357 return 0;
1358}
1359
1360/**
1361 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1362 * @adapter: board private structure to initialize
1363 *
1364 * This function frees the memory allocated to the q_vectors. In addition if
1365 * NAPI is enabled it will delete any references to the NAPI struct prior
1366 * to freeing the q_vector.
1367 **/
1368static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1369{
1370 int q_idx, num_q_vectors;
1371 int napi_vectors;
1372
1373 if (!adapter->q_vectors)
1374 return;
1375
1376 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1377 napi_vectors = adapter->num_active_queues;
1378
1379 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1380 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1381
1382 if (q_idx < napi_vectors)
1383 netif_napi_del(&q_vector->napi);
1384 }
1385 kfree(adapter->q_vectors);
1386 adapter->q_vectors = NULL;
1387}
1388
1389/**
1390 * iavf_reset_interrupt_capability - Reset MSIX setup
1391 * @adapter: board private structure
1392 *
1393 **/
1394void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1395{
1396 if (!adapter->msix_entries)
1397 return;
1398
1399 pci_disable_msix(adapter->pdev);
1400 kfree(adapter->msix_entries);
1401 adapter->msix_entries = NULL;
1402}
1403
1404/**
1405 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1406 * @adapter: board private structure to initialize
1407 *
1408 **/
1409int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1410{
1411 int err;
1412
1413 err = iavf_alloc_queues(adapter);
1414 if (err) {
1415 dev_err(&adapter->pdev->dev,
1416 "Unable to allocate memory for queues\n");
1417 goto err_alloc_queues;
1418 }
1419
1420 rtnl_lock();
1421 err = iavf_set_interrupt_capability(adapter);
1422 rtnl_unlock();
1423 if (err) {
1424 dev_err(&adapter->pdev->dev,
1425 "Unable to setup interrupt capabilities\n");
1426 goto err_set_interrupt;
1427 }
1428
1429 err = iavf_alloc_q_vectors(adapter);
1430 if (err) {
1431 dev_err(&adapter->pdev->dev,
1432 "Unable to allocate memory for queue vectors\n");
1433 goto err_alloc_q_vectors;
1434 }
1435
1436 /* If we've made it so far while ADq flag being ON, then we haven't
1437 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1438 * resources have been allocated in the reset path.
1439 * Now we can truly claim that ADq is enabled.
1440 */
1441 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1442 adapter->num_tc)
1443 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1444 adapter->num_tc);
1445
1446 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1447 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1448 adapter->num_active_queues);
1449
1450 return 0;
1451err_alloc_q_vectors:
1452 iavf_reset_interrupt_capability(adapter);
1453err_set_interrupt:
1454 iavf_free_queues(adapter);
1455err_alloc_queues:
1456 return err;
1457}
1458
1459/**
1460 * iavf_free_rss - Free memory used by RSS structs
1461 * @adapter: board private structure
1462 **/
1463static void iavf_free_rss(struct iavf_adapter *adapter)
1464{
1465 kfree(adapter->rss_key);
1466 adapter->rss_key = NULL;
1467
1468 kfree(adapter->rss_lut);
1469 adapter->rss_lut = NULL;
1470}
1471
1472/**
1473 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1474 * @adapter: board private structure
1475 *
1476 * Returns 0 on success, negative on failure
1477 **/
1478static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1479{
1480 struct net_device *netdev = adapter->netdev;
1481 int err;
1482
1483 if (netif_running(netdev))
1484 iavf_free_traffic_irqs(adapter);
1485 iavf_free_misc_irq(adapter);
1486 iavf_reset_interrupt_capability(adapter);
1487 iavf_free_q_vectors(adapter);
1488 iavf_free_queues(adapter);
1489
1490 err = iavf_init_interrupt_scheme(adapter);
1491 if (err)
1492 goto err;
1493
1494 netif_tx_stop_all_queues(netdev);
1495
1496 err = iavf_request_misc_irq(adapter);
1497 if (err)
1498 goto err;
1499
1500 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1501
1502 iavf_map_rings_to_vectors(adapter);
1503
1504 if (RSS_AQ(adapter))
1505 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1506 else
1507 err = iavf_init_rss(adapter);
1508err:
1509 return err;
1510}
1511
1512/**
1513 * iavf_process_aq_command - process aq_required flags
1514 * and sends aq command
1515 * @adapter: pointer to iavf adapter structure
1516 *
1517 * Returns 0 on success
1518 * Returns error code if no command was sent
1519 * or error code if the command failed.
1520 **/
1521static int iavf_process_aq_command(struct iavf_adapter *adapter)
1522{
1523 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1524 return iavf_send_vf_config_msg(adapter);
1525 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1526 iavf_disable_queues(adapter);
1527 return 0;
1528 }
1529
1530 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1531 iavf_map_queues(adapter);
1532 return 0;
1533 }
1534
1535 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1536 iavf_add_ether_addrs(adapter);
1537 return 0;
1538 }
1539
1540 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1541 iavf_add_vlans(adapter);
1542 return 0;
1543 }
1544
1545 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1546 iavf_del_ether_addrs(adapter);
1547 return 0;
1548 }
1549
1550 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1551 iavf_del_vlans(adapter);
1552 return 0;
1553 }
1554
1555 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1556 iavf_enable_vlan_stripping(adapter);
1557 return 0;
1558 }
1559
1560 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1561 iavf_disable_vlan_stripping(adapter);
1562 return 0;
1563 }
1564
1565 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1566 iavf_configure_queues(adapter);
1567 return 0;
1568 }
1569
1570 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1571 iavf_enable_queues(adapter);
1572 return 0;
1573 }
1574
1575 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1576 /* This message goes straight to the firmware, not the
1577 * PF, so we don't have to set current_op as we will
1578 * not get a response through the ARQ.
1579 */
1580 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1581 return 0;
1582 }
1583 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1584 iavf_get_hena(adapter);
1585 return 0;
1586 }
1587 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1588 iavf_set_hena(adapter);
1589 return 0;
1590 }
1591 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1592 iavf_set_rss_key(adapter);
1593 return 0;
1594 }
1595 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1596 iavf_set_rss_lut(adapter);
1597 return 0;
1598 }
1599
1600 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1601 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1602 FLAG_VF_MULTICAST_PROMISC);
1603 return 0;
1604 }
1605
1606 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1607 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1608 return 0;
1609 }
1610
1611 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1612 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1613 iavf_set_promiscuous(adapter, 0);
1614 return 0;
1615 }
1616
1617 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1618 iavf_enable_channels(adapter);
1619 return 0;
1620 }
1621
1622 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1623 iavf_disable_channels(adapter);
1624 return 0;
1625 }
1626 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1627 iavf_add_cloud_filter(adapter);
1628 return 0;
1629 }
1630
1631 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1632 iavf_del_cloud_filter(adapter);
1633 return 0;
1634 }
1635 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1636 iavf_del_cloud_filter(adapter);
1637 return 0;
1638 }
1639 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1640 iavf_add_cloud_filter(adapter);
1641 return 0;
1642 }
1643 return -EAGAIN;
1644}
1645
1646/**
1647 * iavf_startup - first step of driver startup
1648 * @adapter: board private structure
1649 *
1650 * Function process __IAVF_STARTUP driver state.
1651 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1652 * when fails it returns -EAGAIN
1653 **/
1654static int iavf_startup(struct iavf_adapter *adapter)
1655{
1656 struct pci_dev *pdev = adapter->pdev;
1657 struct iavf_hw *hw = &adapter->hw;
1658 int err;
1659
1660 WARN_ON(adapter->state != __IAVF_STARTUP);
1661
1662 /* driver loaded, probe complete */
1663 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1664 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1665 err = iavf_set_mac_type(hw);
1666 if (err) {
1667 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1668 goto err;
1669 }
1670
1671 err = iavf_check_reset_complete(hw);
1672 if (err) {
1673 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1674 err);
1675 goto err;
1676 }
1677 hw->aq.num_arq_entries = IAVF_AQ_LEN;
1678 hw->aq.num_asq_entries = IAVF_AQ_LEN;
1679 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1680 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1681
1682 err = iavf_init_adminq(hw);
1683 if (err) {
1684 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1685 goto err;
1686 }
1687 err = iavf_send_api_ver(adapter);
1688 if (err) {
1689 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1690 iavf_shutdown_adminq(hw);
1691 goto err;
1692 }
1693 adapter->state = __IAVF_INIT_VERSION_CHECK;
1694err:
1695 return err;
1696}
1697
1698/**
1699 * iavf_init_version_check - second step of driver startup
1700 * @adapter: board private structure
1701 *
1702 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1703 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1704 * when fails it returns -EAGAIN
1705 **/
1706static int iavf_init_version_check(struct iavf_adapter *adapter)
1707{
1708 struct pci_dev *pdev = adapter->pdev;
1709 struct iavf_hw *hw = &adapter->hw;
1710 int err = -EAGAIN;
1711
1712 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1713
1714 if (!iavf_asq_done(hw)) {
1715 dev_err(&pdev->dev, "Admin queue command never completed\n");
1716 iavf_shutdown_adminq(hw);
1717 adapter->state = __IAVF_STARTUP;
1718 goto err;
1719 }
1720
1721 /* aq msg sent, awaiting reply */
1722 err = iavf_verify_api_ver(adapter);
1723 if (err) {
1724 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1725 err = iavf_send_api_ver(adapter);
1726 else
1727 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1728 adapter->pf_version.major,
1729 adapter->pf_version.minor,
1730 VIRTCHNL_VERSION_MAJOR,
1731 VIRTCHNL_VERSION_MINOR);
1732 goto err;
1733 }
1734 err = iavf_send_vf_config_msg(adapter);
1735 if (err) {
1736 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1737 err);
1738 goto err;
1739 }
1740 adapter->state = __IAVF_INIT_GET_RESOURCES;
1741
1742err:
1743 return err;
1744}
1745
1746/**
1747 * iavf_init_get_resources - third step of driver startup
1748 * @adapter: board private structure
1749 *
1750 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1751 * finishes driver initialization procedure.
1752 * When success the state is changed to __IAVF_DOWN
1753 * when fails it returns -EAGAIN
1754 **/
1755static int iavf_init_get_resources(struct iavf_adapter *adapter)
1756{
1757 struct net_device *netdev = adapter->netdev;
1758 struct pci_dev *pdev = adapter->pdev;
1759 struct iavf_hw *hw = &adapter->hw;
1760 int err = 0, bufsz;
1761
1762 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1763 /* aq msg sent, awaiting reply */
1764 if (!adapter->vf_res) {
1765 bufsz = sizeof(struct virtchnl_vf_resource) +
1766 (IAVF_MAX_VF_VSI *
1767 sizeof(struct virtchnl_vsi_resource));
1768 adapter->vf_res = kzalloc(bufsz, GFP_KERNEL);
1769 if (!adapter->vf_res)
1770 goto err;
1771 }
1772 err = iavf_get_vf_config(adapter);
1773 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1774 err = iavf_send_vf_config_msg(adapter);
1775 goto err;
1776 } else if (err == IAVF_ERR_PARAM) {
1777 /* We only get ERR_PARAM if the device is in a very bad
1778 * state or if we've been disabled for previous bad
1779 * behavior. Either way, we're done now.
1780 */
1781 iavf_shutdown_adminq(hw);
1782 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1783 return 0;
1784 }
1785 if (err) {
1786 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1787 goto err_alloc;
1788 }
1789
1790 if (iavf_process_config(adapter))
1791 goto err_alloc;
1792 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1793
1794 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1795
1796 netdev->netdev_ops = &iavf_netdev_ops;
1797 iavf_set_ethtool_ops(netdev);
1798 netdev->watchdog_timeo = 5 * HZ;
1799
1800 /* MTU range: 68 - 9710 */
1801 netdev->min_mtu = ETH_MIN_MTU;
1802 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1803
1804 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1805 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1806 adapter->hw.mac.addr);
1807 eth_hw_addr_random(netdev);
1808 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1809 } else {
1810 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1811 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1812 }
1813
1814 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1815 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1816 err = iavf_init_interrupt_scheme(adapter);
1817 if (err)
1818 goto err_sw_init;
1819 iavf_map_rings_to_vectors(adapter);
1820 if (adapter->vf_res->vf_cap_flags &
1821 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1822 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1823
1824 err = iavf_request_misc_irq(adapter);
1825 if (err)
1826 goto err_sw_init;
1827
1828 netif_carrier_off(netdev);
1829 adapter->link_up = false;
1830
1831 /* set the semaphore to prevent any callbacks after device registration
1832 * up to time when state of driver will be set to __IAVF_DOWN
1833 */
1834 rtnl_lock();
1835 if (!adapter->netdev_registered) {
1836 err = register_netdevice(netdev);
1837 if (err) {
1838 rtnl_unlock();
1839 goto err_register;
1840 }
1841 }
1842
1843 adapter->netdev_registered = true;
1844
1845 netif_tx_stop_all_queues(netdev);
1846 if (CLIENT_ALLOWED(adapter)) {
1847 err = iavf_lan_add_device(adapter);
1848 if (err) {
1849 rtnl_unlock();
1850 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1851 err);
1852 }
1853 }
1854 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1855 if (netdev->features & NETIF_F_GRO)
1856 dev_info(&pdev->dev, "GRO is enabled\n");
1857
1858 adapter->state = __IAVF_DOWN;
1859 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1860 rtnl_unlock();
1861
1862 iavf_misc_irq_enable(adapter);
1863 wake_up(&adapter->down_waitqueue);
1864
1865 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1866 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1867 if (!adapter->rss_key || !adapter->rss_lut)
1868 goto err_mem;
1869 if (RSS_AQ(adapter))
1870 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1871 else
1872 iavf_init_rss(adapter);
1873
1874 return err;
1875err_mem:
1876 iavf_free_rss(adapter);
1877err_register:
1878 iavf_free_misc_irq(adapter);
1879err_sw_init:
1880 iavf_reset_interrupt_capability(adapter);
1881err_alloc:
1882 kfree(adapter->vf_res);
1883 adapter->vf_res = NULL;
1884err:
1885 return err;
1886}
1887
1888/**
1889 * iavf_watchdog_task - Periodic call-back task
1890 * @work: pointer to work_struct
1891 **/
1892static void iavf_watchdog_task(struct work_struct *work)
1893{
1894 struct iavf_adapter *adapter = container_of(work,
1895 struct iavf_adapter,
1896 watchdog_task.work);
1897 struct iavf_hw *hw = &adapter->hw;
1898 u32 reg_val;
1899
1900 if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1901 goto restart_watchdog;
1902
1903 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1904 adapter->state = __IAVF_COMM_FAILED;
1905
1906 switch (adapter->state) {
1907 case __IAVF_COMM_FAILED:
1908 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1909 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1910 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1911 reg_val == VIRTCHNL_VFR_COMPLETED) {
1912 /* A chance for redemption! */
1913 dev_err(&adapter->pdev->dev,
1914 "Hardware came out of reset. Attempting reinit.\n");
1915 adapter->state = __IAVF_STARTUP;
1916 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1917 queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1918 clear_bit(__IAVF_IN_CRITICAL_TASK,
1919 &adapter->crit_section);
1920 /* Don't reschedule the watchdog, since we've restarted
1921 * the init task. When init_task contacts the PF and
1922 * gets everything set up again, it'll restart the
1923 * watchdog for us. Down, boy. Sit. Stay. Woof.
1924 */
1925 return;
1926 }
1927 adapter->aq_required = 0;
1928 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1929 clear_bit(__IAVF_IN_CRITICAL_TASK,
1930 &adapter->crit_section);
1931 queue_delayed_work(iavf_wq,
1932 &adapter->watchdog_task,
1933 msecs_to_jiffies(10));
1934 goto watchdog_done;
1935 case __IAVF_RESETTING:
1936 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1937 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1938 return;
1939 case __IAVF_DOWN:
1940 case __IAVF_DOWN_PENDING:
1941 case __IAVF_TESTING:
1942 case __IAVF_RUNNING:
1943 if (adapter->current_op) {
1944 if (!iavf_asq_done(hw)) {
1945 dev_dbg(&adapter->pdev->dev,
1946 "Admin queue timeout\n");
1947 iavf_send_api_ver(adapter);
1948 }
1949 } else {
1950 if (!iavf_process_aq_command(adapter) &&
1951 adapter->state == __IAVF_RUNNING)
1952 iavf_request_stats(adapter);
1953 }
1954 break;
1955 case __IAVF_REMOVE:
1956 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1957 return;
1958 default:
1959 goto restart_watchdog;
1960 }
1961
1962 /* check for hw reset */
1963 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1964 if (!reg_val) {
1965 adapter->state = __IAVF_RESETTING;
1966 adapter->flags |= IAVF_FLAG_RESET_PENDING;
1967 adapter->aq_required = 0;
1968 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1969 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1970 queue_work(iavf_wq, &adapter->reset_task);
1971 goto watchdog_done;
1972 }
1973
1974 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1975watchdog_done:
1976 if (adapter->state == __IAVF_RUNNING ||
1977 adapter->state == __IAVF_COMM_FAILED)
1978 iavf_detect_recover_hung(&adapter->vsi);
1979 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1980restart_watchdog:
1981 if (adapter->aq_required)
1982 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1983 msecs_to_jiffies(20));
1984 else
1985 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1986 queue_work(iavf_wq, &adapter->adminq_task);
1987}
1988
1989static void iavf_disable_vf(struct iavf_adapter *adapter)
1990{
1991 struct iavf_mac_filter *f, *ftmp;
1992 struct iavf_vlan_filter *fv, *fvtmp;
1993 struct iavf_cloud_filter *cf, *cftmp;
1994
1995 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1996
1997 /* We don't use netif_running() because it may be true prior to
1998 * ndo_open() returning, so we can't assume it means all our open
1999 * tasks have finished, since we're not holding the rtnl_lock here.
2000 */
2001 if (adapter->state == __IAVF_RUNNING) {
2002 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2003 netif_carrier_off(adapter->netdev);
2004 netif_tx_disable(adapter->netdev);
2005 adapter->link_up = false;
2006 iavf_napi_disable_all(adapter);
2007 iavf_irq_disable(adapter);
2008 iavf_free_traffic_irqs(adapter);
2009 iavf_free_all_tx_resources(adapter);
2010 iavf_free_all_rx_resources(adapter);
2011 }
2012
2013 spin_lock_bh(&adapter->mac_vlan_list_lock);
2014
2015 /* Delete all of the filters */
2016 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2017 list_del(&f->list);
2018 kfree(f);
2019 }
2020
2021 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2022 list_del(&fv->list);
2023 kfree(fv);
2024 }
2025
2026 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2027
2028 spin_lock_bh(&adapter->cloud_filter_list_lock);
2029 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2030 list_del(&cf->list);
2031 kfree(cf);
2032 adapter->num_cloud_filters--;
2033 }
2034 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2035
2036 iavf_free_misc_irq(adapter);
2037 iavf_reset_interrupt_capability(adapter);
2038 iavf_free_queues(adapter);
2039 iavf_free_q_vectors(adapter);
2040 kfree(adapter->vf_res);
2041 iavf_shutdown_adminq(&adapter->hw);
2042 adapter->netdev->flags &= ~IFF_UP;
2043 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2044 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2045 adapter->state = __IAVF_DOWN;
2046 wake_up(&adapter->down_waitqueue);
2047 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2048}
2049
2050#define IAVF_RESET_WAIT_MS 10
2051#define IAVF_RESET_WAIT_COUNT 500
2052/**
2053 * iavf_reset_task - Call-back task to handle hardware reset
2054 * @work: pointer to work_struct
2055 *
2056 * During reset we need to shut down and reinitialize the admin queue
2057 * before we can use it to communicate with the PF again. We also clear
2058 * and reinit the rings because that context is lost as well.
2059 **/
2060static void iavf_reset_task(struct work_struct *work)
2061{
2062 struct iavf_adapter *adapter = container_of(work,
2063 struct iavf_adapter,
2064 reset_task);
2065 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2066 struct net_device *netdev = adapter->netdev;
2067 struct iavf_hw *hw = &adapter->hw;
2068 struct iavf_vlan_filter *vlf;
2069 struct iavf_cloud_filter *cf;
2070 struct iavf_mac_filter *f;
2071 u32 reg_val;
2072 int i = 0, err;
2073 bool running;
2074
2075 /* When device is being removed it doesn't make sense to run the reset
2076 * task, just return in such a case.
2077 */
2078 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2079 return;
2080
2081 while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2082 &adapter->crit_section))
2083 usleep_range(500, 1000);
2084 if (CLIENT_ENABLED(adapter)) {
2085 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2086 IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2087 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2088 IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2089 cancel_delayed_work_sync(&adapter->client_task);
2090 iavf_notify_client_close(&adapter->vsi, true);
2091 }
2092 iavf_misc_irq_disable(adapter);
2093 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2094 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2095 /* Restart the AQ here. If we have been reset but didn't
2096 * detect it, or if the PF had to reinit, our AQ will be hosed.
2097 */
2098 iavf_shutdown_adminq(hw);
2099 iavf_init_adminq(hw);
2100 iavf_request_reset(adapter);
2101 }
2102 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2103
2104 /* poll until we see the reset actually happen */
2105 for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2106 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2107 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2108 if (!reg_val)
2109 break;
2110 usleep_range(5000, 10000);
2111 }
2112 if (i == IAVF_RESET_WAIT_COUNT) {
2113 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2114 goto continue_reset; /* act like the reset happened */
2115 }
2116
2117 /* wait until the reset is complete and the PF is responding to us */
2118 for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2119 /* sleep first to make sure a minimum wait time is met */
2120 msleep(IAVF_RESET_WAIT_MS);
2121
2122 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2123 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2124 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2125 break;
2126 }
2127
2128 pci_set_master(adapter->pdev);
2129
2130 if (i == IAVF_RESET_WAIT_COUNT) {
2131 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2132 reg_val);
2133 iavf_disable_vf(adapter);
2134 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2135 return; /* Do not attempt to reinit. It's dead, Jim. */
2136 }
2137
2138continue_reset:
2139 /* We don't use netif_running() because it may be true prior to
2140 * ndo_open() returning, so we can't assume it means all our open
2141 * tasks have finished, since we're not holding the rtnl_lock here.
2142 */
2143 running = ((adapter->state == __IAVF_RUNNING) ||
2144 (adapter->state == __IAVF_RESETTING));
2145
2146 if (running) {
2147 netif_carrier_off(netdev);
2148 netif_tx_stop_all_queues(netdev);
2149 adapter->link_up = false;
2150 iavf_napi_disable_all(adapter);
2151 }
2152 iavf_irq_disable(adapter);
2153
2154 adapter->state = __IAVF_RESETTING;
2155 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2156
2157 /* free the Tx/Rx rings and descriptors, might be better to just
2158 * re-use them sometime in the future
2159 */
2160 iavf_free_all_rx_resources(adapter);
2161 iavf_free_all_tx_resources(adapter);
2162
2163 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2164 /* kill and reinit the admin queue */
2165 iavf_shutdown_adminq(hw);
2166 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2167 err = iavf_init_adminq(hw);
2168 if (err)
2169 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2170 err);
2171 adapter->aq_required = 0;
2172
2173 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2174 err = iavf_reinit_interrupt_scheme(adapter);
2175 if (err)
2176 goto reset_err;
2177 }
2178
2179 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2180 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2181
2182 spin_lock_bh(&adapter->mac_vlan_list_lock);
2183
2184 /* re-add all MAC filters */
2185 list_for_each_entry(f, &adapter->mac_filter_list, list) {
2186 f->add = true;
2187 }
2188 /* re-add all VLAN filters */
2189 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2190 vlf->add = true;
2191 }
2192
2193 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2194
2195 /* check if TCs are running and re-add all cloud filters */
2196 spin_lock_bh(&adapter->cloud_filter_list_lock);
2197 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2198 adapter->num_tc) {
2199 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2200 cf->add = true;
2201 }
2202 }
2203 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2204
2205 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2206 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2207 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2208 iavf_misc_irq_enable(adapter);
2209
2210 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2211
2212 /* We were running when the reset started, so we need to restore some
2213 * state here.
2214 */
2215 if (running) {
2216 /* allocate transmit descriptors */
2217 err = iavf_setup_all_tx_resources(adapter);
2218 if (err)
2219 goto reset_err;
2220
2221 /* allocate receive descriptors */
2222 err = iavf_setup_all_rx_resources(adapter);
2223 if (err)
2224 goto reset_err;
2225
2226 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2227 err = iavf_request_traffic_irqs(adapter, netdev->name);
2228 if (err)
2229 goto reset_err;
2230
2231 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2232 }
2233
2234 iavf_configure(adapter);
2235
2236 iavf_up_complete(adapter);
2237
2238 iavf_irq_enable(adapter, true);
2239 } else {
2240 adapter->state = __IAVF_DOWN;
2241 wake_up(&adapter->down_waitqueue);
2242 }
2243 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2244 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2245
2246 return;
2247reset_err:
2248 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2249 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2250 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2251 iavf_close(netdev);
2252}
2253
2254/**
2255 * iavf_adminq_task - worker thread to clean the admin queue
2256 * @work: pointer to work_struct containing our data
2257 **/
2258static void iavf_adminq_task(struct work_struct *work)
2259{
2260 struct iavf_adapter *adapter =
2261 container_of(work, struct iavf_adapter, adminq_task);
2262 struct iavf_hw *hw = &adapter->hw;
2263 struct iavf_arq_event_info event;
2264 enum virtchnl_ops v_op;
2265 enum iavf_status ret, v_ret;
2266 u32 val, oldval;
2267 u16 pending;
2268
2269 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2270 goto out;
2271
2272 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2273 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2274 if (!event.msg_buf)
2275 goto out;
2276
2277 do {
2278 ret = iavf_clean_arq_element(hw, &event, &pending);
2279 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2280 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2281
2282 if (ret || !v_op)
2283 break; /* No event to process or error cleaning ARQ */
2284
2285 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2286 event.msg_len);
2287 if (pending != 0)
2288 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2289 } while (pending);
2290
2291 if ((adapter->flags &
2292 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2293 adapter->state == __IAVF_RESETTING)
2294 goto freedom;
2295
2296 /* check for error indications */
2297 val = rd32(hw, hw->aq.arq.len);
2298 if (val == 0xdeadbeef) /* indicates device in reset */
2299 goto freedom;
2300 oldval = val;
2301 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2302 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2303 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2304 }
2305 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2306 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2307 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2308 }
2309 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2310 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2311 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2312 }
2313 if (oldval != val)
2314 wr32(hw, hw->aq.arq.len, val);
2315
2316 val = rd32(hw, hw->aq.asq.len);
2317 oldval = val;
2318 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2319 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2320 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2321 }
2322 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2323 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2324 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2325 }
2326 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2327 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2328 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2329 }
2330 if (oldval != val)
2331 wr32(hw, hw->aq.asq.len, val);
2332
2333freedom:
2334 kfree(event.msg_buf);
2335out:
2336 /* re-enable Admin queue interrupt cause */
2337 iavf_misc_irq_enable(adapter);
2338}
2339
2340/**
2341 * iavf_client_task - worker thread to perform client work
2342 * @work: pointer to work_struct containing our data
2343 *
2344 * This task handles client interactions. Because client calls can be
2345 * reentrant, we can't handle them in the watchdog.
2346 **/
2347static void iavf_client_task(struct work_struct *work)
2348{
2349 struct iavf_adapter *adapter =
2350 container_of(work, struct iavf_adapter, client_task.work);
2351
2352 /* If we can't get the client bit, just give up. We'll be rescheduled
2353 * later.
2354 */
2355
2356 if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2357 return;
2358
2359 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2360 iavf_client_subtask(adapter);
2361 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2362 goto out;
2363 }
2364 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2365 iavf_notify_client_l2_params(&adapter->vsi);
2366 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2367 goto out;
2368 }
2369 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2370 iavf_notify_client_close(&adapter->vsi, false);
2371 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2372 goto out;
2373 }
2374 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2375 iavf_notify_client_open(&adapter->vsi);
2376 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2377 }
2378out:
2379 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2380}
2381
2382/**
2383 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2384 * @adapter: board private structure
2385 *
2386 * Free all transmit software resources
2387 **/
2388void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2389{
2390 int i;
2391
2392 if (!adapter->tx_rings)
2393 return;
2394
2395 for (i = 0; i < adapter->num_active_queues; i++)
2396 if (adapter->tx_rings[i].desc)
2397 iavf_free_tx_resources(&adapter->tx_rings[i]);
2398}
2399
2400/**
2401 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2402 * @adapter: board private structure
2403 *
2404 * If this function returns with an error, then it's possible one or
2405 * more of the rings is populated (while the rest are not). It is the
2406 * callers duty to clean those orphaned rings.
2407 *
2408 * Return 0 on success, negative on failure
2409 **/
2410static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2411{
2412 int i, err = 0;
2413
2414 for (i = 0; i < adapter->num_active_queues; i++) {
2415 adapter->tx_rings[i].count = adapter->tx_desc_count;
2416 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2417 if (!err)
2418 continue;
2419 dev_err(&adapter->pdev->dev,
2420 "Allocation for Tx Queue %u failed\n", i);
2421 break;
2422 }
2423
2424 return err;
2425}
2426
2427/**
2428 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2429 * @adapter: board private structure
2430 *
2431 * If this function returns with an error, then it's possible one or
2432 * more of the rings is populated (while the rest are not). It is the
2433 * callers duty to clean those orphaned rings.
2434 *
2435 * Return 0 on success, negative on failure
2436 **/
2437static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2438{
2439 int i, err = 0;
2440
2441 for (i = 0; i < adapter->num_active_queues; i++) {
2442 adapter->rx_rings[i].count = adapter->rx_desc_count;
2443 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2444 if (!err)
2445 continue;
2446 dev_err(&adapter->pdev->dev,
2447 "Allocation for Rx Queue %u failed\n", i);
2448 break;
2449 }
2450 return err;
2451}
2452
2453/**
2454 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2455 * @adapter: board private structure
2456 *
2457 * Free all receive software resources
2458 **/
2459void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2460{
2461 int i;
2462
2463 if (!adapter->rx_rings)
2464 return;
2465
2466 for (i = 0; i < adapter->num_active_queues; i++)
2467 if (adapter->rx_rings[i].desc)
2468 iavf_free_rx_resources(&adapter->rx_rings[i]);
2469}
2470
2471/**
2472 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2473 * @adapter: board private structure
2474 * @max_tx_rate: max Tx bw for a tc
2475 **/
2476static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2477 u64 max_tx_rate)
2478{
2479 int speed = 0, ret = 0;
2480
2481 switch (adapter->link_speed) {
2482 case IAVF_LINK_SPEED_40GB:
2483 speed = 40000;
2484 break;
2485 case IAVF_LINK_SPEED_25GB:
2486 speed = 25000;
2487 break;
2488 case IAVF_LINK_SPEED_20GB:
2489 speed = 20000;
2490 break;
2491 case IAVF_LINK_SPEED_10GB:
2492 speed = 10000;
2493 break;
2494 case IAVF_LINK_SPEED_1GB:
2495 speed = 1000;
2496 break;
2497 case IAVF_LINK_SPEED_100MB:
2498 speed = 100;
2499 break;
2500 default:
2501 break;
2502 }
2503
2504 if (max_tx_rate > speed) {
2505 dev_err(&adapter->pdev->dev,
2506 "Invalid tx rate specified\n");
2507 ret = -EINVAL;
2508 }
2509
2510 return ret;
2511}
2512
2513/**
2514 * iavf_validate_channel_config - validate queue mapping info
2515 * @adapter: board private structure
2516 * @mqprio_qopt: queue parameters
2517 *
2518 * This function validates if the config provided by the user to
2519 * configure queue channels is valid or not. Returns 0 on a valid
2520 * config.
2521 **/
2522static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2523 struct tc_mqprio_qopt_offload *mqprio_qopt)
2524{
2525 u64 total_max_rate = 0;
2526 int i, num_qps = 0;
2527 u64 tx_rate = 0;
2528 int ret = 0;
2529
2530 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2531 mqprio_qopt->qopt.num_tc < 1)
2532 return -EINVAL;
2533
2534 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2535 if (!mqprio_qopt->qopt.count[i] ||
2536 mqprio_qopt->qopt.offset[i] != num_qps)
2537 return -EINVAL;
2538 if (mqprio_qopt->min_rate[i]) {
2539 dev_err(&adapter->pdev->dev,
2540 "Invalid min tx rate (greater than 0) specified\n");
2541 return -EINVAL;
2542 }
2543 /*convert to Mbps */
2544 tx_rate = div_u64(mqprio_qopt->max_rate[i],
2545 IAVF_MBPS_DIVISOR);
2546 total_max_rate += tx_rate;
2547 num_qps += mqprio_qopt->qopt.count[i];
2548 }
2549 if (num_qps > IAVF_MAX_REQ_QUEUES)
2550 return -EINVAL;
2551
2552 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2553 return ret;
2554}
2555
2556/**
2557 * iavf_del_all_cloud_filters - delete all cloud filters
2558 * on the traffic classes
2559 **/
2560static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2561{
2562 struct iavf_cloud_filter *cf, *cftmp;
2563
2564 spin_lock_bh(&adapter->cloud_filter_list_lock);
2565 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2566 list) {
2567 list_del(&cf->list);
2568 kfree(cf);
2569 adapter->num_cloud_filters--;
2570 }
2571 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2572}
2573
2574/**
2575 * __iavf_setup_tc - configure multiple traffic classes
2576 * @netdev: network interface device structure
2577 * @type_date: tc offload data
2578 *
2579 * This function processes the config information provided by the
2580 * user to configure traffic classes/queue channels and packages the
2581 * information to request the PF to setup traffic classes.
2582 *
2583 * Returns 0 on success.
2584 **/
2585static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2586{
2587 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2588 struct iavf_adapter *adapter = netdev_priv(netdev);
2589 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2590 u8 num_tc = 0, total_qps = 0;
2591 int ret = 0, netdev_tc = 0;
2592 u64 max_tx_rate;
2593 u16 mode;
2594 int i;
2595
2596 num_tc = mqprio_qopt->qopt.num_tc;
2597 mode = mqprio_qopt->mode;
2598
2599 /* delete queue_channel */
2600 if (!mqprio_qopt->qopt.hw) {
2601 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2602 /* reset the tc configuration */
2603 netdev_reset_tc(netdev);
2604 adapter->num_tc = 0;
2605 netif_tx_stop_all_queues(netdev);
2606 netif_tx_disable(netdev);
2607 iavf_del_all_cloud_filters(adapter);
2608 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2609 goto exit;
2610 } else {
2611 return -EINVAL;
2612 }
2613 }
2614
2615 /* add queue channel */
2616 if (mode == TC_MQPRIO_MODE_CHANNEL) {
2617 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2618 dev_err(&adapter->pdev->dev, "ADq not supported\n");
2619 return -EOPNOTSUPP;
2620 }
2621 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2622 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2623 return -EINVAL;
2624 }
2625
2626 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2627 if (ret)
2628 return ret;
2629 /* Return if same TC config is requested */
2630 if (adapter->num_tc == num_tc)
2631 return 0;
2632 adapter->num_tc = num_tc;
2633
2634 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2635 if (i < num_tc) {
2636 adapter->ch_config.ch_info[i].count =
2637 mqprio_qopt->qopt.count[i];
2638 adapter->ch_config.ch_info[i].offset =
2639 mqprio_qopt->qopt.offset[i];
2640 total_qps += mqprio_qopt->qopt.count[i];
2641 max_tx_rate = mqprio_qopt->max_rate[i];
2642 /* convert to Mbps */
2643 max_tx_rate = div_u64(max_tx_rate,
2644 IAVF_MBPS_DIVISOR);
2645 adapter->ch_config.ch_info[i].max_tx_rate =
2646 max_tx_rate;
2647 } else {
2648 adapter->ch_config.ch_info[i].count = 1;
2649 adapter->ch_config.ch_info[i].offset = 0;
2650 }
2651 }
2652 adapter->ch_config.total_qps = total_qps;
2653 netif_tx_stop_all_queues(netdev);
2654 netif_tx_disable(netdev);
2655 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2656 netdev_reset_tc(netdev);
2657 /* Report the tc mapping up the stack */
2658 netdev_set_num_tc(adapter->netdev, num_tc);
2659 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2660 u16 qcount = mqprio_qopt->qopt.count[i];
2661 u16 qoffset = mqprio_qopt->qopt.offset[i];
2662
2663 if (i < num_tc)
2664 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2665 qoffset);
2666 }
2667 }
2668exit:
2669 return ret;
2670}
2671
2672/**
2673 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2674 * @adapter: board private structure
2675 * @cls_flower: pointer to struct flow_cls_offload
2676 * @filter: pointer to cloud filter structure
2677 */
2678static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2679 struct flow_cls_offload *f,
2680 struct iavf_cloud_filter *filter)
2681{
2682 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2683 struct flow_dissector *dissector = rule->match.dissector;
2684 u16 n_proto_mask = 0;
2685 u16 n_proto_key = 0;
2686 u8 field_flags = 0;
2687 u16 addr_type = 0;
2688 u16 n_proto = 0;
2689 int i = 0;
2690 struct virtchnl_filter *vf = &filter->f;
2691
2692 if (dissector->used_keys &
2693 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2694 BIT(FLOW_DISSECTOR_KEY_BASIC) |
2695 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2696 BIT(FLOW_DISSECTOR_KEY_VLAN) |
2697 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2698 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2699 BIT(FLOW_DISSECTOR_KEY_PORTS) |
2700 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2701 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2702 dissector->used_keys);
2703 return -EOPNOTSUPP;
2704 }
2705
2706 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2707 struct flow_match_enc_keyid match;
2708
2709 flow_rule_match_enc_keyid(rule, &match);
2710 if (match.mask->keyid != 0)
2711 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2712 }
2713
2714 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2715 struct flow_match_basic match;
2716
2717 flow_rule_match_basic(rule, &match);
2718 n_proto_key = ntohs(match.key->n_proto);
2719 n_proto_mask = ntohs(match.mask->n_proto);
2720
2721 if (n_proto_key == ETH_P_ALL) {
2722 n_proto_key = 0;
2723 n_proto_mask = 0;
2724 }
2725 n_proto = n_proto_key & n_proto_mask;
2726 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2727 return -EINVAL;
2728 if (n_proto == ETH_P_IPV6) {
2729 /* specify flow type as TCP IPv6 */
2730 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2731 }
2732
2733 if (match.key->ip_proto != IPPROTO_TCP) {
2734 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2735 return -EINVAL;
2736 }
2737 }
2738
2739 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2740 struct flow_match_eth_addrs match;
2741
2742 flow_rule_match_eth_addrs(rule, &match);
2743
2744 /* use is_broadcast and is_zero to check for all 0xf or 0 */
2745 if (!is_zero_ether_addr(match.mask->dst)) {
2746 if (is_broadcast_ether_addr(match.mask->dst)) {
2747 field_flags |= IAVF_CLOUD_FIELD_OMAC;
2748 } else {
2749 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2750 match.mask->dst);
2751 return IAVF_ERR_CONFIG;
2752 }
2753 }
2754
2755 if (!is_zero_ether_addr(match.mask->src)) {
2756 if (is_broadcast_ether_addr(match.mask->src)) {
2757 field_flags |= IAVF_CLOUD_FIELD_IMAC;
2758 } else {
2759 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2760 match.mask->src);
2761 return IAVF_ERR_CONFIG;
2762 }
2763 }
2764
2765 if (!is_zero_ether_addr(match.key->dst))
2766 if (is_valid_ether_addr(match.key->dst) ||
2767 is_multicast_ether_addr(match.key->dst)) {
2768 /* set the mask if a valid dst_mac address */
2769 for (i = 0; i < ETH_ALEN; i++)
2770 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2771 ether_addr_copy(vf->data.tcp_spec.dst_mac,
2772 match.key->dst);
2773 }
2774
2775 if (!is_zero_ether_addr(match.key->src))
2776 if (is_valid_ether_addr(match.key->src) ||
2777 is_multicast_ether_addr(match.key->src)) {
2778 /* set the mask if a valid dst_mac address */
2779 for (i = 0; i < ETH_ALEN; i++)
2780 vf->mask.tcp_spec.src_mac[i] |= 0xff;
2781 ether_addr_copy(vf->data.tcp_spec.src_mac,
2782 match.key->src);
2783 }
2784 }
2785
2786 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2787 struct flow_match_vlan match;
2788
2789 flow_rule_match_vlan(rule, &match);
2790 if (match.mask->vlan_id) {
2791 if (match.mask->vlan_id == VLAN_VID_MASK) {
2792 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2793 } else {
2794 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2795 match.mask->vlan_id);
2796 return IAVF_ERR_CONFIG;
2797 }
2798 }
2799 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2800 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2801 }
2802
2803 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2804 struct flow_match_control match;
2805
2806 flow_rule_match_control(rule, &match);
2807 addr_type = match.key->addr_type;
2808 }
2809
2810 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2811 struct flow_match_ipv4_addrs match;
2812
2813 flow_rule_match_ipv4_addrs(rule, &match);
2814 if (match.mask->dst) {
2815 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2816 field_flags |= IAVF_CLOUD_FIELD_IIP;
2817 } else {
2818 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2819 be32_to_cpu(match.mask->dst));
2820 return IAVF_ERR_CONFIG;
2821 }
2822 }
2823
2824 if (match.mask->src) {
2825 if (match.mask->src == cpu_to_be32(0xffffffff)) {
2826 field_flags |= IAVF_CLOUD_FIELD_IIP;
2827 } else {
2828 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2829 be32_to_cpu(match.mask->dst));
2830 return IAVF_ERR_CONFIG;
2831 }
2832 }
2833
2834 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2835 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2836 return IAVF_ERR_CONFIG;
2837 }
2838 if (match.key->dst) {
2839 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2840 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2841 }
2842 if (match.key->src) {
2843 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2844 vf->data.tcp_spec.src_ip[0] = match.key->src;
2845 }
2846 }
2847
2848 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2849 struct flow_match_ipv6_addrs match;
2850
2851 flow_rule_match_ipv6_addrs(rule, &match);
2852
2853 /* validate mask, make sure it is not IPV6_ADDR_ANY */
2854 if (ipv6_addr_any(&match.mask->dst)) {
2855 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2856 IPV6_ADDR_ANY);
2857 return IAVF_ERR_CONFIG;
2858 }
2859
2860 /* src and dest IPv6 address should not be LOOPBACK
2861 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2862 */
2863 if (ipv6_addr_loopback(&match.key->dst) ||
2864 ipv6_addr_loopback(&match.key->src)) {
2865 dev_err(&adapter->pdev->dev,
2866 "ipv6 addr should not be loopback\n");
2867 return IAVF_ERR_CONFIG;
2868 }
2869 if (!ipv6_addr_any(&match.mask->dst) ||
2870 !ipv6_addr_any(&match.mask->src))
2871 field_flags |= IAVF_CLOUD_FIELD_IIP;
2872
2873 for (i = 0; i < 4; i++)
2874 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2875 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2876 sizeof(vf->data.tcp_spec.dst_ip));
2877 for (i = 0; i < 4; i++)
2878 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2879 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2880 sizeof(vf->data.tcp_spec.src_ip));
2881 }
2882 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2883 struct flow_match_ports match;
2884
2885 flow_rule_match_ports(rule, &match);
2886 if (match.mask->src) {
2887 if (match.mask->src == cpu_to_be16(0xffff)) {
2888 field_flags |= IAVF_CLOUD_FIELD_IIP;
2889 } else {
2890 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2891 be16_to_cpu(match.mask->src));
2892 return IAVF_ERR_CONFIG;
2893 }
2894 }
2895
2896 if (match.mask->dst) {
2897 if (match.mask->dst == cpu_to_be16(0xffff)) {
2898 field_flags |= IAVF_CLOUD_FIELD_IIP;
2899 } else {
2900 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2901 be16_to_cpu(match.mask->dst));
2902 return IAVF_ERR_CONFIG;
2903 }
2904 }
2905 if (match.key->dst) {
2906 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2907 vf->data.tcp_spec.dst_port = match.key->dst;
2908 }
2909
2910 if (match.key->src) {
2911 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2912 vf->data.tcp_spec.src_port = match.key->src;
2913 }
2914 }
2915 vf->field_flags = field_flags;
2916
2917 return 0;
2918}
2919
2920/**
2921 * iavf_handle_tclass - Forward to a traffic class on the device
2922 * @adapter: board private structure
2923 * @tc: traffic class index on the device
2924 * @filter: pointer to cloud filter structure
2925 */
2926static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2927 struct iavf_cloud_filter *filter)
2928{
2929 if (tc == 0)
2930 return 0;
2931 if (tc < adapter->num_tc) {
2932 if (!filter->f.data.tcp_spec.dst_port) {
2933 dev_err(&adapter->pdev->dev,
2934 "Specify destination port to redirect to traffic class other than TC0\n");
2935 return -EINVAL;
2936 }
2937 }
2938 /* redirect to a traffic class on the same device */
2939 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2940 filter->f.action_meta = tc;
2941 return 0;
2942}
2943
2944/**
2945 * iavf_configure_clsflower - Add tc flower filters
2946 * @adapter: board private structure
2947 * @cls_flower: Pointer to struct flow_cls_offload
2948 */
2949static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2950 struct flow_cls_offload *cls_flower)
2951{
2952 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2953 struct iavf_cloud_filter *filter = NULL;
2954 int err = -EINVAL, count = 50;
2955
2956 if (tc < 0) {
2957 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2958 return -EINVAL;
2959 }
2960
2961 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2962 if (!filter)
2963 return -ENOMEM;
2964
2965 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2966 &adapter->crit_section)) {
2967 if (--count == 0)
2968 goto err;
2969 udelay(1);
2970 }
2971
2972 filter->cookie = cls_flower->cookie;
2973
2974 /* set the mask to all zeroes to begin with */
2975 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2976 /* start out with flow type and eth type IPv4 to begin with */
2977 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2978 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2979 if (err < 0)
2980 goto err;
2981
2982 err = iavf_handle_tclass(adapter, tc, filter);
2983 if (err < 0)
2984 goto err;
2985
2986 /* add filter to the list */
2987 spin_lock_bh(&adapter->cloud_filter_list_lock);
2988 list_add_tail(&filter->list, &adapter->cloud_filter_list);
2989 adapter->num_cloud_filters++;
2990 filter->add = true;
2991 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2992 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2993err:
2994 if (err)
2995 kfree(filter);
2996
2997 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2998 return err;
2999}
3000
3001/* iavf_find_cf - Find the cloud filter in the list
3002 * @adapter: Board private structure
3003 * @cookie: filter specific cookie
3004 *
3005 * Returns ptr to the filter object or NULL. Must be called while holding the
3006 * cloud_filter_list_lock.
3007 */
3008static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3009 unsigned long *cookie)
3010{
3011 struct iavf_cloud_filter *filter = NULL;
3012
3013 if (!cookie)
3014 return NULL;
3015
3016 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3017 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3018 return filter;
3019 }
3020 return NULL;
3021}
3022
3023/**
3024 * iavf_delete_clsflower - Remove tc flower filters
3025 * @adapter: board private structure
3026 * @cls_flower: Pointer to struct flow_cls_offload
3027 */
3028static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3029 struct flow_cls_offload *cls_flower)
3030{
3031 struct iavf_cloud_filter *filter = NULL;
3032 int err = 0;
3033
3034 spin_lock_bh(&adapter->cloud_filter_list_lock);
3035 filter = iavf_find_cf(adapter, &cls_flower->cookie);
3036 if (filter) {
3037 filter->del = true;
3038 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3039 } else {
3040 err = -EINVAL;
3041 }
3042 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3043
3044 return err;
3045}
3046
3047/**
3048 * iavf_setup_tc_cls_flower - flower classifier offloads
3049 * @netdev: net device to configure
3050 * @type_data: offload data
3051 */
3052static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3053 struct flow_cls_offload *cls_flower)
3054{
3055 if (cls_flower->common.chain_index)
3056 return -EOPNOTSUPP;
3057
3058 switch (cls_flower->command) {
3059 case FLOW_CLS_REPLACE:
3060 return iavf_configure_clsflower(adapter, cls_flower);
3061 case FLOW_CLS_DESTROY:
3062 return iavf_delete_clsflower(adapter, cls_flower);
3063 case FLOW_CLS_STATS:
3064 return -EOPNOTSUPP;
3065 default:
3066 return -EOPNOTSUPP;
3067 }
3068}
3069
3070/**
3071 * iavf_setup_tc_block_cb - block callback for tc
3072 * @type: type of offload
3073 * @type_data: offload data
3074 * @cb_priv:
3075 *
3076 * This function is the block callback for traffic classes
3077 **/
3078static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3079 void *cb_priv)
3080{
3081 switch (type) {
3082 case TC_SETUP_CLSFLOWER:
3083 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3084 default:
3085 return -EOPNOTSUPP;
3086 }
3087}
3088
3089static LIST_HEAD(iavf_block_cb_list);
3090
3091/**
3092 * iavf_setup_tc - configure multiple traffic classes
3093 * @netdev: network interface device structure
3094 * @type: type of offload
3095 * @type_date: tc offload data
3096 *
3097 * This function is the callback to ndo_setup_tc in the
3098 * netdev_ops.
3099 *
3100 * Returns 0 on success
3101 **/
3102static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3103 void *type_data)
3104{
3105 struct iavf_adapter *adapter = netdev_priv(netdev);
3106
3107 switch (type) {
3108 case TC_SETUP_QDISC_MQPRIO:
3109 return __iavf_setup_tc(netdev, type_data);
3110 case TC_SETUP_BLOCK:
3111 return flow_block_cb_setup_simple(type_data,
3112 &iavf_block_cb_list,
3113 iavf_setup_tc_block_cb,
3114 adapter, adapter, true);
3115 default:
3116 return -EOPNOTSUPP;
3117 }
3118}
3119
3120/**
3121 * iavf_open - Called when a network interface is made active
3122 * @netdev: network interface device structure
3123 *
3124 * Returns 0 on success, negative value on failure
3125 *
3126 * The open entry point is called when a network interface is made
3127 * active by the system (IFF_UP). At this point all resources needed
3128 * for transmit and receive operations are allocated, the interrupt
3129 * handler is registered with the OS, the watchdog is started,
3130 * and the stack is notified that the interface is ready.
3131 **/
3132static int iavf_open(struct net_device *netdev)
3133{
3134 struct iavf_adapter *adapter = netdev_priv(netdev);
3135 int err;
3136
3137 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3138 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3139 return -EIO;
3140 }
3141
3142 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3143 &adapter->crit_section))
3144 usleep_range(500, 1000);
3145
3146 if (adapter->state != __IAVF_DOWN) {
3147 err = -EBUSY;
3148 goto err_unlock;
3149 }
3150
3151 /* allocate transmit descriptors */
3152 err = iavf_setup_all_tx_resources(adapter);
3153 if (err)
3154 goto err_setup_tx;
3155
3156 /* allocate receive descriptors */
3157 err = iavf_setup_all_rx_resources(adapter);
3158 if (err)
3159 goto err_setup_rx;
3160
3161 /* clear any pending interrupts, may auto mask */
3162 err = iavf_request_traffic_irqs(adapter, netdev->name);
3163 if (err)
3164 goto err_req_irq;
3165
3166 spin_lock_bh(&adapter->mac_vlan_list_lock);
3167
3168 iavf_add_filter(adapter, adapter->hw.mac.addr);
3169
3170 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3171
3172 iavf_configure(adapter);
3173
3174 iavf_up_complete(adapter);
3175
3176 iavf_irq_enable(adapter, true);
3177
3178 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3179
3180 return 0;
3181
3182err_req_irq:
3183 iavf_down(adapter);
3184 iavf_free_traffic_irqs(adapter);
3185err_setup_rx:
3186 iavf_free_all_rx_resources(adapter);
3187err_setup_tx:
3188 iavf_free_all_tx_resources(adapter);
3189err_unlock:
3190 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3191
3192 return err;
3193}
3194
3195/**
3196 * iavf_close - Disables a network interface
3197 * @netdev: network interface device structure
3198 *
3199 * Returns 0, this is not allowed to fail
3200 *
3201 * The close entry point is called when an interface is de-activated
3202 * by the OS. The hardware is still under the drivers control, but
3203 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3204 * are freed, along with all transmit and receive resources.
3205 **/
3206static int iavf_close(struct net_device *netdev)
3207{
3208 struct iavf_adapter *adapter = netdev_priv(netdev);
3209 int status;
3210
3211 if (adapter->state <= __IAVF_DOWN_PENDING)
3212 return 0;
3213
3214 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3215 &adapter->crit_section))
3216 usleep_range(500, 1000);
3217
3218 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3219 if (CLIENT_ENABLED(adapter))
3220 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3221
3222 iavf_down(adapter);
3223 adapter->state = __IAVF_DOWN_PENDING;
3224 iavf_free_traffic_irqs(adapter);
3225
3226 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3227
3228 /* We explicitly don't free resources here because the hardware is
3229 * still active and can DMA into memory. Resources are cleared in
3230 * iavf_virtchnl_completion() after we get confirmation from the PF
3231 * driver that the rings have been stopped.
3232 *
3233 * Also, we wait for state to transition to __IAVF_DOWN before
3234 * returning. State change occurs in iavf_virtchnl_completion() after
3235 * VF resources are released (which occurs after PF driver processes and
3236 * responds to admin queue commands).
3237 */
3238
3239 status = wait_event_timeout(adapter->down_waitqueue,
3240 adapter->state == __IAVF_DOWN,
3241 msecs_to_jiffies(500));
3242 if (!status)
3243 netdev_warn(netdev, "Device resources not yet released\n");
3244 return 0;
3245}
3246
3247/**
3248 * iavf_change_mtu - Change the Maximum Transfer Unit
3249 * @netdev: network interface device structure
3250 * @new_mtu: new value for maximum frame size
3251 *
3252 * Returns 0 on success, negative on failure
3253 **/
3254static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3255{
3256 struct iavf_adapter *adapter = netdev_priv(netdev);
3257
3258 netdev->mtu = new_mtu;
3259 if (CLIENT_ENABLED(adapter)) {
3260 iavf_notify_client_l2_params(&adapter->vsi);
3261 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3262 }
3263 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3264 queue_work(iavf_wq, &adapter->reset_task);
3265
3266 return 0;
3267}
3268
3269/**
3270 * iavf_set_features - set the netdev feature flags
3271 * @netdev: ptr to the netdev being adjusted
3272 * @features: the feature set that the stack is suggesting
3273 * Note: expects to be called while under rtnl_lock()
3274 **/
3275static int iavf_set_features(struct net_device *netdev,
3276 netdev_features_t features)
3277{
3278 struct iavf_adapter *adapter = netdev_priv(netdev);
3279
3280 /* Don't allow changing VLAN_RX flag when adapter is not capable
3281 * of VLAN offload
3282 */
3283 if (!VLAN_ALLOWED(adapter)) {
3284 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3285 return -EINVAL;
3286 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3287 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3288 adapter->aq_required |=
3289 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3290 else
3291 adapter->aq_required |=
3292 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3293 }
3294
3295 return 0;
3296}
3297
3298/**
3299 * iavf_features_check - Validate encapsulated packet conforms to limits
3300 * @skb: skb buff
3301 * @dev: This physical port's netdev
3302 * @features: Offload features that the stack believes apply
3303 **/
3304static netdev_features_t iavf_features_check(struct sk_buff *skb,
3305 struct net_device *dev,
3306 netdev_features_t features)
3307{
3308 size_t len;
3309
3310 /* No point in doing any of this if neither checksum nor GSO are
3311 * being requested for this frame. We can rule out both by just
3312 * checking for CHECKSUM_PARTIAL
3313 */
3314 if (skb->ip_summed != CHECKSUM_PARTIAL)
3315 return features;
3316
3317 /* We cannot support GSO if the MSS is going to be less than
3318 * 64 bytes. If it is then we need to drop support for GSO.
3319 */
3320 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3321 features &= ~NETIF_F_GSO_MASK;
3322
3323 /* MACLEN can support at most 63 words */
3324 len = skb_network_header(skb) - skb->data;
3325 if (len & ~(63 * 2))
3326 goto out_err;
3327
3328 /* IPLEN and EIPLEN can support at most 127 dwords */
3329 len = skb_transport_header(skb) - skb_network_header(skb);
3330 if (len & ~(127 * 4))
3331 goto out_err;
3332
3333 if (skb->encapsulation) {
3334 /* L4TUNLEN can support 127 words */
3335 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3336 if (len & ~(127 * 2))
3337 goto out_err;
3338
3339 /* IPLEN can support at most 127 dwords */
3340 len = skb_inner_transport_header(skb) -
3341 skb_inner_network_header(skb);
3342 if (len & ~(127 * 4))
3343 goto out_err;
3344 }
3345
3346 /* No need to validate L4LEN as TCP is the only protocol with a
3347 * a flexible value and we support all possible values supported
3348 * by TCP, which is at most 15 dwords
3349 */
3350
3351 return features;
3352out_err:
3353 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3354}
3355
3356/**
3357 * iavf_fix_features - fix up the netdev feature bits
3358 * @netdev: our net device
3359 * @features: desired feature bits
3360 *
3361 * Returns fixed-up features bits
3362 **/
3363static netdev_features_t iavf_fix_features(struct net_device *netdev,
3364 netdev_features_t features)
3365{
3366 struct iavf_adapter *adapter = netdev_priv(netdev);
3367
3368 if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3369 features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3370 NETIF_F_HW_VLAN_CTAG_RX |
3371 NETIF_F_HW_VLAN_CTAG_FILTER);
3372
3373 return features;
3374}
3375
3376static const struct net_device_ops iavf_netdev_ops = {
3377 .ndo_open = iavf_open,
3378 .ndo_stop = iavf_close,
3379 .ndo_start_xmit = iavf_xmit_frame,
3380 .ndo_set_rx_mode = iavf_set_rx_mode,
3381 .ndo_validate_addr = eth_validate_addr,
3382 .ndo_set_mac_address = iavf_set_mac,
3383 .ndo_change_mtu = iavf_change_mtu,
3384 .ndo_tx_timeout = iavf_tx_timeout,
3385 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
3386 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
3387 .ndo_features_check = iavf_features_check,
3388 .ndo_fix_features = iavf_fix_features,
3389 .ndo_set_features = iavf_set_features,
3390 .ndo_setup_tc = iavf_setup_tc,
3391};
3392
3393/**
3394 * iavf_check_reset_complete - check that VF reset is complete
3395 * @hw: pointer to hw struct
3396 *
3397 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3398 **/
3399static int iavf_check_reset_complete(struct iavf_hw *hw)
3400{
3401 u32 rstat;
3402 int i;
3403
3404 for (i = 0; i < 100; i++) {
3405 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3406 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3407 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3408 (rstat == VIRTCHNL_VFR_COMPLETED))
3409 return 0;
3410 usleep_range(10, 20);
3411 }
3412 return -EBUSY;
3413}
3414
3415/**
3416 * iavf_process_config - Process the config information we got from the PF
3417 * @adapter: board private structure
3418 *
3419 * Verify that we have a valid config struct, and set up our netdev features
3420 * and our VSI struct.
3421 **/
3422int iavf_process_config(struct iavf_adapter *adapter)
3423{
3424 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3425 int i, num_req_queues = adapter->num_req_queues;
3426 struct net_device *netdev = adapter->netdev;
3427 struct iavf_vsi *vsi = &adapter->vsi;
3428 netdev_features_t hw_enc_features;
3429 netdev_features_t hw_features;
3430
3431 /* got VF config message back from PF, now we can parse it */
3432 for (i = 0; i < vfres->num_vsis; i++) {
3433 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3434 adapter->vsi_res = &vfres->vsi_res[i];
3435 }
3436 if (!adapter->vsi_res) {
3437 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3438 return -ENODEV;
3439 }
3440
3441 if (num_req_queues &&
3442 num_req_queues != adapter->vsi_res->num_queue_pairs) {
3443 /* Problem. The PF gave us fewer queues than what we had
3444 * negotiated in our request. Need a reset to see if we can't
3445 * get back to a working state.
3446 */
3447 dev_err(&adapter->pdev->dev,
3448 "Requested %d queues, but PF only gave us %d.\n",
3449 num_req_queues,
3450 adapter->vsi_res->num_queue_pairs);
3451 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3452 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3453 iavf_schedule_reset(adapter);
3454 return -ENODEV;
3455 }
3456 adapter->num_req_queues = 0;
3457
3458 hw_enc_features = NETIF_F_SG |
3459 NETIF_F_IP_CSUM |
3460 NETIF_F_IPV6_CSUM |
3461 NETIF_F_HIGHDMA |
3462 NETIF_F_SOFT_FEATURES |
3463 NETIF_F_TSO |
3464 NETIF_F_TSO_ECN |
3465 NETIF_F_TSO6 |
3466 NETIF_F_SCTP_CRC |
3467 NETIF_F_RXHASH |
3468 NETIF_F_RXCSUM |
3469 0;
3470
3471 /* advertise to stack only if offloads for encapsulated packets is
3472 * supported
3473 */
3474 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3475 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
3476 NETIF_F_GSO_GRE |
3477 NETIF_F_GSO_GRE_CSUM |
3478 NETIF_F_GSO_IPXIP4 |
3479 NETIF_F_GSO_IPXIP6 |
3480 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3481 NETIF_F_GSO_PARTIAL |
3482 0;
3483
3484 if (!(vfres->vf_cap_flags &
3485 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3486 netdev->gso_partial_features |=
3487 NETIF_F_GSO_UDP_TUNNEL_CSUM;
3488
3489 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3490 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3491 netdev->hw_enc_features |= hw_enc_features;
3492 }
3493 /* record features VLANs can make use of */
3494 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3495
3496 /* Write features and hw_features separately to avoid polluting
3497 * with, or dropping, features that are set when we registered.
3498 */
3499 hw_features = hw_enc_features;
3500
3501 /* Enable VLAN features if supported */
3502 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3503 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3504 NETIF_F_HW_VLAN_CTAG_RX);
3505 /* Enable cloud filter if ADQ is supported */
3506 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3507 hw_features |= NETIF_F_HW_TC;
3508
3509 netdev->hw_features |= hw_features;
3510
3511 netdev->features |= hw_features;
3512
3513 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3514 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3515
3516 netdev->priv_flags |= IFF_UNICAST_FLT;
3517
3518 /* Do not turn on offloads when they are requested to be turned off.
3519 * TSO needs minimum 576 bytes to work correctly.
3520 */
3521 if (netdev->wanted_features) {
3522 if (!(netdev->wanted_features & NETIF_F_TSO) ||
3523 netdev->mtu < 576)
3524 netdev->features &= ~NETIF_F_TSO;
3525 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3526 netdev->mtu < 576)
3527 netdev->features &= ~NETIF_F_TSO6;
3528 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3529 netdev->features &= ~NETIF_F_TSO_ECN;
3530 if (!(netdev->wanted_features & NETIF_F_GRO))
3531 netdev->features &= ~NETIF_F_GRO;
3532 if (!(netdev->wanted_features & NETIF_F_GSO))
3533 netdev->features &= ~NETIF_F_GSO;
3534 }
3535
3536 adapter->vsi.id = adapter->vsi_res->vsi_id;
3537
3538 adapter->vsi.back = adapter;
3539 adapter->vsi.base_vector = 1;
3540 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3541 vsi->netdev = adapter->netdev;
3542 vsi->qs_handle = adapter->vsi_res->qset_handle;
3543 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3544 adapter->rss_key_size = vfres->rss_key_size;
3545 adapter->rss_lut_size = vfres->rss_lut_size;
3546 } else {
3547 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3548 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3549 }
3550
3551 return 0;
3552}
3553
3554/**
3555 * iavf_init_task - worker thread to perform delayed initialization
3556 * @work: pointer to work_struct containing our data
3557 *
3558 * This task completes the work that was begun in probe. Due to the nature
3559 * of VF-PF communications, we may need to wait tens of milliseconds to get
3560 * responses back from the PF. Rather than busy-wait in probe and bog down the
3561 * whole system, we'll do it in a task so we can sleep.
3562 * This task only runs during driver init. Once we've established
3563 * communications with the PF driver and set up our netdev, the watchdog
3564 * takes over.
3565 **/
3566static void iavf_init_task(struct work_struct *work)
3567{
3568 struct iavf_adapter *adapter = container_of(work,
3569 struct iavf_adapter,
3570 init_task.work);
3571 struct iavf_hw *hw = &adapter->hw;
3572
3573 switch (adapter->state) {
3574 case __IAVF_STARTUP:
3575 if (iavf_startup(adapter) < 0)
3576 goto init_failed;
3577 break;
3578 case __IAVF_INIT_VERSION_CHECK:
3579 if (iavf_init_version_check(adapter) < 0)
3580 goto init_failed;
3581 break;
3582 case __IAVF_INIT_GET_RESOURCES:
3583 if (iavf_init_get_resources(adapter) < 0)
3584 goto init_failed;
3585 return;
3586 default:
3587 goto init_failed;
3588 }
3589
3590 queue_delayed_work(iavf_wq, &adapter->init_task,
3591 msecs_to_jiffies(30));
3592 return;
3593init_failed:
3594 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3595 dev_err(&adapter->pdev->dev,
3596 "Failed to communicate with PF; waiting before retry\n");
3597 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3598 iavf_shutdown_adminq(hw);
3599 adapter->state = __IAVF_STARTUP;
3600 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3601 return;
3602 }
3603 queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3604}
3605
3606/**
3607 * iavf_shutdown - Shutdown the device in preparation for a reboot
3608 * @pdev: pci device structure
3609 **/
3610static void iavf_shutdown(struct pci_dev *pdev)
3611{
3612 struct net_device *netdev = pci_get_drvdata(pdev);
3613 struct iavf_adapter *adapter = netdev_priv(netdev);
3614
3615 netif_device_detach(netdev);
3616
3617 if (netif_running(netdev))
3618 iavf_close(netdev);
3619
3620 /* Prevent the watchdog from running. */
3621 adapter->state = __IAVF_REMOVE;
3622 adapter->aq_required = 0;
3623
3624#ifdef CONFIG_PM
3625 pci_save_state(pdev);
3626
3627#endif
3628 pci_disable_device(pdev);
3629}
3630
3631/**
3632 * iavf_probe - Device Initialization Routine
3633 * @pdev: PCI device information struct
3634 * @ent: entry in iavf_pci_tbl
3635 *
3636 * Returns 0 on success, negative on failure
3637 *
3638 * iavf_probe initializes an adapter identified by a pci_dev structure.
3639 * The OS initialization, configuring of the adapter private structure,
3640 * and a hardware reset occur.
3641 **/
3642static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3643{
3644 struct net_device *netdev;
3645 struct iavf_adapter *adapter = NULL;
3646 struct iavf_hw *hw = NULL;
3647 int err;
3648
3649 err = pci_enable_device(pdev);
3650 if (err)
3651 return err;
3652
3653 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3654 if (err) {
3655 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3656 if (err) {
3657 dev_err(&pdev->dev,
3658 "DMA configuration failed: 0x%x\n", err);
3659 goto err_dma;
3660 }
3661 }
3662
3663 err = pci_request_regions(pdev, iavf_driver_name);
3664 if (err) {
3665 dev_err(&pdev->dev,
3666 "pci_request_regions failed 0x%x\n", err);
3667 goto err_pci_reg;
3668 }
3669
3670 pci_enable_pcie_error_reporting(pdev);
3671
3672 pci_set_master(pdev);
3673
3674 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3675 IAVF_MAX_REQ_QUEUES);
3676 if (!netdev) {
3677 err = -ENOMEM;
3678 goto err_alloc_etherdev;
3679 }
3680
3681 SET_NETDEV_DEV(netdev, &pdev->dev);
3682
3683 pci_set_drvdata(pdev, netdev);
3684 adapter = netdev_priv(netdev);
3685
3686 adapter->netdev = netdev;
3687 adapter->pdev = pdev;
3688
3689 hw = &adapter->hw;
3690 hw->back = adapter;
3691
3692 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3693 adapter->state = __IAVF_STARTUP;
3694
3695 /* Call save state here because it relies on the adapter struct. */
3696 pci_save_state(pdev);
3697
3698 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3699 pci_resource_len(pdev, 0));
3700 if (!hw->hw_addr) {
3701 err = -EIO;
3702 goto err_ioremap;
3703 }
3704 hw->vendor_id = pdev->vendor;
3705 hw->device_id = pdev->device;
3706 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3707 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3708 hw->subsystem_device_id = pdev->subsystem_device;
3709 hw->bus.device = PCI_SLOT(pdev->devfn);
3710 hw->bus.func = PCI_FUNC(pdev->devfn);
3711 hw->bus.bus_id = pdev->bus->number;
3712
3713 /* set up the locks for the AQ, do this only once in probe
3714 * and destroy them only once in remove
3715 */
3716 mutex_init(&hw->aq.asq_mutex);
3717 mutex_init(&hw->aq.arq_mutex);
3718
3719 spin_lock_init(&adapter->mac_vlan_list_lock);
3720 spin_lock_init(&adapter->cloud_filter_list_lock);
3721
3722 INIT_LIST_HEAD(&adapter->mac_filter_list);
3723 INIT_LIST_HEAD(&adapter->vlan_filter_list);
3724 INIT_LIST_HEAD(&adapter->cloud_filter_list);
3725
3726 INIT_WORK(&adapter->reset_task, iavf_reset_task);
3727 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3728 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3729 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3730 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3731 queue_delayed_work(iavf_wq, &adapter->init_task,
3732 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3733
3734 /* Setup the wait queue for indicating transition to down status */
3735 init_waitqueue_head(&adapter->down_waitqueue);
3736
3737 return 0;
3738
3739err_ioremap:
3740 free_netdev(netdev);
3741err_alloc_etherdev:
3742 pci_release_regions(pdev);
3743err_pci_reg:
3744err_dma:
3745 pci_disable_device(pdev);
3746 return err;
3747}
3748
3749#ifdef CONFIG_PM
3750/**
3751 * iavf_suspend - Power management suspend routine
3752 * @pdev: PCI device information struct
3753 * @state: unused
3754 *
3755 * Called when the system (VM) is entering sleep/suspend.
3756 **/
3757static int iavf_suspend(struct pci_dev *pdev, pm_message_t state)
3758{
3759 struct net_device *netdev = pci_get_drvdata(pdev);
3760 struct iavf_adapter *adapter = netdev_priv(netdev);
3761 int retval = 0;
3762
3763 netif_device_detach(netdev);
3764
3765 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3766 &adapter->crit_section))
3767 usleep_range(500, 1000);
3768
3769 if (netif_running(netdev)) {
3770 rtnl_lock();
3771 iavf_down(adapter);
3772 rtnl_unlock();
3773 }
3774 iavf_free_misc_irq(adapter);
3775 iavf_reset_interrupt_capability(adapter);
3776
3777 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3778
3779 retval = pci_save_state(pdev);
3780 if (retval)
3781 return retval;
3782
3783 pci_disable_device(pdev);
3784
3785 return 0;
3786}
3787
3788/**
3789 * iavf_resume - Power management resume routine
3790 * @pdev: PCI device information struct
3791 *
3792 * Called when the system (VM) is resumed from sleep/suspend.
3793 **/
3794static int iavf_resume(struct pci_dev *pdev)
3795{
3796 struct iavf_adapter *adapter = pci_get_drvdata(pdev);
3797 struct net_device *netdev = adapter->netdev;
3798 u32 err;
3799
3800 pci_set_power_state(pdev, PCI_D0);
3801 pci_restore_state(pdev);
3802 /* pci_restore_state clears dev->state_saved so call
3803 * pci_save_state to restore it.
3804 */
3805 pci_save_state(pdev);
3806
3807 err = pci_enable_device_mem(pdev);
3808 if (err) {
3809 dev_err(&pdev->dev, "Cannot enable PCI device from suspend.\n");
3810 return err;
3811 }
3812 pci_set_master(pdev);
3813
3814 rtnl_lock();
3815 err = iavf_set_interrupt_capability(adapter);
3816 if (err) {
3817 rtnl_unlock();
3818 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3819 return err;
3820 }
3821 err = iavf_request_misc_irq(adapter);
3822 rtnl_unlock();
3823 if (err) {
3824 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3825 return err;
3826 }
3827
3828 queue_work(iavf_wq, &adapter->reset_task);
3829
3830 netif_device_attach(netdev);
3831
3832 return err;
3833}
3834
3835#endif /* CONFIG_PM */
3836/**
3837 * iavf_remove - Device Removal Routine
3838 * @pdev: PCI device information struct
3839 *
3840 * iavf_remove is called by the PCI subsystem to alert the driver
3841 * that it should release a PCI device. The could be caused by a
3842 * Hot-Plug event, or because the driver is going to be removed from
3843 * memory.
3844 **/
3845static void iavf_remove(struct pci_dev *pdev)
3846{
3847 struct net_device *netdev = pci_get_drvdata(pdev);
3848 struct iavf_adapter *adapter = netdev_priv(netdev);
3849 struct iavf_vlan_filter *vlf, *vlftmp;
3850 struct iavf_mac_filter *f, *ftmp;
3851 struct iavf_cloud_filter *cf, *cftmp;
3852 struct iavf_hw *hw = &adapter->hw;
3853 int err;
3854 /* Indicate we are in remove and not to run reset_task */
3855 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3856 cancel_delayed_work_sync(&adapter->init_task);
3857 cancel_work_sync(&adapter->reset_task);
3858 cancel_delayed_work_sync(&adapter->client_task);
3859 if (adapter->netdev_registered) {
3860 unregister_netdev(netdev);
3861 adapter->netdev_registered = false;
3862 }
3863 if (CLIENT_ALLOWED(adapter)) {
3864 err = iavf_lan_del_device(adapter);
3865 if (err)
3866 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3867 err);
3868 }
3869
3870 /* Shut down all the garbage mashers on the detention level */
3871 adapter->state = __IAVF_REMOVE;
3872 adapter->aq_required = 0;
3873 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3874 iavf_request_reset(adapter);
3875 msleep(50);
3876 /* If the FW isn't responding, kick it once, but only once. */
3877 if (!iavf_asq_done(hw)) {
3878 iavf_request_reset(adapter);
3879 msleep(50);
3880 }
3881 iavf_free_all_tx_resources(adapter);
3882 iavf_free_all_rx_resources(adapter);
3883 iavf_misc_irq_disable(adapter);
3884 iavf_free_misc_irq(adapter);
3885 iavf_reset_interrupt_capability(adapter);
3886 iavf_free_q_vectors(adapter);
3887
3888 cancel_delayed_work_sync(&adapter->watchdog_task);
3889
3890 cancel_work_sync(&adapter->adminq_task);
3891
3892 iavf_free_rss(adapter);
3893
3894 if (hw->aq.asq.count)
3895 iavf_shutdown_adminq(hw);
3896
3897 /* destroy the locks only once, here */
3898 mutex_destroy(&hw->aq.arq_mutex);
3899 mutex_destroy(&hw->aq.asq_mutex);
3900
3901 iounmap(hw->hw_addr);
3902 pci_release_regions(pdev);
3903 iavf_free_all_tx_resources(adapter);
3904 iavf_free_all_rx_resources(adapter);
3905 iavf_free_queues(adapter);
3906 kfree(adapter->vf_res);
3907 spin_lock_bh(&adapter->mac_vlan_list_lock);
3908 /* If we got removed before an up/down sequence, we've got a filter
3909 * hanging out there that we need to get rid of.
3910 */
3911 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3912 list_del(&f->list);
3913 kfree(f);
3914 }
3915 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3916 list) {
3917 list_del(&vlf->list);
3918 kfree(vlf);
3919 }
3920
3921 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3922
3923 spin_lock_bh(&adapter->cloud_filter_list_lock);
3924 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3925 list_del(&cf->list);
3926 kfree(cf);
3927 }
3928 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3929
3930 free_netdev(netdev);
3931
3932 pci_disable_pcie_error_reporting(pdev);
3933
3934 pci_disable_device(pdev);
3935}
3936
3937static struct pci_driver iavf_driver = {
3938 .name = iavf_driver_name,
3939 .id_table = iavf_pci_tbl,
3940 .probe = iavf_probe,
3941 .remove = iavf_remove,
3942#ifdef CONFIG_PM
3943 .suspend = iavf_suspend,
3944 .resume = iavf_resume,
3945#endif
3946 .shutdown = iavf_shutdown,
3947};
3948
3949/**
3950 * iavf_init_module - Driver Registration Routine
3951 *
3952 * iavf_init_module is the first routine called when the driver is
3953 * loaded. All it does is register with the PCI subsystem.
3954 **/
3955static int __init iavf_init_module(void)
3956{
3957 int ret;
3958
3959 pr_info("iavf: %s - version %s\n", iavf_driver_string,
3960 iavf_driver_version);
3961
3962 pr_info("%s\n", iavf_copyright);
3963
3964 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3965 iavf_driver_name);
3966 if (!iavf_wq) {
3967 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3968 return -ENOMEM;
3969 }
3970 ret = pci_register_driver(&iavf_driver);
3971 return ret;
3972}
3973
3974module_init(iavf_init_module);
3975
3976/**
3977 * iavf_exit_module - Driver Exit Cleanup Routine
3978 *
3979 * iavf_exit_module is called just before the driver is removed
3980 * from memory.
3981 **/
3982static void __exit iavf_exit_module(void)
3983{
3984 pci_unregister_driver(&iavf_driver);
3985 destroy_workqueue(iavf_wq);
3986}
3987
3988module_exit(iavf_exit_module);
3989
3990/* iavf_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include "iavf.h"
5#include "iavf_prototype.h"
6#include "iavf_client.h"
7/* All iavf tracepoints are defined by the include below, which must
8 * be included exactly once across the whole kernel with
9 * CREATE_TRACE_POINTS defined
10 */
11#define CREATE_TRACE_POINTS
12#include "iavf_trace.h"
13
14static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16static int iavf_close(struct net_device *netdev);
17static int iavf_init_get_resources(struct iavf_adapter *adapter);
18static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20char iavf_driver_name[] = "iavf";
21static const char iavf_driver_string[] =
22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24static const char iavf_copyright[] =
25 "Copyright (c) 2013 - 2018 Intel Corporation.";
26
27/* iavf_pci_tbl - PCI Device ID Table
28 *
29 * Wildcard entries (PCI_ANY_ID) should come last
30 * Last entry must be all 0s
31 *
32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33 * Class, Class Mask, private data (not used) }
34 */
35static const struct pci_device_id iavf_pci_tbl[] = {
36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 /* required last entry */
41 {0, }
42};
43
44MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46MODULE_ALIAS("i40evf");
47MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49MODULE_LICENSE("GPL v2");
50
51static const struct net_device_ops iavf_netdev_ops;
52struct workqueue_struct *iavf_wq;
53
54/**
55 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56 * @hw: pointer to the HW structure
57 * @mem: ptr to mem struct to fill out
58 * @size: size of memory requested
59 * @alignment: what to align the allocation to
60 **/
61enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 struct iavf_dma_mem *mem,
63 u64 size, u32 alignment)
64{
65 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66
67 if (!mem)
68 return IAVF_ERR_PARAM;
69
70 mem->size = ALIGN(size, alignment);
71 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 if (mem->va)
74 return 0;
75 else
76 return IAVF_ERR_NO_MEMORY;
77}
78
79/**
80 * iavf_free_dma_mem_d - OS specific memory free for shared code
81 * @hw: pointer to the HW structure
82 * @mem: ptr to mem struct to free
83 **/
84enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 struct iavf_dma_mem *mem)
86{
87 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88
89 if (!mem || !mem->va)
90 return IAVF_ERR_PARAM;
91 dma_free_coherent(&adapter->pdev->dev, mem->size,
92 mem->va, (dma_addr_t)mem->pa);
93 return 0;
94}
95
96/**
97 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98 * @hw: pointer to the HW structure
99 * @mem: ptr to mem struct to fill out
100 * @size: size of memory requested
101 **/
102enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 struct iavf_virt_mem *mem, u32 size)
104{
105 if (!mem)
106 return IAVF_ERR_PARAM;
107
108 mem->size = size;
109 mem->va = kzalloc(size, GFP_KERNEL);
110
111 if (mem->va)
112 return 0;
113 else
114 return IAVF_ERR_NO_MEMORY;
115}
116
117/**
118 * iavf_free_virt_mem_d - OS specific memory free for shared code
119 * @hw: pointer to the HW structure
120 * @mem: ptr to mem struct to free
121 **/
122enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 struct iavf_virt_mem *mem)
124{
125 if (!mem)
126 return IAVF_ERR_PARAM;
127
128 /* it's ok to kfree a NULL pointer */
129 kfree(mem->va);
130
131 return 0;
132}
133
134/**
135 * iavf_schedule_reset - Set the flags and schedule a reset event
136 * @adapter: board private structure
137 **/
138void iavf_schedule_reset(struct iavf_adapter *adapter)
139{
140 if (!(adapter->flags &
141 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
142 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
143 queue_work(iavf_wq, &adapter->reset_task);
144 }
145}
146
147/**
148 * iavf_tx_timeout - Respond to a Tx Hang
149 * @netdev: network interface device structure
150 **/
151static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
152{
153 struct iavf_adapter *adapter = netdev_priv(netdev);
154
155 adapter->tx_timeout_count++;
156 iavf_schedule_reset(adapter);
157}
158
159/**
160 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
161 * @adapter: board private structure
162 **/
163static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
164{
165 struct iavf_hw *hw = &adapter->hw;
166
167 if (!adapter->msix_entries)
168 return;
169
170 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
171
172 iavf_flush(hw);
173
174 synchronize_irq(adapter->msix_entries[0].vector);
175}
176
177/**
178 * iavf_misc_irq_enable - Enable default interrupt generation settings
179 * @adapter: board private structure
180 **/
181static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
182{
183 struct iavf_hw *hw = &adapter->hw;
184
185 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
186 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
187 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
188
189 iavf_flush(hw);
190}
191
192/**
193 * iavf_irq_disable - Mask off interrupt generation on the NIC
194 * @adapter: board private structure
195 **/
196static void iavf_irq_disable(struct iavf_adapter *adapter)
197{
198 int i;
199 struct iavf_hw *hw = &adapter->hw;
200
201 if (!adapter->msix_entries)
202 return;
203
204 for (i = 1; i < adapter->num_msix_vectors; i++) {
205 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
206 synchronize_irq(adapter->msix_entries[i].vector);
207 }
208 iavf_flush(hw);
209}
210
211/**
212 * iavf_irq_enable_queues - Enable interrupt for specified queues
213 * @adapter: board private structure
214 * @mask: bitmap of queues to enable
215 **/
216void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
217{
218 struct iavf_hw *hw = &adapter->hw;
219 int i;
220
221 for (i = 1; i < adapter->num_msix_vectors; i++) {
222 if (mask & BIT(i - 1)) {
223 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
224 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
225 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
226 }
227 }
228}
229
230/**
231 * iavf_irq_enable - Enable default interrupt generation settings
232 * @adapter: board private structure
233 * @flush: boolean value whether to run rd32()
234 **/
235void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
236{
237 struct iavf_hw *hw = &adapter->hw;
238
239 iavf_misc_irq_enable(adapter);
240 iavf_irq_enable_queues(adapter, ~0);
241
242 if (flush)
243 iavf_flush(hw);
244}
245
246/**
247 * iavf_msix_aq - Interrupt handler for vector 0
248 * @irq: interrupt number
249 * @data: pointer to netdev
250 **/
251static irqreturn_t iavf_msix_aq(int irq, void *data)
252{
253 struct net_device *netdev = data;
254 struct iavf_adapter *adapter = netdev_priv(netdev);
255 struct iavf_hw *hw = &adapter->hw;
256
257 /* handle non-queue interrupts, these reads clear the registers */
258 rd32(hw, IAVF_VFINT_ICR01);
259 rd32(hw, IAVF_VFINT_ICR0_ENA1);
260
261 /* schedule work on the private workqueue */
262 queue_work(iavf_wq, &adapter->adminq_task);
263
264 return IRQ_HANDLED;
265}
266
267/**
268 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
269 * @irq: interrupt number
270 * @data: pointer to a q_vector
271 **/
272static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
273{
274 struct iavf_q_vector *q_vector = data;
275
276 if (!q_vector->tx.ring && !q_vector->rx.ring)
277 return IRQ_HANDLED;
278
279 napi_schedule_irqoff(&q_vector->napi);
280
281 return IRQ_HANDLED;
282}
283
284/**
285 * iavf_map_vector_to_rxq - associate irqs with rx queues
286 * @adapter: board private structure
287 * @v_idx: interrupt number
288 * @r_idx: queue number
289 **/
290static void
291iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
292{
293 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
294 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
295 struct iavf_hw *hw = &adapter->hw;
296
297 rx_ring->q_vector = q_vector;
298 rx_ring->next = q_vector->rx.ring;
299 rx_ring->vsi = &adapter->vsi;
300 q_vector->rx.ring = rx_ring;
301 q_vector->rx.count++;
302 q_vector->rx.next_update = jiffies + 1;
303 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
304 q_vector->ring_mask |= BIT(r_idx);
305 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
306 q_vector->rx.current_itr >> 1);
307 q_vector->rx.current_itr = q_vector->rx.target_itr;
308}
309
310/**
311 * iavf_map_vector_to_txq - associate irqs with tx queues
312 * @adapter: board private structure
313 * @v_idx: interrupt number
314 * @t_idx: queue number
315 **/
316static void
317iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
318{
319 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
320 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
321 struct iavf_hw *hw = &adapter->hw;
322
323 tx_ring->q_vector = q_vector;
324 tx_ring->next = q_vector->tx.ring;
325 tx_ring->vsi = &adapter->vsi;
326 q_vector->tx.ring = tx_ring;
327 q_vector->tx.count++;
328 q_vector->tx.next_update = jiffies + 1;
329 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
330 q_vector->num_ringpairs++;
331 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
332 q_vector->tx.target_itr >> 1);
333 q_vector->tx.current_itr = q_vector->tx.target_itr;
334}
335
336/**
337 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
338 * @adapter: board private structure to initialize
339 *
340 * This function maps descriptor rings to the queue-specific vectors
341 * we were allotted through the MSI-X enabling code. Ideally, we'd have
342 * one vector per ring/queue, but on a constrained vector budget, we
343 * group the rings as "efficiently" as possible. You would add new
344 * mapping configurations in here.
345 **/
346static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
347{
348 int rings_remaining = adapter->num_active_queues;
349 int ridx = 0, vidx = 0;
350 int q_vectors;
351
352 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
353
354 for (; ridx < rings_remaining; ridx++) {
355 iavf_map_vector_to_rxq(adapter, vidx, ridx);
356 iavf_map_vector_to_txq(adapter, vidx, ridx);
357
358 /* In the case where we have more queues than vectors, continue
359 * round-robin on vectors until all queues are mapped.
360 */
361 if (++vidx >= q_vectors)
362 vidx = 0;
363 }
364
365 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
366}
367
368/**
369 * iavf_irq_affinity_notify - Callback for affinity changes
370 * @notify: context as to what irq was changed
371 * @mask: the new affinity mask
372 *
373 * This is a callback function used by the irq_set_affinity_notifier function
374 * so that we may register to receive changes to the irq affinity masks.
375 **/
376static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
377 const cpumask_t *mask)
378{
379 struct iavf_q_vector *q_vector =
380 container_of(notify, struct iavf_q_vector, affinity_notify);
381
382 cpumask_copy(&q_vector->affinity_mask, mask);
383}
384
385/**
386 * iavf_irq_affinity_release - Callback for affinity notifier release
387 * @ref: internal core kernel usage
388 *
389 * This is a callback function used by the irq_set_affinity_notifier function
390 * to inform the current notification subscriber that they will no longer
391 * receive notifications.
392 **/
393static void iavf_irq_affinity_release(struct kref *ref) {}
394
395/**
396 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
397 * @adapter: board private structure
398 * @basename: device basename
399 *
400 * Allocates MSI-X vectors for tx and rx handling, and requests
401 * interrupts from the kernel.
402 **/
403static int
404iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
405{
406 unsigned int vector, q_vectors;
407 unsigned int rx_int_idx = 0, tx_int_idx = 0;
408 int irq_num, err;
409 int cpu;
410
411 iavf_irq_disable(adapter);
412 /* Decrement for Other and TCP Timer vectors */
413 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
414
415 for (vector = 0; vector < q_vectors; vector++) {
416 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
417
418 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
419
420 if (q_vector->tx.ring && q_vector->rx.ring) {
421 snprintf(q_vector->name, sizeof(q_vector->name),
422 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
423 tx_int_idx++;
424 } else if (q_vector->rx.ring) {
425 snprintf(q_vector->name, sizeof(q_vector->name),
426 "iavf-%s-rx-%d", basename, rx_int_idx++);
427 } else if (q_vector->tx.ring) {
428 snprintf(q_vector->name, sizeof(q_vector->name),
429 "iavf-%s-tx-%d", basename, tx_int_idx++);
430 } else {
431 /* skip this unused q_vector */
432 continue;
433 }
434 err = request_irq(irq_num,
435 iavf_msix_clean_rings,
436 0,
437 q_vector->name,
438 q_vector);
439 if (err) {
440 dev_info(&adapter->pdev->dev,
441 "Request_irq failed, error: %d\n", err);
442 goto free_queue_irqs;
443 }
444 /* register for affinity change notifications */
445 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
446 q_vector->affinity_notify.release =
447 iavf_irq_affinity_release;
448 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
449 /* Spread the IRQ affinity hints across online CPUs. Note that
450 * get_cpu_mask returns a mask with a permanent lifetime so
451 * it's safe to use as a hint for irq_set_affinity_hint.
452 */
453 cpu = cpumask_local_spread(q_vector->v_idx, -1);
454 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
455 }
456
457 return 0;
458
459free_queue_irqs:
460 while (vector) {
461 vector--;
462 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
463 irq_set_affinity_notifier(irq_num, NULL);
464 irq_set_affinity_hint(irq_num, NULL);
465 free_irq(irq_num, &adapter->q_vectors[vector]);
466 }
467 return err;
468}
469
470/**
471 * iavf_request_misc_irq - Initialize MSI-X interrupts
472 * @adapter: board private structure
473 *
474 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
475 * vector is only for the admin queue, and stays active even when the netdev
476 * is closed.
477 **/
478static int iavf_request_misc_irq(struct iavf_adapter *adapter)
479{
480 struct net_device *netdev = adapter->netdev;
481 int err;
482
483 snprintf(adapter->misc_vector_name,
484 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
485 dev_name(&adapter->pdev->dev));
486 err = request_irq(adapter->msix_entries[0].vector,
487 &iavf_msix_aq, 0,
488 adapter->misc_vector_name, netdev);
489 if (err) {
490 dev_err(&adapter->pdev->dev,
491 "request_irq for %s failed: %d\n",
492 adapter->misc_vector_name, err);
493 free_irq(adapter->msix_entries[0].vector, netdev);
494 }
495 return err;
496}
497
498/**
499 * iavf_free_traffic_irqs - Free MSI-X interrupts
500 * @adapter: board private structure
501 *
502 * Frees all MSI-X vectors other than 0.
503 **/
504static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
505{
506 int vector, irq_num, q_vectors;
507
508 if (!adapter->msix_entries)
509 return;
510
511 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
512
513 for (vector = 0; vector < q_vectors; vector++) {
514 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
515 irq_set_affinity_notifier(irq_num, NULL);
516 irq_set_affinity_hint(irq_num, NULL);
517 free_irq(irq_num, &adapter->q_vectors[vector]);
518 }
519}
520
521/**
522 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
523 * @adapter: board private structure
524 *
525 * Frees MSI-X vector 0.
526 **/
527static void iavf_free_misc_irq(struct iavf_adapter *adapter)
528{
529 struct net_device *netdev = adapter->netdev;
530
531 if (!adapter->msix_entries)
532 return;
533
534 free_irq(adapter->msix_entries[0].vector, netdev);
535}
536
537/**
538 * iavf_configure_tx - Configure Transmit Unit after Reset
539 * @adapter: board private structure
540 *
541 * Configure the Tx unit of the MAC after a reset.
542 **/
543static void iavf_configure_tx(struct iavf_adapter *adapter)
544{
545 struct iavf_hw *hw = &adapter->hw;
546 int i;
547
548 for (i = 0; i < adapter->num_active_queues; i++)
549 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
550}
551
552/**
553 * iavf_configure_rx - Configure Receive Unit after Reset
554 * @adapter: board private structure
555 *
556 * Configure the Rx unit of the MAC after a reset.
557 **/
558static void iavf_configure_rx(struct iavf_adapter *adapter)
559{
560 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
561 struct iavf_hw *hw = &adapter->hw;
562 int i;
563
564 /* Legacy Rx will always default to a 2048 buffer size. */
565#if (PAGE_SIZE < 8192)
566 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
567 struct net_device *netdev = adapter->netdev;
568
569 /* For jumbo frames on systems with 4K pages we have to use
570 * an order 1 page, so we might as well increase the size
571 * of our Rx buffer to make better use of the available space
572 */
573 rx_buf_len = IAVF_RXBUFFER_3072;
574
575 /* We use a 1536 buffer size for configurations with
576 * standard Ethernet mtu. On x86 this gives us enough room
577 * for shared info and 192 bytes of padding.
578 */
579 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
580 (netdev->mtu <= ETH_DATA_LEN))
581 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
582 }
583#endif
584
585 for (i = 0; i < adapter->num_active_queues; i++) {
586 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
587 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
588
589 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
590 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
591 else
592 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
593 }
594}
595
596/**
597 * iavf_find_vlan - Search filter list for specific vlan filter
598 * @adapter: board private structure
599 * @vlan: vlan tag
600 *
601 * Returns ptr to the filter object or NULL. Must be called while holding the
602 * mac_vlan_list_lock.
603 **/
604static struct
605iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
606{
607 struct iavf_vlan_filter *f;
608
609 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
610 if (vlan == f->vlan)
611 return f;
612 }
613 return NULL;
614}
615
616/**
617 * iavf_add_vlan - Add a vlan filter to the list
618 * @adapter: board private structure
619 * @vlan: VLAN tag
620 *
621 * Returns ptr to the filter object or NULL when no memory available.
622 **/
623static struct
624iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
625{
626 struct iavf_vlan_filter *f = NULL;
627
628 spin_lock_bh(&adapter->mac_vlan_list_lock);
629
630 f = iavf_find_vlan(adapter, vlan);
631 if (!f) {
632 f = kzalloc(sizeof(*f), GFP_ATOMIC);
633 if (!f)
634 goto clearout;
635
636 f->vlan = vlan;
637
638 list_add_tail(&f->list, &adapter->vlan_filter_list);
639 f->add = true;
640 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
641 }
642
643clearout:
644 spin_unlock_bh(&adapter->mac_vlan_list_lock);
645 return f;
646}
647
648/**
649 * iavf_del_vlan - Remove a vlan filter from the list
650 * @adapter: board private structure
651 * @vlan: VLAN tag
652 **/
653static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
654{
655 struct iavf_vlan_filter *f;
656
657 spin_lock_bh(&adapter->mac_vlan_list_lock);
658
659 f = iavf_find_vlan(adapter, vlan);
660 if (f) {
661 f->remove = true;
662 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
663 }
664
665 spin_unlock_bh(&adapter->mac_vlan_list_lock);
666}
667
668/**
669 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
670 * @netdev: network device struct
671 * @proto: unused protocol data
672 * @vid: VLAN tag
673 **/
674static int iavf_vlan_rx_add_vid(struct net_device *netdev,
675 __always_unused __be16 proto, u16 vid)
676{
677 struct iavf_adapter *adapter = netdev_priv(netdev);
678
679 if (!VLAN_ALLOWED(adapter))
680 return -EIO;
681 if (iavf_add_vlan(adapter, vid) == NULL)
682 return -ENOMEM;
683 return 0;
684}
685
686/**
687 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
688 * @netdev: network device struct
689 * @proto: unused protocol data
690 * @vid: VLAN tag
691 **/
692static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
693 __always_unused __be16 proto, u16 vid)
694{
695 struct iavf_adapter *adapter = netdev_priv(netdev);
696
697 if (VLAN_ALLOWED(adapter)) {
698 iavf_del_vlan(adapter, vid);
699 return 0;
700 }
701 return -EIO;
702}
703
704/**
705 * iavf_find_filter - Search filter list for specific mac filter
706 * @adapter: board private structure
707 * @macaddr: the MAC address
708 *
709 * Returns ptr to the filter object or NULL. Must be called while holding the
710 * mac_vlan_list_lock.
711 **/
712static struct
713iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
714 const u8 *macaddr)
715{
716 struct iavf_mac_filter *f;
717
718 if (!macaddr)
719 return NULL;
720
721 list_for_each_entry(f, &adapter->mac_filter_list, list) {
722 if (ether_addr_equal(macaddr, f->macaddr))
723 return f;
724 }
725 return NULL;
726}
727
728/**
729 * iavf_add_filter - Add a mac filter to the filter list
730 * @adapter: board private structure
731 * @macaddr: the MAC address
732 *
733 * Returns ptr to the filter object or NULL when no memory available.
734 **/
735struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
736 const u8 *macaddr)
737{
738 struct iavf_mac_filter *f;
739
740 if (!macaddr)
741 return NULL;
742
743 f = iavf_find_filter(adapter, macaddr);
744 if (!f) {
745 f = kzalloc(sizeof(*f), GFP_ATOMIC);
746 if (!f)
747 return f;
748
749 ether_addr_copy(f->macaddr, macaddr);
750
751 list_add_tail(&f->list, &adapter->mac_filter_list);
752 f->add = true;
753 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
754 } else {
755 f->remove = false;
756 }
757
758 return f;
759}
760
761/**
762 * iavf_set_mac - NDO callback to set port mac address
763 * @netdev: network interface device structure
764 * @p: pointer to an address structure
765 *
766 * Returns 0 on success, negative on failure
767 **/
768static int iavf_set_mac(struct net_device *netdev, void *p)
769{
770 struct iavf_adapter *adapter = netdev_priv(netdev);
771 struct iavf_hw *hw = &adapter->hw;
772 struct iavf_mac_filter *f;
773 struct sockaddr *addr = p;
774
775 if (!is_valid_ether_addr(addr->sa_data))
776 return -EADDRNOTAVAIL;
777
778 if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
779 return 0;
780
781 spin_lock_bh(&adapter->mac_vlan_list_lock);
782
783 f = iavf_find_filter(adapter, hw->mac.addr);
784 if (f) {
785 f->remove = true;
786 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
787 }
788
789 f = iavf_add_filter(adapter, addr->sa_data);
790
791 spin_unlock_bh(&adapter->mac_vlan_list_lock);
792
793 if (f) {
794 ether_addr_copy(hw->mac.addr, addr->sa_data);
795 }
796
797 return (f == NULL) ? -ENOMEM : 0;
798}
799
800/**
801 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
802 * @netdev: the netdevice
803 * @addr: address to add
804 *
805 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
806 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
807 */
808static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
809{
810 struct iavf_adapter *adapter = netdev_priv(netdev);
811
812 if (iavf_add_filter(adapter, addr))
813 return 0;
814 else
815 return -ENOMEM;
816}
817
818/**
819 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
820 * @netdev: the netdevice
821 * @addr: address to add
822 *
823 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
824 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
825 */
826static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
827{
828 struct iavf_adapter *adapter = netdev_priv(netdev);
829 struct iavf_mac_filter *f;
830
831 /* Under some circumstances, we might receive a request to delete
832 * our own device address from our uc list. Because we store the
833 * device address in the VSI's MAC/VLAN filter list, we need to ignore
834 * such requests and not delete our device address from this list.
835 */
836 if (ether_addr_equal(addr, netdev->dev_addr))
837 return 0;
838
839 f = iavf_find_filter(adapter, addr);
840 if (f) {
841 f->remove = true;
842 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
843 }
844 return 0;
845}
846
847/**
848 * iavf_set_rx_mode - NDO callback to set the netdev filters
849 * @netdev: network interface device structure
850 **/
851static void iavf_set_rx_mode(struct net_device *netdev)
852{
853 struct iavf_adapter *adapter = netdev_priv(netdev);
854
855 spin_lock_bh(&adapter->mac_vlan_list_lock);
856 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
857 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
858 spin_unlock_bh(&adapter->mac_vlan_list_lock);
859
860 if (netdev->flags & IFF_PROMISC &&
861 !(adapter->flags & IAVF_FLAG_PROMISC_ON))
862 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
863 else if (!(netdev->flags & IFF_PROMISC) &&
864 adapter->flags & IAVF_FLAG_PROMISC_ON)
865 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
866
867 if (netdev->flags & IFF_ALLMULTI &&
868 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
869 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
870 else if (!(netdev->flags & IFF_ALLMULTI) &&
871 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
872 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
873}
874
875/**
876 * iavf_napi_enable_all - enable NAPI on all queue vectors
877 * @adapter: board private structure
878 **/
879static void iavf_napi_enable_all(struct iavf_adapter *adapter)
880{
881 int q_idx;
882 struct iavf_q_vector *q_vector;
883 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
884
885 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
886 struct napi_struct *napi;
887
888 q_vector = &adapter->q_vectors[q_idx];
889 napi = &q_vector->napi;
890 napi_enable(napi);
891 }
892}
893
894/**
895 * iavf_napi_disable_all - disable NAPI on all queue vectors
896 * @adapter: board private structure
897 **/
898static void iavf_napi_disable_all(struct iavf_adapter *adapter)
899{
900 int q_idx;
901 struct iavf_q_vector *q_vector;
902 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
903
904 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
905 q_vector = &adapter->q_vectors[q_idx];
906 napi_disable(&q_vector->napi);
907 }
908}
909
910/**
911 * iavf_configure - set up transmit and receive data structures
912 * @adapter: board private structure
913 **/
914static void iavf_configure(struct iavf_adapter *adapter)
915{
916 struct net_device *netdev = adapter->netdev;
917 int i;
918
919 iavf_set_rx_mode(netdev);
920
921 iavf_configure_tx(adapter);
922 iavf_configure_rx(adapter);
923 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
924
925 for (i = 0; i < adapter->num_active_queues; i++) {
926 struct iavf_ring *ring = &adapter->rx_rings[i];
927
928 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
929 }
930}
931
932/**
933 * iavf_up_complete - Finish the last steps of bringing up a connection
934 * @adapter: board private structure
935 *
936 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
937 **/
938static void iavf_up_complete(struct iavf_adapter *adapter)
939{
940 adapter->state = __IAVF_RUNNING;
941 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
942
943 iavf_napi_enable_all(adapter);
944
945 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
946 if (CLIENT_ENABLED(adapter))
947 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
948 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
949}
950
951/**
952 * iavf_down - Shutdown the connection processing
953 * @adapter: board private structure
954 *
955 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
956 **/
957void iavf_down(struct iavf_adapter *adapter)
958{
959 struct net_device *netdev = adapter->netdev;
960 struct iavf_vlan_filter *vlf;
961 struct iavf_mac_filter *f;
962 struct iavf_cloud_filter *cf;
963
964 if (adapter->state <= __IAVF_DOWN_PENDING)
965 return;
966
967 netif_carrier_off(netdev);
968 netif_tx_disable(netdev);
969 adapter->link_up = false;
970 iavf_napi_disable_all(adapter);
971 iavf_irq_disable(adapter);
972
973 spin_lock_bh(&adapter->mac_vlan_list_lock);
974
975 /* clear the sync flag on all filters */
976 __dev_uc_unsync(adapter->netdev, NULL);
977 __dev_mc_unsync(adapter->netdev, NULL);
978
979 /* remove all MAC filters */
980 list_for_each_entry(f, &adapter->mac_filter_list, list) {
981 f->remove = true;
982 }
983
984 /* remove all VLAN filters */
985 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
986 vlf->remove = true;
987 }
988
989 spin_unlock_bh(&adapter->mac_vlan_list_lock);
990
991 /* remove all cloud filters */
992 spin_lock_bh(&adapter->cloud_filter_list_lock);
993 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
994 cf->del = true;
995 }
996 spin_unlock_bh(&adapter->cloud_filter_list_lock);
997
998 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
999 adapter->state != __IAVF_RESETTING) {
1000 /* cancel any current operation */
1001 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1002 /* Schedule operations to close down the HW. Don't wait
1003 * here for this to complete. The watchdog is still running
1004 * and it will take care of this.
1005 */
1006 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1007 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1008 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1009 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1010 }
1011
1012 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1013}
1014
1015/**
1016 * iavf_acquire_msix_vectors - Setup the MSIX capability
1017 * @adapter: board private structure
1018 * @vectors: number of vectors to request
1019 *
1020 * Work with the OS to set up the MSIX vectors needed.
1021 *
1022 * Returns 0 on success, negative on failure
1023 **/
1024static int
1025iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1026{
1027 int err, vector_threshold;
1028
1029 /* We'll want at least 3 (vector_threshold):
1030 * 0) Other (Admin Queue and link, mostly)
1031 * 1) TxQ[0] Cleanup
1032 * 2) RxQ[0] Cleanup
1033 */
1034 vector_threshold = MIN_MSIX_COUNT;
1035
1036 /* The more we get, the more we will assign to Tx/Rx Cleanup
1037 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1038 * Right now, we simply care about how many we'll get; we'll
1039 * set them up later while requesting irq's.
1040 */
1041 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1042 vector_threshold, vectors);
1043 if (err < 0) {
1044 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1045 kfree(adapter->msix_entries);
1046 adapter->msix_entries = NULL;
1047 return err;
1048 }
1049
1050 /* Adjust for only the vectors we'll use, which is minimum
1051 * of max_msix_q_vectors + NONQ_VECS, or the number of
1052 * vectors we were allocated.
1053 */
1054 adapter->num_msix_vectors = err;
1055 return 0;
1056}
1057
1058/**
1059 * iavf_free_queues - Free memory for all rings
1060 * @adapter: board private structure to initialize
1061 *
1062 * Free all of the memory associated with queue pairs.
1063 **/
1064static void iavf_free_queues(struct iavf_adapter *adapter)
1065{
1066 if (!adapter->vsi_res)
1067 return;
1068 adapter->num_active_queues = 0;
1069 kfree(adapter->tx_rings);
1070 adapter->tx_rings = NULL;
1071 kfree(adapter->rx_rings);
1072 adapter->rx_rings = NULL;
1073}
1074
1075/**
1076 * iavf_alloc_queues - Allocate memory for all rings
1077 * @adapter: board private structure to initialize
1078 *
1079 * We allocate one ring per queue at run-time since we don't know the
1080 * number of queues at compile-time. The polling_netdev array is
1081 * intended for Multiqueue, but should work fine with a single queue.
1082 **/
1083static int iavf_alloc_queues(struct iavf_adapter *adapter)
1084{
1085 int i, num_active_queues;
1086
1087 /* If we're in reset reallocating queues we don't actually know yet for
1088 * certain the PF gave us the number of queues we asked for but we'll
1089 * assume it did. Once basic reset is finished we'll confirm once we
1090 * start negotiating config with PF.
1091 */
1092 if (adapter->num_req_queues)
1093 num_active_queues = adapter->num_req_queues;
1094 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1095 adapter->num_tc)
1096 num_active_queues = adapter->ch_config.total_qps;
1097 else
1098 num_active_queues = min_t(int,
1099 adapter->vsi_res->num_queue_pairs,
1100 (int)(num_online_cpus()));
1101
1102
1103 adapter->tx_rings = kcalloc(num_active_queues,
1104 sizeof(struct iavf_ring), GFP_KERNEL);
1105 if (!adapter->tx_rings)
1106 goto err_out;
1107 adapter->rx_rings = kcalloc(num_active_queues,
1108 sizeof(struct iavf_ring), GFP_KERNEL);
1109 if (!adapter->rx_rings)
1110 goto err_out;
1111
1112 for (i = 0; i < num_active_queues; i++) {
1113 struct iavf_ring *tx_ring;
1114 struct iavf_ring *rx_ring;
1115
1116 tx_ring = &adapter->tx_rings[i];
1117
1118 tx_ring->queue_index = i;
1119 tx_ring->netdev = adapter->netdev;
1120 tx_ring->dev = &adapter->pdev->dev;
1121 tx_ring->count = adapter->tx_desc_count;
1122 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1123 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1124 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1125
1126 rx_ring = &adapter->rx_rings[i];
1127 rx_ring->queue_index = i;
1128 rx_ring->netdev = adapter->netdev;
1129 rx_ring->dev = &adapter->pdev->dev;
1130 rx_ring->count = adapter->rx_desc_count;
1131 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1132 }
1133
1134 adapter->num_active_queues = num_active_queues;
1135
1136 return 0;
1137
1138err_out:
1139 iavf_free_queues(adapter);
1140 return -ENOMEM;
1141}
1142
1143/**
1144 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1145 * @adapter: board private structure to initialize
1146 *
1147 * Attempt to configure the interrupts using the best available
1148 * capabilities of the hardware and the kernel.
1149 **/
1150static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1151{
1152 int vector, v_budget;
1153 int pairs = 0;
1154 int err = 0;
1155
1156 if (!adapter->vsi_res) {
1157 err = -EIO;
1158 goto out;
1159 }
1160 pairs = adapter->num_active_queues;
1161
1162 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1163 * us much good if we have more vectors than CPUs. However, we already
1164 * limit the total number of queues by the number of CPUs so we do not
1165 * need any further limiting here.
1166 */
1167 v_budget = min_t(int, pairs + NONQ_VECS,
1168 (int)adapter->vf_res->max_vectors);
1169
1170 adapter->msix_entries = kcalloc(v_budget,
1171 sizeof(struct msix_entry), GFP_KERNEL);
1172 if (!adapter->msix_entries) {
1173 err = -ENOMEM;
1174 goto out;
1175 }
1176
1177 for (vector = 0; vector < v_budget; vector++)
1178 adapter->msix_entries[vector].entry = vector;
1179
1180 err = iavf_acquire_msix_vectors(adapter, v_budget);
1181
1182out:
1183 netif_set_real_num_rx_queues(adapter->netdev, pairs);
1184 netif_set_real_num_tx_queues(adapter->netdev, pairs);
1185 return err;
1186}
1187
1188/**
1189 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1190 * @adapter: board private structure
1191 *
1192 * Return 0 on success, negative on failure
1193 **/
1194static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1195{
1196 struct iavf_aqc_get_set_rss_key_data *rss_key =
1197 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1198 struct iavf_hw *hw = &adapter->hw;
1199 int ret = 0;
1200
1201 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1202 /* bail because we already have a command pending */
1203 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1204 adapter->current_op);
1205 return -EBUSY;
1206 }
1207
1208 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1209 if (ret) {
1210 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1211 iavf_stat_str(hw, ret),
1212 iavf_aq_str(hw, hw->aq.asq_last_status));
1213 return ret;
1214
1215 }
1216
1217 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1218 adapter->rss_lut, adapter->rss_lut_size);
1219 if (ret) {
1220 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1221 iavf_stat_str(hw, ret),
1222 iavf_aq_str(hw, hw->aq.asq_last_status));
1223 }
1224
1225 return ret;
1226
1227}
1228
1229/**
1230 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1231 * @adapter: board private structure
1232 *
1233 * Returns 0 on success, negative on failure
1234 **/
1235static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1236{
1237 struct iavf_hw *hw = &adapter->hw;
1238 u32 *dw;
1239 u16 i;
1240
1241 dw = (u32 *)adapter->rss_key;
1242 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1243 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1244
1245 dw = (u32 *)adapter->rss_lut;
1246 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1247 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1248
1249 iavf_flush(hw);
1250
1251 return 0;
1252}
1253
1254/**
1255 * iavf_config_rss - Configure RSS keys and lut
1256 * @adapter: board private structure
1257 *
1258 * Returns 0 on success, negative on failure
1259 **/
1260int iavf_config_rss(struct iavf_adapter *adapter)
1261{
1262
1263 if (RSS_PF(adapter)) {
1264 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1265 IAVF_FLAG_AQ_SET_RSS_KEY;
1266 return 0;
1267 } else if (RSS_AQ(adapter)) {
1268 return iavf_config_rss_aq(adapter);
1269 } else {
1270 return iavf_config_rss_reg(adapter);
1271 }
1272}
1273
1274/**
1275 * iavf_fill_rss_lut - Fill the lut with default values
1276 * @adapter: board private structure
1277 **/
1278static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1279{
1280 u16 i;
1281
1282 for (i = 0; i < adapter->rss_lut_size; i++)
1283 adapter->rss_lut[i] = i % adapter->num_active_queues;
1284}
1285
1286/**
1287 * iavf_init_rss - Prepare for RSS
1288 * @adapter: board private structure
1289 *
1290 * Return 0 on success, negative on failure
1291 **/
1292static int iavf_init_rss(struct iavf_adapter *adapter)
1293{
1294 struct iavf_hw *hw = &adapter->hw;
1295 int ret;
1296
1297 if (!RSS_PF(adapter)) {
1298 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1299 if (adapter->vf_res->vf_cap_flags &
1300 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1301 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1302 else
1303 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1304
1305 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1306 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1307 }
1308
1309 iavf_fill_rss_lut(adapter);
1310 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1311 ret = iavf_config_rss(adapter);
1312
1313 return ret;
1314}
1315
1316/**
1317 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1318 * @adapter: board private structure to initialize
1319 *
1320 * We allocate one q_vector per queue interrupt. If allocation fails we
1321 * return -ENOMEM.
1322 **/
1323static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1324{
1325 int q_idx = 0, num_q_vectors;
1326 struct iavf_q_vector *q_vector;
1327
1328 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1329 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1330 GFP_KERNEL);
1331 if (!adapter->q_vectors)
1332 return -ENOMEM;
1333
1334 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1335 q_vector = &adapter->q_vectors[q_idx];
1336 q_vector->adapter = adapter;
1337 q_vector->vsi = &adapter->vsi;
1338 q_vector->v_idx = q_idx;
1339 q_vector->reg_idx = q_idx;
1340 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1341 netif_napi_add(adapter->netdev, &q_vector->napi,
1342 iavf_napi_poll, NAPI_POLL_WEIGHT);
1343 }
1344
1345 return 0;
1346}
1347
1348/**
1349 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1350 * @adapter: board private structure to initialize
1351 *
1352 * This function frees the memory allocated to the q_vectors. In addition if
1353 * NAPI is enabled it will delete any references to the NAPI struct prior
1354 * to freeing the q_vector.
1355 **/
1356static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1357{
1358 int q_idx, num_q_vectors;
1359 int napi_vectors;
1360
1361 if (!adapter->q_vectors)
1362 return;
1363
1364 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1365 napi_vectors = adapter->num_active_queues;
1366
1367 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1368 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1369
1370 if (q_idx < napi_vectors)
1371 netif_napi_del(&q_vector->napi);
1372 }
1373 kfree(adapter->q_vectors);
1374 adapter->q_vectors = NULL;
1375}
1376
1377/**
1378 * iavf_reset_interrupt_capability - Reset MSIX setup
1379 * @adapter: board private structure
1380 *
1381 **/
1382void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1383{
1384 if (!adapter->msix_entries)
1385 return;
1386
1387 pci_disable_msix(adapter->pdev);
1388 kfree(adapter->msix_entries);
1389 adapter->msix_entries = NULL;
1390}
1391
1392/**
1393 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1394 * @adapter: board private structure to initialize
1395 *
1396 **/
1397int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1398{
1399 int err;
1400
1401 err = iavf_alloc_queues(adapter);
1402 if (err) {
1403 dev_err(&adapter->pdev->dev,
1404 "Unable to allocate memory for queues\n");
1405 goto err_alloc_queues;
1406 }
1407
1408 rtnl_lock();
1409 err = iavf_set_interrupt_capability(adapter);
1410 rtnl_unlock();
1411 if (err) {
1412 dev_err(&adapter->pdev->dev,
1413 "Unable to setup interrupt capabilities\n");
1414 goto err_set_interrupt;
1415 }
1416
1417 err = iavf_alloc_q_vectors(adapter);
1418 if (err) {
1419 dev_err(&adapter->pdev->dev,
1420 "Unable to allocate memory for queue vectors\n");
1421 goto err_alloc_q_vectors;
1422 }
1423
1424 /* If we've made it so far while ADq flag being ON, then we haven't
1425 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1426 * resources have been allocated in the reset path.
1427 * Now we can truly claim that ADq is enabled.
1428 */
1429 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1430 adapter->num_tc)
1431 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1432 adapter->num_tc);
1433
1434 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1435 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1436 adapter->num_active_queues);
1437
1438 return 0;
1439err_alloc_q_vectors:
1440 iavf_reset_interrupt_capability(adapter);
1441err_set_interrupt:
1442 iavf_free_queues(adapter);
1443err_alloc_queues:
1444 return err;
1445}
1446
1447/**
1448 * iavf_free_rss - Free memory used by RSS structs
1449 * @adapter: board private structure
1450 **/
1451static void iavf_free_rss(struct iavf_adapter *adapter)
1452{
1453 kfree(adapter->rss_key);
1454 adapter->rss_key = NULL;
1455
1456 kfree(adapter->rss_lut);
1457 adapter->rss_lut = NULL;
1458}
1459
1460/**
1461 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1462 * @adapter: board private structure
1463 *
1464 * Returns 0 on success, negative on failure
1465 **/
1466static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1467{
1468 struct net_device *netdev = adapter->netdev;
1469 int err;
1470
1471 if (netif_running(netdev))
1472 iavf_free_traffic_irqs(adapter);
1473 iavf_free_misc_irq(adapter);
1474 iavf_reset_interrupt_capability(adapter);
1475 iavf_free_q_vectors(adapter);
1476 iavf_free_queues(adapter);
1477
1478 err = iavf_init_interrupt_scheme(adapter);
1479 if (err)
1480 goto err;
1481
1482 netif_tx_stop_all_queues(netdev);
1483
1484 err = iavf_request_misc_irq(adapter);
1485 if (err)
1486 goto err;
1487
1488 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1489
1490 iavf_map_rings_to_vectors(adapter);
1491
1492 if (RSS_AQ(adapter))
1493 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1494 else
1495 err = iavf_init_rss(adapter);
1496err:
1497 return err;
1498}
1499
1500/**
1501 * iavf_process_aq_command - process aq_required flags
1502 * and sends aq command
1503 * @adapter: pointer to iavf adapter structure
1504 *
1505 * Returns 0 on success
1506 * Returns error code if no command was sent
1507 * or error code if the command failed.
1508 **/
1509static int iavf_process_aq_command(struct iavf_adapter *adapter)
1510{
1511 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1512 return iavf_send_vf_config_msg(adapter);
1513 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1514 iavf_disable_queues(adapter);
1515 return 0;
1516 }
1517
1518 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1519 iavf_map_queues(adapter);
1520 return 0;
1521 }
1522
1523 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1524 iavf_add_ether_addrs(adapter);
1525 return 0;
1526 }
1527
1528 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1529 iavf_add_vlans(adapter);
1530 return 0;
1531 }
1532
1533 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1534 iavf_del_ether_addrs(adapter);
1535 return 0;
1536 }
1537
1538 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1539 iavf_del_vlans(adapter);
1540 return 0;
1541 }
1542
1543 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1544 iavf_enable_vlan_stripping(adapter);
1545 return 0;
1546 }
1547
1548 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1549 iavf_disable_vlan_stripping(adapter);
1550 return 0;
1551 }
1552
1553 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1554 iavf_configure_queues(adapter);
1555 return 0;
1556 }
1557
1558 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1559 iavf_enable_queues(adapter);
1560 return 0;
1561 }
1562
1563 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1564 /* This message goes straight to the firmware, not the
1565 * PF, so we don't have to set current_op as we will
1566 * not get a response through the ARQ.
1567 */
1568 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1569 return 0;
1570 }
1571 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1572 iavf_get_hena(adapter);
1573 return 0;
1574 }
1575 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1576 iavf_set_hena(adapter);
1577 return 0;
1578 }
1579 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1580 iavf_set_rss_key(adapter);
1581 return 0;
1582 }
1583 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1584 iavf_set_rss_lut(adapter);
1585 return 0;
1586 }
1587
1588 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1589 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1590 FLAG_VF_MULTICAST_PROMISC);
1591 return 0;
1592 }
1593
1594 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1595 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1596 return 0;
1597 }
1598
1599 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1600 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1601 iavf_set_promiscuous(adapter, 0);
1602 return 0;
1603 }
1604
1605 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1606 iavf_enable_channels(adapter);
1607 return 0;
1608 }
1609
1610 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1611 iavf_disable_channels(adapter);
1612 return 0;
1613 }
1614 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1615 iavf_add_cloud_filter(adapter);
1616 return 0;
1617 }
1618
1619 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1620 iavf_del_cloud_filter(adapter);
1621 return 0;
1622 }
1623 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1624 iavf_del_cloud_filter(adapter);
1625 return 0;
1626 }
1627 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1628 iavf_add_cloud_filter(adapter);
1629 return 0;
1630 }
1631 return -EAGAIN;
1632}
1633
1634/**
1635 * iavf_startup - first step of driver startup
1636 * @adapter: board private structure
1637 *
1638 * Function process __IAVF_STARTUP driver state.
1639 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1640 * when fails it returns -EAGAIN
1641 **/
1642static int iavf_startup(struct iavf_adapter *adapter)
1643{
1644 struct pci_dev *pdev = adapter->pdev;
1645 struct iavf_hw *hw = &adapter->hw;
1646 int err;
1647
1648 WARN_ON(adapter->state != __IAVF_STARTUP);
1649
1650 /* driver loaded, probe complete */
1651 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1652 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1653 err = iavf_set_mac_type(hw);
1654 if (err) {
1655 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1656 goto err;
1657 }
1658
1659 err = iavf_check_reset_complete(hw);
1660 if (err) {
1661 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1662 err);
1663 goto err;
1664 }
1665 hw->aq.num_arq_entries = IAVF_AQ_LEN;
1666 hw->aq.num_asq_entries = IAVF_AQ_LEN;
1667 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1668 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1669
1670 err = iavf_init_adminq(hw);
1671 if (err) {
1672 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1673 goto err;
1674 }
1675 err = iavf_send_api_ver(adapter);
1676 if (err) {
1677 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1678 iavf_shutdown_adminq(hw);
1679 goto err;
1680 }
1681 adapter->state = __IAVF_INIT_VERSION_CHECK;
1682err:
1683 return err;
1684}
1685
1686/**
1687 * iavf_init_version_check - second step of driver startup
1688 * @adapter: board private structure
1689 *
1690 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1691 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1692 * when fails it returns -EAGAIN
1693 **/
1694static int iavf_init_version_check(struct iavf_adapter *adapter)
1695{
1696 struct pci_dev *pdev = adapter->pdev;
1697 struct iavf_hw *hw = &adapter->hw;
1698 int err = -EAGAIN;
1699
1700 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1701
1702 if (!iavf_asq_done(hw)) {
1703 dev_err(&pdev->dev, "Admin queue command never completed\n");
1704 iavf_shutdown_adminq(hw);
1705 adapter->state = __IAVF_STARTUP;
1706 goto err;
1707 }
1708
1709 /* aq msg sent, awaiting reply */
1710 err = iavf_verify_api_ver(adapter);
1711 if (err) {
1712 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1713 err = iavf_send_api_ver(adapter);
1714 else
1715 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1716 adapter->pf_version.major,
1717 adapter->pf_version.minor,
1718 VIRTCHNL_VERSION_MAJOR,
1719 VIRTCHNL_VERSION_MINOR);
1720 goto err;
1721 }
1722 err = iavf_send_vf_config_msg(adapter);
1723 if (err) {
1724 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1725 err);
1726 goto err;
1727 }
1728 adapter->state = __IAVF_INIT_GET_RESOURCES;
1729
1730err:
1731 return err;
1732}
1733
1734/**
1735 * iavf_init_get_resources - third step of driver startup
1736 * @adapter: board private structure
1737 *
1738 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1739 * finishes driver initialization procedure.
1740 * When success the state is changed to __IAVF_DOWN
1741 * when fails it returns -EAGAIN
1742 **/
1743static int iavf_init_get_resources(struct iavf_adapter *adapter)
1744{
1745 struct net_device *netdev = adapter->netdev;
1746 struct pci_dev *pdev = adapter->pdev;
1747 struct iavf_hw *hw = &adapter->hw;
1748 int err;
1749
1750 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1751 /* aq msg sent, awaiting reply */
1752 if (!adapter->vf_res) {
1753 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1754 GFP_KERNEL);
1755 if (!adapter->vf_res) {
1756 err = -ENOMEM;
1757 goto err;
1758 }
1759 }
1760 err = iavf_get_vf_config(adapter);
1761 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1762 err = iavf_send_vf_config_msg(adapter);
1763 goto err;
1764 } else if (err == IAVF_ERR_PARAM) {
1765 /* We only get ERR_PARAM if the device is in a very bad
1766 * state or if we've been disabled for previous bad
1767 * behavior. Either way, we're done now.
1768 */
1769 iavf_shutdown_adminq(hw);
1770 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1771 return 0;
1772 }
1773 if (err) {
1774 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1775 goto err_alloc;
1776 }
1777
1778 if (iavf_process_config(adapter))
1779 goto err_alloc;
1780 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1781
1782 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1783
1784 netdev->netdev_ops = &iavf_netdev_ops;
1785 iavf_set_ethtool_ops(netdev);
1786 netdev->watchdog_timeo = 5 * HZ;
1787
1788 /* MTU range: 68 - 9710 */
1789 netdev->min_mtu = ETH_MIN_MTU;
1790 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1791
1792 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1793 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1794 adapter->hw.mac.addr);
1795 eth_hw_addr_random(netdev);
1796 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1797 } else {
1798 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1799 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1800 }
1801
1802 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1803 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1804 err = iavf_init_interrupt_scheme(adapter);
1805 if (err)
1806 goto err_sw_init;
1807 iavf_map_rings_to_vectors(adapter);
1808 if (adapter->vf_res->vf_cap_flags &
1809 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1810 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1811
1812 err = iavf_request_misc_irq(adapter);
1813 if (err)
1814 goto err_sw_init;
1815
1816 netif_carrier_off(netdev);
1817 adapter->link_up = false;
1818
1819 /* set the semaphore to prevent any callbacks after device registration
1820 * up to time when state of driver will be set to __IAVF_DOWN
1821 */
1822 rtnl_lock();
1823 if (!adapter->netdev_registered) {
1824 err = register_netdevice(netdev);
1825 if (err) {
1826 rtnl_unlock();
1827 goto err_register;
1828 }
1829 }
1830
1831 adapter->netdev_registered = true;
1832
1833 netif_tx_stop_all_queues(netdev);
1834 if (CLIENT_ALLOWED(adapter)) {
1835 err = iavf_lan_add_device(adapter);
1836 if (err) {
1837 rtnl_unlock();
1838 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1839 err);
1840 }
1841 }
1842 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1843 if (netdev->features & NETIF_F_GRO)
1844 dev_info(&pdev->dev, "GRO is enabled\n");
1845
1846 adapter->state = __IAVF_DOWN;
1847 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1848 rtnl_unlock();
1849
1850 iavf_misc_irq_enable(adapter);
1851 wake_up(&adapter->down_waitqueue);
1852
1853 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1854 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1855 if (!adapter->rss_key || !adapter->rss_lut) {
1856 err = -ENOMEM;
1857 goto err_mem;
1858 }
1859 if (RSS_AQ(adapter))
1860 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1861 else
1862 iavf_init_rss(adapter);
1863
1864 return err;
1865err_mem:
1866 iavf_free_rss(adapter);
1867err_register:
1868 iavf_free_misc_irq(adapter);
1869err_sw_init:
1870 iavf_reset_interrupt_capability(adapter);
1871err_alloc:
1872 kfree(adapter->vf_res);
1873 adapter->vf_res = NULL;
1874err:
1875 return err;
1876}
1877
1878/**
1879 * iavf_watchdog_task - Periodic call-back task
1880 * @work: pointer to work_struct
1881 **/
1882static void iavf_watchdog_task(struct work_struct *work)
1883{
1884 struct iavf_adapter *adapter = container_of(work,
1885 struct iavf_adapter,
1886 watchdog_task.work);
1887 struct iavf_hw *hw = &adapter->hw;
1888 u32 reg_val;
1889
1890 if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1891 goto restart_watchdog;
1892
1893 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1894 adapter->state = __IAVF_COMM_FAILED;
1895
1896 switch (adapter->state) {
1897 case __IAVF_COMM_FAILED:
1898 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1899 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1900 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1901 reg_val == VIRTCHNL_VFR_COMPLETED) {
1902 /* A chance for redemption! */
1903 dev_err(&adapter->pdev->dev,
1904 "Hardware came out of reset. Attempting reinit.\n");
1905 adapter->state = __IAVF_STARTUP;
1906 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1907 queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1908 clear_bit(__IAVF_IN_CRITICAL_TASK,
1909 &adapter->crit_section);
1910 /* Don't reschedule the watchdog, since we've restarted
1911 * the init task. When init_task contacts the PF and
1912 * gets everything set up again, it'll restart the
1913 * watchdog for us. Down, boy. Sit. Stay. Woof.
1914 */
1915 return;
1916 }
1917 adapter->aq_required = 0;
1918 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1919 clear_bit(__IAVF_IN_CRITICAL_TASK,
1920 &adapter->crit_section);
1921 queue_delayed_work(iavf_wq,
1922 &adapter->watchdog_task,
1923 msecs_to_jiffies(10));
1924 goto watchdog_done;
1925 case __IAVF_RESETTING:
1926 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1927 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1928 return;
1929 case __IAVF_DOWN:
1930 case __IAVF_DOWN_PENDING:
1931 case __IAVF_TESTING:
1932 case __IAVF_RUNNING:
1933 if (adapter->current_op) {
1934 if (!iavf_asq_done(hw)) {
1935 dev_dbg(&adapter->pdev->dev,
1936 "Admin queue timeout\n");
1937 iavf_send_api_ver(adapter);
1938 }
1939 } else {
1940 /* An error will be returned if no commands were
1941 * processed; use this opportunity to update stats
1942 */
1943 if (iavf_process_aq_command(adapter) &&
1944 adapter->state == __IAVF_RUNNING)
1945 iavf_request_stats(adapter);
1946 }
1947 break;
1948 case __IAVF_REMOVE:
1949 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1950 return;
1951 default:
1952 goto restart_watchdog;
1953 }
1954
1955 /* check for hw reset */
1956 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1957 if (!reg_val) {
1958 adapter->state = __IAVF_RESETTING;
1959 adapter->flags |= IAVF_FLAG_RESET_PENDING;
1960 adapter->aq_required = 0;
1961 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1962 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1963 queue_work(iavf_wq, &adapter->reset_task);
1964 goto watchdog_done;
1965 }
1966
1967 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1968watchdog_done:
1969 if (adapter->state == __IAVF_RUNNING ||
1970 adapter->state == __IAVF_COMM_FAILED)
1971 iavf_detect_recover_hung(&adapter->vsi);
1972 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1973restart_watchdog:
1974 if (adapter->aq_required)
1975 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1976 msecs_to_jiffies(20));
1977 else
1978 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1979 queue_work(iavf_wq, &adapter->adminq_task);
1980}
1981
1982static void iavf_disable_vf(struct iavf_adapter *adapter)
1983{
1984 struct iavf_mac_filter *f, *ftmp;
1985 struct iavf_vlan_filter *fv, *fvtmp;
1986 struct iavf_cloud_filter *cf, *cftmp;
1987
1988 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1989
1990 /* We don't use netif_running() because it may be true prior to
1991 * ndo_open() returning, so we can't assume it means all our open
1992 * tasks have finished, since we're not holding the rtnl_lock here.
1993 */
1994 if (adapter->state == __IAVF_RUNNING) {
1995 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1996 netif_carrier_off(adapter->netdev);
1997 netif_tx_disable(adapter->netdev);
1998 adapter->link_up = false;
1999 iavf_napi_disable_all(adapter);
2000 iavf_irq_disable(adapter);
2001 iavf_free_traffic_irqs(adapter);
2002 iavf_free_all_tx_resources(adapter);
2003 iavf_free_all_rx_resources(adapter);
2004 }
2005
2006 spin_lock_bh(&adapter->mac_vlan_list_lock);
2007
2008 /* Delete all of the filters */
2009 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2010 list_del(&f->list);
2011 kfree(f);
2012 }
2013
2014 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2015 list_del(&fv->list);
2016 kfree(fv);
2017 }
2018
2019 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2020
2021 spin_lock_bh(&adapter->cloud_filter_list_lock);
2022 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2023 list_del(&cf->list);
2024 kfree(cf);
2025 adapter->num_cloud_filters--;
2026 }
2027 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2028
2029 iavf_free_misc_irq(adapter);
2030 iavf_reset_interrupt_capability(adapter);
2031 iavf_free_queues(adapter);
2032 iavf_free_q_vectors(adapter);
2033 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2034 iavf_shutdown_adminq(&adapter->hw);
2035 adapter->netdev->flags &= ~IFF_UP;
2036 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2037 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2038 adapter->state = __IAVF_DOWN;
2039 wake_up(&adapter->down_waitqueue);
2040 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2041}
2042
2043/**
2044 * iavf_reset_task - Call-back task to handle hardware reset
2045 * @work: pointer to work_struct
2046 *
2047 * During reset we need to shut down and reinitialize the admin queue
2048 * before we can use it to communicate with the PF again. We also clear
2049 * and reinit the rings because that context is lost as well.
2050 **/
2051static void iavf_reset_task(struct work_struct *work)
2052{
2053 struct iavf_adapter *adapter = container_of(work,
2054 struct iavf_adapter,
2055 reset_task);
2056 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2057 struct net_device *netdev = adapter->netdev;
2058 struct iavf_hw *hw = &adapter->hw;
2059 struct iavf_mac_filter *f, *ftmp;
2060 struct iavf_vlan_filter *vlf;
2061 struct iavf_cloud_filter *cf;
2062 u32 reg_val;
2063 int i = 0, err;
2064 bool running;
2065
2066 /* When device is being removed it doesn't make sense to run the reset
2067 * task, just return in such a case.
2068 */
2069 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2070 return;
2071
2072 while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2073 &adapter->crit_section))
2074 usleep_range(500, 1000);
2075 if (CLIENT_ENABLED(adapter)) {
2076 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2077 IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2078 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2079 IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2080 cancel_delayed_work_sync(&adapter->client_task);
2081 iavf_notify_client_close(&adapter->vsi, true);
2082 }
2083 iavf_misc_irq_disable(adapter);
2084 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2085 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2086 /* Restart the AQ here. If we have been reset but didn't
2087 * detect it, or if the PF had to reinit, our AQ will be hosed.
2088 */
2089 iavf_shutdown_adminq(hw);
2090 iavf_init_adminq(hw);
2091 iavf_request_reset(adapter);
2092 }
2093 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2094
2095 /* poll until we see the reset actually happen */
2096 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2097 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2098 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2099 if (!reg_val)
2100 break;
2101 usleep_range(5000, 10000);
2102 }
2103 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2104 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2105 goto continue_reset; /* act like the reset happened */
2106 }
2107
2108 /* wait until the reset is complete and the PF is responding to us */
2109 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2110 /* sleep first to make sure a minimum wait time is met */
2111 msleep(IAVF_RESET_WAIT_MS);
2112
2113 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2114 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2115 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2116 break;
2117 }
2118
2119 pci_set_master(adapter->pdev);
2120
2121 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2122 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2123 reg_val);
2124 iavf_disable_vf(adapter);
2125 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2126 return; /* Do not attempt to reinit. It's dead, Jim. */
2127 }
2128
2129continue_reset:
2130 /* We don't use netif_running() because it may be true prior to
2131 * ndo_open() returning, so we can't assume it means all our open
2132 * tasks have finished, since we're not holding the rtnl_lock here.
2133 */
2134 running = ((adapter->state == __IAVF_RUNNING) ||
2135 (adapter->state == __IAVF_RESETTING));
2136
2137 if (running) {
2138 netif_carrier_off(netdev);
2139 netif_tx_stop_all_queues(netdev);
2140 adapter->link_up = false;
2141 iavf_napi_disable_all(adapter);
2142 }
2143 iavf_irq_disable(adapter);
2144
2145 adapter->state = __IAVF_RESETTING;
2146 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2147
2148 /* free the Tx/Rx rings and descriptors, might be better to just
2149 * re-use them sometime in the future
2150 */
2151 iavf_free_all_rx_resources(adapter);
2152 iavf_free_all_tx_resources(adapter);
2153
2154 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2155 /* kill and reinit the admin queue */
2156 iavf_shutdown_adminq(hw);
2157 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2158 err = iavf_init_adminq(hw);
2159 if (err)
2160 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2161 err);
2162 adapter->aq_required = 0;
2163
2164 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2165 err = iavf_reinit_interrupt_scheme(adapter);
2166 if (err)
2167 goto reset_err;
2168 }
2169
2170 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2171 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2172
2173 spin_lock_bh(&adapter->mac_vlan_list_lock);
2174
2175 /* Delete filter for the current MAC address, it could have
2176 * been changed by the PF via administratively set MAC.
2177 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2178 */
2179 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2180 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2181 list_del(&f->list);
2182 kfree(f);
2183 }
2184 }
2185 /* re-add all MAC filters */
2186 list_for_each_entry(f, &adapter->mac_filter_list, list) {
2187 f->add = true;
2188 }
2189 /* re-add all VLAN filters */
2190 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2191 vlf->add = true;
2192 }
2193
2194 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2195
2196 /* check if TCs are running and re-add all cloud filters */
2197 spin_lock_bh(&adapter->cloud_filter_list_lock);
2198 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2199 adapter->num_tc) {
2200 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2201 cf->add = true;
2202 }
2203 }
2204 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2205
2206 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2207 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2208 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2209 iavf_misc_irq_enable(adapter);
2210
2211 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2212
2213 /* We were running when the reset started, so we need to restore some
2214 * state here.
2215 */
2216 if (running) {
2217 /* allocate transmit descriptors */
2218 err = iavf_setup_all_tx_resources(adapter);
2219 if (err)
2220 goto reset_err;
2221
2222 /* allocate receive descriptors */
2223 err = iavf_setup_all_rx_resources(adapter);
2224 if (err)
2225 goto reset_err;
2226
2227 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2228 err = iavf_request_traffic_irqs(adapter, netdev->name);
2229 if (err)
2230 goto reset_err;
2231
2232 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2233 }
2234
2235 iavf_configure(adapter);
2236
2237 iavf_up_complete(adapter);
2238
2239 iavf_irq_enable(adapter, true);
2240 } else {
2241 adapter->state = __IAVF_DOWN;
2242 wake_up(&adapter->down_waitqueue);
2243 }
2244 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2245 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2246
2247 return;
2248reset_err:
2249 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2250 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2251 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2252 iavf_close(netdev);
2253}
2254
2255/**
2256 * iavf_adminq_task - worker thread to clean the admin queue
2257 * @work: pointer to work_struct containing our data
2258 **/
2259static void iavf_adminq_task(struct work_struct *work)
2260{
2261 struct iavf_adapter *adapter =
2262 container_of(work, struct iavf_adapter, adminq_task);
2263 struct iavf_hw *hw = &adapter->hw;
2264 struct iavf_arq_event_info event;
2265 enum virtchnl_ops v_op;
2266 enum iavf_status ret, v_ret;
2267 u32 val, oldval;
2268 u16 pending;
2269
2270 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2271 goto out;
2272
2273 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2274 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2275 if (!event.msg_buf)
2276 goto out;
2277
2278 do {
2279 ret = iavf_clean_arq_element(hw, &event, &pending);
2280 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2281 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2282
2283 if (ret || !v_op)
2284 break; /* No event to process or error cleaning ARQ */
2285
2286 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2287 event.msg_len);
2288 if (pending != 0)
2289 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2290 } while (pending);
2291
2292 if ((adapter->flags &
2293 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2294 adapter->state == __IAVF_RESETTING)
2295 goto freedom;
2296
2297 /* check for error indications */
2298 val = rd32(hw, hw->aq.arq.len);
2299 if (val == 0xdeadbeef) /* indicates device in reset */
2300 goto freedom;
2301 oldval = val;
2302 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2303 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2304 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2305 }
2306 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2307 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2308 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2309 }
2310 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2311 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2312 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2313 }
2314 if (oldval != val)
2315 wr32(hw, hw->aq.arq.len, val);
2316
2317 val = rd32(hw, hw->aq.asq.len);
2318 oldval = val;
2319 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2320 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2321 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2322 }
2323 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2324 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2325 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2326 }
2327 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2328 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2329 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2330 }
2331 if (oldval != val)
2332 wr32(hw, hw->aq.asq.len, val);
2333
2334freedom:
2335 kfree(event.msg_buf);
2336out:
2337 /* re-enable Admin queue interrupt cause */
2338 iavf_misc_irq_enable(adapter);
2339}
2340
2341/**
2342 * iavf_client_task - worker thread to perform client work
2343 * @work: pointer to work_struct containing our data
2344 *
2345 * This task handles client interactions. Because client calls can be
2346 * reentrant, we can't handle them in the watchdog.
2347 **/
2348static void iavf_client_task(struct work_struct *work)
2349{
2350 struct iavf_adapter *adapter =
2351 container_of(work, struct iavf_adapter, client_task.work);
2352
2353 /* If we can't get the client bit, just give up. We'll be rescheduled
2354 * later.
2355 */
2356
2357 if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2358 return;
2359
2360 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2361 iavf_client_subtask(adapter);
2362 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2363 goto out;
2364 }
2365 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2366 iavf_notify_client_l2_params(&adapter->vsi);
2367 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2368 goto out;
2369 }
2370 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2371 iavf_notify_client_close(&adapter->vsi, false);
2372 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2373 goto out;
2374 }
2375 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2376 iavf_notify_client_open(&adapter->vsi);
2377 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2378 }
2379out:
2380 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2381}
2382
2383/**
2384 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2385 * @adapter: board private structure
2386 *
2387 * Free all transmit software resources
2388 **/
2389void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2390{
2391 int i;
2392
2393 if (!adapter->tx_rings)
2394 return;
2395
2396 for (i = 0; i < adapter->num_active_queues; i++)
2397 if (adapter->tx_rings[i].desc)
2398 iavf_free_tx_resources(&adapter->tx_rings[i]);
2399}
2400
2401/**
2402 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2403 * @adapter: board private structure
2404 *
2405 * If this function returns with an error, then it's possible one or
2406 * more of the rings is populated (while the rest are not). It is the
2407 * callers duty to clean those orphaned rings.
2408 *
2409 * Return 0 on success, negative on failure
2410 **/
2411static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2412{
2413 int i, err = 0;
2414
2415 for (i = 0; i < adapter->num_active_queues; i++) {
2416 adapter->tx_rings[i].count = adapter->tx_desc_count;
2417 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2418 if (!err)
2419 continue;
2420 dev_err(&adapter->pdev->dev,
2421 "Allocation for Tx Queue %u failed\n", i);
2422 break;
2423 }
2424
2425 return err;
2426}
2427
2428/**
2429 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2430 * @adapter: board private structure
2431 *
2432 * If this function returns with an error, then it's possible one or
2433 * more of the rings is populated (while the rest are not). It is the
2434 * callers duty to clean those orphaned rings.
2435 *
2436 * Return 0 on success, negative on failure
2437 **/
2438static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2439{
2440 int i, err = 0;
2441
2442 for (i = 0; i < adapter->num_active_queues; i++) {
2443 adapter->rx_rings[i].count = adapter->rx_desc_count;
2444 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2445 if (!err)
2446 continue;
2447 dev_err(&adapter->pdev->dev,
2448 "Allocation for Rx Queue %u failed\n", i);
2449 break;
2450 }
2451 return err;
2452}
2453
2454/**
2455 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2456 * @adapter: board private structure
2457 *
2458 * Free all receive software resources
2459 **/
2460void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2461{
2462 int i;
2463
2464 if (!adapter->rx_rings)
2465 return;
2466
2467 for (i = 0; i < adapter->num_active_queues; i++)
2468 if (adapter->rx_rings[i].desc)
2469 iavf_free_rx_resources(&adapter->rx_rings[i]);
2470}
2471
2472/**
2473 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2474 * @adapter: board private structure
2475 * @max_tx_rate: max Tx bw for a tc
2476 **/
2477static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2478 u64 max_tx_rate)
2479{
2480 int speed = 0, ret = 0;
2481
2482 if (ADV_LINK_SUPPORT(adapter)) {
2483 if (adapter->link_speed_mbps < U32_MAX) {
2484 speed = adapter->link_speed_mbps;
2485 goto validate_bw;
2486 } else {
2487 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2488 return -EINVAL;
2489 }
2490 }
2491
2492 switch (adapter->link_speed) {
2493 case VIRTCHNL_LINK_SPEED_40GB:
2494 speed = SPEED_40000;
2495 break;
2496 case VIRTCHNL_LINK_SPEED_25GB:
2497 speed = SPEED_25000;
2498 break;
2499 case VIRTCHNL_LINK_SPEED_20GB:
2500 speed = SPEED_20000;
2501 break;
2502 case VIRTCHNL_LINK_SPEED_10GB:
2503 speed = SPEED_10000;
2504 break;
2505 case VIRTCHNL_LINK_SPEED_5GB:
2506 speed = SPEED_5000;
2507 break;
2508 case VIRTCHNL_LINK_SPEED_2_5GB:
2509 speed = SPEED_2500;
2510 break;
2511 case VIRTCHNL_LINK_SPEED_1GB:
2512 speed = SPEED_1000;
2513 break;
2514 case VIRTCHNL_LINK_SPEED_100MB:
2515 speed = SPEED_100;
2516 break;
2517 default:
2518 break;
2519 }
2520
2521validate_bw:
2522 if (max_tx_rate > speed) {
2523 dev_err(&adapter->pdev->dev,
2524 "Invalid tx rate specified\n");
2525 ret = -EINVAL;
2526 }
2527
2528 return ret;
2529}
2530
2531/**
2532 * iavf_validate_channel_config - validate queue mapping info
2533 * @adapter: board private structure
2534 * @mqprio_qopt: queue parameters
2535 *
2536 * This function validates if the config provided by the user to
2537 * configure queue channels is valid or not. Returns 0 on a valid
2538 * config.
2539 **/
2540static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2541 struct tc_mqprio_qopt_offload *mqprio_qopt)
2542{
2543 u64 total_max_rate = 0;
2544 int i, num_qps = 0;
2545 u64 tx_rate = 0;
2546 int ret = 0;
2547
2548 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2549 mqprio_qopt->qopt.num_tc < 1)
2550 return -EINVAL;
2551
2552 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2553 if (!mqprio_qopt->qopt.count[i] ||
2554 mqprio_qopt->qopt.offset[i] != num_qps)
2555 return -EINVAL;
2556 if (mqprio_qopt->min_rate[i]) {
2557 dev_err(&adapter->pdev->dev,
2558 "Invalid min tx rate (greater than 0) specified\n");
2559 return -EINVAL;
2560 }
2561 /*convert to Mbps */
2562 tx_rate = div_u64(mqprio_qopt->max_rate[i],
2563 IAVF_MBPS_DIVISOR);
2564 total_max_rate += tx_rate;
2565 num_qps += mqprio_qopt->qopt.count[i];
2566 }
2567 if (num_qps > IAVF_MAX_REQ_QUEUES)
2568 return -EINVAL;
2569
2570 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2571 return ret;
2572}
2573
2574/**
2575 * iavf_del_all_cloud_filters - delete all cloud filters
2576 * on the traffic classes
2577 **/
2578static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2579{
2580 struct iavf_cloud_filter *cf, *cftmp;
2581
2582 spin_lock_bh(&adapter->cloud_filter_list_lock);
2583 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2584 list) {
2585 list_del(&cf->list);
2586 kfree(cf);
2587 adapter->num_cloud_filters--;
2588 }
2589 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2590}
2591
2592/**
2593 * __iavf_setup_tc - configure multiple traffic classes
2594 * @netdev: network interface device structure
2595 * @type_date: tc offload data
2596 *
2597 * This function processes the config information provided by the
2598 * user to configure traffic classes/queue channels and packages the
2599 * information to request the PF to setup traffic classes.
2600 *
2601 * Returns 0 on success.
2602 **/
2603static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2604{
2605 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2606 struct iavf_adapter *adapter = netdev_priv(netdev);
2607 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2608 u8 num_tc = 0, total_qps = 0;
2609 int ret = 0, netdev_tc = 0;
2610 u64 max_tx_rate;
2611 u16 mode;
2612 int i;
2613
2614 num_tc = mqprio_qopt->qopt.num_tc;
2615 mode = mqprio_qopt->mode;
2616
2617 /* delete queue_channel */
2618 if (!mqprio_qopt->qopt.hw) {
2619 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2620 /* reset the tc configuration */
2621 netdev_reset_tc(netdev);
2622 adapter->num_tc = 0;
2623 netif_tx_stop_all_queues(netdev);
2624 netif_tx_disable(netdev);
2625 iavf_del_all_cloud_filters(adapter);
2626 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2627 goto exit;
2628 } else {
2629 return -EINVAL;
2630 }
2631 }
2632
2633 /* add queue channel */
2634 if (mode == TC_MQPRIO_MODE_CHANNEL) {
2635 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2636 dev_err(&adapter->pdev->dev, "ADq not supported\n");
2637 return -EOPNOTSUPP;
2638 }
2639 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2640 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2641 return -EINVAL;
2642 }
2643
2644 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2645 if (ret)
2646 return ret;
2647 /* Return if same TC config is requested */
2648 if (adapter->num_tc == num_tc)
2649 return 0;
2650 adapter->num_tc = num_tc;
2651
2652 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2653 if (i < num_tc) {
2654 adapter->ch_config.ch_info[i].count =
2655 mqprio_qopt->qopt.count[i];
2656 adapter->ch_config.ch_info[i].offset =
2657 mqprio_qopt->qopt.offset[i];
2658 total_qps += mqprio_qopt->qopt.count[i];
2659 max_tx_rate = mqprio_qopt->max_rate[i];
2660 /* convert to Mbps */
2661 max_tx_rate = div_u64(max_tx_rate,
2662 IAVF_MBPS_DIVISOR);
2663 adapter->ch_config.ch_info[i].max_tx_rate =
2664 max_tx_rate;
2665 } else {
2666 adapter->ch_config.ch_info[i].count = 1;
2667 adapter->ch_config.ch_info[i].offset = 0;
2668 }
2669 }
2670 adapter->ch_config.total_qps = total_qps;
2671 netif_tx_stop_all_queues(netdev);
2672 netif_tx_disable(netdev);
2673 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2674 netdev_reset_tc(netdev);
2675 /* Report the tc mapping up the stack */
2676 netdev_set_num_tc(adapter->netdev, num_tc);
2677 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2678 u16 qcount = mqprio_qopt->qopt.count[i];
2679 u16 qoffset = mqprio_qopt->qopt.offset[i];
2680
2681 if (i < num_tc)
2682 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2683 qoffset);
2684 }
2685 }
2686exit:
2687 return ret;
2688}
2689
2690/**
2691 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2692 * @adapter: board private structure
2693 * @cls_flower: pointer to struct flow_cls_offload
2694 * @filter: pointer to cloud filter structure
2695 */
2696static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2697 struct flow_cls_offload *f,
2698 struct iavf_cloud_filter *filter)
2699{
2700 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2701 struct flow_dissector *dissector = rule->match.dissector;
2702 u16 n_proto_mask = 0;
2703 u16 n_proto_key = 0;
2704 u8 field_flags = 0;
2705 u16 addr_type = 0;
2706 u16 n_proto = 0;
2707 int i = 0;
2708 struct virtchnl_filter *vf = &filter->f;
2709
2710 if (dissector->used_keys &
2711 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2712 BIT(FLOW_DISSECTOR_KEY_BASIC) |
2713 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2714 BIT(FLOW_DISSECTOR_KEY_VLAN) |
2715 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2716 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2717 BIT(FLOW_DISSECTOR_KEY_PORTS) |
2718 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2719 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2720 dissector->used_keys);
2721 return -EOPNOTSUPP;
2722 }
2723
2724 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2725 struct flow_match_enc_keyid match;
2726
2727 flow_rule_match_enc_keyid(rule, &match);
2728 if (match.mask->keyid != 0)
2729 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2730 }
2731
2732 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2733 struct flow_match_basic match;
2734
2735 flow_rule_match_basic(rule, &match);
2736 n_proto_key = ntohs(match.key->n_proto);
2737 n_proto_mask = ntohs(match.mask->n_proto);
2738
2739 if (n_proto_key == ETH_P_ALL) {
2740 n_proto_key = 0;
2741 n_proto_mask = 0;
2742 }
2743 n_proto = n_proto_key & n_proto_mask;
2744 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2745 return -EINVAL;
2746 if (n_proto == ETH_P_IPV6) {
2747 /* specify flow type as TCP IPv6 */
2748 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2749 }
2750
2751 if (match.key->ip_proto != IPPROTO_TCP) {
2752 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2753 return -EINVAL;
2754 }
2755 }
2756
2757 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2758 struct flow_match_eth_addrs match;
2759
2760 flow_rule_match_eth_addrs(rule, &match);
2761
2762 /* use is_broadcast and is_zero to check for all 0xf or 0 */
2763 if (!is_zero_ether_addr(match.mask->dst)) {
2764 if (is_broadcast_ether_addr(match.mask->dst)) {
2765 field_flags |= IAVF_CLOUD_FIELD_OMAC;
2766 } else {
2767 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2768 match.mask->dst);
2769 return IAVF_ERR_CONFIG;
2770 }
2771 }
2772
2773 if (!is_zero_ether_addr(match.mask->src)) {
2774 if (is_broadcast_ether_addr(match.mask->src)) {
2775 field_flags |= IAVF_CLOUD_FIELD_IMAC;
2776 } else {
2777 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2778 match.mask->src);
2779 return IAVF_ERR_CONFIG;
2780 }
2781 }
2782
2783 if (!is_zero_ether_addr(match.key->dst))
2784 if (is_valid_ether_addr(match.key->dst) ||
2785 is_multicast_ether_addr(match.key->dst)) {
2786 /* set the mask if a valid dst_mac address */
2787 for (i = 0; i < ETH_ALEN; i++)
2788 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2789 ether_addr_copy(vf->data.tcp_spec.dst_mac,
2790 match.key->dst);
2791 }
2792
2793 if (!is_zero_ether_addr(match.key->src))
2794 if (is_valid_ether_addr(match.key->src) ||
2795 is_multicast_ether_addr(match.key->src)) {
2796 /* set the mask if a valid dst_mac address */
2797 for (i = 0; i < ETH_ALEN; i++)
2798 vf->mask.tcp_spec.src_mac[i] |= 0xff;
2799 ether_addr_copy(vf->data.tcp_spec.src_mac,
2800 match.key->src);
2801 }
2802 }
2803
2804 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2805 struct flow_match_vlan match;
2806
2807 flow_rule_match_vlan(rule, &match);
2808 if (match.mask->vlan_id) {
2809 if (match.mask->vlan_id == VLAN_VID_MASK) {
2810 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2811 } else {
2812 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2813 match.mask->vlan_id);
2814 return IAVF_ERR_CONFIG;
2815 }
2816 }
2817 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2818 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2819 }
2820
2821 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2822 struct flow_match_control match;
2823
2824 flow_rule_match_control(rule, &match);
2825 addr_type = match.key->addr_type;
2826 }
2827
2828 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2829 struct flow_match_ipv4_addrs match;
2830
2831 flow_rule_match_ipv4_addrs(rule, &match);
2832 if (match.mask->dst) {
2833 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2834 field_flags |= IAVF_CLOUD_FIELD_IIP;
2835 } else {
2836 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2837 be32_to_cpu(match.mask->dst));
2838 return IAVF_ERR_CONFIG;
2839 }
2840 }
2841
2842 if (match.mask->src) {
2843 if (match.mask->src == cpu_to_be32(0xffffffff)) {
2844 field_flags |= IAVF_CLOUD_FIELD_IIP;
2845 } else {
2846 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2847 be32_to_cpu(match.mask->dst));
2848 return IAVF_ERR_CONFIG;
2849 }
2850 }
2851
2852 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2853 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2854 return IAVF_ERR_CONFIG;
2855 }
2856 if (match.key->dst) {
2857 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2858 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2859 }
2860 if (match.key->src) {
2861 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2862 vf->data.tcp_spec.src_ip[0] = match.key->src;
2863 }
2864 }
2865
2866 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2867 struct flow_match_ipv6_addrs match;
2868
2869 flow_rule_match_ipv6_addrs(rule, &match);
2870
2871 /* validate mask, make sure it is not IPV6_ADDR_ANY */
2872 if (ipv6_addr_any(&match.mask->dst)) {
2873 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2874 IPV6_ADDR_ANY);
2875 return IAVF_ERR_CONFIG;
2876 }
2877
2878 /* src and dest IPv6 address should not be LOOPBACK
2879 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2880 */
2881 if (ipv6_addr_loopback(&match.key->dst) ||
2882 ipv6_addr_loopback(&match.key->src)) {
2883 dev_err(&adapter->pdev->dev,
2884 "ipv6 addr should not be loopback\n");
2885 return IAVF_ERR_CONFIG;
2886 }
2887 if (!ipv6_addr_any(&match.mask->dst) ||
2888 !ipv6_addr_any(&match.mask->src))
2889 field_flags |= IAVF_CLOUD_FIELD_IIP;
2890
2891 for (i = 0; i < 4; i++)
2892 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2893 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2894 sizeof(vf->data.tcp_spec.dst_ip));
2895 for (i = 0; i < 4; i++)
2896 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2897 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2898 sizeof(vf->data.tcp_spec.src_ip));
2899 }
2900 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2901 struct flow_match_ports match;
2902
2903 flow_rule_match_ports(rule, &match);
2904 if (match.mask->src) {
2905 if (match.mask->src == cpu_to_be16(0xffff)) {
2906 field_flags |= IAVF_CLOUD_FIELD_IIP;
2907 } else {
2908 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2909 be16_to_cpu(match.mask->src));
2910 return IAVF_ERR_CONFIG;
2911 }
2912 }
2913
2914 if (match.mask->dst) {
2915 if (match.mask->dst == cpu_to_be16(0xffff)) {
2916 field_flags |= IAVF_CLOUD_FIELD_IIP;
2917 } else {
2918 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2919 be16_to_cpu(match.mask->dst));
2920 return IAVF_ERR_CONFIG;
2921 }
2922 }
2923 if (match.key->dst) {
2924 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2925 vf->data.tcp_spec.dst_port = match.key->dst;
2926 }
2927
2928 if (match.key->src) {
2929 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2930 vf->data.tcp_spec.src_port = match.key->src;
2931 }
2932 }
2933 vf->field_flags = field_flags;
2934
2935 return 0;
2936}
2937
2938/**
2939 * iavf_handle_tclass - Forward to a traffic class on the device
2940 * @adapter: board private structure
2941 * @tc: traffic class index on the device
2942 * @filter: pointer to cloud filter structure
2943 */
2944static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2945 struct iavf_cloud_filter *filter)
2946{
2947 if (tc == 0)
2948 return 0;
2949 if (tc < adapter->num_tc) {
2950 if (!filter->f.data.tcp_spec.dst_port) {
2951 dev_err(&adapter->pdev->dev,
2952 "Specify destination port to redirect to traffic class other than TC0\n");
2953 return -EINVAL;
2954 }
2955 }
2956 /* redirect to a traffic class on the same device */
2957 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2958 filter->f.action_meta = tc;
2959 return 0;
2960}
2961
2962/**
2963 * iavf_configure_clsflower - Add tc flower filters
2964 * @adapter: board private structure
2965 * @cls_flower: Pointer to struct flow_cls_offload
2966 */
2967static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2968 struct flow_cls_offload *cls_flower)
2969{
2970 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2971 struct iavf_cloud_filter *filter = NULL;
2972 int err = -EINVAL, count = 50;
2973
2974 if (tc < 0) {
2975 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2976 return -EINVAL;
2977 }
2978
2979 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2980 if (!filter)
2981 return -ENOMEM;
2982
2983 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2984 &adapter->crit_section)) {
2985 if (--count == 0)
2986 goto err;
2987 udelay(1);
2988 }
2989
2990 filter->cookie = cls_flower->cookie;
2991
2992 /* set the mask to all zeroes to begin with */
2993 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2994 /* start out with flow type and eth type IPv4 to begin with */
2995 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2996 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2997 if (err < 0)
2998 goto err;
2999
3000 err = iavf_handle_tclass(adapter, tc, filter);
3001 if (err < 0)
3002 goto err;
3003
3004 /* add filter to the list */
3005 spin_lock_bh(&adapter->cloud_filter_list_lock);
3006 list_add_tail(&filter->list, &adapter->cloud_filter_list);
3007 adapter->num_cloud_filters++;
3008 filter->add = true;
3009 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3010 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3011err:
3012 if (err)
3013 kfree(filter);
3014
3015 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3016 return err;
3017}
3018
3019/* iavf_find_cf - Find the cloud filter in the list
3020 * @adapter: Board private structure
3021 * @cookie: filter specific cookie
3022 *
3023 * Returns ptr to the filter object or NULL. Must be called while holding the
3024 * cloud_filter_list_lock.
3025 */
3026static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3027 unsigned long *cookie)
3028{
3029 struct iavf_cloud_filter *filter = NULL;
3030
3031 if (!cookie)
3032 return NULL;
3033
3034 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3035 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3036 return filter;
3037 }
3038 return NULL;
3039}
3040
3041/**
3042 * iavf_delete_clsflower - Remove tc flower filters
3043 * @adapter: board private structure
3044 * @cls_flower: Pointer to struct flow_cls_offload
3045 */
3046static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3047 struct flow_cls_offload *cls_flower)
3048{
3049 struct iavf_cloud_filter *filter = NULL;
3050 int err = 0;
3051
3052 spin_lock_bh(&adapter->cloud_filter_list_lock);
3053 filter = iavf_find_cf(adapter, &cls_flower->cookie);
3054 if (filter) {
3055 filter->del = true;
3056 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3057 } else {
3058 err = -EINVAL;
3059 }
3060 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3061
3062 return err;
3063}
3064
3065/**
3066 * iavf_setup_tc_cls_flower - flower classifier offloads
3067 * @netdev: net device to configure
3068 * @type_data: offload data
3069 */
3070static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3071 struct flow_cls_offload *cls_flower)
3072{
3073 switch (cls_flower->command) {
3074 case FLOW_CLS_REPLACE:
3075 return iavf_configure_clsflower(adapter, cls_flower);
3076 case FLOW_CLS_DESTROY:
3077 return iavf_delete_clsflower(adapter, cls_flower);
3078 case FLOW_CLS_STATS:
3079 return -EOPNOTSUPP;
3080 default:
3081 return -EOPNOTSUPP;
3082 }
3083}
3084
3085/**
3086 * iavf_setup_tc_block_cb - block callback for tc
3087 * @type: type of offload
3088 * @type_data: offload data
3089 * @cb_priv:
3090 *
3091 * This function is the block callback for traffic classes
3092 **/
3093static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3094 void *cb_priv)
3095{
3096 struct iavf_adapter *adapter = cb_priv;
3097
3098 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3099 return -EOPNOTSUPP;
3100
3101 switch (type) {
3102 case TC_SETUP_CLSFLOWER:
3103 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3104 default:
3105 return -EOPNOTSUPP;
3106 }
3107}
3108
3109static LIST_HEAD(iavf_block_cb_list);
3110
3111/**
3112 * iavf_setup_tc - configure multiple traffic classes
3113 * @netdev: network interface device structure
3114 * @type: type of offload
3115 * @type_date: tc offload data
3116 *
3117 * This function is the callback to ndo_setup_tc in the
3118 * netdev_ops.
3119 *
3120 * Returns 0 on success
3121 **/
3122static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3123 void *type_data)
3124{
3125 struct iavf_adapter *adapter = netdev_priv(netdev);
3126
3127 switch (type) {
3128 case TC_SETUP_QDISC_MQPRIO:
3129 return __iavf_setup_tc(netdev, type_data);
3130 case TC_SETUP_BLOCK:
3131 return flow_block_cb_setup_simple(type_data,
3132 &iavf_block_cb_list,
3133 iavf_setup_tc_block_cb,
3134 adapter, adapter, true);
3135 default:
3136 return -EOPNOTSUPP;
3137 }
3138}
3139
3140/**
3141 * iavf_open - Called when a network interface is made active
3142 * @netdev: network interface device structure
3143 *
3144 * Returns 0 on success, negative value on failure
3145 *
3146 * The open entry point is called when a network interface is made
3147 * active by the system (IFF_UP). At this point all resources needed
3148 * for transmit and receive operations are allocated, the interrupt
3149 * handler is registered with the OS, the watchdog is started,
3150 * and the stack is notified that the interface is ready.
3151 **/
3152static int iavf_open(struct net_device *netdev)
3153{
3154 struct iavf_adapter *adapter = netdev_priv(netdev);
3155 int err;
3156
3157 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3158 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3159 return -EIO;
3160 }
3161
3162 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3163 &adapter->crit_section))
3164 usleep_range(500, 1000);
3165
3166 if (adapter->state != __IAVF_DOWN) {
3167 err = -EBUSY;
3168 goto err_unlock;
3169 }
3170
3171 /* allocate transmit descriptors */
3172 err = iavf_setup_all_tx_resources(adapter);
3173 if (err)
3174 goto err_setup_tx;
3175
3176 /* allocate receive descriptors */
3177 err = iavf_setup_all_rx_resources(adapter);
3178 if (err)
3179 goto err_setup_rx;
3180
3181 /* clear any pending interrupts, may auto mask */
3182 err = iavf_request_traffic_irqs(adapter, netdev->name);
3183 if (err)
3184 goto err_req_irq;
3185
3186 spin_lock_bh(&adapter->mac_vlan_list_lock);
3187
3188 iavf_add_filter(adapter, adapter->hw.mac.addr);
3189
3190 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3191
3192 iavf_configure(adapter);
3193
3194 iavf_up_complete(adapter);
3195
3196 iavf_irq_enable(adapter, true);
3197
3198 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3199
3200 return 0;
3201
3202err_req_irq:
3203 iavf_down(adapter);
3204 iavf_free_traffic_irqs(adapter);
3205err_setup_rx:
3206 iavf_free_all_rx_resources(adapter);
3207err_setup_tx:
3208 iavf_free_all_tx_resources(adapter);
3209err_unlock:
3210 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3211
3212 return err;
3213}
3214
3215/**
3216 * iavf_close - Disables a network interface
3217 * @netdev: network interface device structure
3218 *
3219 * Returns 0, this is not allowed to fail
3220 *
3221 * The close entry point is called when an interface is de-activated
3222 * by the OS. The hardware is still under the drivers control, but
3223 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3224 * are freed, along with all transmit and receive resources.
3225 **/
3226static int iavf_close(struct net_device *netdev)
3227{
3228 struct iavf_adapter *adapter = netdev_priv(netdev);
3229 int status;
3230
3231 if (adapter->state <= __IAVF_DOWN_PENDING)
3232 return 0;
3233
3234 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3235 &adapter->crit_section))
3236 usleep_range(500, 1000);
3237
3238 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3239 if (CLIENT_ENABLED(adapter))
3240 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3241
3242 iavf_down(adapter);
3243 adapter->state = __IAVF_DOWN_PENDING;
3244 iavf_free_traffic_irqs(adapter);
3245
3246 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3247
3248 /* We explicitly don't free resources here because the hardware is
3249 * still active and can DMA into memory. Resources are cleared in
3250 * iavf_virtchnl_completion() after we get confirmation from the PF
3251 * driver that the rings have been stopped.
3252 *
3253 * Also, we wait for state to transition to __IAVF_DOWN before
3254 * returning. State change occurs in iavf_virtchnl_completion() after
3255 * VF resources are released (which occurs after PF driver processes and
3256 * responds to admin queue commands).
3257 */
3258
3259 status = wait_event_timeout(adapter->down_waitqueue,
3260 adapter->state == __IAVF_DOWN,
3261 msecs_to_jiffies(500));
3262 if (!status)
3263 netdev_warn(netdev, "Device resources not yet released\n");
3264 return 0;
3265}
3266
3267/**
3268 * iavf_change_mtu - Change the Maximum Transfer Unit
3269 * @netdev: network interface device structure
3270 * @new_mtu: new value for maximum frame size
3271 *
3272 * Returns 0 on success, negative on failure
3273 **/
3274static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3275{
3276 struct iavf_adapter *adapter = netdev_priv(netdev);
3277
3278 netdev->mtu = new_mtu;
3279 if (CLIENT_ENABLED(adapter)) {
3280 iavf_notify_client_l2_params(&adapter->vsi);
3281 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3282 }
3283 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3284 queue_work(iavf_wq, &adapter->reset_task);
3285
3286 return 0;
3287}
3288
3289/**
3290 * iavf_set_features - set the netdev feature flags
3291 * @netdev: ptr to the netdev being adjusted
3292 * @features: the feature set that the stack is suggesting
3293 * Note: expects to be called while under rtnl_lock()
3294 **/
3295static int iavf_set_features(struct net_device *netdev,
3296 netdev_features_t features)
3297{
3298 struct iavf_adapter *adapter = netdev_priv(netdev);
3299
3300 /* Don't allow changing VLAN_RX flag when adapter is not capable
3301 * of VLAN offload
3302 */
3303 if (!VLAN_ALLOWED(adapter)) {
3304 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3305 return -EINVAL;
3306 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3307 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3308 adapter->aq_required |=
3309 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3310 else
3311 adapter->aq_required |=
3312 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3313 }
3314
3315 return 0;
3316}
3317
3318/**
3319 * iavf_features_check - Validate encapsulated packet conforms to limits
3320 * @skb: skb buff
3321 * @dev: This physical port's netdev
3322 * @features: Offload features that the stack believes apply
3323 **/
3324static netdev_features_t iavf_features_check(struct sk_buff *skb,
3325 struct net_device *dev,
3326 netdev_features_t features)
3327{
3328 size_t len;
3329
3330 /* No point in doing any of this if neither checksum nor GSO are
3331 * being requested for this frame. We can rule out both by just
3332 * checking for CHECKSUM_PARTIAL
3333 */
3334 if (skb->ip_summed != CHECKSUM_PARTIAL)
3335 return features;
3336
3337 /* We cannot support GSO if the MSS is going to be less than
3338 * 64 bytes. If it is then we need to drop support for GSO.
3339 */
3340 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3341 features &= ~NETIF_F_GSO_MASK;
3342
3343 /* MACLEN can support at most 63 words */
3344 len = skb_network_header(skb) - skb->data;
3345 if (len & ~(63 * 2))
3346 goto out_err;
3347
3348 /* IPLEN and EIPLEN can support at most 127 dwords */
3349 len = skb_transport_header(skb) - skb_network_header(skb);
3350 if (len & ~(127 * 4))
3351 goto out_err;
3352
3353 if (skb->encapsulation) {
3354 /* L4TUNLEN can support 127 words */
3355 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3356 if (len & ~(127 * 2))
3357 goto out_err;
3358
3359 /* IPLEN can support at most 127 dwords */
3360 len = skb_inner_transport_header(skb) -
3361 skb_inner_network_header(skb);
3362 if (len & ~(127 * 4))
3363 goto out_err;
3364 }
3365
3366 /* No need to validate L4LEN as TCP is the only protocol with a
3367 * a flexible value and we support all possible values supported
3368 * by TCP, which is at most 15 dwords
3369 */
3370
3371 return features;
3372out_err:
3373 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3374}
3375
3376/**
3377 * iavf_fix_features - fix up the netdev feature bits
3378 * @netdev: our net device
3379 * @features: desired feature bits
3380 *
3381 * Returns fixed-up features bits
3382 **/
3383static netdev_features_t iavf_fix_features(struct net_device *netdev,
3384 netdev_features_t features)
3385{
3386 struct iavf_adapter *adapter = netdev_priv(netdev);
3387
3388 if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3389 features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3390 NETIF_F_HW_VLAN_CTAG_RX |
3391 NETIF_F_HW_VLAN_CTAG_FILTER);
3392
3393 return features;
3394}
3395
3396static const struct net_device_ops iavf_netdev_ops = {
3397 .ndo_open = iavf_open,
3398 .ndo_stop = iavf_close,
3399 .ndo_start_xmit = iavf_xmit_frame,
3400 .ndo_set_rx_mode = iavf_set_rx_mode,
3401 .ndo_validate_addr = eth_validate_addr,
3402 .ndo_set_mac_address = iavf_set_mac,
3403 .ndo_change_mtu = iavf_change_mtu,
3404 .ndo_tx_timeout = iavf_tx_timeout,
3405 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
3406 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
3407 .ndo_features_check = iavf_features_check,
3408 .ndo_fix_features = iavf_fix_features,
3409 .ndo_set_features = iavf_set_features,
3410 .ndo_setup_tc = iavf_setup_tc,
3411};
3412
3413/**
3414 * iavf_check_reset_complete - check that VF reset is complete
3415 * @hw: pointer to hw struct
3416 *
3417 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3418 **/
3419static int iavf_check_reset_complete(struct iavf_hw *hw)
3420{
3421 u32 rstat;
3422 int i;
3423
3424 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3425 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3426 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3427 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3428 (rstat == VIRTCHNL_VFR_COMPLETED))
3429 return 0;
3430 usleep_range(10, 20);
3431 }
3432 return -EBUSY;
3433}
3434
3435/**
3436 * iavf_process_config - Process the config information we got from the PF
3437 * @adapter: board private structure
3438 *
3439 * Verify that we have a valid config struct, and set up our netdev features
3440 * and our VSI struct.
3441 **/
3442int iavf_process_config(struct iavf_adapter *adapter)
3443{
3444 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3445 int i, num_req_queues = adapter->num_req_queues;
3446 struct net_device *netdev = adapter->netdev;
3447 struct iavf_vsi *vsi = &adapter->vsi;
3448 netdev_features_t hw_enc_features;
3449 netdev_features_t hw_features;
3450
3451 /* got VF config message back from PF, now we can parse it */
3452 for (i = 0; i < vfres->num_vsis; i++) {
3453 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3454 adapter->vsi_res = &vfres->vsi_res[i];
3455 }
3456 if (!adapter->vsi_res) {
3457 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3458 return -ENODEV;
3459 }
3460
3461 if (num_req_queues &&
3462 num_req_queues > adapter->vsi_res->num_queue_pairs) {
3463 /* Problem. The PF gave us fewer queues than what we had
3464 * negotiated in our request. Need a reset to see if we can't
3465 * get back to a working state.
3466 */
3467 dev_err(&adapter->pdev->dev,
3468 "Requested %d queues, but PF only gave us %d.\n",
3469 num_req_queues,
3470 adapter->vsi_res->num_queue_pairs);
3471 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3472 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3473 iavf_schedule_reset(adapter);
3474 return -ENODEV;
3475 }
3476 adapter->num_req_queues = 0;
3477
3478 hw_enc_features = NETIF_F_SG |
3479 NETIF_F_IP_CSUM |
3480 NETIF_F_IPV6_CSUM |
3481 NETIF_F_HIGHDMA |
3482 NETIF_F_SOFT_FEATURES |
3483 NETIF_F_TSO |
3484 NETIF_F_TSO_ECN |
3485 NETIF_F_TSO6 |
3486 NETIF_F_SCTP_CRC |
3487 NETIF_F_RXHASH |
3488 NETIF_F_RXCSUM |
3489 0;
3490
3491 /* advertise to stack only if offloads for encapsulated packets is
3492 * supported
3493 */
3494 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3495 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
3496 NETIF_F_GSO_GRE |
3497 NETIF_F_GSO_GRE_CSUM |
3498 NETIF_F_GSO_IPXIP4 |
3499 NETIF_F_GSO_IPXIP6 |
3500 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3501 NETIF_F_GSO_PARTIAL |
3502 0;
3503
3504 if (!(vfres->vf_cap_flags &
3505 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3506 netdev->gso_partial_features |=
3507 NETIF_F_GSO_UDP_TUNNEL_CSUM;
3508
3509 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3510 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3511 netdev->hw_enc_features |= hw_enc_features;
3512 }
3513 /* record features VLANs can make use of */
3514 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3515
3516 /* Write features and hw_features separately to avoid polluting
3517 * with, or dropping, features that are set when we registered.
3518 */
3519 hw_features = hw_enc_features;
3520
3521 /* Enable VLAN features if supported */
3522 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3523 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3524 NETIF_F_HW_VLAN_CTAG_RX);
3525 /* Enable cloud filter if ADQ is supported */
3526 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3527 hw_features |= NETIF_F_HW_TC;
3528
3529 netdev->hw_features |= hw_features;
3530
3531 netdev->features |= hw_features;
3532
3533 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3534 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3535
3536 netdev->priv_flags |= IFF_UNICAST_FLT;
3537
3538 /* Do not turn on offloads when they are requested to be turned off.
3539 * TSO needs minimum 576 bytes to work correctly.
3540 */
3541 if (netdev->wanted_features) {
3542 if (!(netdev->wanted_features & NETIF_F_TSO) ||
3543 netdev->mtu < 576)
3544 netdev->features &= ~NETIF_F_TSO;
3545 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3546 netdev->mtu < 576)
3547 netdev->features &= ~NETIF_F_TSO6;
3548 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3549 netdev->features &= ~NETIF_F_TSO_ECN;
3550 if (!(netdev->wanted_features & NETIF_F_GRO))
3551 netdev->features &= ~NETIF_F_GRO;
3552 if (!(netdev->wanted_features & NETIF_F_GSO))
3553 netdev->features &= ~NETIF_F_GSO;
3554 }
3555
3556 adapter->vsi.id = adapter->vsi_res->vsi_id;
3557
3558 adapter->vsi.back = adapter;
3559 adapter->vsi.base_vector = 1;
3560 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3561 vsi->netdev = adapter->netdev;
3562 vsi->qs_handle = adapter->vsi_res->qset_handle;
3563 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3564 adapter->rss_key_size = vfres->rss_key_size;
3565 adapter->rss_lut_size = vfres->rss_lut_size;
3566 } else {
3567 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3568 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3569 }
3570
3571 return 0;
3572}
3573
3574/**
3575 * iavf_init_task - worker thread to perform delayed initialization
3576 * @work: pointer to work_struct containing our data
3577 *
3578 * This task completes the work that was begun in probe. Due to the nature
3579 * of VF-PF communications, we may need to wait tens of milliseconds to get
3580 * responses back from the PF. Rather than busy-wait in probe and bog down the
3581 * whole system, we'll do it in a task so we can sleep.
3582 * This task only runs during driver init. Once we've established
3583 * communications with the PF driver and set up our netdev, the watchdog
3584 * takes over.
3585 **/
3586static void iavf_init_task(struct work_struct *work)
3587{
3588 struct iavf_adapter *adapter = container_of(work,
3589 struct iavf_adapter,
3590 init_task.work);
3591 struct iavf_hw *hw = &adapter->hw;
3592
3593 switch (adapter->state) {
3594 case __IAVF_STARTUP:
3595 if (iavf_startup(adapter) < 0)
3596 goto init_failed;
3597 break;
3598 case __IAVF_INIT_VERSION_CHECK:
3599 if (iavf_init_version_check(adapter) < 0)
3600 goto init_failed;
3601 break;
3602 case __IAVF_INIT_GET_RESOURCES:
3603 if (iavf_init_get_resources(adapter) < 0)
3604 goto init_failed;
3605 return;
3606 default:
3607 goto init_failed;
3608 }
3609
3610 queue_delayed_work(iavf_wq, &adapter->init_task,
3611 msecs_to_jiffies(30));
3612 return;
3613init_failed:
3614 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3615 dev_err(&adapter->pdev->dev,
3616 "Failed to communicate with PF; waiting before retry\n");
3617 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3618 iavf_shutdown_adminq(hw);
3619 adapter->state = __IAVF_STARTUP;
3620 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3621 return;
3622 }
3623 queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3624}
3625
3626/**
3627 * iavf_shutdown - Shutdown the device in preparation for a reboot
3628 * @pdev: pci device structure
3629 **/
3630static void iavf_shutdown(struct pci_dev *pdev)
3631{
3632 struct net_device *netdev = pci_get_drvdata(pdev);
3633 struct iavf_adapter *adapter = netdev_priv(netdev);
3634
3635 netif_device_detach(netdev);
3636
3637 if (netif_running(netdev))
3638 iavf_close(netdev);
3639
3640 /* Prevent the watchdog from running. */
3641 adapter->state = __IAVF_REMOVE;
3642 adapter->aq_required = 0;
3643
3644#ifdef CONFIG_PM
3645 pci_save_state(pdev);
3646
3647#endif
3648 pci_disable_device(pdev);
3649}
3650
3651/**
3652 * iavf_probe - Device Initialization Routine
3653 * @pdev: PCI device information struct
3654 * @ent: entry in iavf_pci_tbl
3655 *
3656 * Returns 0 on success, negative on failure
3657 *
3658 * iavf_probe initializes an adapter identified by a pci_dev structure.
3659 * The OS initialization, configuring of the adapter private structure,
3660 * and a hardware reset occur.
3661 **/
3662static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3663{
3664 struct net_device *netdev;
3665 struct iavf_adapter *adapter = NULL;
3666 struct iavf_hw *hw = NULL;
3667 int err;
3668
3669 err = pci_enable_device(pdev);
3670 if (err)
3671 return err;
3672
3673 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3674 if (err) {
3675 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3676 if (err) {
3677 dev_err(&pdev->dev,
3678 "DMA configuration failed: 0x%x\n", err);
3679 goto err_dma;
3680 }
3681 }
3682
3683 err = pci_request_regions(pdev, iavf_driver_name);
3684 if (err) {
3685 dev_err(&pdev->dev,
3686 "pci_request_regions failed 0x%x\n", err);
3687 goto err_pci_reg;
3688 }
3689
3690 pci_enable_pcie_error_reporting(pdev);
3691
3692 pci_set_master(pdev);
3693
3694 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3695 IAVF_MAX_REQ_QUEUES);
3696 if (!netdev) {
3697 err = -ENOMEM;
3698 goto err_alloc_etherdev;
3699 }
3700
3701 SET_NETDEV_DEV(netdev, &pdev->dev);
3702
3703 pci_set_drvdata(pdev, netdev);
3704 adapter = netdev_priv(netdev);
3705
3706 adapter->netdev = netdev;
3707 adapter->pdev = pdev;
3708
3709 hw = &adapter->hw;
3710 hw->back = adapter;
3711
3712 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3713 adapter->state = __IAVF_STARTUP;
3714
3715 /* Call save state here because it relies on the adapter struct. */
3716 pci_save_state(pdev);
3717
3718 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3719 pci_resource_len(pdev, 0));
3720 if (!hw->hw_addr) {
3721 err = -EIO;
3722 goto err_ioremap;
3723 }
3724 hw->vendor_id = pdev->vendor;
3725 hw->device_id = pdev->device;
3726 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3727 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3728 hw->subsystem_device_id = pdev->subsystem_device;
3729 hw->bus.device = PCI_SLOT(pdev->devfn);
3730 hw->bus.func = PCI_FUNC(pdev->devfn);
3731 hw->bus.bus_id = pdev->bus->number;
3732
3733 /* set up the locks for the AQ, do this only once in probe
3734 * and destroy them only once in remove
3735 */
3736 mutex_init(&hw->aq.asq_mutex);
3737 mutex_init(&hw->aq.arq_mutex);
3738
3739 spin_lock_init(&adapter->mac_vlan_list_lock);
3740 spin_lock_init(&adapter->cloud_filter_list_lock);
3741
3742 INIT_LIST_HEAD(&adapter->mac_filter_list);
3743 INIT_LIST_HEAD(&adapter->vlan_filter_list);
3744 INIT_LIST_HEAD(&adapter->cloud_filter_list);
3745
3746 INIT_WORK(&adapter->reset_task, iavf_reset_task);
3747 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3748 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3749 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3750 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3751 queue_delayed_work(iavf_wq, &adapter->init_task,
3752 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3753
3754 /* Setup the wait queue for indicating transition to down status */
3755 init_waitqueue_head(&adapter->down_waitqueue);
3756
3757 return 0;
3758
3759err_ioremap:
3760 free_netdev(netdev);
3761err_alloc_etherdev:
3762 pci_release_regions(pdev);
3763err_pci_reg:
3764err_dma:
3765 pci_disable_device(pdev);
3766 return err;
3767}
3768
3769/**
3770 * iavf_suspend - Power management suspend routine
3771 * @pdev: PCI device information struct
3772 * @state: unused
3773 *
3774 * Called when the system (VM) is entering sleep/suspend.
3775 **/
3776static int __maybe_unused iavf_suspend(struct device *dev_d)
3777{
3778 struct net_device *netdev = dev_get_drvdata(dev_d);
3779 struct iavf_adapter *adapter = netdev_priv(netdev);
3780
3781 netif_device_detach(netdev);
3782
3783 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3784 &adapter->crit_section))
3785 usleep_range(500, 1000);
3786
3787 if (netif_running(netdev)) {
3788 rtnl_lock();
3789 iavf_down(adapter);
3790 rtnl_unlock();
3791 }
3792 iavf_free_misc_irq(adapter);
3793 iavf_reset_interrupt_capability(adapter);
3794
3795 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3796
3797 return 0;
3798}
3799
3800/**
3801 * iavf_resume - Power management resume routine
3802 * @pdev: PCI device information struct
3803 *
3804 * Called when the system (VM) is resumed from sleep/suspend.
3805 **/
3806static int __maybe_unused iavf_resume(struct device *dev_d)
3807{
3808 struct pci_dev *pdev = to_pci_dev(dev_d);
3809 struct net_device *netdev = pci_get_drvdata(pdev);
3810 struct iavf_adapter *adapter = netdev_priv(netdev);
3811 u32 err;
3812
3813 pci_set_master(pdev);
3814
3815 rtnl_lock();
3816 err = iavf_set_interrupt_capability(adapter);
3817 if (err) {
3818 rtnl_unlock();
3819 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3820 return err;
3821 }
3822 err = iavf_request_misc_irq(adapter);
3823 rtnl_unlock();
3824 if (err) {
3825 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3826 return err;
3827 }
3828
3829 queue_work(iavf_wq, &adapter->reset_task);
3830
3831 netif_device_attach(netdev);
3832
3833 return err;
3834}
3835
3836/**
3837 * iavf_remove - Device Removal Routine
3838 * @pdev: PCI device information struct
3839 *
3840 * iavf_remove is called by the PCI subsystem to alert the driver
3841 * that it should release a PCI device. The could be caused by a
3842 * Hot-Plug event, or because the driver is going to be removed from
3843 * memory.
3844 **/
3845static void iavf_remove(struct pci_dev *pdev)
3846{
3847 struct net_device *netdev = pci_get_drvdata(pdev);
3848 struct iavf_adapter *adapter = netdev_priv(netdev);
3849 struct iavf_vlan_filter *vlf, *vlftmp;
3850 struct iavf_mac_filter *f, *ftmp;
3851 struct iavf_cloud_filter *cf, *cftmp;
3852 struct iavf_hw *hw = &adapter->hw;
3853 int err;
3854 /* Indicate we are in remove and not to run reset_task */
3855 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3856 cancel_delayed_work_sync(&adapter->init_task);
3857 cancel_work_sync(&adapter->reset_task);
3858 cancel_delayed_work_sync(&adapter->client_task);
3859 if (adapter->netdev_registered) {
3860 unregister_netdev(netdev);
3861 adapter->netdev_registered = false;
3862 }
3863 if (CLIENT_ALLOWED(adapter)) {
3864 err = iavf_lan_del_device(adapter);
3865 if (err)
3866 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3867 err);
3868 }
3869
3870 /* Shut down all the garbage mashers on the detention level */
3871 adapter->state = __IAVF_REMOVE;
3872 adapter->aq_required = 0;
3873 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3874 iavf_request_reset(adapter);
3875 msleep(50);
3876 /* If the FW isn't responding, kick it once, but only once. */
3877 if (!iavf_asq_done(hw)) {
3878 iavf_request_reset(adapter);
3879 msleep(50);
3880 }
3881 iavf_free_all_tx_resources(adapter);
3882 iavf_free_all_rx_resources(adapter);
3883 iavf_misc_irq_disable(adapter);
3884 iavf_free_misc_irq(adapter);
3885 iavf_reset_interrupt_capability(adapter);
3886 iavf_free_q_vectors(adapter);
3887
3888 cancel_delayed_work_sync(&adapter->watchdog_task);
3889
3890 cancel_work_sync(&adapter->adminq_task);
3891
3892 iavf_free_rss(adapter);
3893
3894 if (hw->aq.asq.count)
3895 iavf_shutdown_adminq(hw);
3896
3897 /* destroy the locks only once, here */
3898 mutex_destroy(&hw->aq.arq_mutex);
3899 mutex_destroy(&hw->aq.asq_mutex);
3900
3901 iounmap(hw->hw_addr);
3902 pci_release_regions(pdev);
3903 iavf_free_all_tx_resources(adapter);
3904 iavf_free_all_rx_resources(adapter);
3905 iavf_free_queues(adapter);
3906 kfree(adapter->vf_res);
3907 spin_lock_bh(&adapter->mac_vlan_list_lock);
3908 /* If we got removed before an up/down sequence, we've got a filter
3909 * hanging out there that we need to get rid of.
3910 */
3911 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3912 list_del(&f->list);
3913 kfree(f);
3914 }
3915 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3916 list) {
3917 list_del(&vlf->list);
3918 kfree(vlf);
3919 }
3920
3921 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3922
3923 spin_lock_bh(&adapter->cloud_filter_list_lock);
3924 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3925 list_del(&cf->list);
3926 kfree(cf);
3927 }
3928 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3929
3930 free_netdev(netdev);
3931
3932 pci_disable_pcie_error_reporting(pdev);
3933
3934 pci_disable_device(pdev);
3935}
3936
3937static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
3938
3939static struct pci_driver iavf_driver = {
3940 .name = iavf_driver_name,
3941 .id_table = iavf_pci_tbl,
3942 .probe = iavf_probe,
3943 .remove = iavf_remove,
3944 .driver.pm = &iavf_pm_ops,
3945 .shutdown = iavf_shutdown,
3946};
3947
3948/**
3949 * iavf_init_module - Driver Registration Routine
3950 *
3951 * iavf_init_module is the first routine called when the driver is
3952 * loaded. All it does is register with the PCI subsystem.
3953 **/
3954static int __init iavf_init_module(void)
3955{
3956 int ret;
3957
3958 pr_info("iavf: %s\n", iavf_driver_string);
3959
3960 pr_info("%s\n", iavf_copyright);
3961
3962 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3963 iavf_driver_name);
3964 if (!iavf_wq) {
3965 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3966 return -ENOMEM;
3967 }
3968 ret = pci_register_driver(&iavf_driver);
3969 return ret;
3970}
3971
3972module_init(iavf_init_module);
3973
3974/**
3975 * iavf_exit_module - Driver Exit Cleanup Routine
3976 *
3977 * iavf_exit_module is called just before the driver is removed
3978 * from memory.
3979 **/
3980static void __exit iavf_exit_module(void)
3981{
3982 pci_unregister_driver(&iavf_driver);
3983 destroy_workqueue(iavf_wq);
3984}
3985
3986module_exit(iavf_exit_module);
3987
3988/* iavf_main.c */