Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Resource Director Technology(RDT)
 * - Monitoring code
 *
 * Copyright (C) 2017 Intel Corporation
 *
 * Author:
 *    Vikas Shivappa <vikas.shivappa@intel.com>
 *
 * This replaces the cqm.c based on perf but we reuse a lot of
 * code and datastructures originally from Peter Zijlstra and Matt Fleming.
 *
 * More information about RDT be found in the Intel (R) x86 Architecture
 * Software Developer Manual June 2016, volume 3, section 17.17.
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/sizes.h>
#include <linux/slab.h>

#include <asm/cpu_device_id.h>
#include <asm/resctrl.h>

#include "internal.h"

/**
 * struct rmid_entry - dirty tracking for all RMID.
 * @closid:	The CLOSID for this entry.
 * @rmid:	The RMID for this entry.
 * @busy:	The number of domains with cached data using this RMID.
 * @list:	Member of the rmid_free_lru list when busy == 0.
 *
 * Depending on the architecture the correct monitor is accessed using
 * both @closid and @rmid, or @rmid only.
 *
 * Take the rdtgroup_mutex when accessing.
 */
struct rmid_entry {
	u32				closid;
	u32				rmid;
	int				busy;
	struct list_head		list;
};

/*
 * @rmid_free_lru - A least recently used list of free RMIDs
 *     These RMIDs are guaranteed to have an occupancy less than the
 *     threshold occupancy
 */
static LIST_HEAD(rmid_free_lru);

/*
 * @closid_num_dirty_rmid    The number of dirty RMID each CLOSID has.
 *     Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined.
 *     Indexed by CLOSID. Protected by rdtgroup_mutex.
 */
static u32 *closid_num_dirty_rmid;

/*
 * @rmid_limbo_count - count of currently unused but (potentially)
 *     dirty RMIDs.
 *     This counts RMIDs that no one is currently using but that
 *     may have a occupancy value > resctrl_rmid_realloc_threshold. User can
 *     change the threshold occupancy value.
 */
static unsigned int rmid_limbo_count;

/*
 * @rmid_entry - The entry in the limbo and free lists.
 */
static struct rmid_entry	*rmid_ptrs;

/*
 * Global boolean for rdt_monitor which is true if any
 * resource monitoring is enabled.
 */
bool rdt_mon_capable;

/*
 * Global to indicate which monitoring events are enabled.
 */
unsigned int rdt_mon_features;

/*
 * This is the threshold cache occupancy in bytes at which we will consider an
 * RMID available for re-allocation.
 */
unsigned int resctrl_rmid_realloc_threshold;

/*
 * This is the maximum value for the reallocation threshold, in bytes.
 */
unsigned int resctrl_rmid_realloc_limit;

#define CF(cf)	((unsigned long)(1048576 * (cf) + 0.5))

/*
 * The correction factor table is documented in Documentation/arch/x86/resctrl.rst.
 * If rmid > rmid threshold, MBM total and local values should be multiplied
 * by the correction factor.
 *
 * The original table is modified for better code:
 *
 * 1. The threshold 0 is changed to rmid count - 1 so don't do correction
 *    for the case.
 * 2. MBM total and local correction table indexed by core counter which is
 *    equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27.
 * 3. The correction factor is normalized to 2^20 (1048576) so it's faster
 *    to calculate corrected value by shifting:
 *    corrected_value = (original_value * correction_factor) >> 20
 */
static const struct mbm_correction_factor_table {
	u32 rmidthreshold;
	u64 cf;
} mbm_cf_table[] __initconst = {
	{7,	CF(1.000000)},
	{15,	CF(1.000000)},
	{15,	CF(0.969650)},
	{31,	CF(1.000000)},
	{31,	CF(1.066667)},
	{31,	CF(0.969650)},
	{47,	CF(1.142857)},
	{63,	CF(1.000000)},
	{63,	CF(1.185115)},
	{63,	CF(1.066553)},
	{79,	CF(1.454545)},
	{95,	CF(1.000000)},
	{95,	CF(1.230769)},
	{95,	CF(1.142857)},
	{95,	CF(1.066667)},
	{127,	CF(1.000000)},
	{127,	CF(1.254863)},
	{127,	CF(1.185255)},
	{151,	CF(1.000000)},
	{127,	CF(1.066667)},
	{167,	CF(1.000000)},
	{159,	CF(1.454334)},
	{183,	CF(1.000000)},
	{127,	CF(0.969744)},
	{191,	CF(1.280246)},
	{191,	CF(1.230921)},
	{215,	CF(1.000000)},
	{191,	CF(1.143118)},
};

static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX;
static u64 mbm_cf __read_mostly;

static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val)
{
	/* Correct MBM value. */
	if (rmid > mbm_cf_rmidthreshold)
		val = (val * mbm_cf) >> 20;

	return val;
}

/*
 * x86 and arm64 differ in their handling of monitoring.
 * x86's RMID are independent numbers, there is only one source of traffic
 * with an RMID value of '1'.
 * arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of
 * traffic with a PMG value of '1', one for each CLOSID, meaning the RMID
 * value is no longer unique.
 * To account for this, resctrl uses an index. On x86 this is just the RMID,
 * on arm64 it encodes the CLOSID and RMID. This gives a unique number.
 *
 * The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code
 * must accept an attempt to read every index.
 */
static inline struct rmid_entry *__rmid_entry(u32 idx)
{
	struct rmid_entry *entry;
	u32 closid, rmid;

	entry = &rmid_ptrs[idx];
	resctrl_arch_rmid_idx_decode(idx, &closid, &rmid);

	WARN_ON_ONCE(entry->closid != closid);
	WARN_ON_ONCE(entry->rmid != rmid);

	return entry;
}

static int __rmid_read(u32 rmid, enum resctrl_event_id eventid, u64 *val)
{
	u64 msr_val;

	/*
	 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
	 * with a valid event code for supported resource type and the bits
	 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
	 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
	 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
	 * are error bits.
	 */
	wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
	rdmsrl(MSR_IA32_QM_CTR, msr_val);

	if (msr_val & RMID_VAL_ERROR)
		return -EIO;
	if (msr_val & RMID_VAL_UNAVAIL)
		return -EINVAL;

	*val = msr_val;
	return 0;
}

static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_domain *hw_dom,
						 u32 rmid,
						 enum resctrl_event_id eventid)
{
	switch (eventid) {
	case QOS_L3_OCCUP_EVENT_ID:
		return NULL;
	case QOS_L3_MBM_TOTAL_EVENT_ID:
		return &hw_dom->arch_mbm_total[rmid];
	case QOS_L3_MBM_LOCAL_EVENT_ID:
		return &hw_dom->arch_mbm_local[rmid];
	}

	/* Never expect to get here */
	WARN_ON_ONCE(1);

	return NULL;
}

void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_domain *d,
			     u32 unused, u32 rmid,
			     enum resctrl_event_id eventid)
{
	struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d);
	struct arch_mbm_state *am;

	am = get_arch_mbm_state(hw_dom, rmid, eventid);
	if (am) {
		memset(am, 0, sizeof(*am));

		/* Record any initial, non-zero count value. */
		__rmid_read(rmid, eventid, &am->prev_msr);
	}
}

/*
 * Assumes that hardware counters are also reset and thus that there is
 * no need to record initial non-zero counts.
 */
void resctrl_arch_reset_rmid_all(struct rdt_resource *r, struct rdt_domain *d)
{
	struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d);

	if (is_mbm_total_enabled())
		memset(hw_dom->arch_mbm_total, 0,
		       sizeof(*hw_dom->arch_mbm_total) * r->num_rmid);

	if (is_mbm_local_enabled())
		memset(hw_dom->arch_mbm_local, 0,
		       sizeof(*hw_dom->arch_mbm_local) * r->num_rmid);
}

static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
{
	u64 shift = 64 - width, chunks;

	chunks = (cur_msr << shift) - (prev_msr << shift);
	return chunks >> shift;
}

int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_domain *d,
			   u32 unused, u32 rmid, enum resctrl_event_id eventid,
			   u64 *val, void *ignored)
{
	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
	struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d);
	struct arch_mbm_state *am;
	u64 msr_val, chunks;
	int ret;

	resctrl_arch_rmid_read_context_check();

	if (!cpumask_test_cpu(smp_processor_id(), &d->cpu_mask))
		return -EINVAL;

	ret = __rmid_read(rmid, eventid, &msr_val);
	if (ret)
		return ret;

	am = get_arch_mbm_state(hw_dom, rmid, eventid);
	if (am) {
		am->chunks += mbm_overflow_count(am->prev_msr, msr_val,
						 hw_res->mbm_width);
		chunks = get_corrected_mbm_count(rmid, am->chunks);
		am->prev_msr = msr_val;
	} else {
		chunks = msr_val;
	}

	*val = chunks * hw_res->mon_scale;

	return 0;
}

static void limbo_release_entry(struct rmid_entry *entry)
{
	lockdep_assert_held(&rdtgroup_mutex);

	rmid_limbo_count--;
	list_add_tail(&entry->list, &rmid_free_lru);

	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
		closid_num_dirty_rmid[entry->closid]--;
}

/*
 * Check the RMIDs that are marked as busy for this domain. If the
 * reported LLC occupancy is below the threshold clear the busy bit and
 * decrement the count. If the busy count gets to zero on an RMID, we
 * free the RMID
 */
void __check_limbo(struct rdt_domain *d, bool force_free)
{
	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
	u32 idx_limit = resctrl_arch_system_num_rmid_idx();
	struct rmid_entry *entry;
	u32 idx, cur_idx = 1;
	void *arch_mon_ctx;
	bool rmid_dirty;
	u64 val = 0;

	arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID);
	if (IS_ERR(arch_mon_ctx)) {
		pr_warn_ratelimited("Failed to allocate monitor context: %ld",
				    PTR_ERR(arch_mon_ctx));
		return;
	}

	/*
	 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
	 * are marked as busy for occupancy < threshold. If the occupancy
	 * is less than the threshold decrement the busy counter of the
	 * RMID and move it to the free list when the counter reaches 0.
	 */
	for (;;) {
		idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx);
		if (idx >= idx_limit)
			break;

		entry = __rmid_entry(idx);
		if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid,
					   QOS_L3_OCCUP_EVENT_ID, &val,
					   arch_mon_ctx)) {
			rmid_dirty = true;
		} else {
			rmid_dirty = (val >= resctrl_rmid_realloc_threshold);
		}

		if (force_free || !rmid_dirty) {
			clear_bit(idx, d->rmid_busy_llc);
			if (!--entry->busy)
				limbo_release_entry(entry);
		}
		cur_idx = idx + 1;
	}

	resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx);
}

bool has_busy_rmid(struct rdt_domain *d)
{
	u32 idx_limit = resctrl_arch_system_num_rmid_idx();

	return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit;
}

static struct rmid_entry *resctrl_find_free_rmid(u32 closid)
{
	struct rmid_entry *itr;
	u32 itr_idx, cmp_idx;

	if (list_empty(&rmid_free_lru))
		return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC);

	list_for_each_entry(itr, &rmid_free_lru, list) {
		/*
		 * Get the index of this free RMID, and the index it would need
		 * to be if it were used with this CLOSID.
		 * If the CLOSID is irrelevant on this architecture, the two
		 * index values are always the same on every entry and thus the
		 * very first entry will be returned.
		 */
		itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid);
		cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid);

		if (itr_idx == cmp_idx)
			return itr;
	}

	return ERR_PTR(-ENOSPC);
}

/**
 * resctrl_find_cleanest_closid() - Find a CLOSID where all the associated
 *                                  RMID are clean, or the CLOSID that has
 *                                  the most clean RMID.
 *
 * MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID
 * may not be able to allocate clean RMID. To avoid this the allocator will
 * choose the CLOSID with the most clean RMID.
 *
 * When the CLOSID and RMID are independent numbers, the first free CLOSID will
 * be returned.
 */
int resctrl_find_cleanest_closid(void)
{
	u32 cleanest_closid = ~0;
	int i = 0;

	lockdep_assert_held(&rdtgroup_mutex);

	if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
		return -EIO;

	for (i = 0; i < closids_supported(); i++) {
		int num_dirty;

		if (closid_allocated(i))
			continue;

		num_dirty = closid_num_dirty_rmid[i];
		if (num_dirty == 0)
			return i;

		if (cleanest_closid == ~0)
			cleanest_closid = i;

		if (num_dirty < closid_num_dirty_rmid[cleanest_closid])
			cleanest_closid = i;
	}

	if (cleanest_closid == ~0)
		return -ENOSPC;

	return cleanest_closid;
}

/*
 * For MPAM the RMID value is not unique, and has to be considered with
 * the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which
 * allows all domains to be managed by a single free list.
 * Each domain also has a rmid_busy_llc to reduce the work of the limbo handler.
 */
int alloc_rmid(u32 closid)
{
	struct rmid_entry *entry;

	lockdep_assert_held(&rdtgroup_mutex);

	entry = resctrl_find_free_rmid(closid);
	if (IS_ERR(entry))
		return PTR_ERR(entry);

	list_del(&entry->list);
	return entry->rmid;
}

static void add_rmid_to_limbo(struct rmid_entry *entry)
{
	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
	struct rdt_domain *d;
	u32 idx;

	lockdep_assert_held(&rdtgroup_mutex);

	/* Walking r->domains, ensure it can't race with cpuhp */
	lockdep_assert_cpus_held();

	idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid);

	entry->busy = 0;
	list_for_each_entry(d, &r->domains, list) {
		/*
		 * For the first limbo RMID in the domain,
		 * setup up the limbo worker.
		 */
		if (!has_busy_rmid(d))
			cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL,
						RESCTRL_PICK_ANY_CPU);
		set_bit(idx, d->rmid_busy_llc);
		entry->busy++;
	}

	rmid_limbo_count++;
	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
		closid_num_dirty_rmid[entry->closid]++;
}

void free_rmid(u32 closid, u32 rmid)
{
	u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
	struct rmid_entry *entry;

	lockdep_assert_held(&rdtgroup_mutex);

	/*
	 * Do not allow the default rmid to be free'd. Comparing by index
	 * allows architectures that ignore the closid parameter to avoid an
	 * unnecessary check.
	 */
	if (idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
						RESCTRL_RESERVED_RMID))
		return;

	entry = __rmid_entry(idx);

	if (is_llc_occupancy_enabled())
		add_rmid_to_limbo(entry);
	else
		list_add_tail(&entry->list, &rmid_free_lru);
}

static struct mbm_state *get_mbm_state(struct rdt_domain *d, u32 closid,
				       u32 rmid, enum resctrl_event_id evtid)
{
	u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);

	switch (evtid) {
	case QOS_L3_MBM_TOTAL_EVENT_ID:
		return &d->mbm_total[idx];
	case QOS_L3_MBM_LOCAL_EVENT_ID:
		return &d->mbm_local[idx];
	default:
		return NULL;
	}
}

static int __mon_event_count(u32 closid, u32 rmid, struct rmid_read *rr)
{
	struct mbm_state *m;
	u64 tval = 0;

	if (rr->first) {
		resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid);
		m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
		if (m)
			memset(m, 0, sizeof(struct mbm_state));
		return 0;
	}

	rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid, rr->evtid,
					 &tval, rr->arch_mon_ctx);
	if (rr->err)
		return rr->err;

	rr->val += tval;

	return 0;
}

/*
 * mbm_bw_count() - Update bw count from values previously read by
 *		    __mon_event_count().
 * @closid:	The closid used to identify the cached mbm_state.
 * @rmid:	The rmid used to identify the cached mbm_state.
 * @rr:		The struct rmid_read populated by __mon_event_count().
 *
 * Supporting function to calculate the memory bandwidth
 * and delta bandwidth in MBps. The chunks value previously read by
 * __mon_event_count() is compared with the chunks value from the previous
 * invocation. This must be called once per second to maintain values in MBps.
 */
static void mbm_bw_count(u32 closid, u32 rmid, struct rmid_read *rr)
{
	u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
	struct mbm_state *m = &rr->d->mbm_local[idx];
	u64 cur_bw, bytes, cur_bytes;

	cur_bytes = rr->val;
	bytes = cur_bytes - m->prev_bw_bytes;
	m->prev_bw_bytes = cur_bytes;

	cur_bw = bytes / SZ_1M;

	m->prev_bw = cur_bw;
}

/*
 * This is scheduled by mon_event_read() to read the CQM/MBM counters
 * on a domain.
 */
void mon_event_count(void *info)
{
	struct rdtgroup *rdtgrp, *entry;
	struct rmid_read *rr = info;
	struct list_head *head;
	int ret;

	rdtgrp = rr->rgrp;

	ret = __mon_event_count(rdtgrp->closid, rdtgrp->mon.rmid, rr);

	/*
	 * For Ctrl groups read data from child monitor groups and
	 * add them together. Count events which are read successfully.
	 * Discard the rmid_read's reporting errors.
	 */
	head = &rdtgrp->mon.crdtgrp_list;

	if (rdtgrp->type == RDTCTRL_GROUP) {
		list_for_each_entry(entry, head, mon.crdtgrp_list) {
			if (__mon_event_count(entry->closid, entry->mon.rmid,
					      rr) == 0)
				ret = 0;
		}
	}

	/*
	 * __mon_event_count() calls for newly created monitor groups may
	 * report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
	 * Discard error if any of the monitor event reads succeeded.
	 */
	if (ret == 0)
		rr->err = 0;
}

/*
 * Feedback loop for MBA software controller (mba_sc)
 *
 * mba_sc is a feedback loop where we periodically read MBM counters and
 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
 * that:
 *
 *   current bandwidth(cur_bw) < user specified bandwidth(user_bw)
 *
 * This uses the MBM counters to measure the bandwidth and MBA throttle
 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
 * fact that resctrl rdtgroups have both monitoring and control.
 *
 * The frequency of the checks is 1s and we just tag along the MBM overflow
 * timer. Having 1s interval makes the calculation of bandwidth simpler.
 *
 * Although MBA's goal is to restrict the bandwidth to a maximum, there may
 * be a need to increase the bandwidth to avoid unnecessarily restricting
 * the L2 <-> L3 traffic.
 *
 * Since MBA controls the L2 external bandwidth where as MBM measures the
 * L3 external bandwidth the following sequence could lead to such a
 * situation.
 *
 * Consider an rdtgroup which had high L3 <-> memory traffic in initial
 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
 * after some time rdtgroup has mostly L2 <-> L3 traffic.
 *
 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
 * throttle MSRs already have low percentage values.  To avoid
 * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
 */
static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
{
	u32 closid, rmid, cur_msr_val, new_msr_val;
	struct mbm_state *pmbm_data, *cmbm_data;
	struct rdt_resource *r_mba;
	struct rdt_domain *dom_mba;
	u32 cur_bw, user_bw, idx;
	struct list_head *head;
	struct rdtgroup *entry;

	if (!is_mbm_local_enabled())
		return;

	r_mba = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;

	closid = rgrp->closid;
	rmid = rgrp->mon.rmid;
	idx = resctrl_arch_rmid_idx_encode(closid, rmid);
	pmbm_data = &dom_mbm->mbm_local[idx];

	dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
	if (!dom_mba) {
		pr_warn_once("Failure to get domain for MBA update\n");
		return;
	}

	cur_bw = pmbm_data->prev_bw;
	user_bw = dom_mba->mbps_val[closid];

	/* MBA resource doesn't support CDP */
	cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);

	/*
	 * For Ctrl groups read data from child monitor groups.
	 */
	head = &rgrp->mon.crdtgrp_list;
	list_for_each_entry(entry, head, mon.crdtgrp_list) {
		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
		cur_bw += cmbm_data->prev_bw;
	}

	/*
	 * Scale up/down the bandwidth linearly for the ctrl group.  The
	 * bandwidth step is the bandwidth granularity specified by the
	 * hardware.
	 * Always increase throttling if current bandwidth is above the
	 * target set by user.
	 * But avoid thrashing up and down on every poll by checking
	 * whether a decrease in throttling is likely to push the group
	 * back over target. E.g. if currently throttling to 30% of bandwidth
	 * on a system with 10% granularity steps, check whether moving to
	 * 40% would go past the limit by multiplying current bandwidth by
	 * "(30 + 10) / 30".
	 */
	if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
		new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
	} else if (cur_msr_val < MAX_MBA_BW &&
		   (user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) {
		new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
	} else {
		return;
	}

	resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
}

static void mbm_update(struct rdt_resource *r, struct rdt_domain *d,
		       u32 closid, u32 rmid)
{
	struct rmid_read rr;

	rr.first = false;
	rr.r = r;
	rr.d = d;

	/*
	 * This is protected from concurrent reads from user
	 * as both the user and we hold the global mutex.
	 */
	if (is_mbm_total_enabled()) {
		rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
		rr.val = 0;
		rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
		if (IS_ERR(rr.arch_mon_ctx)) {
			pr_warn_ratelimited("Failed to allocate monitor context: %ld",
					    PTR_ERR(rr.arch_mon_ctx));
			return;
		}

		__mon_event_count(closid, rmid, &rr);

		resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
	}
	if (is_mbm_local_enabled()) {
		rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
		rr.val = 0;
		rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
		if (IS_ERR(rr.arch_mon_ctx)) {
			pr_warn_ratelimited("Failed to allocate monitor context: %ld",
					    PTR_ERR(rr.arch_mon_ctx));
			return;
		}

		__mon_event_count(closid, rmid, &rr);

		/*
		 * Call the MBA software controller only for the
		 * control groups and when user has enabled
		 * the software controller explicitly.
		 */
		if (is_mba_sc(NULL))
			mbm_bw_count(closid, rmid, &rr);

		resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
	}
}

/*
 * Handler to scan the limbo list and move the RMIDs
 * to free list whose occupancy < threshold_occupancy.
 */
void cqm_handle_limbo(struct work_struct *work)
{
	unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
	struct rdt_domain *d;

	cpus_read_lock();
	mutex_lock(&rdtgroup_mutex);

	d = container_of(work, struct rdt_domain, cqm_limbo.work);

	__check_limbo(d, false);

	if (has_busy_rmid(d)) {
		d->cqm_work_cpu = cpumask_any_housekeeping(&d->cpu_mask,
							   RESCTRL_PICK_ANY_CPU);
		schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo,
					 delay);
	}

	mutex_unlock(&rdtgroup_mutex);
	cpus_read_unlock();
}

/**
 * cqm_setup_limbo_handler() - Schedule the limbo handler to run for this
 *                             domain.
 * @dom:           The domain the limbo handler should run for.
 * @delay_ms:      How far in the future the handler should run.
 * @exclude_cpu:   Which CPU the handler should not run on,
 *		   RESCTRL_PICK_ANY_CPU to pick any CPU.
 */
void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms,
			     int exclude_cpu)
{
	unsigned long delay = msecs_to_jiffies(delay_ms);
	int cpu;

	cpu = cpumask_any_housekeeping(&dom->cpu_mask, exclude_cpu);
	dom->cqm_work_cpu = cpu;

	if (cpu < nr_cpu_ids)
		schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
}

void mbm_handle_overflow(struct work_struct *work)
{
	unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
	struct rdtgroup *prgrp, *crgrp;
	struct list_head *head;
	struct rdt_resource *r;
	struct rdt_domain *d;

	cpus_read_lock();
	mutex_lock(&rdtgroup_mutex);

	/*
	 * If the filesystem has been unmounted this work no longer needs to
	 * run.
	 */
	if (!resctrl_mounted || !resctrl_arch_mon_capable())
		goto out_unlock;

	r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
	d = container_of(work, struct rdt_domain, mbm_over.work);

	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
		mbm_update(r, d, prgrp->closid, prgrp->mon.rmid);

		head = &prgrp->mon.crdtgrp_list;
		list_for_each_entry(crgrp, head, mon.crdtgrp_list)
			mbm_update(r, d, crgrp->closid, crgrp->mon.rmid);

		if (is_mba_sc(NULL))
			update_mba_bw(prgrp, d);
	}

	/*
	 * Re-check for housekeeping CPUs. This allows the overflow handler to
	 * move off a nohz_full CPU quickly.
	 */
	d->mbm_work_cpu = cpumask_any_housekeeping(&d->cpu_mask,
						   RESCTRL_PICK_ANY_CPU);
	schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay);

out_unlock:
	mutex_unlock(&rdtgroup_mutex);
	cpus_read_unlock();
}

/**
 * mbm_setup_overflow_handler() - Schedule the overflow handler to run for this
 *                                domain.
 * @dom:           The domain the overflow handler should run for.
 * @delay_ms:      How far in the future the handler should run.
 * @exclude_cpu:   Which CPU the handler should not run on,
 *		   RESCTRL_PICK_ANY_CPU to pick any CPU.
 */
void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms,
				int exclude_cpu)
{
	unsigned long delay = msecs_to_jiffies(delay_ms);
	int cpu;

	/*
	 * When a domain comes online there is no guarantee the filesystem is
	 * mounted. If not, there is no need to catch counter overflow.
	 */
	if (!resctrl_mounted || !resctrl_arch_mon_capable())
		return;
	cpu = cpumask_any_housekeeping(&dom->cpu_mask, exclude_cpu);
	dom->mbm_work_cpu = cpu;

	if (cpu < nr_cpu_ids)
		schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
}

static int dom_data_init(struct rdt_resource *r)
{
	u32 idx_limit = resctrl_arch_system_num_rmid_idx();
	u32 num_closid = resctrl_arch_get_num_closid(r);
	struct rmid_entry *entry = NULL;
	int err = 0, i;
	u32 idx;

	mutex_lock(&rdtgroup_mutex);
	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
		u32 *tmp;

		/*
		 * If the architecture hasn't provided a sanitised value here,
		 * this may result in larger arrays than necessary. Resctrl will
		 * use a smaller system wide value based on the resources in
		 * use.
		 */
		tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL);
		if (!tmp) {
			err = -ENOMEM;
			goto out_unlock;
		}

		closid_num_dirty_rmid = tmp;
	}

	rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL);
	if (!rmid_ptrs) {
		if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
			kfree(closid_num_dirty_rmid);
			closid_num_dirty_rmid = NULL;
		}
		err = -ENOMEM;
		goto out_unlock;
	}

	for (i = 0; i < idx_limit; i++) {
		entry = &rmid_ptrs[i];
		INIT_LIST_HEAD(&entry->list);

		resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid);
		list_add_tail(&entry->list, &rmid_free_lru);
	}

	/*
	 * RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and
	 * are always allocated. These are used for the rdtgroup_default
	 * control group, which will be setup later in rdtgroup_init().
	 */
	idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
					   RESCTRL_RESERVED_RMID);
	entry = __rmid_entry(idx);
	list_del(&entry->list);

out_unlock:
	mutex_unlock(&rdtgroup_mutex);

	return err;
}

static void __exit dom_data_exit(void)
{
	mutex_lock(&rdtgroup_mutex);

	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
		kfree(closid_num_dirty_rmid);
		closid_num_dirty_rmid = NULL;
	}

	kfree(rmid_ptrs);
	rmid_ptrs = NULL;

	mutex_unlock(&rdtgroup_mutex);
}

static struct mon_evt llc_occupancy_event = {
	.name		= "llc_occupancy",
	.evtid		= QOS_L3_OCCUP_EVENT_ID,
};

static struct mon_evt mbm_total_event = {
	.name		= "mbm_total_bytes",
	.evtid		= QOS_L3_MBM_TOTAL_EVENT_ID,
};

static struct mon_evt mbm_local_event = {
	.name		= "mbm_local_bytes",
	.evtid		= QOS_L3_MBM_LOCAL_EVENT_ID,
};

/*
 * Initialize the event list for the resource.
 *
 * Note that MBM events are also part of RDT_RESOURCE_L3 resource
 * because as per the SDM the total and local memory bandwidth
 * are enumerated as part of L3 monitoring.
 */
static void l3_mon_evt_init(struct rdt_resource *r)
{
	INIT_LIST_HEAD(&r->evt_list);

	if (is_llc_occupancy_enabled())
		list_add_tail(&llc_occupancy_event.list, &r->evt_list);
	if (is_mbm_total_enabled())
		list_add_tail(&mbm_total_event.list, &r->evt_list);
	if (is_mbm_local_enabled())
		list_add_tail(&mbm_local_event.list, &r->evt_list);
}

int __init rdt_get_mon_l3_config(struct rdt_resource *r)
{
	unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
	unsigned int threshold;
	int ret;

	resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024;
	hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale;
	r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
	hw_res->mbm_width = MBM_CNTR_WIDTH_BASE;

	if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
		hw_res->mbm_width += mbm_offset;
	else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX)
		pr_warn("Ignoring impossible MBM counter offset\n");

	/*
	 * A reasonable upper limit on the max threshold is the number
	 * of lines tagged per RMID if all RMIDs have the same number of
	 * lines tagged in the LLC.
	 *
	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
	 */
	threshold = resctrl_rmid_realloc_limit / r->num_rmid;

	/*
	 * Because num_rmid may not be a power of two, round the value
	 * to the nearest multiple of hw_res->mon_scale so it matches a
	 * value the hardware will measure. mon_scale may not be a power of 2.
	 */
	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold);

	ret = dom_data_init(r);
	if (ret)
		return ret;

	if (rdt_cpu_has(X86_FEATURE_BMEC)) {
		u32 eax, ebx, ecx, edx;

		/* Detect list of bandwidth sources that can be tracked */
		cpuid_count(0x80000020, 3, &eax, &ebx, &ecx, &edx);
		hw_res->mbm_cfg_mask = ecx & MAX_EVT_CONFIG_BITS;

		if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL)) {
			mbm_total_event.configurable = true;
			mbm_config_rftype_init("mbm_total_bytes_config");
		}
		if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL)) {
			mbm_local_event.configurable = true;
			mbm_config_rftype_init("mbm_local_bytes_config");
		}
	}

	l3_mon_evt_init(r);

	r->mon_capable = true;

	return 0;
}

void __exit rdt_put_mon_l3_config(void)
{
	dom_data_exit();
}

void __init intel_rdt_mbm_apply_quirk(void)
{
	int cf_index;

	cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1;
	if (cf_index >= ARRAY_SIZE(mbm_cf_table)) {
		pr_info("No MBM correction factor available\n");
		return;
	}

	mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold;
	mbm_cf = mbm_cf_table[cf_index].cf;
}