Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/pci.h>
 
  12#include <linux/iopoll.h>
  13#include <linux/irq.h>
  14#include <linux/log2.h>
  15#include <linux/module.h>
  16#include <linux/moduleparam.h>
  17#include <linux/slab.h>
  18#include <linux/dmi.h>
  19#include <linux/dma-mapping.h>
  20
  21#include "xhci.h"
  22#include "xhci-trace.h"
  23#include "xhci-mtk.h"
  24#include "xhci-debugfs.h"
  25#include "xhci-dbgcap.h"
  26
  27#define DRIVER_AUTHOR "Sarah Sharp"
  28#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  29
  30#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  31
  32/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  33static int link_quirk;
  34module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  35MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  36
  37static unsigned long long quirks;
  38module_param(quirks, ullong, S_IRUGO);
  39MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  40
  41static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
  42{
  43	struct xhci_segment *seg = ring->first_seg;
  44
  45	if (!td || !td->start_seg)
  46		return false;
  47	do {
  48		if (seg == td->start_seg)
  49			return true;
  50		seg = seg->next;
  51	} while (seg && seg != ring->first_seg);
  52
  53	return false;
  54}
  55
  56/*
  57 * xhci_handshake - spin reading hc until handshake completes or fails
  58 * @ptr: address of hc register to be read
  59 * @mask: bits to look at in result of read
  60 * @done: value of those bits when handshake succeeds
  61 * @usec: timeout in microseconds
  62 *
  63 * Returns negative errno, or zero on success
  64 *
  65 * Success happens when the "mask" bits have the specified value (hardware
  66 * handshake done).  There are two failure modes:  "usec" have passed (major
  67 * hardware flakeout), or the register reads as all-ones (hardware removed).
  68 */
  69int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
  70{
  71	u32	result;
  72	int	ret;
  73
  74	ret = readl_poll_timeout_atomic(ptr, result,
  75					(result & mask) == done ||
  76					result == U32_MAX,
  77					1, usec);
  78	if (result == U32_MAX)		/* card removed */
  79		return -ENODEV;
  80
  81	return ret;
  82}
  83
  84/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85 * Disable interrupts and begin the xHCI halting process.
  86 */
  87void xhci_quiesce(struct xhci_hcd *xhci)
  88{
  89	u32 halted;
  90	u32 cmd;
  91	u32 mask;
  92
  93	mask = ~(XHCI_IRQS);
  94	halted = readl(&xhci->op_regs->status) & STS_HALT;
  95	if (!halted)
  96		mask &= ~CMD_RUN;
  97
  98	cmd = readl(&xhci->op_regs->command);
  99	cmd &= mask;
 100	writel(cmd, &xhci->op_regs->command);
 101}
 102
 103/*
 104 * Force HC into halt state.
 105 *
 106 * Disable any IRQs and clear the run/stop bit.
 107 * HC will complete any current and actively pipelined transactions, and
 108 * should halt within 16 ms of the run/stop bit being cleared.
 109 * Read HC Halted bit in the status register to see when the HC is finished.
 110 */
 111int xhci_halt(struct xhci_hcd *xhci)
 112{
 113	int ret;
 
 114	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 115	xhci_quiesce(xhci);
 116
 117	ret = xhci_handshake(&xhci->op_regs->status,
 118			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 119	if (ret) {
 120		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 121		return ret;
 122	}
 
 123	xhci->xhc_state |= XHCI_STATE_HALTED;
 124	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 
 125	return ret;
 126}
 127
 128/*
 129 * Set the run bit and wait for the host to be running.
 130 */
 131int xhci_start(struct xhci_hcd *xhci)
 132{
 133	u32 temp;
 134	int ret;
 135
 136	temp = readl(&xhci->op_regs->command);
 137	temp |= (CMD_RUN);
 138	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 139			temp);
 140	writel(temp, &xhci->op_regs->command);
 141
 142	/*
 143	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 144	 * running.
 145	 */
 146	ret = xhci_handshake(&xhci->op_regs->status,
 147			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 148	if (ret == -ETIMEDOUT)
 149		xhci_err(xhci, "Host took too long to start, "
 150				"waited %u microseconds.\n",
 151				XHCI_MAX_HALT_USEC);
 152	if (!ret)
 153		/* clear state flags. Including dying, halted or removing */
 154		xhci->xhc_state = 0;
 
 
 155
 156	return ret;
 157}
 158
 159/*
 160 * Reset a halted HC.
 161 *
 162 * This resets pipelines, timers, counters, state machines, etc.
 163 * Transactions will be terminated immediately, and operational registers
 164 * will be set to their defaults.
 165 */
 166int xhci_reset(struct xhci_hcd *xhci)
 167{
 168	u32 command;
 169	u32 state;
 170	int ret;
 171
 172	state = readl(&xhci->op_regs->status);
 173
 174	if (state == ~(u32)0) {
 175		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 176		return -ENODEV;
 177	}
 178
 179	if ((state & STS_HALT) == 0) {
 180		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 181		return 0;
 182	}
 183
 184	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 185	command = readl(&xhci->op_regs->command);
 186	command |= CMD_RESET;
 187	writel(command, &xhci->op_regs->command);
 188
 189	/* Existing Intel xHCI controllers require a delay of 1 mS,
 190	 * after setting the CMD_RESET bit, and before accessing any
 191	 * HC registers. This allows the HC to complete the
 192	 * reset operation and be ready for HC register access.
 193	 * Without this delay, the subsequent HC register access,
 194	 * may result in a system hang very rarely.
 195	 */
 196	if (xhci->quirks & XHCI_INTEL_HOST)
 197		udelay(1000);
 198
 199	ret = xhci_handshake(&xhci->op_regs->command,
 200			CMD_RESET, 0, 10 * 1000 * 1000);
 201	if (ret)
 202		return ret;
 203
 204	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 205		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 206
 207	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 208			 "Wait for controller to be ready for doorbell rings");
 209	/*
 210	 * xHCI cannot write to any doorbells or operational registers other
 211	 * than status until the "Controller Not Ready" flag is cleared.
 212	 */
 213	ret = xhci_handshake(&xhci->op_regs->status,
 214			STS_CNR, 0, 10 * 1000 * 1000);
 215
 216	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
 217	xhci->usb2_rhub.bus_state.suspended_ports = 0;
 218	xhci->usb2_rhub.bus_state.resuming_ports = 0;
 219	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
 220	xhci->usb3_rhub.bus_state.suspended_ports = 0;
 221	xhci->usb3_rhub.bus_state.resuming_ports = 0;
 222
 223	return ret;
 224}
 225
 226static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
 227{
 228	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 
 229	int err, i;
 230	u64 val;
 
 231
 232	/*
 233	 * Some Renesas controllers get into a weird state if they are
 234	 * reset while programmed with 64bit addresses (they will preserve
 235	 * the top half of the address in internal, non visible
 236	 * registers). You end up with half the address coming from the
 237	 * kernel, and the other half coming from the firmware. Also,
 238	 * changing the programming leads to extra accesses even if the
 239	 * controller is supposed to be halted. The controller ends up with
 240	 * a fatal fault, and is then ripe for being properly reset.
 241	 *
 242	 * Special care is taken to only apply this if the device is behind
 243	 * an iommu. Doing anything when there is no iommu is definitely
 244	 * unsafe...
 245	 */
 246	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
 
 
 247		return;
 248
 249	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
 250
 251	/* Clear HSEIE so that faults do not get signaled */
 252	val = readl(&xhci->op_regs->command);
 253	val &= ~CMD_HSEIE;
 254	writel(val, &xhci->op_regs->command);
 255
 256	/* Clear HSE (aka FATAL) */
 257	val = readl(&xhci->op_regs->status);
 258	val |= STS_FATAL;
 259	writel(val, &xhci->op_regs->status);
 260
 261	/* Now zero the registers, and brace for impact */
 262	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 263	if (upper_32_bits(val))
 264		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
 265	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 266	if (upper_32_bits(val))
 267		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 268
 269	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
 
 
 
 270		struct xhci_intr_reg __iomem *ir;
 271
 272		ir = &xhci->run_regs->ir_set[i];
 273		val = xhci_read_64(xhci, &ir->erst_base);
 274		if (upper_32_bits(val))
 275			xhci_write_64(xhci, 0, &ir->erst_base);
 276		val= xhci_read_64(xhci, &ir->erst_dequeue);
 277		if (upper_32_bits(val))
 278			xhci_write_64(xhci, 0, &ir->erst_dequeue);
 279	}
 280
 281	/* Wait for the fault to appear. It will be cleared on reset */
 282	err = xhci_handshake(&xhci->op_regs->status,
 283			     STS_FATAL, STS_FATAL,
 284			     XHCI_MAX_HALT_USEC);
 285	if (!err)
 286		xhci_info(xhci, "Fault detected\n");
 287}
 288
 289#ifdef CONFIG_USB_PCI
 290/*
 291 * Set up MSI
 292 */
 293static int xhci_setup_msi(struct xhci_hcd *xhci)
 294{
 295	int ret;
 296	/*
 297	 * TODO:Check with MSI Soc for sysdev
 298	 */
 299	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 300
 301	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
 302	if (ret < 0) {
 303		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 304				"failed to allocate MSI entry");
 305		return ret;
 306	}
 307
 308	ret = request_irq(pdev->irq, xhci_msi_irq,
 309				0, "xhci_hcd", xhci_to_hcd(xhci));
 310	if (ret) {
 311		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 312				"disable MSI interrupt");
 313		pci_free_irq_vectors(pdev);
 314	}
 315
 316	return ret;
 317}
 318
 319/*
 320 * Set up MSI-X
 321 */
 322static int xhci_setup_msix(struct xhci_hcd *xhci)
 323{
 324	int i, ret = 0;
 325	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 326	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 327
 328	/*
 329	 * calculate number of msi-x vectors supported.
 330	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 331	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 332	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 333	 *   Add additional 1 vector to ensure always available interrupt.
 334	 */
 335	xhci->msix_count = min(num_online_cpus() + 1,
 336				HCS_MAX_INTRS(xhci->hcs_params1));
 337
 338	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
 339			PCI_IRQ_MSIX);
 340	if (ret < 0) {
 341		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 342				"Failed to enable MSI-X");
 343		return ret;
 344	}
 345
 346	for (i = 0; i < xhci->msix_count; i++) {
 347		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
 348				"xhci_hcd", xhci_to_hcd(xhci));
 349		if (ret)
 350			goto disable_msix;
 351	}
 352
 353	hcd->msix_enabled = 1;
 354	return ret;
 355
 356disable_msix:
 357	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 358	while (--i >= 0)
 359		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 360	pci_free_irq_vectors(pdev);
 361	return ret;
 362}
 363
 364/* Free any IRQs and disable MSI-X */
 365static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 366{
 367	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 368	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 369
 370	if (xhci->quirks & XHCI_PLAT)
 371		return;
 372
 373	/* return if using legacy interrupt */
 374	if (hcd->irq > 0)
 375		return;
 376
 377	if (hcd->msix_enabled) {
 378		int i;
 379
 380		for (i = 0; i < xhci->msix_count; i++)
 381			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 382	} else {
 383		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
 384	}
 385
 386	pci_free_irq_vectors(pdev);
 387	hcd->msix_enabled = 0;
 388}
 389
 390static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 391{
 392	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 393
 394	if (hcd->msix_enabled) {
 395		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 396		int i;
 397
 398		for (i = 0; i < xhci->msix_count; i++)
 399			synchronize_irq(pci_irq_vector(pdev, i));
 400	}
 401}
 402
 403static int xhci_try_enable_msi(struct usb_hcd *hcd)
 
 
 404{
 405	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 406	struct pci_dev  *pdev;
 407	int ret;
 408
 409	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 410	if (xhci->quirks & XHCI_PLAT)
 411		return 0;
 412
 413	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 414	/*
 415	 * Some Fresco Logic host controllers advertise MSI, but fail to
 416	 * generate interrupts.  Don't even try to enable MSI.
 417	 */
 418	if (xhci->quirks & XHCI_BROKEN_MSI)
 419		goto legacy_irq;
 420
 421	/* unregister the legacy interrupt */
 422	if (hcd->irq)
 423		free_irq(hcd->irq, hcd);
 424	hcd->irq = 0;
 425
 426	ret = xhci_setup_msix(xhci);
 427	if (ret)
 428		/* fall back to msi*/
 429		ret = xhci_setup_msi(xhci);
 430
 431	if (!ret) {
 432		hcd->msi_enabled = 1;
 433		return 0;
 434	}
 435
 436	if (!pdev->irq) {
 437		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 438		return -EINVAL;
 439	}
 440
 441 legacy_irq:
 442	if (!strlen(hcd->irq_descr))
 443		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 444			 hcd->driver->description, hcd->self.busnum);
 445
 446	/* fall back to legacy interrupt*/
 447	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 448			hcd->irq_descr, hcd);
 449	if (ret) {
 450		xhci_err(xhci, "request interrupt %d failed\n",
 451				pdev->irq);
 452		return ret;
 453	}
 454	hcd->irq = pdev->irq;
 455	return 0;
 456}
 457
 458#else
 
 
 
 459
 460static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 461{
 462	return 0;
 463}
 464
 465static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 466{
 467}
 468
 469static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 470{
 471}
 472
 473#endif
 474
 475static void compliance_mode_recovery(struct timer_list *t)
 476{
 477	struct xhci_hcd *xhci;
 478	struct usb_hcd *hcd;
 479	struct xhci_hub *rhub;
 480	u32 temp;
 481	int i;
 482
 483	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 484	rhub = &xhci->usb3_rhub;
 
 
 
 
 485
 486	for (i = 0; i < rhub->num_ports; i++) {
 487		temp = readl(rhub->ports[i]->addr);
 488		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 489			/*
 490			 * Compliance Mode Detected. Letting USB Core
 491			 * handle the Warm Reset
 492			 */
 493			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 494					"Compliance mode detected->port %d",
 495					i + 1);
 496			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 497					"Attempting compliance mode recovery");
 498			hcd = xhci->shared_hcd;
 499
 500			if (hcd->state == HC_STATE_SUSPENDED)
 501				usb_hcd_resume_root_hub(hcd);
 502
 503			usb_hcd_poll_rh_status(hcd);
 504		}
 505	}
 506
 507	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
 508		mod_timer(&xhci->comp_mode_recovery_timer,
 509			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 510}
 511
 512/*
 513 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 514 * that causes ports behind that hardware to enter compliance mode sometimes.
 515 * The quirk creates a timer that polls every 2 seconds the link state of
 516 * each host controller's port and recovers it by issuing a Warm reset
 517 * if Compliance mode is detected, otherwise the port will become "dead" (no
 518 * device connections or disconnections will be detected anymore). Becasue no
 519 * status event is generated when entering compliance mode (per xhci spec),
 520 * this quirk is needed on systems that have the failing hardware installed.
 521 */
 522static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 523{
 524	xhci->port_status_u0 = 0;
 525	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 526		    0);
 527	xhci->comp_mode_recovery_timer.expires = jiffies +
 528			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 529
 530	add_timer(&xhci->comp_mode_recovery_timer);
 531	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 532			"Compliance mode recovery timer initialized");
 533}
 534
 535/*
 536 * This function identifies the systems that have installed the SN65LVPE502CP
 537 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 538 * Systems:
 539 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 540 */
 541static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 542{
 543	const char *dmi_product_name, *dmi_sys_vendor;
 544
 545	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 546	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 547	if (!dmi_product_name || !dmi_sys_vendor)
 548		return false;
 549
 550	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 551		return false;
 552
 553	if (strstr(dmi_product_name, "Z420") ||
 554			strstr(dmi_product_name, "Z620") ||
 555			strstr(dmi_product_name, "Z820") ||
 556			strstr(dmi_product_name, "Z1 Workstation"))
 557		return true;
 558
 559	return false;
 560}
 561
 562static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 563{
 564	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
 565}
 566
 567
 568/*
 569 * Initialize memory for HCD and xHC (one-time init).
 570 *
 571 * Program the PAGESIZE register, initialize the device context array, create
 572 * device contexts (?), set up a command ring segment (or two?), create event
 573 * ring (one for now).
 574 */
 575static int xhci_init(struct usb_hcd *hcd)
 576{
 577	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 578	int retval = 0;
 579
 580	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 581	spin_lock_init(&xhci->lock);
 582	if (xhci->hci_version == 0x95 && link_quirk) {
 583		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 584				"QUIRK: Not clearing Link TRB chain bits.");
 585		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 586	} else {
 587		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 588				"xHCI doesn't need link TRB QUIRK");
 589	}
 590	retval = xhci_mem_init(xhci, GFP_KERNEL);
 591	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 592
 593	/* Initializing Compliance Mode Recovery Data If Needed */
 594	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 595		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 596		compliance_mode_recovery_timer_init(xhci);
 597	}
 598
 599	return retval;
 600}
 601
 602/*-------------------------------------------------------------------------*/
 603
 604
 605static int xhci_run_finished(struct xhci_hcd *xhci)
 606{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607	if (xhci_start(xhci)) {
 608		xhci_halt(xhci);
 
 609		return -ENODEV;
 610	}
 611	xhci->shared_hcd->state = HC_STATE_RUNNING;
 612	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 613
 614	if (xhci->quirks & XHCI_NEC_HOST)
 615		xhci_ring_cmd_db(xhci);
 616
 617	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 618			"Finished xhci_run for USB3 roothub");
 619	return 0;
 620}
 621
 622/*
 623 * Start the HC after it was halted.
 624 *
 625 * This function is called by the USB core when the HC driver is added.
 626 * Its opposite is xhci_stop().
 627 *
 628 * xhci_init() must be called once before this function can be called.
 629 * Reset the HC, enable device slot contexts, program DCBAAP, and
 630 * set command ring pointer and event ring pointer.
 631 *
 632 * Setup MSI-X vectors and enable interrupts.
 633 */
 634int xhci_run(struct usb_hcd *hcd)
 635{
 636	u32 temp;
 637	u64 temp_64;
 638	int ret;
 639	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 640
 641	/* Start the xHCI host controller running only after the USB 2.0 roothub
 642	 * is setup.
 643	 */
 644
 645	hcd->uses_new_polling = 1;
 
 
 
 646	if (!usb_hcd_is_primary_hcd(hcd))
 647		return xhci_run_finished(xhci);
 648
 649	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 650
 651	ret = xhci_try_enable_msi(hcd);
 652	if (ret)
 653		return ret;
 654
 655	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 656	temp_64 &= ~ERST_PTR_MASK;
 657	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 658			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 659
 660	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 661			"// Set the interrupt modulation register");
 662	temp = readl(&xhci->ir_set->irq_control);
 663	temp &= ~ER_IRQ_INTERVAL_MASK;
 664	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 665	writel(temp, &xhci->ir_set->irq_control);
 666
 667	/* Set the HCD state before we enable the irqs */
 668	temp = readl(&xhci->op_regs->command);
 669	temp |= (CMD_EIE);
 670	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 671			"// Enable interrupts, cmd = 0x%x.", temp);
 672	writel(temp, &xhci->op_regs->command);
 673
 674	temp = readl(&xhci->ir_set->irq_pending);
 675	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 676			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 677			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 678	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 679
 680	if (xhci->quirks & XHCI_NEC_HOST) {
 681		struct xhci_command *command;
 682
 683		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 684		if (!command)
 685			return -ENOMEM;
 686
 687		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 688				TRB_TYPE(TRB_NEC_GET_FW));
 689		if (ret)
 690			xhci_free_command(xhci, command);
 691	}
 692	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 693			"Finished xhci_run for USB2 roothub");
 694
 695	xhci_dbc_init(xhci);
 696
 697	xhci_debugfs_init(xhci);
 698
 
 
 
 
 
 699	return 0;
 700}
 701EXPORT_SYMBOL_GPL(xhci_run);
 702
 703/*
 704 * Stop xHCI driver.
 705 *
 706 * This function is called by the USB core when the HC driver is removed.
 707 * Its opposite is xhci_run().
 708 *
 709 * Disable device contexts, disable IRQs, and quiesce the HC.
 710 * Reset the HC, finish any completed transactions, and cleanup memory.
 711 */
 712static void xhci_stop(struct usb_hcd *hcd)
 713{
 714	u32 temp;
 715	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 716
 717	mutex_lock(&xhci->mutex);
 718
 719	/* Only halt host and free memory after both hcds are removed */
 720	if (!usb_hcd_is_primary_hcd(hcd)) {
 721		mutex_unlock(&xhci->mutex);
 722		return;
 723	}
 724
 725	xhci_dbc_exit(xhci);
 726
 727	spin_lock_irq(&xhci->lock);
 728	xhci->xhc_state |= XHCI_STATE_HALTED;
 729	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 730	xhci_halt(xhci);
 731	xhci_reset(xhci);
 732	spin_unlock_irq(&xhci->lock);
 733
 734	xhci_cleanup_msix(xhci);
 735
 736	/* Deleting Compliance Mode Recovery Timer */
 737	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 738			(!(xhci_all_ports_seen_u0(xhci)))) {
 739		del_timer_sync(&xhci->comp_mode_recovery_timer);
 740		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 741				"%s: compliance mode recovery timer deleted",
 742				__func__);
 743	}
 744
 745	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 746		usb_amd_dev_put();
 747
 748	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 749			"// Disabling event ring interrupts");
 750	temp = readl(&xhci->op_regs->status);
 751	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 752	temp = readl(&xhci->ir_set->irq_pending);
 753	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 754
 755	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 756	xhci_mem_cleanup(xhci);
 757	xhci_debugfs_exit(xhci);
 758	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 759			"xhci_stop completed - status = %x",
 760			readl(&xhci->op_regs->status));
 761	mutex_unlock(&xhci->mutex);
 762}
 
 763
 764/*
 765 * Shutdown HC (not bus-specific)
 766 *
 767 * This is called when the machine is rebooting or halting.  We assume that the
 768 * machine will be powered off, and the HC's internal state will be reset.
 769 * Don't bother to free memory.
 770 *
 771 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 772 */
 773static void xhci_shutdown(struct usb_hcd *hcd)
 774{
 775	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 776
 777	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 778		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 779
 
 
 
 
 
 
 
 
 
 
 
 780	spin_lock_irq(&xhci->lock);
 781	xhci_halt(xhci);
 782	/* Workaround for spurious wakeups at shutdown with HSW */
 783	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 784		xhci_reset(xhci);
 785	spin_unlock_irq(&xhci->lock);
 786
 787	xhci_cleanup_msix(xhci);
 
 
 
 
 
 
 
 
 788
 789	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 790			"xhci_shutdown completed - status = %x",
 791			readl(&xhci->op_regs->status));
 792
 793	/* Yet another workaround for spurious wakeups at shutdown with HSW */
 794	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 795		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
 796}
 
 797
 798#ifdef CONFIG_PM
 799static void xhci_save_registers(struct xhci_hcd *xhci)
 800{
 
 
 
 801	xhci->s3.command = readl(&xhci->op_regs->command);
 802	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 803	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 804	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 805	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 806	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 807	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 808	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 809	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 
 
 
 
 
 
 
 
 
 810}
 811
 812static void xhci_restore_registers(struct xhci_hcd *xhci)
 813{
 
 
 
 814	writel(xhci->s3.command, &xhci->op_regs->command);
 815	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 816	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 817	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 818	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 819	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 820	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 821	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 822	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 
 
 
 
 
 
 
 
 823}
 824
 825static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 826{
 827	u64	val_64;
 828
 829	/* step 2: initialize command ring buffer */
 830	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 831	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 832		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 833				      xhci->cmd_ring->dequeue) &
 834		 (u64) ~CMD_RING_RSVD_BITS) |
 835		xhci->cmd_ring->cycle_state;
 836	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 837			"// Setting command ring address to 0x%llx",
 838			(long unsigned long) val_64);
 839	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 840}
 841
 842/*
 843 * The whole command ring must be cleared to zero when we suspend the host.
 844 *
 845 * The host doesn't save the command ring pointer in the suspend well, so we
 846 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 847 * aligned, because of the reserved bits in the command ring dequeue pointer
 848 * register.  Therefore, we can't just set the dequeue pointer back in the
 849 * middle of the ring (TRBs are 16-byte aligned).
 850 */
 851static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 852{
 853	struct xhci_ring *ring;
 854	struct xhci_segment *seg;
 855
 856	ring = xhci->cmd_ring;
 857	seg = ring->deq_seg;
 858	do {
 859		memset(seg->trbs, 0,
 860			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 861		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 862			cpu_to_le32(~TRB_CYCLE);
 863		seg = seg->next;
 864	} while (seg != ring->deq_seg);
 865
 866	/* Reset the software enqueue and dequeue pointers */
 867	ring->deq_seg = ring->first_seg;
 868	ring->dequeue = ring->first_seg->trbs;
 869	ring->enq_seg = ring->deq_seg;
 870	ring->enqueue = ring->dequeue;
 871
 872	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 873	/*
 874	 * Ring is now zeroed, so the HW should look for change of ownership
 875	 * when the cycle bit is set to 1.
 876	 */
 877	ring->cycle_state = 1;
 878
 879	/*
 880	 * Reset the hardware dequeue pointer.
 881	 * Yes, this will need to be re-written after resume, but we're paranoid
 882	 * and want to make sure the hardware doesn't access bogus memory
 883	 * because, say, the BIOS or an SMI started the host without changing
 884	 * the command ring pointers.
 885	 */
 886	xhci_set_cmd_ring_deq(xhci);
 887}
 888
 889static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
 
 
 
 
 
 
 
 
 
 
 
 890{
 891	struct xhci_port **ports;
 892	int port_index;
 893	unsigned long flags;
 894	u32 t1, t2, portsc;
 
 895
 896	spin_lock_irqsave(&xhci->lock, flags);
 897
 898	/* disable usb3 ports Wake bits */
 899	port_index = xhci->usb3_rhub.num_ports;
 900	ports = xhci->usb3_rhub.ports;
 901	while (port_index--) {
 902		t1 = readl(ports[port_index]->addr);
 903		portsc = t1;
 904		t1 = xhci_port_state_to_neutral(t1);
 905		t2 = t1 & ~PORT_WAKE_BITS;
 906		if (t1 != t2) {
 907			writel(t2, ports[port_index]->addr);
 908			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
 909				 xhci->usb3_rhub.hcd->self.busnum,
 910				 port_index + 1, portsc, t2);
 911		}
 912	}
 913
 914	/* disable usb2 ports Wake bits */
 915	port_index = xhci->usb2_rhub.num_ports;
 916	ports = xhci->usb2_rhub.ports;
 917	while (port_index--) {
 918		t1 = readl(ports[port_index]->addr);
 919		portsc = t1;
 920		t1 = xhci_port_state_to_neutral(t1);
 921		t2 = t1 & ~PORT_WAKE_BITS;
 922		if (t1 != t2) {
 923			writel(t2, ports[port_index]->addr);
 924			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
 925				 xhci->usb2_rhub.hcd->self.busnum,
 926				 port_index + 1, portsc, t2);
 927		}
 928	}
 929	spin_unlock_irqrestore(&xhci->lock, flags);
 930}
 931
 932static bool xhci_pending_portevent(struct xhci_hcd *xhci)
 933{
 934	struct xhci_port	**ports;
 935	int			port_index;
 936	u32			status;
 937	u32			portsc;
 938
 939	status = readl(&xhci->op_regs->status);
 940	if (status & STS_EINT)
 941		return true;
 942	/*
 943	 * Checking STS_EINT is not enough as there is a lag between a change
 944	 * bit being set and the Port Status Change Event that it generated
 945	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
 946	 */
 947
 948	port_index = xhci->usb2_rhub.num_ports;
 949	ports = xhci->usb2_rhub.ports;
 950	while (port_index--) {
 951		portsc = readl(ports[port_index]->addr);
 952		if (portsc & PORT_CHANGE_MASK ||
 953		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 954			return true;
 955	}
 956	port_index = xhci->usb3_rhub.num_ports;
 957	ports = xhci->usb3_rhub.ports;
 958	while (port_index--) {
 959		portsc = readl(ports[port_index]->addr);
 960		if (portsc & PORT_CHANGE_MASK ||
 961		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 962			return true;
 963	}
 964	return false;
 965}
 966
 967/*
 968 * Stop HC (not bus-specific)
 969 *
 970 * This is called when the machine transition into S3/S4 mode.
 971 *
 972 */
 973int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 974{
 975	int			rc = 0;
 976	unsigned int		delay = XHCI_MAX_HALT_USEC;
 977	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 978	u32			command;
 979	u32			res;
 980
 981	if (!hcd->state)
 982		return 0;
 983
 984	if (hcd->state != HC_STATE_SUSPENDED ||
 985			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 986		return -EINVAL;
 987
 988	xhci_dbc_suspend(xhci);
 989
 990	/* Clear root port wake on bits if wakeup not allowed. */
 991	if (!do_wakeup)
 992		xhci_disable_port_wake_on_bits(xhci);
 
 
 
 
 
 993
 994	/* Don't poll the roothubs on bus suspend. */
 995	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 
 996	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 997	del_timer_sync(&hcd->rh_timer);
 998	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 999	del_timer_sync(&xhci->shared_hcd->rh_timer);
 
 
1000
1001	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002		usleep_range(1000, 1500);
1003
1004	spin_lock_irq(&xhci->lock);
1005	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 
1007	/* step 1: stop endpoint */
1008	/* skipped assuming that port suspend has done */
1009
1010	/* step 2: clear Run/Stop bit */
1011	command = readl(&xhci->op_regs->command);
1012	command &= ~CMD_RUN;
1013	writel(command, &xhci->op_regs->command);
1014
1015	/* Some chips from Fresco Logic need an extraordinary delay */
1016	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017
1018	if (xhci_handshake(&xhci->op_regs->status,
1019		      STS_HALT, STS_HALT, delay)) {
1020		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021		spin_unlock_irq(&xhci->lock);
1022		return -ETIMEDOUT;
1023	}
1024	xhci_clear_command_ring(xhci);
1025
1026	/* step 3: save registers */
1027	xhci_save_registers(xhci);
1028
1029	/* step 4: set CSS flag */
1030	command = readl(&xhci->op_regs->command);
1031	command |= CMD_CSS;
1032	writel(command, &xhci->op_regs->command);
1033	xhci->broken_suspend = 0;
1034	if (xhci_handshake(&xhci->op_regs->status,
1035				STS_SAVE, 0, 20 * 1000)) {
1036	/*
1037	 * AMD SNPS xHC 3.0 occasionally does not clear the
1038	 * SSS bit of USBSTS and when driver tries to poll
1039	 * to see if the xHC clears BIT(8) which never happens
1040	 * and driver assumes that controller is not responding
1041	 * and times out. To workaround this, its good to check
1042	 * if SRE and HCE bits are not set (as per xhci
1043	 * Section 5.4.2) and bypass the timeout.
1044	 */
1045		res = readl(&xhci->op_regs->status);
1046		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047		    (((res & STS_SRE) == 0) &&
1048				((res & STS_HCE) == 0))) {
1049			xhci->broken_suspend = 1;
1050		} else {
1051			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052			spin_unlock_irq(&xhci->lock);
1053			return -ETIMEDOUT;
1054		}
1055	}
1056	spin_unlock_irq(&xhci->lock);
1057
1058	/*
1059	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060	 * is about to be suspended.
1061	 */
1062	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063			(!(xhci_all_ports_seen_u0(xhci)))) {
1064		del_timer_sync(&xhci->comp_mode_recovery_timer);
1065		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066				"%s: compliance mode recovery timer deleted",
1067				__func__);
1068	}
1069
1070	/* step 5: remove core well power */
1071	/* synchronize irq when using MSI-X */
1072	xhci_msix_sync_irqs(xhci);
1073
1074	return rc;
1075}
1076EXPORT_SYMBOL_GPL(xhci_suspend);
1077
1078/*
1079 * start xHC (not bus-specific)
1080 *
1081 * This is called when the machine transition from S3/S4 mode.
1082 *
1083 */
1084int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085{
 
1086	u32			command, temp = 0;
1087	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1088	struct usb_hcd		*secondary_hcd;
1089	int			retval = 0;
1090	bool			comp_timer_running = false;
 
 
 
1091
1092	if (!hcd->state)
1093		return 0;
1094
1095	/* Wait a bit if either of the roothubs need to settle from the
1096	 * transition into bus suspend.
1097	 */
1098
1099	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101		msleep(100);
1102
1103	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 
1105
1106	spin_lock_irq(&xhci->lock);
1107	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108		hibernated = true;
1109
1110	if (!hibernated) {
 
 
 
1111		/*
1112		 * Some controllers might lose power during suspend, so wait
1113		 * for controller not ready bit to clear, just as in xHC init.
1114		 */
1115		retval = xhci_handshake(&xhci->op_regs->status,
1116					STS_CNR, 0, 10 * 1000 * 1000);
1117		if (retval) {
1118			xhci_warn(xhci, "Controller not ready at resume %d\n",
1119				  retval);
1120			spin_unlock_irq(&xhci->lock);
1121			return retval;
1122		}
1123		/* step 1: restore register */
1124		xhci_restore_registers(xhci);
1125		/* step 2: initialize command ring buffer */
1126		xhci_set_cmd_ring_deq(xhci);
1127		/* step 3: restore state and start state*/
1128		/* step 3: set CRS flag */
1129		command = readl(&xhci->op_regs->command);
1130		command |= CMD_CRS;
1131		writel(command, &xhci->op_regs->command);
1132		/*
1133		 * Some controllers take up to 55+ ms to complete the controller
1134		 * restore so setting the timeout to 100ms. Xhci specification
1135		 * doesn't mention any timeout value.
1136		 */
1137		if (xhci_handshake(&xhci->op_regs->status,
1138			      STS_RESTORE, 0, 100 * 1000)) {
1139			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1140			spin_unlock_irq(&xhci->lock);
1141			return -ETIMEDOUT;
1142		}
1143		temp = readl(&xhci->op_regs->status);
1144	}
1145
1146	/* If restore operation fails, re-initialize the HC during resume */
1147	if ((temp & STS_SRE) || hibernated) {
 
 
 
 
 
 
 
1148
 
1149		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1150				!(xhci_all_ports_seen_u0(xhci))) {
1151			del_timer_sync(&xhci->comp_mode_recovery_timer);
1152			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1153				"Compliance Mode Recovery Timer deleted!");
1154		}
1155
1156		/* Let the USB core know _both_ roothubs lost power. */
1157		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1158		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
 
1159
1160		xhci_dbg(xhci, "Stop HCD\n");
1161		xhci_halt(xhci);
1162		xhci_zero_64b_regs(xhci);
1163		xhci_reset(xhci);
1164		spin_unlock_irq(&xhci->lock);
1165		xhci_cleanup_msix(xhci);
 
1166
1167		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1168		temp = readl(&xhci->op_regs->status);
1169		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1170		temp = readl(&xhci->ir_set->irq_pending);
1171		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1172
1173		xhci_dbg(xhci, "cleaning up memory\n");
1174		xhci_mem_cleanup(xhci);
1175		xhci_debugfs_exit(xhci);
1176		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1177			    readl(&xhci->op_regs->status));
1178
1179		/* USB core calls the PCI reinit and start functions twice:
1180		 * first with the primary HCD, and then with the secondary HCD.
1181		 * If we don't do the same, the host will never be started.
1182		 */
1183		if (!usb_hcd_is_primary_hcd(hcd))
1184			secondary_hcd = hcd;
1185		else
1186			secondary_hcd = xhci->shared_hcd;
1187
1188		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1189		retval = xhci_init(hcd->primary_hcd);
1190		if (retval)
1191			return retval;
1192		comp_timer_running = true;
1193
1194		xhci_dbg(xhci, "Start the primary HCD\n");
1195		retval = xhci_run(hcd->primary_hcd);
1196		if (!retval) {
1197			xhci_dbg(xhci, "Start the secondary HCD\n");
1198			retval = xhci_run(secondary_hcd);
1199		}
 
1200		hcd->state = HC_STATE_SUSPENDED;
1201		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
 
1202		goto done;
1203	}
1204
1205	/* step 4: set Run/Stop bit */
1206	command = readl(&xhci->op_regs->command);
1207	command |= CMD_RUN;
1208	writel(command, &xhci->op_regs->command);
1209	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1210		  0, 250 * 1000);
1211
1212	/* step 5: walk topology and initialize portsc,
1213	 * portpmsc and portli
1214	 */
1215	/* this is done in bus_resume */
1216
1217	/* step 6: restart each of the previously
1218	 * Running endpoints by ringing their doorbells
1219	 */
1220
1221	spin_unlock_irq(&xhci->lock);
1222
1223	xhci_dbc_resume(xhci);
1224
1225 done:
1226	if (retval == 0) {
1227		/* Resume root hubs only when have pending events. */
1228		if (xhci_pending_portevent(xhci)) {
1229			usb_hcd_resume_root_hub(xhci->shared_hcd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1230			usb_hcd_resume_root_hub(hcd);
1231		}
1232	}
1233
1234	/*
1235	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1236	 * be re-initialized Always after a system resume. Ports are subject
1237	 * to suffer the Compliance Mode issue again. It doesn't matter if
1238	 * ports have entered previously to U0 before system's suspension.
1239	 */
1240	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1241		compliance_mode_recovery_timer_init(xhci);
1242
1243	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1244		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1245
1246	/* Re-enable port polling. */
1247	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1248	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1249	usb_hcd_poll_rh_status(xhci->shared_hcd);
 
 
 
1250	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1251	usb_hcd_poll_rh_status(hcd);
1252
1253	return retval;
1254}
1255EXPORT_SYMBOL_GPL(xhci_resume);
1256#endif	/* CONFIG_PM */
1257
1258/*-------------------------------------------------------------------------*/
1259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260/*
1261 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1262 * we'll copy the actual data into the TRB address register. This is limited to
1263 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1264 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1265 */
1266static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1267				gfp_t mem_flags)
1268{
 
 
 
 
1269	if (xhci_urb_suitable_for_idt(urb))
1270		return 0;
1271
 
 
 
 
1272	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1273}
1274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275/**
1276 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1277 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1278 * value to right shift 1 for the bitmask.
1279 *
1280 * Index  = (epnum * 2) + direction - 1,
1281 * where direction = 0 for OUT, 1 for IN.
1282 * For control endpoints, the IN index is used (OUT index is unused), so
1283 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1284 */
1285unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1286{
1287	unsigned int index;
1288	if (usb_endpoint_xfer_control(desc))
1289		index = (unsigned int) (usb_endpoint_num(desc)*2);
1290	else
1291		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1292			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1293	return index;
1294}
 
1295
1296/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1297 * address from the XHCI endpoint index.
1298 */
1299unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1300{
1301	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1302	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1303	return direction | number;
1304}
1305
1306/* Find the flag for this endpoint (for use in the control context).  Use the
1307 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1308 * bit 1, etc.
1309 */
1310static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1311{
1312	return 1 << (xhci_get_endpoint_index(desc) + 1);
1313}
1314
1315/* Find the flag for this endpoint (for use in the control context).  Use the
1316 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1317 * bit 1, etc.
1318 */
1319static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1320{
1321	return 1 << (ep_index + 1);
1322}
1323
1324/* Compute the last valid endpoint context index.  Basically, this is the
1325 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1326 * we find the most significant bit set in the added contexts flags.
1327 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1328 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1329 */
1330unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1331{
1332	return fls(added_ctxs) - 1;
1333}
1334
1335/* Returns 1 if the arguments are OK;
1336 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1337 */
1338static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1339		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1340		const char *func) {
1341	struct xhci_hcd	*xhci;
1342	struct xhci_virt_device	*virt_dev;
1343
1344	if (!hcd || (check_ep && !ep) || !udev) {
1345		pr_debug("xHCI %s called with invalid args\n", func);
1346		return -EINVAL;
1347	}
1348	if (!udev->parent) {
1349		pr_debug("xHCI %s called for root hub\n", func);
1350		return 0;
1351	}
1352
1353	xhci = hcd_to_xhci(hcd);
1354	if (check_virt_dev) {
1355		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1356			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1357					func);
1358			return -EINVAL;
1359		}
1360
1361		virt_dev = xhci->devs[udev->slot_id];
1362		if (virt_dev->udev != udev) {
1363			xhci_dbg(xhci, "xHCI %s called with udev and "
1364					  "virt_dev does not match\n", func);
1365			return -EINVAL;
1366		}
1367	}
1368
1369	if (xhci->xhc_state & XHCI_STATE_HALTED)
1370		return -ENODEV;
1371
1372	return 1;
1373}
1374
1375static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1376		struct usb_device *udev, struct xhci_command *command,
1377		bool ctx_change, bool must_succeed);
1378
1379/*
1380 * Full speed devices may have a max packet size greater than 8 bytes, but the
1381 * USB core doesn't know that until it reads the first 8 bytes of the
1382 * descriptor.  If the usb_device's max packet size changes after that point,
1383 * we need to issue an evaluate context command and wait on it.
1384 */
1385static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1386		unsigned int ep_index, struct urb *urb)
1387{
1388	struct xhci_container_ctx *out_ctx;
1389	struct xhci_input_control_ctx *ctrl_ctx;
1390	struct xhci_ep_ctx *ep_ctx;
1391	struct xhci_command *command;
1392	int max_packet_size;
1393	int hw_max_packet_size;
1394	int ret = 0;
1395
1396	out_ctx = xhci->devs[slot_id]->out_ctx;
1397	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1398	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1399	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1400	if (hw_max_packet_size != max_packet_size) {
 
 
 
 
 
1401		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1402				"Max Packet Size for ep 0 changed.");
1403		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1404				"Max packet size in usb_device = %d",
1405				max_packet_size);
1406		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1407				"Max packet size in xHCI HW = %d",
1408				hw_max_packet_size);
1409		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1410				"Issuing evaluate context command.");
1411
1412		/* Set up the input context flags for the command */
1413		/* FIXME: This won't work if a non-default control endpoint
1414		 * changes max packet sizes.
1415		 */
1416
1417		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1418		if (!command)
1419			return -ENOMEM;
1420
1421		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1422		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1423		if (!ctrl_ctx) {
1424			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1425					__func__);
1426			ret = -ENOMEM;
1427			goto command_cleanup;
1428		}
1429		/* Set up the modified control endpoint 0 */
1430		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1431				xhci->devs[slot_id]->out_ctx, ep_index);
1432
1433		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
 
1434		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1435		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1436
1437		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1438		ctrl_ctx->drop_flags = 0;
1439
1440		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1441				true, false);
1442
1443		/* Clean up the input context for later use by bandwidth
1444		 * functions.
1445		 */
1446		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1447command_cleanup:
1448		kfree(command->completion);
1449		kfree(command);
 
 
1450	}
 
 
 
 
1451	return ret;
1452}
1453
1454/*
1455 * non-error returns are a promise to giveback() the urb later
1456 * we drop ownership so next owner (or urb unlink) can get it
1457 */
1458static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1459{
1460	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1461	unsigned long flags;
1462	int ret = 0;
1463	unsigned int slot_id, ep_index;
1464	unsigned int *ep_state;
1465	struct urb_priv	*urb_priv;
1466	int num_tds;
1467
1468	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1469					true, true, __func__) <= 0)
1470		return -EINVAL;
1471
1472	slot_id = urb->dev->slot_id;
1473	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1474	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1475
1476	if (!HCD_HW_ACCESSIBLE(hcd)) {
1477		if (!in_interrupt())
1478			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1479		return -ESHUTDOWN;
1480	}
1481	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1482		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1483		return -ENODEV;
1484	}
1485
1486	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1487		num_tds = urb->number_of_packets;
1488	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1489	    urb->transfer_buffer_length > 0 &&
1490	    urb->transfer_flags & URB_ZERO_PACKET &&
1491	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1492		num_tds = 2;
1493	else
1494		num_tds = 1;
1495
1496	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1497	if (!urb_priv)
1498		return -ENOMEM;
1499
1500	urb_priv->num_tds = num_tds;
1501	urb_priv->num_tds_done = 0;
1502	urb->hcpriv = urb_priv;
1503
1504	trace_xhci_urb_enqueue(urb);
1505
1506	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1507		/* Check to see if the max packet size for the default control
1508		 * endpoint changed during FS device enumeration
1509		 */
1510		if (urb->dev->speed == USB_SPEED_FULL) {
1511			ret = xhci_check_maxpacket(xhci, slot_id,
1512					ep_index, urb);
1513			if (ret < 0) {
1514				xhci_urb_free_priv(urb_priv);
1515				urb->hcpriv = NULL;
1516				return ret;
1517			}
1518		}
1519	}
1520
1521	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
1522
1523	if (xhci->xhc_state & XHCI_STATE_DYING) {
1524		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1525			 urb->ep->desc.bEndpointAddress, urb);
1526		ret = -ESHUTDOWN;
1527		goto free_priv;
1528	}
 
 
 
1529	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1530		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1531			  *ep_state);
1532		ret = -EINVAL;
1533		goto free_priv;
1534	}
1535	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1536		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1537		ret = -EINVAL;
1538		goto free_priv;
1539	}
1540
1541	switch (usb_endpoint_type(&urb->ep->desc)) {
1542
1543	case USB_ENDPOINT_XFER_CONTROL:
1544		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1545					 slot_id, ep_index);
1546		break;
1547	case USB_ENDPOINT_XFER_BULK:
1548		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1549					 slot_id, ep_index);
1550		break;
1551	case USB_ENDPOINT_XFER_INT:
1552		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1553				slot_id, ep_index);
1554		break;
1555	case USB_ENDPOINT_XFER_ISOC:
1556		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1557				slot_id, ep_index);
1558	}
1559
1560	if (ret) {
1561free_priv:
1562		xhci_urb_free_priv(urb_priv);
1563		urb->hcpriv = NULL;
1564	}
1565	spin_unlock_irqrestore(&xhci->lock, flags);
1566	return ret;
1567}
1568
1569/*
1570 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1571 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1572 * should pick up where it left off in the TD, unless a Set Transfer Ring
1573 * Dequeue Pointer is issued.
1574 *
1575 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1576 * the ring.  Since the ring is a contiguous structure, they can't be physically
1577 * removed.  Instead, there are two options:
1578 *
1579 *  1) If the HC is in the middle of processing the URB to be canceled, we
1580 *     simply move the ring's dequeue pointer past those TRBs using the Set
1581 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1582 *     when drivers timeout on the last submitted URB and attempt to cancel.
1583 *
1584 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1585 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1586 *     HC will need to invalidate the any TRBs it has cached after the stop
1587 *     endpoint command, as noted in the xHCI 0.95 errata.
1588 *
1589 *  3) The TD may have completed by the time the Stop Endpoint Command
1590 *     completes, so software needs to handle that case too.
1591 *
1592 * This function should protect against the TD enqueueing code ringing the
1593 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1594 * It also needs to account for multiple cancellations on happening at the same
1595 * time for the same endpoint.
1596 *
1597 * Note that this function can be called in any context, or so says
1598 * usb_hcd_unlink_urb()
1599 */
1600static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1601{
1602	unsigned long flags;
1603	int ret, i;
1604	u32 temp;
1605	struct xhci_hcd *xhci;
1606	struct urb_priv	*urb_priv;
1607	struct xhci_td *td;
1608	unsigned int ep_index;
1609	struct xhci_ring *ep_ring;
1610	struct xhci_virt_ep *ep;
1611	struct xhci_command *command;
1612	struct xhci_virt_device *vdev;
1613
1614	xhci = hcd_to_xhci(hcd);
1615	spin_lock_irqsave(&xhci->lock, flags);
1616
1617	trace_xhci_urb_dequeue(urb);
1618
1619	/* Make sure the URB hasn't completed or been unlinked already */
1620	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1621	if (ret)
1622		goto done;
1623
1624	/* give back URB now if we can't queue it for cancel */
1625	vdev = xhci->devs[urb->dev->slot_id];
1626	urb_priv = urb->hcpriv;
1627	if (!vdev || !urb_priv)
1628		goto err_giveback;
1629
1630	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1631	ep = &vdev->eps[ep_index];
1632	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1633	if (!ep || !ep_ring)
1634		goto err_giveback;
1635
1636	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1637	temp = readl(&xhci->op_regs->status);
1638	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1639		xhci_hc_died(xhci);
1640		goto done;
1641	}
1642
1643	/*
1644	 * check ring is not re-allocated since URB was enqueued. If it is, then
1645	 * make sure none of the ring related pointers in this URB private data
1646	 * are touched, such as td_list, otherwise we overwrite freed data
1647	 */
1648	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1649		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1650		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1651			td = &urb_priv->td[i];
1652			if (!list_empty(&td->cancelled_td_list))
1653				list_del_init(&td->cancelled_td_list);
1654		}
1655		goto err_giveback;
1656	}
1657
1658	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1659		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1660				"HC halted, freeing TD manually.");
1661		for (i = urb_priv->num_tds_done;
1662		     i < urb_priv->num_tds;
1663		     i++) {
1664			td = &urb_priv->td[i];
1665			if (!list_empty(&td->td_list))
1666				list_del_init(&td->td_list);
1667			if (!list_empty(&td->cancelled_td_list))
1668				list_del_init(&td->cancelled_td_list);
1669		}
1670		goto err_giveback;
1671	}
1672
1673	i = urb_priv->num_tds_done;
1674	if (i < urb_priv->num_tds)
1675		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1676				"Cancel URB %p, dev %s, ep 0x%x, "
1677				"starting at offset 0x%llx",
1678				urb, urb->dev->devpath,
1679				urb->ep->desc.bEndpointAddress,
1680				(unsigned long long) xhci_trb_virt_to_dma(
1681					urb_priv->td[i].start_seg,
1682					urb_priv->td[i].first_trb));
1683
1684	for (; i < urb_priv->num_tds; i++) {
1685		td = &urb_priv->td[i];
1686		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
 
 
 
 
 
1687	}
1688
1689	/* Queue a stop endpoint command, but only if this is
1690	 * the first cancellation to be handled.
1691	 */
1692	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1693		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1694		if (!command) {
1695			ret = -ENOMEM;
1696			goto done;
1697		}
1698		ep->ep_state |= EP_STOP_CMD_PENDING;
1699		ep->stop_cmd_timer.expires = jiffies +
1700			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1701		add_timer(&ep->stop_cmd_timer);
1702		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1703					 ep_index, 0);
1704		xhci_ring_cmd_db(xhci);
1705	}
1706done:
1707	spin_unlock_irqrestore(&xhci->lock, flags);
1708	return ret;
1709
1710err_giveback:
1711	if (urb_priv)
1712		xhci_urb_free_priv(urb_priv);
1713	usb_hcd_unlink_urb_from_ep(hcd, urb);
1714	spin_unlock_irqrestore(&xhci->lock, flags);
1715	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1716	return ret;
1717}
1718
1719/* Drop an endpoint from a new bandwidth configuration for this device.
1720 * Only one call to this function is allowed per endpoint before
1721 * check_bandwidth() or reset_bandwidth() must be called.
1722 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1723 * add the endpoint to the schedule with possibly new parameters denoted by a
1724 * different endpoint descriptor in usb_host_endpoint.
1725 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1726 * not allowed.
1727 *
1728 * The USB core will not allow URBs to be queued to an endpoint that is being
1729 * disabled, so there's no need for mutual exclusion to protect
1730 * the xhci->devs[slot_id] structure.
1731 */
1732static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1733		struct usb_host_endpoint *ep)
1734{
1735	struct xhci_hcd *xhci;
1736	struct xhci_container_ctx *in_ctx, *out_ctx;
1737	struct xhci_input_control_ctx *ctrl_ctx;
1738	unsigned int ep_index;
1739	struct xhci_ep_ctx *ep_ctx;
1740	u32 drop_flag;
1741	u32 new_add_flags, new_drop_flags;
1742	int ret;
1743
1744	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1745	if (ret <= 0)
1746		return ret;
1747	xhci = hcd_to_xhci(hcd);
1748	if (xhci->xhc_state & XHCI_STATE_DYING)
1749		return -ENODEV;
1750
1751	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1752	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1753	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1754		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1755				__func__, drop_flag);
1756		return 0;
1757	}
1758
1759	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1760	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1761	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1762	if (!ctrl_ctx) {
1763		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1764				__func__);
1765		return 0;
1766	}
1767
1768	ep_index = xhci_get_endpoint_index(&ep->desc);
1769	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1770	/* If the HC already knows the endpoint is disabled,
1771	 * or the HCD has noted it is disabled, ignore this request
1772	 */
1773	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1774	    le32_to_cpu(ctrl_ctx->drop_flags) &
1775	    xhci_get_endpoint_flag(&ep->desc)) {
1776		/* Do not warn when called after a usb_device_reset */
1777		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1778			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1779				  __func__, ep);
1780		return 0;
1781	}
1782
1783	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1784	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1785
1786	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1787	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1788
1789	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1790
1791	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1792
1793	if (xhci->quirks & XHCI_MTK_HOST)
1794		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1795
1796	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1797			(unsigned int) ep->desc.bEndpointAddress,
1798			udev->slot_id,
1799			(unsigned int) new_drop_flags,
1800			(unsigned int) new_add_flags);
1801	return 0;
1802}
 
1803
1804/* Add an endpoint to a new possible bandwidth configuration for this device.
1805 * Only one call to this function is allowed per endpoint before
1806 * check_bandwidth() or reset_bandwidth() must be called.
1807 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1808 * add the endpoint to the schedule with possibly new parameters denoted by a
1809 * different endpoint descriptor in usb_host_endpoint.
1810 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1811 * not allowed.
1812 *
1813 * The USB core will not allow URBs to be queued to an endpoint until the
1814 * configuration or alt setting is installed in the device, so there's no need
1815 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1816 */
1817static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1818		struct usb_host_endpoint *ep)
1819{
1820	struct xhci_hcd *xhci;
1821	struct xhci_container_ctx *in_ctx;
1822	unsigned int ep_index;
1823	struct xhci_input_control_ctx *ctrl_ctx;
1824	struct xhci_ep_ctx *ep_ctx;
1825	u32 added_ctxs;
1826	u32 new_add_flags, new_drop_flags;
1827	struct xhci_virt_device *virt_dev;
1828	int ret = 0;
1829
1830	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1831	if (ret <= 0) {
1832		/* So we won't queue a reset ep command for a root hub */
1833		ep->hcpriv = NULL;
1834		return ret;
1835	}
1836	xhci = hcd_to_xhci(hcd);
1837	if (xhci->xhc_state & XHCI_STATE_DYING)
1838		return -ENODEV;
1839
1840	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1841	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1842		/* FIXME when we have to issue an evaluate endpoint command to
1843		 * deal with ep0 max packet size changing once we get the
1844		 * descriptors
1845		 */
1846		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1847				__func__, added_ctxs);
1848		return 0;
1849	}
1850
1851	virt_dev = xhci->devs[udev->slot_id];
1852	in_ctx = virt_dev->in_ctx;
1853	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1854	if (!ctrl_ctx) {
1855		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1856				__func__);
1857		return 0;
1858	}
1859
1860	ep_index = xhci_get_endpoint_index(&ep->desc);
1861	/* If this endpoint is already in use, and the upper layers are trying
1862	 * to add it again without dropping it, reject the addition.
1863	 */
1864	if (virt_dev->eps[ep_index].ring &&
1865			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1866		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1867				"without dropping it.\n",
1868				(unsigned int) ep->desc.bEndpointAddress);
1869		return -EINVAL;
1870	}
1871
1872	/* If the HCD has already noted the endpoint is enabled,
1873	 * ignore this request.
1874	 */
1875	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1876		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1877				__func__, ep);
1878		return 0;
1879	}
1880
1881	/*
1882	 * Configuration and alternate setting changes must be done in
1883	 * process context, not interrupt context (or so documenation
1884	 * for usb_set_interface() and usb_set_configuration() claim).
1885	 */
1886	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1887		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1888				__func__, ep->desc.bEndpointAddress);
1889		return -ENOMEM;
1890	}
1891
1892	if (xhci->quirks & XHCI_MTK_HOST) {
1893		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1894		if (ret < 0) {
1895			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1896			virt_dev->eps[ep_index].new_ring = NULL;
1897			return ret;
1898		}
1899	}
1900
1901	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1902	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1903
1904	/* If xhci_endpoint_disable() was called for this endpoint, but the
1905	 * xHC hasn't been notified yet through the check_bandwidth() call,
1906	 * this re-adds a new state for the endpoint from the new endpoint
1907	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1908	 * drop flags alone.
1909	 */
1910	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1911
1912	/* Store the usb_device pointer for later use */
1913	ep->hcpriv = udev;
1914
1915	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1916	trace_xhci_add_endpoint(ep_ctx);
1917
1918	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1919
1920	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1921			(unsigned int) ep->desc.bEndpointAddress,
1922			udev->slot_id,
1923			(unsigned int) new_drop_flags,
1924			(unsigned int) new_add_flags);
1925	return 0;
1926}
 
1927
1928static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1929{
1930	struct xhci_input_control_ctx *ctrl_ctx;
1931	struct xhci_ep_ctx *ep_ctx;
1932	struct xhci_slot_ctx *slot_ctx;
1933	int i;
1934
1935	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1936	if (!ctrl_ctx) {
1937		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1938				__func__);
1939		return;
1940	}
1941
1942	/* When a device's add flag and drop flag are zero, any subsequent
1943	 * configure endpoint command will leave that endpoint's state
1944	 * untouched.  Make sure we don't leave any old state in the input
1945	 * endpoint contexts.
1946	 */
1947	ctrl_ctx->drop_flags = 0;
1948	ctrl_ctx->add_flags = 0;
1949	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1950	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1951	/* Endpoint 0 is always valid */
1952	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1953	for (i = 1; i < 31; i++) {
1954		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1955		ep_ctx->ep_info = 0;
1956		ep_ctx->ep_info2 = 0;
1957		ep_ctx->deq = 0;
1958		ep_ctx->tx_info = 0;
1959	}
1960}
1961
1962static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1963		struct usb_device *udev, u32 *cmd_status)
1964{
1965	int ret;
1966
1967	switch (*cmd_status) {
1968	case COMP_COMMAND_ABORTED:
1969	case COMP_COMMAND_RING_STOPPED:
1970		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1971		ret = -ETIME;
1972		break;
1973	case COMP_RESOURCE_ERROR:
1974		dev_warn(&udev->dev,
1975			 "Not enough host controller resources for new device state.\n");
1976		ret = -ENOMEM;
1977		/* FIXME: can we allocate more resources for the HC? */
1978		break;
1979	case COMP_BANDWIDTH_ERROR:
1980	case COMP_SECONDARY_BANDWIDTH_ERROR:
1981		dev_warn(&udev->dev,
1982			 "Not enough bandwidth for new device state.\n");
1983		ret = -ENOSPC;
1984		/* FIXME: can we go back to the old state? */
1985		break;
1986	case COMP_TRB_ERROR:
1987		/* the HCD set up something wrong */
1988		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1989				"add flag = 1, "
1990				"and endpoint is not disabled.\n");
1991		ret = -EINVAL;
1992		break;
1993	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1994		dev_warn(&udev->dev,
1995			 "ERROR: Incompatible device for endpoint configure command.\n");
1996		ret = -ENODEV;
1997		break;
1998	case COMP_SUCCESS:
1999		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2000				"Successful Endpoint Configure command");
2001		ret = 0;
2002		break;
2003	default:
2004		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2005				*cmd_status);
2006		ret = -EINVAL;
2007		break;
2008	}
2009	return ret;
2010}
2011
2012static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2013		struct usb_device *udev, u32 *cmd_status)
2014{
2015	int ret;
2016
2017	switch (*cmd_status) {
2018	case COMP_COMMAND_ABORTED:
2019	case COMP_COMMAND_RING_STOPPED:
2020		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2021		ret = -ETIME;
2022		break;
2023	case COMP_PARAMETER_ERROR:
2024		dev_warn(&udev->dev,
2025			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2026		ret = -EINVAL;
2027		break;
2028	case COMP_SLOT_NOT_ENABLED_ERROR:
2029		dev_warn(&udev->dev,
2030			"WARN: slot not enabled for evaluate context command.\n");
2031		ret = -EINVAL;
2032		break;
2033	case COMP_CONTEXT_STATE_ERROR:
2034		dev_warn(&udev->dev,
2035			"WARN: invalid context state for evaluate context command.\n");
2036		ret = -EINVAL;
2037		break;
2038	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2039		dev_warn(&udev->dev,
2040			"ERROR: Incompatible device for evaluate context command.\n");
2041		ret = -ENODEV;
2042		break;
2043	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2044		/* Max Exit Latency too large error */
2045		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2046		ret = -EINVAL;
2047		break;
2048	case COMP_SUCCESS:
2049		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2050				"Successful evaluate context command");
2051		ret = 0;
2052		break;
2053	default:
2054		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2055			*cmd_status);
2056		ret = -EINVAL;
2057		break;
2058	}
2059	return ret;
2060}
2061
2062static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2063		struct xhci_input_control_ctx *ctrl_ctx)
2064{
2065	u32 valid_add_flags;
2066	u32 valid_drop_flags;
2067
2068	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2069	 * (bit 1).  The default control endpoint is added during the Address
2070	 * Device command and is never removed until the slot is disabled.
2071	 */
2072	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2073	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2074
2075	/* Use hweight32 to count the number of ones in the add flags, or
2076	 * number of endpoints added.  Don't count endpoints that are changed
2077	 * (both added and dropped).
2078	 */
2079	return hweight32(valid_add_flags) -
2080		hweight32(valid_add_flags & valid_drop_flags);
2081}
2082
2083static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2084		struct xhci_input_control_ctx *ctrl_ctx)
2085{
2086	u32 valid_add_flags;
2087	u32 valid_drop_flags;
2088
2089	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2090	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2091
2092	return hweight32(valid_drop_flags) -
2093		hweight32(valid_add_flags & valid_drop_flags);
2094}
2095
2096/*
2097 * We need to reserve the new number of endpoints before the configure endpoint
2098 * command completes.  We can't subtract the dropped endpoints from the number
2099 * of active endpoints until the command completes because we can oversubscribe
2100 * the host in this case:
2101 *
2102 *  - the first configure endpoint command drops more endpoints than it adds
2103 *  - a second configure endpoint command that adds more endpoints is queued
2104 *  - the first configure endpoint command fails, so the config is unchanged
2105 *  - the second command may succeed, even though there isn't enough resources
2106 *
2107 * Must be called with xhci->lock held.
2108 */
2109static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2110		struct xhci_input_control_ctx *ctrl_ctx)
2111{
2112	u32 added_eps;
2113
2114	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2115	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2116		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2117				"Not enough ep ctxs: "
2118				"%u active, need to add %u, limit is %u.",
2119				xhci->num_active_eps, added_eps,
2120				xhci->limit_active_eps);
2121		return -ENOMEM;
2122	}
2123	xhci->num_active_eps += added_eps;
2124	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2125			"Adding %u ep ctxs, %u now active.", added_eps,
2126			xhci->num_active_eps);
2127	return 0;
2128}
2129
2130/*
2131 * The configure endpoint was failed by the xHC for some other reason, so we
2132 * need to revert the resources that failed configuration would have used.
2133 *
2134 * Must be called with xhci->lock held.
2135 */
2136static void xhci_free_host_resources(struct xhci_hcd *xhci,
2137		struct xhci_input_control_ctx *ctrl_ctx)
2138{
2139	u32 num_failed_eps;
2140
2141	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2142	xhci->num_active_eps -= num_failed_eps;
2143	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2144			"Removing %u failed ep ctxs, %u now active.",
2145			num_failed_eps,
2146			xhci->num_active_eps);
2147}
2148
2149/*
2150 * Now that the command has completed, clean up the active endpoint count by
2151 * subtracting out the endpoints that were dropped (but not changed).
2152 *
2153 * Must be called with xhci->lock held.
2154 */
2155static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2156		struct xhci_input_control_ctx *ctrl_ctx)
2157{
2158	u32 num_dropped_eps;
2159
2160	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2161	xhci->num_active_eps -= num_dropped_eps;
2162	if (num_dropped_eps)
2163		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2164				"Removing %u dropped ep ctxs, %u now active.",
2165				num_dropped_eps,
2166				xhci->num_active_eps);
2167}
2168
2169static unsigned int xhci_get_block_size(struct usb_device *udev)
2170{
2171	switch (udev->speed) {
2172	case USB_SPEED_LOW:
2173	case USB_SPEED_FULL:
2174		return FS_BLOCK;
2175	case USB_SPEED_HIGH:
2176		return HS_BLOCK;
2177	case USB_SPEED_SUPER:
2178	case USB_SPEED_SUPER_PLUS:
2179		return SS_BLOCK;
2180	case USB_SPEED_UNKNOWN:
2181	case USB_SPEED_WIRELESS:
2182	default:
2183		/* Should never happen */
2184		return 1;
2185	}
2186}
2187
2188static unsigned int
2189xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2190{
2191	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2192		return LS_OVERHEAD;
2193	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2194		return FS_OVERHEAD;
2195	return HS_OVERHEAD;
2196}
2197
2198/* If we are changing a LS/FS device under a HS hub,
2199 * make sure (if we are activating a new TT) that the HS bus has enough
2200 * bandwidth for this new TT.
2201 */
2202static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2203		struct xhci_virt_device *virt_dev,
2204		int old_active_eps)
2205{
2206	struct xhci_interval_bw_table *bw_table;
2207	struct xhci_tt_bw_info *tt_info;
2208
2209	/* Find the bandwidth table for the root port this TT is attached to. */
2210	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2211	tt_info = virt_dev->tt_info;
2212	/* If this TT already had active endpoints, the bandwidth for this TT
2213	 * has already been added.  Removing all periodic endpoints (and thus
2214	 * making the TT enactive) will only decrease the bandwidth used.
2215	 */
2216	if (old_active_eps)
2217		return 0;
2218	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2219		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2220			return -ENOMEM;
2221		return 0;
2222	}
2223	/* Not sure why we would have no new active endpoints...
2224	 *
2225	 * Maybe because of an Evaluate Context change for a hub update or a
2226	 * control endpoint 0 max packet size change?
2227	 * FIXME: skip the bandwidth calculation in that case.
2228	 */
2229	return 0;
2230}
2231
2232static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2233		struct xhci_virt_device *virt_dev)
2234{
2235	unsigned int bw_reserved;
2236
2237	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2238	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2239		return -ENOMEM;
2240
2241	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2242	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2243		return -ENOMEM;
2244
2245	return 0;
2246}
2247
2248/*
2249 * This algorithm is a very conservative estimate of the worst-case scheduling
2250 * scenario for any one interval.  The hardware dynamically schedules the
2251 * packets, so we can't tell which microframe could be the limiting factor in
2252 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2253 *
2254 * Obviously, we can't solve an NP complete problem to find the minimum worst
2255 * case scenario.  Instead, we come up with an estimate that is no less than
2256 * the worst case bandwidth used for any one microframe, but may be an
2257 * over-estimate.
2258 *
2259 * We walk the requirements for each endpoint by interval, starting with the
2260 * smallest interval, and place packets in the schedule where there is only one
2261 * possible way to schedule packets for that interval.  In order to simplify
2262 * this algorithm, we record the largest max packet size for each interval, and
2263 * assume all packets will be that size.
2264 *
2265 * For interval 0, we obviously must schedule all packets for each interval.
2266 * The bandwidth for interval 0 is just the amount of data to be transmitted
2267 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2268 * the number of packets).
2269 *
2270 * For interval 1, we have two possible microframes to schedule those packets
2271 * in.  For this algorithm, if we can schedule the same number of packets for
2272 * each possible scheduling opportunity (each microframe), we will do so.  The
2273 * remaining number of packets will be saved to be transmitted in the gaps in
2274 * the next interval's scheduling sequence.
2275 *
2276 * As we move those remaining packets to be scheduled with interval 2 packets,
2277 * we have to double the number of remaining packets to transmit.  This is
2278 * because the intervals are actually powers of 2, and we would be transmitting
2279 * the previous interval's packets twice in this interval.  We also have to be
2280 * sure that when we look at the largest max packet size for this interval, we
2281 * also look at the largest max packet size for the remaining packets and take
2282 * the greater of the two.
2283 *
2284 * The algorithm continues to evenly distribute packets in each scheduling
2285 * opportunity, and push the remaining packets out, until we get to the last
2286 * interval.  Then those packets and their associated overhead are just added
2287 * to the bandwidth used.
2288 */
2289static int xhci_check_bw_table(struct xhci_hcd *xhci,
2290		struct xhci_virt_device *virt_dev,
2291		int old_active_eps)
2292{
2293	unsigned int bw_reserved;
2294	unsigned int max_bandwidth;
2295	unsigned int bw_used;
2296	unsigned int block_size;
2297	struct xhci_interval_bw_table *bw_table;
2298	unsigned int packet_size = 0;
2299	unsigned int overhead = 0;
2300	unsigned int packets_transmitted = 0;
2301	unsigned int packets_remaining = 0;
2302	unsigned int i;
2303
2304	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2305		return xhci_check_ss_bw(xhci, virt_dev);
2306
2307	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2308		max_bandwidth = HS_BW_LIMIT;
2309		/* Convert percent of bus BW reserved to blocks reserved */
2310		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2311	} else {
2312		max_bandwidth = FS_BW_LIMIT;
2313		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2314	}
2315
2316	bw_table = virt_dev->bw_table;
2317	/* We need to translate the max packet size and max ESIT payloads into
2318	 * the units the hardware uses.
2319	 */
2320	block_size = xhci_get_block_size(virt_dev->udev);
2321
2322	/* If we are manipulating a LS/FS device under a HS hub, double check
2323	 * that the HS bus has enough bandwidth if we are activing a new TT.
2324	 */
2325	if (virt_dev->tt_info) {
2326		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2327				"Recalculating BW for rootport %u",
2328				virt_dev->real_port);
2329		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2330			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2331					"newly activated TT.\n");
2332			return -ENOMEM;
2333		}
2334		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2335				"Recalculating BW for TT slot %u port %u",
2336				virt_dev->tt_info->slot_id,
2337				virt_dev->tt_info->ttport);
2338	} else {
2339		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340				"Recalculating BW for rootport %u",
2341				virt_dev->real_port);
2342	}
2343
2344	/* Add in how much bandwidth will be used for interval zero, or the
2345	 * rounded max ESIT payload + number of packets * largest overhead.
2346	 */
2347	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2348		bw_table->interval_bw[0].num_packets *
2349		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2350
2351	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2352		unsigned int bw_added;
2353		unsigned int largest_mps;
2354		unsigned int interval_overhead;
2355
2356		/*
2357		 * How many packets could we transmit in this interval?
2358		 * If packets didn't fit in the previous interval, we will need
2359		 * to transmit that many packets twice within this interval.
2360		 */
2361		packets_remaining = 2 * packets_remaining +
2362			bw_table->interval_bw[i].num_packets;
2363
2364		/* Find the largest max packet size of this or the previous
2365		 * interval.
2366		 */
2367		if (list_empty(&bw_table->interval_bw[i].endpoints))
2368			largest_mps = 0;
2369		else {
2370			struct xhci_virt_ep *virt_ep;
2371			struct list_head *ep_entry;
2372
2373			ep_entry = bw_table->interval_bw[i].endpoints.next;
2374			virt_ep = list_entry(ep_entry,
2375					struct xhci_virt_ep, bw_endpoint_list);
2376			/* Convert to blocks, rounding up */
2377			largest_mps = DIV_ROUND_UP(
2378					virt_ep->bw_info.max_packet_size,
2379					block_size);
2380		}
2381		if (largest_mps > packet_size)
2382			packet_size = largest_mps;
2383
2384		/* Use the larger overhead of this or the previous interval. */
2385		interval_overhead = xhci_get_largest_overhead(
2386				&bw_table->interval_bw[i]);
2387		if (interval_overhead > overhead)
2388			overhead = interval_overhead;
2389
2390		/* How many packets can we evenly distribute across
2391		 * (1 << (i + 1)) possible scheduling opportunities?
2392		 */
2393		packets_transmitted = packets_remaining >> (i + 1);
2394
2395		/* Add in the bandwidth used for those scheduled packets */
2396		bw_added = packets_transmitted * (overhead + packet_size);
2397
2398		/* How many packets do we have remaining to transmit? */
2399		packets_remaining = packets_remaining % (1 << (i + 1));
2400
2401		/* What largest max packet size should those packets have? */
2402		/* If we've transmitted all packets, don't carry over the
2403		 * largest packet size.
2404		 */
2405		if (packets_remaining == 0) {
2406			packet_size = 0;
2407			overhead = 0;
2408		} else if (packets_transmitted > 0) {
2409			/* Otherwise if we do have remaining packets, and we've
2410			 * scheduled some packets in this interval, take the
2411			 * largest max packet size from endpoints with this
2412			 * interval.
2413			 */
2414			packet_size = largest_mps;
2415			overhead = interval_overhead;
2416		}
2417		/* Otherwise carry over packet_size and overhead from the last
2418		 * time we had a remainder.
2419		 */
2420		bw_used += bw_added;
2421		if (bw_used > max_bandwidth) {
2422			xhci_warn(xhci, "Not enough bandwidth. "
2423					"Proposed: %u, Max: %u\n",
2424				bw_used, max_bandwidth);
2425			return -ENOMEM;
2426		}
2427	}
2428	/*
2429	 * Ok, we know we have some packets left over after even-handedly
2430	 * scheduling interval 15.  We don't know which microframes they will
2431	 * fit into, so we over-schedule and say they will be scheduled every
2432	 * microframe.
2433	 */
2434	if (packets_remaining > 0)
2435		bw_used += overhead + packet_size;
2436
2437	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2438		unsigned int port_index = virt_dev->real_port - 1;
2439
2440		/* OK, we're manipulating a HS device attached to a
2441		 * root port bandwidth domain.  Include the number of active TTs
2442		 * in the bandwidth used.
2443		 */
2444		bw_used += TT_HS_OVERHEAD *
2445			xhci->rh_bw[port_index].num_active_tts;
2446	}
2447
2448	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2449		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2450		"Available: %u " "percent",
2451		bw_used, max_bandwidth, bw_reserved,
2452		(max_bandwidth - bw_used - bw_reserved) * 100 /
2453		max_bandwidth);
2454
2455	bw_used += bw_reserved;
2456	if (bw_used > max_bandwidth) {
2457		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2458				bw_used, max_bandwidth);
2459		return -ENOMEM;
2460	}
2461
2462	bw_table->bw_used = bw_used;
2463	return 0;
2464}
2465
2466static bool xhci_is_async_ep(unsigned int ep_type)
2467{
2468	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2469					ep_type != ISOC_IN_EP &&
2470					ep_type != INT_IN_EP);
2471}
2472
2473static bool xhci_is_sync_in_ep(unsigned int ep_type)
2474{
2475	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2476}
2477
2478static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2479{
2480	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2481
2482	if (ep_bw->ep_interval == 0)
2483		return SS_OVERHEAD_BURST +
2484			(ep_bw->mult * ep_bw->num_packets *
2485					(SS_OVERHEAD + mps));
2486	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2487				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2488				1 << ep_bw->ep_interval);
2489
2490}
2491
2492static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2493		struct xhci_bw_info *ep_bw,
2494		struct xhci_interval_bw_table *bw_table,
2495		struct usb_device *udev,
2496		struct xhci_virt_ep *virt_ep,
2497		struct xhci_tt_bw_info *tt_info)
2498{
2499	struct xhci_interval_bw	*interval_bw;
2500	int normalized_interval;
2501
2502	if (xhci_is_async_ep(ep_bw->type))
2503		return;
2504
2505	if (udev->speed >= USB_SPEED_SUPER) {
2506		if (xhci_is_sync_in_ep(ep_bw->type))
2507			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2508				xhci_get_ss_bw_consumed(ep_bw);
2509		else
2510			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2511				xhci_get_ss_bw_consumed(ep_bw);
2512		return;
2513	}
2514
2515	/* SuperSpeed endpoints never get added to intervals in the table, so
2516	 * this check is only valid for HS/FS/LS devices.
2517	 */
2518	if (list_empty(&virt_ep->bw_endpoint_list))
2519		return;
2520	/* For LS/FS devices, we need to translate the interval expressed in
2521	 * microframes to frames.
2522	 */
2523	if (udev->speed == USB_SPEED_HIGH)
2524		normalized_interval = ep_bw->ep_interval;
2525	else
2526		normalized_interval = ep_bw->ep_interval - 3;
2527
2528	if (normalized_interval == 0)
2529		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2530	interval_bw = &bw_table->interval_bw[normalized_interval];
2531	interval_bw->num_packets -= ep_bw->num_packets;
2532	switch (udev->speed) {
2533	case USB_SPEED_LOW:
2534		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2535		break;
2536	case USB_SPEED_FULL:
2537		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2538		break;
2539	case USB_SPEED_HIGH:
2540		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2541		break;
2542	case USB_SPEED_SUPER:
2543	case USB_SPEED_SUPER_PLUS:
2544	case USB_SPEED_UNKNOWN:
2545	case USB_SPEED_WIRELESS:
2546		/* Should never happen because only LS/FS/HS endpoints will get
2547		 * added to the endpoint list.
2548		 */
2549		return;
2550	}
2551	if (tt_info)
2552		tt_info->active_eps -= 1;
2553	list_del_init(&virt_ep->bw_endpoint_list);
2554}
2555
2556static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2557		struct xhci_bw_info *ep_bw,
2558		struct xhci_interval_bw_table *bw_table,
2559		struct usb_device *udev,
2560		struct xhci_virt_ep *virt_ep,
2561		struct xhci_tt_bw_info *tt_info)
2562{
2563	struct xhci_interval_bw	*interval_bw;
2564	struct xhci_virt_ep *smaller_ep;
2565	int normalized_interval;
2566
2567	if (xhci_is_async_ep(ep_bw->type))
2568		return;
2569
2570	if (udev->speed == USB_SPEED_SUPER) {
2571		if (xhci_is_sync_in_ep(ep_bw->type))
2572			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2573				xhci_get_ss_bw_consumed(ep_bw);
2574		else
2575			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2576				xhci_get_ss_bw_consumed(ep_bw);
2577		return;
2578	}
2579
2580	/* For LS/FS devices, we need to translate the interval expressed in
2581	 * microframes to frames.
2582	 */
2583	if (udev->speed == USB_SPEED_HIGH)
2584		normalized_interval = ep_bw->ep_interval;
2585	else
2586		normalized_interval = ep_bw->ep_interval - 3;
2587
2588	if (normalized_interval == 0)
2589		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2590	interval_bw = &bw_table->interval_bw[normalized_interval];
2591	interval_bw->num_packets += ep_bw->num_packets;
2592	switch (udev->speed) {
2593	case USB_SPEED_LOW:
2594		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2595		break;
2596	case USB_SPEED_FULL:
2597		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2598		break;
2599	case USB_SPEED_HIGH:
2600		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2601		break;
2602	case USB_SPEED_SUPER:
2603	case USB_SPEED_SUPER_PLUS:
2604	case USB_SPEED_UNKNOWN:
2605	case USB_SPEED_WIRELESS:
2606		/* Should never happen because only LS/FS/HS endpoints will get
2607		 * added to the endpoint list.
2608		 */
2609		return;
2610	}
2611
2612	if (tt_info)
2613		tt_info->active_eps += 1;
2614	/* Insert the endpoint into the list, largest max packet size first. */
2615	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2616			bw_endpoint_list) {
2617		if (ep_bw->max_packet_size >=
2618				smaller_ep->bw_info.max_packet_size) {
2619			/* Add the new ep before the smaller endpoint */
2620			list_add_tail(&virt_ep->bw_endpoint_list,
2621					&smaller_ep->bw_endpoint_list);
2622			return;
2623		}
2624	}
2625	/* Add the new endpoint at the end of the list. */
2626	list_add_tail(&virt_ep->bw_endpoint_list,
2627			&interval_bw->endpoints);
2628}
2629
2630void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2631		struct xhci_virt_device *virt_dev,
2632		int old_active_eps)
2633{
2634	struct xhci_root_port_bw_info *rh_bw_info;
2635	if (!virt_dev->tt_info)
2636		return;
2637
2638	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2639	if (old_active_eps == 0 &&
2640				virt_dev->tt_info->active_eps != 0) {
2641		rh_bw_info->num_active_tts += 1;
2642		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2643	} else if (old_active_eps != 0 &&
2644				virt_dev->tt_info->active_eps == 0) {
2645		rh_bw_info->num_active_tts -= 1;
2646		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2647	}
2648}
2649
2650static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2651		struct xhci_virt_device *virt_dev,
2652		struct xhci_container_ctx *in_ctx)
2653{
2654	struct xhci_bw_info ep_bw_info[31];
2655	int i;
2656	struct xhci_input_control_ctx *ctrl_ctx;
2657	int old_active_eps = 0;
2658
2659	if (virt_dev->tt_info)
2660		old_active_eps = virt_dev->tt_info->active_eps;
2661
2662	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2663	if (!ctrl_ctx) {
2664		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2665				__func__);
2666		return -ENOMEM;
2667	}
2668
2669	for (i = 0; i < 31; i++) {
2670		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2671			continue;
2672
2673		/* Make a copy of the BW info in case we need to revert this */
2674		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2675				sizeof(ep_bw_info[i]));
2676		/* Drop the endpoint from the interval table if the endpoint is
2677		 * being dropped or changed.
2678		 */
2679		if (EP_IS_DROPPED(ctrl_ctx, i))
2680			xhci_drop_ep_from_interval_table(xhci,
2681					&virt_dev->eps[i].bw_info,
2682					virt_dev->bw_table,
2683					virt_dev->udev,
2684					&virt_dev->eps[i],
2685					virt_dev->tt_info);
2686	}
2687	/* Overwrite the information stored in the endpoints' bw_info */
2688	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2689	for (i = 0; i < 31; i++) {
2690		/* Add any changed or added endpoints to the interval table */
2691		if (EP_IS_ADDED(ctrl_ctx, i))
2692			xhci_add_ep_to_interval_table(xhci,
2693					&virt_dev->eps[i].bw_info,
2694					virt_dev->bw_table,
2695					virt_dev->udev,
2696					&virt_dev->eps[i],
2697					virt_dev->tt_info);
2698	}
2699
2700	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2701		/* Ok, this fits in the bandwidth we have.
2702		 * Update the number of active TTs.
2703		 */
2704		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2705		return 0;
2706	}
2707
2708	/* We don't have enough bandwidth for this, revert the stored info. */
2709	for (i = 0; i < 31; i++) {
2710		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2711			continue;
2712
2713		/* Drop the new copies of any added or changed endpoints from
2714		 * the interval table.
2715		 */
2716		if (EP_IS_ADDED(ctrl_ctx, i)) {
2717			xhci_drop_ep_from_interval_table(xhci,
2718					&virt_dev->eps[i].bw_info,
2719					virt_dev->bw_table,
2720					virt_dev->udev,
2721					&virt_dev->eps[i],
2722					virt_dev->tt_info);
2723		}
2724		/* Revert the endpoint back to its old information */
2725		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2726				sizeof(ep_bw_info[i]));
2727		/* Add any changed or dropped endpoints back into the table */
2728		if (EP_IS_DROPPED(ctrl_ctx, i))
2729			xhci_add_ep_to_interval_table(xhci,
2730					&virt_dev->eps[i].bw_info,
2731					virt_dev->bw_table,
2732					virt_dev->udev,
2733					&virt_dev->eps[i],
2734					virt_dev->tt_info);
2735	}
2736	return -ENOMEM;
2737}
2738
2739
2740/* Issue a configure endpoint command or evaluate context command
2741 * and wait for it to finish.
2742 */
2743static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2744		struct usb_device *udev,
2745		struct xhci_command *command,
2746		bool ctx_change, bool must_succeed)
2747{
2748	int ret;
2749	unsigned long flags;
2750	struct xhci_input_control_ctx *ctrl_ctx;
2751	struct xhci_virt_device *virt_dev;
2752	struct xhci_slot_ctx *slot_ctx;
2753
2754	if (!command)
2755		return -EINVAL;
2756
2757	spin_lock_irqsave(&xhci->lock, flags);
2758
2759	if (xhci->xhc_state & XHCI_STATE_DYING) {
2760		spin_unlock_irqrestore(&xhci->lock, flags);
2761		return -ESHUTDOWN;
2762	}
2763
2764	virt_dev = xhci->devs[udev->slot_id];
2765
2766	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2767	if (!ctrl_ctx) {
2768		spin_unlock_irqrestore(&xhci->lock, flags);
2769		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2770				__func__);
2771		return -ENOMEM;
2772	}
2773
2774	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2775			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2776		spin_unlock_irqrestore(&xhci->lock, flags);
2777		xhci_warn(xhci, "Not enough host resources, "
2778				"active endpoint contexts = %u\n",
2779				xhci->num_active_eps);
2780		return -ENOMEM;
2781	}
2782	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2783	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2784		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2785			xhci_free_host_resources(xhci, ctrl_ctx);
2786		spin_unlock_irqrestore(&xhci->lock, flags);
2787		xhci_warn(xhci, "Not enough bandwidth\n");
2788		return -ENOMEM;
2789	}
2790
2791	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2792
2793	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2794	trace_xhci_configure_endpoint(slot_ctx);
2795
2796	if (!ctx_change)
2797		ret = xhci_queue_configure_endpoint(xhci, command,
2798				command->in_ctx->dma,
2799				udev->slot_id, must_succeed);
2800	else
2801		ret = xhci_queue_evaluate_context(xhci, command,
2802				command->in_ctx->dma,
2803				udev->slot_id, must_succeed);
2804	if (ret < 0) {
2805		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2806			xhci_free_host_resources(xhci, ctrl_ctx);
2807		spin_unlock_irqrestore(&xhci->lock, flags);
2808		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2809				"FIXME allocate a new ring segment");
2810		return -ENOMEM;
2811	}
2812	xhci_ring_cmd_db(xhci);
2813	spin_unlock_irqrestore(&xhci->lock, flags);
2814
2815	/* Wait for the configure endpoint command to complete */
2816	wait_for_completion(command->completion);
2817
2818	if (!ctx_change)
2819		ret = xhci_configure_endpoint_result(xhci, udev,
2820						     &command->status);
2821	else
2822		ret = xhci_evaluate_context_result(xhci, udev,
2823						   &command->status);
2824
2825	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2826		spin_lock_irqsave(&xhci->lock, flags);
2827		/* If the command failed, remove the reserved resources.
2828		 * Otherwise, clean up the estimate to include dropped eps.
2829		 */
2830		if (ret)
2831			xhci_free_host_resources(xhci, ctrl_ctx);
2832		else
2833			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2834		spin_unlock_irqrestore(&xhci->lock, flags);
2835	}
2836	return ret;
2837}
2838
2839static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2840	struct xhci_virt_device *vdev, int i)
2841{
2842	struct xhci_virt_ep *ep = &vdev->eps[i];
2843
2844	if (ep->ep_state & EP_HAS_STREAMS) {
2845		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2846				xhci_get_endpoint_address(i));
2847		xhci_free_stream_info(xhci, ep->stream_info);
2848		ep->stream_info = NULL;
2849		ep->ep_state &= ~EP_HAS_STREAMS;
2850	}
2851}
2852
2853/* Called after one or more calls to xhci_add_endpoint() or
2854 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2855 * to call xhci_reset_bandwidth().
2856 *
2857 * Since we are in the middle of changing either configuration or
2858 * installing a new alt setting, the USB core won't allow URBs to be
2859 * enqueued for any endpoint on the old config or interface.  Nothing
2860 * else should be touching the xhci->devs[slot_id] structure, so we
2861 * don't need to take the xhci->lock for manipulating that.
2862 */
2863static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2864{
2865	int i;
2866	int ret = 0;
2867	struct xhci_hcd *xhci;
2868	struct xhci_virt_device	*virt_dev;
2869	struct xhci_input_control_ctx *ctrl_ctx;
2870	struct xhci_slot_ctx *slot_ctx;
2871	struct xhci_command *command;
2872
2873	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2874	if (ret <= 0)
2875		return ret;
2876	xhci = hcd_to_xhci(hcd);
2877	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2878		(xhci->xhc_state & XHCI_STATE_REMOVING))
2879		return -ENODEV;
2880
2881	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2882	virt_dev = xhci->devs[udev->slot_id];
2883
2884	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2885	if (!command)
2886		return -ENOMEM;
2887
2888	command->in_ctx = virt_dev->in_ctx;
2889
2890	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2891	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2892	if (!ctrl_ctx) {
2893		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2894				__func__);
2895		ret = -ENOMEM;
2896		goto command_cleanup;
2897	}
2898	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2899	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2900	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2901
2902	/* Don't issue the command if there's no endpoints to update. */
2903	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2904	    ctrl_ctx->drop_flags == 0) {
2905		ret = 0;
2906		goto command_cleanup;
2907	}
2908	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2909	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2910	for (i = 31; i >= 1; i--) {
2911		__le32 le32 = cpu_to_le32(BIT(i));
2912
2913		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2914		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2915			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2916			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2917			break;
2918		}
2919	}
2920
2921	ret = xhci_configure_endpoint(xhci, udev, command,
2922			false, false);
2923	if (ret)
2924		/* Callee should call reset_bandwidth() */
2925		goto command_cleanup;
2926
2927	/* Free any rings that were dropped, but not changed. */
2928	for (i = 1; i < 31; i++) {
2929		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2930		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2931			xhci_free_endpoint_ring(xhci, virt_dev, i);
2932			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2933		}
2934	}
2935	xhci_zero_in_ctx(xhci, virt_dev);
2936	/*
2937	 * Install any rings for completely new endpoints or changed endpoints,
2938	 * and free any old rings from changed endpoints.
2939	 */
2940	for (i = 1; i < 31; i++) {
2941		if (!virt_dev->eps[i].new_ring)
2942			continue;
2943		/* Only free the old ring if it exists.
2944		 * It may not if this is the first add of an endpoint.
2945		 */
2946		if (virt_dev->eps[i].ring) {
2947			xhci_free_endpoint_ring(xhci, virt_dev, i);
2948		}
2949		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2950		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2951		virt_dev->eps[i].new_ring = NULL;
 
2952	}
2953command_cleanup:
2954	kfree(command->completion);
2955	kfree(command);
2956
2957	return ret;
2958}
 
2959
2960static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2961{
2962	struct xhci_hcd *xhci;
2963	struct xhci_virt_device	*virt_dev;
2964	int i, ret;
2965
2966	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2967	if (ret <= 0)
2968		return;
2969	xhci = hcd_to_xhci(hcd);
2970
2971	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2972	virt_dev = xhci->devs[udev->slot_id];
2973	/* Free any rings allocated for added endpoints */
2974	for (i = 0; i < 31; i++) {
2975		if (virt_dev->eps[i].new_ring) {
2976			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2977			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2978			virt_dev->eps[i].new_ring = NULL;
2979		}
2980	}
2981	xhci_zero_in_ctx(xhci, virt_dev);
2982}
 
2983
2984static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2985		struct xhci_container_ctx *in_ctx,
2986		struct xhci_container_ctx *out_ctx,
2987		struct xhci_input_control_ctx *ctrl_ctx,
2988		u32 add_flags, u32 drop_flags)
2989{
2990	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2991	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2992	xhci_slot_copy(xhci, in_ctx, out_ctx);
2993	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2994}
2995
2996static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2997		unsigned int slot_id, unsigned int ep_index,
2998		struct xhci_dequeue_state *deq_state)
2999{
3000	struct xhci_input_control_ctx *ctrl_ctx;
3001	struct xhci_container_ctx *in_ctx;
3002	struct xhci_ep_ctx *ep_ctx;
3003	u32 added_ctxs;
3004	dma_addr_t addr;
3005
3006	in_ctx = xhci->devs[slot_id]->in_ctx;
3007	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3008	if (!ctrl_ctx) {
3009		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3010				__func__);
3011		return;
3012	}
3013
3014	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3015			xhci->devs[slot_id]->out_ctx, ep_index);
3016	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3017	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3018			deq_state->new_deq_ptr);
3019	if (addr == 0) {
3020		xhci_warn(xhci, "WARN Cannot submit config ep after "
3021				"reset ep command\n");
3022		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3023				deq_state->new_deq_seg,
3024				deq_state->new_deq_ptr);
3025		return;
3026	}
3027	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3028
3029	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3030	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3031			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3032			added_ctxs, added_ctxs);
3033}
3034
3035void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3036			       unsigned int stream_id, struct xhci_td *td)
3037{
3038	struct xhci_dequeue_state deq_state;
3039	struct usb_device *udev = td->urb->dev;
3040
3041	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3042			"Cleaning up stalled endpoint ring");
3043	/* We need to move the HW's dequeue pointer past this TD,
3044	 * or it will attempt to resend it on the next doorbell ring.
3045	 */
3046	xhci_find_new_dequeue_state(xhci, udev->slot_id,
3047			ep_index, stream_id, td, &deq_state);
3048
3049	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3050		return;
3051
3052	/* HW with the reset endpoint quirk will use the saved dequeue state to
3053	 * issue a configure endpoint command later.
3054	 */
3055	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3056		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3057				"Queueing new dequeue state");
3058		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3059				ep_index, &deq_state);
3060	} else {
3061		/* Better hope no one uses the input context between now and the
3062		 * reset endpoint completion!
3063		 * XXX: No idea how this hardware will react when stream rings
3064		 * are enabled.
3065		 */
3066		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3067				"Setting up input context for "
3068				"configure endpoint command");
3069		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3070				ep_index, &deq_state);
3071	}
3072}
3073
3074static void xhci_endpoint_disable(struct usb_hcd *hcd,
3075				  struct usb_host_endpoint *host_ep)
3076{
3077	struct xhci_hcd		*xhci;
3078	struct xhci_virt_device	*vdev;
3079	struct xhci_virt_ep	*ep;
3080	struct usb_device	*udev;
3081	unsigned long		flags;
3082	unsigned int		ep_index;
3083
3084	xhci = hcd_to_xhci(hcd);
3085rescan:
3086	spin_lock_irqsave(&xhci->lock, flags);
3087
3088	udev = (struct usb_device *)host_ep->hcpriv;
3089	if (!udev || !udev->slot_id)
3090		goto done;
3091
3092	vdev = xhci->devs[udev->slot_id];
3093	if (!vdev)
3094		goto done;
3095
3096	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3097	ep = &vdev->eps[ep_index];
3098	if (!ep)
3099		goto done;
3100
3101	/* wait for hub_tt_work to finish clearing hub TT */
3102	if (ep->ep_state & EP_CLEARING_TT) {
3103		spin_unlock_irqrestore(&xhci->lock, flags);
3104		schedule_timeout_uninterruptible(1);
3105		goto rescan;
3106	}
3107
3108	if (ep->ep_state)
3109		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3110			 ep->ep_state);
3111done:
3112	host_ep->hcpriv = NULL;
3113	spin_unlock_irqrestore(&xhci->lock, flags);
3114}
3115
3116/*
3117 * Called after usb core issues a clear halt control message.
3118 * The host side of the halt should already be cleared by a reset endpoint
3119 * command issued when the STALL event was received.
3120 *
3121 * The reset endpoint command may only be issued to endpoints in the halted
3122 * state. For software that wishes to reset the data toggle or sequence number
3123 * of an endpoint that isn't in the halted state this function will issue a
3124 * configure endpoint command with the Drop and Add bits set for the target
3125 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
 
 
 
3126 */
3127
3128static void xhci_endpoint_reset(struct usb_hcd *hcd,
3129		struct usb_host_endpoint *host_ep)
3130{
3131	struct xhci_hcd *xhci;
3132	struct usb_device *udev;
3133	struct xhci_virt_device *vdev;
3134	struct xhci_virt_ep *ep;
3135	struct xhci_input_control_ctx *ctrl_ctx;
3136	struct xhci_command *stop_cmd, *cfg_cmd;
3137	unsigned int ep_index;
3138	unsigned long flags;
3139	u32 ep_flag;
3140	int err;
3141
3142	xhci = hcd_to_xhci(hcd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3143	if (!host_ep->hcpriv)
3144		return;
3145	udev = (struct usb_device *) host_ep->hcpriv;
3146	vdev = xhci->devs[udev->slot_id];
3147
3148	/*
3149	 * vdev may be lost due to xHC restore error and re-initialization
3150	 * during S3/S4 resume. A new vdev will be allocated later by
3151	 * xhci_discover_or_reset_device()
3152	 */
3153	if (!udev->slot_id || !vdev)
3154		return;
3155	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3156	ep = &vdev->eps[ep_index];
3157	if (!ep)
3158		return;
3159
3160	/* Bail out if toggle is already being cleared by a endpoint reset */
 
3161	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3162		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
 
3163		return;
3164	}
 
3165	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3166	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3167	    usb_endpoint_xfer_isoc(&host_ep->desc))
3168		return;
3169
3170	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3171
3172	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3173		return;
3174
3175	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3176	if (!stop_cmd)
3177		return;
3178
3179	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3180	if (!cfg_cmd)
3181		goto cleanup;
3182
3183	spin_lock_irqsave(&xhci->lock, flags);
3184
3185	/* block queuing new trbs and ringing ep doorbell */
3186	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3187
3188	/*
3189	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3190	 * Driver is required to synchronously cancel all transfer request.
3191	 * Stop the endpoint to force xHC to update the output context
3192	 */
3193
3194	if (!list_empty(&ep->ring->td_list)) {
3195		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3196		spin_unlock_irqrestore(&xhci->lock, flags);
3197		xhci_free_command(xhci, cfg_cmd);
3198		goto cleanup;
3199	}
3200
3201	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3202					ep_index, 0);
3203	if (err < 0) {
3204		spin_unlock_irqrestore(&xhci->lock, flags);
3205		xhci_free_command(xhci, cfg_cmd);
3206		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3207				__func__, err);
3208		goto cleanup;
3209	}
3210
3211	xhci_ring_cmd_db(xhci);
3212	spin_unlock_irqrestore(&xhci->lock, flags);
3213
3214	wait_for_completion(stop_cmd->completion);
3215
3216	spin_lock_irqsave(&xhci->lock, flags);
3217
3218	/* config ep command clears toggle if add and drop ep flags are set */
3219	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
 
 
 
 
 
 
 
 
3220	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3221					   ctrl_ctx, ep_flag, ep_flag);
3222	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3223
3224	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3225				      udev->slot_id, false);
3226	if (err < 0) {
3227		spin_unlock_irqrestore(&xhci->lock, flags);
3228		xhci_free_command(xhci, cfg_cmd);
3229		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3230				__func__, err);
3231		goto cleanup;
3232	}
3233
3234	xhci_ring_cmd_db(xhci);
3235	spin_unlock_irqrestore(&xhci->lock, flags);
3236
3237	wait_for_completion(cfg_cmd->completion);
3238
3239	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3240	xhci_free_command(xhci, cfg_cmd);
3241cleanup:
3242	xhci_free_command(xhci, stop_cmd);
 
 
 
 
3243}
3244
3245static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3246		struct usb_device *udev, struct usb_host_endpoint *ep,
3247		unsigned int slot_id)
3248{
3249	int ret;
3250	unsigned int ep_index;
3251	unsigned int ep_state;
3252
3253	if (!ep)
3254		return -EINVAL;
3255	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3256	if (ret <= 0)
3257		return -EINVAL;
3258	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3259		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3260				" descriptor for ep 0x%x does not support streams\n",
3261				ep->desc.bEndpointAddress);
3262		return -EINVAL;
3263	}
3264
3265	ep_index = xhci_get_endpoint_index(&ep->desc);
3266	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3267	if (ep_state & EP_HAS_STREAMS ||
3268			ep_state & EP_GETTING_STREAMS) {
3269		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3270				"already has streams set up.\n",
3271				ep->desc.bEndpointAddress);
3272		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3273				"dynamic stream context array reallocation.\n");
3274		return -EINVAL;
3275	}
3276	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3277		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3278				"endpoint 0x%x; URBs are pending.\n",
3279				ep->desc.bEndpointAddress);
3280		return -EINVAL;
3281	}
3282	return 0;
3283}
3284
3285static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3286		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3287{
3288	unsigned int max_streams;
3289
3290	/* The stream context array size must be a power of two */
3291	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3292	/*
3293	 * Find out how many primary stream array entries the host controller
3294	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3295	 * level page entries), but that's an optional feature for xHCI host
3296	 * controllers. xHCs must support at least 4 stream IDs.
3297	 */
3298	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3299	if (*num_stream_ctxs > max_streams) {
3300		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3301				max_streams);
3302		*num_stream_ctxs = max_streams;
3303		*num_streams = max_streams;
3304	}
3305}
3306
3307/* Returns an error code if one of the endpoint already has streams.
3308 * This does not change any data structures, it only checks and gathers
3309 * information.
3310 */
3311static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3312		struct usb_device *udev,
3313		struct usb_host_endpoint **eps, unsigned int num_eps,
3314		unsigned int *num_streams, u32 *changed_ep_bitmask)
3315{
3316	unsigned int max_streams;
3317	unsigned int endpoint_flag;
3318	int i;
3319	int ret;
3320
3321	for (i = 0; i < num_eps; i++) {
3322		ret = xhci_check_streams_endpoint(xhci, udev,
3323				eps[i], udev->slot_id);
3324		if (ret < 0)
3325			return ret;
3326
3327		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3328		if (max_streams < (*num_streams - 1)) {
3329			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3330					eps[i]->desc.bEndpointAddress,
3331					max_streams);
3332			*num_streams = max_streams+1;
3333		}
3334
3335		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3336		if (*changed_ep_bitmask & endpoint_flag)
3337			return -EINVAL;
3338		*changed_ep_bitmask |= endpoint_flag;
3339	}
3340	return 0;
3341}
3342
3343static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3344		struct usb_device *udev,
3345		struct usb_host_endpoint **eps, unsigned int num_eps)
3346{
3347	u32 changed_ep_bitmask = 0;
3348	unsigned int slot_id;
3349	unsigned int ep_index;
3350	unsigned int ep_state;
3351	int i;
3352
3353	slot_id = udev->slot_id;
3354	if (!xhci->devs[slot_id])
3355		return 0;
3356
3357	for (i = 0; i < num_eps; i++) {
3358		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3359		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3360		/* Are streams already being freed for the endpoint? */
3361		if (ep_state & EP_GETTING_NO_STREAMS) {
3362			xhci_warn(xhci, "WARN Can't disable streams for "
3363					"endpoint 0x%x, "
3364					"streams are being disabled already\n",
3365					eps[i]->desc.bEndpointAddress);
3366			return 0;
3367		}
3368		/* Are there actually any streams to free? */
3369		if (!(ep_state & EP_HAS_STREAMS) &&
3370				!(ep_state & EP_GETTING_STREAMS)) {
3371			xhci_warn(xhci, "WARN Can't disable streams for "
3372					"endpoint 0x%x, "
3373					"streams are already disabled!\n",
3374					eps[i]->desc.bEndpointAddress);
3375			xhci_warn(xhci, "WARN xhci_free_streams() called "
3376					"with non-streams endpoint\n");
3377			return 0;
3378		}
3379		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3380	}
3381	return changed_ep_bitmask;
3382}
3383
3384/*
3385 * The USB device drivers use this function (through the HCD interface in USB
3386 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3387 * coordinate mass storage command queueing across multiple endpoints (basically
3388 * a stream ID == a task ID).
3389 *
3390 * Setting up streams involves allocating the same size stream context array
3391 * for each endpoint and issuing a configure endpoint command for all endpoints.
3392 *
3393 * Don't allow the call to succeed if one endpoint only supports one stream
3394 * (which means it doesn't support streams at all).
3395 *
3396 * Drivers may get less stream IDs than they asked for, if the host controller
3397 * hardware or endpoints claim they can't support the number of requested
3398 * stream IDs.
3399 */
3400static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3401		struct usb_host_endpoint **eps, unsigned int num_eps,
3402		unsigned int num_streams, gfp_t mem_flags)
3403{
3404	int i, ret;
3405	struct xhci_hcd *xhci;
3406	struct xhci_virt_device *vdev;
3407	struct xhci_command *config_cmd;
3408	struct xhci_input_control_ctx *ctrl_ctx;
3409	unsigned int ep_index;
3410	unsigned int num_stream_ctxs;
3411	unsigned int max_packet;
3412	unsigned long flags;
3413	u32 changed_ep_bitmask = 0;
3414
3415	if (!eps)
3416		return -EINVAL;
3417
3418	/* Add one to the number of streams requested to account for
3419	 * stream 0 that is reserved for xHCI usage.
3420	 */
3421	num_streams += 1;
3422	xhci = hcd_to_xhci(hcd);
3423	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3424			num_streams);
3425
3426	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3427	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3428			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3429		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3430		return -ENOSYS;
3431	}
3432
3433	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3434	if (!config_cmd)
3435		return -ENOMEM;
3436
3437	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3438	if (!ctrl_ctx) {
3439		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3440				__func__);
3441		xhci_free_command(xhci, config_cmd);
3442		return -ENOMEM;
3443	}
3444
3445	/* Check to make sure all endpoints are not already configured for
3446	 * streams.  While we're at it, find the maximum number of streams that
3447	 * all the endpoints will support and check for duplicate endpoints.
3448	 */
3449	spin_lock_irqsave(&xhci->lock, flags);
3450	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3451			num_eps, &num_streams, &changed_ep_bitmask);
3452	if (ret < 0) {
3453		xhci_free_command(xhci, config_cmd);
3454		spin_unlock_irqrestore(&xhci->lock, flags);
3455		return ret;
3456	}
3457	if (num_streams <= 1) {
3458		xhci_warn(xhci, "WARN: endpoints can't handle "
3459				"more than one stream.\n");
3460		xhci_free_command(xhci, config_cmd);
3461		spin_unlock_irqrestore(&xhci->lock, flags);
3462		return -EINVAL;
3463	}
3464	vdev = xhci->devs[udev->slot_id];
3465	/* Mark each endpoint as being in transition, so
3466	 * xhci_urb_enqueue() will reject all URBs.
3467	 */
3468	for (i = 0; i < num_eps; i++) {
3469		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3470		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3471	}
3472	spin_unlock_irqrestore(&xhci->lock, flags);
3473
3474	/* Setup internal data structures and allocate HW data structures for
3475	 * streams (but don't install the HW structures in the input context
3476	 * until we're sure all memory allocation succeeded).
3477	 */
3478	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3479	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3480			num_stream_ctxs, num_streams);
3481
3482	for (i = 0; i < num_eps; i++) {
3483		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3484		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3485		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3486				num_stream_ctxs,
3487				num_streams,
3488				max_packet, mem_flags);
3489		if (!vdev->eps[ep_index].stream_info)
3490			goto cleanup;
3491		/* Set maxPstreams in endpoint context and update deq ptr to
3492		 * point to stream context array. FIXME
3493		 */
3494	}
3495
3496	/* Set up the input context for a configure endpoint command. */
3497	for (i = 0; i < num_eps; i++) {
3498		struct xhci_ep_ctx *ep_ctx;
3499
3500		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3501		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3502
3503		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3504				vdev->out_ctx, ep_index);
3505		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3506				vdev->eps[ep_index].stream_info);
3507	}
3508	/* Tell the HW to drop its old copy of the endpoint context info
3509	 * and add the updated copy from the input context.
3510	 */
3511	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3512			vdev->out_ctx, ctrl_ctx,
3513			changed_ep_bitmask, changed_ep_bitmask);
3514
3515	/* Issue and wait for the configure endpoint command */
3516	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3517			false, false);
3518
3519	/* xHC rejected the configure endpoint command for some reason, so we
3520	 * leave the old ring intact and free our internal streams data
3521	 * structure.
3522	 */
3523	if (ret < 0)
3524		goto cleanup;
3525
3526	spin_lock_irqsave(&xhci->lock, flags);
3527	for (i = 0; i < num_eps; i++) {
3528		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3529		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3530		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3531			 udev->slot_id, ep_index);
3532		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3533	}
3534	xhci_free_command(xhci, config_cmd);
3535	spin_unlock_irqrestore(&xhci->lock, flags);
3536
 
 
 
 
3537	/* Subtract 1 for stream 0, which drivers can't use */
3538	return num_streams - 1;
3539
3540cleanup:
3541	/* If it didn't work, free the streams! */
3542	for (i = 0; i < num_eps; i++) {
3543		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3544		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3545		vdev->eps[ep_index].stream_info = NULL;
3546		/* FIXME Unset maxPstreams in endpoint context and
3547		 * update deq ptr to point to normal string ring.
3548		 */
3549		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3550		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3551		xhci_endpoint_zero(xhci, vdev, eps[i]);
3552	}
3553	xhci_free_command(xhci, config_cmd);
3554	return -ENOMEM;
3555}
3556
3557/* Transition the endpoint from using streams to being a "normal" endpoint
3558 * without streams.
3559 *
3560 * Modify the endpoint context state, submit a configure endpoint command,
3561 * and free all endpoint rings for streams if that completes successfully.
3562 */
3563static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3564		struct usb_host_endpoint **eps, unsigned int num_eps,
3565		gfp_t mem_flags)
3566{
3567	int i, ret;
3568	struct xhci_hcd *xhci;
3569	struct xhci_virt_device *vdev;
3570	struct xhci_command *command;
3571	struct xhci_input_control_ctx *ctrl_ctx;
3572	unsigned int ep_index;
3573	unsigned long flags;
3574	u32 changed_ep_bitmask;
3575
3576	xhci = hcd_to_xhci(hcd);
3577	vdev = xhci->devs[udev->slot_id];
3578
3579	/* Set up a configure endpoint command to remove the streams rings */
3580	spin_lock_irqsave(&xhci->lock, flags);
3581	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3582			udev, eps, num_eps);
3583	if (changed_ep_bitmask == 0) {
3584		spin_unlock_irqrestore(&xhci->lock, flags);
3585		return -EINVAL;
3586	}
3587
3588	/* Use the xhci_command structure from the first endpoint.  We may have
3589	 * allocated too many, but the driver may call xhci_free_streams() for
3590	 * each endpoint it grouped into one call to xhci_alloc_streams().
3591	 */
3592	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3593	command = vdev->eps[ep_index].stream_info->free_streams_command;
3594	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3595	if (!ctrl_ctx) {
3596		spin_unlock_irqrestore(&xhci->lock, flags);
3597		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3598				__func__);
3599		return -EINVAL;
3600	}
3601
3602	for (i = 0; i < num_eps; i++) {
3603		struct xhci_ep_ctx *ep_ctx;
3604
3605		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3606		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3607		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3608			EP_GETTING_NO_STREAMS;
3609
3610		xhci_endpoint_copy(xhci, command->in_ctx,
3611				vdev->out_ctx, ep_index);
3612		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3613				&vdev->eps[ep_index]);
3614	}
3615	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3616			vdev->out_ctx, ctrl_ctx,
3617			changed_ep_bitmask, changed_ep_bitmask);
3618	spin_unlock_irqrestore(&xhci->lock, flags);
3619
3620	/* Issue and wait for the configure endpoint command,
3621	 * which must succeed.
3622	 */
3623	ret = xhci_configure_endpoint(xhci, udev, command,
3624			false, true);
3625
3626	/* xHC rejected the configure endpoint command for some reason, so we
3627	 * leave the streams rings intact.
3628	 */
3629	if (ret < 0)
3630		return ret;
3631
3632	spin_lock_irqsave(&xhci->lock, flags);
3633	for (i = 0; i < num_eps; i++) {
3634		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3635		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3636		vdev->eps[ep_index].stream_info = NULL;
3637		/* FIXME Unset maxPstreams in endpoint context and
3638		 * update deq ptr to point to normal string ring.
3639		 */
3640		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3641		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3642	}
3643	spin_unlock_irqrestore(&xhci->lock, flags);
3644
3645	return 0;
3646}
3647
3648/*
3649 * Deletes endpoint resources for endpoints that were active before a Reset
3650 * Device command, or a Disable Slot command.  The Reset Device command leaves
3651 * the control endpoint intact, whereas the Disable Slot command deletes it.
3652 *
3653 * Must be called with xhci->lock held.
3654 */
3655void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3656	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3657{
3658	int i;
3659	unsigned int num_dropped_eps = 0;
3660	unsigned int drop_flags = 0;
3661
3662	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3663		if (virt_dev->eps[i].ring) {
3664			drop_flags |= 1 << i;
3665			num_dropped_eps++;
3666		}
3667	}
3668	xhci->num_active_eps -= num_dropped_eps;
3669	if (num_dropped_eps)
3670		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3671				"Dropped %u ep ctxs, flags = 0x%x, "
3672				"%u now active.",
3673				num_dropped_eps, drop_flags,
3674				xhci->num_active_eps);
3675}
3676
3677/*
3678 * This submits a Reset Device Command, which will set the device state to 0,
3679 * set the device address to 0, and disable all the endpoints except the default
3680 * control endpoint.  The USB core should come back and call
3681 * xhci_address_device(), and then re-set up the configuration.  If this is
3682 * called because of a usb_reset_and_verify_device(), then the old alternate
3683 * settings will be re-installed through the normal bandwidth allocation
3684 * functions.
3685 *
3686 * Wait for the Reset Device command to finish.  Remove all structures
3687 * associated with the endpoints that were disabled.  Clear the input device
3688 * structure? Reset the control endpoint 0 max packet size?
3689 *
3690 * If the virt_dev to be reset does not exist or does not match the udev,
3691 * it means the device is lost, possibly due to the xHC restore error and
3692 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3693 * re-allocate the device.
3694 */
3695static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3696		struct usb_device *udev)
3697{
3698	int ret, i;
3699	unsigned long flags;
3700	struct xhci_hcd *xhci;
3701	unsigned int slot_id;
3702	struct xhci_virt_device *virt_dev;
3703	struct xhci_command *reset_device_cmd;
3704	struct xhci_slot_ctx *slot_ctx;
3705	int old_active_eps = 0;
3706
3707	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3708	if (ret <= 0)
3709		return ret;
3710	xhci = hcd_to_xhci(hcd);
3711	slot_id = udev->slot_id;
3712	virt_dev = xhci->devs[slot_id];
3713	if (!virt_dev) {
3714		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3715				"not exist. Re-allocate the device\n", slot_id);
3716		ret = xhci_alloc_dev(hcd, udev);
3717		if (ret == 1)
3718			return 0;
3719		else
3720			return -EINVAL;
3721	}
3722
3723	if (virt_dev->tt_info)
3724		old_active_eps = virt_dev->tt_info->active_eps;
3725
3726	if (virt_dev->udev != udev) {
3727		/* If the virt_dev and the udev does not match, this virt_dev
3728		 * may belong to another udev.
3729		 * Re-allocate the device.
3730		 */
3731		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3732				"not match the udev. Re-allocate the device\n",
3733				slot_id);
3734		ret = xhci_alloc_dev(hcd, udev);
3735		if (ret == 1)
3736			return 0;
3737		else
3738			return -EINVAL;
3739	}
3740
3741	/* If device is not setup, there is no point in resetting it */
3742	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3743	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3744						SLOT_STATE_DISABLED)
3745		return 0;
3746
3747	trace_xhci_discover_or_reset_device(slot_ctx);
3748
3749	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3750	/* Allocate the command structure that holds the struct completion.
3751	 * Assume we're in process context, since the normal device reset
3752	 * process has to wait for the device anyway.  Storage devices are
3753	 * reset as part of error handling, so use GFP_NOIO instead of
3754	 * GFP_KERNEL.
3755	 */
3756	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3757	if (!reset_device_cmd) {
3758		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3759		return -ENOMEM;
3760	}
3761
3762	/* Attempt to submit the Reset Device command to the command ring */
3763	spin_lock_irqsave(&xhci->lock, flags);
3764
3765	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3766	if (ret) {
3767		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3768		spin_unlock_irqrestore(&xhci->lock, flags);
3769		goto command_cleanup;
3770	}
3771	xhci_ring_cmd_db(xhci);
3772	spin_unlock_irqrestore(&xhci->lock, flags);
3773
3774	/* Wait for the Reset Device command to finish */
3775	wait_for_completion(reset_device_cmd->completion);
3776
3777	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3778	 * unless we tried to reset a slot ID that wasn't enabled,
3779	 * or the device wasn't in the addressed or configured state.
3780	 */
3781	ret = reset_device_cmd->status;
3782	switch (ret) {
3783	case COMP_COMMAND_ABORTED:
3784	case COMP_COMMAND_RING_STOPPED:
3785		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3786		ret = -ETIME;
3787		goto command_cleanup;
3788	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3789	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3790		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3791				slot_id,
3792				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3793		xhci_dbg(xhci, "Not freeing device rings.\n");
3794		/* Don't treat this as an error.  May change my mind later. */
3795		ret = 0;
3796		goto command_cleanup;
3797	case COMP_SUCCESS:
3798		xhci_dbg(xhci, "Successful reset device command.\n");
3799		break;
3800	default:
3801		if (xhci_is_vendor_info_code(xhci, ret))
3802			break;
3803		xhci_warn(xhci, "Unknown completion code %u for "
3804				"reset device command.\n", ret);
3805		ret = -EINVAL;
3806		goto command_cleanup;
3807	}
3808
3809	/* Free up host controller endpoint resources */
3810	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3811		spin_lock_irqsave(&xhci->lock, flags);
3812		/* Don't delete the default control endpoint resources */
3813		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3814		spin_unlock_irqrestore(&xhci->lock, flags);
3815	}
3816
3817	/* Everything but endpoint 0 is disabled, so free the rings. */
3818	for (i = 1; i < 31; i++) {
3819		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3820
3821		if (ep->ep_state & EP_HAS_STREAMS) {
3822			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3823					xhci_get_endpoint_address(i));
3824			xhci_free_stream_info(xhci, ep->stream_info);
3825			ep->stream_info = NULL;
3826			ep->ep_state &= ~EP_HAS_STREAMS;
3827		}
3828
3829		if (ep->ring) {
3830			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3831			xhci_free_endpoint_ring(xhci, virt_dev, i);
3832		}
3833		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3834			xhci_drop_ep_from_interval_table(xhci,
3835					&virt_dev->eps[i].bw_info,
3836					virt_dev->bw_table,
3837					udev,
3838					&virt_dev->eps[i],
3839					virt_dev->tt_info);
3840		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3841	}
3842	/* If necessary, update the number of active TTs on this root port */
3843	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3844	virt_dev->flags = 0;
3845	ret = 0;
3846
3847command_cleanup:
3848	xhci_free_command(xhci, reset_device_cmd);
3849	return ret;
3850}
3851
3852/*
3853 * At this point, the struct usb_device is about to go away, the device has
3854 * disconnected, and all traffic has been stopped and the endpoints have been
3855 * disabled.  Free any HC data structures associated with that device.
3856 */
3857static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3858{
3859	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3860	struct xhci_virt_device *virt_dev;
3861	struct xhci_slot_ctx *slot_ctx;
 
3862	int i, ret;
3863
3864#ifndef CONFIG_USB_DEFAULT_PERSIST
3865	/*
3866	 * We called pm_runtime_get_noresume when the device was attached.
3867	 * Decrement the counter here to allow controller to runtime suspend
3868	 * if no devices remain.
3869	 */
3870	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3871		pm_runtime_put_noidle(hcd->self.controller);
3872#endif
3873
3874	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3875	/* If the host is halted due to driver unload, we still need to free the
3876	 * device.
3877	 */
3878	if (ret <= 0 && ret != -ENODEV)
3879		return;
3880
3881	virt_dev = xhci->devs[udev->slot_id];
3882	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3883	trace_xhci_free_dev(slot_ctx);
3884
3885	/* Stop any wayward timer functions (which may grab the lock) */
3886	for (i = 0; i < 31; i++) {
3887		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3888		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3889	}
3890	virt_dev->udev = NULL;
3891	ret = xhci_disable_slot(xhci, udev->slot_id);
3892	if (ret)
3893		xhci_free_virt_device(xhci, udev->slot_id);
 
 
 
3894}
3895
3896int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3897{
3898	struct xhci_command *command;
3899	unsigned long flags;
3900	u32 state;
3901	int ret = 0;
3902
3903	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3904	if (!command)
3905		return -ENOMEM;
3906
3907	xhci_debugfs_remove_slot(xhci, slot_id);
3908
3909	spin_lock_irqsave(&xhci->lock, flags);
3910	/* Don't disable the slot if the host controller is dead. */
3911	state = readl(&xhci->op_regs->status);
3912	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3913			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3914		spin_unlock_irqrestore(&xhci->lock, flags);
3915		kfree(command);
3916		return -ENODEV;
3917	}
3918
3919	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3920				slot_id);
3921	if (ret) {
3922		spin_unlock_irqrestore(&xhci->lock, flags);
3923		kfree(command);
3924		return ret;
3925	}
3926	xhci_ring_cmd_db(xhci);
3927	spin_unlock_irqrestore(&xhci->lock, flags);
3928	return ret;
 
 
 
 
 
 
 
 
 
3929}
3930
3931/*
3932 * Checks if we have enough host controller resources for the default control
3933 * endpoint.
3934 *
3935 * Must be called with xhci->lock held.
3936 */
3937static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3938{
3939	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3940		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3941				"Not enough ep ctxs: "
3942				"%u active, need to add 1, limit is %u.",
3943				xhci->num_active_eps, xhci->limit_active_eps);
3944		return -ENOMEM;
3945	}
3946	xhci->num_active_eps += 1;
3947	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3948			"Adding 1 ep ctx, %u now active.",
3949			xhci->num_active_eps);
3950	return 0;
3951}
3952
3953
3954/*
3955 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3956 * timed out, or allocating memory failed.  Returns 1 on success.
3957 */
3958int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3959{
3960	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3961	struct xhci_virt_device *vdev;
3962	struct xhci_slot_ctx *slot_ctx;
3963	unsigned long flags;
3964	int ret, slot_id;
3965	struct xhci_command *command;
3966
3967	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3968	if (!command)
3969		return 0;
3970
3971	spin_lock_irqsave(&xhci->lock, flags);
3972	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3973	if (ret) {
3974		spin_unlock_irqrestore(&xhci->lock, flags);
3975		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3976		xhci_free_command(xhci, command);
3977		return 0;
3978	}
3979	xhci_ring_cmd_db(xhci);
3980	spin_unlock_irqrestore(&xhci->lock, flags);
3981
3982	wait_for_completion(command->completion);
3983	slot_id = command->slot_id;
3984
3985	if (!slot_id || command->status != COMP_SUCCESS) {
3986		xhci_err(xhci, "Error while assigning device slot ID\n");
 
3987		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3988				HCS_MAX_SLOTS(
3989					readl(&xhci->cap_regs->hcs_params1)));
3990		xhci_free_command(xhci, command);
3991		return 0;
3992	}
3993
3994	xhci_free_command(xhci, command);
3995
3996	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3997		spin_lock_irqsave(&xhci->lock, flags);
3998		ret = xhci_reserve_host_control_ep_resources(xhci);
3999		if (ret) {
4000			spin_unlock_irqrestore(&xhci->lock, flags);
4001			xhci_warn(xhci, "Not enough host resources, "
4002					"active endpoint contexts = %u\n",
4003					xhci->num_active_eps);
4004			goto disable_slot;
4005		}
4006		spin_unlock_irqrestore(&xhci->lock, flags);
4007	}
4008	/* Use GFP_NOIO, since this function can be called from
4009	 * xhci_discover_or_reset_device(), which may be called as part of
4010	 * mass storage driver error handling.
4011	 */
4012	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4013		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4014		goto disable_slot;
4015	}
4016	vdev = xhci->devs[slot_id];
4017	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4018	trace_xhci_alloc_dev(slot_ctx);
4019
4020	udev->slot_id = slot_id;
4021
4022	xhci_debugfs_create_slot(xhci, slot_id);
4023
4024#ifndef CONFIG_USB_DEFAULT_PERSIST
4025	/*
4026	 * If resetting upon resume, we can't put the controller into runtime
4027	 * suspend if there is a device attached.
4028	 */
4029	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4030		pm_runtime_get_noresume(hcd->self.controller);
4031#endif
4032
4033	/* Is this a LS or FS device under a HS hub? */
4034	/* Hub or peripherial? */
4035	return 1;
4036
4037disable_slot:
4038	ret = xhci_disable_slot(xhci, udev->slot_id);
4039	if (ret)
4040		xhci_free_virt_device(xhci, udev->slot_id);
4041
4042	return 0;
4043}
4044
4045/*
4046 * Issue an Address Device command and optionally send a corresponding
4047 * SetAddress request to the device.
 
 
 
 
 
 
4048 */
4049static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4050			     enum xhci_setup_dev setup)
4051{
4052	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4053	unsigned long flags;
4054	struct xhci_virt_device *virt_dev;
4055	int ret = 0;
4056	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4057	struct xhci_slot_ctx *slot_ctx;
4058	struct xhci_input_control_ctx *ctrl_ctx;
4059	u64 temp_64;
4060	struct xhci_command *command = NULL;
4061
4062	mutex_lock(&xhci->mutex);
4063
4064	if (xhci->xhc_state) {	/* dying, removing or halted */
4065		ret = -ESHUTDOWN;
4066		goto out;
4067	}
4068
4069	if (!udev->slot_id) {
4070		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4071				"Bad Slot ID %d", udev->slot_id);
4072		ret = -EINVAL;
4073		goto out;
4074	}
4075
4076	virt_dev = xhci->devs[udev->slot_id];
4077
4078	if (WARN_ON(!virt_dev)) {
4079		/*
4080		 * In plug/unplug torture test with an NEC controller,
4081		 * a zero-dereference was observed once due to virt_dev = 0.
4082		 * Print useful debug rather than crash if it is observed again!
4083		 */
4084		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4085			udev->slot_id);
4086		ret = -EINVAL;
4087		goto out;
4088	}
4089	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4090	trace_xhci_setup_device_slot(slot_ctx);
4091
4092	if (setup == SETUP_CONTEXT_ONLY) {
4093		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4094		    SLOT_STATE_DEFAULT) {
4095			xhci_dbg(xhci, "Slot already in default state\n");
4096			goto out;
4097		}
4098	}
4099
4100	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4101	if (!command) {
4102		ret = -ENOMEM;
4103		goto out;
4104	}
4105
4106	command->in_ctx = virt_dev->in_ctx;
 
4107
4108	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4109	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4110	if (!ctrl_ctx) {
4111		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4112				__func__);
4113		ret = -EINVAL;
4114		goto out;
4115	}
4116	/*
4117	 * If this is the first Set Address since device plug-in or
4118	 * virt_device realloaction after a resume with an xHCI power loss,
4119	 * then set up the slot context.
4120	 */
4121	if (!slot_ctx->dev_info)
4122		xhci_setup_addressable_virt_dev(xhci, udev);
4123	/* Otherwise, update the control endpoint ring enqueue pointer. */
4124	else
4125		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4126	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4127	ctrl_ctx->drop_flags = 0;
4128
4129	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4130				le32_to_cpu(slot_ctx->dev_info) >> 27);
4131
4132	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4133	spin_lock_irqsave(&xhci->lock, flags);
4134	trace_xhci_setup_device(virt_dev);
4135	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4136					udev->slot_id, setup);
4137	if (ret) {
4138		spin_unlock_irqrestore(&xhci->lock, flags);
4139		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4140				"FIXME: allocate a command ring segment");
4141		goto out;
4142	}
4143	xhci_ring_cmd_db(xhci);
4144	spin_unlock_irqrestore(&xhci->lock, flags);
4145
4146	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4147	wait_for_completion(command->completion);
4148
4149	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4150	 * the SetAddress() "recovery interval" required by USB and aborting the
4151	 * command on a timeout.
4152	 */
4153	switch (command->status) {
4154	case COMP_COMMAND_ABORTED:
4155	case COMP_COMMAND_RING_STOPPED:
4156		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4157		ret = -ETIME;
4158		break;
4159	case COMP_CONTEXT_STATE_ERROR:
4160	case COMP_SLOT_NOT_ENABLED_ERROR:
4161		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4162			 act, udev->slot_id);
4163		ret = -EINVAL;
4164		break;
4165	case COMP_USB_TRANSACTION_ERROR:
4166		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4167
4168		mutex_unlock(&xhci->mutex);
4169		ret = xhci_disable_slot(xhci, udev->slot_id);
 
4170		if (!ret)
4171			xhci_alloc_dev(hcd, udev);
4172		kfree(command->completion);
4173		kfree(command);
4174		return -EPROTO;
4175	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4176		dev_warn(&udev->dev,
4177			 "ERROR: Incompatible device for setup %s command\n", act);
4178		ret = -ENODEV;
4179		break;
4180	case COMP_SUCCESS:
4181		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4182			       "Successful setup %s command", act);
4183		break;
4184	default:
4185		xhci_err(xhci,
4186			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4187			 act, command->status);
4188		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4189		ret = -EINVAL;
4190		break;
4191	}
4192	if (ret)
4193		goto out;
4194	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4195	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4196			"Op regs DCBAA ptr = %#016llx", temp_64);
4197	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4198		"Slot ID %d dcbaa entry @%p = %#016llx",
4199		udev->slot_id,
4200		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4201		(unsigned long long)
4202		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4203	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4204			"Output Context DMA address = %#08llx",
4205			(unsigned long long)virt_dev->out_ctx->dma);
4206	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4207				le32_to_cpu(slot_ctx->dev_info) >> 27);
4208	/*
4209	 * USB core uses address 1 for the roothubs, so we add one to the
4210	 * address given back to us by the HC.
4211	 */
4212	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4213				le32_to_cpu(slot_ctx->dev_info) >> 27);
4214	/* Zero the input context control for later use */
4215	ctrl_ctx->add_flags = 0;
4216	ctrl_ctx->drop_flags = 0;
4217	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4218	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4219
4220	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221		       "Internal device address = %d",
4222		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4223out:
4224	mutex_unlock(&xhci->mutex);
4225	if (command) {
4226		kfree(command->completion);
4227		kfree(command);
4228	}
4229	return ret;
4230}
4231
4232static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
 
4233{
4234	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4235}
4236
4237static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4238{
4239	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
 
4240}
4241
4242/*
4243 * Transfer the port index into real index in the HW port status
4244 * registers. Caculate offset between the port's PORTSC register
4245 * and port status base. Divide the number of per port register
4246 * to get the real index. The raw port number bases 1.
4247 */
4248int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4249{
4250	struct xhci_hub *rhub;
4251
4252	rhub = xhci_get_rhub(hcd);
4253	return rhub->ports[port1 - 1]->hw_portnum + 1;
4254}
4255
4256/*
4257 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4258 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4259 */
4260static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4261			struct usb_device *udev, u16 max_exit_latency)
4262{
4263	struct xhci_virt_device *virt_dev;
4264	struct xhci_command *command;
4265	struct xhci_input_control_ctx *ctrl_ctx;
4266	struct xhci_slot_ctx *slot_ctx;
4267	unsigned long flags;
4268	int ret;
4269
 
 
 
 
4270	spin_lock_irqsave(&xhci->lock, flags);
4271
4272	virt_dev = xhci->devs[udev->slot_id];
4273
4274	/*
4275	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4276	 * xHC was re-initialized. Exit latency will be set later after
4277	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4278	 */
4279
4280	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4281		spin_unlock_irqrestore(&xhci->lock, flags);
 
4282		return 0;
4283	}
4284
4285	/* Attempt to issue an Evaluate Context command to change the MEL. */
4286	command = xhci->lpm_command;
4287	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4288	if (!ctrl_ctx) {
4289		spin_unlock_irqrestore(&xhci->lock, flags);
 
4290		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4291				__func__);
4292		return -ENOMEM;
4293	}
4294
4295	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4296	spin_unlock_irqrestore(&xhci->lock, flags);
4297
4298	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4299	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4300	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4301	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4302	slot_ctx->dev_state = 0;
4303
4304	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4305			"Set up evaluate context for LPM MEL change.");
4306
4307	/* Issue and wait for the evaluate context command. */
4308	ret = xhci_configure_endpoint(xhci, udev, command,
4309			true, true);
4310
4311	if (!ret) {
4312		spin_lock_irqsave(&xhci->lock, flags);
4313		virt_dev->current_mel = max_exit_latency;
4314		spin_unlock_irqrestore(&xhci->lock, flags);
4315	}
 
 
 
4316	return ret;
4317}
4318
4319#ifdef CONFIG_PM
4320
4321/* BESL to HIRD Encoding array for USB2 LPM */
4322static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4323	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4324
4325/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4326static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4327					struct usb_device *udev)
4328{
4329	int u2del, besl, besl_host;
4330	int besl_device = 0;
4331	u32 field;
4332
4333	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4334	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4335
4336	if (field & USB_BESL_SUPPORT) {
4337		for (besl_host = 0; besl_host < 16; besl_host++) {
4338			if (xhci_besl_encoding[besl_host] >= u2del)
4339				break;
4340		}
4341		/* Use baseline BESL value as default */
4342		if (field & USB_BESL_BASELINE_VALID)
4343			besl_device = USB_GET_BESL_BASELINE(field);
4344		else if (field & USB_BESL_DEEP_VALID)
4345			besl_device = USB_GET_BESL_DEEP(field);
4346	} else {
4347		if (u2del <= 50)
4348			besl_host = 0;
4349		else
4350			besl_host = (u2del - 51) / 75 + 1;
4351	}
4352
4353	besl = besl_host + besl_device;
4354	if (besl > 15)
4355		besl = 15;
4356
4357	return besl;
4358}
4359
4360/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4361static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4362{
4363	u32 field;
4364	int l1;
4365	int besld = 0;
4366	int hirdm = 0;
4367
4368	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4369
4370	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4371	l1 = udev->l1_params.timeout / 256;
4372
4373	/* device has preferred BESLD */
4374	if (field & USB_BESL_DEEP_VALID) {
4375		besld = USB_GET_BESL_DEEP(field);
4376		hirdm = 1;
4377	}
4378
4379	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4380}
4381
4382static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4383			struct usb_device *udev, int enable)
4384{
4385	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4386	struct xhci_port **ports;
4387	__le32 __iomem	*pm_addr, *hlpm_addr;
4388	u32		pm_val, hlpm_val, field;
4389	unsigned int	port_num;
4390	unsigned long	flags;
4391	int		hird, exit_latency;
4392	int		ret;
4393
 
 
 
4394	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4395			!udev->lpm_capable)
4396		return -EPERM;
4397
4398	if (!udev->parent || udev->parent->parent ||
4399			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4400		return -EPERM;
4401
4402	if (udev->usb2_hw_lpm_capable != 1)
4403		return -EPERM;
4404
4405	spin_lock_irqsave(&xhci->lock, flags);
4406
4407	ports = xhci->usb2_rhub.ports;
4408	port_num = udev->portnum - 1;
4409	pm_addr = ports[port_num]->addr + PORTPMSC;
4410	pm_val = readl(pm_addr);
4411	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4412
4413	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4414			enable ? "enable" : "disable", port_num + 1);
4415
4416	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4417		/* Host supports BESL timeout instead of HIRD */
4418		if (udev->usb2_hw_lpm_besl_capable) {
4419			/* if device doesn't have a preferred BESL value use a
4420			 * default one which works with mixed HIRD and BESL
4421			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4422			 */
4423			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4424			if ((field & USB_BESL_SUPPORT) &&
4425			    (field & USB_BESL_BASELINE_VALID))
4426				hird = USB_GET_BESL_BASELINE(field);
4427			else
4428				hird = udev->l1_params.besl;
4429
4430			exit_latency = xhci_besl_encoding[hird];
4431			spin_unlock_irqrestore(&xhci->lock, flags);
4432
4433			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4434			 * input context for link powermanagement evaluate
4435			 * context commands. It is protected by hcd->bandwidth
4436			 * mutex and is shared by all devices. We need to set
4437			 * the max ext latency in USB 2 BESL LPM as well, so
4438			 * use the same mutex and xhci_change_max_exit_latency()
4439			 */
4440			mutex_lock(hcd->bandwidth_mutex);
4441			ret = xhci_change_max_exit_latency(xhci, udev,
4442							   exit_latency);
4443			mutex_unlock(hcd->bandwidth_mutex);
4444
4445			if (ret < 0)
4446				return ret;
4447			spin_lock_irqsave(&xhci->lock, flags);
4448
4449			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4450			writel(hlpm_val, hlpm_addr);
4451			/* flush write */
4452			readl(hlpm_addr);
4453		} else {
4454			hird = xhci_calculate_hird_besl(xhci, udev);
4455		}
4456
4457		pm_val &= ~PORT_HIRD_MASK;
4458		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4459		writel(pm_val, pm_addr);
4460		pm_val = readl(pm_addr);
4461		pm_val |= PORT_HLE;
4462		writel(pm_val, pm_addr);
4463		/* flush write */
4464		readl(pm_addr);
4465	} else {
4466		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4467		writel(pm_val, pm_addr);
4468		/* flush write */
4469		readl(pm_addr);
4470		if (udev->usb2_hw_lpm_besl_capable) {
4471			spin_unlock_irqrestore(&xhci->lock, flags);
4472			mutex_lock(hcd->bandwidth_mutex);
4473			xhci_change_max_exit_latency(xhci, udev, 0);
4474			mutex_unlock(hcd->bandwidth_mutex);
 
 
4475			return 0;
4476		}
4477	}
4478
4479	spin_unlock_irqrestore(&xhci->lock, flags);
4480	return 0;
4481}
4482
4483/* check if a usb2 port supports a given extened capability protocol
4484 * only USB2 ports extended protocol capability values are cached.
4485 * Return 1 if capability is supported
4486 */
4487static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4488					   unsigned capability)
4489{
4490	u32 port_offset, port_count;
4491	int i;
4492
4493	for (i = 0; i < xhci->num_ext_caps; i++) {
4494		if (xhci->ext_caps[i] & capability) {
4495			/* port offsets starts at 1 */
4496			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4497			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4498			if (port >= port_offset &&
4499			    port < port_offset + port_count)
4500				return 1;
4501		}
4502	}
4503	return 0;
4504}
4505
4506static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4507{
4508	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4509	int		portnum = udev->portnum - 1;
4510
4511	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4512		return 0;
4513
4514	/* we only support lpm for non-hub device connected to root hub yet */
4515	if (!udev->parent || udev->parent->parent ||
4516			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4517		return 0;
4518
4519	if (xhci->hw_lpm_support == 1 &&
4520			xhci_check_usb2_port_capability(
4521				xhci, portnum, XHCI_HLC)) {
4522		udev->usb2_hw_lpm_capable = 1;
4523		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4524		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4525		if (xhci_check_usb2_port_capability(xhci, portnum,
4526					XHCI_BLC))
4527			udev->usb2_hw_lpm_besl_capable = 1;
4528	}
4529
4530	return 0;
4531}
4532
4533/*---------------------- USB 3.0 Link PM functions ------------------------*/
4534
4535/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4536static unsigned long long xhci_service_interval_to_ns(
4537		struct usb_endpoint_descriptor *desc)
4538{
4539	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4540}
4541
4542static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4543		enum usb3_link_state state)
4544{
4545	unsigned long long sel;
4546	unsigned long long pel;
4547	unsigned int max_sel_pel;
4548	char *state_name;
4549
4550	switch (state) {
4551	case USB3_LPM_U1:
4552		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4553		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4554		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4555		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4556		state_name = "U1";
4557		break;
4558	case USB3_LPM_U2:
4559		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4560		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4561		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4562		state_name = "U2";
4563		break;
4564	default:
4565		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4566				__func__);
4567		return USB3_LPM_DISABLED;
4568	}
4569
4570	if (sel <= max_sel_pel && pel <= max_sel_pel)
4571		return USB3_LPM_DEVICE_INITIATED;
4572
4573	if (sel > max_sel_pel)
4574		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4575				"due to long SEL %llu ms\n",
4576				state_name, sel);
4577	else
4578		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4579				"due to long PEL %llu ms\n",
4580				state_name, pel);
4581	return USB3_LPM_DISABLED;
4582}
4583
4584/* The U1 timeout should be the maximum of the following values:
4585 *  - For control endpoints, U1 system exit latency (SEL) * 3
4586 *  - For bulk endpoints, U1 SEL * 5
4587 *  - For interrupt endpoints:
4588 *    - Notification EPs, U1 SEL * 3
4589 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4590 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4591 */
4592static unsigned long long xhci_calculate_intel_u1_timeout(
4593		struct usb_device *udev,
4594		struct usb_endpoint_descriptor *desc)
4595{
4596	unsigned long long timeout_ns;
4597	int ep_type;
4598	int intr_type;
4599
4600	ep_type = usb_endpoint_type(desc);
4601	switch (ep_type) {
4602	case USB_ENDPOINT_XFER_CONTROL:
4603		timeout_ns = udev->u1_params.sel * 3;
4604		break;
4605	case USB_ENDPOINT_XFER_BULK:
4606		timeout_ns = udev->u1_params.sel * 5;
4607		break;
4608	case USB_ENDPOINT_XFER_INT:
4609		intr_type = usb_endpoint_interrupt_type(desc);
4610		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4611			timeout_ns = udev->u1_params.sel * 3;
4612			break;
4613		}
4614		/* Otherwise the calculation is the same as isoc eps */
4615		/* fall through */
4616	case USB_ENDPOINT_XFER_ISOC:
4617		timeout_ns = xhci_service_interval_to_ns(desc);
4618		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4619		if (timeout_ns < udev->u1_params.sel * 2)
4620			timeout_ns = udev->u1_params.sel * 2;
4621		break;
4622	default:
4623		return 0;
4624	}
4625
4626	return timeout_ns;
4627}
4628
4629/* Returns the hub-encoded U1 timeout value. */
4630static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4631		struct usb_device *udev,
4632		struct usb_endpoint_descriptor *desc)
4633{
4634	unsigned long long timeout_ns;
4635
4636	/* Prevent U1 if service interval is shorter than U1 exit latency */
4637	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4638		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4639			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4640			return USB3_LPM_DISABLED;
4641		}
4642	}
4643
4644	if (xhci->quirks & XHCI_INTEL_HOST)
4645		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4646	else
4647		timeout_ns = udev->u1_params.sel;
4648
4649	/* The U1 timeout is encoded in 1us intervals.
4650	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4651	 */
4652	if (timeout_ns == USB3_LPM_DISABLED)
4653		timeout_ns = 1;
4654	else
4655		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4656
4657	/* If the necessary timeout value is bigger than what we can set in the
4658	 * USB 3.0 hub, we have to disable hub-initiated U1.
4659	 */
4660	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4661		return timeout_ns;
4662	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4663			"due to long timeout %llu ms\n", timeout_ns);
4664	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4665}
4666
4667/* The U2 timeout should be the maximum of:
4668 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4669 *  - largest bInterval of any active periodic endpoint (to avoid going
4670 *    into lower power link states between intervals).
4671 *  - the U2 Exit Latency of the device
4672 */
4673static unsigned long long xhci_calculate_intel_u2_timeout(
4674		struct usb_device *udev,
4675		struct usb_endpoint_descriptor *desc)
4676{
4677	unsigned long long timeout_ns;
4678	unsigned long long u2_del_ns;
4679
4680	timeout_ns = 10 * 1000 * 1000;
4681
4682	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4683			(xhci_service_interval_to_ns(desc) > timeout_ns))
4684		timeout_ns = xhci_service_interval_to_ns(desc);
4685
4686	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4687	if (u2_del_ns > timeout_ns)
4688		timeout_ns = u2_del_ns;
4689
4690	return timeout_ns;
4691}
4692
4693/* Returns the hub-encoded U2 timeout value. */
4694static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4695		struct usb_device *udev,
4696		struct usb_endpoint_descriptor *desc)
4697{
4698	unsigned long long timeout_ns;
4699
4700	/* Prevent U2 if service interval is shorter than U2 exit latency */
4701	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4702		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4703			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4704			return USB3_LPM_DISABLED;
4705		}
4706	}
4707
4708	if (xhci->quirks & XHCI_INTEL_HOST)
4709		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4710	else
4711		timeout_ns = udev->u2_params.sel;
4712
4713	/* The U2 timeout is encoded in 256us intervals */
4714	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4715	/* If the necessary timeout value is bigger than what we can set in the
4716	 * USB 3.0 hub, we have to disable hub-initiated U2.
4717	 */
4718	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4719		return timeout_ns;
4720	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4721			"due to long timeout %llu ms\n", timeout_ns);
4722	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4723}
4724
4725static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4726		struct usb_device *udev,
4727		struct usb_endpoint_descriptor *desc,
4728		enum usb3_link_state state,
4729		u16 *timeout)
4730{
4731	if (state == USB3_LPM_U1)
4732		return xhci_calculate_u1_timeout(xhci, udev, desc);
4733	else if (state == USB3_LPM_U2)
4734		return xhci_calculate_u2_timeout(xhci, udev, desc);
4735
4736	return USB3_LPM_DISABLED;
4737}
4738
4739static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4740		struct usb_device *udev,
4741		struct usb_endpoint_descriptor *desc,
4742		enum usb3_link_state state,
4743		u16 *timeout)
4744{
4745	u16 alt_timeout;
4746
4747	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4748		desc, state, timeout);
4749
4750	/* If we found we can't enable hub-initiated LPM, and
4751	 * the U1 or U2 exit latency was too high to allow
4752	 * device-initiated LPM as well, then we will disable LPM
4753	 * for this device, so stop searching any further.
4754	 */
4755	if (alt_timeout == USB3_LPM_DISABLED) {
4756		*timeout = alt_timeout;
4757		return -E2BIG;
4758	}
4759	if (alt_timeout > *timeout)
4760		*timeout = alt_timeout;
4761	return 0;
4762}
4763
4764static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4765		struct usb_device *udev,
4766		struct usb_host_interface *alt,
4767		enum usb3_link_state state,
4768		u16 *timeout)
4769{
4770	int j;
4771
4772	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4773		if (xhci_update_timeout_for_endpoint(xhci, udev,
4774					&alt->endpoint[j].desc, state, timeout))
4775			return -E2BIG;
4776		continue;
4777	}
4778	return 0;
4779}
4780
4781static int xhci_check_intel_tier_policy(struct usb_device *udev,
 
4782		enum usb3_link_state state)
4783{
4784	struct usb_device *parent;
4785	unsigned int num_hubs;
4786
4787	if (state == USB3_LPM_U2)
4788		return 0;
4789
4790	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4791	for (parent = udev->parent, num_hubs = 0; parent->parent;
4792			parent = parent->parent)
4793		num_hubs++;
4794
4795	if (num_hubs < 2)
4796		return 0;
 
 
4797
4798	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4799			" below second-tier hub.\n");
4800	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4801			"to decrease power consumption.\n");
4802	return -E2BIG;
4803}
4804
4805static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4806		struct usb_device *udev,
4807		enum usb3_link_state state)
4808{
4809	if (xhci->quirks & XHCI_INTEL_HOST)
4810		return xhci_check_intel_tier_policy(udev, state);
4811	else
4812		return 0;
4813}
4814
4815/* Returns the U1 or U2 timeout that should be enabled.
4816 * If the tier check or timeout setting functions return with a non-zero exit
4817 * code, that means the timeout value has been finalized and we shouldn't look
4818 * at any more endpoints.
4819 */
4820static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4821			struct usb_device *udev, enum usb3_link_state state)
4822{
4823	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4824	struct usb_host_config *config;
4825	char *state_name;
4826	int i;
4827	u16 timeout = USB3_LPM_DISABLED;
4828
4829	if (state == USB3_LPM_U1)
4830		state_name = "U1";
4831	else if (state == USB3_LPM_U2)
4832		state_name = "U2";
4833	else {
4834		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4835				state);
4836		return timeout;
4837	}
4838
4839	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4840		return timeout;
4841
4842	/* Gather some information about the currently installed configuration
4843	 * and alternate interface settings.
4844	 */
4845	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4846			state, &timeout))
4847		return timeout;
4848
4849	config = udev->actconfig;
4850	if (!config)
4851		return timeout;
4852
4853	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4854		struct usb_driver *driver;
4855		struct usb_interface *intf = config->interface[i];
4856
4857		if (!intf)
4858			continue;
4859
4860		/* Check if any currently bound drivers want hub-initiated LPM
4861		 * disabled.
4862		 */
4863		if (intf->dev.driver) {
4864			driver = to_usb_driver(intf->dev.driver);
4865			if (driver && driver->disable_hub_initiated_lpm) {
4866				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4867					state_name, driver->name);
4868				timeout = xhci_get_timeout_no_hub_lpm(udev,
4869								      state);
4870				if (timeout == USB3_LPM_DISABLED)
4871					return timeout;
4872			}
4873		}
4874
4875		/* Not sure how this could happen... */
4876		if (!intf->cur_altsetting)
4877			continue;
4878
4879		if (xhci_update_timeout_for_interface(xhci, udev,
4880					intf->cur_altsetting,
4881					state, &timeout))
4882			return timeout;
4883	}
4884	return timeout;
4885}
4886
4887static int calculate_max_exit_latency(struct usb_device *udev,
4888		enum usb3_link_state state_changed,
4889		u16 hub_encoded_timeout)
4890{
4891	unsigned long long u1_mel_us = 0;
4892	unsigned long long u2_mel_us = 0;
4893	unsigned long long mel_us = 0;
4894	bool disabling_u1;
4895	bool disabling_u2;
4896	bool enabling_u1;
4897	bool enabling_u2;
4898
4899	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4900			hub_encoded_timeout == USB3_LPM_DISABLED);
4901	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4902			hub_encoded_timeout == USB3_LPM_DISABLED);
4903
4904	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4905			hub_encoded_timeout != USB3_LPM_DISABLED);
4906	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4907			hub_encoded_timeout != USB3_LPM_DISABLED);
4908
4909	/* If U1 was already enabled and we're not disabling it,
4910	 * or we're going to enable U1, account for the U1 max exit latency.
4911	 */
4912	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4913			enabling_u1)
4914		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4915	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4916			enabling_u2)
4917		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4918
4919	if (u1_mel_us > u2_mel_us)
4920		mel_us = u1_mel_us;
4921	else
4922		mel_us = u2_mel_us;
4923	/* xHCI host controller max exit latency field is only 16 bits wide. */
4924	if (mel_us > MAX_EXIT) {
4925		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4926				"is too big.\n", mel_us);
4927		return -E2BIG;
4928	}
4929	return mel_us;
4930}
4931
4932/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4933static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4934			struct usb_device *udev, enum usb3_link_state state)
4935{
4936	struct xhci_hcd	*xhci;
 
4937	u16 hub_encoded_timeout;
4938	int mel;
4939	int ret;
4940
4941	xhci = hcd_to_xhci(hcd);
4942	/* The LPM timeout values are pretty host-controller specific, so don't
4943	 * enable hub-initiated timeouts unless the vendor has provided
4944	 * information about their timeout algorithm.
4945	 */
4946	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4947			!xhci->devs[udev->slot_id])
4948		return USB3_LPM_DISABLED;
4949
 
 
 
 
 
 
 
 
 
 
4950	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4951	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4952	if (mel < 0) {
4953		/* Max Exit Latency is too big, disable LPM. */
4954		hub_encoded_timeout = USB3_LPM_DISABLED;
4955		mel = 0;
4956	}
4957
4958	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4959	if (ret)
4960		return ret;
4961	return hub_encoded_timeout;
4962}
4963
4964static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4965			struct usb_device *udev, enum usb3_link_state state)
4966{
4967	struct xhci_hcd	*xhci;
4968	u16 mel;
4969
4970	xhci = hcd_to_xhci(hcd);
4971	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4972			!xhci->devs[udev->slot_id])
4973		return 0;
4974
4975	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4976	return xhci_change_max_exit_latency(xhci, udev, mel);
4977}
4978#else /* CONFIG_PM */
4979
4980static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4981				struct usb_device *udev, int enable)
4982{
4983	return 0;
4984}
4985
4986static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4987{
4988	return 0;
4989}
4990
4991static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4992			struct usb_device *udev, enum usb3_link_state state)
4993{
4994	return USB3_LPM_DISABLED;
4995}
4996
4997static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4998			struct usb_device *udev, enum usb3_link_state state)
4999{
5000	return 0;
5001}
5002#endif	/* CONFIG_PM */
5003
5004/*-------------------------------------------------------------------------*/
5005
5006/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5007 * internal data structures for the device.
5008 */
5009static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5010			struct usb_tt *tt, gfp_t mem_flags)
5011{
5012	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5013	struct xhci_virt_device *vdev;
5014	struct xhci_command *config_cmd;
5015	struct xhci_input_control_ctx *ctrl_ctx;
5016	struct xhci_slot_ctx *slot_ctx;
5017	unsigned long flags;
5018	unsigned think_time;
5019	int ret;
5020
5021	/* Ignore root hubs */
5022	if (!hdev->parent)
5023		return 0;
5024
5025	vdev = xhci->devs[hdev->slot_id];
5026	if (!vdev) {
5027		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5028		return -EINVAL;
5029	}
5030
5031	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5032	if (!config_cmd)
5033		return -ENOMEM;
5034
5035	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5036	if (!ctrl_ctx) {
5037		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5038				__func__);
5039		xhci_free_command(xhci, config_cmd);
5040		return -ENOMEM;
5041	}
5042
5043	spin_lock_irqsave(&xhci->lock, flags);
5044	if (hdev->speed == USB_SPEED_HIGH &&
5045			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5046		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5047		xhci_free_command(xhci, config_cmd);
5048		spin_unlock_irqrestore(&xhci->lock, flags);
5049		return -ENOMEM;
5050	}
5051
5052	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5053	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5054	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5055	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5056	/*
5057	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5058	 * but it may be already set to 1 when setup an xHCI virtual
5059	 * device, so clear it anyway.
5060	 */
5061	if (tt->multi)
5062		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5063	else if (hdev->speed == USB_SPEED_FULL)
5064		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5065
5066	if (xhci->hci_version > 0x95) {
5067		xhci_dbg(xhci, "xHCI version %x needs hub "
5068				"TT think time and number of ports\n",
5069				(unsigned int) xhci->hci_version);
5070		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5071		/* Set TT think time - convert from ns to FS bit times.
5072		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5073		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5074		 *
5075		 * xHCI 1.0: this field shall be 0 if the device is not a
5076		 * High-spped hub.
5077		 */
5078		think_time = tt->think_time;
5079		if (think_time != 0)
5080			think_time = (think_time / 666) - 1;
5081		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5082			slot_ctx->tt_info |=
5083				cpu_to_le32(TT_THINK_TIME(think_time));
5084	} else {
5085		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5086				"TT think time or number of ports\n",
5087				(unsigned int) xhci->hci_version);
5088	}
5089	slot_ctx->dev_state = 0;
5090	spin_unlock_irqrestore(&xhci->lock, flags);
5091
5092	xhci_dbg(xhci, "Set up %s for hub device.\n",
5093			(xhci->hci_version > 0x95) ?
5094			"configure endpoint" : "evaluate context");
5095
5096	/* Issue and wait for the configure endpoint or
5097	 * evaluate context command.
5098	 */
5099	if (xhci->hci_version > 0x95)
5100		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5101				false, false);
5102	else
5103		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5104				true, false);
5105
5106	xhci_free_command(xhci, config_cmd);
5107	return ret;
5108}
 
5109
5110static int xhci_get_frame(struct usb_hcd *hcd)
5111{
5112	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5113	/* EHCI mods by the periodic size.  Why? */
5114	return readl(&xhci->run_regs->microframe_index) >> 3;
5115}
5116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5117int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5118{
5119	struct xhci_hcd		*xhci;
5120	/*
5121	 * TODO: Check with DWC3 clients for sysdev according to
5122	 * quirks
5123	 */
5124	struct device		*dev = hcd->self.sysdev;
5125	unsigned int		minor_rev;
5126	int			retval;
5127
5128	/* Accept arbitrarily long scatter-gather lists */
5129	hcd->self.sg_tablesize = ~0;
5130
5131	/* support to build packet from discontinuous buffers */
5132	hcd->self.no_sg_constraint = 1;
5133
5134	/* XHCI controllers don't stop the ep queue on short packets :| */
5135	hcd->self.no_stop_on_short = 1;
5136
5137	xhci = hcd_to_xhci(hcd);
5138
5139	if (usb_hcd_is_primary_hcd(hcd)) {
5140		xhci->main_hcd = hcd;
5141		xhci->usb2_rhub.hcd = hcd;
5142		/* Mark the first roothub as being USB 2.0.
5143		 * The xHCI driver will register the USB 3.0 roothub.
5144		 */
5145		hcd->speed = HCD_USB2;
5146		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5147		/*
5148		 * USB 2.0 roothub under xHCI has an integrated TT,
5149		 * (rate matching hub) as opposed to having an OHCI/UHCI
5150		 * companion controller.
5151		 */
5152		hcd->has_tt = 1;
5153	} else {
5154		/*
5155		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5156		 * should return 0x31 for sbrn, or that the minor revision
5157		 * is a two digit BCD containig minor and sub-minor numbers.
5158		 * This was later clarified in xHCI 1.2.
5159		 *
5160		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5161		 * minor revision set to 0x1 instead of 0x10.
5162		 */
5163		if (xhci->usb3_rhub.min_rev == 0x1)
5164			minor_rev = 1;
5165		else
5166			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5167
5168		switch (minor_rev) {
5169		case 2:
5170			hcd->speed = HCD_USB32;
5171			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5172			hcd->self.root_hub->rx_lanes = 2;
5173			hcd->self.root_hub->tx_lanes = 2;
5174			break;
5175		case 1:
5176			hcd->speed = HCD_USB31;
5177			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5178			break;
5179		}
5180		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5181			  minor_rev,
5182			  minor_rev ? "Enhanced " : "");
5183
5184		xhci->usb3_rhub.hcd = hcd;
5185		/* xHCI private pointer was set in xhci_pci_probe for the second
5186		 * registered roothub.
5187		 */
5188		return 0;
5189	}
5190
5191	mutex_init(&xhci->mutex);
 
5192	xhci->cap_regs = hcd->regs;
5193	xhci->op_regs = hcd->regs +
5194		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5195	xhci->run_regs = hcd->regs +
5196		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5197	/* Cache read-only capability registers */
5198	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5199	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5200	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5201	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5202	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5203	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5204	if (xhci->hci_version > 0x100)
5205		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5206
 
 
 
 
 
5207	xhci->quirks |= quirks;
5208
5209	get_quirks(dev, xhci);
 
5210
5211	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5212	 * success event after a short transfer. This quirk will ignore such
5213	 * spurious event.
5214	 */
5215	if (xhci->hci_version > 0x96)
5216		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5217
5218	/* Make sure the HC is halted. */
5219	retval = xhci_halt(xhci);
5220	if (retval)
5221		return retval;
5222
5223	xhci_zero_64b_regs(xhci);
5224
5225	xhci_dbg(xhci, "Resetting HCD\n");
5226	/* Reset the internal HC memory state and registers. */
5227	retval = xhci_reset(xhci);
5228	if (retval)
5229		return retval;
5230	xhci_dbg(xhci, "Reset complete\n");
5231
5232	/*
5233	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5234	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5235	 * address memory pointers actually. So, this driver clears the AC64
5236	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5237	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5238	 */
5239	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5240		xhci->hcc_params &= ~BIT(0);
5241
5242	/* Set dma_mask and coherent_dma_mask to 64-bits,
5243	 * if xHC supports 64-bit addressing */
5244	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5245			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5246		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5247		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5248	} else {
5249		/*
5250		 * This is to avoid error in cases where a 32-bit USB
5251		 * controller is used on a 64-bit capable system.
5252		 */
5253		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5254		if (retval)
5255			return retval;
5256		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5257		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5258	}
5259
5260	xhci_dbg(xhci, "Calling HCD init\n");
5261	/* Initialize HCD and host controller data structures. */
5262	retval = xhci_init(hcd);
5263	if (retval)
5264		return retval;
5265	xhci_dbg(xhci, "Called HCD init\n");
5266
 
 
 
 
 
5267	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5268		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5269
5270	return 0;
5271}
5272EXPORT_SYMBOL_GPL(xhci_gen_setup);
5273
5274static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5275		struct usb_host_endpoint *ep)
5276{
5277	struct xhci_hcd *xhci;
5278	struct usb_device *udev;
5279	unsigned int slot_id;
5280	unsigned int ep_index;
5281	unsigned long flags;
5282
5283	xhci = hcd_to_xhci(hcd);
5284
5285	spin_lock_irqsave(&xhci->lock, flags);
5286	udev = (struct usb_device *)ep->hcpriv;
5287	slot_id = udev->slot_id;
5288	ep_index = xhci_get_endpoint_index(&ep->desc);
5289
5290	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5291	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5292	spin_unlock_irqrestore(&xhci->lock, flags);
5293}
5294
5295static const struct hc_driver xhci_hc_driver = {
5296	.description =		"xhci-hcd",
5297	.product_desc =		"xHCI Host Controller",
5298	.hcd_priv_size =	sizeof(struct xhci_hcd),
5299
5300	/*
5301	 * generic hardware linkage
5302	 */
5303	.irq =			xhci_irq,
5304	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED,
 
5305
5306	/*
5307	 * basic lifecycle operations
5308	 */
5309	.reset =		NULL, /* set in xhci_init_driver() */
5310	.start =		xhci_run,
5311	.stop =			xhci_stop,
5312	.shutdown =		xhci_shutdown,
5313
5314	/*
5315	 * managing i/o requests and associated device resources
5316	 */
5317	.map_urb_for_dma =      xhci_map_urb_for_dma,
 
5318	.urb_enqueue =		xhci_urb_enqueue,
5319	.urb_dequeue =		xhci_urb_dequeue,
5320	.alloc_dev =		xhci_alloc_dev,
5321	.free_dev =		xhci_free_dev,
5322	.alloc_streams =	xhci_alloc_streams,
5323	.free_streams =		xhci_free_streams,
5324	.add_endpoint =		xhci_add_endpoint,
5325	.drop_endpoint =	xhci_drop_endpoint,
5326	.endpoint_disable =	xhci_endpoint_disable,
5327	.endpoint_reset =	xhci_endpoint_reset,
5328	.check_bandwidth =	xhci_check_bandwidth,
5329	.reset_bandwidth =	xhci_reset_bandwidth,
5330	.address_device =	xhci_address_device,
5331	.enable_device =	xhci_enable_device,
5332	.update_hub_device =	xhci_update_hub_device,
5333	.reset_device =		xhci_discover_or_reset_device,
5334
5335	/*
5336	 * scheduling support
5337	 */
5338	.get_frame_number =	xhci_get_frame,
5339
5340	/*
5341	 * root hub support
5342	 */
5343	.hub_control =		xhci_hub_control,
5344	.hub_status_data =	xhci_hub_status_data,
5345	.bus_suspend =		xhci_bus_suspend,
5346	.bus_resume =		xhci_bus_resume,
5347	.get_resuming_ports =	xhci_get_resuming_ports,
5348
5349	/*
5350	 * call back when device connected and addressed
5351	 */
5352	.update_device =        xhci_update_device,
5353	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5354	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5355	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5356	.find_raw_port_number =	xhci_find_raw_port_number,
5357	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5358};
5359
5360void xhci_init_driver(struct hc_driver *drv,
5361		      const struct xhci_driver_overrides *over)
5362{
5363	BUG_ON(!over);
5364
5365	/* Copy the generic table to drv then apply the overrides */
5366	*drv = xhci_hc_driver;
5367
5368	if (over) {
5369		drv->hcd_priv_size += over->extra_priv_size;
5370		if (over->reset)
5371			drv->reset = over->reset;
5372		if (over->start)
5373			drv->start = over->start;
 
 
 
 
 
 
 
 
 
 
 
 
5374	}
5375}
5376EXPORT_SYMBOL_GPL(xhci_init_driver);
5377
5378MODULE_DESCRIPTION(DRIVER_DESC);
5379MODULE_AUTHOR(DRIVER_AUTHOR);
5380MODULE_LICENSE("GPL");
5381
5382static int __init xhci_hcd_init(void)
5383{
5384	/*
5385	 * Check the compiler generated sizes of structures that must be laid
5386	 * out in specific ways for hardware access.
5387	 */
5388	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5389	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5390	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5391	/* xhci_device_control has eight fields, and also
5392	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5393	 */
5394	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5395	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5396	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5397	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5398	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5399	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5400	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5401
5402	if (usb_disabled())
5403		return -ENODEV;
5404
5405	xhci_debugfs_create_root();
 
5406
5407	return 0;
5408}
5409
5410/*
5411 * If an init function is provided, an exit function must also be provided
5412 * to allow module unload.
5413 */
5414static void __exit xhci_hcd_fini(void)
5415{
5416	xhci_debugfs_remove_root();
 
5417}
5418
5419module_init(xhci_hcd_init);
5420module_exit(xhci_hcd_fini);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/pci.h>
  12#include <linux/iommu.h>
  13#include <linux/iopoll.h>
  14#include <linux/irq.h>
  15#include <linux/log2.h>
  16#include <linux/module.h>
  17#include <linux/moduleparam.h>
  18#include <linux/slab.h>
  19#include <linux/dmi.h>
  20#include <linux/dma-mapping.h>
  21
  22#include "xhci.h"
  23#include "xhci-trace.h"
 
  24#include "xhci-debugfs.h"
  25#include "xhci-dbgcap.h"
  26
  27#define DRIVER_AUTHOR "Sarah Sharp"
  28#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  29
  30#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  31
  32/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  33static int link_quirk;
  34module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  35MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  36
  37static unsigned long long quirks;
  38module_param(quirks, ullong, S_IRUGO);
  39MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  40
  41static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
  42{
  43	struct xhci_segment *seg = ring->first_seg;
  44
  45	if (!td || !td->start_seg)
  46		return false;
  47	do {
  48		if (seg == td->start_seg)
  49			return true;
  50		seg = seg->next;
  51	} while (seg && seg != ring->first_seg);
  52
  53	return false;
  54}
  55
  56/*
  57 * xhci_handshake - spin reading hc until handshake completes or fails
  58 * @ptr: address of hc register to be read
  59 * @mask: bits to look at in result of read
  60 * @done: value of those bits when handshake succeeds
  61 * @usec: timeout in microseconds
  62 *
  63 * Returns negative errno, or zero on success
  64 *
  65 * Success happens when the "mask" bits have the specified value (hardware
  66 * handshake done).  There are two failure modes:  "usec" have passed (major
  67 * hardware flakeout), or the register reads as all-ones (hardware removed).
  68 */
  69int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
  70{
  71	u32	result;
  72	int	ret;
  73
  74	ret = readl_poll_timeout_atomic(ptr, result,
  75					(result & mask) == done ||
  76					result == U32_MAX,
  77					1, timeout_us);
  78	if (result == U32_MAX)		/* card removed */
  79		return -ENODEV;
  80
  81	return ret;
  82}
  83
  84/*
  85 * xhci_handshake_check_state - same as xhci_handshake but takes an additional
  86 * exit_state parameter, and bails out with an error immediately when xhc_state
  87 * has exit_state flag set.
  88 */
  89int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
  90		u32 mask, u32 done, int usec, unsigned int exit_state)
  91{
  92	u32	result;
  93	int	ret;
  94
  95	ret = readl_poll_timeout_atomic(ptr, result,
  96				(result & mask) == done ||
  97				result == U32_MAX ||
  98				xhci->xhc_state & exit_state,
  99				1, usec);
 100
 101	if (result == U32_MAX || xhci->xhc_state & exit_state)
 102		return -ENODEV;
 103
 104	return ret;
 105}
 106
 107/*
 108 * Disable interrupts and begin the xHCI halting process.
 109 */
 110void xhci_quiesce(struct xhci_hcd *xhci)
 111{
 112	u32 halted;
 113	u32 cmd;
 114	u32 mask;
 115
 116	mask = ~(XHCI_IRQS);
 117	halted = readl(&xhci->op_regs->status) & STS_HALT;
 118	if (!halted)
 119		mask &= ~CMD_RUN;
 120
 121	cmd = readl(&xhci->op_regs->command);
 122	cmd &= mask;
 123	writel(cmd, &xhci->op_regs->command);
 124}
 125
 126/*
 127 * Force HC into halt state.
 128 *
 129 * Disable any IRQs and clear the run/stop bit.
 130 * HC will complete any current and actively pipelined transactions, and
 131 * should halt within 16 ms of the run/stop bit being cleared.
 132 * Read HC Halted bit in the status register to see when the HC is finished.
 133 */
 134int xhci_halt(struct xhci_hcd *xhci)
 135{
 136	int ret;
 137
 138	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 139	xhci_quiesce(xhci);
 140
 141	ret = xhci_handshake(&xhci->op_regs->status,
 142			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 143	if (ret) {
 144		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 145		return ret;
 146	}
 147
 148	xhci->xhc_state |= XHCI_STATE_HALTED;
 149	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 150
 151	return ret;
 152}
 153
 154/*
 155 * Set the run bit and wait for the host to be running.
 156 */
 157int xhci_start(struct xhci_hcd *xhci)
 158{
 159	u32 temp;
 160	int ret;
 161
 162	temp = readl(&xhci->op_regs->command);
 163	temp |= (CMD_RUN);
 164	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 165			temp);
 166	writel(temp, &xhci->op_regs->command);
 167
 168	/*
 169	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 170	 * running.
 171	 */
 172	ret = xhci_handshake(&xhci->op_regs->status,
 173			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 174	if (ret == -ETIMEDOUT)
 175		xhci_err(xhci, "Host took too long to start, "
 176				"waited %u microseconds.\n",
 177				XHCI_MAX_HALT_USEC);
 178	if (!ret) {
 179		/* clear state flags. Including dying, halted or removing */
 180		xhci->xhc_state = 0;
 181		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
 182	}
 183
 184	return ret;
 185}
 186
 187/*
 188 * Reset a halted HC.
 189 *
 190 * This resets pipelines, timers, counters, state machines, etc.
 191 * Transactions will be terminated immediately, and operational registers
 192 * will be set to their defaults.
 193 */
 194int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
 195{
 196	u32 command;
 197	u32 state;
 198	int ret;
 199
 200	state = readl(&xhci->op_regs->status);
 201
 202	if (state == ~(u32)0) {
 203		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 204		return -ENODEV;
 205	}
 206
 207	if ((state & STS_HALT) == 0) {
 208		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 209		return 0;
 210	}
 211
 212	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 213	command = readl(&xhci->op_regs->command);
 214	command |= CMD_RESET;
 215	writel(command, &xhci->op_regs->command);
 216
 217	/* Existing Intel xHCI controllers require a delay of 1 mS,
 218	 * after setting the CMD_RESET bit, and before accessing any
 219	 * HC registers. This allows the HC to complete the
 220	 * reset operation and be ready for HC register access.
 221	 * Without this delay, the subsequent HC register access,
 222	 * may result in a system hang very rarely.
 223	 */
 224	if (xhci->quirks & XHCI_INTEL_HOST)
 225		udelay(1000);
 226
 227	ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
 228				CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
 229	if (ret)
 230		return ret;
 231
 232	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 233		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 234
 235	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 236			 "Wait for controller to be ready for doorbell rings");
 237	/*
 238	 * xHCI cannot write to any doorbells or operational registers other
 239	 * than status until the "Controller Not Ready" flag is cleared.
 240	 */
 241	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
 
 242
 243	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
 244	xhci->usb2_rhub.bus_state.suspended_ports = 0;
 245	xhci->usb2_rhub.bus_state.resuming_ports = 0;
 246	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
 247	xhci->usb3_rhub.bus_state.suspended_ports = 0;
 248	xhci->usb3_rhub.bus_state.resuming_ports = 0;
 249
 250	return ret;
 251}
 252
 253static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
 254{
 255	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 256	struct iommu_domain *domain;
 257	int err, i;
 258	u64 val;
 259	u32 intrs;
 260
 261	/*
 262	 * Some Renesas controllers get into a weird state if they are
 263	 * reset while programmed with 64bit addresses (they will preserve
 264	 * the top half of the address in internal, non visible
 265	 * registers). You end up with half the address coming from the
 266	 * kernel, and the other half coming from the firmware. Also,
 267	 * changing the programming leads to extra accesses even if the
 268	 * controller is supposed to be halted. The controller ends up with
 269	 * a fatal fault, and is then ripe for being properly reset.
 270	 *
 271	 * Special care is taken to only apply this if the device is behind
 272	 * an iommu. Doing anything when there is no iommu is definitely
 273	 * unsafe...
 274	 */
 275	domain = iommu_get_domain_for_dev(dev);
 276	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
 277	    domain->type == IOMMU_DOMAIN_IDENTITY)
 278		return;
 279
 280	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
 281
 282	/* Clear HSEIE so that faults do not get signaled */
 283	val = readl(&xhci->op_regs->command);
 284	val &= ~CMD_HSEIE;
 285	writel(val, &xhci->op_regs->command);
 286
 287	/* Clear HSE (aka FATAL) */
 288	val = readl(&xhci->op_regs->status);
 289	val |= STS_FATAL;
 290	writel(val, &xhci->op_regs->status);
 291
 292	/* Now zero the registers, and brace for impact */
 293	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 294	if (upper_32_bits(val))
 295		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
 296	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 297	if (upper_32_bits(val))
 298		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 299
 300	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
 301		      ARRAY_SIZE(xhci->run_regs->ir_set));
 302
 303	for (i = 0; i < intrs; i++) {
 304		struct xhci_intr_reg __iomem *ir;
 305
 306		ir = &xhci->run_regs->ir_set[i];
 307		val = xhci_read_64(xhci, &ir->erst_base);
 308		if (upper_32_bits(val))
 309			xhci_write_64(xhci, 0, &ir->erst_base);
 310		val= xhci_read_64(xhci, &ir->erst_dequeue);
 311		if (upper_32_bits(val))
 312			xhci_write_64(xhci, 0, &ir->erst_dequeue);
 313	}
 314
 315	/* Wait for the fault to appear. It will be cleared on reset */
 316	err = xhci_handshake(&xhci->op_regs->status,
 317			     STS_FATAL, STS_FATAL,
 318			     XHCI_MAX_HALT_USEC);
 319	if (!err)
 320		xhci_info(xhci, "Fault detected\n");
 321}
 322
 323static int xhci_enable_interrupter(struct xhci_interrupter *ir)
 
 
 
 
 324{
 325	u32 iman;
 
 
 
 
 
 
 
 
 
 
 
 326
 327	if (!ir || !ir->ir_set)
 328		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329
 330	iman = readl(&ir->ir_set->irq_pending);
 331	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
 332
 333	return 0;
 
 
 
 
 
 334}
 335
 336static int xhci_disable_interrupter(struct xhci_interrupter *ir)
 
 337{
 338	u32 iman;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339
 340	if (!ir || !ir->ir_set)
 341		return -EINVAL;
 
 
 
 
 
 342
 343	iman = readl(&ir->ir_set->irq_pending);
 344	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
 
 345
 346	return 0;
 
 
 347}
 348
 349/* interrupt moderation interval imod_interval in nanoseconds */
 350static int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
 351					   u32 imod_interval)
 352{
 353	u32 imod;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 354
 355	if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
 
 
 
 
 
 
 356		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357
 358	imod = readl(&ir->ir_set->irq_control);
 359	imod &= ~ER_IRQ_INTERVAL_MASK;
 360	imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 361	writel(imod, &ir->ir_set->irq_control);
 362
 
 
 363	return 0;
 364}
 365
 
 
 
 
 
 
 
 
 
 
 366static void compliance_mode_recovery(struct timer_list *t)
 367{
 368	struct xhci_hcd *xhci;
 369	struct usb_hcd *hcd;
 370	struct xhci_hub *rhub;
 371	u32 temp;
 372	int i;
 373
 374	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 375	rhub = &xhci->usb3_rhub;
 376	hcd = rhub->hcd;
 377
 378	if (!hcd)
 379		return;
 380
 381	for (i = 0; i < rhub->num_ports; i++) {
 382		temp = readl(rhub->ports[i]->addr);
 383		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 384			/*
 385			 * Compliance Mode Detected. Letting USB Core
 386			 * handle the Warm Reset
 387			 */
 388			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 389					"Compliance mode detected->port %d",
 390					i + 1);
 391			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 392					"Attempting compliance mode recovery");
 
 393
 394			if (hcd->state == HC_STATE_SUSPENDED)
 395				usb_hcd_resume_root_hub(hcd);
 396
 397			usb_hcd_poll_rh_status(hcd);
 398		}
 399	}
 400
 401	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
 402		mod_timer(&xhci->comp_mode_recovery_timer,
 403			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 404}
 405
 406/*
 407 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 408 * that causes ports behind that hardware to enter compliance mode sometimes.
 409 * The quirk creates a timer that polls every 2 seconds the link state of
 410 * each host controller's port and recovers it by issuing a Warm reset
 411 * if Compliance mode is detected, otherwise the port will become "dead" (no
 412 * device connections or disconnections will be detected anymore). Becasue no
 413 * status event is generated when entering compliance mode (per xhci spec),
 414 * this quirk is needed on systems that have the failing hardware installed.
 415 */
 416static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 417{
 418	xhci->port_status_u0 = 0;
 419	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 420		    0);
 421	xhci->comp_mode_recovery_timer.expires = jiffies +
 422			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 423
 424	add_timer(&xhci->comp_mode_recovery_timer);
 425	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 426			"Compliance mode recovery timer initialized");
 427}
 428
 429/*
 430 * This function identifies the systems that have installed the SN65LVPE502CP
 431 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 432 * Systems:
 433 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 434 */
 435static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 436{
 437	const char *dmi_product_name, *dmi_sys_vendor;
 438
 439	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 440	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 441	if (!dmi_product_name || !dmi_sys_vendor)
 442		return false;
 443
 444	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 445		return false;
 446
 447	if (strstr(dmi_product_name, "Z420") ||
 448			strstr(dmi_product_name, "Z620") ||
 449			strstr(dmi_product_name, "Z820") ||
 450			strstr(dmi_product_name, "Z1 Workstation"))
 451		return true;
 452
 453	return false;
 454}
 455
 456static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 457{
 458	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
 459}
 460
 461
 462/*
 463 * Initialize memory for HCD and xHC (one-time init).
 464 *
 465 * Program the PAGESIZE register, initialize the device context array, create
 466 * device contexts (?), set up a command ring segment (or two?), create event
 467 * ring (one for now).
 468 */
 469static int xhci_init(struct usb_hcd *hcd)
 470{
 471	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 472	int retval;
 473
 474	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 475	spin_lock_init(&xhci->lock);
 476	if (xhci->hci_version == 0x95 && link_quirk) {
 477		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 478				"QUIRK: Not clearing Link TRB chain bits.");
 479		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 480	} else {
 481		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 482				"xHCI doesn't need link TRB QUIRK");
 483	}
 484	retval = xhci_mem_init(xhci, GFP_KERNEL);
 485	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 486
 487	/* Initializing Compliance Mode Recovery Data If Needed */
 488	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 489		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 490		compliance_mode_recovery_timer_init(xhci);
 491	}
 492
 493	return retval;
 494}
 495
 496/*-------------------------------------------------------------------------*/
 497
 
 498static int xhci_run_finished(struct xhci_hcd *xhci)
 499{
 500	struct xhci_interrupter *ir = xhci->interrupters[0];
 501	unsigned long	flags;
 502	u32		temp;
 503
 504	/*
 505	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
 506	 * Protect the short window before host is running with a lock
 507	 */
 508	spin_lock_irqsave(&xhci->lock, flags);
 509
 510	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
 511	temp = readl(&xhci->op_regs->command);
 512	temp |= (CMD_EIE);
 513	writel(temp, &xhci->op_regs->command);
 514
 515	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
 516	xhci_enable_interrupter(ir);
 517
 518	if (xhci_start(xhci)) {
 519		xhci_halt(xhci);
 520		spin_unlock_irqrestore(&xhci->lock, flags);
 521		return -ENODEV;
 522	}
 523
 524	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 525
 526	if (xhci->quirks & XHCI_NEC_HOST)
 527		xhci_ring_cmd_db(xhci);
 528
 529	spin_unlock_irqrestore(&xhci->lock, flags);
 530
 531	return 0;
 532}
 533
 534/*
 535 * Start the HC after it was halted.
 536 *
 537 * This function is called by the USB core when the HC driver is added.
 538 * Its opposite is xhci_stop().
 539 *
 540 * xhci_init() must be called once before this function can be called.
 541 * Reset the HC, enable device slot contexts, program DCBAAP, and
 542 * set command ring pointer and event ring pointer.
 543 *
 544 * Setup MSI-X vectors and enable interrupts.
 545 */
 546int xhci_run(struct usb_hcd *hcd)
 547{
 
 548	u64 temp_64;
 549	int ret;
 550	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 551	struct xhci_interrupter *ir = xhci->interrupters[0];
 552	/* Start the xHCI host controller running only after the USB 2.0 roothub
 553	 * is setup.
 554	 */
 555
 556	hcd->uses_new_polling = 1;
 557	if (hcd->msi_enabled)
 558		ir->ip_autoclear = true;
 559
 560	if (!usb_hcd_is_primary_hcd(hcd))
 561		return xhci_run_finished(xhci);
 562
 563	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 564
 565	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
 566	temp_64 &= ERST_PTR_MASK;
 
 
 
 
 567	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 568			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 569
 570	xhci_set_interrupter_moderation(ir, xhci->imod_interval);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571
 572	if (xhci->quirks & XHCI_NEC_HOST) {
 573		struct xhci_command *command;
 574
 575		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 576		if (!command)
 577			return -ENOMEM;
 578
 579		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 580				TRB_TYPE(TRB_NEC_GET_FW));
 581		if (ret)
 582			xhci_free_command(xhci, command);
 583	}
 584	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 585			"Finished %s for main hcd", __func__);
 586
 587	xhci_create_dbc_dev(xhci);
 588
 589	xhci_debugfs_init(xhci);
 590
 591	if (xhci_has_one_roothub(xhci))
 592		return xhci_run_finished(xhci);
 593
 594	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
 595
 596	return 0;
 597}
 598EXPORT_SYMBOL_GPL(xhci_run);
 599
 600/*
 601 * Stop xHCI driver.
 602 *
 603 * This function is called by the USB core when the HC driver is removed.
 604 * Its opposite is xhci_run().
 605 *
 606 * Disable device contexts, disable IRQs, and quiesce the HC.
 607 * Reset the HC, finish any completed transactions, and cleanup memory.
 608 */
 609void xhci_stop(struct usb_hcd *hcd)
 610{
 611	u32 temp;
 612	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 613	struct xhci_interrupter *ir = xhci->interrupters[0];
 614
 615	mutex_lock(&xhci->mutex);
 616
 617	/* Only halt host and free memory after both hcds are removed */
 618	if (!usb_hcd_is_primary_hcd(hcd)) {
 619		mutex_unlock(&xhci->mutex);
 620		return;
 621	}
 622
 623	xhci_remove_dbc_dev(xhci);
 624
 625	spin_lock_irq(&xhci->lock);
 626	xhci->xhc_state |= XHCI_STATE_HALTED;
 627	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 628	xhci_halt(xhci);
 629	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 630	spin_unlock_irq(&xhci->lock);
 631
 
 
 632	/* Deleting Compliance Mode Recovery Timer */
 633	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 634			(!(xhci_all_ports_seen_u0(xhci)))) {
 635		del_timer_sync(&xhci->comp_mode_recovery_timer);
 636		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 637				"%s: compliance mode recovery timer deleted",
 638				__func__);
 639	}
 640
 641	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 642		usb_amd_dev_put();
 643
 644	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 645			"// Disabling event ring interrupts");
 646	temp = readl(&xhci->op_regs->status);
 647	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 648	xhci_disable_interrupter(ir);
 
 649
 650	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 651	xhci_mem_cleanup(xhci);
 652	xhci_debugfs_exit(xhci);
 653	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 654			"xhci_stop completed - status = %x",
 655			readl(&xhci->op_regs->status));
 656	mutex_unlock(&xhci->mutex);
 657}
 658EXPORT_SYMBOL_GPL(xhci_stop);
 659
 660/*
 661 * Shutdown HC (not bus-specific)
 662 *
 663 * This is called when the machine is rebooting or halting.  We assume that the
 664 * machine will be powered off, and the HC's internal state will be reset.
 665 * Don't bother to free memory.
 666 *
 667 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 668 */
 669void xhci_shutdown(struct usb_hcd *hcd)
 670{
 671	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 672
 673	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 674		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 675
 676	/* Don't poll the roothubs after shutdown. */
 677	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
 678			__func__, hcd->self.busnum);
 679	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 680	del_timer_sync(&hcd->rh_timer);
 681
 682	if (xhci->shared_hcd) {
 683		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 684		del_timer_sync(&xhci->shared_hcd->rh_timer);
 685	}
 686
 687	spin_lock_irq(&xhci->lock);
 688	xhci_halt(xhci);
 
 
 
 
 689
 690	/*
 691	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
 692	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
 693	 */
 694	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
 695	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
 696		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 697
 698	spin_unlock_irq(&xhci->lock);
 699
 700	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 701			"xhci_shutdown completed - status = %x",
 702			readl(&xhci->op_regs->status));
 
 
 
 
 703}
 704EXPORT_SYMBOL_GPL(xhci_shutdown);
 705
 706#ifdef CONFIG_PM
 707static void xhci_save_registers(struct xhci_hcd *xhci)
 708{
 709	struct xhci_interrupter *ir;
 710	unsigned int i;
 711
 712	xhci->s3.command = readl(&xhci->op_regs->command);
 713	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 714	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 715	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 716
 717	/* save both primary and all secondary interrupters */
 718	/* fixme, shold we lock  to prevent race with remove secondary interrupter? */
 719	for (i = 0; i < xhci->max_interrupters; i++) {
 720		ir = xhci->interrupters[i];
 721		if (!ir)
 722			continue;
 723
 724		ir->s3_erst_size = readl(&ir->ir_set->erst_size);
 725		ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
 726		ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
 727		ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
 728		ir->s3_irq_control = readl(&ir->ir_set->irq_control);
 729	}
 730}
 731
 732static void xhci_restore_registers(struct xhci_hcd *xhci)
 733{
 734	struct xhci_interrupter *ir;
 735	unsigned int i;
 736
 737	writel(xhci->s3.command, &xhci->op_regs->command);
 738	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 739	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 740	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 741
 742	/* FIXME should we lock to protect against freeing of interrupters */
 743	for (i = 0; i < xhci->max_interrupters; i++) {
 744		ir = xhci->interrupters[i];
 745		if (!ir)
 746			continue;
 747
 748		writel(ir->s3_erst_size, &ir->ir_set->erst_size);
 749		xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
 750		xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
 751		writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
 752		writel(ir->s3_irq_control, &ir->ir_set->irq_control);
 753	}
 754}
 755
 756static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 757{
 758	u64	val_64;
 759
 760	/* step 2: initialize command ring buffer */
 761	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 762	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 763		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 764				      xhci->cmd_ring->dequeue) &
 765		 (u64) ~CMD_RING_RSVD_BITS) |
 766		xhci->cmd_ring->cycle_state;
 767	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 768			"// Setting command ring address to 0x%llx",
 769			(long unsigned long) val_64);
 770	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 771}
 772
 773/*
 774 * The whole command ring must be cleared to zero when we suspend the host.
 775 *
 776 * The host doesn't save the command ring pointer in the suspend well, so we
 777 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 778 * aligned, because of the reserved bits in the command ring dequeue pointer
 779 * register.  Therefore, we can't just set the dequeue pointer back in the
 780 * middle of the ring (TRBs are 16-byte aligned).
 781 */
 782static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 783{
 784	struct xhci_ring *ring;
 785	struct xhci_segment *seg;
 786
 787	ring = xhci->cmd_ring;
 788	seg = ring->deq_seg;
 789	do {
 790		memset(seg->trbs, 0,
 791			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 792		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 793			cpu_to_le32(~TRB_CYCLE);
 794		seg = seg->next;
 795	} while (seg != ring->deq_seg);
 796
 797	xhci_initialize_ring_info(ring, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 798	/*
 799	 * Reset the hardware dequeue pointer.
 800	 * Yes, this will need to be re-written after resume, but we're paranoid
 801	 * and want to make sure the hardware doesn't access bogus memory
 802	 * because, say, the BIOS or an SMI started the host without changing
 803	 * the command ring pointers.
 804	 */
 805	xhci_set_cmd_ring_deq(xhci);
 806}
 807
 808/*
 809 * Disable port wake bits if do_wakeup is not set.
 810 *
 811 * Also clear a possible internal port wake state left hanging for ports that
 812 * detected termination but never successfully enumerated (trained to 0U).
 813 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
 814 * at enumeration clears this wake, force one here as well for unconnected ports
 815 */
 816
 817static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
 818				       struct xhci_hub *rhub,
 819				       bool do_wakeup)
 820{
 
 
 821	unsigned long flags;
 822	u32 t1, t2, portsc;
 823	int i;
 824
 825	spin_lock_irqsave(&xhci->lock, flags);
 826
 827	for (i = 0; i < rhub->num_ports; i++) {
 828		portsc = readl(rhub->ports[i]->addr);
 829		t1 = xhci_port_state_to_neutral(portsc);
 830		t2 = t1;
 831
 832		/* clear wake bits if do_wake is not set */
 833		if (!do_wakeup)
 834			t2 &= ~PORT_WAKE_BITS;
 835
 836		/* Don't touch csc bit if connected or connect change is set */
 837		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
 838			t2 |= PORT_CSC;
 
 
 
 839
 
 
 
 
 
 
 
 
 840		if (t1 != t2) {
 841			writel(t2, rhub->ports[i]->addr);
 842			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
 843				 rhub->hcd->self.busnum, i + 1, portsc, t2);
 
 844		}
 845	}
 846	spin_unlock_irqrestore(&xhci->lock, flags);
 847}
 848
 849static bool xhci_pending_portevent(struct xhci_hcd *xhci)
 850{
 851	struct xhci_port	**ports;
 852	int			port_index;
 853	u32			status;
 854	u32			portsc;
 855
 856	status = readl(&xhci->op_regs->status);
 857	if (status & STS_EINT)
 858		return true;
 859	/*
 860	 * Checking STS_EINT is not enough as there is a lag between a change
 861	 * bit being set and the Port Status Change Event that it generated
 862	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
 863	 */
 864
 865	port_index = xhci->usb2_rhub.num_ports;
 866	ports = xhci->usb2_rhub.ports;
 867	while (port_index--) {
 868		portsc = readl(ports[port_index]->addr);
 869		if (portsc & PORT_CHANGE_MASK ||
 870		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 871			return true;
 872	}
 873	port_index = xhci->usb3_rhub.num_ports;
 874	ports = xhci->usb3_rhub.ports;
 875	while (port_index--) {
 876		portsc = readl(ports[port_index]->addr);
 877		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
 878		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 879			return true;
 880	}
 881	return false;
 882}
 883
 884/*
 885 * Stop HC (not bus-specific)
 886 *
 887 * This is called when the machine transition into S3/S4 mode.
 888 *
 889 */
 890int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 891{
 892	int			rc = 0;
 893	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
 894	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 895	u32			command;
 896	u32			res;
 897
 898	if (!hcd->state)
 899		return 0;
 900
 901	if (hcd->state != HC_STATE_SUSPENDED ||
 902	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
 903		return -EINVAL;
 904
 
 
 905	/* Clear root port wake on bits if wakeup not allowed. */
 906	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
 907	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
 908
 909	if (!HCD_HW_ACCESSIBLE(hcd))
 910		return 0;
 911
 912	xhci_dbc_suspend(xhci);
 913
 914	/* Don't poll the roothubs on bus suspend. */
 915	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
 916		 __func__, hcd->self.busnum);
 917	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 918	del_timer_sync(&hcd->rh_timer);
 919	if (xhci->shared_hcd) {
 920		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 921		del_timer_sync(&xhci->shared_hcd->rh_timer);
 922	}
 923
 924	if (xhci->quirks & XHCI_SUSPEND_DELAY)
 925		usleep_range(1000, 1500);
 926
 927	spin_lock_irq(&xhci->lock);
 928	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 929	if (xhci->shared_hcd)
 930		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 931	/* step 1: stop endpoint */
 932	/* skipped assuming that port suspend has done */
 933
 934	/* step 2: clear Run/Stop bit */
 935	command = readl(&xhci->op_regs->command);
 936	command &= ~CMD_RUN;
 937	writel(command, &xhci->op_regs->command);
 938
 939	/* Some chips from Fresco Logic need an extraordinary delay */
 940	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
 941
 942	if (xhci_handshake(&xhci->op_regs->status,
 943		      STS_HALT, STS_HALT, delay)) {
 944		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 945		spin_unlock_irq(&xhci->lock);
 946		return -ETIMEDOUT;
 947	}
 948	xhci_clear_command_ring(xhci);
 949
 950	/* step 3: save registers */
 951	xhci_save_registers(xhci);
 952
 953	/* step 4: set CSS flag */
 954	command = readl(&xhci->op_regs->command);
 955	command |= CMD_CSS;
 956	writel(command, &xhci->op_regs->command);
 957	xhci->broken_suspend = 0;
 958	if (xhci_handshake(&xhci->op_regs->status,
 959				STS_SAVE, 0, 20 * 1000)) {
 960	/*
 961	 * AMD SNPS xHC 3.0 occasionally does not clear the
 962	 * SSS bit of USBSTS and when driver tries to poll
 963	 * to see if the xHC clears BIT(8) which never happens
 964	 * and driver assumes that controller is not responding
 965	 * and times out. To workaround this, its good to check
 966	 * if SRE and HCE bits are not set (as per xhci
 967	 * Section 5.4.2) and bypass the timeout.
 968	 */
 969		res = readl(&xhci->op_regs->status);
 970		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
 971		    (((res & STS_SRE) == 0) &&
 972				((res & STS_HCE) == 0))) {
 973			xhci->broken_suspend = 1;
 974		} else {
 975			xhci_warn(xhci, "WARN: xHC save state timeout\n");
 976			spin_unlock_irq(&xhci->lock);
 977			return -ETIMEDOUT;
 978		}
 979	}
 980	spin_unlock_irq(&xhci->lock);
 981
 982	/*
 983	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 984	 * is about to be suspended.
 985	 */
 986	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 987			(!(xhci_all_ports_seen_u0(xhci)))) {
 988		del_timer_sync(&xhci->comp_mode_recovery_timer);
 989		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 990				"%s: compliance mode recovery timer deleted",
 991				__func__);
 992	}
 993
 
 
 
 
 994	return rc;
 995}
 996EXPORT_SYMBOL_GPL(xhci_suspend);
 997
 998/*
 999 * start xHC (not bus-specific)
1000 *
1001 * This is called when the machine transition from S3/S4 mode.
1002 *
1003 */
1004int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
1005{
1006	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
1007	u32			command, temp = 0;
1008	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 
1009	int			retval = 0;
1010	bool			comp_timer_running = false;
1011	bool			pending_portevent = false;
1012	bool			suspended_usb3_devs = false;
1013	bool			reinit_xhc = false;
1014
1015	if (!hcd->state)
1016		return 0;
1017
1018	/* Wait a bit if either of the roothubs need to settle from the
1019	 * transition into bus suspend.
1020	 */
1021
1022	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1023	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1024		msleep(100);
1025
1026	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1027	if (xhci->shared_hcd)
1028		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1029
1030	spin_lock_irq(&xhci->lock);
 
 
1031
1032	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1033		reinit_xhc = true;
1034
1035	if (!reinit_xhc) {
1036		/*
1037		 * Some controllers might lose power during suspend, so wait
1038		 * for controller not ready bit to clear, just as in xHC init.
1039		 */
1040		retval = xhci_handshake(&xhci->op_regs->status,
1041					STS_CNR, 0, 10 * 1000 * 1000);
1042		if (retval) {
1043			xhci_warn(xhci, "Controller not ready at resume %d\n",
1044				  retval);
1045			spin_unlock_irq(&xhci->lock);
1046			return retval;
1047		}
1048		/* step 1: restore register */
1049		xhci_restore_registers(xhci);
1050		/* step 2: initialize command ring buffer */
1051		xhci_set_cmd_ring_deq(xhci);
1052		/* step 3: restore state and start state*/
1053		/* step 3: set CRS flag */
1054		command = readl(&xhci->op_regs->command);
1055		command |= CMD_CRS;
1056		writel(command, &xhci->op_regs->command);
1057		/*
1058		 * Some controllers take up to 55+ ms to complete the controller
1059		 * restore so setting the timeout to 100ms. Xhci specification
1060		 * doesn't mention any timeout value.
1061		 */
1062		if (xhci_handshake(&xhci->op_regs->status,
1063			      STS_RESTORE, 0, 100 * 1000)) {
1064			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1065			spin_unlock_irq(&xhci->lock);
1066			return -ETIMEDOUT;
1067		}
 
1068	}
1069
1070	temp = readl(&xhci->op_regs->status);
1071
1072	/* re-initialize the HC on Restore Error, or Host Controller Error */
1073	if ((temp & (STS_SRE | STS_HCE)) &&
1074	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1075		reinit_xhc = true;
1076		if (!xhci->broken_suspend)
1077			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1078	}
1079
1080	if (reinit_xhc) {
1081		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1082				!(xhci_all_ports_seen_u0(xhci))) {
1083			del_timer_sync(&xhci->comp_mode_recovery_timer);
1084			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1085				"Compliance Mode Recovery Timer deleted!");
1086		}
1087
1088		/* Let the USB core know _both_ roothubs lost power. */
1089		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1090		if (xhci->shared_hcd)
1091			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1092
1093		xhci_dbg(xhci, "Stop HCD\n");
1094		xhci_halt(xhci);
1095		xhci_zero_64b_regs(xhci);
1096		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1097		spin_unlock_irq(&xhci->lock);
1098		if (retval)
1099			return retval;
1100
1101		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1102		temp = readl(&xhci->op_regs->status);
1103		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1104		xhci_disable_interrupter(xhci->interrupters[0]);
 
1105
1106		xhci_dbg(xhci, "cleaning up memory\n");
1107		xhci_mem_cleanup(xhci);
1108		xhci_debugfs_exit(xhci);
1109		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1110			    readl(&xhci->op_regs->status));
1111
1112		/* USB core calls the PCI reinit and start functions twice:
1113		 * first with the primary HCD, and then with the secondary HCD.
1114		 * If we don't do the same, the host will never be started.
1115		 */
 
 
 
 
 
1116		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1117		retval = xhci_init(hcd);
1118		if (retval)
1119			return retval;
1120		comp_timer_running = true;
1121
1122		xhci_dbg(xhci, "Start the primary HCD\n");
1123		retval = xhci_run(hcd);
1124		if (!retval && xhci->shared_hcd) {
1125			xhci_dbg(xhci, "Start the secondary HCD\n");
1126			retval = xhci_run(xhci->shared_hcd);
1127		}
1128
1129		hcd->state = HC_STATE_SUSPENDED;
1130		if (xhci->shared_hcd)
1131			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1132		goto done;
1133	}
1134
1135	/* step 4: set Run/Stop bit */
1136	command = readl(&xhci->op_regs->command);
1137	command |= CMD_RUN;
1138	writel(command, &xhci->op_regs->command);
1139	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1140		  0, 250 * 1000);
1141
1142	/* step 5: walk topology and initialize portsc,
1143	 * portpmsc and portli
1144	 */
1145	/* this is done in bus_resume */
1146
1147	/* step 6: restart each of the previously
1148	 * Running endpoints by ringing their doorbells
1149	 */
1150
1151	spin_unlock_irq(&xhci->lock);
1152
1153	xhci_dbc_resume(xhci);
1154
1155 done:
1156	if (retval == 0) {
1157		/*
1158		 * Resume roothubs only if there are pending events.
1159		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1160		 * the first wake signalling failed, give it that chance if
1161		 * there are suspended USB 3 devices.
1162		 */
1163		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1164		    xhci->usb3_rhub.bus_state.bus_suspended)
1165			suspended_usb3_devs = true;
1166
1167		pending_portevent = xhci_pending_portevent(xhci);
1168
1169		if (suspended_usb3_devs && !pending_portevent &&
1170		    msg.event == PM_EVENT_AUTO_RESUME) {
1171			msleep(120);
1172			pending_portevent = xhci_pending_portevent(xhci);
1173		}
1174
1175		if (pending_portevent) {
1176			if (xhci->shared_hcd)
1177				usb_hcd_resume_root_hub(xhci->shared_hcd);
1178			usb_hcd_resume_root_hub(hcd);
1179		}
1180	}
 
1181	/*
1182	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1183	 * be re-initialized Always after a system resume. Ports are subject
1184	 * to suffer the Compliance Mode issue again. It doesn't matter if
1185	 * ports have entered previously to U0 before system's suspension.
1186	 */
1187	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1188		compliance_mode_recovery_timer_init(xhci);
1189
1190	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1191		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1192
1193	/* Re-enable port polling. */
1194	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1195		 __func__, hcd->self.busnum);
1196	if (xhci->shared_hcd) {
1197		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1198		usb_hcd_poll_rh_status(xhci->shared_hcd);
1199	}
1200	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1201	usb_hcd_poll_rh_status(hcd);
1202
1203	return retval;
1204}
1205EXPORT_SYMBOL_GPL(xhci_resume);
1206#endif	/* CONFIG_PM */
1207
1208/*-------------------------------------------------------------------------*/
1209
1210static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1211{
1212	void *temp;
1213	int ret = 0;
1214	unsigned int buf_len;
1215	enum dma_data_direction dir;
1216
1217	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1218	buf_len = urb->transfer_buffer_length;
1219
1220	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1221			    dev_to_node(hcd->self.sysdev));
1222	if (!temp)
1223		return -ENOMEM;
1224
1225	if (usb_urb_dir_out(urb))
1226		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1227				   temp, buf_len, 0);
1228
1229	urb->transfer_buffer = temp;
1230	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1231					   urb->transfer_buffer,
1232					   urb->transfer_buffer_length,
1233					   dir);
1234
1235	if (dma_mapping_error(hcd->self.sysdev,
1236			      urb->transfer_dma)) {
1237		ret = -EAGAIN;
1238		kfree(temp);
1239	} else {
1240		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1241	}
1242
1243	return ret;
1244}
1245
1246static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1247					  struct urb *urb)
1248{
1249	bool ret = false;
1250	unsigned int i;
1251	unsigned int len = 0;
1252	unsigned int trb_size;
1253	unsigned int max_pkt;
1254	struct scatterlist *sg;
1255	struct scatterlist *tail_sg;
1256
1257	tail_sg = urb->sg;
1258	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1259
1260	if (!urb->num_sgs)
1261		return ret;
1262
1263	if (urb->dev->speed >= USB_SPEED_SUPER)
1264		trb_size = TRB_CACHE_SIZE_SS;
1265	else
1266		trb_size = TRB_CACHE_SIZE_HS;
1267
1268	if (urb->transfer_buffer_length != 0 &&
1269	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1270		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1271			len = len + sg->length;
1272			if (i > trb_size - 2) {
1273				len = len - tail_sg->length;
1274				if (len < max_pkt) {
1275					ret = true;
1276					break;
1277				}
1278
1279				tail_sg = sg_next(tail_sg);
1280			}
1281		}
1282	}
1283	return ret;
1284}
1285
1286static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1287{
1288	unsigned int len;
1289	unsigned int buf_len;
1290	enum dma_data_direction dir;
1291
1292	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1293
1294	buf_len = urb->transfer_buffer_length;
1295
1296	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1297	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1298		dma_unmap_single(hcd->self.sysdev,
1299				 urb->transfer_dma,
1300				 urb->transfer_buffer_length,
1301				 dir);
1302
1303	if (usb_urb_dir_in(urb)) {
1304		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1305					   urb->transfer_buffer,
1306					   buf_len,
1307					   0);
1308		if (len != buf_len) {
1309			xhci_dbg(hcd_to_xhci(hcd),
1310				 "Copy from tmp buf to urb sg list failed\n");
1311			urb->actual_length = len;
1312		}
1313	}
1314	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1315	kfree(urb->transfer_buffer);
1316	urb->transfer_buffer = NULL;
1317}
1318
1319/*
1320 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1321 * we'll copy the actual data into the TRB address register. This is limited to
1322 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1323 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1324 */
1325static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1326				gfp_t mem_flags)
1327{
1328	struct xhci_hcd *xhci;
1329
1330	xhci = hcd_to_xhci(hcd);
1331
1332	if (xhci_urb_suitable_for_idt(urb))
1333		return 0;
1334
1335	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1336		if (xhci_urb_temp_buffer_required(hcd, urb))
1337			return xhci_map_temp_buffer(hcd, urb);
1338	}
1339	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1340}
1341
1342static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1343{
1344	struct xhci_hcd *xhci;
1345	bool unmap_temp_buf = false;
1346
1347	xhci = hcd_to_xhci(hcd);
1348
1349	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1350		unmap_temp_buf = true;
1351
1352	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1353		xhci_unmap_temp_buf(hcd, urb);
1354	else
1355		usb_hcd_unmap_urb_for_dma(hcd, urb);
1356}
1357
1358/**
1359 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1360 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1361 * value to right shift 1 for the bitmask.
1362 *
1363 * Index  = (epnum * 2) + direction - 1,
1364 * where direction = 0 for OUT, 1 for IN.
1365 * For control endpoints, the IN index is used (OUT index is unused), so
1366 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1367 */
1368unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1369{
1370	unsigned int index;
1371	if (usb_endpoint_xfer_control(desc))
1372		index = (unsigned int) (usb_endpoint_num(desc)*2);
1373	else
1374		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1375			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1376	return index;
1377}
1378EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1379
1380/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1381 * address from the XHCI endpoint index.
1382 */
1383static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1384{
1385	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1386	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1387	return direction | number;
1388}
1389
1390/* Find the flag for this endpoint (for use in the control context).  Use the
1391 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1392 * bit 1, etc.
1393 */
1394static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1395{
1396	return 1 << (xhci_get_endpoint_index(desc) + 1);
1397}
1398
 
 
 
 
 
 
 
 
 
1399/* Compute the last valid endpoint context index.  Basically, this is the
1400 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1401 * we find the most significant bit set in the added contexts flags.
1402 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1403 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1404 */
1405unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1406{
1407	return fls(added_ctxs) - 1;
1408}
1409
1410/* Returns 1 if the arguments are OK;
1411 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1412 */
1413static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1414		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1415		const char *func) {
1416	struct xhci_hcd	*xhci;
1417	struct xhci_virt_device	*virt_dev;
1418
1419	if (!hcd || (check_ep && !ep) || !udev) {
1420		pr_debug("xHCI %s called with invalid args\n", func);
1421		return -EINVAL;
1422	}
1423	if (!udev->parent) {
1424		pr_debug("xHCI %s called for root hub\n", func);
1425		return 0;
1426	}
1427
1428	xhci = hcd_to_xhci(hcd);
1429	if (check_virt_dev) {
1430		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1431			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1432					func);
1433			return -EINVAL;
1434		}
1435
1436		virt_dev = xhci->devs[udev->slot_id];
1437		if (virt_dev->udev != udev) {
1438			xhci_dbg(xhci, "xHCI %s called with udev and "
1439					  "virt_dev does not match\n", func);
1440			return -EINVAL;
1441		}
1442	}
1443
1444	if (xhci->xhc_state & XHCI_STATE_HALTED)
1445		return -ENODEV;
1446
1447	return 1;
1448}
1449
1450static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1451		struct usb_device *udev, struct xhci_command *command,
1452		bool ctx_change, bool must_succeed);
1453
1454/*
1455 * Full speed devices may have a max packet size greater than 8 bytes, but the
1456 * USB core doesn't know that until it reads the first 8 bytes of the
1457 * descriptor.  If the usb_device's max packet size changes after that point,
1458 * we need to issue an evaluate context command and wait on it.
1459 */
1460static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
 
1461{
 
1462	struct xhci_input_control_ctx *ctrl_ctx;
1463	struct xhci_ep_ctx *ep_ctx;
1464	struct xhci_command *command;
1465	int max_packet_size;
1466	int hw_max_packet_size;
1467	int ret = 0;
1468
1469	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
 
1470	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1471	max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1472
1473	if (hw_max_packet_size == max_packet_size)
1474		return 0;
1475
1476	switch (max_packet_size) {
1477	case 8: case 16: case 32: case 64: case 9:
1478		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1479				"Max Packet Size for ep 0 changed.");
1480		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1481				"Max packet size in usb_device = %d",
1482				max_packet_size);
1483		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1484				"Max packet size in xHCI HW = %d",
1485				hw_max_packet_size);
1486		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1487				"Issuing evaluate context command.");
1488
 
 
 
 
 
1489		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1490		if (!command)
1491			return -ENOMEM;
1492
1493		command->in_ctx = vdev->in_ctx;
1494		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1495		if (!ctrl_ctx) {
1496			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1497					__func__);
1498			ret = -ENOMEM;
1499			break;
1500		}
1501		/* Set up the modified control endpoint 0 */
1502		xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
 
1503
1504		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1505		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1506		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1507		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1508
1509		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1510		ctrl_ctx->drop_flags = 0;
1511
1512		ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1513					      true, false);
1514		/* Clean up the input context for later use by bandwidth functions */
 
 
 
1515		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1516		break;
1517	default:
1518		dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1519			max_packet_size);
1520		return -EINVAL;
1521	}
1522
1523	kfree(command->completion);
1524	kfree(command);
1525
1526	return ret;
1527}
1528
1529/*
1530 * non-error returns are a promise to giveback() the urb later
1531 * we drop ownership so next owner (or urb unlink) can get it
1532 */
1533static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1534{
1535	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1536	unsigned long flags;
1537	int ret = 0;
1538	unsigned int slot_id, ep_index;
1539	unsigned int *ep_state;
1540	struct urb_priv	*urb_priv;
1541	int num_tds;
1542
 
 
 
 
 
1543	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
 
 
 
 
 
 
 
 
 
 
 
1544
1545	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1546		num_tds = urb->number_of_packets;
1547	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1548	    urb->transfer_buffer_length > 0 &&
1549	    urb->transfer_flags & URB_ZERO_PACKET &&
1550	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1551		num_tds = 2;
1552	else
1553		num_tds = 1;
1554
1555	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1556	if (!urb_priv)
1557		return -ENOMEM;
1558
1559	urb_priv->num_tds = num_tds;
1560	urb_priv->num_tds_done = 0;
1561	urb->hcpriv = urb_priv;
1562
1563	trace_xhci_urb_enqueue(urb);
1564
1565	spin_lock_irqsave(&xhci->lock, flags);
1566
1567	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1568			      true, true, __func__);
1569	if (ret <= 0) {
1570		ret = ret ? ret : -EINVAL;
1571		goto free_priv;
 
 
 
 
 
 
1572	}
1573
1574	slot_id = urb->dev->slot_id;
1575
1576	if (!HCD_HW_ACCESSIBLE(hcd)) {
1577		ret = -ESHUTDOWN;
1578		goto free_priv;
1579	}
1580
1581	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1582		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1583		ret = -ENODEV;
1584		goto free_priv;
1585	}
1586
1587	if (xhci->xhc_state & XHCI_STATE_DYING) {
1588		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1589			 urb->ep->desc.bEndpointAddress, urb);
1590		ret = -ESHUTDOWN;
1591		goto free_priv;
1592	}
1593
1594	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1595
1596	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1597		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1598			  *ep_state);
1599		ret = -EINVAL;
1600		goto free_priv;
1601	}
1602	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1603		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1604		ret = -EINVAL;
1605		goto free_priv;
1606	}
1607
1608	switch (usb_endpoint_type(&urb->ep->desc)) {
1609
1610	case USB_ENDPOINT_XFER_CONTROL:
1611		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1612					 slot_id, ep_index);
1613		break;
1614	case USB_ENDPOINT_XFER_BULK:
1615		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1616					 slot_id, ep_index);
1617		break;
1618	case USB_ENDPOINT_XFER_INT:
1619		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1620				slot_id, ep_index);
1621		break;
1622	case USB_ENDPOINT_XFER_ISOC:
1623		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1624				slot_id, ep_index);
1625	}
1626
1627	if (ret) {
1628free_priv:
1629		xhci_urb_free_priv(urb_priv);
1630		urb->hcpriv = NULL;
1631	}
1632	spin_unlock_irqrestore(&xhci->lock, flags);
1633	return ret;
1634}
1635
1636/*
1637 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1638 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1639 * should pick up where it left off in the TD, unless a Set Transfer Ring
1640 * Dequeue Pointer is issued.
1641 *
1642 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1643 * the ring.  Since the ring is a contiguous structure, they can't be physically
1644 * removed.  Instead, there are two options:
1645 *
1646 *  1) If the HC is in the middle of processing the URB to be canceled, we
1647 *     simply move the ring's dequeue pointer past those TRBs using the Set
1648 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1649 *     when drivers timeout on the last submitted URB and attempt to cancel.
1650 *
1651 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1652 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1653 *     HC will need to invalidate the any TRBs it has cached after the stop
1654 *     endpoint command, as noted in the xHCI 0.95 errata.
1655 *
1656 *  3) The TD may have completed by the time the Stop Endpoint Command
1657 *     completes, so software needs to handle that case too.
1658 *
1659 * This function should protect against the TD enqueueing code ringing the
1660 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1661 * It also needs to account for multiple cancellations on happening at the same
1662 * time for the same endpoint.
1663 *
1664 * Note that this function can be called in any context, or so says
1665 * usb_hcd_unlink_urb()
1666 */
1667static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1668{
1669	unsigned long flags;
1670	int ret, i;
1671	u32 temp;
1672	struct xhci_hcd *xhci;
1673	struct urb_priv	*urb_priv;
1674	struct xhci_td *td;
1675	unsigned int ep_index;
1676	struct xhci_ring *ep_ring;
1677	struct xhci_virt_ep *ep;
1678	struct xhci_command *command;
1679	struct xhci_virt_device *vdev;
1680
1681	xhci = hcd_to_xhci(hcd);
1682	spin_lock_irqsave(&xhci->lock, flags);
1683
1684	trace_xhci_urb_dequeue(urb);
1685
1686	/* Make sure the URB hasn't completed or been unlinked already */
1687	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1688	if (ret)
1689		goto done;
1690
1691	/* give back URB now if we can't queue it for cancel */
1692	vdev = xhci->devs[urb->dev->slot_id];
1693	urb_priv = urb->hcpriv;
1694	if (!vdev || !urb_priv)
1695		goto err_giveback;
1696
1697	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1698	ep = &vdev->eps[ep_index];
1699	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1700	if (!ep || !ep_ring)
1701		goto err_giveback;
1702
1703	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1704	temp = readl(&xhci->op_regs->status);
1705	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1706		xhci_hc_died(xhci);
1707		goto done;
1708	}
1709
1710	/*
1711	 * check ring is not re-allocated since URB was enqueued. If it is, then
1712	 * make sure none of the ring related pointers in this URB private data
1713	 * are touched, such as td_list, otherwise we overwrite freed data
1714	 */
1715	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1716		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1717		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1718			td = &urb_priv->td[i];
1719			if (!list_empty(&td->cancelled_td_list))
1720				list_del_init(&td->cancelled_td_list);
1721		}
1722		goto err_giveback;
1723	}
1724
1725	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1726		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1727				"HC halted, freeing TD manually.");
1728		for (i = urb_priv->num_tds_done;
1729		     i < urb_priv->num_tds;
1730		     i++) {
1731			td = &urb_priv->td[i];
1732			if (!list_empty(&td->td_list))
1733				list_del_init(&td->td_list);
1734			if (!list_empty(&td->cancelled_td_list))
1735				list_del_init(&td->cancelled_td_list);
1736		}
1737		goto err_giveback;
1738	}
1739
1740	i = urb_priv->num_tds_done;
1741	if (i < urb_priv->num_tds)
1742		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1743				"Cancel URB %p, dev %s, ep 0x%x, "
1744				"starting at offset 0x%llx",
1745				urb, urb->dev->devpath,
1746				urb->ep->desc.bEndpointAddress,
1747				(unsigned long long) xhci_trb_virt_to_dma(
1748					urb_priv->td[i].start_seg,
1749					urb_priv->td[i].first_trb));
1750
1751	for (; i < urb_priv->num_tds; i++) {
1752		td = &urb_priv->td[i];
1753		/* TD can already be on cancelled list if ep halted on it */
1754		if (list_empty(&td->cancelled_td_list)) {
1755			td->cancel_status = TD_DIRTY;
1756			list_add_tail(&td->cancelled_td_list,
1757				      &ep->cancelled_td_list);
1758		}
1759	}
1760
1761	/* Queue a stop endpoint command, but only if this is
1762	 * the first cancellation to be handled.
1763	 */
1764	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1765		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1766		if (!command) {
1767			ret = -ENOMEM;
1768			goto done;
1769		}
1770		ep->ep_state |= EP_STOP_CMD_PENDING;
 
 
 
1771		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1772					 ep_index, 0);
1773		xhci_ring_cmd_db(xhci);
1774	}
1775done:
1776	spin_unlock_irqrestore(&xhci->lock, flags);
1777	return ret;
1778
1779err_giveback:
1780	if (urb_priv)
1781		xhci_urb_free_priv(urb_priv);
1782	usb_hcd_unlink_urb_from_ep(hcd, urb);
1783	spin_unlock_irqrestore(&xhci->lock, flags);
1784	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1785	return ret;
1786}
1787
1788/* Drop an endpoint from a new bandwidth configuration for this device.
1789 * Only one call to this function is allowed per endpoint before
1790 * check_bandwidth() or reset_bandwidth() must be called.
1791 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1792 * add the endpoint to the schedule with possibly new parameters denoted by a
1793 * different endpoint descriptor in usb_host_endpoint.
1794 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1795 * not allowed.
1796 *
1797 * The USB core will not allow URBs to be queued to an endpoint that is being
1798 * disabled, so there's no need for mutual exclusion to protect
1799 * the xhci->devs[slot_id] structure.
1800 */
1801int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1802		       struct usb_host_endpoint *ep)
1803{
1804	struct xhci_hcd *xhci;
1805	struct xhci_container_ctx *in_ctx, *out_ctx;
1806	struct xhci_input_control_ctx *ctrl_ctx;
1807	unsigned int ep_index;
1808	struct xhci_ep_ctx *ep_ctx;
1809	u32 drop_flag;
1810	u32 new_add_flags, new_drop_flags;
1811	int ret;
1812
1813	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1814	if (ret <= 0)
1815		return ret;
1816	xhci = hcd_to_xhci(hcd);
1817	if (xhci->xhc_state & XHCI_STATE_DYING)
1818		return -ENODEV;
1819
1820	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1821	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1822	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1823		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1824				__func__, drop_flag);
1825		return 0;
1826	}
1827
1828	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1829	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1830	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1831	if (!ctrl_ctx) {
1832		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1833				__func__);
1834		return 0;
1835	}
1836
1837	ep_index = xhci_get_endpoint_index(&ep->desc);
1838	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1839	/* If the HC already knows the endpoint is disabled,
1840	 * or the HCD has noted it is disabled, ignore this request
1841	 */
1842	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1843	    le32_to_cpu(ctrl_ctx->drop_flags) &
1844	    xhci_get_endpoint_flag(&ep->desc)) {
1845		/* Do not warn when called after a usb_device_reset */
1846		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1847			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1848				  __func__, ep);
1849		return 0;
1850	}
1851
1852	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1853	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1854
1855	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1856	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1857
1858	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1859
1860	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1861
 
 
 
1862	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1863			(unsigned int) ep->desc.bEndpointAddress,
1864			udev->slot_id,
1865			(unsigned int) new_drop_flags,
1866			(unsigned int) new_add_flags);
1867	return 0;
1868}
1869EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1870
1871/* Add an endpoint to a new possible bandwidth configuration for this device.
1872 * Only one call to this function is allowed per endpoint before
1873 * check_bandwidth() or reset_bandwidth() must be called.
1874 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1875 * add the endpoint to the schedule with possibly new parameters denoted by a
1876 * different endpoint descriptor in usb_host_endpoint.
1877 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1878 * not allowed.
1879 *
1880 * The USB core will not allow URBs to be queued to an endpoint until the
1881 * configuration or alt setting is installed in the device, so there's no need
1882 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1883 */
1884int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1885		      struct usb_host_endpoint *ep)
1886{
1887	struct xhci_hcd *xhci;
1888	struct xhci_container_ctx *in_ctx;
1889	unsigned int ep_index;
1890	struct xhci_input_control_ctx *ctrl_ctx;
1891	struct xhci_ep_ctx *ep_ctx;
1892	u32 added_ctxs;
1893	u32 new_add_flags, new_drop_flags;
1894	struct xhci_virt_device *virt_dev;
1895	int ret = 0;
1896
1897	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1898	if (ret <= 0) {
1899		/* So we won't queue a reset ep command for a root hub */
1900		ep->hcpriv = NULL;
1901		return ret;
1902	}
1903	xhci = hcd_to_xhci(hcd);
1904	if (xhci->xhc_state & XHCI_STATE_DYING)
1905		return -ENODEV;
1906
1907	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1908	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1909		/* FIXME when we have to issue an evaluate endpoint command to
1910		 * deal with ep0 max packet size changing once we get the
1911		 * descriptors
1912		 */
1913		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1914				__func__, added_ctxs);
1915		return 0;
1916	}
1917
1918	virt_dev = xhci->devs[udev->slot_id];
1919	in_ctx = virt_dev->in_ctx;
1920	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1921	if (!ctrl_ctx) {
1922		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1923				__func__);
1924		return 0;
1925	}
1926
1927	ep_index = xhci_get_endpoint_index(&ep->desc);
1928	/* If this endpoint is already in use, and the upper layers are trying
1929	 * to add it again without dropping it, reject the addition.
1930	 */
1931	if (virt_dev->eps[ep_index].ring &&
1932			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1933		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1934				"without dropping it.\n",
1935				(unsigned int) ep->desc.bEndpointAddress);
1936		return -EINVAL;
1937	}
1938
1939	/* If the HCD has already noted the endpoint is enabled,
1940	 * ignore this request.
1941	 */
1942	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1943		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1944				__func__, ep);
1945		return 0;
1946	}
1947
1948	/*
1949	 * Configuration and alternate setting changes must be done in
1950	 * process context, not interrupt context (or so documenation
1951	 * for usb_set_interface() and usb_set_configuration() claim).
1952	 */
1953	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1954		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1955				__func__, ep->desc.bEndpointAddress);
1956		return -ENOMEM;
1957	}
1958
 
 
 
 
 
 
 
 
 
1959	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1960	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1961
1962	/* If xhci_endpoint_disable() was called for this endpoint, but the
1963	 * xHC hasn't been notified yet through the check_bandwidth() call,
1964	 * this re-adds a new state for the endpoint from the new endpoint
1965	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1966	 * drop flags alone.
1967	 */
1968	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1969
1970	/* Store the usb_device pointer for later use */
1971	ep->hcpriv = udev;
1972
1973	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1974	trace_xhci_add_endpoint(ep_ctx);
1975
 
 
1976	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1977			(unsigned int) ep->desc.bEndpointAddress,
1978			udev->slot_id,
1979			(unsigned int) new_drop_flags,
1980			(unsigned int) new_add_flags);
1981	return 0;
1982}
1983EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1984
1985static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1986{
1987	struct xhci_input_control_ctx *ctrl_ctx;
1988	struct xhci_ep_ctx *ep_ctx;
1989	struct xhci_slot_ctx *slot_ctx;
1990	int i;
1991
1992	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1993	if (!ctrl_ctx) {
1994		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1995				__func__);
1996		return;
1997	}
1998
1999	/* When a device's add flag and drop flag are zero, any subsequent
2000	 * configure endpoint command will leave that endpoint's state
2001	 * untouched.  Make sure we don't leave any old state in the input
2002	 * endpoint contexts.
2003	 */
2004	ctrl_ctx->drop_flags = 0;
2005	ctrl_ctx->add_flags = 0;
2006	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2007	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2008	/* Endpoint 0 is always valid */
2009	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2010	for (i = 1; i < 31; i++) {
2011		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2012		ep_ctx->ep_info = 0;
2013		ep_ctx->ep_info2 = 0;
2014		ep_ctx->deq = 0;
2015		ep_ctx->tx_info = 0;
2016	}
2017}
2018
2019static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2020		struct usb_device *udev, u32 *cmd_status)
2021{
2022	int ret;
2023
2024	switch (*cmd_status) {
2025	case COMP_COMMAND_ABORTED:
2026	case COMP_COMMAND_RING_STOPPED:
2027		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2028		ret = -ETIME;
2029		break;
2030	case COMP_RESOURCE_ERROR:
2031		dev_warn(&udev->dev,
2032			 "Not enough host controller resources for new device state.\n");
2033		ret = -ENOMEM;
2034		/* FIXME: can we allocate more resources for the HC? */
2035		break;
2036	case COMP_BANDWIDTH_ERROR:
2037	case COMP_SECONDARY_BANDWIDTH_ERROR:
2038		dev_warn(&udev->dev,
2039			 "Not enough bandwidth for new device state.\n");
2040		ret = -ENOSPC;
2041		/* FIXME: can we go back to the old state? */
2042		break;
2043	case COMP_TRB_ERROR:
2044		/* the HCD set up something wrong */
2045		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2046				"add flag = 1, "
2047				"and endpoint is not disabled.\n");
2048		ret = -EINVAL;
2049		break;
2050	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2051		dev_warn(&udev->dev,
2052			 "ERROR: Incompatible device for endpoint configure command.\n");
2053		ret = -ENODEV;
2054		break;
2055	case COMP_SUCCESS:
2056		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2057				"Successful Endpoint Configure command");
2058		ret = 0;
2059		break;
2060	default:
2061		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2062				*cmd_status);
2063		ret = -EINVAL;
2064		break;
2065	}
2066	return ret;
2067}
2068
2069static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2070		struct usb_device *udev, u32 *cmd_status)
2071{
2072	int ret;
2073
2074	switch (*cmd_status) {
2075	case COMP_COMMAND_ABORTED:
2076	case COMP_COMMAND_RING_STOPPED:
2077		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2078		ret = -ETIME;
2079		break;
2080	case COMP_PARAMETER_ERROR:
2081		dev_warn(&udev->dev,
2082			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2083		ret = -EINVAL;
2084		break;
2085	case COMP_SLOT_NOT_ENABLED_ERROR:
2086		dev_warn(&udev->dev,
2087			"WARN: slot not enabled for evaluate context command.\n");
2088		ret = -EINVAL;
2089		break;
2090	case COMP_CONTEXT_STATE_ERROR:
2091		dev_warn(&udev->dev,
2092			"WARN: invalid context state for evaluate context command.\n");
2093		ret = -EINVAL;
2094		break;
2095	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2096		dev_warn(&udev->dev,
2097			"ERROR: Incompatible device for evaluate context command.\n");
2098		ret = -ENODEV;
2099		break;
2100	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2101		/* Max Exit Latency too large error */
2102		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2103		ret = -EINVAL;
2104		break;
2105	case COMP_SUCCESS:
2106		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2107				"Successful evaluate context command");
2108		ret = 0;
2109		break;
2110	default:
2111		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2112			*cmd_status);
2113		ret = -EINVAL;
2114		break;
2115	}
2116	return ret;
2117}
2118
2119static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2120		struct xhci_input_control_ctx *ctrl_ctx)
2121{
2122	u32 valid_add_flags;
2123	u32 valid_drop_flags;
2124
2125	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2126	 * (bit 1).  The default control endpoint is added during the Address
2127	 * Device command and is never removed until the slot is disabled.
2128	 */
2129	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2130	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2131
2132	/* Use hweight32 to count the number of ones in the add flags, or
2133	 * number of endpoints added.  Don't count endpoints that are changed
2134	 * (both added and dropped).
2135	 */
2136	return hweight32(valid_add_flags) -
2137		hweight32(valid_add_flags & valid_drop_flags);
2138}
2139
2140static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2141		struct xhci_input_control_ctx *ctrl_ctx)
2142{
2143	u32 valid_add_flags;
2144	u32 valid_drop_flags;
2145
2146	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2147	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2148
2149	return hweight32(valid_drop_flags) -
2150		hweight32(valid_add_flags & valid_drop_flags);
2151}
2152
2153/*
2154 * We need to reserve the new number of endpoints before the configure endpoint
2155 * command completes.  We can't subtract the dropped endpoints from the number
2156 * of active endpoints until the command completes because we can oversubscribe
2157 * the host in this case:
2158 *
2159 *  - the first configure endpoint command drops more endpoints than it adds
2160 *  - a second configure endpoint command that adds more endpoints is queued
2161 *  - the first configure endpoint command fails, so the config is unchanged
2162 *  - the second command may succeed, even though there isn't enough resources
2163 *
2164 * Must be called with xhci->lock held.
2165 */
2166static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2167		struct xhci_input_control_ctx *ctrl_ctx)
2168{
2169	u32 added_eps;
2170
2171	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2172	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2173		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2174				"Not enough ep ctxs: "
2175				"%u active, need to add %u, limit is %u.",
2176				xhci->num_active_eps, added_eps,
2177				xhci->limit_active_eps);
2178		return -ENOMEM;
2179	}
2180	xhci->num_active_eps += added_eps;
2181	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2182			"Adding %u ep ctxs, %u now active.", added_eps,
2183			xhci->num_active_eps);
2184	return 0;
2185}
2186
2187/*
2188 * The configure endpoint was failed by the xHC for some other reason, so we
2189 * need to revert the resources that failed configuration would have used.
2190 *
2191 * Must be called with xhci->lock held.
2192 */
2193static void xhci_free_host_resources(struct xhci_hcd *xhci,
2194		struct xhci_input_control_ctx *ctrl_ctx)
2195{
2196	u32 num_failed_eps;
2197
2198	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2199	xhci->num_active_eps -= num_failed_eps;
2200	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2201			"Removing %u failed ep ctxs, %u now active.",
2202			num_failed_eps,
2203			xhci->num_active_eps);
2204}
2205
2206/*
2207 * Now that the command has completed, clean up the active endpoint count by
2208 * subtracting out the endpoints that were dropped (but not changed).
2209 *
2210 * Must be called with xhci->lock held.
2211 */
2212static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2213		struct xhci_input_control_ctx *ctrl_ctx)
2214{
2215	u32 num_dropped_eps;
2216
2217	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2218	xhci->num_active_eps -= num_dropped_eps;
2219	if (num_dropped_eps)
2220		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2221				"Removing %u dropped ep ctxs, %u now active.",
2222				num_dropped_eps,
2223				xhci->num_active_eps);
2224}
2225
2226static unsigned int xhci_get_block_size(struct usb_device *udev)
2227{
2228	switch (udev->speed) {
2229	case USB_SPEED_LOW:
2230	case USB_SPEED_FULL:
2231		return FS_BLOCK;
2232	case USB_SPEED_HIGH:
2233		return HS_BLOCK;
2234	case USB_SPEED_SUPER:
2235	case USB_SPEED_SUPER_PLUS:
2236		return SS_BLOCK;
2237	case USB_SPEED_UNKNOWN:
 
2238	default:
2239		/* Should never happen */
2240		return 1;
2241	}
2242}
2243
2244static unsigned int
2245xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2246{
2247	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2248		return LS_OVERHEAD;
2249	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2250		return FS_OVERHEAD;
2251	return HS_OVERHEAD;
2252}
2253
2254/* If we are changing a LS/FS device under a HS hub,
2255 * make sure (if we are activating a new TT) that the HS bus has enough
2256 * bandwidth for this new TT.
2257 */
2258static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2259		struct xhci_virt_device *virt_dev,
2260		int old_active_eps)
2261{
2262	struct xhci_interval_bw_table *bw_table;
2263	struct xhci_tt_bw_info *tt_info;
2264
2265	/* Find the bandwidth table for the root port this TT is attached to. */
2266	bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2267	tt_info = virt_dev->tt_info;
2268	/* If this TT already had active endpoints, the bandwidth for this TT
2269	 * has already been added.  Removing all periodic endpoints (and thus
2270	 * making the TT enactive) will only decrease the bandwidth used.
2271	 */
2272	if (old_active_eps)
2273		return 0;
2274	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2275		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2276			return -ENOMEM;
2277		return 0;
2278	}
2279	/* Not sure why we would have no new active endpoints...
2280	 *
2281	 * Maybe because of an Evaluate Context change for a hub update or a
2282	 * control endpoint 0 max packet size change?
2283	 * FIXME: skip the bandwidth calculation in that case.
2284	 */
2285	return 0;
2286}
2287
2288static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2289		struct xhci_virt_device *virt_dev)
2290{
2291	unsigned int bw_reserved;
2292
2293	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2294	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2295		return -ENOMEM;
2296
2297	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2298	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2299		return -ENOMEM;
2300
2301	return 0;
2302}
2303
2304/*
2305 * This algorithm is a very conservative estimate of the worst-case scheduling
2306 * scenario for any one interval.  The hardware dynamically schedules the
2307 * packets, so we can't tell which microframe could be the limiting factor in
2308 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2309 *
2310 * Obviously, we can't solve an NP complete problem to find the minimum worst
2311 * case scenario.  Instead, we come up with an estimate that is no less than
2312 * the worst case bandwidth used for any one microframe, but may be an
2313 * over-estimate.
2314 *
2315 * We walk the requirements for each endpoint by interval, starting with the
2316 * smallest interval, and place packets in the schedule where there is only one
2317 * possible way to schedule packets for that interval.  In order to simplify
2318 * this algorithm, we record the largest max packet size for each interval, and
2319 * assume all packets will be that size.
2320 *
2321 * For interval 0, we obviously must schedule all packets for each interval.
2322 * The bandwidth for interval 0 is just the amount of data to be transmitted
2323 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2324 * the number of packets).
2325 *
2326 * For interval 1, we have two possible microframes to schedule those packets
2327 * in.  For this algorithm, if we can schedule the same number of packets for
2328 * each possible scheduling opportunity (each microframe), we will do so.  The
2329 * remaining number of packets will be saved to be transmitted in the gaps in
2330 * the next interval's scheduling sequence.
2331 *
2332 * As we move those remaining packets to be scheduled with interval 2 packets,
2333 * we have to double the number of remaining packets to transmit.  This is
2334 * because the intervals are actually powers of 2, and we would be transmitting
2335 * the previous interval's packets twice in this interval.  We also have to be
2336 * sure that when we look at the largest max packet size for this interval, we
2337 * also look at the largest max packet size for the remaining packets and take
2338 * the greater of the two.
2339 *
2340 * The algorithm continues to evenly distribute packets in each scheduling
2341 * opportunity, and push the remaining packets out, until we get to the last
2342 * interval.  Then those packets and their associated overhead are just added
2343 * to the bandwidth used.
2344 */
2345static int xhci_check_bw_table(struct xhci_hcd *xhci,
2346		struct xhci_virt_device *virt_dev,
2347		int old_active_eps)
2348{
2349	unsigned int bw_reserved;
2350	unsigned int max_bandwidth;
2351	unsigned int bw_used;
2352	unsigned int block_size;
2353	struct xhci_interval_bw_table *bw_table;
2354	unsigned int packet_size = 0;
2355	unsigned int overhead = 0;
2356	unsigned int packets_transmitted = 0;
2357	unsigned int packets_remaining = 0;
2358	unsigned int i;
2359
2360	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2361		return xhci_check_ss_bw(xhci, virt_dev);
2362
2363	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2364		max_bandwidth = HS_BW_LIMIT;
2365		/* Convert percent of bus BW reserved to blocks reserved */
2366		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2367	} else {
2368		max_bandwidth = FS_BW_LIMIT;
2369		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2370	}
2371
2372	bw_table = virt_dev->bw_table;
2373	/* We need to translate the max packet size and max ESIT payloads into
2374	 * the units the hardware uses.
2375	 */
2376	block_size = xhci_get_block_size(virt_dev->udev);
2377
2378	/* If we are manipulating a LS/FS device under a HS hub, double check
2379	 * that the HS bus has enough bandwidth if we are activing a new TT.
2380	 */
2381	if (virt_dev->tt_info) {
2382		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2383				"Recalculating BW for rootport %u",
2384				virt_dev->rhub_port->hw_portnum + 1);
2385		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2386			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2387					"newly activated TT.\n");
2388			return -ENOMEM;
2389		}
2390		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2391				"Recalculating BW for TT slot %u port %u",
2392				virt_dev->tt_info->slot_id,
2393				virt_dev->tt_info->ttport);
2394	} else {
2395		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2396				"Recalculating BW for rootport %u",
2397				virt_dev->rhub_port->hw_portnum + 1);
2398	}
2399
2400	/* Add in how much bandwidth will be used for interval zero, or the
2401	 * rounded max ESIT payload + number of packets * largest overhead.
2402	 */
2403	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2404		bw_table->interval_bw[0].num_packets *
2405		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2406
2407	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2408		unsigned int bw_added;
2409		unsigned int largest_mps;
2410		unsigned int interval_overhead;
2411
2412		/*
2413		 * How many packets could we transmit in this interval?
2414		 * If packets didn't fit in the previous interval, we will need
2415		 * to transmit that many packets twice within this interval.
2416		 */
2417		packets_remaining = 2 * packets_remaining +
2418			bw_table->interval_bw[i].num_packets;
2419
2420		/* Find the largest max packet size of this or the previous
2421		 * interval.
2422		 */
2423		if (list_empty(&bw_table->interval_bw[i].endpoints))
2424			largest_mps = 0;
2425		else {
2426			struct xhci_virt_ep *virt_ep;
2427			struct list_head *ep_entry;
2428
2429			ep_entry = bw_table->interval_bw[i].endpoints.next;
2430			virt_ep = list_entry(ep_entry,
2431					struct xhci_virt_ep, bw_endpoint_list);
2432			/* Convert to blocks, rounding up */
2433			largest_mps = DIV_ROUND_UP(
2434					virt_ep->bw_info.max_packet_size,
2435					block_size);
2436		}
2437		if (largest_mps > packet_size)
2438			packet_size = largest_mps;
2439
2440		/* Use the larger overhead of this or the previous interval. */
2441		interval_overhead = xhci_get_largest_overhead(
2442				&bw_table->interval_bw[i]);
2443		if (interval_overhead > overhead)
2444			overhead = interval_overhead;
2445
2446		/* How many packets can we evenly distribute across
2447		 * (1 << (i + 1)) possible scheduling opportunities?
2448		 */
2449		packets_transmitted = packets_remaining >> (i + 1);
2450
2451		/* Add in the bandwidth used for those scheduled packets */
2452		bw_added = packets_transmitted * (overhead + packet_size);
2453
2454		/* How many packets do we have remaining to transmit? */
2455		packets_remaining = packets_remaining % (1 << (i + 1));
2456
2457		/* What largest max packet size should those packets have? */
2458		/* If we've transmitted all packets, don't carry over the
2459		 * largest packet size.
2460		 */
2461		if (packets_remaining == 0) {
2462			packet_size = 0;
2463			overhead = 0;
2464		} else if (packets_transmitted > 0) {
2465			/* Otherwise if we do have remaining packets, and we've
2466			 * scheduled some packets in this interval, take the
2467			 * largest max packet size from endpoints with this
2468			 * interval.
2469			 */
2470			packet_size = largest_mps;
2471			overhead = interval_overhead;
2472		}
2473		/* Otherwise carry over packet_size and overhead from the last
2474		 * time we had a remainder.
2475		 */
2476		bw_used += bw_added;
2477		if (bw_used > max_bandwidth) {
2478			xhci_warn(xhci, "Not enough bandwidth. "
2479					"Proposed: %u, Max: %u\n",
2480				bw_used, max_bandwidth);
2481			return -ENOMEM;
2482		}
2483	}
2484	/*
2485	 * Ok, we know we have some packets left over after even-handedly
2486	 * scheduling interval 15.  We don't know which microframes they will
2487	 * fit into, so we over-schedule and say they will be scheduled every
2488	 * microframe.
2489	 */
2490	if (packets_remaining > 0)
2491		bw_used += overhead + packet_size;
2492
2493	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
 
 
2494		/* OK, we're manipulating a HS device attached to a
2495		 * root port bandwidth domain.  Include the number of active TTs
2496		 * in the bandwidth used.
2497		 */
2498		bw_used += TT_HS_OVERHEAD *
2499			xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2500	}
2501
2502	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2503		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2504		"Available: %u " "percent",
2505		bw_used, max_bandwidth, bw_reserved,
2506		(max_bandwidth - bw_used - bw_reserved) * 100 /
2507		max_bandwidth);
2508
2509	bw_used += bw_reserved;
2510	if (bw_used > max_bandwidth) {
2511		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2512				bw_used, max_bandwidth);
2513		return -ENOMEM;
2514	}
2515
2516	bw_table->bw_used = bw_used;
2517	return 0;
2518}
2519
2520static bool xhci_is_async_ep(unsigned int ep_type)
2521{
2522	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2523					ep_type != ISOC_IN_EP &&
2524					ep_type != INT_IN_EP);
2525}
2526
2527static bool xhci_is_sync_in_ep(unsigned int ep_type)
2528{
2529	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2530}
2531
2532static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2533{
2534	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2535
2536	if (ep_bw->ep_interval == 0)
2537		return SS_OVERHEAD_BURST +
2538			(ep_bw->mult * ep_bw->num_packets *
2539					(SS_OVERHEAD + mps));
2540	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2541				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2542				1 << ep_bw->ep_interval);
2543
2544}
2545
2546static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2547		struct xhci_bw_info *ep_bw,
2548		struct xhci_interval_bw_table *bw_table,
2549		struct usb_device *udev,
2550		struct xhci_virt_ep *virt_ep,
2551		struct xhci_tt_bw_info *tt_info)
2552{
2553	struct xhci_interval_bw	*interval_bw;
2554	int normalized_interval;
2555
2556	if (xhci_is_async_ep(ep_bw->type))
2557		return;
2558
2559	if (udev->speed >= USB_SPEED_SUPER) {
2560		if (xhci_is_sync_in_ep(ep_bw->type))
2561			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2562				xhci_get_ss_bw_consumed(ep_bw);
2563		else
2564			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2565				xhci_get_ss_bw_consumed(ep_bw);
2566		return;
2567	}
2568
2569	/* SuperSpeed endpoints never get added to intervals in the table, so
2570	 * this check is only valid for HS/FS/LS devices.
2571	 */
2572	if (list_empty(&virt_ep->bw_endpoint_list))
2573		return;
2574	/* For LS/FS devices, we need to translate the interval expressed in
2575	 * microframes to frames.
2576	 */
2577	if (udev->speed == USB_SPEED_HIGH)
2578		normalized_interval = ep_bw->ep_interval;
2579	else
2580		normalized_interval = ep_bw->ep_interval - 3;
2581
2582	if (normalized_interval == 0)
2583		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2584	interval_bw = &bw_table->interval_bw[normalized_interval];
2585	interval_bw->num_packets -= ep_bw->num_packets;
2586	switch (udev->speed) {
2587	case USB_SPEED_LOW:
2588		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2589		break;
2590	case USB_SPEED_FULL:
2591		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2592		break;
2593	case USB_SPEED_HIGH:
2594		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2595		break;
2596	default:
 
 
 
2597		/* Should never happen because only LS/FS/HS endpoints will get
2598		 * added to the endpoint list.
2599		 */
2600		return;
2601	}
2602	if (tt_info)
2603		tt_info->active_eps -= 1;
2604	list_del_init(&virt_ep->bw_endpoint_list);
2605}
2606
2607static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2608		struct xhci_bw_info *ep_bw,
2609		struct xhci_interval_bw_table *bw_table,
2610		struct usb_device *udev,
2611		struct xhci_virt_ep *virt_ep,
2612		struct xhci_tt_bw_info *tt_info)
2613{
2614	struct xhci_interval_bw	*interval_bw;
2615	struct xhci_virt_ep *smaller_ep;
2616	int normalized_interval;
2617
2618	if (xhci_is_async_ep(ep_bw->type))
2619		return;
2620
2621	if (udev->speed == USB_SPEED_SUPER) {
2622		if (xhci_is_sync_in_ep(ep_bw->type))
2623			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2624				xhci_get_ss_bw_consumed(ep_bw);
2625		else
2626			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2627				xhci_get_ss_bw_consumed(ep_bw);
2628		return;
2629	}
2630
2631	/* For LS/FS devices, we need to translate the interval expressed in
2632	 * microframes to frames.
2633	 */
2634	if (udev->speed == USB_SPEED_HIGH)
2635		normalized_interval = ep_bw->ep_interval;
2636	else
2637		normalized_interval = ep_bw->ep_interval - 3;
2638
2639	if (normalized_interval == 0)
2640		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2641	interval_bw = &bw_table->interval_bw[normalized_interval];
2642	interval_bw->num_packets += ep_bw->num_packets;
2643	switch (udev->speed) {
2644	case USB_SPEED_LOW:
2645		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2646		break;
2647	case USB_SPEED_FULL:
2648		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2649		break;
2650	case USB_SPEED_HIGH:
2651		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2652		break;
2653	default:
 
 
 
2654		/* Should never happen because only LS/FS/HS endpoints will get
2655		 * added to the endpoint list.
2656		 */
2657		return;
2658	}
2659
2660	if (tt_info)
2661		tt_info->active_eps += 1;
2662	/* Insert the endpoint into the list, largest max packet size first. */
2663	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2664			bw_endpoint_list) {
2665		if (ep_bw->max_packet_size >=
2666				smaller_ep->bw_info.max_packet_size) {
2667			/* Add the new ep before the smaller endpoint */
2668			list_add_tail(&virt_ep->bw_endpoint_list,
2669					&smaller_ep->bw_endpoint_list);
2670			return;
2671		}
2672	}
2673	/* Add the new endpoint at the end of the list. */
2674	list_add_tail(&virt_ep->bw_endpoint_list,
2675			&interval_bw->endpoints);
2676}
2677
2678void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2679		struct xhci_virt_device *virt_dev,
2680		int old_active_eps)
2681{
2682	struct xhci_root_port_bw_info *rh_bw_info;
2683	if (!virt_dev->tt_info)
2684		return;
2685
2686	rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2687	if (old_active_eps == 0 &&
2688				virt_dev->tt_info->active_eps != 0) {
2689		rh_bw_info->num_active_tts += 1;
2690		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2691	} else if (old_active_eps != 0 &&
2692				virt_dev->tt_info->active_eps == 0) {
2693		rh_bw_info->num_active_tts -= 1;
2694		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2695	}
2696}
2697
2698static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2699		struct xhci_virt_device *virt_dev,
2700		struct xhci_container_ctx *in_ctx)
2701{
2702	struct xhci_bw_info ep_bw_info[31];
2703	int i;
2704	struct xhci_input_control_ctx *ctrl_ctx;
2705	int old_active_eps = 0;
2706
2707	if (virt_dev->tt_info)
2708		old_active_eps = virt_dev->tt_info->active_eps;
2709
2710	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2711	if (!ctrl_ctx) {
2712		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2713				__func__);
2714		return -ENOMEM;
2715	}
2716
2717	for (i = 0; i < 31; i++) {
2718		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2719			continue;
2720
2721		/* Make a copy of the BW info in case we need to revert this */
2722		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2723				sizeof(ep_bw_info[i]));
2724		/* Drop the endpoint from the interval table if the endpoint is
2725		 * being dropped or changed.
2726		 */
2727		if (EP_IS_DROPPED(ctrl_ctx, i))
2728			xhci_drop_ep_from_interval_table(xhci,
2729					&virt_dev->eps[i].bw_info,
2730					virt_dev->bw_table,
2731					virt_dev->udev,
2732					&virt_dev->eps[i],
2733					virt_dev->tt_info);
2734	}
2735	/* Overwrite the information stored in the endpoints' bw_info */
2736	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2737	for (i = 0; i < 31; i++) {
2738		/* Add any changed or added endpoints to the interval table */
2739		if (EP_IS_ADDED(ctrl_ctx, i))
2740			xhci_add_ep_to_interval_table(xhci,
2741					&virt_dev->eps[i].bw_info,
2742					virt_dev->bw_table,
2743					virt_dev->udev,
2744					&virt_dev->eps[i],
2745					virt_dev->tt_info);
2746	}
2747
2748	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2749		/* Ok, this fits in the bandwidth we have.
2750		 * Update the number of active TTs.
2751		 */
2752		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2753		return 0;
2754	}
2755
2756	/* We don't have enough bandwidth for this, revert the stored info. */
2757	for (i = 0; i < 31; i++) {
2758		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2759			continue;
2760
2761		/* Drop the new copies of any added or changed endpoints from
2762		 * the interval table.
2763		 */
2764		if (EP_IS_ADDED(ctrl_ctx, i)) {
2765			xhci_drop_ep_from_interval_table(xhci,
2766					&virt_dev->eps[i].bw_info,
2767					virt_dev->bw_table,
2768					virt_dev->udev,
2769					&virt_dev->eps[i],
2770					virt_dev->tt_info);
2771		}
2772		/* Revert the endpoint back to its old information */
2773		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2774				sizeof(ep_bw_info[i]));
2775		/* Add any changed or dropped endpoints back into the table */
2776		if (EP_IS_DROPPED(ctrl_ctx, i))
2777			xhci_add_ep_to_interval_table(xhci,
2778					&virt_dev->eps[i].bw_info,
2779					virt_dev->bw_table,
2780					virt_dev->udev,
2781					&virt_dev->eps[i],
2782					virt_dev->tt_info);
2783	}
2784	return -ENOMEM;
2785}
2786
2787
2788/* Issue a configure endpoint command or evaluate context command
2789 * and wait for it to finish.
2790 */
2791static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2792		struct usb_device *udev,
2793		struct xhci_command *command,
2794		bool ctx_change, bool must_succeed)
2795{
2796	int ret;
2797	unsigned long flags;
2798	struct xhci_input_control_ctx *ctrl_ctx;
2799	struct xhci_virt_device *virt_dev;
2800	struct xhci_slot_ctx *slot_ctx;
2801
2802	if (!command)
2803		return -EINVAL;
2804
2805	spin_lock_irqsave(&xhci->lock, flags);
2806
2807	if (xhci->xhc_state & XHCI_STATE_DYING) {
2808		spin_unlock_irqrestore(&xhci->lock, flags);
2809		return -ESHUTDOWN;
2810	}
2811
2812	virt_dev = xhci->devs[udev->slot_id];
2813
2814	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2815	if (!ctrl_ctx) {
2816		spin_unlock_irqrestore(&xhci->lock, flags);
2817		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2818				__func__);
2819		return -ENOMEM;
2820	}
2821
2822	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2823			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2824		spin_unlock_irqrestore(&xhci->lock, flags);
2825		xhci_warn(xhci, "Not enough host resources, "
2826				"active endpoint contexts = %u\n",
2827				xhci->num_active_eps);
2828		return -ENOMEM;
2829	}
2830	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2831	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2832		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2833			xhci_free_host_resources(xhci, ctrl_ctx);
2834		spin_unlock_irqrestore(&xhci->lock, flags);
2835		xhci_warn(xhci, "Not enough bandwidth\n");
2836		return -ENOMEM;
2837	}
2838
2839	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2840
2841	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2842	trace_xhci_configure_endpoint(slot_ctx);
2843
2844	if (!ctx_change)
2845		ret = xhci_queue_configure_endpoint(xhci, command,
2846				command->in_ctx->dma,
2847				udev->slot_id, must_succeed);
2848	else
2849		ret = xhci_queue_evaluate_context(xhci, command,
2850				command->in_ctx->dma,
2851				udev->slot_id, must_succeed);
2852	if (ret < 0) {
2853		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2854			xhci_free_host_resources(xhci, ctrl_ctx);
2855		spin_unlock_irqrestore(&xhci->lock, flags);
2856		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2857				"FIXME allocate a new ring segment");
2858		return -ENOMEM;
2859	}
2860	xhci_ring_cmd_db(xhci);
2861	spin_unlock_irqrestore(&xhci->lock, flags);
2862
2863	/* Wait for the configure endpoint command to complete */
2864	wait_for_completion(command->completion);
2865
2866	if (!ctx_change)
2867		ret = xhci_configure_endpoint_result(xhci, udev,
2868						     &command->status);
2869	else
2870		ret = xhci_evaluate_context_result(xhci, udev,
2871						   &command->status);
2872
2873	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2874		spin_lock_irqsave(&xhci->lock, flags);
2875		/* If the command failed, remove the reserved resources.
2876		 * Otherwise, clean up the estimate to include dropped eps.
2877		 */
2878		if (ret)
2879			xhci_free_host_resources(xhci, ctrl_ctx);
2880		else
2881			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2882		spin_unlock_irqrestore(&xhci->lock, flags);
2883	}
2884	return ret;
2885}
2886
2887static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2888	struct xhci_virt_device *vdev, int i)
2889{
2890	struct xhci_virt_ep *ep = &vdev->eps[i];
2891
2892	if (ep->ep_state & EP_HAS_STREAMS) {
2893		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2894				xhci_get_endpoint_address(i));
2895		xhci_free_stream_info(xhci, ep->stream_info);
2896		ep->stream_info = NULL;
2897		ep->ep_state &= ~EP_HAS_STREAMS;
2898	}
2899}
2900
2901/* Called after one or more calls to xhci_add_endpoint() or
2902 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2903 * to call xhci_reset_bandwidth().
2904 *
2905 * Since we are in the middle of changing either configuration or
2906 * installing a new alt setting, the USB core won't allow URBs to be
2907 * enqueued for any endpoint on the old config or interface.  Nothing
2908 * else should be touching the xhci->devs[slot_id] structure, so we
2909 * don't need to take the xhci->lock for manipulating that.
2910 */
2911int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2912{
2913	int i;
2914	int ret = 0;
2915	struct xhci_hcd *xhci;
2916	struct xhci_virt_device	*virt_dev;
2917	struct xhci_input_control_ctx *ctrl_ctx;
2918	struct xhci_slot_ctx *slot_ctx;
2919	struct xhci_command *command;
2920
2921	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2922	if (ret <= 0)
2923		return ret;
2924	xhci = hcd_to_xhci(hcd);
2925	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2926		(xhci->xhc_state & XHCI_STATE_REMOVING))
2927		return -ENODEV;
2928
2929	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2930	virt_dev = xhci->devs[udev->slot_id];
2931
2932	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2933	if (!command)
2934		return -ENOMEM;
2935
2936	command->in_ctx = virt_dev->in_ctx;
2937
2938	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2939	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2940	if (!ctrl_ctx) {
2941		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2942				__func__);
2943		ret = -ENOMEM;
2944		goto command_cleanup;
2945	}
2946	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2947	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2948	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2949
2950	/* Don't issue the command if there's no endpoints to update. */
2951	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2952	    ctrl_ctx->drop_flags == 0) {
2953		ret = 0;
2954		goto command_cleanup;
2955	}
2956	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2957	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2958	for (i = 31; i >= 1; i--) {
2959		__le32 le32 = cpu_to_le32(BIT(i));
2960
2961		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2962		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2963			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2964			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2965			break;
2966		}
2967	}
2968
2969	ret = xhci_configure_endpoint(xhci, udev, command,
2970			false, false);
2971	if (ret)
2972		/* Callee should call reset_bandwidth() */
2973		goto command_cleanup;
2974
2975	/* Free any rings that were dropped, but not changed. */
2976	for (i = 1; i < 31; i++) {
2977		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2978		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2979			xhci_free_endpoint_ring(xhci, virt_dev, i);
2980			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2981		}
2982	}
2983	xhci_zero_in_ctx(xhci, virt_dev);
2984	/*
2985	 * Install any rings for completely new endpoints or changed endpoints,
2986	 * and free any old rings from changed endpoints.
2987	 */
2988	for (i = 1; i < 31; i++) {
2989		if (!virt_dev->eps[i].new_ring)
2990			continue;
2991		/* Only free the old ring if it exists.
2992		 * It may not if this is the first add of an endpoint.
2993		 */
2994		if (virt_dev->eps[i].ring) {
2995			xhci_free_endpoint_ring(xhci, virt_dev, i);
2996		}
2997		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2998		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2999		virt_dev->eps[i].new_ring = NULL;
3000		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3001	}
3002command_cleanup:
3003	kfree(command->completion);
3004	kfree(command);
3005
3006	return ret;
3007}
3008EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3009
3010void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3011{
3012	struct xhci_hcd *xhci;
3013	struct xhci_virt_device	*virt_dev;
3014	int i, ret;
3015
3016	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3017	if (ret <= 0)
3018		return;
3019	xhci = hcd_to_xhci(hcd);
3020
3021	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3022	virt_dev = xhci->devs[udev->slot_id];
3023	/* Free any rings allocated for added endpoints */
3024	for (i = 0; i < 31; i++) {
3025		if (virt_dev->eps[i].new_ring) {
3026			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3027			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3028			virt_dev->eps[i].new_ring = NULL;
3029		}
3030	}
3031	xhci_zero_in_ctx(xhci, virt_dev);
3032}
3033EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3034
3035static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3036		struct xhci_container_ctx *in_ctx,
3037		struct xhci_container_ctx *out_ctx,
3038		struct xhci_input_control_ctx *ctrl_ctx,
3039		u32 add_flags, u32 drop_flags)
3040{
3041	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3042	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3043	xhci_slot_copy(xhci, in_ctx, out_ctx);
3044	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3045}
3046
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3047static void xhci_endpoint_disable(struct usb_hcd *hcd,
3048				  struct usb_host_endpoint *host_ep)
3049{
3050	struct xhci_hcd		*xhci;
3051	struct xhci_virt_device	*vdev;
3052	struct xhci_virt_ep	*ep;
3053	struct usb_device	*udev;
3054	unsigned long		flags;
3055	unsigned int		ep_index;
3056
3057	xhci = hcd_to_xhci(hcd);
3058rescan:
3059	spin_lock_irqsave(&xhci->lock, flags);
3060
3061	udev = (struct usb_device *)host_ep->hcpriv;
3062	if (!udev || !udev->slot_id)
3063		goto done;
3064
3065	vdev = xhci->devs[udev->slot_id];
3066	if (!vdev)
3067		goto done;
3068
3069	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3070	ep = &vdev->eps[ep_index];
 
 
3071
3072	/* wait for hub_tt_work to finish clearing hub TT */
3073	if (ep->ep_state & EP_CLEARING_TT) {
3074		spin_unlock_irqrestore(&xhci->lock, flags);
3075		schedule_timeout_uninterruptible(1);
3076		goto rescan;
3077	}
3078
3079	if (ep->ep_state)
3080		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3081			 ep->ep_state);
3082done:
3083	host_ep->hcpriv = NULL;
3084	spin_unlock_irqrestore(&xhci->lock, flags);
3085}
3086
3087/*
3088 * Called after usb core issues a clear halt control message.
3089 * The host side of the halt should already be cleared by a reset endpoint
3090 * command issued when the STALL event was received.
3091 *
3092 * The reset endpoint command may only be issued to endpoints in the halted
3093 * state. For software that wishes to reset the data toggle or sequence number
3094 * of an endpoint that isn't in the halted state this function will issue a
3095 * configure endpoint command with the Drop and Add bits set for the target
3096 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3097 *
3098 * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3099 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3100 */
3101
3102static void xhci_endpoint_reset(struct usb_hcd *hcd,
3103		struct usb_host_endpoint *host_ep)
3104{
3105	struct xhci_hcd *xhci;
3106	struct usb_device *udev;
3107	struct xhci_virt_device *vdev;
3108	struct xhci_virt_ep *ep;
3109	struct xhci_input_control_ctx *ctrl_ctx;
3110	struct xhci_command *stop_cmd, *cfg_cmd;
3111	unsigned int ep_index;
3112	unsigned long flags;
3113	u32 ep_flag;
3114	int err;
3115
3116	xhci = hcd_to_xhci(hcd);
3117	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3118
3119	/*
3120	 * Usb core assumes a max packet value for ep0 on FS devices until the
3121	 * real value is read from the descriptor. Core resets Ep0 if values
3122	 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3123	 */
3124	if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3125
3126		udev = container_of(host_ep, struct usb_device, ep0);
3127		if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3128			return;
3129
3130		vdev = xhci->devs[udev->slot_id];
3131		if (!vdev || vdev->udev != udev)
3132			return;
3133
3134		xhci_check_ep0_maxpacket(xhci, vdev);
3135
3136		/* Nothing else should be done here for ep0 during ep reset */
3137		return;
3138	}
3139
3140	if (!host_ep->hcpriv)
3141		return;
3142	udev = (struct usb_device *) host_ep->hcpriv;
3143	vdev = xhci->devs[udev->slot_id];
3144
 
 
 
 
 
3145	if (!udev->slot_id || !vdev)
3146		return;
3147
3148	ep = &vdev->eps[ep_index];
 
 
3149
3150	/* Bail out if toggle is already being cleared by a endpoint reset */
3151	spin_lock_irqsave(&xhci->lock, flags);
3152	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3153		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3154		spin_unlock_irqrestore(&xhci->lock, flags);
3155		return;
3156	}
3157	spin_unlock_irqrestore(&xhci->lock, flags);
3158	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3159	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3160	    usb_endpoint_xfer_isoc(&host_ep->desc))
3161		return;
3162
3163	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3164
3165	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3166		return;
3167
3168	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3169	if (!stop_cmd)
3170		return;
3171
3172	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3173	if (!cfg_cmd)
3174		goto cleanup;
3175
3176	spin_lock_irqsave(&xhci->lock, flags);
3177
3178	/* block queuing new trbs and ringing ep doorbell */
3179	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3180
3181	/*
3182	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3183	 * Driver is required to synchronously cancel all transfer request.
3184	 * Stop the endpoint to force xHC to update the output context
3185	 */
3186
3187	if (!list_empty(&ep->ring->td_list)) {
3188		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3189		spin_unlock_irqrestore(&xhci->lock, flags);
3190		xhci_free_command(xhci, cfg_cmd);
3191		goto cleanup;
3192	}
3193
3194	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3195					ep_index, 0);
3196	if (err < 0) {
3197		spin_unlock_irqrestore(&xhci->lock, flags);
3198		xhci_free_command(xhci, cfg_cmd);
3199		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3200				__func__, err);
3201		goto cleanup;
3202	}
3203
3204	xhci_ring_cmd_db(xhci);
3205	spin_unlock_irqrestore(&xhci->lock, flags);
3206
3207	wait_for_completion(stop_cmd->completion);
3208
3209	spin_lock_irqsave(&xhci->lock, flags);
3210
3211	/* config ep command clears toggle if add and drop ep flags are set */
3212	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3213	if (!ctrl_ctx) {
3214		spin_unlock_irqrestore(&xhci->lock, flags);
3215		xhci_free_command(xhci, cfg_cmd);
3216		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3217				__func__);
3218		goto cleanup;
3219	}
3220
3221	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3222					   ctrl_ctx, ep_flag, ep_flag);
3223	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3224
3225	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3226				      udev->slot_id, false);
3227	if (err < 0) {
3228		spin_unlock_irqrestore(&xhci->lock, flags);
3229		xhci_free_command(xhci, cfg_cmd);
3230		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3231				__func__, err);
3232		goto cleanup;
3233	}
3234
3235	xhci_ring_cmd_db(xhci);
3236	spin_unlock_irqrestore(&xhci->lock, flags);
3237
3238	wait_for_completion(cfg_cmd->completion);
3239
 
3240	xhci_free_command(xhci, cfg_cmd);
3241cleanup:
3242	xhci_free_command(xhci, stop_cmd);
3243	spin_lock_irqsave(&xhci->lock, flags);
3244	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3245		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3246	spin_unlock_irqrestore(&xhci->lock, flags);
3247}
3248
3249static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3250		struct usb_device *udev, struct usb_host_endpoint *ep,
3251		unsigned int slot_id)
3252{
3253	int ret;
3254	unsigned int ep_index;
3255	unsigned int ep_state;
3256
3257	if (!ep)
3258		return -EINVAL;
3259	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3260	if (ret <= 0)
3261		return ret ? ret : -EINVAL;
3262	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3263		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3264				" descriptor for ep 0x%x does not support streams\n",
3265				ep->desc.bEndpointAddress);
3266		return -EINVAL;
3267	}
3268
3269	ep_index = xhci_get_endpoint_index(&ep->desc);
3270	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3271	if (ep_state & EP_HAS_STREAMS ||
3272			ep_state & EP_GETTING_STREAMS) {
3273		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3274				"already has streams set up.\n",
3275				ep->desc.bEndpointAddress);
3276		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3277				"dynamic stream context array reallocation.\n");
3278		return -EINVAL;
3279	}
3280	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3281		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3282				"endpoint 0x%x; URBs are pending.\n",
3283				ep->desc.bEndpointAddress);
3284		return -EINVAL;
3285	}
3286	return 0;
3287}
3288
3289static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3290		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3291{
3292	unsigned int max_streams;
3293
3294	/* The stream context array size must be a power of two */
3295	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3296	/*
3297	 * Find out how many primary stream array entries the host controller
3298	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3299	 * level page entries), but that's an optional feature for xHCI host
3300	 * controllers. xHCs must support at least 4 stream IDs.
3301	 */
3302	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3303	if (*num_stream_ctxs > max_streams) {
3304		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3305				max_streams);
3306		*num_stream_ctxs = max_streams;
3307		*num_streams = max_streams;
3308	}
3309}
3310
3311/* Returns an error code if one of the endpoint already has streams.
3312 * This does not change any data structures, it only checks and gathers
3313 * information.
3314 */
3315static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3316		struct usb_device *udev,
3317		struct usb_host_endpoint **eps, unsigned int num_eps,
3318		unsigned int *num_streams, u32 *changed_ep_bitmask)
3319{
3320	unsigned int max_streams;
3321	unsigned int endpoint_flag;
3322	int i;
3323	int ret;
3324
3325	for (i = 0; i < num_eps; i++) {
3326		ret = xhci_check_streams_endpoint(xhci, udev,
3327				eps[i], udev->slot_id);
3328		if (ret < 0)
3329			return ret;
3330
3331		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3332		if (max_streams < (*num_streams - 1)) {
3333			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3334					eps[i]->desc.bEndpointAddress,
3335					max_streams);
3336			*num_streams = max_streams+1;
3337		}
3338
3339		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3340		if (*changed_ep_bitmask & endpoint_flag)
3341			return -EINVAL;
3342		*changed_ep_bitmask |= endpoint_flag;
3343	}
3344	return 0;
3345}
3346
3347static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3348		struct usb_device *udev,
3349		struct usb_host_endpoint **eps, unsigned int num_eps)
3350{
3351	u32 changed_ep_bitmask = 0;
3352	unsigned int slot_id;
3353	unsigned int ep_index;
3354	unsigned int ep_state;
3355	int i;
3356
3357	slot_id = udev->slot_id;
3358	if (!xhci->devs[slot_id])
3359		return 0;
3360
3361	for (i = 0; i < num_eps; i++) {
3362		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3363		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3364		/* Are streams already being freed for the endpoint? */
3365		if (ep_state & EP_GETTING_NO_STREAMS) {
3366			xhci_warn(xhci, "WARN Can't disable streams for "
3367					"endpoint 0x%x, "
3368					"streams are being disabled already\n",
3369					eps[i]->desc.bEndpointAddress);
3370			return 0;
3371		}
3372		/* Are there actually any streams to free? */
3373		if (!(ep_state & EP_HAS_STREAMS) &&
3374				!(ep_state & EP_GETTING_STREAMS)) {
3375			xhci_warn(xhci, "WARN Can't disable streams for "
3376					"endpoint 0x%x, "
3377					"streams are already disabled!\n",
3378					eps[i]->desc.bEndpointAddress);
3379			xhci_warn(xhci, "WARN xhci_free_streams() called "
3380					"with non-streams endpoint\n");
3381			return 0;
3382		}
3383		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3384	}
3385	return changed_ep_bitmask;
3386}
3387
3388/*
3389 * The USB device drivers use this function (through the HCD interface in USB
3390 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3391 * coordinate mass storage command queueing across multiple endpoints (basically
3392 * a stream ID == a task ID).
3393 *
3394 * Setting up streams involves allocating the same size stream context array
3395 * for each endpoint and issuing a configure endpoint command for all endpoints.
3396 *
3397 * Don't allow the call to succeed if one endpoint only supports one stream
3398 * (which means it doesn't support streams at all).
3399 *
3400 * Drivers may get less stream IDs than they asked for, if the host controller
3401 * hardware or endpoints claim they can't support the number of requested
3402 * stream IDs.
3403 */
3404static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3405		struct usb_host_endpoint **eps, unsigned int num_eps,
3406		unsigned int num_streams, gfp_t mem_flags)
3407{
3408	int i, ret;
3409	struct xhci_hcd *xhci;
3410	struct xhci_virt_device *vdev;
3411	struct xhci_command *config_cmd;
3412	struct xhci_input_control_ctx *ctrl_ctx;
3413	unsigned int ep_index;
3414	unsigned int num_stream_ctxs;
3415	unsigned int max_packet;
3416	unsigned long flags;
3417	u32 changed_ep_bitmask = 0;
3418
3419	if (!eps)
3420		return -EINVAL;
3421
3422	/* Add one to the number of streams requested to account for
3423	 * stream 0 that is reserved for xHCI usage.
3424	 */
3425	num_streams += 1;
3426	xhci = hcd_to_xhci(hcd);
3427	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3428			num_streams);
3429
3430	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3431	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3432			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3433		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3434		return -ENOSYS;
3435	}
3436
3437	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3438	if (!config_cmd)
3439		return -ENOMEM;
3440
3441	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3442	if (!ctrl_ctx) {
3443		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3444				__func__);
3445		xhci_free_command(xhci, config_cmd);
3446		return -ENOMEM;
3447	}
3448
3449	/* Check to make sure all endpoints are not already configured for
3450	 * streams.  While we're at it, find the maximum number of streams that
3451	 * all the endpoints will support and check for duplicate endpoints.
3452	 */
3453	spin_lock_irqsave(&xhci->lock, flags);
3454	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3455			num_eps, &num_streams, &changed_ep_bitmask);
3456	if (ret < 0) {
3457		xhci_free_command(xhci, config_cmd);
3458		spin_unlock_irqrestore(&xhci->lock, flags);
3459		return ret;
3460	}
3461	if (num_streams <= 1) {
3462		xhci_warn(xhci, "WARN: endpoints can't handle "
3463				"more than one stream.\n");
3464		xhci_free_command(xhci, config_cmd);
3465		spin_unlock_irqrestore(&xhci->lock, flags);
3466		return -EINVAL;
3467	}
3468	vdev = xhci->devs[udev->slot_id];
3469	/* Mark each endpoint as being in transition, so
3470	 * xhci_urb_enqueue() will reject all URBs.
3471	 */
3472	for (i = 0; i < num_eps; i++) {
3473		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3474		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3475	}
3476	spin_unlock_irqrestore(&xhci->lock, flags);
3477
3478	/* Setup internal data structures and allocate HW data structures for
3479	 * streams (but don't install the HW structures in the input context
3480	 * until we're sure all memory allocation succeeded).
3481	 */
3482	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3483	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3484			num_stream_ctxs, num_streams);
3485
3486	for (i = 0; i < num_eps; i++) {
3487		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3488		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3489		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3490				num_stream_ctxs,
3491				num_streams,
3492				max_packet, mem_flags);
3493		if (!vdev->eps[ep_index].stream_info)
3494			goto cleanup;
3495		/* Set maxPstreams in endpoint context and update deq ptr to
3496		 * point to stream context array. FIXME
3497		 */
3498	}
3499
3500	/* Set up the input context for a configure endpoint command. */
3501	for (i = 0; i < num_eps; i++) {
3502		struct xhci_ep_ctx *ep_ctx;
3503
3504		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3505		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3506
3507		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3508				vdev->out_ctx, ep_index);
3509		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3510				vdev->eps[ep_index].stream_info);
3511	}
3512	/* Tell the HW to drop its old copy of the endpoint context info
3513	 * and add the updated copy from the input context.
3514	 */
3515	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3516			vdev->out_ctx, ctrl_ctx,
3517			changed_ep_bitmask, changed_ep_bitmask);
3518
3519	/* Issue and wait for the configure endpoint command */
3520	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3521			false, false);
3522
3523	/* xHC rejected the configure endpoint command for some reason, so we
3524	 * leave the old ring intact and free our internal streams data
3525	 * structure.
3526	 */
3527	if (ret < 0)
3528		goto cleanup;
3529
3530	spin_lock_irqsave(&xhci->lock, flags);
3531	for (i = 0; i < num_eps; i++) {
3532		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3533		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3534		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3535			 udev->slot_id, ep_index);
3536		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3537	}
3538	xhci_free_command(xhci, config_cmd);
3539	spin_unlock_irqrestore(&xhci->lock, flags);
3540
3541	for (i = 0; i < num_eps; i++) {
3542		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3543		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3544	}
3545	/* Subtract 1 for stream 0, which drivers can't use */
3546	return num_streams - 1;
3547
3548cleanup:
3549	/* If it didn't work, free the streams! */
3550	for (i = 0; i < num_eps; i++) {
3551		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3552		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3553		vdev->eps[ep_index].stream_info = NULL;
3554		/* FIXME Unset maxPstreams in endpoint context and
3555		 * update deq ptr to point to normal string ring.
3556		 */
3557		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3558		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3559		xhci_endpoint_zero(xhci, vdev, eps[i]);
3560	}
3561	xhci_free_command(xhci, config_cmd);
3562	return -ENOMEM;
3563}
3564
3565/* Transition the endpoint from using streams to being a "normal" endpoint
3566 * without streams.
3567 *
3568 * Modify the endpoint context state, submit a configure endpoint command,
3569 * and free all endpoint rings for streams if that completes successfully.
3570 */
3571static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3572		struct usb_host_endpoint **eps, unsigned int num_eps,
3573		gfp_t mem_flags)
3574{
3575	int i, ret;
3576	struct xhci_hcd *xhci;
3577	struct xhci_virt_device *vdev;
3578	struct xhci_command *command;
3579	struct xhci_input_control_ctx *ctrl_ctx;
3580	unsigned int ep_index;
3581	unsigned long flags;
3582	u32 changed_ep_bitmask;
3583
3584	xhci = hcd_to_xhci(hcd);
3585	vdev = xhci->devs[udev->slot_id];
3586
3587	/* Set up a configure endpoint command to remove the streams rings */
3588	spin_lock_irqsave(&xhci->lock, flags);
3589	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3590			udev, eps, num_eps);
3591	if (changed_ep_bitmask == 0) {
3592		spin_unlock_irqrestore(&xhci->lock, flags);
3593		return -EINVAL;
3594	}
3595
3596	/* Use the xhci_command structure from the first endpoint.  We may have
3597	 * allocated too many, but the driver may call xhci_free_streams() for
3598	 * each endpoint it grouped into one call to xhci_alloc_streams().
3599	 */
3600	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3601	command = vdev->eps[ep_index].stream_info->free_streams_command;
3602	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3603	if (!ctrl_ctx) {
3604		spin_unlock_irqrestore(&xhci->lock, flags);
3605		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3606				__func__);
3607		return -EINVAL;
3608	}
3609
3610	for (i = 0; i < num_eps; i++) {
3611		struct xhci_ep_ctx *ep_ctx;
3612
3613		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3614		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3615		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3616			EP_GETTING_NO_STREAMS;
3617
3618		xhci_endpoint_copy(xhci, command->in_ctx,
3619				vdev->out_ctx, ep_index);
3620		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3621				&vdev->eps[ep_index]);
3622	}
3623	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3624			vdev->out_ctx, ctrl_ctx,
3625			changed_ep_bitmask, changed_ep_bitmask);
3626	spin_unlock_irqrestore(&xhci->lock, flags);
3627
3628	/* Issue and wait for the configure endpoint command,
3629	 * which must succeed.
3630	 */
3631	ret = xhci_configure_endpoint(xhci, udev, command,
3632			false, true);
3633
3634	/* xHC rejected the configure endpoint command for some reason, so we
3635	 * leave the streams rings intact.
3636	 */
3637	if (ret < 0)
3638		return ret;
3639
3640	spin_lock_irqsave(&xhci->lock, flags);
3641	for (i = 0; i < num_eps; i++) {
3642		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3643		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3644		vdev->eps[ep_index].stream_info = NULL;
3645		/* FIXME Unset maxPstreams in endpoint context and
3646		 * update deq ptr to point to normal string ring.
3647		 */
3648		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3649		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3650	}
3651	spin_unlock_irqrestore(&xhci->lock, flags);
3652
3653	return 0;
3654}
3655
3656/*
3657 * Deletes endpoint resources for endpoints that were active before a Reset
3658 * Device command, or a Disable Slot command.  The Reset Device command leaves
3659 * the control endpoint intact, whereas the Disable Slot command deletes it.
3660 *
3661 * Must be called with xhci->lock held.
3662 */
3663void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3664	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3665{
3666	int i;
3667	unsigned int num_dropped_eps = 0;
3668	unsigned int drop_flags = 0;
3669
3670	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3671		if (virt_dev->eps[i].ring) {
3672			drop_flags |= 1 << i;
3673			num_dropped_eps++;
3674		}
3675	}
3676	xhci->num_active_eps -= num_dropped_eps;
3677	if (num_dropped_eps)
3678		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3679				"Dropped %u ep ctxs, flags = 0x%x, "
3680				"%u now active.",
3681				num_dropped_eps, drop_flags,
3682				xhci->num_active_eps);
3683}
3684
3685/*
3686 * This submits a Reset Device Command, which will set the device state to 0,
3687 * set the device address to 0, and disable all the endpoints except the default
3688 * control endpoint.  The USB core should come back and call
3689 * xhci_address_device(), and then re-set up the configuration.  If this is
3690 * called because of a usb_reset_and_verify_device(), then the old alternate
3691 * settings will be re-installed through the normal bandwidth allocation
3692 * functions.
3693 *
3694 * Wait for the Reset Device command to finish.  Remove all structures
3695 * associated with the endpoints that were disabled.  Clear the input device
3696 * structure? Reset the control endpoint 0 max packet size?
3697 *
3698 * If the virt_dev to be reset does not exist or does not match the udev,
3699 * it means the device is lost, possibly due to the xHC restore error and
3700 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3701 * re-allocate the device.
3702 */
3703static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3704		struct usb_device *udev)
3705{
3706	int ret, i;
3707	unsigned long flags;
3708	struct xhci_hcd *xhci;
3709	unsigned int slot_id;
3710	struct xhci_virt_device *virt_dev;
3711	struct xhci_command *reset_device_cmd;
3712	struct xhci_slot_ctx *slot_ctx;
3713	int old_active_eps = 0;
3714
3715	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3716	if (ret <= 0)
3717		return ret;
3718	xhci = hcd_to_xhci(hcd);
3719	slot_id = udev->slot_id;
3720	virt_dev = xhci->devs[slot_id];
3721	if (!virt_dev) {
3722		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3723				"not exist. Re-allocate the device\n", slot_id);
3724		ret = xhci_alloc_dev(hcd, udev);
3725		if (ret == 1)
3726			return 0;
3727		else
3728			return -EINVAL;
3729	}
3730
3731	if (virt_dev->tt_info)
3732		old_active_eps = virt_dev->tt_info->active_eps;
3733
3734	if (virt_dev->udev != udev) {
3735		/* If the virt_dev and the udev does not match, this virt_dev
3736		 * may belong to another udev.
3737		 * Re-allocate the device.
3738		 */
3739		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3740				"not match the udev. Re-allocate the device\n",
3741				slot_id);
3742		ret = xhci_alloc_dev(hcd, udev);
3743		if (ret == 1)
3744			return 0;
3745		else
3746			return -EINVAL;
3747	}
3748
3749	/* If device is not setup, there is no point in resetting it */
3750	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3751	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3752						SLOT_STATE_DISABLED)
3753		return 0;
3754
3755	trace_xhci_discover_or_reset_device(slot_ctx);
3756
3757	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3758	/* Allocate the command structure that holds the struct completion.
3759	 * Assume we're in process context, since the normal device reset
3760	 * process has to wait for the device anyway.  Storage devices are
3761	 * reset as part of error handling, so use GFP_NOIO instead of
3762	 * GFP_KERNEL.
3763	 */
3764	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3765	if (!reset_device_cmd) {
3766		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3767		return -ENOMEM;
3768	}
3769
3770	/* Attempt to submit the Reset Device command to the command ring */
3771	spin_lock_irqsave(&xhci->lock, flags);
3772
3773	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3774	if (ret) {
3775		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3776		spin_unlock_irqrestore(&xhci->lock, flags);
3777		goto command_cleanup;
3778	}
3779	xhci_ring_cmd_db(xhci);
3780	spin_unlock_irqrestore(&xhci->lock, flags);
3781
3782	/* Wait for the Reset Device command to finish */
3783	wait_for_completion(reset_device_cmd->completion);
3784
3785	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3786	 * unless we tried to reset a slot ID that wasn't enabled,
3787	 * or the device wasn't in the addressed or configured state.
3788	 */
3789	ret = reset_device_cmd->status;
3790	switch (ret) {
3791	case COMP_COMMAND_ABORTED:
3792	case COMP_COMMAND_RING_STOPPED:
3793		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3794		ret = -ETIME;
3795		goto command_cleanup;
3796	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3797	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3798		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3799				slot_id,
3800				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3801		xhci_dbg(xhci, "Not freeing device rings.\n");
3802		/* Don't treat this as an error.  May change my mind later. */
3803		ret = 0;
3804		goto command_cleanup;
3805	case COMP_SUCCESS:
3806		xhci_dbg(xhci, "Successful reset device command.\n");
3807		break;
3808	default:
3809		if (xhci_is_vendor_info_code(xhci, ret))
3810			break;
3811		xhci_warn(xhci, "Unknown completion code %u for "
3812				"reset device command.\n", ret);
3813		ret = -EINVAL;
3814		goto command_cleanup;
3815	}
3816
3817	/* Free up host controller endpoint resources */
3818	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3819		spin_lock_irqsave(&xhci->lock, flags);
3820		/* Don't delete the default control endpoint resources */
3821		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3822		spin_unlock_irqrestore(&xhci->lock, flags);
3823	}
3824
3825	/* Everything but endpoint 0 is disabled, so free the rings. */
3826	for (i = 1; i < 31; i++) {
3827		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3828
3829		if (ep->ep_state & EP_HAS_STREAMS) {
3830			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3831					xhci_get_endpoint_address(i));
3832			xhci_free_stream_info(xhci, ep->stream_info);
3833			ep->stream_info = NULL;
3834			ep->ep_state &= ~EP_HAS_STREAMS;
3835		}
3836
3837		if (ep->ring) {
3838			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3839			xhci_free_endpoint_ring(xhci, virt_dev, i);
3840		}
3841		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3842			xhci_drop_ep_from_interval_table(xhci,
3843					&virt_dev->eps[i].bw_info,
3844					virt_dev->bw_table,
3845					udev,
3846					&virt_dev->eps[i],
3847					virt_dev->tt_info);
3848		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3849	}
3850	/* If necessary, update the number of active TTs on this root port */
3851	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3852	virt_dev->flags = 0;
3853	ret = 0;
3854
3855command_cleanup:
3856	xhci_free_command(xhci, reset_device_cmd);
3857	return ret;
3858}
3859
3860/*
3861 * At this point, the struct usb_device is about to go away, the device has
3862 * disconnected, and all traffic has been stopped and the endpoints have been
3863 * disabled.  Free any HC data structures associated with that device.
3864 */
3865static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3866{
3867	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3868	struct xhci_virt_device *virt_dev;
3869	struct xhci_slot_ctx *slot_ctx;
3870	unsigned long flags;
3871	int i, ret;
3872
 
3873	/*
3874	 * We called pm_runtime_get_noresume when the device was attached.
3875	 * Decrement the counter here to allow controller to runtime suspend
3876	 * if no devices remain.
3877	 */
3878	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3879		pm_runtime_put_noidle(hcd->self.controller);
 
3880
3881	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3882	/* If the host is halted due to driver unload, we still need to free the
3883	 * device.
3884	 */
3885	if (ret <= 0 && ret != -ENODEV)
3886		return;
3887
3888	virt_dev = xhci->devs[udev->slot_id];
3889	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3890	trace_xhci_free_dev(slot_ctx);
3891
3892	/* Stop any wayward timer functions (which may grab the lock) */
3893	for (i = 0; i < 31; i++)
3894		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
 
 
3895	virt_dev->udev = NULL;
3896	xhci_disable_slot(xhci, udev->slot_id);
3897
3898	spin_lock_irqsave(&xhci->lock, flags);
3899	xhci_free_virt_device(xhci, udev->slot_id);
3900	spin_unlock_irqrestore(&xhci->lock, flags);
3901
3902}
3903
3904int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3905{
3906	struct xhci_command *command;
3907	unsigned long flags;
3908	u32 state;
3909	int ret;
3910
3911	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3912	if (!command)
3913		return -ENOMEM;
3914
3915	xhci_debugfs_remove_slot(xhci, slot_id);
3916
3917	spin_lock_irqsave(&xhci->lock, flags);
3918	/* Don't disable the slot if the host controller is dead. */
3919	state = readl(&xhci->op_regs->status);
3920	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3921			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3922		spin_unlock_irqrestore(&xhci->lock, flags);
3923		kfree(command);
3924		return -ENODEV;
3925	}
3926
3927	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3928				slot_id);
3929	if (ret) {
3930		spin_unlock_irqrestore(&xhci->lock, flags);
3931		kfree(command);
3932		return ret;
3933	}
3934	xhci_ring_cmd_db(xhci);
3935	spin_unlock_irqrestore(&xhci->lock, flags);
3936
3937	wait_for_completion(command->completion);
3938
3939	if (command->status != COMP_SUCCESS)
3940		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3941			  slot_id, command->status);
3942
3943	xhci_free_command(xhci, command);
3944
3945	return 0;
3946}
3947
3948/*
3949 * Checks if we have enough host controller resources for the default control
3950 * endpoint.
3951 *
3952 * Must be called with xhci->lock held.
3953 */
3954static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3955{
3956	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3957		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3958				"Not enough ep ctxs: "
3959				"%u active, need to add 1, limit is %u.",
3960				xhci->num_active_eps, xhci->limit_active_eps);
3961		return -ENOMEM;
3962	}
3963	xhci->num_active_eps += 1;
3964	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3965			"Adding 1 ep ctx, %u now active.",
3966			xhci->num_active_eps);
3967	return 0;
3968}
3969
3970
3971/*
3972 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3973 * timed out, or allocating memory failed.  Returns 1 on success.
3974 */
3975int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3976{
3977	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3978	struct xhci_virt_device *vdev;
3979	struct xhci_slot_ctx *slot_ctx;
3980	unsigned long flags;
3981	int ret, slot_id;
3982	struct xhci_command *command;
3983
3984	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3985	if (!command)
3986		return 0;
3987
3988	spin_lock_irqsave(&xhci->lock, flags);
3989	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3990	if (ret) {
3991		spin_unlock_irqrestore(&xhci->lock, flags);
3992		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3993		xhci_free_command(xhci, command);
3994		return 0;
3995	}
3996	xhci_ring_cmd_db(xhci);
3997	spin_unlock_irqrestore(&xhci->lock, flags);
3998
3999	wait_for_completion(command->completion);
4000	slot_id = command->slot_id;
4001
4002	if (!slot_id || command->status != COMP_SUCCESS) {
4003		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4004			 xhci_trb_comp_code_string(command->status));
4005		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4006				HCS_MAX_SLOTS(
4007					readl(&xhci->cap_regs->hcs_params1)));
4008		xhci_free_command(xhci, command);
4009		return 0;
4010	}
4011
4012	xhci_free_command(xhci, command);
4013
4014	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4015		spin_lock_irqsave(&xhci->lock, flags);
4016		ret = xhci_reserve_host_control_ep_resources(xhci);
4017		if (ret) {
4018			spin_unlock_irqrestore(&xhci->lock, flags);
4019			xhci_warn(xhci, "Not enough host resources, "
4020					"active endpoint contexts = %u\n",
4021					xhci->num_active_eps);
4022			goto disable_slot;
4023		}
4024		spin_unlock_irqrestore(&xhci->lock, flags);
4025	}
4026	/* Use GFP_NOIO, since this function can be called from
4027	 * xhci_discover_or_reset_device(), which may be called as part of
4028	 * mass storage driver error handling.
4029	 */
4030	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4031		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4032		goto disable_slot;
4033	}
4034	vdev = xhci->devs[slot_id];
4035	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4036	trace_xhci_alloc_dev(slot_ctx);
4037
4038	udev->slot_id = slot_id;
4039
4040	xhci_debugfs_create_slot(xhci, slot_id);
4041
 
4042	/*
4043	 * If resetting upon resume, we can't put the controller into runtime
4044	 * suspend if there is a device attached.
4045	 */
4046	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4047		pm_runtime_get_noresume(hcd->self.controller);
 
4048
4049	/* Is this a LS or FS device under a HS hub? */
4050	/* Hub or peripherial? */
4051	return 1;
4052
4053disable_slot:
4054	xhci_disable_slot(xhci, udev->slot_id);
4055	xhci_free_virt_device(xhci, udev->slot_id);
 
4056
4057	return 0;
4058}
4059
4060/**
4061 * xhci_setup_device - issues an Address Device command to assign a unique
4062 *			USB bus address.
4063 * @hcd: USB host controller data structure.
4064 * @udev: USB dev structure representing the connected device.
4065 * @setup: Enum specifying setup mode: address only or with context.
4066 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4067 *
4068 * Return: 0 if successful; otherwise, negative error code.
4069 */
4070static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4071			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4072{
4073	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4074	unsigned long flags;
4075	struct xhci_virt_device *virt_dev;
4076	int ret = 0;
4077	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4078	struct xhci_slot_ctx *slot_ctx;
4079	struct xhci_input_control_ctx *ctrl_ctx;
4080	u64 temp_64;
4081	struct xhci_command *command = NULL;
4082
4083	mutex_lock(&xhci->mutex);
4084
4085	if (xhci->xhc_state) {	/* dying, removing or halted */
4086		ret = -ESHUTDOWN;
4087		goto out;
4088	}
4089
4090	if (!udev->slot_id) {
4091		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4092				"Bad Slot ID %d", udev->slot_id);
4093		ret = -EINVAL;
4094		goto out;
4095	}
4096
4097	virt_dev = xhci->devs[udev->slot_id];
4098
4099	if (WARN_ON(!virt_dev)) {
4100		/*
4101		 * In plug/unplug torture test with an NEC controller,
4102		 * a zero-dereference was observed once due to virt_dev = 0.
4103		 * Print useful debug rather than crash if it is observed again!
4104		 */
4105		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4106			udev->slot_id);
4107		ret = -EINVAL;
4108		goto out;
4109	}
4110	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4111	trace_xhci_setup_device_slot(slot_ctx);
4112
4113	if (setup == SETUP_CONTEXT_ONLY) {
4114		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4115		    SLOT_STATE_DEFAULT) {
4116			xhci_dbg(xhci, "Slot already in default state\n");
4117			goto out;
4118		}
4119	}
4120
4121	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4122	if (!command) {
4123		ret = -ENOMEM;
4124		goto out;
4125	}
4126
4127	command->in_ctx = virt_dev->in_ctx;
4128	command->timeout_ms = timeout_ms;
4129
4130	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4131	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4132	if (!ctrl_ctx) {
4133		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4134				__func__);
4135		ret = -EINVAL;
4136		goto out;
4137	}
4138	/*
4139	 * If this is the first Set Address since device plug-in or
4140	 * virt_device realloaction after a resume with an xHCI power loss,
4141	 * then set up the slot context.
4142	 */
4143	if (!slot_ctx->dev_info)
4144		xhci_setup_addressable_virt_dev(xhci, udev);
4145	/* Otherwise, update the control endpoint ring enqueue pointer. */
4146	else
4147		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4148	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4149	ctrl_ctx->drop_flags = 0;
4150
4151	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4152				le32_to_cpu(slot_ctx->dev_info) >> 27);
4153
4154	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4155	spin_lock_irqsave(&xhci->lock, flags);
4156	trace_xhci_setup_device(virt_dev);
4157	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4158					udev->slot_id, setup);
4159	if (ret) {
4160		spin_unlock_irqrestore(&xhci->lock, flags);
4161		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4162				"FIXME: allocate a command ring segment");
4163		goto out;
4164	}
4165	xhci_ring_cmd_db(xhci);
4166	spin_unlock_irqrestore(&xhci->lock, flags);
4167
4168	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4169	wait_for_completion(command->completion);
4170
4171	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4172	 * the SetAddress() "recovery interval" required by USB and aborting the
4173	 * command on a timeout.
4174	 */
4175	switch (command->status) {
4176	case COMP_COMMAND_ABORTED:
4177	case COMP_COMMAND_RING_STOPPED:
4178		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4179		ret = -ETIME;
4180		break;
4181	case COMP_CONTEXT_STATE_ERROR:
4182	case COMP_SLOT_NOT_ENABLED_ERROR:
4183		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4184			 act, udev->slot_id);
4185		ret = -EINVAL;
4186		break;
4187	case COMP_USB_TRANSACTION_ERROR:
4188		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4189
4190		mutex_unlock(&xhci->mutex);
4191		ret = xhci_disable_slot(xhci, udev->slot_id);
4192		xhci_free_virt_device(xhci, udev->slot_id);
4193		if (!ret)
4194			xhci_alloc_dev(hcd, udev);
4195		kfree(command->completion);
4196		kfree(command);
4197		return -EPROTO;
4198	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4199		dev_warn(&udev->dev,
4200			 "ERROR: Incompatible device for setup %s command\n", act);
4201		ret = -ENODEV;
4202		break;
4203	case COMP_SUCCESS:
4204		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4205			       "Successful setup %s command", act);
4206		break;
4207	default:
4208		xhci_err(xhci,
4209			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4210			 act, command->status);
4211		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4212		ret = -EINVAL;
4213		break;
4214	}
4215	if (ret)
4216		goto out;
4217	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4218	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4219			"Op regs DCBAA ptr = %#016llx", temp_64);
4220	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221		"Slot ID %d dcbaa entry @%p = %#016llx",
4222		udev->slot_id,
4223		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4224		(unsigned long long)
4225		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4226	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4227			"Output Context DMA address = %#08llx",
4228			(unsigned long long)virt_dev->out_ctx->dma);
4229	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4230				le32_to_cpu(slot_ctx->dev_info) >> 27);
4231	/*
4232	 * USB core uses address 1 for the roothubs, so we add one to the
4233	 * address given back to us by the HC.
4234	 */
4235	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4236				le32_to_cpu(slot_ctx->dev_info) >> 27);
4237	/* Zero the input context control for later use */
4238	ctrl_ctx->add_flags = 0;
4239	ctrl_ctx->drop_flags = 0;
4240	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4241	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4242
4243	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4244		       "Internal device address = %d",
4245		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4246out:
4247	mutex_unlock(&xhci->mutex);
4248	if (command) {
4249		kfree(command->completion);
4250		kfree(command);
4251	}
4252	return ret;
4253}
4254
4255static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4256			       unsigned int timeout_ms)
4257{
4258	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4259}
4260
4261static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4262{
4263	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4264				 XHCI_CMD_DEFAULT_TIMEOUT);
4265}
4266
4267/*
4268 * Transfer the port index into real index in the HW port status
4269 * registers. Caculate offset between the port's PORTSC register
4270 * and port status base. Divide the number of per port register
4271 * to get the real index. The raw port number bases 1.
4272 */
4273int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4274{
4275	struct xhci_hub *rhub;
4276
4277	rhub = xhci_get_rhub(hcd);
4278	return rhub->ports[port1 - 1]->hw_portnum + 1;
4279}
4280
4281/*
4282 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4283 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4284 */
4285static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4286			struct usb_device *udev, u16 max_exit_latency)
4287{
4288	struct xhci_virt_device *virt_dev;
4289	struct xhci_command *command;
4290	struct xhci_input_control_ctx *ctrl_ctx;
4291	struct xhci_slot_ctx *slot_ctx;
4292	unsigned long flags;
4293	int ret;
4294
4295	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4296	if (!command)
4297		return -ENOMEM;
4298
4299	spin_lock_irqsave(&xhci->lock, flags);
4300
4301	virt_dev = xhci->devs[udev->slot_id];
4302
4303	/*
4304	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4305	 * xHC was re-initialized. Exit latency will be set later after
4306	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4307	 */
4308
4309	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4310		spin_unlock_irqrestore(&xhci->lock, flags);
4311		xhci_free_command(xhci, command);
4312		return 0;
4313	}
4314
4315	/* Attempt to issue an Evaluate Context command to change the MEL. */
 
4316	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4317	if (!ctrl_ctx) {
4318		spin_unlock_irqrestore(&xhci->lock, flags);
4319		xhci_free_command(xhci, command);
4320		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4321				__func__);
4322		return -ENOMEM;
4323	}
4324
4325	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4326	spin_unlock_irqrestore(&xhci->lock, flags);
4327
4328	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4329	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4330	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4331	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4332	slot_ctx->dev_state = 0;
4333
4334	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4335			"Set up evaluate context for LPM MEL change.");
4336
4337	/* Issue and wait for the evaluate context command. */
4338	ret = xhci_configure_endpoint(xhci, udev, command,
4339			true, true);
4340
4341	if (!ret) {
4342		spin_lock_irqsave(&xhci->lock, flags);
4343		virt_dev->current_mel = max_exit_latency;
4344		spin_unlock_irqrestore(&xhci->lock, flags);
4345	}
4346
4347	xhci_free_command(xhci, command);
4348
4349	return ret;
4350}
4351
4352#ifdef CONFIG_PM
4353
4354/* BESL to HIRD Encoding array for USB2 LPM */
4355static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4356	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4357
4358/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4359static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4360					struct usb_device *udev)
4361{
4362	int u2del, besl, besl_host;
4363	int besl_device = 0;
4364	u32 field;
4365
4366	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4367	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4368
4369	if (field & USB_BESL_SUPPORT) {
4370		for (besl_host = 0; besl_host < 16; besl_host++) {
4371			if (xhci_besl_encoding[besl_host] >= u2del)
4372				break;
4373		}
4374		/* Use baseline BESL value as default */
4375		if (field & USB_BESL_BASELINE_VALID)
4376			besl_device = USB_GET_BESL_BASELINE(field);
4377		else if (field & USB_BESL_DEEP_VALID)
4378			besl_device = USB_GET_BESL_DEEP(field);
4379	} else {
4380		if (u2del <= 50)
4381			besl_host = 0;
4382		else
4383			besl_host = (u2del - 51) / 75 + 1;
4384	}
4385
4386	besl = besl_host + besl_device;
4387	if (besl > 15)
4388		besl = 15;
4389
4390	return besl;
4391}
4392
4393/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4394static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4395{
4396	u32 field;
4397	int l1;
4398	int besld = 0;
4399	int hirdm = 0;
4400
4401	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4402
4403	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4404	l1 = udev->l1_params.timeout / 256;
4405
4406	/* device has preferred BESLD */
4407	if (field & USB_BESL_DEEP_VALID) {
4408		besld = USB_GET_BESL_DEEP(field);
4409		hirdm = 1;
4410	}
4411
4412	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4413}
4414
4415static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4416			struct usb_device *udev, int enable)
4417{
4418	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4419	struct xhci_port **ports;
4420	__le32 __iomem	*pm_addr, *hlpm_addr;
4421	u32		pm_val, hlpm_val, field;
4422	unsigned int	port_num;
4423	unsigned long	flags;
4424	int		hird, exit_latency;
4425	int		ret;
4426
4427	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4428		return -EPERM;
4429
4430	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4431			!udev->lpm_capable)
4432		return -EPERM;
4433
4434	if (!udev->parent || udev->parent->parent ||
4435			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4436		return -EPERM;
4437
4438	if (udev->usb2_hw_lpm_capable != 1)
4439		return -EPERM;
4440
4441	spin_lock_irqsave(&xhci->lock, flags);
4442
4443	ports = xhci->usb2_rhub.ports;
4444	port_num = udev->portnum - 1;
4445	pm_addr = ports[port_num]->addr + PORTPMSC;
4446	pm_val = readl(pm_addr);
4447	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4448
4449	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4450			enable ? "enable" : "disable", port_num + 1);
4451
4452	if (enable) {
4453		/* Host supports BESL timeout instead of HIRD */
4454		if (udev->usb2_hw_lpm_besl_capable) {
4455			/* if device doesn't have a preferred BESL value use a
4456			 * default one which works with mixed HIRD and BESL
4457			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4458			 */
4459			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4460			if ((field & USB_BESL_SUPPORT) &&
4461			    (field & USB_BESL_BASELINE_VALID))
4462				hird = USB_GET_BESL_BASELINE(field);
4463			else
4464				hird = udev->l1_params.besl;
4465
4466			exit_latency = xhci_besl_encoding[hird];
4467			spin_unlock_irqrestore(&xhci->lock, flags);
4468
 
 
 
 
 
 
 
 
4469			ret = xhci_change_max_exit_latency(xhci, udev,
4470							   exit_latency);
 
 
4471			if (ret < 0)
4472				return ret;
4473			spin_lock_irqsave(&xhci->lock, flags);
4474
4475			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4476			writel(hlpm_val, hlpm_addr);
4477			/* flush write */
4478			readl(hlpm_addr);
4479		} else {
4480			hird = xhci_calculate_hird_besl(xhci, udev);
4481		}
4482
4483		pm_val &= ~PORT_HIRD_MASK;
4484		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4485		writel(pm_val, pm_addr);
4486		pm_val = readl(pm_addr);
4487		pm_val |= PORT_HLE;
4488		writel(pm_val, pm_addr);
4489		/* flush write */
4490		readl(pm_addr);
4491	} else {
4492		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4493		writel(pm_val, pm_addr);
4494		/* flush write */
4495		readl(pm_addr);
4496		if (udev->usb2_hw_lpm_besl_capable) {
4497			spin_unlock_irqrestore(&xhci->lock, flags);
 
4498			xhci_change_max_exit_latency(xhci, udev, 0);
4499			readl_poll_timeout(ports[port_num]->addr, pm_val,
4500					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4501					   100, 10000);
4502			return 0;
4503		}
4504	}
4505
4506	spin_unlock_irqrestore(&xhci->lock, flags);
4507	return 0;
4508}
4509
4510/* check if a usb2 port supports a given extened capability protocol
4511 * only USB2 ports extended protocol capability values are cached.
4512 * Return 1 if capability is supported
4513 */
4514static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4515					   unsigned capability)
4516{
4517	u32 port_offset, port_count;
4518	int i;
4519
4520	for (i = 0; i < xhci->num_ext_caps; i++) {
4521		if (xhci->ext_caps[i] & capability) {
4522			/* port offsets starts at 1 */
4523			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4524			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4525			if (port >= port_offset &&
4526			    port < port_offset + port_count)
4527				return 1;
4528		}
4529	}
4530	return 0;
4531}
4532
4533static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4534{
4535	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4536	int		portnum = udev->portnum - 1;
4537
4538	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4539		return 0;
4540
4541	/* we only support lpm for non-hub device connected to root hub yet */
4542	if (!udev->parent || udev->parent->parent ||
4543			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4544		return 0;
4545
4546	if (xhci->hw_lpm_support == 1 &&
4547			xhci_check_usb2_port_capability(
4548				xhci, portnum, XHCI_HLC)) {
4549		udev->usb2_hw_lpm_capable = 1;
4550		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4551		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4552		if (xhci_check_usb2_port_capability(xhci, portnum,
4553					XHCI_BLC))
4554			udev->usb2_hw_lpm_besl_capable = 1;
4555	}
4556
4557	return 0;
4558}
4559
4560/*---------------------- USB 3.0 Link PM functions ------------------------*/
4561
4562/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4563static unsigned long long xhci_service_interval_to_ns(
4564		struct usb_endpoint_descriptor *desc)
4565{
4566	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4567}
4568
4569static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4570		enum usb3_link_state state)
4571{
4572	unsigned long long sel;
4573	unsigned long long pel;
4574	unsigned int max_sel_pel;
4575	char *state_name;
4576
4577	switch (state) {
4578	case USB3_LPM_U1:
4579		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4580		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4581		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4582		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4583		state_name = "U1";
4584		break;
4585	case USB3_LPM_U2:
4586		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4587		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4588		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4589		state_name = "U2";
4590		break;
4591	default:
4592		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4593				__func__);
4594		return USB3_LPM_DISABLED;
4595	}
4596
4597	if (sel <= max_sel_pel && pel <= max_sel_pel)
4598		return USB3_LPM_DEVICE_INITIATED;
4599
4600	if (sel > max_sel_pel)
4601		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4602				"due to long SEL %llu ms\n",
4603				state_name, sel);
4604	else
4605		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4606				"due to long PEL %llu ms\n",
4607				state_name, pel);
4608	return USB3_LPM_DISABLED;
4609}
4610
4611/* The U1 timeout should be the maximum of the following values:
4612 *  - For control endpoints, U1 system exit latency (SEL) * 3
4613 *  - For bulk endpoints, U1 SEL * 5
4614 *  - For interrupt endpoints:
4615 *    - Notification EPs, U1 SEL * 3
4616 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4617 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4618 */
4619static unsigned long long xhci_calculate_intel_u1_timeout(
4620		struct usb_device *udev,
4621		struct usb_endpoint_descriptor *desc)
4622{
4623	unsigned long long timeout_ns;
4624	int ep_type;
4625	int intr_type;
4626
4627	ep_type = usb_endpoint_type(desc);
4628	switch (ep_type) {
4629	case USB_ENDPOINT_XFER_CONTROL:
4630		timeout_ns = udev->u1_params.sel * 3;
4631		break;
4632	case USB_ENDPOINT_XFER_BULK:
4633		timeout_ns = udev->u1_params.sel * 5;
4634		break;
4635	case USB_ENDPOINT_XFER_INT:
4636		intr_type = usb_endpoint_interrupt_type(desc);
4637		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4638			timeout_ns = udev->u1_params.sel * 3;
4639			break;
4640		}
4641		/* Otherwise the calculation is the same as isoc eps */
4642		fallthrough;
4643	case USB_ENDPOINT_XFER_ISOC:
4644		timeout_ns = xhci_service_interval_to_ns(desc);
4645		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4646		if (timeout_ns < udev->u1_params.sel * 2)
4647			timeout_ns = udev->u1_params.sel * 2;
4648		break;
4649	default:
4650		return 0;
4651	}
4652
4653	return timeout_ns;
4654}
4655
4656/* Returns the hub-encoded U1 timeout value. */
4657static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4658		struct usb_device *udev,
4659		struct usb_endpoint_descriptor *desc)
4660{
4661	unsigned long long timeout_ns;
4662
4663	/* Prevent U1 if service interval is shorter than U1 exit latency */
4664	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4665		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4666			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4667			return USB3_LPM_DISABLED;
4668		}
4669	}
4670
4671	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4672		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4673	else
4674		timeout_ns = udev->u1_params.sel;
4675
4676	/* The U1 timeout is encoded in 1us intervals.
4677	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4678	 */
4679	if (timeout_ns == USB3_LPM_DISABLED)
4680		timeout_ns = 1;
4681	else
4682		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4683
4684	/* If the necessary timeout value is bigger than what we can set in the
4685	 * USB 3.0 hub, we have to disable hub-initiated U1.
4686	 */
4687	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4688		return timeout_ns;
4689	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4690			"due to long timeout %llu ms\n", timeout_ns);
4691	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4692}
4693
4694/* The U2 timeout should be the maximum of:
4695 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4696 *  - largest bInterval of any active periodic endpoint (to avoid going
4697 *    into lower power link states between intervals).
4698 *  - the U2 Exit Latency of the device
4699 */
4700static unsigned long long xhci_calculate_intel_u2_timeout(
4701		struct usb_device *udev,
4702		struct usb_endpoint_descriptor *desc)
4703{
4704	unsigned long long timeout_ns;
4705	unsigned long long u2_del_ns;
4706
4707	timeout_ns = 10 * 1000 * 1000;
4708
4709	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4710			(xhci_service_interval_to_ns(desc) > timeout_ns))
4711		timeout_ns = xhci_service_interval_to_ns(desc);
4712
4713	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4714	if (u2_del_ns > timeout_ns)
4715		timeout_ns = u2_del_ns;
4716
4717	return timeout_ns;
4718}
4719
4720/* Returns the hub-encoded U2 timeout value. */
4721static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4722		struct usb_device *udev,
4723		struct usb_endpoint_descriptor *desc)
4724{
4725	unsigned long long timeout_ns;
4726
4727	/* Prevent U2 if service interval is shorter than U2 exit latency */
4728	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4729		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4730			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4731			return USB3_LPM_DISABLED;
4732		}
4733	}
4734
4735	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4736		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4737	else
4738		timeout_ns = udev->u2_params.sel;
4739
4740	/* The U2 timeout is encoded in 256us intervals */
4741	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4742	/* If the necessary timeout value is bigger than what we can set in the
4743	 * USB 3.0 hub, we have to disable hub-initiated U2.
4744	 */
4745	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4746		return timeout_ns;
4747	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4748			"due to long timeout %llu ms\n", timeout_ns);
4749	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4750}
4751
4752static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4753		struct usb_device *udev,
4754		struct usb_endpoint_descriptor *desc,
4755		enum usb3_link_state state,
4756		u16 *timeout)
4757{
4758	if (state == USB3_LPM_U1)
4759		return xhci_calculate_u1_timeout(xhci, udev, desc);
4760	else if (state == USB3_LPM_U2)
4761		return xhci_calculate_u2_timeout(xhci, udev, desc);
4762
4763	return USB3_LPM_DISABLED;
4764}
4765
4766static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4767		struct usb_device *udev,
4768		struct usb_endpoint_descriptor *desc,
4769		enum usb3_link_state state,
4770		u16 *timeout)
4771{
4772	u16 alt_timeout;
4773
4774	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4775		desc, state, timeout);
4776
4777	/* If we found we can't enable hub-initiated LPM, and
4778	 * the U1 or U2 exit latency was too high to allow
4779	 * device-initiated LPM as well, then we will disable LPM
4780	 * for this device, so stop searching any further.
4781	 */
4782	if (alt_timeout == USB3_LPM_DISABLED) {
4783		*timeout = alt_timeout;
4784		return -E2BIG;
4785	}
4786	if (alt_timeout > *timeout)
4787		*timeout = alt_timeout;
4788	return 0;
4789}
4790
4791static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4792		struct usb_device *udev,
4793		struct usb_host_interface *alt,
4794		enum usb3_link_state state,
4795		u16 *timeout)
4796{
4797	int j;
4798
4799	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4800		if (xhci_update_timeout_for_endpoint(xhci, udev,
4801					&alt->endpoint[j].desc, state, timeout))
4802			return -E2BIG;
 
4803	}
4804	return 0;
4805}
4806
4807static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4808		struct usb_device *udev,
4809		enum usb3_link_state state)
4810{
4811	struct usb_device *parent = udev->parent;
4812	int tier = 1; /* roothub is tier1 */
 
 
 
4813
4814	while (parent) {
4815		parent = parent->parent;
4816		tier++;
4817	}
4818
4819	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4820		goto fail;
4821	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4822		goto fail;
4823
4824	return 0;
4825fail:
4826	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4827			tier);
4828	return -E2BIG;
4829}
4830
 
 
 
 
 
 
 
 
 
 
4831/* Returns the U1 or U2 timeout that should be enabled.
4832 * If the tier check or timeout setting functions return with a non-zero exit
4833 * code, that means the timeout value has been finalized and we shouldn't look
4834 * at any more endpoints.
4835 */
4836static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4837			struct usb_device *udev, enum usb3_link_state state)
4838{
4839	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4840	struct usb_host_config *config;
4841	char *state_name;
4842	int i;
4843	u16 timeout = USB3_LPM_DISABLED;
4844
4845	if (state == USB3_LPM_U1)
4846		state_name = "U1";
4847	else if (state == USB3_LPM_U2)
4848		state_name = "U2";
4849	else {
4850		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4851				state);
4852		return timeout;
4853	}
4854
 
 
 
4855	/* Gather some information about the currently installed configuration
4856	 * and alternate interface settings.
4857	 */
4858	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4859			state, &timeout))
4860		return timeout;
4861
4862	config = udev->actconfig;
4863	if (!config)
4864		return timeout;
4865
4866	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4867		struct usb_driver *driver;
4868		struct usb_interface *intf = config->interface[i];
4869
4870		if (!intf)
4871			continue;
4872
4873		/* Check if any currently bound drivers want hub-initiated LPM
4874		 * disabled.
4875		 */
4876		if (intf->dev.driver) {
4877			driver = to_usb_driver(intf->dev.driver);
4878			if (driver && driver->disable_hub_initiated_lpm) {
4879				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4880					state_name, driver->name);
4881				timeout = xhci_get_timeout_no_hub_lpm(udev,
4882								      state);
4883				if (timeout == USB3_LPM_DISABLED)
4884					return timeout;
4885			}
4886		}
4887
4888		/* Not sure how this could happen... */
4889		if (!intf->cur_altsetting)
4890			continue;
4891
4892		if (xhci_update_timeout_for_interface(xhci, udev,
4893					intf->cur_altsetting,
4894					state, &timeout))
4895			return timeout;
4896	}
4897	return timeout;
4898}
4899
4900static int calculate_max_exit_latency(struct usb_device *udev,
4901		enum usb3_link_state state_changed,
4902		u16 hub_encoded_timeout)
4903{
4904	unsigned long long u1_mel_us = 0;
4905	unsigned long long u2_mel_us = 0;
4906	unsigned long long mel_us = 0;
4907	bool disabling_u1;
4908	bool disabling_u2;
4909	bool enabling_u1;
4910	bool enabling_u2;
4911
4912	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4913			hub_encoded_timeout == USB3_LPM_DISABLED);
4914	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4915			hub_encoded_timeout == USB3_LPM_DISABLED);
4916
4917	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4918			hub_encoded_timeout != USB3_LPM_DISABLED);
4919	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4920			hub_encoded_timeout != USB3_LPM_DISABLED);
4921
4922	/* If U1 was already enabled and we're not disabling it,
4923	 * or we're going to enable U1, account for the U1 max exit latency.
4924	 */
4925	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4926			enabling_u1)
4927		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4928	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4929			enabling_u2)
4930		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4931
4932	mel_us = max(u1_mel_us, u2_mel_us);
4933
 
 
4934	/* xHCI host controller max exit latency field is only 16 bits wide. */
4935	if (mel_us > MAX_EXIT) {
4936		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4937				"is too big.\n", mel_us);
4938		return -E2BIG;
4939	}
4940	return mel_us;
4941}
4942
4943/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4944static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4945			struct usb_device *udev, enum usb3_link_state state)
4946{
4947	struct xhci_hcd	*xhci;
4948	struct xhci_port *port;
4949	u16 hub_encoded_timeout;
4950	int mel;
4951	int ret;
4952
4953	xhci = hcd_to_xhci(hcd);
4954	/* The LPM timeout values are pretty host-controller specific, so don't
4955	 * enable hub-initiated timeouts unless the vendor has provided
4956	 * information about their timeout algorithm.
4957	 */
4958	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4959			!xhci->devs[udev->slot_id])
4960		return USB3_LPM_DISABLED;
4961
4962	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4963		return USB3_LPM_DISABLED;
4964
4965	/* If connected to root port then check port can handle lpm */
4966	if (udev->parent && !udev->parent->parent) {
4967		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4968		if (port->lpm_incapable)
4969			return USB3_LPM_DISABLED;
4970	}
4971
4972	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4973	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4974	if (mel < 0) {
4975		/* Max Exit Latency is too big, disable LPM. */
4976		hub_encoded_timeout = USB3_LPM_DISABLED;
4977		mel = 0;
4978	}
4979
4980	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4981	if (ret)
4982		return ret;
4983	return hub_encoded_timeout;
4984}
4985
4986static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4987			struct usb_device *udev, enum usb3_link_state state)
4988{
4989	struct xhci_hcd	*xhci;
4990	u16 mel;
4991
4992	xhci = hcd_to_xhci(hcd);
4993	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4994			!xhci->devs[udev->slot_id])
4995		return 0;
4996
4997	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4998	return xhci_change_max_exit_latency(xhci, udev, mel);
4999}
5000#else /* CONFIG_PM */
5001
5002static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5003				struct usb_device *udev, int enable)
5004{
5005	return 0;
5006}
5007
5008static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5009{
5010	return 0;
5011}
5012
5013static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5014			struct usb_device *udev, enum usb3_link_state state)
5015{
5016	return USB3_LPM_DISABLED;
5017}
5018
5019static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5020			struct usb_device *udev, enum usb3_link_state state)
5021{
5022	return 0;
5023}
5024#endif	/* CONFIG_PM */
5025
5026/*-------------------------------------------------------------------------*/
5027
5028/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5029 * internal data structures for the device.
5030 */
5031int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5032			struct usb_tt *tt, gfp_t mem_flags)
5033{
5034	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5035	struct xhci_virt_device *vdev;
5036	struct xhci_command *config_cmd;
5037	struct xhci_input_control_ctx *ctrl_ctx;
5038	struct xhci_slot_ctx *slot_ctx;
5039	unsigned long flags;
5040	unsigned think_time;
5041	int ret;
5042
5043	/* Ignore root hubs */
5044	if (!hdev->parent)
5045		return 0;
5046
5047	vdev = xhci->devs[hdev->slot_id];
5048	if (!vdev) {
5049		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5050		return -EINVAL;
5051	}
5052
5053	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5054	if (!config_cmd)
5055		return -ENOMEM;
5056
5057	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5058	if (!ctrl_ctx) {
5059		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5060				__func__);
5061		xhci_free_command(xhci, config_cmd);
5062		return -ENOMEM;
5063	}
5064
5065	spin_lock_irqsave(&xhci->lock, flags);
5066	if (hdev->speed == USB_SPEED_HIGH &&
5067			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5068		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5069		xhci_free_command(xhci, config_cmd);
5070		spin_unlock_irqrestore(&xhci->lock, flags);
5071		return -ENOMEM;
5072	}
5073
5074	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5075	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5076	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5077	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5078	/*
5079	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5080	 * but it may be already set to 1 when setup an xHCI virtual
5081	 * device, so clear it anyway.
5082	 */
5083	if (tt->multi)
5084		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5085	else if (hdev->speed == USB_SPEED_FULL)
5086		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5087
5088	if (xhci->hci_version > 0x95) {
5089		xhci_dbg(xhci, "xHCI version %x needs hub "
5090				"TT think time and number of ports\n",
5091				(unsigned int) xhci->hci_version);
5092		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5093		/* Set TT think time - convert from ns to FS bit times.
5094		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5095		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5096		 *
5097		 * xHCI 1.0: this field shall be 0 if the device is not a
5098		 * High-spped hub.
5099		 */
5100		think_time = tt->think_time;
5101		if (think_time != 0)
5102			think_time = (think_time / 666) - 1;
5103		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5104			slot_ctx->tt_info |=
5105				cpu_to_le32(TT_THINK_TIME(think_time));
5106	} else {
5107		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5108				"TT think time or number of ports\n",
5109				(unsigned int) xhci->hci_version);
5110	}
5111	slot_ctx->dev_state = 0;
5112	spin_unlock_irqrestore(&xhci->lock, flags);
5113
5114	xhci_dbg(xhci, "Set up %s for hub device.\n",
5115			(xhci->hci_version > 0x95) ?
5116			"configure endpoint" : "evaluate context");
5117
5118	/* Issue and wait for the configure endpoint or
5119	 * evaluate context command.
5120	 */
5121	if (xhci->hci_version > 0x95)
5122		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5123				false, false);
5124	else
5125		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5126				true, false);
5127
5128	xhci_free_command(xhci, config_cmd);
5129	return ret;
5130}
5131EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5132
5133static int xhci_get_frame(struct usb_hcd *hcd)
5134{
5135	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5136	/* EHCI mods by the periodic size.  Why? */
5137	return readl(&xhci->run_regs->microframe_index) >> 3;
5138}
5139
5140static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5141{
5142	xhci->usb2_rhub.hcd = hcd;
5143	hcd->speed = HCD_USB2;
5144	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5145	/*
5146	 * USB 2.0 roothub under xHCI has an integrated TT,
5147	 * (rate matching hub) as opposed to having an OHCI/UHCI
5148	 * companion controller.
5149	 */
5150	hcd->has_tt = 1;
5151}
5152
5153static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5154{
5155	unsigned int minor_rev;
5156
5157	/*
5158	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5159	 * should return 0x31 for sbrn, or that the minor revision
5160	 * is a two digit BCD containig minor and sub-minor numbers.
5161	 * This was later clarified in xHCI 1.2.
5162	 *
5163	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5164	 * minor revision set to 0x1 instead of 0x10.
5165	 */
5166	if (xhci->usb3_rhub.min_rev == 0x1)
5167		minor_rev = 1;
5168	else
5169		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5170
5171	switch (minor_rev) {
5172	case 2:
5173		hcd->speed = HCD_USB32;
5174		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5175		hcd->self.root_hub->rx_lanes = 2;
5176		hcd->self.root_hub->tx_lanes = 2;
5177		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5178		break;
5179	case 1:
5180		hcd->speed = HCD_USB31;
5181		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5182		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5183		break;
5184	}
5185	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5186		  minor_rev, minor_rev ? "Enhanced " : "");
5187
5188	xhci->usb3_rhub.hcd = hcd;
5189}
5190
5191int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5192{
5193	struct xhci_hcd		*xhci;
5194	/*
5195	 * TODO: Check with DWC3 clients for sysdev according to
5196	 * quirks
5197	 */
5198	struct device		*dev = hcd->self.sysdev;
 
5199	int			retval;
5200
5201	/* Accept arbitrarily long scatter-gather lists */
5202	hcd->self.sg_tablesize = ~0;
5203
5204	/* support to build packet from discontinuous buffers */
5205	hcd->self.no_sg_constraint = 1;
5206
5207	/* XHCI controllers don't stop the ep queue on short packets :| */
5208	hcd->self.no_stop_on_short = 1;
5209
5210	xhci = hcd_to_xhci(hcd);
5211
5212	if (!usb_hcd_is_primary_hcd(hcd)) {
5213		xhci_hcd_init_usb3_data(xhci, hcd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5214		return 0;
5215	}
5216
5217	mutex_init(&xhci->mutex);
5218	xhci->main_hcd = hcd;
5219	xhci->cap_regs = hcd->regs;
5220	xhci->op_regs = hcd->regs +
5221		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5222	xhci->run_regs = hcd->regs +
5223		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5224	/* Cache read-only capability registers */
5225	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5226	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5227	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5228	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
 
5229	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5230	if (xhci->hci_version > 0x100)
5231		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5232
5233	/* xhci-plat or xhci-pci might have set max_interrupters already */
5234	if ((!xhci->max_interrupters) ||
5235	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5236		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5237
5238	xhci->quirks |= quirks;
5239
5240	if (get_quirks)
5241		get_quirks(dev, xhci);
5242
5243	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5244	 * success event after a short transfer. This quirk will ignore such
5245	 * spurious event.
5246	 */
5247	if (xhci->hci_version > 0x96)
5248		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5249
5250	/* Make sure the HC is halted. */
5251	retval = xhci_halt(xhci);
5252	if (retval)
5253		return retval;
5254
5255	xhci_zero_64b_regs(xhci);
5256
5257	xhci_dbg(xhci, "Resetting HCD\n");
5258	/* Reset the internal HC memory state and registers. */
5259	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5260	if (retval)
5261		return retval;
5262	xhci_dbg(xhci, "Reset complete\n");
5263
5264	/*
5265	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5266	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5267	 * address memory pointers actually. So, this driver clears the AC64
5268	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5269	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5270	 */
5271	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5272		xhci->hcc_params &= ~BIT(0);
5273
5274	/* Set dma_mask and coherent_dma_mask to 64-bits,
5275	 * if xHC supports 64-bit addressing */
5276	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5277			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5278		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5279		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5280	} else {
5281		/*
5282		 * This is to avoid error in cases where a 32-bit USB
5283		 * controller is used on a 64-bit capable system.
5284		 */
5285		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5286		if (retval)
5287			return retval;
5288		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5289		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5290	}
5291
5292	xhci_dbg(xhci, "Calling HCD init\n");
5293	/* Initialize HCD and host controller data structures. */
5294	retval = xhci_init(hcd);
5295	if (retval)
5296		return retval;
5297	xhci_dbg(xhci, "Called HCD init\n");
5298
5299	if (xhci_hcd_is_usb3(hcd))
5300		xhci_hcd_init_usb3_data(xhci, hcd);
5301	else
5302		xhci_hcd_init_usb2_data(xhci, hcd);
5303
5304	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5305		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5306
5307	return 0;
5308}
5309EXPORT_SYMBOL_GPL(xhci_gen_setup);
5310
5311static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5312		struct usb_host_endpoint *ep)
5313{
5314	struct xhci_hcd *xhci;
5315	struct usb_device *udev;
5316	unsigned int slot_id;
5317	unsigned int ep_index;
5318	unsigned long flags;
5319
5320	xhci = hcd_to_xhci(hcd);
5321
5322	spin_lock_irqsave(&xhci->lock, flags);
5323	udev = (struct usb_device *)ep->hcpriv;
5324	slot_id = udev->slot_id;
5325	ep_index = xhci_get_endpoint_index(&ep->desc);
5326
5327	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5328	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5329	spin_unlock_irqrestore(&xhci->lock, flags);
5330}
5331
5332static const struct hc_driver xhci_hc_driver = {
5333	.description =		"xhci-hcd",
5334	.product_desc =		"xHCI Host Controller",
5335	.hcd_priv_size =	sizeof(struct xhci_hcd),
5336
5337	/*
5338	 * generic hardware linkage
5339	 */
5340	.irq =			xhci_irq,
5341	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5342				HCD_BH,
5343
5344	/*
5345	 * basic lifecycle operations
5346	 */
5347	.reset =		NULL, /* set in xhci_init_driver() */
5348	.start =		xhci_run,
5349	.stop =			xhci_stop,
5350	.shutdown =		xhci_shutdown,
5351
5352	/*
5353	 * managing i/o requests and associated device resources
5354	 */
5355	.map_urb_for_dma =      xhci_map_urb_for_dma,
5356	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5357	.urb_enqueue =		xhci_urb_enqueue,
5358	.urb_dequeue =		xhci_urb_dequeue,
5359	.alloc_dev =		xhci_alloc_dev,
5360	.free_dev =		xhci_free_dev,
5361	.alloc_streams =	xhci_alloc_streams,
5362	.free_streams =		xhci_free_streams,
5363	.add_endpoint =		xhci_add_endpoint,
5364	.drop_endpoint =	xhci_drop_endpoint,
5365	.endpoint_disable =	xhci_endpoint_disable,
5366	.endpoint_reset =	xhci_endpoint_reset,
5367	.check_bandwidth =	xhci_check_bandwidth,
5368	.reset_bandwidth =	xhci_reset_bandwidth,
5369	.address_device =	xhci_address_device,
5370	.enable_device =	xhci_enable_device,
5371	.update_hub_device =	xhci_update_hub_device,
5372	.reset_device =		xhci_discover_or_reset_device,
5373
5374	/*
5375	 * scheduling support
5376	 */
5377	.get_frame_number =	xhci_get_frame,
5378
5379	/*
5380	 * root hub support
5381	 */
5382	.hub_control =		xhci_hub_control,
5383	.hub_status_data =	xhci_hub_status_data,
5384	.bus_suspend =		xhci_bus_suspend,
5385	.bus_resume =		xhci_bus_resume,
5386	.get_resuming_ports =	xhci_get_resuming_ports,
5387
5388	/*
5389	 * call back when device connected and addressed
5390	 */
5391	.update_device =        xhci_update_device,
5392	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5393	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5394	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5395	.find_raw_port_number =	xhci_find_raw_port_number,
5396	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5397};
5398
5399void xhci_init_driver(struct hc_driver *drv,
5400		      const struct xhci_driver_overrides *over)
5401{
5402	BUG_ON(!over);
5403
5404	/* Copy the generic table to drv then apply the overrides */
5405	*drv = xhci_hc_driver;
5406
5407	if (over) {
5408		drv->hcd_priv_size += over->extra_priv_size;
5409		if (over->reset)
5410			drv->reset = over->reset;
5411		if (over->start)
5412			drv->start = over->start;
5413		if (over->add_endpoint)
5414			drv->add_endpoint = over->add_endpoint;
5415		if (over->drop_endpoint)
5416			drv->drop_endpoint = over->drop_endpoint;
5417		if (over->check_bandwidth)
5418			drv->check_bandwidth = over->check_bandwidth;
5419		if (over->reset_bandwidth)
5420			drv->reset_bandwidth = over->reset_bandwidth;
5421		if (over->update_hub_device)
5422			drv->update_hub_device = over->update_hub_device;
5423		if (over->hub_control)
5424			drv->hub_control = over->hub_control;
5425	}
5426}
5427EXPORT_SYMBOL_GPL(xhci_init_driver);
5428
5429MODULE_DESCRIPTION(DRIVER_DESC);
5430MODULE_AUTHOR(DRIVER_AUTHOR);
5431MODULE_LICENSE("GPL");
5432
5433static int __init xhci_hcd_init(void)
5434{
5435	/*
5436	 * Check the compiler generated sizes of structures that must be laid
5437	 * out in specific ways for hardware access.
5438	 */
5439	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5440	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5441	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5442	/* xhci_device_control has eight fields, and also
5443	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5444	 */
5445	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5446	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5447	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5448	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5449	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5450	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5451	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5452
5453	if (usb_disabled())
5454		return -ENODEV;
5455
5456	xhci_debugfs_create_root();
5457	xhci_dbc_init();
5458
5459	return 0;
5460}
5461
5462/*
5463 * If an init function is provided, an exit function must also be provided
5464 * to allow module unload.
5465 */
5466static void __exit xhci_hcd_fini(void)
5467{
5468	xhci_debugfs_remove_root();
5469	xhci_dbc_exit();
5470}
5471
5472module_init(xhci_hcd_init);
5473module_exit(xhci_hcd_fini);