Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * mm/readahead.c - address_space-level file readahead.
  4 *
  5 * Copyright (C) 2002, Linus Torvalds
  6 *
  7 * 09Apr2002	Andrew Morton
  8 *		Initial version.
  9 */
 10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 11#include <linux/kernel.h>
 12#include <linux/dax.h>
 13#include <linux/gfp.h>
 14#include <linux/export.h>
 15#include <linux/blkdev.h>
 16#include <linux/backing-dev.h>
 17#include <linux/task_io_accounting_ops.h>
 18#include <linux/pagevec.h>
 19#include <linux/pagemap.h>
 
 20#include <linux/syscalls.h>
 21#include <linux/file.h>
 22#include <linux/mm_inline.h>
 23#include <linux/blk-cgroup.h>
 24#include <linux/fadvise.h>
 
 25
 26#include "internal.h"
 27
 28/*
 29 * Initialise a struct file's readahead state.  Assumes that the caller has
 30 * memset *ra to zero.
 31 */
 32void
 33file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 34{
 35	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 36	ra->prev_pos = -1;
 37}
 38EXPORT_SYMBOL_GPL(file_ra_state_init);
 39
 40/*
 41 * see if a page needs releasing upon read_cache_pages() failure
 42 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 43 *   before calling, such as the NFS fs marking pages that are cached locally
 44 *   on disk, thus we need to give the fs a chance to clean up in the event of
 45 *   an error
 46 */
 47static void read_cache_pages_invalidate_page(struct address_space *mapping,
 48					     struct page *page)
 49{
 50	if (page_has_private(page)) {
 51		if (!trylock_page(page))
 52			BUG();
 53		page->mapping = mapping;
 54		do_invalidatepage(page, 0, PAGE_SIZE);
 55		page->mapping = NULL;
 56		unlock_page(page);
 57	}
 58	put_page(page);
 59}
 60
 61/*
 62 * release a list of pages, invalidating them first if need be
 63 */
 64static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 65					      struct list_head *pages)
 66{
 67	struct page *victim;
 68
 69	while (!list_empty(pages)) {
 70		victim = lru_to_page(pages);
 71		list_del(&victim->lru);
 72		read_cache_pages_invalidate_page(mapping, victim);
 73	}
 74}
 75
 76/**
 77 * read_cache_pages - populate an address space with some pages & start reads against them
 78 * @mapping: the address_space
 79 * @pages: The address of a list_head which contains the target pages.  These
 80 *   pages have their ->index populated and are otherwise uninitialised.
 81 * @filler: callback routine for filling a single page.
 82 * @data: private data for the callback routine.
 83 *
 84 * Hides the details of the LRU cache etc from the filesystems.
 85 *
 86 * Returns: %0 on success, error return by @filler otherwise
 87 */
 88int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 89			int (*filler)(void *, struct page *), void *data)
 90{
 91	struct page *page;
 92	int ret = 0;
 93
 94	while (!list_empty(pages)) {
 95		page = lru_to_page(pages);
 96		list_del(&page->lru);
 97		if (add_to_page_cache_lru(page, mapping, page->index,
 98				readahead_gfp_mask(mapping))) {
 99			read_cache_pages_invalidate_page(mapping, page);
100			continue;
101		}
102		put_page(page);
103
104		ret = filler(data, page);
105		if (unlikely(ret)) {
106			read_cache_pages_invalidate_pages(mapping, pages);
107			break;
108		}
109		task_io_account_read(PAGE_SIZE);
110	}
111	return ret;
112}
113
114EXPORT_SYMBOL(read_cache_pages);
115
116static int read_pages(struct address_space *mapping, struct file *filp,
117		struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
118{
 
 
119	struct blk_plug plug;
120	unsigned page_idx;
121	int ret;
122
123	blk_start_plug(&plug);
 
124
125	if (mapping->a_ops->readpages) {
126		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
127		/* Clean up the remaining pages */
128		put_pages_list(pages);
129		goto out;
130	}
131
132	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
133		struct page *page = lru_to_page(pages);
134		list_del(&page->lru);
135		if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
136			mapping->a_ops->readpage(filp, page);
137		put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138	}
139	ret = 0;
140
141out:
142	blk_finish_plug(&plug);
 
 
 
143
144	return ret;
145}
146
147/*
148 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates
149 * the pages first, then submits them for I/O. This avoids the very bad
150 * behaviour which would occur if page allocations are causing VM writeback.
151 * We really don't want to intermingle reads and writes like that.
 
 
 
 
 
152 *
153 * Returns the number of pages requested, or the maximum amount of I/O allowed.
 
154 */
155unsigned int __do_page_cache_readahead(struct address_space *mapping,
156		struct file *filp, pgoff_t offset, unsigned long nr_to_read,
157		unsigned long lookahead_size)
158{
159	struct inode *inode = mapping->host;
160	struct page *page;
161	unsigned long end_index;	/* The last page we want to read */
162	LIST_HEAD(page_pool);
163	int page_idx;
164	unsigned int nr_pages = 0;
165	loff_t isize = i_size_read(inode);
166	gfp_t gfp_mask = readahead_gfp_mask(mapping);
 
167
168	if (isize == 0)
169		goto out;
170
171	end_index = ((isize - 1) >> PAGE_SHIFT);
 
 
 
 
 
 
 
172
 
173	/*
174	 * Preallocate as many pages as we will need.
175	 */
176	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
177		pgoff_t page_offset = offset + page_idx;
178
179		if (page_offset > end_index)
180			break;
181
182		page = xa_load(&mapping->i_pages, page_offset);
183		if (page && !xa_is_value(page)) {
184			/*
185			 * Page already present?  Kick off the current batch of
186			 * contiguous pages before continuing with the next
187			 * batch.
 
 
 
188			 */
189			if (nr_pages)
190				read_pages(mapping, filp, &page_pool, nr_pages,
191						gfp_mask);
192			nr_pages = 0;
193			continue;
194		}
195
196		page = __page_cache_alloc(gfp_mask);
197		if (!page)
198			break;
199		page->index = page_offset;
200		list_add(&page->lru, &page_pool);
201		if (page_idx == nr_to_read - lookahead_size)
202			SetPageReadahead(page);
203		nr_pages++;
 
 
 
 
 
 
 
204	}
205
206	/*
207	 * Now start the IO.  We ignore I/O errors - if the page is not
208	 * uptodate then the caller will launch readpage again, and
209	 * will then handle the error.
210	 */
211	if (nr_pages)
212		read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask);
213	BUG_ON(!list_empty(&page_pool));
214out:
215	return nr_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216}
217
218/*
219 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
220 * memory at once.
221 */
222int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
223			       pgoff_t offset, unsigned long nr_to_read)
224{
 
 
225	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
226	struct file_ra_state *ra = &filp->f_ra;
227	unsigned long max_pages;
228
229	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
230		return -EINVAL;
231
232	/*
233	 * If the request exceeds the readahead window, allow the read to
234	 * be up to the optimal hardware IO size
235	 */
 
236	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
237	nr_to_read = min(nr_to_read, max_pages);
238	while (nr_to_read) {
239		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
240
241		if (this_chunk > nr_to_read)
242			this_chunk = nr_to_read;
243		__do_page_cache_readahead(mapping, filp, offset, this_chunk, 0);
 
244
245		offset += this_chunk;
246		nr_to_read -= this_chunk;
247	}
248	return 0;
249}
250
251/*
252 * Set the initial window size, round to next power of 2 and square
253 * for small size, x 4 for medium, and x 2 for large
254 * for 128k (32 page) max ra
255 * 1-8 page = 32k initial, > 8 page = 128k initial
256 */
257static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
258{
259	unsigned long newsize = roundup_pow_of_two(size);
260
261	if (newsize <= max / 32)
262		newsize = newsize * 4;
263	else if (newsize <= max / 4)
264		newsize = newsize * 2;
265	else
266		newsize = max;
267
268	return newsize;
269}
270
271/*
272 *  Get the previous window size, ramp it up, and
273 *  return it as the new window size.
274 */
275static unsigned long get_next_ra_size(struct file_ra_state *ra,
276				      unsigned long max)
277{
278	unsigned long cur = ra->size;
279
280	if (cur < max / 16)
281		return 4 * cur;
282	if (cur <= max / 2)
283		return 2 * cur;
284	return max;
285}
286
287/*
288 * On-demand readahead design.
289 *
290 * The fields in struct file_ra_state represent the most-recently-executed
291 * readahead attempt:
292 *
293 *                        |<----- async_size ---------|
294 *     |------------------- size -------------------->|
295 *     |==================#===========================|
296 *     ^start             ^page marked with PG_readahead
297 *
298 * To overlap application thinking time and disk I/O time, we do
299 * `readahead pipelining': Do not wait until the application consumed all
300 * readahead pages and stalled on the missing page at readahead_index;
301 * Instead, submit an asynchronous readahead I/O as soon as there are
302 * only async_size pages left in the readahead window. Normally async_size
303 * will be equal to size, for maximum pipelining.
304 *
305 * In interleaved sequential reads, concurrent streams on the same fd can
306 * be invalidating each other's readahead state. So we flag the new readahead
307 * page at (start+size-async_size) with PG_readahead, and use it as readahead
308 * indicator. The flag won't be set on already cached pages, to avoid the
309 * readahead-for-nothing fuss, saving pointless page cache lookups.
310 *
311 * prev_pos tracks the last visited byte in the _previous_ read request.
312 * It should be maintained by the caller, and will be used for detecting
313 * small random reads. Note that the readahead algorithm checks loosely
314 * for sequential patterns. Hence interleaved reads might be served as
315 * sequential ones.
316 *
317 * There is a special-case: if the first page which the application tries to
318 * read happens to be the first page of the file, it is assumed that a linear
319 * read is about to happen and the window is immediately set to the initial size
320 * based on I/O request size and the max_readahead.
321 *
322 * The code ramps up the readahead size aggressively at first, but slow down as
323 * it approaches max_readhead.
324 */
325
326/*
327 * Count contiguously cached pages from @offset-1 to @offset-@max,
328 * this count is a conservative estimation of
329 * 	- length of the sequential read sequence, or
330 * 	- thrashing threshold in memory tight systems
331 */
332static pgoff_t count_history_pages(struct address_space *mapping,
333				   pgoff_t offset, unsigned long max)
334{
335	pgoff_t head;
336
337	rcu_read_lock();
338	head = page_cache_prev_miss(mapping, offset - 1, max);
339	rcu_read_unlock();
340
341	return offset - 1 - head;
342}
343
344/*
345 * page cache context based read-ahead
346 */
347static int try_context_readahead(struct address_space *mapping,
348				 struct file_ra_state *ra,
349				 pgoff_t offset,
350				 unsigned long req_size,
351				 unsigned long max)
352{
353	pgoff_t size;
354
355	size = count_history_pages(mapping, offset, max);
356
357	/*
358	 * not enough history pages:
359	 * it could be a random read
360	 */
361	if (size <= req_size)
362		return 0;
363
364	/*
365	 * starts from beginning of file:
366	 * it is a strong indication of long-run stream (or whole-file-read)
367	 */
368	if (size >= offset)
369		size *= 2;
370
371	ra->start = offset;
372	ra->size = min(size + req_size, max);
373	ra->async_size = 1;
374
375	return 1;
376}
377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378/*
379 * A minimal readahead algorithm for trivial sequential/random reads.
380 */
381static unsigned long
382ondemand_readahead(struct address_space *mapping,
383		   struct file_ra_state *ra, struct file *filp,
384		   bool hit_readahead_marker, pgoff_t offset,
385		   unsigned long req_size)
386{
387	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
 
388	unsigned long max_pages = ra->ra_pages;
389	unsigned long add_pages;
390	pgoff_t prev_offset;
 
 
391
392	/*
393	 * If the request exceeds the readahead window, allow the read to
394	 * be up to the optimal hardware IO size
395	 */
396	if (req_size > max_pages && bdi->io_pages > max_pages)
397		max_pages = min(req_size, bdi->io_pages);
398
399	/*
400	 * start of file
401	 */
402	if (!offset)
403		goto initial_readahead;
404
405	/*
406	 * It's the expected callback offset, assume sequential access.
407	 * Ramp up sizes, and push forward the readahead window.
408	 */
409	if ((offset == (ra->start + ra->size - ra->async_size) ||
410	     offset == (ra->start + ra->size))) {
 
411		ra->start += ra->size;
412		ra->size = get_next_ra_size(ra, max_pages);
413		ra->async_size = ra->size;
414		goto readit;
415	}
416
417	/*
418	 * Hit a marked page without valid readahead state.
419	 * E.g. interleaved reads.
420	 * Query the pagecache for async_size, which normally equals to
421	 * readahead size. Ramp it up and use it as the new readahead size.
422	 */
423	if (hit_readahead_marker) {
424		pgoff_t start;
425
426		rcu_read_lock();
427		start = page_cache_next_miss(mapping, offset + 1, max_pages);
 
428		rcu_read_unlock();
429
430		if (!start || start - offset > max_pages)
431			return 0;
432
433		ra->start = start;
434		ra->size = start - offset;	/* old async_size */
435		ra->size += req_size;
436		ra->size = get_next_ra_size(ra, max_pages);
437		ra->async_size = ra->size;
438		goto readit;
439	}
440
441	/*
442	 * oversize read
443	 */
444	if (req_size > max_pages)
445		goto initial_readahead;
446
447	/*
448	 * sequential cache miss
449	 * trivial case: (offset - prev_offset) == 1
450	 * unaligned reads: (offset - prev_offset) == 0
451	 */
452	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
453	if (offset - prev_offset <= 1UL)
454		goto initial_readahead;
455
456	/*
457	 * Query the page cache and look for the traces(cached history pages)
458	 * that a sequential stream would leave behind.
459	 */
460	if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
 
461		goto readit;
462
463	/*
464	 * standalone, small random read
465	 * Read as is, and do not pollute the readahead state.
466	 */
467	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
 
468
469initial_readahead:
470	ra->start = offset;
471	ra->size = get_init_ra_size(req_size, max_pages);
472	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
473
474readit:
475	/*
476	 * Will this read hit the readahead marker made by itself?
477	 * If so, trigger the readahead marker hit now, and merge
478	 * the resulted next readahead window into the current one.
479	 * Take care of maximum IO pages as above.
480	 */
481	if (offset == ra->start && ra->size == ra->async_size) {
482		add_pages = get_next_ra_size(ra, max_pages);
483		if (ra->size + add_pages <= max_pages) {
484			ra->async_size = add_pages;
485			ra->size += add_pages;
486		} else {
487			ra->size = max_pages;
488			ra->async_size = max_pages >> 1;
489		}
490	}
491
492	return ra_submit(ra, mapping, filp);
 
493}
494
495/**
496 * page_cache_sync_readahead - generic file readahead
497 * @mapping: address_space which holds the pagecache and I/O vectors
498 * @ra: file_ra_state which holds the readahead state
499 * @filp: passed on to ->readpage() and ->readpages()
500 * @offset: start offset into @mapping, in pagecache page-sized units
501 * @req_size: hint: total size of the read which the caller is performing in
502 *            pagecache pages
503 *
504 * page_cache_sync_readahead() should be called when a cache miss happened:
505 * it will submit the read.  The readahead logic may decide to piggyback more
506 * pages onto the read request if access patterns suggest it will improve
507 * performance.
508 */
509void page_cache_sync_readahead(struct address_space *mapping,
510			       struct file_ra_state *ra, struct file *filp,
511			       pgoff_t offset, unsigned long req_size)
512{
513	/* no read-ahead */
514	if (!ra->ra_pages)
515		return;
516
517	if (blk_cgroup_congested())
518		return;
 
 
 
 
 
 
 
 
 
 
519
520	/* be dumb */
521	if (filp && (filp->f_mode & FMODE_RANDOM)) {
522		force_page_cache_readahead(mapping, filp, offset, req_size);
523		return;
524	}
525
526	/* do read-ahead */
527	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
528}
529EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
530
531/**
532 * page_cache_async_readahead - file readahead for marked pages
533 * @mapping: address_space which holds the pagecache and I/O vectors
534 * @ra: file_ra_state which holds the readahead state
535 * @filp: passed on to ->readpage() and ->readpages()
536 * @page: the page at @offset which has the PG_readahead flag set
537 * @offset: start offset into @mapping, in pagecache page-sized units
538 * @req_size: hint: total size of the read which the caller is performing in
539 *            pagecache pages
540 *
541 * page_cache_async_readahead() should be called when a page is used which
542 * has the PG_readahead flag; this is a marker to suggest that the application
543 * has used up enough of the readahead window that we should start pulling in
544 * more pages.
545 */
546void
547page_cache_async_readahead(struct address_space *mapping,
548			   struct file_ra_state *ra, struct file *filp,
549			   struct page *page, pgoff_t offset,
550			   unsigned long req_size)
551{
552	/* no read-ahead */
553	if (!ra->ra_pages)
554		return;
555
556	/*
557	 * Same bit is used for PG_readahead and PG_reclaim.
558	 */
559	if (PageWriteback(page))
560		return;
561
562	ClearPageReadahead(page);
563
564	/*
565	 * Defer asynchronous read-ahead on IO congestion.
566	 */
567	if (inode_read_congested(mapping->host))
568		return;
569
570	if (blk_cgroup_congested())
571		return;
572
573	/* do read-ahead */
574	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
575}
576EXPORT_SYMBOL_GPL(page_cache_async_readahead);
577
578ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
579{
580	ssize_t ret;
581	struct fd f;
582
583	ret = -EBADF;
584	f = fdget(fd);
585	if (!f.file || !(f.file->f_mode & FMODE_READ))
586		goto out;
587
588	/*
589	 * The readahead() syscall is intended to run only on files
590	 * that can execute readahead. If readahead is not possible
591	 * on this file, then we must return -EINVAL.
592	 */
593	ret = -EINVAL;
594	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
595	    !S_ISREG(file_inode(f.file)->i_mode))
 
596		goto out;
597
598	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
599out:
600	fdput(f);
601	return ret;
602}
603
604SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
605{
606	return ksys_readahead(fd, offset, count);
607}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * mm/readahead.c - address_space-level file readahead.
  4 *
  5 * Copyright (C) 2002, Linus Torvalds
  6 *
  7 * 09Apr2002	Andrew Morton
  8 *		Initial version.
  9 */
 10
 11/**
 12 * DOC: Readahead Overview
 13 *
 14 * Readahead is used to read content into the page cache before it is
 15 * explicitly requested by the application.  Readahead only ever
 16 * attempts to read folios that are not yet in the page cache.  If a
 17 * folio is present but not up-to-date, readahead will not try to read
 18 * it. In that case a simple ->read_folio() will be requested.
 19 *
 20 * Readahead is triggered when an application read request (whether a
 21 * system call or a page fault) finds that the requested folio is not in
 22 * the page cache, or that it is in the page cache and has the
 23 * readahead flag set.  This flag indicates that the folio was read
 24 * as part of a previous readahead request and now that it has been
 25 * accessed, it is time for the next readahead.
 26 *
 27 * Each readahead request is partly synchronous read, and partly async
 28 * readahead.  This is reflected in the struct file_ra_state which
 29 * contains ->size being the total number of pages, and ->async_size
 30 * which is the number of pages in the async section.  The readahead
 31 * flag will be set on the first folio in this async section to trigger
 32 * a subsequent readahead.  Once a series of sequential reads has been
 33 * established, there should be no need for a synchronous component and
 34 * all readahead request will be fully asynchronous.
 35 *
 36 * When either of the triggers causes a readahead, three numbers need
 37 * to be determined: the start of the region to read, the size of the
 38 * region, and the size of the async tail.
 39 *
 40 * The start of the region is simply the first page address at or after
 41 * the accessed address, which is not currently populated in the page
 42 * cache.  This is found with a simple search in the page cache.
 43 *
 44 * The size of the async tail is determined by subtracting the size that
 45 * was explicitly requested from the determined request size, unless
 46 * this would be less than zero - then zero is used.  NOTE THIS
 47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
 48 * PAGE.  ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
 49 *
 50 * The size of the region is normally determined from the size of the
 51 * previous readahead which loaded the preceding pages.  This may be
 52 * discovered from the struct file_ra_state for simple sequential reads,
 53 * or from examining the state of the page cache when multiple
 54 * sequential reads are interleaved.  Specifically: where the readahead
 55 * was triggered by the readahead flag, the size of the previous
 56 * readahead is assumed to be the number of pages from the triggering
 57 * page to the start of the new readahead.  In these cases, the size of
 58 * the previous readahead is scaled, often doubled, for the new
 59 * readahead, though see get_next_ra_size() for details.
 60 *
 61 * If the size of the previous read cannot be determined, the number of
 62 * preceding pages in the page cache is used to estimate the size of
 63 * a previous read.  This estimate could easily be misled by random
 64 * reads being coincidentally adjacent, so it is ignored unless it is
 65 * larger than the current request, and it is not scaled up, unless it
 66 * is at the start of file.
 67 *
 68 * In general readahead is accelerated at the start of the file, as
 69 * reads from there are often sequential.  There are other minor
 70 * adjustments to the readahead size in various special cases and these
 71 * are best discovered by reading the code.
 72 *
 73 * The above calculation, based on the previous readahead size,
 74 * determines the size of the readahead, to which any requested read
 75 * size may be added.
 76 *
 77 * Readahead requests are sent to the filesystem using the ->readahead()
 78 * address space operation, for which mpage_readahead() is a canonical
 79 * implementation.  ->readahead() should normally initiate reads on all
 80 * folios, but may fail to read any or all folios without causing an I/O
 81 * error.  The page cache reading code will issue a ->read_folio() request
 82 * for any folio which ->readahead() did not read, and only an error
 83 * from this will be final.
 84 *
 85 * ->readahead() will generally call readahead_folio() repeatedly to get
 86 * each folio from those prepared for readahead.  It may fail to read a
 87 * folio by:
 88 *
 89 * * not calling readahead_folio() sufficiently many times, effectively
 90 *   ignoring some folios, as might be appropriate if the path to
 91 *   storage is congested.
 92 *
 93 * * failing to actually submit a read request for a given folio,
 94 *   possibly due to insufficient resources, or
 95 *
 96 * * getting an error during subsequent processing of a request.
 97 *
 98 * In the last two cases, the folio should be unlocked by the filesystem
 99 * to indicate that the read attempt has failed.  In the first case the
100 * folio will be unlocked by the VFS.
101 *
102 * Those folios not in the final ``async_size`` of the request should be
103 * considered to be important and ->readahead() should not fail them due
104 * to congestion or temporary resource unavailability, but should wait
105 * for necessary resources (e.g.  memory or indexing information) to
106 * become available.  Folios in the final ``async_size`` may be
107 * considered less urgent and failure to read them is more acceptable.
108 * In this case it is best to use filemap_remove_folio() to remove the
109 * folios from the page cache as is automatically done for folios that
110 * were not fetched with readahead_folio().  This will allow a
111 * subsequent synchronous readahead request to try them again.  If they
112 * are left in the page cache, then they will be read individually using
113 * ->read_folio() which may be less efficient.
114 */
115
116#include <linux/blkdev.h>
117#include <linux/kernel.h>
118#include <linux/dax.h>
119#include <linux/gfp.h>
120#include <linux/export.h>
 
121#include <linux/backing-dev.h>
122#include <linux/task_io_accounting_ops.h>
 
123#include <linux/pagemap.h>
124#include <linux/psi.h>
125#include <linux/syscalls.h>
126#include <linux/file.h>
127#include <linux/mm_inline.h>
128#include <linux/blk-cgroup.h>
129#include <linux/fadvise.h>
130#include <linux/sched/mm.h>
131
132#include "internal.h"
133
134/*
135 * Initialise a struct file's readahead state.  Assumes that the caller has
136 * memset *ra to zero.
137 */
138void
139file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
140{
141	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
142	ra->prev_pos = -1;
143}
144EXPORT_SYMBOL_GPL(file_ra_state_init);
145
146static void read_pages(struct readahead_control *rac)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147{
148	const struct address_space_operations *aops = rac->mapping->a_ops;
149	struct folio *folio;
150	struct blk_plug plug;
 
 
151
152	if (!readahead_count(rac))
153		return;
154
155	if (unlikely(rac->_workingset))
156		psi_memstall_enter(&rac->_pflags);
157	blk_start_plug(&plug);
 
 
 
158
159	if (aops->readahead) {
160		aops->readahead(rac);
161		/*
162		 * Clean up the remaining folios.  The sizes in ->ra
163		 * may be used to size the next readahead, so make sure
164		 * they accurately reflect what happened.
165		 */
166		while ((folio = readahead_folio(rac)) != NULL) {
167			unsigned long nr = folio_nr_pages(folio);
168
169			folio_get(folio);
170			rac->ra->size -= nr;
171			if (rac->ra->async_size >= nr) {
172				rac->ra->async_size -= nr;
173				filemap_remove_folio(folio);
174			}
175			folio_unlock(folio);
176			folio_put(folio);
177		}
178	} else {
179		while ((folio = readahead_folio(rac)) != NULL)
180			aops->read_folio(rac->file, folio);
181	}
 
182
 
183	blk_finish_plug(&plug);
184	if (unlikely(rac->_workingset))
185		psi_memstall_leave(&rac->_pflags);
186	rac->_workingset = false;
187
188	BUG_ON(readahead_count(rac));
189}
190
191/**
192 * page_cache_ra_unbounded - Start unchecked readahead.
193 * @ractl: Readahead control.
194 * @nr_to_read: The number of pages to read.
195 * @lookahead_size: Where to start the next readahead.
196 *
197 * This function is for filesystems to call when they want to start
198 * readahead beyond a file's stated i_size.  This is almost certainly
199 * not the function you want to call.  Use page_cache_async_readahead()
200 * or page_cache_sync_readahead() instead.
201 *
202 * Context: File is referenced by caller.  Mutexes may be held by caller.
203 * May sleep, but will not reenter filesystem to reclaim memory.
204 */
205void page_cache_ra_unbounded(struct readahead_control *ractl,
206		unsigned long nr_to_read, unsigned long lookahead_size)
207{
208	struct address_space *mapping = ractl->mapping;
209	unsigned long index = readahead_index(ractl);
 
 
 
 
 
 
210	gfp_t gfp_mask = readahead_gfp_mask(mapping);
211	unsigned long i;
212
213	/*
214	 * Partway through the readahead operation, we will have added
215	 * locked pages to the page cache, but will not yet have submitted
216	 * them for I/O.  Adding another page may need to allocate memory,
217	 * which can trigger memory reclaim.  Telling the VM we're in
218	 * the middle of a filesystem operation will cause it to not
219	 * touch file-backed pages, preventing a deadlock.  Most (all?)
220	 * filesystems already specify __GFP_NOFS in their mapping's
221	 * gfp_mask, but let's be explicit here.
222	 */
223	unsigned int nofs = memalloc_nofs_save();
224
225	filemap_invalidate_lock_shared(mapping);
226	/*
227	 * Preallocate as many pages as we will need.
228	 */
229	for (i = 0; i < nr_to_read; i++) {
230		struct folio *folio = xa_load(&mapping->i_pages, index + i);
 
 
 
231
232		if (folio && !xa_is_value(folio)) {
 
233			/*
234			 * Page already present?  Kick off the current batch
235			 * of contiguous pages before continuing with the
236			 * next batch.  This page may be the one we would
237			 * have intended to mark as Readahead, but we don't
238			 * have a stable reference to this page, and it's
239			 * not worth getting one just for that.
240			 */
241			read_pages(ractl);
242			ractl->_index++;
243			i = ractl->_index + ractl->_nr_pages - index - 1;
 
244			continue;
245		}
246
247		folio = filemap_alloc_folio(gfp_mask, 0);
248		if (!folio)
249			break;
250		if (filemap_add_folio(mapping, folio, index + i,
251					gfp_mask) < 0) {
252			folio_put(folio);
253			read_pages(ractl);
254			ractl->_index++;
255			i = ractl->_index + ractl->_nr_pages - index - 1;
256			continue;
257		}
258		if (i == nr_to_read - lookahead_size)
259			folio_set_readahead(folio);
260		ractl->_workingset |= folio_test_workingset(folio);
261		ractl->_nr_pages++;
262	}
263
264	/*
265	 * Now start the IO.  We ignore I/O errors - if the folio is not
266	 * uptodate then the caller will launch read_folio again, and
267	 * will then handle the error.
268	 */
269	read_pages(ractl);
270	filemap_invalidate_unlock_shared(mapping);
271	memalloc_nofs_restore(nofs);
272}
273EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
274
275/*
276 * do_page_cache_ra() actually reads a chunk of disk.  It allocates
277 * the pages first, then submits them for I/O. This avoids the very bad
278 * behaviour which would occur if page allocations are causing VM writeback.
279 * We really don't want to intermingle reads and writes like that.
280 */
281static void do_page_cache_ra(struct readahead_control *ractl,
282		unsigned long nr_to_read, unsigned long lookahead_size)
283{
284	struct inode *inode = ractl->mapping->host;
285	unsigned long index = readahead_index(ractl);
286	loff_t isize = i_size_read(inode);
287	pgoff_t end_index;	/* The last page we want to read */
288
289	if (isize == 0)
290		return;
291
292	end_index = (isize - 1) >> PAGE_SHIFT;
293	if (index > end_index)
294		return;
295	/* Don't read past the page containing the last byte of the file */
296	if (nr_to_read > end_index - index)
297		nr_to_read = end_index - index + 1;
298
299	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
300}
301
302/*
303 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
304 * memory at once.
305 */
306void force_page_cache_ra(struct readahead_control *ractl,
307		unsigned long nr_to_read)
308{
309	struct address_space *mapping = ractl->mapping;
310	struct file_ra_state *ra = ractl->ra;
311	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
312	unsigned long max_pages, index;
 
313
314	if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
315		return;
316
317	/*
318	 * If the request exceeds the readahead window, allow the read to
319	 * be up to the optimal hardware IO size
320	 */
321	index = readahead_index(ractl);
322	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
323	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
324	while (nr_to_read) {
325		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
326
327		if (this_chunk > nr_to_read)
328			this_chunk = nr_to_read;
329		ractl->_index = index;
330		do_page_cache_ra(ractl, this_chunk, 0);
331
332		index += this_chunk;
333		nr_to_read -= this_chunk;
334	}
 
335}
336
337/*
338 * Set the initial window size, round to next power of 2 and square
339 * for small size, x 4 for medium, and x 2 for large
340 * for 128k (32 page) max ra
341 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
342 */
343static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
344{
345	unsigned long newsize = roundup_pow_of_two(size);
346
347	if (newsize <= max / 32)
348		newsize = newsize * 4;
349	else if (newsize <= max / 4)
350		newsize = newsize * 2;
351	else
352		newsize = max;
353
354	return newsize;
355}
356
357/*
358 *  Get the previous window size, ramp it up, and
359 *  return it as the new window size.
360 */
361static unsigned long get_next_ra_size(struct file_ra_state *ra,
362				      unsigned long max)
363{
364	unsigned long cur = ra->size;
365
366	if (cur < max / 16)
367		return 4 * cur;
368	if (cur <= max / 2)
369		return 2 * cur;
370	return max;
371}
372
373/*
374 * On-demand readahead design.
375 *
376 * The fields in struct file_ra_state represent the most-recently-executed
377 * readahead attempt:
378 *
379 *                        |<----- async_size ---------|
380 *     |------------------- size -------------------->|
381 *     |==================#===========================|
382 *     ^start             ^page marked with PG_readahead
383 *
384 * To overlap application thinking time and disk I/O time, we do
385 * `readahead pipelining': Do not wait until the application consumed all
386 * readahead pages and stalled on the missing page at readahead_index;
387 * Instead, submit an asynchronous readahead I/O as soon as there are
388 * only async_size pages left in the readahead window. Normally async_size
389 * will be equal to size, for maximum pipelining.
390 *
391 * In interleaved sequential reads, concurrent streams on the same fd can
392 * be invalidating each other's readahead state. So we flag the new readahead
393 * page at (start+size-async_size) with PG_readahead, and use it as readahead
394 * indicator. The flag won't be set on already cached pages, to avoid the
395 * readahead-for-nothing fuss, saving pointless page cache lookups.
396 *
397 * prev_pos tracks the last visited byte in the _previous_ read request.
398 * It should be maintained by the caller, and will be used for detecting
399 * small random reads. Note that the readahead algorithm checks loosely
400 * for sequential patterns. Hence interleaved reads might be served as
401 * sequential ones.
402 *
403 * There is a special-case: if the first page which the application tries to
404 * read happens to be the first page of the file, it is assumed that a linear
405 * read is about to happen and the window is immediately set to the initial size
406 * based on I/O request size and the max_readahead.
407 *
408 * The code ramps up the readahead size aggressively at first, but slow down as
409 * it approaches max_readhead.
410 */
411
412/*
413 * Count contiguously cached pages from @index-1 to @index-@max,
414 * this count is a conservative estimation of
415 * 	- length of the sequential read sequence, or
416 * 	- thrashing threshold in memory tight systems
417 */
418static pgoff_t count_history_pages(struct address_space *mapping,
419				   pgoff_t index, unsigned long max)
420{
421	pgoff_t head;
422
423	rcu_read_lock();
424	head = page_cache_prev_miss(mapping, index - 1, max);
425	rcu_read_unlock();
426
427	return index - 1 - head;
428}
429
430/*
431 * page cache context based readahead
432 */
433static int try_context_readahead(struct address_space *mapping,
434				 struct file_ra_state *ra,
435				 pgoff_t index,
436				 unsigned long req_size,
437				 unsigned long max)
438{
439	pgoff_t size;
440
441	size = count_history_pages(mapping, index, max);
442
443	/*
444	 * not enough history pages:
445	 * it could be a random read
446	 */
447	if (size <= req_size)
448		return 0;
449
450	/*
451	 * starts from beginning of file:
452	 * it is a strong indication of long-run stream (or whole-file-read)
453	 */
454	if (size >= index)
455		size *= 2;
456
457	ra->start = index;
458	ra->size = min(size + req_size, max);
459	ra->async_size = 1;
460
461	return 1;
462}
463
464static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
465		pgoff_t mark, unsigned int order, gfp_t gfp)
466{
467	int err;
468	struct folio *folio = filemap_alloc_folio(gfp, order);
469
470	if (!folio)
471		return -ENOMEM;
472	mark = round_down(mark, 1UL << order);
473	if (index == mark)
474		folio_set_readahead(folio);
475	err = filemap_add_folio(ractl->mapping, folio, index, gfp);
476	if (err) {
477		folio_put(folio);
478		return err;
479	}
480
481	ractl->_nr_pages += 1UL << order;
482	ractl->_workingset |= folio_test_workingset(folio);
483	return 0;
484}
485
486void page_cache_ra_order(struct readahead_control *ractl,
487		struct file_ra_state *ra, unsigned int new_order)
488{
489	struct address_space *mapping = ractl->mapping;
490	pgoff_t index = readahead_index(ractl);
491	pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
492	pgoff_t mark = index + ra->size - ra->async_size;
493	unsigned int nofs;
494	int err = 0;
495	gfp_t gfp = readahead_gfp_mask(mapping);
496
497	if (!mapping_large_folio_support(mapping) || ra->size < 4)
498		goto fallback;
499
500	limit = min(limit, index + ra->size - 1);
501
502	if (new_order < MAX_PAGECACHE_ORDER) {
503		new_order += 2;
504		new_order = min_t(unsigned int, MAX_PAGECACHE_ORDER, new_order);
505		new_order = min_t(unsigned int, new_order, ilog2(ra->size));
506	}
507
508	/* See comment in page_cache_ra_unbounded() */
509	nofs = memalloc_nofs_save();
510	filemap_invalidate_lock_shared(mapping);
511	while (index <= limit) {
512		unsigned int order = new_order;
513
514		/* Align with smaller pages if needed */
515		if (index & ((1UL << order) - 1))
516			order = __ffs(index);
517		/* Don't allocate pages past EOF */
518		while (index + (1UL << order) - 1 > limit)
519			order--;
520		err = ra_alloc_folio(ractl, index, mark, order, gfp);
521		if (err)
522			break;
523		index += 1UL << order;
524	}
525
526	if (index > limit) {
527		ra->size += index - limit - 1;
528		ra->async_size += index - limit - 1;
529	}
530
531	read_pages(ractl);
532	filemap_invalidate_unlock_shared(mapping);
533	memalloc_nofs_restore(nofs);
534
535	/*
536	 * If there were already pages in the page cache, then we may have
537	 * left some gaps.  Let the regular readahead code take care of this
538	 * situation.
539	 */
540	if (!err)
541		return;
542fallback:
543	do_page_cache_ra(ractl, ra->size, ra->async_size);
544}
545
546/*
547 * A minimal readahead algorithm for trivial sequential/random reads.
548 */
549static void ondemand_readahead(struct readahead_control *ractl,
550		struct folio *folio, unsigned long req_size)
 
 
 
551{
552	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
553	struct file_ra_state *ra = ractl->ra;
554	unsigned long max_pages = ra->ra_pages;
555	unsigned long add_pages;
556	pgoff_t index = readahead_index(ractl);
557	pgoff_t expected, prev_index;
558	unsigned int order = folio ? folio_order(folio) : 0;
559
560	/*
561	 * If the request exceeds the readahead window, allow the read to
562	 * be up to the optimal hardware IO size
563	 */
564	if (req_size > max_pages && bdi->io_pages > max_pages)
565		max_pages = min(req_size, bdi->io_pages);
566
567	/*
568	 * start of file
569	 */
570	if (!index)
571		goto initial_readahead;
572
573	/*
574	 * It's the expected callback index, assume sequential access.
575	 * Ramp up sizes, and push forward the readahead window.
576	 */
577	expected = round_down(ra->start + ra->size - ra->async_size,
578			1UL << order);
579	if (index == expected || index == (ra->start + ra->size)) {
580		ra->start += ra->size;
581		ra->size = get_next_ra_size(ra, max_pages);
582		ra->async_size = ra->size;
583		goto readit;
584	}
585
586	/*
587	 * Hit a marked folio without valid readahead state.
588	 * E.g. interleaved reads.
589	 * Query the pagecache for async_size, which normally equals to
590	 * readahead size. Ramp it up and use it as the new readahead size.
591	 */
592	if (folio) {
593		pgoff_t start;
594
595		rcu_read_lock();
596		start = page_cache_next_miss(ractl->mapping, index + 1,
597				max_pages);
598		rcu_read_unlock();
599
600		if (!start || start - index > max_pages)
601			return;
602
603		ra->start = start;
604		ra->size = start - index;	/* old async_size */
605		ra->size += req_size;
606		ra->size = get_next_ra_size(ra, max_pages);
607		ra->async_size = ra->size;
608		goto readit;
609	}
610
611	/*
612	 * oversize read
613	 */
614	if (req_size > max_pages)
615		goto initial_readahead;
616
617	/*
618	 * sequential cache miss
619	 * trivial case: (index - prev_index) == 1
620	 * unaligned reads: (index - prev_index) == 0
621	 */
622	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
623	if (index - prev_index <= 1UL)
624		goto initial_readahead;
625
626	/*
627	 * Query the page cache and look for the traces(cached history pages)
628	 * that a sequential stream would leave behind.
629	 */
630	if (try_context_readahead(ractl->mapping, ra, index, req_size,
631			max_pages))
632		goto readit;
633
634	/*
635	 * standalone, small random read
636	 * Read as is, and do not pollute the readahead state.
637	 */
638	do_page_cache_ra(ractl, req_size, 0);
639	return;
640
641initial_readahead:
642	ra->start = index;
643	ra->size = get_init_ra_size(req_size, max_pages);
644	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
645
646readit:
647	/*
648	 * Will this read hit the readahead marker made by itself?
649	 * If so, trigger the readahead marker hit now, and merge
650	 * the resulted next readahead window into the current one.
651	 * Take care of maximum IO pages as above.
652	 */
653	if (index == ra->start && ra->size == ra->async_size) {
654		add_pages = get_next_ra_size(ra, max_pages);
655		if (ra->size + add_pages <= max_pages) {
656			ra->async_size = add_pages;
657			ra->size += add_pages;
658		} else {
659			ra->size = max_pages;
660			ra->async_size = max_pages >> 1;
661		}
662	}
663
664	ractl->_index = ra->start;
665	page_cache_ra_order(ractl, ra, order);
666}
667
668void page_cache_sync_ra(struct readahead_control *ractl,
669		unsigned long req_count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670{
671	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
 
 
672
673	/*
674	 * Even if readahead is disabled, issue this request as readahead
675	 * as we'll need it to satisfy the requested range. The forced
676	 * readahead will do the right thing and limit the read to just the
677	 * requested range, which we'll set to 1 page for this case.
678	 */
679	if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
680		if (!ractl->file)
681			return;
682		req_count = 1;
683		do_forced_ra = true;
684	}
685
686	/* be dumb */
687	if (do_forced_ra) {
688		force_page_cache_ra(ractl, req_count);
689		return;
690	}
691
692	ondemand_readahead(ractl, NULL, req_count);
 
693}
694EXPORT_SYMBOL_GPL(page_cache_sync_ra);
695
696void page_cache_async_ra(struct readahead_control *ractl,
697		struct folio *folio, unsigned long req_count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
698{
699	/* no readahead */
700	if (!ractl->ra->ra_pages)
701		return;
702
703	/*
704	 * Same bit is used for PG_readahead and PG_reclaim.
705	 */
706	if (folio_test_writeback(folio))
707		return;
708
709	folio_clear_readahead(folio);
 
 
 
 
 
 
710
711	if (blk_cgroup_congested())
712		return;
713
714	ondemand_readahead(ractl, folio, req_count);
 
715}
716EXPORT_SYMBOL_GPL(page_cache_async_ra);
717
718ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
719{
720	ssize_t ret;
721	struct fd f;
722
723	ret = -EBADF;
724	f = fdget(fd);
725	if (!f.file || !(f.file->f_mode & FMODE_READ))
726		goto out;
727
728	/*
729	 * The readahead() syscall is intended to run only on files
730	 * that can execute readahead. If readahead is not possible
731	 * on this file, then we must return -EINVAL.
732	 */
733	ret = -EINVAL;
734	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
735	    (!S_ISREG(file_inode(f.file)->i_mode) &&
736	    !S_ISBLK(file_inode(f.file)->i_mode)))
737		goto out;
738
739	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
740out:
741	fdput(f);
742	return ret;
743}
744
745SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
746{
747	return ksys_readahead(fd, offset, count);
748}
749
750#if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
751COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
752{
753	return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
754}
755#endif
756
757/**
758 * readahead_expand - Expand a readahead request
759 * @ractl: The request to be expanded
760 * @new_start: The revised start
761 * @new_len: The revised size of the request
762 *
763 * Attempt to expand a readahead request outwards from the current size to the
764 * specified size by inserting locked pages before and after the current window
765 * to increase the size to the new window.  This may involve the insertion of
766 * THPs, in which case the window may get expanded even beyond what was
767 * requested.
768 *
769 * The algorithm will stop if it encounters a conflicting page already in the
770 * pagecache and leave a smaller expansion than requested.
771 *
772 * The caller must check for this by examining the revised @ractl object for a
773 * different expansion than was requested.
774 */
775void readahead_expand(struct readahead_control *ractl,
776		      loff_t new_start, size_t new_len)
777{
778	struct address_space *mapping = ractl->mapping;
779	struct file_ra_state *ra = ractl->ra;
780	pgoff_t new_index, new_nr_pages;
781	gfp_t gfp_mask = readahead_gfp_mask(mapping);
782
783	new_index = new_start / PAGE_SIZE;
784
785	/* Expand the leading edge downwards */
786	while (ractl->_index > new_index) {
787		unsigned long index = ractl->_index - 1;
788		struct folio *folio = xa_load(&mapping->i_pages, index);
789
790		if (folio && !xa_is_value(folio))
791			return; /* Folio apparently present */
792
793		folio = filemap_alloc_folio(gfp_mask, 0);
794		if (!folio)
795			return;
796		if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
797			folio_put(folio);
798			return;
799		}
800		if (unlikely(folio_test_workingset(folio)) &&
801				!ractl->_workingset) {
802			ractl->_workingset = true;
803			psi_memstall_enter(&ractl->_pflags);
804		}
805		ractl->_nr_pages++;
806		ractl->_index = folio->index;
807	}
808
809	new_len += new_start - readahead_pos(ractl);
810	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
811
812	/* Expand the trailing edge upwards */
813	while (ractl->_nr_pages < new_nr_pages) {
814		unsigned long index = ractl->_index + ractl->_nr_pages;
815		struct folio *folio = xa_load(&mapping->i_pages, index);
816
817		if (folio && !xa_is_value(folio))
818			return; /* Folio apparently present */
819
820		folio = filemap_alloc_folio(gfp_mask, 0);
821		if (!folio)
822			return;
823		if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
824			folio_put(folio);
825			return;
826		}
827		if (unlikely(folio_test_workingset(folio)) &&
828				!ractl->_workingset) {
829			ractl->_workingset = true;
830			psi_memstall_enter(&ractl->_pflags);
831		}
832		ractl->_nr_pages++;
833		if (ra) {
834			ra->size++;
835			ra->async_size++;
836		}
837	}
838}
839EXPORT_SYMBOL(readahead_expand);