Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * mm/readahead.c - address_space-level file readahead.
  4 *
  5 * Copyright (C) 2002, Linus Torvalds
  6 *
  7 * 09Apr2002	Andrew Morton
  8 *		Initial version.
  9 */
 10
 11#include <linux/kernel.h>
 12#include <linux/dax.h>
 13#include <linux/gfp.h>
 14#include <linux/export.h>
 15#include <linux/blkdev.h>
 16#include <linux/backing-dev.h>
 17#include <linux/task_io_accounting_ops.h>
 18#include <linux/pagevec.h>
 19#include <linux/pagemap.h>
 20#include <linux/syscalls.h>
 21#include <linux/file.h>
 22#include <linux/mm_inline.h>
 23#include <linux/blk-cgroup.h>
 24#include <linux/fadvise.h>
 
 25
 26#include "internal.h"
 27
 28/*
 29 * Initialise a struct file's readahead state.  Assumes that the caller has
 30 * memset *ra to zero.
 31 */
 32void
 33file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 34{
 35	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 36	ra->prev_pos = -1;
 37}
 38EXPORT_SYMBOL_GPL(file_ra_state_init);
 39
 40/*
 41 * see if a page needs releasing upon read_cache_pages() failure
 42 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 43 *   before calling, such as the NFS fs marking pages that are cached locally
 44 *   on disk, thus we need to give the fs a chance to clean up in the event of
 45 *   an error
 46 */
 47static void read_cache_pages_invalidate_page(struct address_space *mapping,
 48					     struct page *page)
 49{
 50	if (page_has_private(page)) {
 51		if (!trylock_page(page))
 52			BUG();
 53		page->mapping = mapping;
 54		do_invalidatepage(page, 0, PAGE_SIZE);
 55		page->mapping = NULL;
 56		unlock_page(page);
 57	}
 58	put_page(page);
 59}
 60
 61/*
 62 * release a list of pages, invalidating them first if need be
 63 */
 64static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 65					      struct list_head *pages)
 66{
 67	struct page *victim;
 68
 69	while (!list_empty(pages)) {
 70		victim = lru_to_page(pages);
 71		list_del(&victim->lru);
 72		read_cache_pages_invalidate_page(mapping, victim);
 73	}
 74}
 75
 76/**
 77 * read_cache_pages - populate an address space with some pages & start reads against them
 78 * @mapping: the address_space
 79 * @pages: The address of a list_head which contains the target pages.  These
 80 *   pages have their ->index populated and are otherwise uninitialised.
 81 * @filler: callback routine for filling a single page.
 82 * @data: private data for the callback routine.
 83 *
 84 * Hides the details of the LRU cache etc from the filesystems.
 85 *
 86 * Returns: %0 on success, error return by @filler otherwise
 87 */
 88int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 89			int (*filler)(void *, struct page *), void *data)
 90{
 91	struct page *page;
 92	int ret = 0;
 93
 94	while (!list_empty(pages)) {
 95		page = lru_to_page(pages);
 96		list_del(&page->lru);
 97		if (add_to_page_cache_lru(page, mapping, page->index,
 98				readahead_gfp_mask(mapping))) {
 99			read_cache_pages_invalidate_page(mapping, page);
100			continue;
101		}
102		put_page(page);
103
104		ret = filler(data, page);
105		if (unlikely(ret)) {
106			read_cache_pages_invalidate_pages(mapping, pages);
107			break;
108		}
109		task_io_account_read(PAGE_SIZE);
110	}
111	return ret;
112}
113
114EXPORT_SYMBOL(read_cache_pages);
115
116static int read_pages(struct address_space *mapping, struct file *filp,
117		struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
118{
 
 
119	struct blk_plug plug;
120	unsigned page_idx;
121	int ret;
 
122
123	blk_start_plug(&plug);
124
125	if (mapping->a_ops->readpages) {
126		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
 
 
 
 
 
 
 
 
127		/* Clean up the remaining pages */
128		put_pages_list(pages);
129		goto out;
130	}
131
132	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
133		struct page *page = lru_to_page(pages);
134		list_del(&page->lru);
135		if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
136			mapping->a_ops->readpage(filp, page);
137		put_page(page);
138	}
139	ret = 0;
140
141out:
142	blk_finish_plug(&plug);
143
144	return ret;
 
 
 
 
 
145}
146
147/*
148 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates
149 * the pages first, then submits them for I/O. This avoids the very bad
150 * behaviour which would occur if page allocations are causing VM writeback.
151 * We really don't want to intermingle reads and writes like that.
 
 
 
 
 
 
 
152 *
153 * Returns the number of pages requested, or the maximum amount of I/O allowed.
 
154 */
155unsigned int __do_page_cache_readahead(struct address_space *mapping,
156		struct file *filp, pgoff_t offset, unsigned long nr_to_read,
157		unsigned long lookahead_size)
158{
159	struct inode *inode = mapping->host;
160	struct page *page;
161	unsigned long end_index;	/* The last page we want to read */
162	LIST_HEAD(page_pool);
163	int page_idx;
164	unsigned int nr_pages = 0;
165	loff_t isize = i_size_read(inode);
166	gfp_t gfp_mask = readahead_gfp_mask(mapping);
167
168	if (isize == 0)
169		goto out;
170
171	end_index = ((isize - 1) >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
172
173	/*
174	 * Preallocate as many pages as we will need.
175	 */
176	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
177		pgoff_t page_offset = offset + page_idx;
178
179		if (page_offset > end_index)
180			break;
181
182		page = xa_load(&mapping->i_pages, page_offset);
183		if (page && !xa_is_value(page)) {
184			/*
185			 * Page already present?  Kick off the current batch of
186			 * contiguous pages before continuing with the next
187			 * batch.
 
 
 
188			 */
189			if (nr_pages)
190				read_pages(mapping, filp, &page_pool, nr_pages,
191						gfp_mask);
192			nr_pages = 0;
193			continue;
194		}
195
196		page = __page_cache_alloc(gfp_mask);
197		if (!page)
198			break;
199		page->index = page_offset;
200		list_add(&page->lru, &page_pool);
201		if (page_idx == nr_to_read - lookahead_size)
 
 
 
 
 
 
 
202			SetPageReadahead(page);
203		nr_pages++;
204	}
205
206	/*
207	 * Now start the IO.  We ignore I/O errors - if the page is not
208	 * uptodate then the caller will launch readpage again, and
209	 * will then handle the error.
210	 */
211	if (nr_pages)
212		read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask);
213	BUG_ON(!list_empty(&page_pool));
214out:
215	return nr_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216}
217
218/*
219 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
220 * memory at once.
221 */
222int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
223			       pgoff_t offset, unsigned long nr_to_read)
224{
225	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
226	struct file_ra_state *ra = &filp->f_ra;
227	unsigned long max_pages;
228
229	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
230		return -EINVAL;
 
231
232	/*
233	 * If the request exceeds the readahead window, allow the read to
234	 * be up to the optimal hardware IO size
235	 */
236	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
237	nr_to_read = min(nr_to_read, max_pages);
238	while (nr_to_read) {
239		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
240
241		if (this_chunk > nr_to_read)
242			this_chunk = nr_to_read;
243		__do_page_cache_readahead(mapping, filp, offset, this_chunk, 0);
244
245		offset += this_chunk;
246		nr_to_read -= this_chunk;
247	}
248	return 0;
249}
250
251/*
252 * Set the initial window size, round to next power of 2 and square
253 * for small size, x 4 for medium, and x 2 for large
254 * for 128k (32 page) max ra
255 * 1-8 page = 32k initial, > 8 page = 128k initial
256 */
257static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
258{
259	unsigned long newsize = roundup_pow_of_two(size);
260
261	if (newsize <= max / 32)
262		newsize = newsize * 4;
263	else if (newsize <= max / 4)
264		newsize = newsize * 2;
265	else
266		newsize = max;
267
268	return newsize;
269}
270
271/*
272 *  Get the previous window size, ramp it up, and
273 *  return it as the new window size.
274 */
275static unsigned long get_next_ra_size(struct file_ra_state *ra,
276				      unsigned long max)
277{
278	unsigned long cur = ra->size;
279
280	if (cur < max / 16)
281		return 4 * cur;
282	if (cur <= max / 2)
283		return 2 * cur;
284	return max;
285}
286
287/*
288 * On-demand readahead design.
289 *
290 * The fields in struct file_ra_state represent the most-recently-executed
291 * readahead attempt:
292 *
293 *                        |<----- async_size ---------|
294 *     |------------------- size -------------------->|
295 *     |==================#===========================|
296 *     ^start             ^page marked with PG_readahead
297 *
298 * To overlap application thinking time and disk I/O time, we do
299 * `readahead pipelining': Do not wait until the application consumed all
300 * readahead pages and stalled on the missing page at readahead_index;
301 * Instead, submit an asynchronous readahead I/O as soon as there are
302 * only async_size pages left in the readahead window. Normally async_size
303 * will be equal to size, for maximum pipelining.
304 *
305 * In interleaved sequential reads, concurrent streams on the same fd can
306 * be invalidating each other's readahead state. So we flag the new readahead
307 * page at (start+size-async_size) with PG_readahead, and use it as readahead
308 * indicator. The flag won't be set on already cached pages, to avoid the
309 * readahead-for-nothing fuss, saving pointless page cache lookups.
310 *
311 * prev_pos tracks the last visited byte in the _previous_ read request.
312 * It should be maintained by the caller, and will be used for detecting
313 * small random reads. Note that the readahead algorithm checks loosely
314 * for sequential patterns. Hence interleaved reads might be served as
315 * sequential ones.
316 *
317 * There is a special-case: if the first page which the application tries to
318 * read happens to be the first page of the file, it is assumed that a linear
319 * read is about to happen and the window is immediately set to the initial size
320 * based on I/O request size and the max_readahead.
321 *
322 * The code ramps up the readahead size aggressively at first, but slow down as
323 * it approaches max_readhead.
324 */
325
326/*
327 * Count contiguously cached pages from @offset-1 to @offset-@max,
328 * this count is a conservative estimation of
329 * 	- length of the sequential read sequence, or
330 * 	- thrashing threshold in memory tight systems
331 */
332static pgoff_t count_history_pages(struct address_space *mapping,
333				   pgoff_t offset, unsigned long max)
334{
335	pgoff_t head;
336
337	rcu_read_lock();
338	head = page_cache_prev_miss(mapping, offset - 1, max);
339	rcu_read_unlock();
340
341	return offset - 1 - head;
342}
343
344/*
345 * page cache context based read-ahead
346 */
347static int try_context_readahead(struct address_space *mapping,
348				 struct file_ra_state *ra,
349				 pgoff_t offset,
350				 unsigned long req_size,
351				 unsigned long max)
352{
353	pgoff_t size;
354
355	size = count_history_pages(mapping, offset, max);
356
357	/*
358	 * not enough history pages:
359	 * it could be a random read
360	 */
361	if (size <= req_size)
362		return 0;
363
364	/*
365	 * starts from beginning of file:
366	 * it is a strong indication of long-run stream (or whole-file-read)
367	 */
368	if (size >= offset)
369		size *= 2;
370
371	ra->start = offset;
372	ra->size = min(size + req_size, max);
373	ra->async_size = 1;
374
375	return 1;
376}
377
378/*
379 * A minimal readahead algorithm for trivial sequential/random reads.
380 */
381static unsigned long
382ondemand_readahead(struct address_space *mapping,
383		   struct file_ra_state *ra, struct file *filp,
384		   bool hit_readahead_marker, pgoff_t offset,
385		   unsigned long req_size)
386{
387	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
388	unsigned long max_pages = ra->ra_pages;
389	unsigned long add_pages;
390	pgoff_t prev_offset;
391
392	/*
393	 * If the request exceeds the readahead window, allow the read to
394	 * be up to the optimal hardware IO size
395	 */
396	if (req_size > max_pages && bdi->io_pages > max_pages)
397		max_pages = min(req_size, bdi->io_pages);
398
399	/*
400	 * start of file
401	 */
402	if (!offset)
403		goto initial_readahead;
404
405	/*
406	 * It's the expected callback offset, assume sequential access.
407	 * Ramp up sizes, and push forward the readahead window.
408	 */
409	if ((offset == (ra->start + ra->size - ra->async_size) ||
410	     offset == (ra->start + ra->size))) {
411		ra->start += ra->size;
412		ra->size = get_next_ra_size(ra, max_pages);
413		ra->async_size = ra->size;
414		goto readit;
415	}
416
417	/*
418	 * Hit a marked page without valid readahead state.
419	 * E.g. interleaved reads.
420	 * Query the pagecache for async_size, which normally equals to
421	 * readahead size. Ramp it up and use it as the new readahead size.
422	 */
423	if (hit_readahead_marker) {
424		pgoff_t start;
425
426		rcu_read_lock();
427		start = page_cache_next_miss(mapping, offset + 1, max_pages);
428		rcu_read_unlock();
429
430		if (!start || start - offset > max_pages)
431			return 0;
432
433		ra->start = start;
434		ra->size = start - offset;	/* old async_size */
435		ra->size += req_size;
436		ra->size = get_next_ra_size(ra, max_pages);
437		ra->async_size = ra->size;
438		goto readit;
439	}
440
441	/*
442	 * oversize read
443	 */
444	if (req_size > max_pages)
445		goto initial_readahead;
446
447	/*
448	 * sequential cache miss
449	 * trivial case: (offset - prev_offset) == 1
450	 * unaligned reads: (offset - prev_offset) == 0
451	 */
452	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
453	if (offset - prev_offset <= 1UL)
454		goto initial_readahead;
455
456	/*
457	 * Query the page cache and look for the traces(cached history pages)
458	 * that a sequential stream would leave behind.
459	 */
460	if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
461		goto readit;
462
463	/*
464	 * standalone, small random read
465	 * Read as is, and do not pollute the readahead state.
466	 */
467	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
 
468
469initial_readahead:
470	ra->start = offset;
471	ra->size = get_init_ra_size(req_size, max_pages);
472	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
473
474readit:
475	/*
476	 * Will this read hit the readahead marker made by itself?
477	 * If so, trigger the readahead marker hit now, and merge
478	 * the resulted next readahead window into the current one.
479	 * Take care of maximum IO pages as above.
480	 */
481	if (offset == ra->start && ra->size == ra->async_size) {
482		add_pages = get_next_ra_size(ra, max_pages);
483		if (ra->size + add_pages <= max_pages) {
484			ra->async_size = add_pages;
485			ra->size += add_pages;
486		} else {
487			ra->size = max_pages;
488			ra->async_size = max_pages >> 1;
489		}
490	}
491
492	return ra_submit(ra, mapping, filp);
493}
494
495/**
496 * page_cache_sync_readahead - generic file readahead
497 * @mapping: address_space which holds the pagecache and I/O vectors
498 * @ra: file_ra_state which holds the readahead state
499 * @filp: passed on to ->readpage() and ->readpages()
500 * @offset: start offset into @mapping, in pagecache page-sized units
501 * @req_size: hint: total size of the read which the caller is performing in
502 *            pagecache pages
503 *
504 * page_cache_sync_readahead() should be called when a cache miss happened:
505 * it will submit the read.  The readahead logic may decide to piggyback more
506 * pages onto the read request if access patterns suggest it will improve
507 * performance.
508 */
509void page_cache_sync_readahead(struct address_space *mapping,
510			       struct file_ra_state *ra, struct file *filp,
511			       pgoff_t offset, unsigned long req_size)
512{
513	/* no read-ahead */
514	if (!ra->ra_pages)
515		return;
516
517	if (blk_cgroup_congested())
518		return;
519
520	/* be dumb */
521	if (filp && (filp->f_mode & FMODE_RANDOM)) {
522		force_page_cache_readahead(mapping, filp, offset, req_size);
523		return;
524	}
525
526	/* do read-ahead */
527	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
528}
529EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
530
531/**
532 * page_cache_async_readahead - file readahead for marked pages
533 * @mapping: address_space which holds the pagecache and I/O vectors
534 * @ra: file_ra_state which holds the readahead state
535 * @filp: passed on to ->readpage() and ->readpages()
536 * @page: the page at @offset which has the PG_readahead flag set
537 * @offset: start offset into @mapping, in pagecache page-sized units
538 * @req_size: hint: total size of the read which the caller is performing in
539 *            pagecache pages
540 *
541 * page_cache_async_readahead() should be called when a page is used which
542 * has the PG_readahead flag; this is a marker to suggest that the application
543 * has used up enough of the readahead window that we should start pulling in
544 * more pages.
545 */
546void
547page_cache_async_readahead(struct address_space *mapping,
548			   struct file_ra_state *ra, struct file *filp,
549			   struct page *page, pgoff_t offset,
550			   unsigned long req_size)
551{
552	/* no read-ahead */
553	if (!ra->ra_pages)
554		return;
555
556	/*
557	 * Same bit is used for PG_readahead and PG_reclaim.
558	 */
559	if (PageWriteback(page))
560		return;
561
562	ClearPageReadahead(page);
563
564	/*
565	 * Defer asynchronous read-ahead on IO congestion.
566	 */
567	if (inode_read_congested(mapping->host))
568		return;
569
570	if (blk_cgroup_congested())
571		return;
572
573	/* do read-ahead */
574	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
575}
576EXPORT_SYMBOL_GPL(page_cache_async_readahead);
577
578ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
579{
580	ssize_t ret;
581	struct fd f;
582
583	ret = -EBADF;
584	f = fdget(fd);
585	if (!f.file || !(f.file->f_mode & FMODE_READ))
586		goto out;
587
588	/*
589	 * The readahead() syscall is intended to run only on files
590	 * that can execute readahead. If readahead is not possible
591	 * on this file, then we must return -EINVAL.
592	 */
593	ret = -EINVAL;
594	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
595	    !S_ISREG(file_inode(f.file)->i_mode))
596		goto out;
597
598	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
599out:
600	fdput(f);
601	return ret;
602}
603
604SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
605{
606	return ksys_readahead(fd, offset, count);
607}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * mm/readahead.c - address_space-level file readahead.
  4 *
  5 * Copyright (C) 2002, Linus Torvalds
  6 *
  7 * 09Apr2002	Andrew Morton
  8 *		Initial version.
  9 */
 10
 11#include <linux/kernel.h>
 12#include <linux/dax.h>
 13#include <linux/gfp.h>
 14#include <linux/export.h>
 15#include <linux/blkdev.h>
 16#include <linux/backing-dev.h>
 17#include <linux/task_io_accounting_ops.h>
 18#include <linux/pagevec.h>
 19#include <linux/pagemap.h>
 20#include <linux/syscalls.h>
 21#include <linux/file.h>
 22#include <linux/mm_inline.h>
 23#include <linux/blk-cgroup.h>
 24#include <linux/fadvise.h>
 25#include <linux/sched/mm.h>
 26
 27#include "internal.h"
 28
 29/*
 30 * Initialise a struct file's readahead state.  Assumes that the caller has
 31 * memset *ra to zero.
 32 */
 33void
 34file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 35{
 36	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 37	ra->prev_pos = -1;
 38}
 39EXPORT_SYMBOL_GPL(file_ra_state_init);
 40
 41/*
 42 * see if a page needs releasing upon read_cache_pages() failure
 43 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 44 *   before calling, such as the NFS fs marking pages that are cached locally
 45 *   on disk, thus we need to give the fs a chance to clean up in the event of
 46 *   an error
 47 */
 48static void read_cache_pages_invalidate_page(struct address_space *mapping,
 49					     struct page *page)
 50{
 51	if (page_has_private(page)) {
 52		if (!trylock_page(page))
 53			BUG();
 54		page->mapping = mapping;
 55		do_invalidatepage(page, 0, PAGE_SIZE);
 56		page->mapping = NULL;
 57		unlock_page(page);
 58	}
 59	put_page(page);
 60}
 61
 62/*
 63 * release a list of pages, invalidating them first if need be
 64 */
 65static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 66					      struct list_head *pages)
 67{
 68	struct page *victim;
 69
 70	while (!list_empty(pages)) {
 71		victim = lru_to_page(pages);
 72		list_del(&victim->lru);
 73		read_cache_pages_invalidate_page(mapping, victim);
 74	}
 75}
 76
 77/**
 78 * read_cache_pages - populate an address space with some pages & start reads against them
 79 * @mapping: the address_space
 80 * @pages: The address of a list_head which contains the target pages.  These
 81 *   pages have their ->index populated and are otherwise uninitialised.
 82 * @filler: callback routine for filling a single page.
 83 * @data: private data for the callback routine.
 84 *
 85 * Hides the details of the LRU cache etc from the filesystems.
 86 *
 87 * Returns: %0 on success, error return by @filler otherwise
 88 */
 89int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 90			int (*filler)(void *, struct page *), void *data)
 91{
 92	struct page *page;
 93	int ret = 0;
 94
 95	while (!list_empty(pages)) {
 96		page = lru_to_page(pages);
 97		list_del(&page->lru);
 98		if (add_to_page_cache_lru(page, mapping, page->index,
 99				readahead_gfp_mask(mapping))) {
100			read_cache_pages_invalidate_page(mapping, page);
101			continue;
102		}
103		put_page(page);
104
105		ret = filler(data, page);
106		if (unlikely(ret)) {
107			read_cache_pages_invalidate_pages(mapping, pages);
108			break;
109		}
110		task_io_account_read(PAGE_SIZE);
111	}
112	return ret;
113}
114
115EXPORT_SYMBOL(read_cache_pages);
116
117static void read_pages(struct readahead_control *rac, struct list_head *pages,
118		bool skip_page)
119{
120	const struct address_space_operations *aops = rac->mapping->a_ops;
121	struct page *page;
122	struct blk_plug plug;
123
124	if (!readahead_count(rac))
125		goto out;
126
127	blk_start_plug(&plug);
128
129	if (aops->readahead) {
130		aops->readahead(rac);
131		/* Clean up the remaining pages */
132		while ((page = readahead_page(rac))) {
133			unlock_page(page);
134			put_page(page);
135		}
136	} else if (aops->readpages) {
137		aops->readpages(rac->file, rac->mapping, pages,
138				readahead_count(rac));
139		/* Clean up the remaining pages */
140		put_pages_list(pages);
141		rac->_index += rac->_nr_pages;
142		rac->_nr_pages = 0;
143	} else {
144		while ((page = readahead_page(rac))) {
145			aops->readpage(rac->file, page);
146			put_page(page);
147		}
 
 
148	}
 
149
 
150	blk_finish_plug(&plug);
151
152	BUG_ON(!list_empty(pages));
153	BUG_ON(readahead_count(rac));
154
155out:
156	if (skip_page)
157		rac->_index++;
158}
159
160/**
161 * page_cache_readahead_unbounded - Start unchecked readahead.
162 * @mapping: File address space.
163 * @file: This instance of the open file; used for authentication.
164 * @index: First page index to read.
165 * @nr_to_read: The number of pages to read.
166 * @lookahead_size: Where to start the next readahead.
167 *
168 * This function is for filesystems to call when they want to start
169 * readahead beyond a file's stated i_size.  This is almost certainly
170 * not the function you want to call.  Use page_cache_async_readahead()
171 * or page_cache_sync_readahead() instead.
172 *
173 * Context: File is referenced by caller.  Mutexes may be held by caller.
174 * May sleep, but will not reenter filesystem to reclaim memory.
175 */
176void page_cache_readahead_unbounded(struct address_space *mapping,
177		struct file *file, pgoff_t index, unsigned long nr_to_read,
178		unsigned long lookahead_size)
179{
 
 
 
180	LIST_HEAD(page_pool);
 
 
 
181	gfp_t gfp_mask = readahead_gfp_mask(mapping);
182	struct readahead_control rac = {
183		.mapping = mapping,
184		.file = file,
185		._index = index,
186	};
187	unsigned long i;
188
189	/*
190	 * Partway through the readahead operation, we will have added
191	 * locked pages to the page cache, but will not yet have submitted
192	 * them for I/O.  Adding another page may need to allocate memory,
193	 * which can trigger memory reclaim.  Telling the VM we're in
194	 * the middle of a filesystem operation will cause it to not
195	 * touch file-backed pages, preventing a deadlock.  Most (all?)
196	 * filesystems already specify __GFP_NOFS in their mapping's
197	 * gfp_mask, but let's be explicit here.
198	 */
199	unsigned int nofs = memalloc_nofs_save();
200
201	/*
202	 * Preallocate as many pages as we will need.
203	 */
204	for (i = 0; i < nr_to_read; i++) {
205		struct page *page = xa_load(&mapping->i_pages, index + i);
206
207		BUG_ON(index + i != rac._index + rac._nr_pages);
 
208
 
209		if (page && !xa_is_value(page)) {
210			/*
211			 * Page already present?  Kick off the current batch
212			 * of contiguous pages before continuing with the
213			 * next batch.  This page may be the one we would
214			 * have intended to mark as Readahead, but we don't
215			 * have a stable reference to this page, and it's
216			 * not worth getting one just for that.
217			 */
218			read_pages(&rac, &page_pool, true);
 
 
 
219			continue;
220		}
221
222		page = __page_cache_alloc(gfp_mask);
223		if (!page)
224			break;
225		if (mapping->a_ops->readpages) {
226			page->index = index + i;
227			list_add(&page->lru, &page_pool);
228		} else if (add_to_page_cache_lru(page, mapping, index + i,
229					gfp_mask) < 0) {
230			put_page(page);
231			read_pages(&rac, &page_pool, true);
232			continue;
233		}
234		if (i == nr_to_read - lookahead_size)
235			SetPageReadahead(page);
236		rac._nr_pages++;
237	}
238
239	/*
240	 * Now start the IO.  We ignore I/O errors - if the page is not
241	 * uptodate then the caller will launch readpage again, and
242	 * will then handle the error.
243	 */
244	read_pages(&rac, &page_pool, false);
245	memalloc_nofs_restore(nofs);
246}
247EXPORT_SYMBOL_GPL(page_cache_readahead_unbounded);
248
249/*
250 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates
251 * the pages first, then submits them for I/O. This avoids the very bad
252 * behaviour which would occur if page allocations are causing VM writeback.
253 * We really don't want to intermingle reads and writes like that.
254 */
255void __do_page_cache_readahead(struct address_space *mapping,
256		struct file *file, pgoff_t index, unsigned long nr_to_read,
257		unsigned long lookahead_size)
258{
259	struct inode *inode = mapping->host;
260	loff_t isize = i_size_read(inode);
261	pgoff_t end_index;	/* The last page we want to read */
262
263	if (isize == 0)
264		return;
265
266	end_index = (isize - 1) >> PAGE_SHIFT;
267	if (index > end_index)
268		return;
269	/* Don't read past the page containing the last byte of the file */
270	if (nr_to_read > end_index - index)
271		nr_to_read = end_index - index + 1;
272
273	page_cache_readahead_unbounded(mapping, file, index, nr_to_read,
274			lookahead_size);
275}
276
277/*
278 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
279 * memory at once.
280 */
281void force_page_cache_readahead(struct address_space *mapping,
282		struct file *filp, pgoff_t index, unsigned long nr_to_read)
283{
284	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
285	struct file_ra_state *ra = &filp->f_ra;
286	unsigned long max_pages;
287
288	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
289			!mapping->a_ops->readahead))
290		return;
291
292	/*
293	 * If the request exceeds the readahead window, allow the read to
294	 * be up to the optimal hardware IO size
295	 */
296	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
297	nr_to_read = min(nr_to_read, max_pages);
298	while (nr_to_read) {
299		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
300
301		if (this_chunk > nr_to_read)
302			this_chunk = nr_to_read;
303		__do_page_cache_readahead(mapping, filp, index, this_chunk, 0);
304
305		index += this_chunk;
306		nr_to_read -= this_chunk;
307	}
 
308}
309
310/*
311 * Set the initial window size, round to next power of 2 and square
312 * for small size, x 4 for medium, and x 2 for large
313 * for 128k (32 page) max ra
314 * 1-8 page = 32k initial, > 8 page = 128k initial
315 */
316static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
317{
318	unsigned long newsize = roundup_pow_of_two(size);
319
320	if (newsize <= max / 32)
321		newsize = newsize * 4;
322	else if (newsize <= max / 4)
323		newsize = newsize * 2;
324	else
325		newsize = max;
326
327	return newsize;
328}
329
330/*
331 *  Get the previous window size, ramp it up, and
332 *  return it as the new window size.
333 */
334static unsigned long get_next_ra_size(struct file_ra_state *ra,
335				      unsigned long max)
336{
337	unsigned long cur = ra->size;
338
339	if (cur < max / 16)
340		return 4 * cur;
341	if (cur <= max / 2)
342		return 2 * cur;
343	return max;
344}
345
346/*
347 * On-demand readahead design.
348 *
349 * The fields in struct file_ra_state represent the most-recently-executed
350 * readahead attempt:
351 *
352 *                        |<----- async_size ---------|
353 *     |------------------- size -------------------->|
354 *     |==================#===========================|
355 *     ^start             ^page marked with PG_readahead
356 *
357 * To overlap application thinking time and disk I/O time, we do
358 * `readahead pipelining': Do not wait until the application consumed all
359 * readahead pages and stalled on the missing page at readahead_index;
360 * Instead, submit an asynchronous readahead I/O as soon as there are
361 * only async_size pages left in the readahead window. Normally async_size
362 * will be equal to size, for maximum pipelining.
363 *
364 * In interleaved sequential reads, concurrent streams on the same fd can
365 * be invalidating each other's readahead state. So we flag the new readahead
366 * page at (start+size-async_size) with PG_readahead, and use it as readahead
367 * indicator. The flag won't be set on already cached pages, to avoid the
368 * readahead-for-nothing fuss, saving pointless page cache lookups.
369 *
370 * prev_pos tracks the last visited byte in the _previous_ read request.
371 * It should be maintained by the caller, and will be used for detecting
372 * small random reads. Note that the readahead algorithm checks loosely
373 * for sequential patterns. Hence interleaved reads might be served as
374 * sequential ones.
375 *
376 * There is a special-case: if the first page which the application tries to
377 * read happens to be the first page of the file, it is assumed that a linear
378 * read is about to happen and the window is immediately set to the initial size
379 * based on I/O request size and the max_readahead.
380 *
381 * The code ramps up the readahead size aggressively at first, but slow down as
382 * it approaches max_readhead.
383 */
384
385/*
386 * Count contiguously cached pages from @index-1 to @index-@max,
387 * this count is a conservative estimation of
388 * 	- length of the sequential read sequence, or
389 * 	- thrashing threshold in memory tight systems
390 */
391static pgoff_t count_history_pages(struct address_space *mapping,
392				   pgoff_t index, unsigned long max)
393{
394	pgoff_t head;
395
396	rcu_read_lock();
397	head = page_cache_prev_miss(mapping, index - 1, max);
398	rcu_read_unlock();
399
400	return index - 1 - head;
401}
402
403/*
404 * page cache context based read-ahead
405 */
406static int try_context_readahead(struct address_space *mapping,
407				 struct file_ra_state *ra,
408				 pgoff_t index,
409				 unsigned long req_size,
410				 unsigned long max)
411{
412	pgoff_t size;
413
414	size = count_history_pages(mapping, index, max);
415
416	/*
417	 * not enough history pages:
418	 * it could be a random read
419	 */
420	if (size <= req_size)
421		return 0;
422
423	/*
424	 * starts from beginning of file:
425	 * it is a strong indication of long-run stream (or whole-file-read)
426	 */
427	if (size >= index)
428		size *= 2;
429
430	ra->start = index;
431	ra->size = min(size + req_size, max);
432	ra->async_size = 1;
433
434	return 1;
435}
436
437/*
438 * A minimal readahead algorithm for trivial sequential/random reads.
439 */
440static void ondemand_readahead(struct address_space *mapping,
441		struct file_ra_state *ra, struct file *filp,
442		bool hit_readahead_marker, pgoff_t index,
443		unsigned long req_size)
 
444{
445	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
446	unsigned long max_pages = ra->ra_pages;
447	unsigned long add_pages;
448	pgoff_t prev_index;
449
450	/*
451	 * If the request exceeds the readahead window, allow the read to
452	 * be up to the optimal hardware IO size
453	 */
454	if (req_size > max_pages && bdi->io_pages > max_pages)
455		max_pages = min(req_size, bdi->io_pages);
456
457	/*
458	 * start of file
459	 */
460	if (!index)
461		goto initial_readahead;
462
463	/*
464	 * It's the expected callback index, assume sequential access.
465	 * Ramp up sizes, and push forward the readahead window.
466	 */
467	if ((index == (ra->start + ra->size - ra->async_size) ||
468	     index == (ra->start + ra->size))) {
469		ra->start += ra->size;
470		ra->size = get_next_ra_size(ra, max_pages);
471		ra->async_size = ra->size;
472		goto readit;
473	}
474
475	/*
476	 * Hit a marked page without valid readahead state.
477	 * E.g. interleaved reads.
478	 * Query the pagecache for async_size, which normally equals to
479	 * readahead size. Ramp it up and use it as the new readahead size.
480	 */
481	if (hit_readahead_marker) {
482		pgoff_t start;
483
484		rcu_read_lock();
485		start = page_cache_next_miss(mapping, index + 1, max_pages);
486		rcu_read_unlock();
487
488		if (!start || start - index > max_pages)
489			return;
490
491		ra->start = start;
492		ra->size = start - index;	/* old async_size */
493		ra->size += req_size;
494		ra->size = get_next_ra_size(ra, max_pages);
495		ra->async_size = ra->size;
496		goto readit;
497	}
498
499	/*
500	 * oversize read
501	 */
502	if (req_size > max_pages)
503		goto initial_readahead;
504
505	/*
506	 * sequential cache miss
507	 * trivial case: (index - prev_index) == 1
508	 * unaligned reads: (index - prev_index) == 0
509	 */
510	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
511	if (index - prev_index <= 1UL)
512		goto initial_readahead;
513
514	/*
515	 * Query the page cache and look for the traces(cached history pages)
516	 * that a sequential stream would leave behind.
517	 */
518	if (try_context_readahead(mapping, ra, index, req_size, max_pages))
519		goto readit;
520
521	/*
522	 * standalone, small random read
523	 * Read as is, and do not pollute the readahead state.
524	 */
525	__do_page_cache_readahead(mapping, filp, index, req_size, 0);
526	return;
527
528initial_readahead:
529	ra->start = index;
530	ra->size = get_init_ra_size(req_size, max_pages);
531	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
532
533readit:
534	/*
535	 * Will this read hit the readahead marker made by itself?
536	 * If so, trigger the readahead marker hit now, and merge
537	 * the resulted next readahead window into the current one.
538	 * Take care of maximum IO pages as above.
539	 */
540	if (index == ra->start && ra->size == ra->async_size) {
541		add_pages = get_next_ra_size(ra, max_pages);
542		if (ra->size + add_pages <= max_pages) {
543			ra->async_size = add_pages;
544			ra->size += add_pages;
545		} else {
546			ra->size = max_pages;
547			ra->async_size = max_pages >> 1;
548		}
549	}
550
551	ra_submit(ra, mapping, filp);
552}
553
554/**
555 * page_cache_sync_readahead - generic file readahead
556 * @mapping: address_space which holds the pagecache and I/O vectors
557 * @ra: file_ra_state which holds the readahead state
558 * @filp: passed on to ->readpage() and ->readpages()
559 * @index: Index of first page to be read.
560 * @req_count: Total number of pages being read by the caller.
 
561 *
562 * page_cache_sync_readahead() should be called when a cache miss happened:
563 * it will submit the read.  The readahead logic may decide to piggyback more
564 * pages onto the read request if access patterns suggest it will improve
565 * performance.
566 */
567void page_cache_sync_readahead(struct address_space *mapping,
568			       struct file_ra_state *ra, struct file *filp,
569			       pgoff_t index, unsigned long req_count)
570{
571	/* no read-ahead */
572	if (!ra->ra_pages)
573		return;
574
575	if (blk_cgroup_congested())
576		return;
577
578	/* be dumb */
579	if (filp && (filp->f_mode & FMODE_RANDOM)) {
580		force_page_cache_readahead(mapping, filp, index, req_count);
581		return;
582	}
583
584	/* do read-ahead */
585	ondemand_readahead(mapping, ra, filp, false, index, req_count);
586}
587EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
588
589/**
590 * page_cache_async_readahead - file readahead for marked pages
591 * @mapping: address_space which holds the pagecache and I/O vectors
592 * @ra: file_ra_state which holds the readahead state
593 * @filp: passed on to ->readpage() and ->readpages()
594 * @page: The page at @index which triggered the readahead call.
595 * @index: Index of first page to be read.
596 * @req_count: Total number of pages being read by the caller.
 
597 *
598 * page_cache_async_readahead() should be called when a page is used which
599 * is marked as PageReadahead; this is a marker to suggest that the application
600 * has used up enough of the readahead window that we should start pulling in
601 * more pages.
602 */
603void
604page_cache_async_readahead(struct address_space *mapping,
605			   struct file_ra_state *ra, struct file *filp,
606			   struct page *page, pgoff_t index,
607			   unsigned long req_count)
608{
609	/* no read-ahead */
610	if (!ra->ra_pages)
611		return;
612
613	/*
614	 * Same bit is used for PG_readahead and PG_reclaim.
615	 */
616	if (PageWriteback(page))
617		return;
618
619	ClearPageReadahead(page);
620
621	/*
622	 * Defer asynchronous read-ahead on IO congestion.
623	 */
624	if (inode_read_congested(mapping->host))
625		return;
626
627	if (blk_cgroup_congested())
628		return;
629
630	/* do read-ahead */
631	ondemand_readahead(mapping, ra, filp, true, index, req_count);
632}
633EXPORT_SYMBOL_GPL(page_cache_async_readahead);
634
635ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
636{
637	ssize_t ret;
638	struct fd f;
639
640	ret = -EBADF;
641	f = fdget(fd);
642	if (!f.file || !(f.file->f_mode & FMODE_READ))
643		goto out;
644
645	/*
646	 * The readahead() syscall is intended to run only on files
647	 * that can execute readahead. If readahead is not possible
648	 * on this file, then we must return -EINVAL.
649	 */
650	ret = -EINVAL;
651	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
652	    !S_ISREG(file_inode(f.file)->i_mode))
653		goto out;
654
655	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
656out:
657	fdput(f);
658	return ret;
659}
660
661SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
662{
663	return ksys_readahead(fd, offset, count);
664}