Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Resource Director Technology(RDT)
4 * - Monitoring code
5 *
6 * Copyright (C) 2017 Intel Corporation
7 *
8 * Author:
9 * Vikas Shivappa <vikas.shivappa@intel.com>
10 *
11 * This replaces the cqm.c based on perf but we reuse a lot of
12 * code and datastructures originally from Peter Zijlstra and Matt Fleming.
13 *
14 * More information about RDT be found in the Intel (R) x86 Architecture
15 * Software Developer Manual June 2016, volume 3, section 17.17.
16 */
17
18#include <linux/module.h>
19#include <linux/slab.h>
20#include <asm/cpu_device_id.h>
21#include "internal.h"
22
23struct rmid_entry {
24 u32 rmid;
25 int busy;
26 struct list_head list;
27};
28
29/**
30 * @rmid_free_lru A least recently used list of free RMIDs
31 * These RMIDs are guaranteed to have an occupancy less than the
32 * threshold occupancy
33 */
34static LIST_HEAD(rmid_free_lru);
35
36/**
37 * @rmid_limbo_count count of currently unused but (potentially)
38 * dirty RMIDs.
39 * This counts RMIDs that no one is currently using but that
40 * may have a occupancy value > intel_cqm_threshold. User can change
41 * the threshold occupancy value.
42 */
43static unsigned int rmid_limbo_count;
44
45/**
46 * @rmid_entry - The entry in the limbo and free lists.
47 */
48static struct rmid_entry *rmid_ptrs;
49
50/*
51 * Global boolean for rdt_monitor which is true if any
52 * resource monitoring is enabled.
53 */
54bool rdt_mon_capable;
55
56/*
57 * Global to indicate which monitoring events are enabled.
58 */
59unsigned int rdt_mon_features;
60
61/*
62 * This is the threshold cache occupancy at which we will consider an
63 * RMID available for re-allocation.
64 */
65unsigned int resctrl_cqm_threshold;
66
67static inline struct rmid_entry *__rmid_entry(u32 rmid)
68{
69 struct rmid_entry *entry;
70
71 entry = &rmid_ptrs[rmid];
72 WARN_ON(entry->rmid != rmid);
73
74 return entry;
75}
76
77static u64 __rmid_read(u32 rmid, u32 eventid)
78{
79 u64 val;
80
81 /*
82 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
83 * with a valid event code for supported resource type and the bits
84 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
85 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
86 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
87 * are error bits.
88 */
89 wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
90 rdmsrl(MSR_IA32_QM_CTR, val);
91
92 return val;
93}
94
95static bool rmid_dirty(struct rmid_entry *entry)
96{
97 u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
98
99 return val >= resctrl_cqm_threshold;
100}
101
102/*
103 * Check the RMIDs that are marked as busy for this domain. If the
104 * reported LLC occupancy is below the threshold clear the busy bit and
105 * decrement the count. If the busy count gets to zero on an RMID, we
106 * free the RMID
107 */
108void __check_limbo(struct rdt_domain *d, bool force_free)
109{
110 struct rmid_entry *entry;
111 struct rdt_resource *r;
112 u32 crmid = 1, nrmid;
113
114 r = &rdt_resources_all[RDT_RESOURCE_L3];
115
116 /*
117 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
118 * are marked as busy for occupancy < threshold. If the occupancy
119 * is less than the threshold decrement the busy counter of the
120 * RMID and move it to the free list when the counter reaches 0.
121 */
122 for (;;) {
123 nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
124 if (nrmid >= r->num_rmid)
125 break;
126
127 entry = __rmid_entry(nrmid);
128 if (force_free || !rmid_dirty(entry)) {
129 clear_bit(entry->rmid, d->rmid_busy_llc);
130 if (!--entry->busy) {
131 rmid_limbo_count--;
132 list_add_tail(&entry->list, &rmid_free_lru);
133 }
134 }
135 crmid = nrmid + 1;
136 }
137}
138
139bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
140{
141 return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
142}
143
144/*
145 * As of now the RMIDs allocation is global.
146 * However we keep track of which packages the RMIDs
147 * are used to optimize the limbo list management.
148 */
149int alloc_rmid(void)
150{
151 struct rmid_entry *entry;
152
153 lockdep_assert_held(&rdtgroup_mutex);
154
155 if (list_empty(&rmid_free_lru))
156 return rmid_limbo_count ? -EBUSY : -ENOSPC;
157
158 entry = list_first_entry(&rmid_free_lru,
159 struct rmid_entry, list);
160 list_del(&entry->list);
161
162 return entry->rmid;
163}
164
165static void add_rmid_to_limbo(struct rmid_entry *entry)
166{
167 struct rdt_resource *r;
168 struct rdt_domain *d;
169 int cpu;
170 u64 val;
171
172 r = &rdt_resources_all[RDT_RESOURCE_L3];
173
174 entry->busy = 0;
175 cpu = get_cpu();
176 list_for_each_entry(d, &r->domains, list) {
177 if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
178 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
179 if (val <= resctrl_cqm_threshold)
180 continue;
181 }
182
183 /*
184 * For the first limbo RMID in the domain,
185 * setup up the limbo worker.
186 */
187 if (!has_busy_rmid(r, d))
188 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
189 set_bit(entry->rmid, d->rmid_busy_llc);
190 entry->busy++;
191 }
192 put_cpu();
193
194 if (entry->busy)
195 rmid_limbo_count++;
196 else
197 list_add_tail(&entry->list, &rmid_free_lru);
198}
199
200void free_rmid(u32 rmid)
201{
202 struct rmid_entry *entry;
203
204 if (!rmid)
205 return;
206
207 lockdep_assert_held(&rdtgroup_mutex);
208
209 entry = __rmid_entry(rmid);
210
211 if (is_llc_occupancy_enabled())
212 add_rmid_to_limbo(entry);
213 else
214 list_add_tail(&entry->list, &rmid_free_lru);
215}
216
217static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr)
218{
219 u64 shift = 64 - MBM_CNTR_WIDTH, chunks;
220
221 chunks = (cur_msr << shift) - (prev_msr << shift);
222 return chunks >>= shift;
223}
224
225static int __mon_event_count(u32 rmid, struct rmid_read *rr)
226{
227 struct mbm_state *m;
228 u64 chunks, tval;
229
230 tval = __rmid_read(rmid, rr->evtid);
231 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
232 rr->val = tval;
233 return -EINVAL;
234 }
235 switch (rr->evtid) {
236 case QOS_L3_OCCUP_EVENT_ID:
237 rr->val += tval;
238 return 0;
239 case QOS_L3_MBM_TOTAL_EVENT_ID:
240 m = &rr->d->mbm_total[rmid];
241 break;
242 case QOS_L3_MBM_LOCAL_EVENT_ID:
243 m = &rr->d->mbm_local[rmid];
244 break;
245 default:
246 /*
247 * Code would never reach here because
248 * an invalid event id would fail the __rmid_read.
249 */
250 return -EINVAL;
251 }
252
253 if (rr->first) {
254 memset(m, 0, sizeof(struct mbm_state));
255 m->prev_bw_msr = m->prev_msr = tval;
256 return 0;
257 }
258
259 chunks = mbm_overflow_count(m->prev_msr, tval);
260 m->chunks += chunks;
261 m->prev_msr = tval;
262
263 rr->val += m->chunks;
264 return 0;
265}
266
267/*
268 * Supporting function to calculate the memory bandwidth
269 * and delta bandwidth in MBps.
270 */
271static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
272{
273 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
274 struct mbm_state *m = &rr->d->mbm_local[rmid];
275 u64 tval, cur_bw, chunks;
276
277 tval = __rmid_read(rmid, rr->evtid);
278 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
279 return;
280
281 chunks = mbm_overflow_count(m->prev_bw_msr, tval);
282 m->chunks_bw += chunks;
283 m->chunks = m->chunks_bw;
284 cur_bw = (chunks * r->mon_scale) >> 20;
285
286 if (m->delta_comp)
287 m->delta_bw = abs(cur_bw - m->prev_bw);
288 m->delta_comp = false;
289 m->prev_bw = cur_bw;
290 m->prev_bw_msr = tval;
291}
292
293/*
294 * This is called via IPI to read the CQM/MBM counters
295 * on a domain.
296 */
297void mon_event_count(void *info)
298{
299 struct rdtgroup *rdtgrp, *entry;
300 struct rmid_read *rr = info;
301 struct list_head *head;
302
303 rdtgrp = rr->rgrp;
304
305 if (__mon_event_count(rdtgrp->mon.rmid, rr))
306 return;
307
308 /*
309 * For Ctrl groups read data from child monitor groups.
310 */
311 head = &rdtgrp->mon.crdtgrp_list;
312
313 if (rdtgrp->type == RDTCTRL_GROUP) {
314 list_for_each_entry(entry, head, mon.crdtgrp_list) {
315 if (__mon_event_count(entry->mon.rmid, rr))
316 return;
317 }
318 }
319}
320
321/*
322 * Feedback loop for MBA software controller (mba_sc)
323 *
324 * mba_sc is a feedback loop where we periodically read MBM counters and
325 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
326 * that:
327 *
328 * current bandwdith(cur_bw) < user specified bandwidth(user_bw)
329 *
330 * This uses the MBM counters to measure the bandwidth and MBA throttle
331 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
332 * fact that resctrl rdtgroups have both monitoring and control.
333 *
334 * The frequency of the checks is 1s and we just tag along the MBM overflow
335 * timer. Having 1s interval makes the calculation of bandwidth simpler.
336 *
337 * Although MBA's goal is to restrict the bandwidth to a maximum, there may
338 * be a need to increase the bandwidth to avoid uncecessarily restricting
339 * the L2 <-> L3 traffic.
340 *
341 * Since MBA controls the L2 external bandwidth where as MBM measures the
342 * L3 external bandwidth the following sequence could lead to such a
343 * situation.
344 *
345 * Consider an rdtgroup which had high L3 <-> memory traffic in initial
346 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
347 * after some time rdtgroup has mostly L2 <-> L3 traffic.
348 *
349 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
350 * throttle MSRs already have low percentage values. To avoid
351 * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
352 */
353static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
354{
355 u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val;
356 struct mbm_state *pmbm_data, *cmbm_data;
357 u32 cur_bw, delta_bw, user_bw;
358 struct rdt_resource *r_mba;
359 struct rdt_domain *dom_mba;
360 struct list_head *head;
361 struct rdtgroup *entry;
362
363 if (!is_mbm_local_enabled())
364 return;
365
366 r_mba = &rdt_resources_all[RDT_RESOURCE_MBA];
367 closid = rgrp->closid;
368 rmid = rgrp->mon.rmid;
369 pmbm_data = &dom_mbm->mbm_local[rmid];
370
371 dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
372 if (!dom_mba) {
373 pr_warn_once("Failure to get domain for MBA update\n");
374 return;
375 }
376
377 cur_bw = pmbm_data->prev_bw;
378 user_bw = dom_mba->mbps_val[closid];
379 delta_bw = pmbm_data->delta_bw;
380 cur_msr_val = dom_mba->ctrl_val[closid];
381
382 /*
383 * For Ctrl groups read data from child monitor groups.
384 */
385 head = &rgrp->mon.crdtgrp_list;
386 list_for_each_entry(entry, head, mon.crdtgrp_list) {
387 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
388 cur_bw += cmbm_data->prev_bw;
389 delta_bw += cmbm_data->delta_bw;
390 }
391
392 /*
393 * Scale up/down the bandwidth linearly for the ctrl group. The
394 * bandwidth step is the bandwidth granularity specified by the
395 * hardware.
396 *
397 * The delta_bw is used when increasing the bandwidth so that we
398 * dont alternately increase and decrease the control values
399 * continuously.
400 *
401 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
402 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
403 * switching between 90 and 110 continuously if we only check
404 * cur_bw < user_bw.
405 */
406 if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
407 new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
408 } else if (cur_msr_val < MAX_MBA_BW &&
409 (user_bw > (cur_bw + delta_bw))) {
410 new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
411 } else {
412 return;
413 }
414
415 cur_msr = r_mba->msr_base + closid;
416 wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba));
417 dom_mba->ctrl_val[closid] = new_msr_val;
418
419 /*
420 * Delta values are updated dynamically package wise for each
421 * rdtgrp everytime the throttle MSR changes value.
422 *
423 * This is because (1)the increase in bandwidth is not perfectly
424 * linear and only "approximately" linear even when the hardware
425 * says it is linear.(2)Also since MBA is a core specific
426 * mechanism, the delta values vary based on number of cores used
427 * by the rdtgrp.
428 */
429 pmbm_data->delta_comp = true;
430 list_for_each_entry(entry, head, mon.crdtgrp_list) {
431 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
432 cmbm_data->delta_comp = true;
433 }
434}
435
436static void mbm_update(struct rdt_domain *d, int rmid)
437{
438 struct rmid_read rr;
439
440 rr.first = false;
441 rr.d = d;
442
443 /*
444 * This is protected from concurrent reads from user
445 * as both the user and we hold the global mutex.
446 */
447 if (is_mbm_total_enabled()) {
448 rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
449 __mon_event_count(rmid, &rr);
450 }
451 if (is_mbm_local_enabled()) {
452 rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
453
454 /*
455 * Call the MBA software controller only for the
456 * control groups and when user has enabled
457 * the software controller explicitly.
458 */
459 if (!is_mba_sc(NULL))
460 __mon_event_count(rmid, &rr);
461 else
462 mbm_bw_count(rmid, &rr);
463 }
464}
465
466/*
467 * Handler to scan the limbo list and move the RMIDs
468 * to free list whose occupancy < threshold_occupancy.
469 */
470void cqm_handle_limbo(struct work_struct *work)
471{
472 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
473 int cpu = smp_processor_id();
474 struct rdt_resource *r;
475 struct rdt_domain *d;
476
477 mutex_lock(&rdtgroup_mutex);
478
479 r = &rdt_resources_all[RDT_RESOURCE_L3];
480 d = get_domain_from_cpu(cpu, r);
481
482 if (!d) {
483 pr_warn_once("Failure to get domain for limbo worker\n");
484 goto out_unlock;
485 }
486
487 __check_limbo(d, false);
488
489 if (has_busy_rmid(r, d))
490 schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
491
492out_unlock:
493 mutex_unlock(&rdtgroup_mutex);
494}
495
496void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
497{
498 unsigned long delay = msecs_to_jiffies(delay_ms);
499 int cpu;
500
501 cpu = cpumask_any(&dom->cpu_mask);
502 dom->cqm_work_cpu = cpu;
503
504 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
505}
506
507void mbm_handle_overflow(struct work_struct *work)
508{
509 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
510 struct rdtgroup *prgrp, *crgrp;
511 int cpu = smp_processor_id();
512 struct list_head *head;
513 struct rdt_domain *d;
514
515 mutex_lock(&rdtgroup_mutex);
516
517 if (!static_branch_likely(&rdt_enable_key))
518 goto out_unlock;
519
520 d = get_domain_from_cpu(cpu, &rdt_resources_all[RDT_RESOURCE_L3]);
521 if (!d)
522 goto out_unlock;
523
524 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
525 mbm_update(d, prgrp->mon.rmid);
526
527 head = &prgrp->mon.crdtgrp_list;
528 list_for_each_entry(crgrp, head, mon.crdtgrp_list)
529 mbm_update(d, crgrp->mon.rmid);
530
531 if (is_mba_sc(NULL))
532 update_mba_bw(prgrp, d);
533 }
534
535 schedule_delayed_work_on(cpu, &d->mbm_over, delay);
536
537out_unlock:
538 mutex_unlock(&rdtgroup_mutex);
539}
540
541void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
542{
543 unsigned long delay = msecs_to_jiffies(delay_ms);
544 int cpu;
545
546 if (!static_branch_likely(&rdt_enable_key))
547 return;
548 cpu = cpumask_any(&dom->cpu_mask);
549 dom->mbm_work_cpu = cpu;
550 schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
551}
552
553static int dom_data_init(struct rdt_resource *r)
554{
555 struct rmid_entry *entry = NULL;
556 int i, nr_rmids;
557
558 nr_rmids = r->num_rmid;
559 rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
560 if (!rmid_ptrs)
561 return -ENOMEM;
562
563 for (i = 0; i < nr_rmids; i++) {
564 entry = &rmid_ptrs[i];
565 INIT_LIST_HEAD(&entry->list);
566
567 entry->rmid = i;
568 list_add_tail(&entry->list, &rmid_free_lru);
569 }
570
571 /*
572 * RMID 0 is special and is always allocated. It's used for all
573 * tasks that are not monitored.
574 */
575 entry = __rmid_entry(0);
576 list_del(&entry->list);
577
578 return 0;
579}
580
581static struct mon_evt llc_occupancy_event = {
582 .name = "llc_occupancy",
583 .evtid = QOS_L3_OCCUP_EVENT_ID,
584};
585
586static struct mon_evt mbm_total_event = {
587 .name = "mbm_total_bytes",
588 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
589};
590
591static struct mon_evt mbm_local_event = {
592 .name = "mbm_local_bytes",
593 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
594};
595
596/*
597 * Initialize the event list for the resource.
598 *
599 * Note that MBM events are also part of RDT_RESOURCE_L3 resource
600 * because as per the SDM the total and local memory bandwidth
601 * are enumerated as part of L3 monitoring.
602 */
603static void l3_mon_evt_init(struct rdt_resource *r)
604{
605 INIT_LIST_HEAD(&r->evt_list);
606
607 if (is_llc_occupancy_enabled())
608 list_add_tail(&llc_occupancy_event.list, &r->evt_list);
609 if (is_mbm_total_enabled())
610 list_add_tail(&mbm_total_event.list, &r->evt_list);
611 if (is_mbm_local_enabled())
612 list_add_tail(&mbm_local_event.list, &r->evt_list);
613}
614
615int rdt_get_mon_l3_config(struct rdt_resource *r)
616{
617 unsigned int cl_size = boot_cpu_data.x86_cache_size;
618 int ret;
619
620 r->mon_scale = boot_cpu_data.x86_cache_occ_scale;
621 r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
622
623 /*
624 * A reasonable upper limit on the max threshold is the number
625 * of lines tagged per RMID if all RMIDs have the same number of
626 * lines tagged in the LLC.
627 *
628 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
629 */
630 resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid;
631
632 /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
633 resctrl_cqm_threshold /= r->mon_scale;
634
635 ret = dom_data_init(r);
636 if (ret)
637 return ret;
638
639 l3_mon_evt_init(r);
640
641 r->mon_capable = true;
642 r->mon_enabled = true;
643
644 return 0;
645}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Resource Director Technology(RDT)
4 * - Monitoring code
5 *
6 * Copyright (C) 2017 Intel Corporation
7 *
8 * Author:
9 * Vikas Shivappa <vikas.shivappa@intel.com>
10 *
11 * This replaces the cqm.c based on perf but we reuse a lot of
12 * code and datastructures originally from Peter Zijlstra and Matt Fleming.
13 *
14 * More information about RDT be found in the Intel (R) x86 Architecture
15 * Software Developer Manual June 2016, volume 3, section 17.17.
16 */
17
18#include <linux/cpu.h>
19#include <linux/module.h>
20#include <linux/sizes.h>
21#include <linux/slab.h>
22
23#include <asm/cpu_device_id.h>
24#include <asm/resctrl.h>
25
26#include "internal.h"
27
28/**
29 * struct rmid_entry - dirty tracking for all RMID.
30 * @closid: The CLOSID for this entry.
31 * @rmid: The RMID for this entry.
32 * @busy: The number of domains with cached data using this RMID.
33 * @list: Member of the rmid_free_lru list when busy == 0.
34 *
35 * Depending on the architecture the correct monitor is accessed using
36 * both @closid and @rmid, or @rmid only.
37 *
38 * Take the rdtgroup_mutex when accessing.
39 */
40struct rmid_entry {
41 u32 closid;
42 u32 rmid;
43 int busy;
44 struct list_head list;
45};
46
47/*
48 * @rmid_free_lru - A least recently used list of free RMIDs
49 * These RMIDs are guaranteed to have an occupancy less than the
50 * threshold occupancy
51 */
52static LIST_HEAD(rmid_free_lru);
53
54/*
55 * @closid_num_dirty_rmid The number of dirty RMID each CLOSID has.
56 * Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined.
57 * Indexed by CLOSID. Protected by rdtgroup_mutex.
58 */
59static u32 *closid_num_dirty_rmid;
60
61/*
62 * @rmid_limbo_count - count of currently unused but (potentially)
63 * dirty RMIDs.
64 * This counts RMIDs that no one is currently using but that
65 * may have a occupancy value > resctrl_rmid_realloc_threshold. User can
66 * change the threshold occupancy value.
67 */
68static unsigned int rmid_limbo_count;
69
70/*
71 * @rmid_entry - The entry in the limbo and free lists.
72 */
73static struct rmid_entry *rmid_ptrs;
74
75/*
76 * Global boolean for rdt_monitor which is true if any
77 * resource monitoring is enabled.
78 */
79bool rdt_mon_capable;
80
81/*
82 * Global to indicate which monitoring events are enabled.
83 */
84unsigned int rdt_mon_features;
85
86/*
87 * This is the threshold cache occupancy in bytes at which we will consider an
88 * RMID available for re-allocation.
89 */
90unsigned int resctrl_rmid_realloc_threshold;
91
92/*
93 * This is the maximum value for the reallocation threshold, in bytes.
94 */
95unsigned int resctrl_rmid_realloc_limit;
96
97#define CF(cf) ((unsigned long)(1048576 * (cf) + 0.5))
98
99/*
100 * The correction factor table is documented in Documentation/arch/x86/resctrl.rst.
101 * If rmid > rmid threshold, MBM total and local values should be multiplied
102 * by the correction factor.
103 *
104 * The original table is modified for better code:
105 *
106 * 1. The threshold 0 is changed to rmid count - 1 so don't do correction
107 * for the case.
108 * 2. MBM total and local correction table indexed by core counter which is
109 * equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27.
110 * 3. The correction factor is normalized to 2^20 (1048576) so it's faster
111 * to calculate corrected value by shifting:
112 * corrected_value = (original_value * correction_factor) >> 20
113 */
114static const struct mbm_correction_factor_table {
115 u32 rmidthreshold;
116 u64 cf;
117} mbm_cf_table[] __initconst = {
118 {7, CF(1.000000)},
119 {15, CF(1.000000)},
120 {15, CF(0.969650)},
121 {31, CF(1.000000)},
122 {31, CF(1.066667)},
123 {31, CF(0.969650)},
124 {47, CF(1.142857)},
125 {63, CF(1.000000)},
126 {63, CF(1.185115)},
127 {63, CF(1.066553)},
128 {79, CF(1.454545)},
129 {95, CF(1.000000)},
130 {95, CF(1.230769)},
131 {95, CF(1.142857)},
132 {95, CF(1.066667)},
133 {127, CF(1.000000)},
134 {127, CF(1.254863)},
135 {127, CF(1.185255)},
136 {151, CF(1.000000)},
137 {127, CF(1.066667)},
138 {167, CF(1.000000)},
139 {159, CF(1.454334)},
140 {183, CF(1.000000)},
141 {127, CF(0.969744)},
142 {191, CF(1.280246)},
143 {191, CF(1.230921)},
144 {215, CF(1.000000)},
145 {191, CF(1.143118)},
146};
147
148static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX;
149static u64 mbm_cf __read_mostly;
150
151static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val)
152{
153 /* Correct MBM value. */
154 if (rmid > mbm_cf_rmidthreshold)
155 val = (val * mbm_cf) >> 20;
156
157 return val;
158}
159
160/*
161 * x86 and arm64 differ in their handling of monitoring.
162 * x86's RMID are independent numbers, there is only one source of traffic
163 * with an RMID value of '1'.
164 * arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of
165 * traffic with a PMG value of '1', one for each CLOSID, meaning the RMID
166 * value is no longer unique.
167 * To account for this, resctrl uses an index. On x86 this is just the RMID,
168 * on arm64 it encodes the CLOSID and RMID. This gives a unique number.
169 *
170 * The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code
171 * must accept an attempt to read every index.
172 */
173static inline struct rmid_entry *__rmid_entry(u32 idx)
174{
175 struct rmid_entry *entry;
176 u32 closid, rmid;
177
178 entry = &rmid_ptrs[idx];
179 resctrl_arch_rmid_idx_decode(idx, &closid, &rmid);
180
181 WARN_ON_ONCE(entry->closid != closid);
182 WARN_ON_ONCE(entry->rmid != rmid);
183
184 return entry;
185}
186
187static int __rmid_read(u32 rmid, enum resctrl_event_id eventid, u64 *val)
188{
189 u64 msr_val;
190
191 /*
192 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
193 * with a valid event code for supported resource type and the bits
194 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
195 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
196 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
197 * are error bits.
198 */
199 wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
200 rdmsrl(MSR_IA32_QM_CTR, msr_val);
201
202 if (msr_val & RMID_VAL_ERROR)
203 return -EIO;
204 if (msr_val & RMID_VAL_UNAVAIL)
205 return -EINVAL;
206
207 *val = msr_val;
208 return 0;
209}
210
211static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_domain *hw_dom,
212 u32 rmid,
213 enum resctrl_event_id eventid)
214{
215 switch (eventid) {
216 case QOS_L3_OCCUP_EVENT_ID:
217 return NULL;
218 case QOS_L3_MBM_TOTAL_EVENT_ID:
219 return &hw_dom->arch_mbm_total[rmid];
220 case QOS_L3_MBM_LOCAL_EVENT_ID:
221 return &hw_dom->arch_mbm_local[rmid];
222 }
223
224 /* Never expect to get here */
225 WARN_ON_ONCE(1);
226
227 return NULL;
228}
229
230void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_domain *d,
231 u32 unused, u32 rmid,
232 enum resctrl_event_id eventid)
233{
234 struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d);
235 struct arch_mbm_state *am;
236
237 am = get_arch_mbm_state(hw_dom, rmid, eventid);
238 if (am) {
239 memset(am, 0, sizeof(*am));
240
241 /* Record any initial, non-zero count value. */
242 __rmid_read(rmid, eventid, &am->prev_msr);
243 }
244}
245
246/*
247 * Assumes that hardware counters are also reset and thus that there is
248 * no need to record initial non-zero counts.
249 */
250void resctrl_arch_reset_rmid_all(struct rdt_resource *r, struct rdt_domain *d)
251{
252 struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d);
253
254 if (is_mbm_total_enabled())
255 memset(hw_dom->arch_mbm_total, 0,
256 sizeof(*hw_dom->arch_mbm_total) * r->num_rmid);
257
258 if (is_mbm_local_enabled())
259 memset(hw_dom->arch_mbm_local, 0,
260 sizeof(*hw_dom->arch_mbm_local) * r->num_rmid);
261}
262
263static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
264{
265 u64 shift = 64 - width, chunks;
266
267 chunks = (cur_msr << shift) - (prev_msr << shift);
268 return chunks >> shift;
269}
270
271int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_domain *d,
272 u32 unused, u32 rmid, enum resctrl_event_id eventid,
273 u64 *val, void *ignored)
274{
275 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
276 struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d);
277 struct arch_mbm_state *am;
278 u64 msr_val, chunks;
279 int ret;
280
281 resctrl_arch_rmid_read_context_check();
282
283 if (!cpumask_test_cpu(smp_processor_id(), &d->cpu_mask))
284 return -EINVAL;
285
286 ret = __rmid_read(rmid, eventid, &msr_val);
287 if (ret)
288 return ret;
289
290 am = get_arch_mbm_state(hw_dom, rmid, eventid);
291 if (am) {
292 am->chunks += mbm_overflow_count(am->prev_msr, msr_val,
293 hw_res->mbm_width);
294 chunks = get_corrected_mbm_count(rmid, am->chunks);
295 am->prev_msr = msr_val;
296 } else {
297 chunks = msr_val;
298 }
299
300 *val = chunks * hw_res->mon_scale;
301
302 return 0;
303}
304
305static void limbo_release_entry(struct rmid_entry *entry)
306{
307 lockdep_assert_held(&rdtgroup_mutex);
308
309 rmid_limbo_count--;
310 list_add_tail(&entry->list, &rmid_free_lru);
311
312 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
313 closid_num_dirty_rmid[entry->closid]--;
314}
315
316/*
317 * Check the RMIDs that are marked as busy for this domain. If the
318 * reported LLC occupancy is below the threshold clear the busy bit and
319 * decrement the count. If the busy count gets to zero on an RMID, we
320 * free the RMID
321 */
322void __check_limbo(struct rdt_domain *d, bool force_free)
323{
324 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
325 u32 idx_limit = resctrl_arch_system_num_rmid_idx();
326 struct rmid_entry *entry;
327 u32 idx, cur_idx = 1;
328 void *arch_mon_ctx;
329 bool rmid_dirty;
330 u64 val = 0;
331
332 arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID);
333 if (IS_ERR(arch_mon_ctx)) {
334 pr_warn_ratelimited("Failed to allocate monitor context: %ld",
335 PTR_ERR(arch_mon_ctx));
336 return;
337 }
338
339 /*
340 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
341 * are marked as busy for occupancy < threshold. If the occupancy
342 * is less than the threshold decrement the busy counter of the
343 * RMID and move it to the free list when the counter reaches 0.
344 */
345 for (;;) {
346 idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx);
347 if (idx >= idx_limit)
348 break;
349
350 entry = __rmid_entry(idx);
351 if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid,
352 QOS_L3_OCCUP_EVENT_ID, &val,
353 arch_mon_ctx)) {
354 rmid_dirty = true;
355 } else {
356 rmid_dirty = (val >= resctrl_rmid_realloc_threshold);
357 }
358
359 if (force_free || !rmid_dirty) {
360 clear_bit(idx, d->rmid_busy_llc);
361 if (!--entry->busy)
362 limbo_release_entry(entry);
363 }
364 cur_idx = idx + 1;
365 }
366
367 resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx);
368}
369
370bool has_busy_rmid(struct rdt_domain *d)
371{
372 u32 idx_limit = resctrl_arch_system_num_rmid_idx();
373
374 return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit;
375}
376
377static struct rmid_entry *resctrl_find_free_rmid(u32 closid)
378{
379 struct rmid_entry *itr;
380 u32 itr_idx, cmp_idx;
381
382 if (list_empty(&rmid_free_lru))
383 return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC);
384
385 list_for_each_entry(itr, &rmid_free_lru, list) {
386 /*
387 * Get the index of this free RMID, and the index it would need
388 * to be if it were used with this CLOSID.
389 * If the CLOSID is irrelevant on this architecture, the two
390 * index values are always the same on every entry and thus the
391 * very first entry will be returned.
392 */
393 itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid);
394 cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid);
395
396 if (itr_idx == cmp_idx)
397 return itr;
398 }
399
400 return ERR_PTR(-ENOSPC);
401}
402
403/**
404 * resctrl_find_cleanest_closid() - Find a CLOSID where all the associated
405 * RMID are clean, or the CLOSID that has
406 * the most clean RMID.
407 *
408 * MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID
409 * may not be able to allocate clean RMID. To avoid this the allocator will
410 * choose the CLOSID with the most clean RMID.
411 *
412 * When the CLOSID and RMID are independent numbers, the first free CLOSID will
413 * be returned.
414 */
415int resctrl_find_cleanest_closid(void)
416{
417 u32 cleanest_closid = ~0;
418 int i = 0;
419
420 lockdep_assert_held(&rdtgroup_mutex);
421
422 if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
423 return -EIO;
424
425 for (i = 0; i < closids_supported(); i++) {
426 int num_dirty;
427
428 if (closid_allocated(i))
429 continue;
430
431 num_dirty = closid_num_dirty_rmid[i];
432 if (num_dirty == 0)
433 return i;
434
435 if (cleanest_closid == ~0)
436 cleanest_closid = i;
437
438 if (num_dirty < closid_num_dirty_rmid[cleanest_closid])
439 cleanest_closid = i;
440 }
441
442 if (cleanest_closid == ~0)
443 return -ENOSPC;
444
445 return cleanest_closid;
446}
447
448/*
449 * For MPAM the RMID value is not unique, and has to be considered with
450 * the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which
451 * allows all domains to be managed by a single free list.
452 * Each domain also has a rmid_busy_llc to reduce the work of the limbo handler.
453 */
454int alloc_rmid(u32 closid)
455{
456 struct rmid_entry *entry;
457
458 lockdep_assert_held(&rdtgroup_mutex);
459
460 entry = resctrl_find_free_rmid(closid);
461 if (IS_ERR(entry))
462 return PTR_ERR(entry);
463
464 list_del(&entry->list);
465 return entry->rmid;
466}
467
468static void add_rmid_to_limbo(struct rmid_entry *entry)
469{
470 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
471 struct rdt_domain *d;
472 u32 idx;
473
474 lockdep_assert_held(&rdtgroup_mutex);
475
476 /* Walking r->domains, ensure it can't race with cpuhp */
477 lockdep_assert_cpus_held();
478
479 idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid);
480
481 entry->busy = 0;
482 list_for_each_entry(d, &r->domains, list) {
483 /*
484 * For the first limbo RMID in the domain,
485 * setup up the limbo worker.
486 */
487 if (!has_busy_rmid(d))
488 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL,
489 RESCTRL_PICK_ANY_CPU);
490 set_bit(idx, d->rmid_busy_llc);
491 entry->busy++;
492 }
493
494 rmid_limbo_count++;
495 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
496 closid_num_dirty_rmid[entry->closid]++;
497}
498
499void free_rmid(u32 closid, u32 rmid)
500{
501 u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
502 struct rmid_entry *entry;
503
504 lockdep_assert_held(&rdtgroup_mutex);
505
506 /*
507 * Do not allow the default rmid to be free'd. Comparing by index
508 * allows architectures that ignore the closid parameter to avoid an
509 * unnecessary check.
510 */
511 if (idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
512 RESCTRL_RESERVED_RMID))
513 return;
514
515 entry = __rmid_entry(idx);
516
517 if (is_llc_occupancy_enabled())
518 add_rmid_to_limbo(entry);
519 else
520 list_add_tail(&entry->list, &rmid_free_lru);
521}
522
523static struct mbm_state *get_mbm_state(struct rdt_domain *d, u32 closid,
524 u32 rmid, enum resctrl_event_id evtid)
525{
526 u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
527
528 switch (evtid) {
529 case QOS_L3_MBM_TOTAL_EVENT_ID:
530 return &d->mbm_total[idx];
531 case QOS_L3_MBM_LOCAL_EVENT_ID:
532 return &d->mbm_local[idx];
533 default:
534 return NULL;
535 }
536}
537
538static int __mon_event_count(u32 closid, u32 rmid, struct rmid_read *rr)
539{
540 struct mbm_state *m;
541 u64 tval = 0;
542
543 if (rr->first) {
544 resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid);
545 m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
546 if (m)
547 memset(m, 0, sizeof(struct mbm_state));
548 return 0;
549 }
550
551 rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid, rr->evtid,
552 &tval, rr->arch_mon_ctx);
553 if (rr->err)
554 return rr->err;
555
556 rr->val += tval;
557
558 return 0;
559}
560
561/*
562 * mbm_bw_count() - Update bw count from values previously read by
563 * __mon_event_count().
564 * @closid: The closid used to identify the cached mbm_state.
565 * @rmid: The rmid used to identify the cached mbm_state.
566 * @rr: The struct rmid_read populated by __mon_event_count().
567 *
568 * Supporting function to calculate the memory bandwidth
569 * and delta bandwidth in MBps. The chunks value previously read by
570 * __mon_event_count() is compared with the chunks value from the previous
571 * invocation. This must be called once per second to maintain values in MBps.
572 */
573static void mbm_bw_count(u32 closid, u32 rmid, struct rmid_read *rr)
574{
575 u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
576 struct mbm_state *m = &rr->d->mbm_local[idx];
577 u64 cur_bw, bytes, cur_bytes;
578
579 cur_bytes = rr->val;
580 bytes = cur_bytes - m->prev_bw_bytes;
581 m->prev_bw_bytes = cur_bytes;
582
583 cur_bw = bytes / SZ_1M;
584
585 m->prev_bw = cur_bw;
586}
587
588/*
589 * This is scheduled by mon_event_read() to read the CQM/MBM counters
590 * on a domain.
591 */
592void mon_event_count(void *info)
593{
594 struct rdtgroup *rdtgrp, *entry;
595 struct rmid_read *rr = info;
596 struct list_head *head;
597 int ret;
598
599 rdtgrp = rr->rgrp;
600
601 ret = __mon_event_count(rdtgrp->closid, rdtgrp->mon.rmid, rr);
602
603 /*
604 * For Ctrl groups read data from child monitor groups and
605 * add them together. Count events which are read successfully.
606 * Discard the rmid_read's reporting errors.
607 */
608 head = &rdtgrp->mon.crdtgrp_list;
609
610 if (rdtgrp->type == RDTCTRL_GROUP) {
611 list_for_each_entry(entry, head, mon.crdtgrp_list) {
612 if (__mon_event_count(entry->closid, entry->mon.rmid,
613 rr) == 0)
614 ret = 0;
615 }
616 }
617
618 /*
619 * __mon_event_count() calls for newly created monitor groups may
620 * report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
621 * Discard error if any of the monitor event reads succeeded.
622 */
623 if (ret == 0)
624 rr->err = 0;
625}
626
627/*
628 * Feedback loop for MBA software controller (mba_sc)
629 *
630 * mba_sc is a feedback loop where we periodically read MBM counters and
631 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
632 * that:
633 *
634 * current bandwidth(cur_bw) < user specified bandwidth(user_bw)
635 *
636 * This uses the MBM counters to measure the bandwidth and MBA throttle
637 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
638 * fact that resctrl rdtgroups have both monitoring and control.
639 *
640 * The frequency of the checks is 1s and we just tag along the MBM overflow
641 * timer. Having 1s interval makes the calculation of bandwidth simpler.
642 *
643 * Although MBA's goal is to restrict the bandwidth to a maximum, there may
644 * be a need to increase the bandwidth to avoid unnecessarily restricting
645 * the L2 <-> L3 traffic.
646 *
647 * Since MBA controls the L2 external bandwidth where as MBM measures the
648 * L3 external bandwidth the following sequence could lead to such a
649 * situation.
650 *
651 * Consider an rdtgroup which had high L3 <-> memory traffic in initial
652 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
653 * after some time rdtgroup has mostly L2 <-> L3 traffic.
654 *
655 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
656 * throttle MSRs already have low percentage values. To avoid
657 * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
658 */
659static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
660{
661 u32 closid, rmid, cur_msr_val, new_msr_val;
662 struct mbm_state *pmbm_data, *cmbm_data;
663 struct rdt_resource *r_mba;
664 struct rdt_domain *dom_mba;
665 u32 cur_bw, user_bw, idx;
666 struct list_head *head;
667 struct rdtgroup *entry;
668
669 if (!is_mbm_local_enabled())
670 return;
671
672 r_mba = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
673
674 closid = rgrp->closid;
675 rmid = rgrp->mon.rmid;
676 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
677 pmbm_data = &dom_mbm->mbm_local[idx];
678
679 dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
680 if (!dom_mba) {
681 pr_warn_once("Failure to get domain for MBA update\n");
682 return;
683 }
684
685 cur_bw = pmbm_data->prev_bw;
686 user_bw = dom_mba->mbps_val[closid];
687
688 /* MBA resource doesn't support CDP */
689 cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
690
691 /*
692 * For Ctrl groups read data from child monitor groups.
693 */
694 head = &rgrp->mon.crdtgrp_list;
695 list_for_each_entry(entry, head, mon.crdtgrp_list) {
696 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
697 cur_bw += cmbm_data->prev_bw;
698 }
699
700 /*
701 * Scale up/down the bandwidth linearly for the ctrl group. The
702 * bandwidth step is the bandwidth granularity specified by the
703 * hardware.
704 * Always increase throttling if current bandwidth is above the
705 * target set by user.
706 * But avoid thrashing up and down on every poll by checking
707 * whether a decrease in throttling is likely to push the group
708 * back over target. E.g. if currently throttling to 30% of bandwidth
709 * on a system with 10% granularity steps, check whether moving to
710 * 40% would go past the limit by multiplying current bandwidth by
711 * "(30 + 10) / 30".
712 */
713 if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
714 new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
715 } else if (cur_msr_val < MAX_MBA_BW &&
716 (user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) {
717 new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
718 } else {
719 return;
720 }
721
722 resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
723}
724
725static void mbm_update(struct rdt_resource *r, struct rdt_domain *d,
726 u32 closid, u32 rmid)
727{
728 struct rmid_read rr;
729
730 rr.first = false;
731 rr.r = r;
732 rr.d = d;
733
734 /*
735 * This is protected from concurrent reads from user
736 * as both the user and we hold the global mutex.
737 */
738 if (is_mbm_total_enabled()) {
739 rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
740 rr.val = 0;
741 rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
742 if (IS_ERR(rr.arch_mon_ctx)) {
743 pr_warn_ratelimited("Failed to allocate monitor context: %ld",
744 PTR_ERR(rr.arch_mon_ctx));
745 return;
746 }
747
748 __mon_event_count(closid, rmid, &rr);
749
750 resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
751 }
752 if (is_mbm_local_enabled()) {
753 rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
754 rr.val = 0;
755 rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
756 if (IS_ERR(rr.arch_mon_ctx)) {
757 pr_warn_ratelimited("Failed to allocate monitor context: %ld",
758 PTR_ERR(rr.arch_mon_ctx));
759 return;
760 }
761
762 __mon_event_count(closid, rmid, &rr);
763
764 /*
765 * Call the MBA software controller only for the
766 * control groups and when user has enabled
767 * the software controller explicitly.
768 */
769 if (is_mba_sc(NULL))
770 mbm_bw_count(closid, rmid, &rr);
771
772 resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
773 }
774}
775
776/*
777 * Handler to scan the limbo list and move the RMIDs
778 * to free list whose occupancy < threshold_occupancy.
779 */
780void cqm_handle_limbo(struct work_struct *work)
781{
782 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
783 struct rdt_domain *d;
784
785 cpus_read_lock();
786 mutex_lock(&rdtgroup_mutex);
787
788 d = container_of(work, struct rdt_domain, cqm_limbo.work);
789
790 __check_limbo(d, false);
791
792 if (has_busy_rmid(d)) {
793 d->cqm_work_cpu = cpumask_any_housekeeping(&d->cpu_mask,
794 RESCTRL_PICK_ANY_CPU);
795 schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo,
796 delay);
797 }
798
799 mutex_unlock(&rdtgroup_mutex);
800 cpus_read_unlock();
801}
802
803/**
804 * cqm_setup_limbo_handler() - Schedule the limbo handler to run for this
805 * domain.
806 * @dom: The domain the limbo handler should run for.
807 * @delay_ms: How far in the future the handler should run.
808 * @exclude_cpu: Which CPU the handler should not run on,
809 * RESCTRL_PICK_ANY_CPU to pick any CPU.
810 */
811void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms,
812 int exclude_cpu)
813{
814 unsigned long delay = msecs_to_jiffies(delay_ms);
815 int cpu;
816
817 cpu = cpumask_any_housekeeping(&dom->cpu_mask, exclude_cpu);
818 dom->cqm_work_cpu = cpu;
819
820 if (cpu < nr_cpu_ids)
821 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
822}
823
824void mbm_handle_overflow(struct work_struct *work)
825{
826 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
827 struct rdtgroup *prgrp, *crgrp;
828 struct list_head *head;
829 struct rdt_resource *r;
830 struct rdt_domain *d;
831
832 cpus_read_lock();
833 mutex_lock(&rdtgroup_mutex);
834
835 /*
836 * If the filesystem has been unmounted this work no longer needs to
837 * run.
838 */
839 if (!resctrl_mounted || !resctrl_arch_mon_capable())
840 goto out_unlock;
841
842 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
843 d = container_of(work, struct rdt_domain, mbm_over.work);
844
845 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
846 mbm_update(r, d, prgrp->closid, prgrp->mon.rmid);
847
848 head = &prgrp->mon.crdtgrp_list;
849 list_for_each_entry(crgrp, head, mon.crdtgrp_list)
850 mbm_update(r, d, crgrp->closid, crgrp->mon.rmid);
851
852 if (is_mba_sc(NULL))
853 update_mba_bw(prgrp, d);
854 }
855
856 /*
857 * Re-check for housekeeping CPUs. This allows the overflow handler to
858 * move off a nohz_full CPU quickly.
859 */
860 d->mbm_work_cpu = cpumask_any_housekeeping(&d->cpu_mask,
861 RESCTRL_PICK_ANY_CPU);
862 schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay);
863
864out_unlock:
865 mutex_unlock(&rdtgroup_mutex);
866 cpus_read_unlock();
867}
868
869/**
870 * mbm_setup_overflow_handler() - Schedule the overflow handler to run for this
871 * domain.
872 * @dom: The domain the overflow handler should run for.
873 * @delay_ms: How far in the future the handler should run.
874 * @exclude_cpu: Which CPU the handler should not run on,
875 * RESCTRL_PICK_ANY_CPU to pick any CPU.
876 */
877void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms,
878 int exclude_cpu)
879{
880 unsigned long delay = msecs_to_jiffies(delay_ms);
881 int cpu;
882
883 /*
884 * When a domain comes online there is no guarantee the filesystem is
885 * mounted. If not, there is no need to catch counter overflow.
886 */
887 if (!resctrl_mounted || !resctrl_arch_mon_capable())
888 return;
889 cpu = cpumask_any_housekeeping(&dom->cpu_mask, exclude_cpu);
890 dom->mbm_work_cpu = cpu;
891
892 if (cpu < nr_cpu_ids)
893 schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
894}
895
896static int dom_data_init(struct rdt_resource *r)
897{
898 u32 idx_limit = resctrl_arch_system_num_rmid_idx();
899 u32 num_closid = resctrl_arch_get_num_closid(r);
900 struct rmid_entry *entry = NULL;
901 int err = 0, i;
902 u32 idx;
903
904 mutex_lock(&rdtgroup_mutex);
905 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
906 u32 *tmp;
907
908 /*
909 * If the architecture hasn't provided a sanitised value here,
910 * this may result in larger arrays than necessary. Resctrl will
911 * use a smaller system wide value based on the resources in
912 * use.
913 */
914 tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL);
915 if (!tmp) {
916 err = -ENOMEM;
917 goto out_unlock;
918 }
919
920 closid_num_dirty_rmid = tmp;
921 }
922
923 rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL);
924 if (!rmid_ptrs) {
925 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
926 kfree(closid_num_dirty_rmid);
927 closid_num_dirty_rmid = NULL;
928 }
929 err = -ENOMEM;
930 goto out_unlock;
931 }
932
933 for (i = 0; i < idx_limit; i++) {
934 entry = &rmid_ptrs[i];
935 INIT_LIST_HEAD(&entry->list);
936
937 resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid);
938 list_add_tail(&entry->list, &rmid_free_lru);
939 }
940
941 /*
942 * RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and
943 * are always allocated. These are used for the rdtgroup_default
944 * control group, which will be setup later in rdtgroup_init().
945 */
946 idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
947 RESCTRL_RESERVED_RMID);
948 entry = __rmid_entry(idx);
949 list_del(&entry->list);
950
951out_unlock:
952 mutex_unlock(&rdtgroup_mutex);
953
954 return err;
955}
956
957static void __exit dom_data_exit(void)
958{
959 mutex_lock(&rdtgroup_mutex);
960
961 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
962 kfree(closid_num_dirty_rmid);
963 closid_num_dirty_rmid = NULL;
964 }
965
966 kfree(rmid_ptrs);
967 rmid_ptrs = NULL;
968
969 mutex_unlock(&rdtgroup_mutex);
970}
971
972static struct mon_evt llc_occupancy_event = {
973 .name = "llc_occupancy",
974 .evtid = QOS_L3_OCCUP_EVENT_ID,
975};
976
977static struct mon_evt mbm_total_event = {
978 .name = "mbm_total_bytes",
979 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
980};
981
982static struct mon_evt mbm_local_event = {
983 .name = "mbm_local_bytes",
984 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
985};
986
987/*
988 * Initialize the event list for the resource.
989 *
990 * Note that MBM events are also part of RDT_RESOURCE_L3 resource
991 * because as per the SDM the total and local memory bandwidth
992 * are enumerated as part of L3 monitoring.
993 */
994static void l3_mon_evt_init(struct rdt_resource *r)
995{
996 INIT_LIST_HEAD(&r->evt_list);
997
998 if (is_llc_occupancy_enabled())
999 list_add_tail(&llc_occupancy_event.list, &r->evt_list);
1000 if (is_mbm_total_enabled())
1001 list_add_tail(&mbm_total_event.list, &r->evt_list);
1002 if (is_mbm_local_enabled())
1003 list_add_tail(&mbm_local_event.list, &r->evt_list);
1004}
1005
1006int __init rdt_get_mon_l3_config(struct rdt_resource *r)
1007{
1008 unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
1009 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1010 unsigned int threshold;
1011 int ret;
1012
1013 resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024;
1014 hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale;
1015 r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
1016 hw_res->mbm_width = MBM_CNTR_WIDTH_BASE;
1017
1018 if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
1019 hw_res->mbm_width += mbm_offset;
1020 else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX)
1021 pr_warn("Ignoring impossible MBM counter offset\n");
1022
1023 /*
1024 * A reasonable upper limit on the max threshold is the number
1025 * of lines tagged per RMID if all RMIDs have the same number of
1026 * lines tagged in the LLC.
1027 *
1028 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
1029 */
1030 threshold = resctrl_rmid_realloc_limit / r->num_rmid;
1031
1032 /*
1033 * Because num_rmid may not be a power of two, round the value
1034 * to the nearest multiple of hw_res->mon_scale so it matches a
1035 * value the hardware will measure. mon_scale may not be a power of 2.
1036 */
1037 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold);
1038
1039 ret = dom_data_init(r);
1040 if (ret)
1041 return ret;
1042
1043 if (rdt_cpu_has(X86_FEATURE_BMEC)) {
1044 u32 eax, ebx, ecx, edx;
1045
1046 /* Detect list of bandwidth sources that can be tracked */
1047 cpuid_count(0x80000020, 3, &eax, &ebx, &ecx, &edx);
1048 hw_res->mbm_cfg_mask = ecx & MAX_EVT_CONFIG_BITS;
1049
1050 if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL)) {
1051 mbm_total_event.configurable = true;
1052 mbm_config_rftype_init("mbm_total_bytes_config");
1053 }
1054 if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL)) {
1055 mbm_local_event.configurable = true;
1056 mbm_config_rftype_init("mbm_local_bytes_config");
1057 }
1058 }
1059
1060 l3_mon_evt_init(r);
1061
1062 r->mon_capable = true;
1063
1064 return 0;
1065}
1066
1067void __exit rdt_put_mon_l3_config(void)
1068{
1069 dom_data_exit();
1070}
1071
1072void __init intel_rdt_mbm_apply_quirk(void)
1073{
1074 int cf_index;
1075
1076 cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1;
1077 if (cf_index >= ARRAY_SIZE(mbm_cf_table)) {
1078 pr_info("No MBM correction factor available\n");
1079 return;
1080 }
1081
1082 mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold;
1083 mbm_cf = mbm_cf_table[cf_index].cf;
1084}