Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/pci.h>
12#include <linux/iopoll.h>
13#include <linux/irq.h>
14#include <linux/log2.h>
15#include <linux/module.h>
16#include <linux/moduleparam.h>
17#include <linux/slab.h>
18#include <linux/dmi.h>
19#include <linux/dma-mapping.h>
20
21#include "xhci.h"
22#include "xhci-trace.h"
23#include "xhci-mtk.h"
24#include "xhci-debugfs.h"
25#include "xhci-dbgcap.h"
26
27#define DRIVER_AUTHOR "Sarah Sharp"
28#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30#define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33static int link_quirk;
34module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37static unsigned long long quirks;
38module_param(quirks, ullong, S_IRUGO);
39MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42{
43 struct xhci_segment *seg = ring->first_seg;
44
45 if (!td || !td->start_seg)
46 return false;
47 do {
48 if (seg == td->start_seg)
49 return true;
50 seg = seg->next;
51 } while (seg && seg != ring->first_seg);
52
53 return false;
54}
55
56/*
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
62 *
63 * Returns negative errno, or zero on success
64 *
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
68 */
69int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70{
71 u32 result;
72 int ret;
73
74 ret = readl_poll_timeout_atomic(ptr, result,
75 (result & mask) == done ||
76 result == U32_MAX,
77 1, usec);
78 if (result == U32_MAX) /* card removed */
79 return -ENODEV;
80
81 return ret;
82}
83
84/*
85 * Disable interrupts and begin the xHCI halting process.
86 */
87void xhci_quiesce(struct xhci_hcd *xhci)
88{
89 u32 halted;
90 u32 cmd;
91 u32 mask;
92
93 mask = ~(XHCI_IRQS);
94 halted = readl(&xhci->op_regs->status) & STS_HALT;
95 if (!halted)
96 mask &= ~CMD_RUN;
97
98 cmd = readl(&xhci->op_regs->command);
99 cmd &= mask;
100 writel(cmd, &xhci->op_regs->command);
101}
102
103/*
104 * Force HC into halt state.
105 *
106 * Disable any IRQs and clear the run/stop bit.
107 * HC will complete any current and actively pipelined transactions, and
108 * should halt within 16 ms of the run/stop bit being cleared.
109 * Read HC Halted bit in the status register to see when the HC is finished.
110 */
111int xhci_halt(struct xhci_hcd *xhci)
112{
113 int ret;
114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 xhci_quiesce(xhci);
116
117 ret = xhci_handshake(&xhci->op_regs->status,
118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 if (ret) {
120 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 return ret;
122 }
123 xhci->xhc_state |= XHCI_STATE_HALTED;
124 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 return ret;
126}
127
128/*
129 * Set the run bit and wait for the host to be running.
130 */
131int xhci_start(struct xhci_hcd *xhci)
132{
133 u32 temp;
134 int ret;
135
136 temp = readl(&xhci->op_regs->command);
137 temp |= (CMD_RUN);
138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 temp);
140 writel(temp, &xhci->op_regs->command);
141
142 /*
143 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 * running.
145 */
146 ret = xhci_handshake(&xhci->op_regs->status,
147 STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 if (ret == -ETIMEDOUT)
149 xhci_err(xhci, "Host took too long to start, "
150 "waited %u microseconds.\n",
151 XHCI_MAX_HALT_USEC);
152 if (!ret)
153 /* clear state flags. Including dying, halted or removing */
154 xhci->xhc_state = 0;
155
156 return ret;
157}
158
159/*
160 * Reset a halted HC.
161 *
162 * This resets pipelines, timers, counters, state machines, etc.
163 * Transactions will be terminated immediately, and operational registers
164 * will be set to their defaults.
165 */
166int xhci_reset(struct xhci_hcd *xhci)
167{
168 u32 command;
169 u32 state;
170 int ret;
171
172 state = readl(&xhci->op_regs->status);
173
174 if (state == ~(u32)0) {
175 xhci_warn(xhci, "Host not accessible, reset failed.\n");
176 return -ENODEV;
177 }
178
179 if ((state & STS_HALT) == 0) {
180 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181 return 0;
182 }
183
184 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185 command = readl(&xhci->op_regs->command);
186 command |= CMD_RESET;
187 writel(command, &xhci->op_regs->command);
188
189 /* Existing Intel xHCI controllers require a delay of 1 mS,
190 * after setting the CMD_RESET bit, and before accessing any
191 * HC registers. This allows the HC to complete the
192 * reset operation and be ready for HC register access.
193 * Without this delay, the subsequent HC register access,
194 * may result in a system hang very rarely.
195 */
196 if (xhci->quirks & XHCI_INTEL_HOST)
197 udelay(1000);
198
199 ret = xhci_handshake(&xhci->op_regs->command,
200 CMD_RESET, 0, 10 * 1000 * 1000);
201 if (ret)
202 return ret;
203
204 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206
207 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208 "Wait for controller to be ready for doorbell rings");
209 /*
210 * xHCI cannot write to any doorbells or operational registers other
211 * than status until the "Controller Not Ready" flag is cleared.
212 */
213 ret = xhci_handshake(&xhci->op_regs->status,
214 STS_CNR, 0, 10 * 1000 * 1000);
215
216 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223 return ret;
224}
225
226static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227{
228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 int err, i;
230 u64 val;
231
232 /*
233 * Some Renesas controllers get into a weird state if they are
234 * reset while programmed with 64bit addresses (they will preserve
235 * the top half of the address in internal, non visible
236 * registers). You end up with half the address coming from the
237 * kernel, and the other half coming from the firmware. Also,
238 * changing the programming leads to extra accesses even if the
239 * controller is supposed to be halted. The controller ends up with
240 * a fatal fault, and is then ripe for being properly reset.
241 *
242 * Special care is taken to only apply this if the device is behind
243 * an iommu. Doing anything when there is no iommu is definitely
244 * unsafe...
245 */
246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 return;
248
249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251 /* Clear HSEIE so that faults do not get signaled */
252 val = readl(&xhci->op_regs->command);
253 val &= ~CMD_HSEIE;
254 writel(val, &xhci->op_regs->command);
255
256 /* Clear HSE (aka FATAL) */
257 val = readl(&xhci->op_regs->status);
258 val |= STS_FATAL;
259 writel(val, &xhci->op_regs->status);
260
261 /* Now zero the registers, and brace for impact */
262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 if (upper_32_bits(val))
264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 if (upper_32_bits(val))
267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270 struct xhci_intr_reg __iomem *ir;
271
272 ir = &xhci->run_regs->ir_set[i];
273 val = xhci_read_64(xhci, &ir->erst_base);
274 if (upper_32_bits(val))
275 xhci_write_64(xhci, 0, &ir->erst_base);
276 val= xhci_read_64(xhci, &ir->erst_dequeue);
277 if (upper_32_bits(val))
278 xhci_write_64(xhci, 0, &ir->erst_dequeue);
279 }
280
281 /* Wait for the fault to appear. It will be cleared on reset */
282 err = xhci_handshake(&xhci->op_regs->status,
283 STS_FATAL, STS_FATAL,
284 XHCI_MAX_HALT_USEC);
285 if (!err)
286 xhci_info(xhci, "Fault detected\n");
287}
288
289#ifdef CONFIG_USB_PCI
290/*
291 * Set up MSI
292 */
293static int xhci_setup_msi(struct xhci_hcd *xhci)
294{
295 int ret;
296 /*
297 * TODO:Check with MSI Soc for sysdev
298 */
299 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300
301 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302 if (ret < 0) {
303 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304 "failed to allocate MSI entry");
305 return ret;
306 }
307
308 ret = request_irq(pdev->irq, xhci_msi_irq,
309 0, "xhci_hcd", xhci_to_hcd(xhci));
310 if (ret) {
311 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312 "disable MSI interrupt");
313 pci_free_irq_vectors(pdev);
314 }
315
316 return ret;
317}
318
319/*
320 * Set up MSI-X
321 */
322static int xhci_setup_msix(struct xhci_hcd *xhci)
323{
324 int i, ret = 0;
325 struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328 /*
329 * calculate number of msi-x vectors supported.
330 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331 * with max number of interrupters based on the xhci HCSPARAMS1.
332 * - num_online_cpus: maximum msi-x vectors per CPUs core.
333 * Add additional 1 vector to ensure always available interrupt.
334 */
335 xhci->msix_count = min(num_online_cpus() + 1,
336 HCS_MAX_INTRS(xhci->hcs_params1));
337
338 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339 PCI_IRQ_MSIX);
340 if (ret < 0) {
341 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342 "Failed to enable MSI-X");
343 return ret;
344 }
345
346 for (i = 0; i < xhci->msix_count; i++) {
347 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348 "xhci_hcd", xhci_to_hcd(xhci));
349 if (ret)
350 goto disable_msix;
351 }
352
353 hcd->msix_enabled = 1;
354 return ret;
355
356disable_msix:
357 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358 while (--i >= 0)
359 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360 pci_free_irq_vectors(pdev);
361 return ret;
362}
363
364/* Free any IRQs and disable MSI-X */
365static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366{
367 struct usb_hcd *hcd = xhci_to_hcd(xhci);
368 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369
370 if (xhci->quirks & XHCI_PLAT)
371 return;
372
373 /* return if using legacy interrupt */
374 if (hcd->irq > 0)
375 return;
376
377 if (hcd->msix_enabled) {
378 int i;
379
380 for (i = 0; i < xhci->msix_count; i++)
381 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382 } else {
383 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384 }
385
386 pci_free_irq_vectors(pdev);
387 hcd->msix_enabled = 0;
388}
389
390static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391{
392 struct usb_hcd *hcd = xhci_to_hcd(xhci);
393
394 if (hcd->msix_enabled) {
395 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396 int i;
397
398 for (i = 0; i < xhci->msix_count; i++)
399 synchronize_irq(pci_irq_vector(pdev, i));
400 }
401}
402
403static int xhci_try_enable_msi(struct usb_hcd *hcd)
404{
405 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406 struct pci_dev *pdev;
407 int ret;
408
409 /* The xhci platform device has set up IRQs through usb_add_hcd. */
410 if (xhci->quirks & XHCI_PLAT)
411 return 0;
412
413 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414 /*
415 * Some Fresco Logic host controllers advertise MSI, but fail to
416 * generate interrupts. Don't even try to enable MSI.
417 */
418 if (xhci->quirks & XHCI_BROKEN_MSI)
419 goto legacy_irq;
420
421 /* unregister the legacy interrupt */
422 if (hcd->irq)
423 free_irq(hcd->irq, hcd);
424 hcd->irq = 0;
425
426 ret = xhci_setup_msix(xhci);
427 if (ret)
428 /* fall back to msi*/
429 ret = xhci_setup_msi(xhci);
430
431 if (!ret) {
432 hcd->msi_enabled = 1;
433 return 0;
434 }
435
436 if (!pdev->irq) {
437 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438 return -EINVAL;
439 }
440
441 legacy_irq:
442 if (!strlen(hcd->irq_descr))
443 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444 hcd->driver->description, hcd->self.busnum);
445
446 /* fall back to legacy interrupt*/
447 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448 hcd->irq_descr, hcd);
449 if (ret) {
450 xhci_err(xhci, "request interrupt %d failed\n",
451 pdev->irq);
452 return ret;
453 }
454 hcd->irq = pdev->irq;
455 return 0;
456}
457
458#else
459
460static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461{
462 return 0;
463}
464
465static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466{
467}
468
469static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470{
471}
472
473#endif
474
475static void compliance_mode_recovery(struct timer_list *t)
476{
477 struct xhci_hcd *xhci;
478 struct usb_hcd *hcd;
479 struct xhci_hub *rhub;
480 u32 temp;
481 int i;
482
483 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484 rhub = &xhci->usb3_rhub;
485
486 for (i = 0; i < rhub->num_ports; i++) {
487 temp = readl(rhub->ports[i]->addr);
488 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489 /*
490 * Compliance Mode Detected. Letting USB Core
491 * handle the Warm Reset
492 */
493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494 "Compliance mode detected->port %d",
495 i + 1);
496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 "Attempting compliance mode recovery");
498 hcd = xhci->shared_hcd;
499
500 if (hcd->state == HC_STATE_SUSPENDED)
501 usb_hcd_resume_root_hub(hcd);
502
503 usb_hcd_poll_rh_status(hcd);
504 }
505 }
506
507 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508 mod_timer(&xhci->comp_mode_recovery_timer,
509 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510}
511
512/*
513 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514 * that causes ports behind that hardware to enter compliance mode sometimes.
515 * The quirk creates a timer that polls every 2 seconds the link state of
516 * each host controller's port and recovers it by issuing a Warm reset
517 * if Compliance mode is detected, otherwise the port will become "dead" (no
518 * device connections or disconnections will be detected anymore). Becasue no
519 * status event is generated when entering compliance mode (per xhci spec),
520 * this quirk is needed on systems that have the failing hardware installed.
521 */
522static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523{
524 xhci->port_status_u0 = 0;
525 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526 0);
527 xhci->comp_mode_recovery_timer.expires = jiffies +
528 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529
530 add_timer(&xhci->comp_mode_recovery_timer);
531 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532 "Compliance mode recovery timer initialized");
533}
534
535/*
536 * This function identifies the systems that have installed the SN65LVPE502CP
537 * USB3.0 re-driver and that need the Compliance Mode Quirk.
538 * Systems:
539 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540 */
541static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542{
543 const char *dmi_product_name, *dmi_sys_vendor;
544
545 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547 if (!dmi_product_name || !dmi_sys_vendor)
548 return false;
549
550 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551 return false;
552
553 if (strstr(dmi_product_name, "Z420") ||
554 strstr(dmi_product_name, "Z620") ||
555 strstr(dmi_product_name, "Z820") ||
556 strstr(dmi_product_name, "Z1 Workstation"))
557 return true;
558
559 return false;
560}
561
562static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563{
564 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565}
566
567
568/*
569 * Initialize memory for HCD and xHC (one-time init).
570 *
571 * Program the PAGESIZE register, initialize the device context array, create
572 * device contexts (?), set up a command ring segment (or two?), create event
573 * ring (one for now).
574 */
575static int xhci_init(struct usb_hcd *hcd)
576{
577 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578 int retval = 0;
579
580 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581 spin_lock_init(&xhci->lock);
582 if (xhci->hci_version == 0x95 && link_quirk) {
583 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584 "QUIRK: Not clearing Link TRB chain bits.");
585 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586 } else {
587 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588 "xHCI doesn't need link TRB QUIRK");
589 }
590 retval = xhci_mem_init(xhci, GFP_KERNEL);
591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592
593 /* Initializing Compliance Mode Recovery Data If Needed */
594 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596 compliance_mode_recovery_timer_init(xhci);
597 }
598
599 return retval;
600}
601
602/*-------------------------------------------------------------------------*/
603
604
605static int xhci_run_finished(struct xhci_hcd *xhci)
606{
607 if (xhci_start(xhci)) {
608 xhci_halt(xhci);
609 return -ENODEV;
610 }
611 xhci->shared_hcd->state = HC_STATE_RUNNING;
612 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613
614 if (xhci->quirks & XHCI_NEC_HOST)
615 xhci_ring_cmd_db(xhci);
616
617 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618 "Finished xhci_run for USB3 roothub");
619 return 0;
620}
621
622/*
623 * Start the HC after it was halted.
624 *
625 * This function is called by the USB core when the HC driver is added.
626 * Its opposite is xhci_stop().
627 *
628 * xhci_init() must be called once before this function can be called.
629 * Reset the HC, enable device slot contexts, program DCBAAP, and
630 * set command ring pointer and event ring pointer.
631 *
632 * Setup MSI-X vectors and enable interrupts.
633 */
634int xhci_run(struct usb_hcd *hcd)
635{
636 u32 temp;
637 u64 temp_64;
638 int ret;
639 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640
641 /* Start the xHCI host controller running only after the USB 2.0 roothub
642 * is setup.
643 */
644
645 hcd->uses_new_polling = 1;
646 if (!usb_hcd_is_primary_hcd(hcd))
647 return xhci_run_finished(xhci);
648
649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650
651 ret = xhci_try_enable_msi(hcd);
652 if (ret)
653 return ret;
654
655 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656 temp_64 &= ~ERST_PTR_MASK;
657 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659
660 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 "// Set the interrupt modulation register");
662 temp = readl(&xhci->ir_set->irq_control);
663 temp &= ~ER_IRQ_INTERVAL_MASK;
664 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665 writel(temp, &xhci->ir_set->irq_control);
666
667 /* Set the HCD state before we enable the irqs */
668 temp = readl(&xhci->op_regs->command);
669 temp |= (CMD_EIE);
670 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 "// Enable interrupts, cmd = 0x%x.", temp);
672 writel(temp, &xhci->op_regs->command);
673
674 temp = readl(&xhci->ir_set->irq_pending);
675 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679
680 if (xhci->quirks & XHCI_NEC_HOST) {
681 struct xhci_command *command;
682
683 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684 if (!command)
685 return -ENOMEM;
686
687 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688 TRB_TYPE(TRB_NEC_GET_FW));
689 if (ret)
690 xhci_free_command(xhci, command);
691 }
692 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 "Finished xhci_run for USB2 roothub");
694
695 xhci_dbc_init(xhci);
696
697 xhci_debugfs_init(xhci);
698
699 return 0;
700}
701EXPORT_SYMBOL_GPL(xhci_run);
702
703/*
704 * Stop xHCI driver.
705 *
706 * This function is called by the USB core when the HC driver is removed.
707 * Its opposite is xhci_run().
708 *
709 * Disable device contexts, disable IRQs, and quiesce the HC.
710 * Reset the HC, finish any completed transactions, and cleanup memory.
711 */
712static void xhci_stop(struct usb_hcd *hcd)
713{
714 u32 temp;
715 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716
717 mutex_lock(&xhci->mutex);
718
719 /* Only halt host and free memory after both hcds are removed */
720 if (!usb_hcd_is_primary_hcd(hcd)) {
721 mutex_unlock(&xhci->mutex);
722 return;
723 }
724
725 xhci_dbc_exit(xhci);
726
727 spin_lock_irq(&xhci->lock);
728 xhci->xhc_state |= XHCI_STATE_HALTED;
729 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730 xhci_halt(xhci);
731 xhci_reset(xhci);
732 spin_unlock_irq(&xhci->lock);
733
734 xhci_cleanup_msix(xhci);
735
736 /* Deleting Compliance Mode Recovery Timer */
737 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738 (!(xhci_all_ports_seen_u0(xhci)))) {
739 del_timer_sync(&xhci->comp_mode_recovery_timer);
740 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741 "%s: compliance mode recovery timer deleted",
742 __func__);
743 }
744
745 if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 usb_amd_dev_put();
747
748 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749 "// Disabling event ring interrupts");
750 temp = readl(&xhci->op_regs->status);
751 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752 temp = readl(&xhci->ir_set->irq_pending);
753 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754
755 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756 xhci_mem_cleanup(xhci);
757 xhci_debugfs_exit(xhci);
758 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 "xhci_stop completed - status = %x",
760 readl(&xhci->op_regs->status));
761 mutex_unlock(&xhci->mutex);
762}
763
764/*
765 * Shutdown HC (not bus-specific)
766 *
767 * This is called when the machine is rebooting or halting. We assume that the
768 * machine will be powered off, and the HC's internal state will be reset.
769 * Don't bother to free memory.
770 *
771 * This will only ever be called with the main usb_hcd (the USB3 roothub).
772 */
773static void xhci_shutdown(struct usb_hcd *hcd)
774{
775 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776
777 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779
780 spin_lock_irq(&xhci->lock);
781 xhci_halt(xhci);
782 /* Workaround for spurious wakeups at shutdown with HSW */
783 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784 xhci_reset(xhci);
785 spin_unlock_irq(&xhci->lock);
786
787 xhci_cleanup_msix(xhci);
788
789 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790 "xhci_shutdown completed - status = %x",
791 readl(&xhci->op_regs->status));
792
793 /* Yet another workaround for spurious wakeups at shutdown with HSW */
794 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
795 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
796}
797
798#ifdef CONFIG_PM
799static void xhci_save_registers(struct xhci_hcd *xhci)
800{
801 xhci->s3.command = readl(&xhci->op_regs->command);
802 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
803 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
804 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
805 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
806 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
807 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
808 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
809 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
810}
811
812static void xhci_restore_registers(struct xhci_hcd *xhci)
813{
814 writel(xhci->s3.command, &xhci->op_regs->command);
815 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
816 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
817 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
818 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
819 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
820 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
821 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
822 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
823}
824
825static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
826{
827 u64 val_64;
828
829 /* step 2: initialize command ring buffer */
830 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
831 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
832 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
833 xhci->cmd_ring->dequeue) &
834 (u64) ~CMD_RING_RSVD_BITS) |
835 xhci->cmd_ring->cycle_state;
836 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
837 "// Setting command ring address to 0x%llx",
838 (long unsigned long) val_64);
839 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
840}
841
842/*
843 * The whole command ring must be cleared to zero when we suspend the host.
844 *
845 * The host doesn't save the command ring pointer in the suspend well, so we
846 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
847 * aligned, because of the reserved bits in the command ring dequeue pointer
848 * register. Therefore, we can't just set the dequeue pointer back in the
849 * middle of the ring (TRBs are 16-byte aligned).
850 */
851static void xhci_clear_command_ring(struct xhci_hcd *xhci)
852{
853 struct xhci_ring *ring;
854 struct xhci_segment *seg;
855
856 ring = xhci->cmd_ring;
857 seg = ring->deq_seg;
858 do {
859 memset(seg->trbs, 0,
860 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
861 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
862 cpu_to_le32(~TRB_CYCLE);
863 seg = seg->next;
864 } while (seg != ring->deq_seg);
865
866 /* Reset the software enqueue and dequeue pointers */
867 ring->deq_seg = ring->first_seg;
868 ring->dequeue = ring->first_seg->trbs;
869 ring->enq_seg = ring->deq_seg;
870 ring->enqueue = ring->dequeue;
871
872 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
873 /*
874 * Ring is now zeroed, so the HW should look for change of ownership
875 * when the cycle bit is set to 1.
876 */
877 ring->cycle_state = 1;
878
879 /*
880 * Reset the hardware dequeue pointer.
881 * Yes, this will need to be re-written after resume, but we're paranoid
882 * and want to make sure the hardware doesn't access bogus memory
883 * because, say, the BIOS or an SMI started the host without changing
884 * the command ring pointers.
885 */
886 xhci_set_cmd_ring_deq(xhci);
887}
888
889static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
890{
891 struct xhci_port **ports;
892 int port_index;
893 unsigned long flags;
894 u32 t1, t2, portsc;
895
896 spin_lock_irqsave(&xhci->lock, flags);
897
898 /* disable usb3 ports Wake bits */
899 port_index = xhci->usb3_rhub.num_ports;
900 ports = xhci->usb3_rhub.ports;
901 while (port_index--) {
902 t1 = readl(ports[port_index]->addr);
903 portsc = t1;
904 t1 = xhci_port_state_to_neutral(t1);
905 t2 = t1 & ~PORT_WAKE_BITS;
906 if (t1 != t2) {
907 writel(t2, ports[port_index]->addr);
908 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
909 xhci->usb3_rhub.hcd->self.busnum,
910 port_index + 1, portsc, t2);
911 }
912 }
913
914 /* disable usb2 ports Wake bits */
915 port_index = xhci->usb2_rhub.num_ports;
916 ports = xhci->usb2_rhub.ports;
917 while (port_index--) {
918 t1 = readl(ports[port_index]->addr);
919 portsc = t1;
920 t1 = xhci_port_state_to_neutral(t1);
921 t2 = t1 & ~PORT_WAKE_BITS;
922 if (t1 != t2) {
923 writel(t2, ports[port_index]->addr);
924 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
925 xhci->usb2_rhub.hcd->self.busnum,
926 port_index + 1, portsc, t2);
927 }
928 }
929 spin_unlock_irqrestore(&xhci->lock, flags);
930}
931
932static bool xhci_pending_portevent(struct xhci_hcd *xhci)
933{
934 struct xhci_port **ports;
935 int port_index;
936 u32 status;
937 u32 portsc;
938
939 status = readl(&xhci->op_regs->status);
940 if (status & STS_EINT)
941 return true;
942 /*
943 * Checking STS_EINT is not enough as there is a lag between a change
944 * bit being set and the Port Status Change Event that it generated
945 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
946 */
947
948 port_index = xhci->usb2_rhub.num_ports;
949 ports = xhci->usb2_rhub.ports;
950 while (port_index--) {
951 portsc = readl(ports[port_index]->addr);
952 if (portsc & PORT_CHANGE_MASK ||
953 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
954 return true;
955 }
956 port_index = xhci->usb3_rhub.num_ports;
957 ports = xhci->usb3_rhub.ports;
958 while (port_index--) {
959 portsc = readl(ports[port_index]->addr);
960 if (portsc & PORT_CHANGE_MASK ||
961 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
962 return true;
963 }
964 return false;
965}
966
967/*
968 * Stop HC (not bus-specific)
969 *
970 * This is called when the machine transition into S3/S4 mode.
971 *
972 */
973int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
974{
975 int rc = 0;
976 unsigned int delay = XHCI_MAX_HALT_USEC;
977 struct usb_hcd *hcd = xhci_to_hcd(xhci);
978 u32 command;
979 u32 res;
980
981 if (!hcd->state)
982 return 0;
983
984 if (hcd->state != HC_STATE_SUSPENDED ||
985 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
986 return -EINVAL;
987
988 xhci_dbc_suspend(xhci);
989
990 /* Clear root port wake on bits if wakeup not allowed. */
991 if (!do_wakeup)
992 xhci_disable_port_wake_on_bits(xhci);
993
994 /* Don't poll the roothubs on bus suspend. */
995 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
996 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
997 del_timer_sync(&hcd->rh_timer);
998 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
999 del_timer_sync(&xhci->shared_hcd->rh_timer);
1000
1001 if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002 usleep_range(1000, 1500);
1003
1004 spin_lock_irq(&xhci->lock);
1005 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007 /* step 1: stop endpoint */
1008 /* skipped assuming that port suspend has done */
1009
1010 /* step 2: clear Run/Stop bit */
1011 command = readl(&xhci->op_regs->command);
1012 command &= ~CMD_RUN;
1013 writel(command, &xhci->op_regs->command);
1014
1015 /* Some chips from Fresco Logic need an extraordinary delay */
1016 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017
1018 if (xhci_handshake(&xhci->op_regs->status,
1019 STS_HALT, STS_HALT, delay)) {
1020 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021 spin_unlock_irq(&xhci->lock);
1022 return -ETIMEDOUT;
1023 }
1024 xhci_clear_command_ring(xhci);
1025
1026 /* step 3: save registers */
1027 xhci_save_registers(xhci);
1028
1029 /* step 4: set CSS flag */
1030 command = readl(&xhci->op_regs->command);
1031 command |= CMD_CSS;
1032 writel(command, &xhci->op_regs->command);
1033 xhci->broken_suspend = 0;
1034 if (xhci_handshake(&xhci->op_regs->status,
1035 STS_SAVE, 0, 20 * 1000)) {
1036 /*
1037 * AMD SNPS xHC 3.0 occasionally does not clear the
1038 * SSS bit of USBSTS and when driver tries to poll
1039 * to see if the xHC clears BIT(8) which never happens
1040 * and driver assumes that controller is not responding
1041 * and times out. To workaround this, its good to check
1042 * if SRE and HCE bits are not set (as per xhci
1043 * Section 5.4.2) and bypass the timeout.
1044 */
1045 res = readl(&xhci->op_regs->status);
1046 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047 (((res & STS_SRE) == 0) &&
1048 ((res & STS_HCE) == 0))) {
1049 xhci->broken_suspend = 1;
1050 } else {
1051 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052 spin_unlock_irq(&xhci->lock);
1053 return -ETIMEDOUT;
1054 }
1055 }
1056 spin_unlock_irq(&xhci->lock);
1057
1058 /*
1059 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060 * is about to be suspended.
1061 */
1062 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063 (!(xhci_all_ports_seen_u0(xhci)))) {
1064 del_timer_sync(&xhci->comp_mode_recovery_timer);
1065 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066 "%s: compliance mode recovery timer deleted",
1067 __func__);
1068 }
1069
1070 /* step 5: remove core well power */
1071 /* synchronize irq when using MSI-X */
1072 xhci_msix_sync_irqs(xhci);
1073
1074 return rc;
1075}
1076EXPORT_SYMBOL_GPL(xhci_suspend);
1077
1078/*
1079 * start xHC (not bus-specific)
1080 *
1081 * This is called when the machine transition from S3/S4 mode.
1082 *
1083 */
1084int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085{
1086 u32 command, temp = 0;
1087 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1088 struct usb_hcd *secondary_hcd;
1089 int retval = 0;
1090 bool comp_timer_running = false;
1091
1092 if (!hcd->state)
1093 return 0;
1094
1095 /* Wait a bit if either of the roothubs need to settle from the
1096 * transition into bus suspend.
1097 */
1098
1099 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101 msleep(100);
1102
1103 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1105
1106 spin_lock_irq(&xhci->lock);
1107 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108 hibernated = true;
1109
1110 if (!hibernated) {
1111 /*
1112 * Some controllers might lose power during suspend, so wait
1113 * for controller not ready bit to clear, just as in xHC init.
1114 */
1115 retval = xhci_handshake(&xhci->op_regs->status,
1116 STS_CNR, 0, 10 * 1000 * 1000);
1117 if (retval) {
1118 xhci_warn(xhci, "Controller not ready at resume %d\n",
1119 retval);
1120 spin_unlock_irq(&xhci->lock);
1121 return retval;
1122 }
1123 /* step 1: restore register */
1124 xhci_restore_registers(xhci);
1125 /* step 2: initialize command ring buffer */
1126 xhci_set_cmd_ring_deq(xhci);
1127 /* step 3: restore state and start state*/
1128 /* step 3: set CRS flag */
1129 command = readl(&xhci->op_regs->command);
1130 command |= CMD_CRS;
1131 writel(command, &xhci->op_regs->command);
1132 /*
1133 * Some controllers take up to 55+ ms to complete the controller
1134 * restore so setting the timeout to 100ms. Xhci specification
1135 * doesn't mention any timeout value.
1136 */
1137 if (xhci_handshake(&xhci->op_regs->status,
1138 STS_RESTORE, 0, 100 * 1000)) {
1139 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1140 spin_unlock_irq(&xhci->lock);
1141 return -ETIMEDOUT;
1142 }
1143 temp = readl(&xhci->op_regs->status);
1144 }
1145
1146 /* If restore operation fails, re-initialize the HC during resume */
1147 if ((temp & STS_SRE) || hibernated) {
1148
1149 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1150 !(xhci_all_ports_seen_u0(xhci))) {
1151 del_timer_sync(&xhci->comp_mode_recovery_timer);
1152 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1153 "Compliance Mode Recovery Timer deleted!");
1154 }
1155
1156 /* Let the USB core know _both_ roothubs lost power. */
1157 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1158 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1159
1160 xhci_dbg(xhci, "Stop HCD\n");
1161 xhci_halt(xhci);
1162 xhci_zero_64b_regs(xhci);
1163 xhci_reset(xhci);
1164 spin_unlock_irq(&xhci->lock);
1165 xhci_cleanup_msix(xhci);
1166
1167 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1168 temp = readl(&xhci->op_regs->status);
1169 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1170 temp = readl(&xhci->ir_set->irq_pending);
1171 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1172
1173 xhci_dbg(xhci, "cleaning up memory\n");
1174 xhci_mem_cleanup(xhci);
1175 xhci_debugfs_exit(xhci);
1176 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1177 readl(&xhci->op_regs->status));
1178
1179 /* USB core calls the PCI reinit and start functions twice:
1180 * first with the primary HCD, and then with the secondary HCD.
1181 * If we don't do the same, the host will never be started.
1182 */
1183 if (!usb_hcd_is_primary_hcd(hcd))
1184 secondary_hcd = hcd;
1185 else
1186 secondary_hcd = xhci->shared_hcd;
1187
1188 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1189 retval = xhci_init(hcd->primary_hcd);
1190 if (retval)
1191 return retval;
1192 comp_timer_running = true;
1193
1194 xhci_dbg(xhci, "Start the primary HCD\n");
1195 retval = xhci_run(hcd->primary_hcd);
1196 if (!retval) {
1197 xhci_dbg(xhci, "Start the secondary HCD\n");
1198 retval = xhci_run(secondary_hcd);
1199 }
1200 hcd->state = HC_STATE_SUSPENDED;
1201 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1202 goto done;
1203 }
1204
1205 /* step 4: set Run/Stop bit */
1206 command = readl(&xhci->op_regs->command);
1207 command |= CMD_RUN;
1208 writel(command, &xhci->op_regs->command);
1209 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1210 0, 250 * 1000);
1211
1212 /* step 5: walk topology and initialize portsc,
1213 * portpmsc and portli
1214 */
1215 /* this is done in bus_resume */
1216
1217 /* step 6: restart each of the previously
1218 * Running endpoints by ringing their doorbells
1219 */
1220
1221 spin_unlock_irq(&xhci->lock);
1222
1223 xhci_dbc_resume(xhci);
1224
1225 done:
1226 if (retval == 0) {
1227 /* Resume root hubs only when have pending events. */
1228 if (xhci_pending_portevent(xhci)) {
1229 usb_hcd_resume_root_hub(xhci->shared_hcd);
1230 usb_hcd_resume_root_hub(hcd);
1231 }
1232 }
1233
1234 /*
1235 * If system is subject to the Quirk, Compliance Mode Timer needs to
1236 * be re-initialized Always after a system resume. Ports are subject
1237 * to suffer the Compliance Mode issue again. It doesn't matter if
1238 * ports have entered previously to U0 before system's suspension.
1239 */
1240 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1241 compliance_mode_recovery_timer_init(xhci);
1242
1243 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1244 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1245
1246 /* Re-enable port polling. */
1247 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1248 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1249 usb_hcd_poll_rh_status(xhci->shared_hcd);
1250 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1251 usb_hcd_poll_rh_status(hcd);
1252
1253 return retval;
1254}
1255EXPORT_SYMBOL_GPL(xhci_resume);
1256#endif /* CONFIG_PM */
1257
1258/*-------------------------------------------------------------------------*/
1259
1260/*
1261 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1262 * we'll copy the actual data into the TRB address register. This is limited to
1263 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1264 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1265 */
1266static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1267 gfp_t mem_flags)
1268{
1269 if (xhci_urb_suitable_for_idt(urb))
1270 return 0;
1271
1272 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1273}
1274
1275/**
1276 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1277 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1278 * value to right shift 1 for the bitmask.
1279 *
1280 * Index = (epnum * 2) + direction - 1,
1281 * where direction = 0 for OUT, 1 for IN.
1282 * For control endpoints, the IN index is used (OUT index is unused), so
1283 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1284 */
1285unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1286{
1287 unsigned int index;
1288 if (usb_endpoint_xfer_control(desc))
1289 index = (unsigned int) (usb_endpoint_num(desc)*2);
1290 else
1291 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1292 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1293 return index;
1294}
1295
1296/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1297 * address from the XHCI endpoint index.
1298 */
1299unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1300{
1301 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1302 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1303 return direction | number;
1304}
1305
1306/* Find the flag for this endpoint (for use in the control context). Use the
1307 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1308 * bit 1, etc.
1309 */
1310static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1311{
1312 return 1 << (xhci_get_endpoint_index(desc) + 1);
1313}
1314
1315/* Find the flag for this endpoint (for use in the control context). Use the
1316 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1317 * bit 1, etc.
1318 */
1319static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1320{
1321 return 1 << (ep_index + 1);
1322}
1323
1324/* Compute the last valid endpoint context index. Basically, this is the
1325 * endpoint index plus one. For slot contexts with more than valid endpoint,
1326 * we find the most significant bit set in the added contexts flags.
1327 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1328 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1329 */
1330unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1331{
1332 return fls(added_ctxs) - 1;
1333}
1334
1335/* Returns 1 if the arguments are OK;
1336 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1337 */
1338static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1339 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1340 const char *func) {
1341 struct xhci_hcd *xhci;
1342 struct xhci_virt_device *virt_dev;
1343
1344 if (!hcd || (check_ep && !ep) || !udev) {
1345 pr_debug("xHCI %s called with invalid args\n", func);
1346 return -EINVAL;
1347 }
1348 if (!udev->parent) {
1349 pr_debug("xHCI %s called for root hub\n", func);
1350 return 0;
1351 }
1352
1353 xhci = hcd_to_xhci(hcd);
1354 if (check_virt_dev) {
1355 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1356 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1357 func);
1358 return -EINVAL;
1359 }
1360
1361 virt_dev = xhci->devs[udev->slot_id];
1362 if (virt_dev->udev != udev) {
1363 xhci_dbg(xhci, "xHCI %s called with udev and "
1364 "virt_dev does not match\n", func);
1365 return -EINVAL;
1366 }
1367 }
1368
1369 if (xhci->xhc_state & XHCI_STATE_HALTED)
1370 return -ENODEV;
1371
1372 return 1;
1373}
1374
1375static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1376 struct usb_device *udev, struct xhci_command *command,
1377 bool ctx_change, bool must_succeed);
1378
1379/*
1380 * Full speed devices may have a max packet size greater than 8 bytes, but the
1381 * USB core doesn't know that until it reads the first 8 bytes of the
1382 * descriptor. If the usb_device's max packet size changes after that point,
1383 * we need to issue an evaluate context command and wait on it.
1384 */
1385static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1386 unsigned int ep_index, struct urb *urb)
1387{
1388 struct xhci_container_ctx *out_ctx;
1389 struct xhci_input_control_ctx *ctrl_ctx;
1390 struct xhci_ep_ctx *ep_ctx;
1391 struct xhci_command *command;
1392 int max_packet_size;
1393 int hw_max_packet_size;
1394 int ret = 0;
1395
1396 out_ctx = xhci->devs[slot_id]->out_ctx;
1397 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1398 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1399 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1400 if (hw_max_packet_size != max_packet_size) {
1401 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1402 "Max Packet Size for ep 0 changed.");
1403 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1404 "Max packet size in usb_device = %d",
1405 max_packet_size);
1406 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1407 "Max packet size in xHCI HW = %d",
1408 hw_max_packet_size);
1409 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1410 "Issuing evaluate context command.");
1411
1412 /* Set up the input context flags for the command */
1413 /* FIXME: This won't work if a non-default control endpoint
1414 * changes max packet sizes.
1415 */
1416
1417 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1418 if (!command)
1419 return -ENOMEM;
1420
1421 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1422 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1423 if (!ctrl_ctx) {
1424 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1425 __func__);
1426 ret = -ENOMEM;
1427 goto command_cleanup;
1428 }
1429 /* Set up the modified control endpoint 0 */
1430 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1431 xhci->devs[slot_id]->out_ctx, ep_index);
1432
1433 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1434 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1435 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1436
1437 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1438 ctrl_ctx->drop_flags = 0;
1439
1440 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1441 true, false);
1442
1443 /* Clean up the input context for later use by bandwidth
1444 * functions.
1445 */
1446 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1447command_cleanup:
1448 kfree(command->completion);
1449 kfree(command);
1450 }
1451 return ret;
1452}
1453
1454/*
1455 * non-error returns are a promise to giveback() the urb later
1456 * we drop ownership so next owner (or urb unlink) can get it
1457 */
1458static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1459{
1460 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1461 unsigned long flags;
1462 int ret = 0;
1463 unsigned int slot_id, ep_index;
1464 unsigned int *ep_state;
1465 struct urb_priv *urb_priv;
1466 int num_tds;
1467
1468 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1469 true, true, __func__) <= 0)
1470 return -EINVAL;
1471
1472 slot_id = urb->dev->slot_id;
1473 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1474 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1475
1476 if (!HCD_HW_ACCESSIBLE(hcd)) {
1477 if (!in_interrupt())
1478 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1479 return -ESHUTDOWN;
1480 }
1481 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1482 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1483 return -ENODEV;
1484 }
1485
1486 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1487 num_tds = urb->number_of_packets;
1488 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1489 urb->transfer_buffer_length > 0 &&
1490 urb->transfer_flags & URB_ZERO_PACKET &&
1491 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1492 num_tds = 2;
1493 else
1494 num_tds = 1;
1495
1496 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1497 if (!urb_priv)
1498 return -ENOMEM;
1499
1500 urb_priv->num_tds = num_tds;
1501 urb_priv->num_tds_done = 0;
1502 urb->hcpriv = urb_priv;
1503
1504 trace_xhci_urb_enqueue(urb);
1505
1506 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1507 /* Check to see if the max packet size for the default control
1508 * endpoint changed during FS device enumeration
1509 */
1510 if (urb->dev->speed == USB_SPEED_FULL) {
1511 ret = xhci_check_maxpacket(xhci, slot_id,
1512 ep_index, urb);
1513 if (ret < 0) {
1514 xhci_urb_free_priv(urb_priv);
1515 urb->hcpriv = NULL;
1516 return ret;
1517 }
1518 }
1519 }
1520
1521 spin_lock_irqsave(&xhci->lock, flags);
1522
1523 if (xhci->xhc_state & XHCI_STATE_DYING) {
1524 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1525 urb->ep->desc.bEndpointAddress, urb);
1526 ret = -ESHUTDOWN;
1527 goto free_priv;
1528 }
1529 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1530 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1531 *ep_state);
1532 ret = -EINVAL;
1533 goto free_priv;
1534 }
1535 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1536 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1537 ret = -EINVAL;
1538 goto free_priv;
1539 }
1540
1541 switch (usb_endpoint_type(&urb->ep->desc)) {
1542
1543 case USB_ENDPOINT_XFER_CONTROL:
1544 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1545 slot_id, ep_index);
1546 break;
1547 case USB_ENDPOINT_XFER_BULK:
1548 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1549 slot_id, ep_index);
1550 break;
1551 case USB_ENDPOINT_XFER_INT:
1552 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1553 slot_id, ep_index);
1554 break;
1555 case USB_ENDPOINT_XFER_ISOC:
1556 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1557 slot_id, ep_index);
1558 }
1559
1560 if (ret) {
1561free_priv:
1562 xhci_urb_free_priv(urb_priv);
1563 urb->hcpriv = NULL;
1564 }
1565 spin_unlock_irqrestore(&xhci->lock, flags);
1566 return ret;
1567}
1568
1569/*
1570 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1571 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1572 * should pick up where it left off in the TD, unless a Set Transfer Ring
1573 * Dequeue Pointer is issued.
1574 *
1575 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1576 * the ring. Since the ring is a contiguous structure, they can't be physically
1577 * removed. Instead, there are two options:
1578 *
1579 * 1) If the HC is in the middle of processing the URB to be canceled, we
1580 * simply move the ring's dequeue pointer past those TRBs using the Set
1581 * Transfer Ring Dequeue Pointer command. This will be the common case,
1582 * when drivers timeout on the last submitted URB and attempt to cancel.
1583 *
1584 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1585 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1586 * HC will need to invalidate the any TRBs it has cached after the stop
1587 * endpoint command, as noted in the xHCI 0.95 errata.
1588 *
1589 * 3) The TD may have completed by the time the Stop Endpoint Command
1590 * completes, so software needs to handle that case too.
1591 *
1592 * This function should protect against the TD enqueueing code ringing the
1593 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1594 * It also needs to account for multiple cancellations on happening at the same
1595 * time for the same endpoint.
1596 *
1597 * Note that this function can be called in any context, or so says
1598 * usb_hcd_unlink_urb()
1599 */
1600static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1601{
1602 unsigned long flags;
1603 int ret, i;
1604 u32 temp;
1605 struct xhci_hcd *xhci;
1606 struct urb_priv *urb_priv;
1607 struct xhci_td *td;
1608 unsigned int ep_index;
1609 struct xhci_ring *ep_ring;
1610 struct xhci_virt_ep *ep;
1611 struct xhci_command *command;
1612 struct xhci_virt_device *vdev;
1613
1614 xhci = hcd_to_xhci(hcd);
1615 spin_lock_irqsave(&xhci->lock, flags);
1616
1617 trace_xhci_urb_dequeue(urb);
1618
1619 /* Make sure the URB hasn't completed or been unlinked already */
1620 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1621 if (ret)
1622 goto done;
1623
1624 /* give back URB now if we can't queue it for cancel */
1625 vdev = xhci->devs[urb->dev->slot_id];
1626 urb_priv = urb->hcpriv;
1627 if (!vdev || !urb_priv)
1628 goto err_giveback;
1629
1630 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1631 ep = &vdev->eps[ep_index];
1632 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1633 if (!ep || !ep_ring)
1634 goto err_giveback;
1635
1636 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1637 temp = readl(&xhci->op_regs->status);
1638 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1639 xhci_hc_died(xhci);
1640 goto done;
1641 }
1642
1643 /*
1644 * check ring is not re-allocated since URB was enqueued. If it is, then
1645 * make sure none of the ring related pointers in this URB private data
1646 * are touched, such as td_list, otherwise we overwrite freed data
1647 */
1648 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1649 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1650 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1651 td = &urb_priv->td[i];
1652 if (!list_empty(&td->cancelled_td_list))
1653 list_del_init(&td->cancelled_td_list);
1654 }
1655 goto err_giveback;
1656 }
1657
1658 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1659 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1660 "HC halted, freeing TD manually.");
1661 for (i = urb_priv->num_tds_done;
1662 i < urb_priv->num_tds;
1663 i++) {
1664 td = &urb_priv->td[i];
1665 if (!list_empty(&td->td_list))
1666 list_del_init(&td->td_list);
1667 if (!list_empty(&td->cancelled_td_list))
1668 list_del_init(&td->cancelled_td_list);
1669 }
1670 goto err_giveback;
1671 }
1672
1673 i = urb_priv->num_tds_done;
1674 if (i < urb_priv->num_tds)
1675 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1676 "Cancel URB %p, dev %s, ep 0x%x, "
1677 "starting at offset 0x%llx",
1678 urb, urb->dev->devpath,
1679 urb->ep->desc.bEndpointAddress,
1680 (unsigned long long) xhci_trb_virt_to_dma(
1681 urb_priv->td[i].start_seg,
1682 urb_priv->td[i].first_trb));
1683
1684 for (; i < urb_priv->num_tds; i++) {
1685 td = &urb_priv->td[i];
1686 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1687 }
1688
1689 /* Queue a stop endpoint command, but only if this is
1690 * the first cancellation to be handled.
1691 */
1692 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1693 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1694 if (!command) {
1695 ret = -ENOMEM;
1696 goto done;
1697 }
1698 ep->ep_state |= EP_STOP_CMD_PENDING;
1699 ep->stop_cmd_timer.expires = jiffies +
1700 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1701 add_timer(&ep->stop_cmd_timer);
1702 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1703 ep_index, 0);
1704 xhci_ring_cmd_db(xhci);
1705 }
1706done:
1707 spin_unlock_irqrestore(&xhci->lock, flags);
1708 return ret;
1709
1710err_giveback:
1711 if (urb_priv)
1712 xhci_urb_free_priv(urb_priv);
1713 usb_hcd_unlink_urb_from_ep(hcd, urb);
1714 spin_unlock_irqrestore(&xhci->lock, flags);
1715 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1716 return ret;
1717}
1718
1719/* Drop an endpoint from a new bandwidth configuration for this device.
1720 * Only one call to this function is allowed per endpoint before
1721 * check_bandwidth() or reset_bandwidth() must be called.
1722 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1723 * add the endpoint to the schedule with possibly new parameters denoted by a
1724 * different endpoint descriptor in usb_host_endpoint.
1725 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1726 * not allowed.
1727 *
1728 * The USB core will not allow URBs to be queued to an endpoint that is being
1729 * disabled, so there's no need for mutual exclusion to protect
1730 * the xhci->devs[slot_id] structure.
1731 */
1732static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1733 struct usb_host_endpoint *ep)
1734{
1735 struct xhci_hcd *xhci;
1736 struct xhci_container_ctx *in_ctx, *out_ctx;
1737 struct xhci_input_control_ctx *ctrl_ctx;
1738 unsigned int ep_index;
1739 struct xhci_ep_ctx *ep_ctx;
1740 u32 drop_flag;
1741 u32 new_add_flags, new_drop_flags;
1742 int ret;
1743
1744 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1745 if (ret <= 0)
1746 return ret;
1747 xhci = hcd_to_xhci(hcd);
1748 if (xhci->xhc_state & XHCI_STATE_DYING)
1749 return -ENODEV;
1750
1751 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1752 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1753 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1754 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1755 __func__, drop_flag);
1756 return 0;
1757 }
1758
1759 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1760 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1761 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1762 if (!ctrl_ctx) {
1763 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1764 __func__);
1765 return 0;
1766 }
1767
1768 ep_index = xhci_get_endpoint_index(&ep->desc);
1769 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1770 /* If the HC already knows the endpoint is disabled,
1771 * or the HCD has noted it is disabled, ignore this request
1772 */
1773 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1774 le32_to_cpu(ctrl_ctx->drop_flags) &
1775 xhci_get_endpoint_flag(&ep->desc)) {
1776 /* Do not warn when called after a usb_device_reset */
1777 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1778 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1779 __func__, ep);
1780 return 0;
1781 }
1782
1783 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1784 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1785
1786 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1787 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1788
1789 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1790
1791 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1792
1793 if (xhci->quirks & XHCI_MTK_HOST)
1794 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1795
1796 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1797 (unsigned int) ep->desc.bEndpointAddress,
1798 udev->slot_id,
1799 (unsigned int) new_drop_flags,
1800 (unsigned int) new_add_flags);
1801 return 0;
1802}
1803
1804/* Add an endpoint to a new possible bandwidth configuration for this device.
1805 * Only one call to this function is allowed per endpoint before
1806 * check_bandwidth() or reset_bandwidth() must be called.
1807 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1808 * add the endpoint to the schedule with possibly new parameters denoted by a
1809 * different endpoint descriptor in usb_host_endpoint.
1810 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1811 * not allowed.
1812 *
1813 * The USB core will not allow URBs to be queued to an endpoint until the
1814 * configuration or alt setting is installed in the device, so there's no need
1815 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1816 */
1817static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1818 struct usb_host_endpoint *ep)
1819{
1820 struct xhci_hcd *xhci;
1821 struct xhci_container_ctx *in_ctx;
1822 unsigned int ep_index;
1823 struct xhci_input_control_ctx *ctrl_ctx;
1824 struct xhci_ep_ctx *ep_ctx;
1825 u32 added_ctxs;
1826 u32 new_add_flags, new_drop_flags;
1827 struct xhci_virt_device *virt_dev;
1828 int ret = 0;
1829
1830 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1831 if (ret <= 0) {
1832 /* So we won't queue a reset ep command for a root hub */
1833 ep->hcpriv = NULL;
1834 return ret;
1835 }
1836 xhci = hcd_to_xhci(hcd);
1837 if (xhci->xhc_state & XHCI_STATE_DYING)
1838 return -ENODEV;
1839
1840 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1841 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1842 /* FIXME when we have to issue an evaluate endpoint command to
1843 * deal with ep0 max packet size changing once we get the
1844 * descriptors
1845 */
1846 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1847 __func__, added_ctxs);
1848 return 0;
1849 }
1850
1851 virt_dev = xhci->devs[udev->slot_id];
1852 in_ctx = virt_dev->in_ctx;
1853 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1854 if (!ctrl_ctx) {
1855 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1856 __func__);
1857 return 0;
1858 }
1859
1860 ep_index = xhci_get_endpoint_index(&ep->desc);
1861 /* If this endpoint is already in use, and the upper layers are trying
1862 * to add it again without dropping it, reject the addition.
1863 */
1864 if (virt_dev->eps[ep_index].ring &&
1865 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1866 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1867 "without dropping it.\n",
1868 (unsigned int) ep->desc.bEndpointAddress);
1869 return -EINVAL;
1870 }
1871
1872 /* If the HCD has already noted the endpoint is enabled,
1873 * ignore this request.
1874 */
1875 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1876 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1877 __func__, ep);
1878 return 0;
1879 }
1880
1881 /*
1882 * Configuration and alternate setting changes must be done in
1883 * process context, not interrupt context (or so documenation
1884 * for usb_set_interface() and usb_set_configuration() claim).
1885 */
1886 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1887 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1888 __func__, ep->desc.bEndpointAddress);
1889 return -ENOMEM;
1890 }
1891
1892 if (xhci->quirks & XHCI_MTK_HOST) {
1893 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1894 if (ret < 0) {
1895 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1896 virt_dev->eps[ep_index].new_ring = NULL;
1897 return ret;
1898 }
1899 }
1900
1901 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1902 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1903
1904 /* If xhci_endpoint_disable() was called for this endpoint, but the
1905 * xHC hasn't been notified yet through the check_bandwidth() call,
1906 * this re-adds a new state for the endpoint from the new endpoint
1907 * descriptors. We must drop and re-add this endpoint, so we leave the
1908 * drop flags alone.
1909 */
1910 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1911
1912 /* Store the usb_device pointer for later use */
1913 ep->hcpriv = udev;
1914
1915 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1916 trace_xhci_add_endpoint(ep_ctx);
1917
1918 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1919
1920 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1921 (unsigned int) ep->desc.bEndpointAddress,
1922 udev->slot_id,
1923 (unsigned int) new_drop_flags,
1924 (unsigned int) new_add_flags);
1925 return 0;
1926}
1927
1928static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1929{
1930 struct xhci_input_control_ctx *ctrl_ctx;
1931 struct xhci_ep_ctx *ep_ctx;
1932 struct xhci_slot_ctx *slot_ctx;
1933 int i;
1934
1935 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1936 if (!ctrl_ctx) {
1937 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1938 __func__);
1939 return;
1940 }
1941
1942 /* When a device's add flag and drop flag are zero, any subsequent
1943 * configure endpoint command will leave that endpoint's state
1944 * untouched. Make sure we don't leave any old state in the input
1945 * endpoint contexts.
1946 */
1947 ctrl_ctx->drop_flags = 0;
1948 ctrl_ctx->add_flags = 0;
1949 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1950 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1951 /* Endpoint 0 is always valid */
1952 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1953 for (i = 1; i < 31; i++) {
1954 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1955 ep_ctx->ep_info = 0;
1956 ep_ctx->ep_info2 = 0;
1957 ep_ctx->deq = 0;
1958 ep_ctx->tx_info = 0;
1959 }
1960}
1961
1962static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1963 struct usb_device *udev, u32 *cmd_status)
1964{
1965 int ret;
1966
1967 switch (*cmd_status) {
1968 case COMP_COMMAND_ABORTED:
1969 case COMP_COMMAND_RING_STOPPED:
1970 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1971 ret = -ETIME;
1972 break;
1973 case COMP_RESOURCE_ERROR:
1974 dev_warn(&udev->dev,
1975 "Not enough host controller resources for new device state.\n");
1976 ret = -ENOMEM;
1977 /* FIXME: can we allocate more resources for the HC? */
1978 break;
1979 case COMP_BANDWIDTH_ERROR:
1980 case COMP_SECONDARY_BANDWIDTH_ERROR:
1981 dev_warn(&udev->dev,
1982 "Not enough bandwidth for new device state.\n");
1983 ret = -ENOSPC;
1984 /* FIXME: can we go back to the old state? */
1985 break;
1986 case COMP_TRB_ERROR:
1987 /* the HCD set up something wrong */
1988 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1989 "add flag = 1, "
1990 "and endpoint is not disabled.\n");
1991 ret = -EINVAL;
1992 break;
1993 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1994 dev_warn(&udev->dev,
1995 "ERROR: Incompatible device for endpoint configure command.\n");
1996 ret = -ENODEV;
1997 break;
1998 case COMP_SUCCESS:
1999 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2000 "Successful Endpoint Configure command");
2001 ret = 0;
2002 break;
2003 default:
2004 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2005 *cmd_status);
2006 ret = -EINVAL;
2007 break;
2008 }
2009 return ret;
2010}
2011
2012static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2013 struct usb_device *udev, u32 *cmd_status)
2014{
2015 int ret;
2016
2017 switch (*cmd_status) {
2018 case COMP_COMMAND_ABORTED:
2019 case COMP_COMMAND_RING_STOPPED:
2020 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2021 ret = -ETIME;
2022 break;
2023 case COMP_PARAMETER_ERROR:
2024 dev_warn(&udev->dev,
2025 "WARN: xHCI driver setup invalid evaluate context command.\n");
2026 ret = -EINVAL;
2027 break;
2028 case COMP_SLOT_NOT_ENABLED_ERROR:
2029 dev_warn(&udev->dev,
2030 "WARN: slot not enabled for evaluate context command.\n");
2031 ret = -EINVAL;
2032 break;
2033 case COMP_CONTEXT_STATE_ERROR:
2034 dev_warn(&udev->dev,
2035 "WARN: invalid context state for evaluate context command.\n");
2036 ret = -EINVAL;
2037 break;
2038 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2039 dev_warn(&udev->dev,
2040 "ERROR: Incompatible device for evaluate context command.\n");
2041 ret = -ENODEV;
2042 break;
2043 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2044 /* Max Exit Latency too large error */
2045 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2046 ret = -EINVAL;
2047 break;
2048 case COMP_SUCCESS:
2049 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2050 "Successful evaluate context command");
2051 ret = 0;
2052 break;
2053 default:
2054 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2055 *cmd_status);
2056 ret = -EINVAL;
2057 break;
2058 }
2059 return ret;
2060}
2061
2062static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2063 struct xhci_input_control_ctx *ctrl_ctx)
2064{
2065 u32 valid_add_flags;
2066 u32 valid_drop_flags;
2067
2068 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2069 * (bit 1). The default control endpoint is added during the Address
2070 * Device command and is never removed until the slot is disabled.
2071 */
2072 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2073 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2074
2075 /* Use hweight32 to count the number of ones in the add flags, or
2076 * number of endpoints added. Don't count endpoints that are changed
2077 * (both added and dropped).
2078 */
2079 return hweight32(valid_add_flags) -
2080 hweight32(valid_add_flags & valid_drop_flags);
2081}
2082
2083static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2084 struct xhci_input_control_ctx *ctrl_ctx)
2085{
2086 u32 valid_add_flags;
2087 u32 valid_drop_flags;
2088
2089 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2090 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2091
2092 return hweight32(valid_drop_flags) -
2093 hweight32(valid_add_flags & valid_drop_flags);
2094}
2095
2096/*
2097 * We need to reserve the new number of endpoints before the configure endpoint
2098 * command completes. We can't subtract the dropped endpoints from the number
2099 * of active endpoints until the command completes because we can oversubscribe
2100 * the host in this case:
2101 *
2102 * - the first configure endpoint command drops more endpoints than it adds
2103 * - a second configure endpoint command that adds more endpoints is queued
2104 * - the first configure endpoint command fails, so the config is unchanged
2105 * - the second command may succeed, even though there isn't enough resources
2106 *
2107 * Must be called with xhci->lock held.
2108 */
2109static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2110 struct xhci_input_control_ctx *ctrl_ctx)
2111{
2112 u32 added_eps;
2113
2114 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2115 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2116 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2117 "Not enough ep ctxs: "
2118 "%u active, need to add %u, limit is %u.",
2119 xhci->num_active_eps, added_eps,
2120 xhci->limit_active_eps);
2121 return -ENOMEM;
2122 }
2123 xhci->num_active_eps += added_eps;
2124 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2125 "Adding %u ep ctxs, %u now active.", added_eps,
2126 xhci->num_active_eps);
2127 return 0;
2128}
2129
2130/*
2131 * The configure endpoint was failed by the xHC for some other reason, so we
2132 * need to revert the resources that failed configuration would have used.
2133 *
2134 * Must be called with xhci->lock held.
2135 */
2136static void xhci_free_host_resources(struct xhci_hcd *xhci,
2137 struct xhci_input_control_ctx *ctrl_ctx)
2138{
2139 u32 num_failed_eps;
2140
2141 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2142 xhci->num_active_eps -= num_failed_eps;
2143 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2144 "Removing %u failed ep ctxs, %u now active.",
2145 num_failed_eps,
2146 xhci->num_active_eps);
2147}
2148
2149/*
2150 * Now that the command has completed, clean up the active endpoint count by
2151 * subtracting out the endpoints that were dropped (but not changed).
2152 *
2153 * Must be called with xhci->lock held.
2154 */
2155static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2156 struct xhci_input_control_ctx *ctrl_ctx)
2157{
2158 u32 num_dropped_eps;
2159
2160 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2161 xhci->num_active_eps -= num_dropped_eps;
2162 if (num_dropped_eps)
2163 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2164 "Removing %u dropped ep ctxs, %u now active.",
2165 num_dropped_eps,
2166 xhci->num_active_eps);
2167}
2168
2169static unsigned int xhci_get_block_size(struct usb_device *udev)
2170{
2171 switch (udev->speed) {
2172 case USB_SPEED_LOW:
2173 case USB_SPEED_FULL:
2174 return FS_BLOCK;
2175 case USB_SPEED_HIGH:
2176 return HS_BLOCK;
2177 case USB_SPEED_SUPER:
2178 case USB_SPEED_SUPER_PLUS:
2179 return SS_BLOCK;
2180 case USB_SPEED_UNKNOWN:
2181 case USB_SPEED_WIRELESS:
2182 default:
2183 /* Should never happen */
2184 return 1;
2185 }
2186}
2187
2188static unsigned int
2189xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2190{
2191 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2192 return LS_OVERHEAD;
2193 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2194 return FS_OVERHEAD;
2195 return HS_OVERHEAD;
2196}
2197
2198/* If we are changing a LS/FS device under a HS hub,
2199 * make sure (if we are activating a new TT) that the HS bus has enough
2200 * bandwidth for this new TT.
2201 */
2202static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2203 struct xhci_virt_device *virt_dev,
2204 int old_active_eps)
2205{
2206 struct xhci_interval_bw_table *bw_table;
2207 struct xhci_tt_bw_info *tt_info;
2208
2209 /* Find the bandwidth table for the root port this TT is attached to. */
2210 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2211 tt_info = virt_dev->tt_info;
2212 /* If this TT already had active endpoints, the bandwidth for this TT
2213 * has already been added. Removing all periodic endpoints (and thus
2214 * making the TT enactive) will only decrease the bandwidth used.
2215 */
2216 if (old_active_eps)
2217 return 0;
2218 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2219 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2220 return -ENOMEM;
2221 return 0;
2222 }
2223 /* Not sure why we would have no new active endpoints...
2224 *
2225 * Maybe because of an Evaluate Context change for a hub update or a
2226 * control endpoint 0 max packet size change?
2227 * FIXME: skip the bandwidth calculation in that case.
2228 */
2229 return 0;
2230}
2231
2232static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2233 struct xhci_virt_device *virt_dev)
2234{
2235 unsigned int bw_reserved;
2236
2237 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2238 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2239 return -ENOMEM;
2240
2241 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2242 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2243 return -ENOMEM;
2244
2245 return 0;
2246}
2247
2248/*
2249 * This algorithm is a very conservative estimate of the worst-case scheduling
2250 * scenario for any one interval. The hardware dynamically schedules the
2251 * packets, so we can't tell which microframe could be the limiting factor in
2252 * the bandwidth scheduling. This only takes into account periodic endpoints.
2253 *
2254 * Obviously, we can't solve an NP complete problem to find the minimum worst
2255 * case scenario. Instead, we come up with an estimate that is no less than
2256 * the worst case bandwidth used for any one microframe, but may be an
2257 * over-estimate.
2258 *
2259 * We walk the requirements for each endpoint by interval, starting with the
2260 * smallest interval, and place packets in the schedule where there is only one
2261 * possible way to schedule packets for that interval. In order to simplify
2262 * this algorithm, we record the largest max packet size for each interval, and
2263 * assume all packets will be that size.
2264 *
2265 * For interval 0, we obviously must schedule all packets for each interval.
2266 * The bandwidth for interval 0 is just the amount of data to be transmitted
2267 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2268 * the number of packets).
2269 *
2270 * For interval 1, we have two possible microframes to schedule those packets
2271 * in. For this algorithm, if we can schedule the same number of packets for
2272 * each possible scheduling opportunity (each microframe), we will do so. The
2273 * remaining number of packets will be saved to be transmitted in the gaps in
2274 * the next interval's scheduling sequence.
2275 *
2276 * As we move those remaining packets to be scheduled with interval 2 packets,
2277 * we have to double the number of remaining packets to transmit. This is
2278 * because the intervals are actually powers of 2, and we would be transmitting
2279 * the previous interval's packets twice in this interval. We also have to be
2280 * sure that when we look at the largest max packet size for this interval, we
2281 * also look at the largest max packet size for the remaining packets and take
2282 * the greater of the two.
2283 *
2284 * The algorithm continues to evenly distribute packets in each scheduling
2285 * opportunity, and push the remaining packets out, until we get to the last
2286 * interval. Then those packets and their associated overhead are just added
2287 * to the bandwidth used.
2288 */
2289static int xhci_check_bw_table(struct xhci_hcd *xhci,
2290 struct xhci_virt_device *virt_dev,
2291 int old_active_eps)
2292{
2293 unsigned int bw_reserved;
2294 unsigned int max_bandwidth;
2295 unsigned int bw_used;
2296 unsigned int block_size;
2297 struct xhci_interval_bw_table *bw_table;
2298 unsigned int packet_size = 0;
2299 unsigned int overhead = 0;
2300 unsigned int packets_transmitted = 0;
2301 unsigned int packets_remaining = 0;
2302 unsigned int i;
2303
2304 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2305 return xhci_check_ss_bw(xhci, virt_dev);
2306
2307 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2308 max_bandwidth = HS_BW_LIMIT;
2309 /* Convert percent of bus BW reserved to blocks reserved */
2310 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2311 } else {
2312 max_bandwidth = FS_BW_LIMIT;
2313 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2314 }
2315
2316 bw_table = virt_dev->bw_table;
2317 /* We need to translate the max packet size and max ESIT payloads into
2318 * the units the hardware uses.
2319 */
2320 block_size = xhci_get_block_size(virt_dev->udev);
2321
2322 /* If we are manipulating a LS/FS device under a HS hub, double check
2323 * that the HS bus has enough bandwidth if we are activing a new TT.
2324 */
2325 if (virt_dev->tt_info) {
2326 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2327 "Recalculating BW for rootport %u",
2328 virt_dev->real_port);
2329 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2330 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2331 "newly activated TT.\n");
2332 return -ENOMEM;
2333 }
2334 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2335 "Recalculating BW for TT slot %u port %u",
2336 virt_dev->tt_info->slot_id,
2337 virt_dev->tt_info->ttport);
2338 } else {
2339 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340 "Recalculating BW for rootport %u",
2341 virt_dev->real_port);
2342 }
2343
2344 /* Add in how much bandwidth will be used for interval zero, or the
2345 * rounded max ESIT payload + number of packets * largest overhead.
2346 */
2347 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2348 bw_table->interval_bw[0].num_packets *
2349 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2350
2351 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2352 unsigned int bw_added;
2353 unsigned int largest_mps;
2354 unsigned int interval_overhead;
2355
2356 /*
2357 * How many packets could we transmit in this interval?
2358 * If packets didn't fit in the previous interval, we will need
2359 * to transmit that many packets twice within this interval.
2360 */
2361 packets_remaining = 2 * packets_remaining +
2362 bw_table->interval_bw[i].num_packets;
2363
2364 /* Find the largest max packet size of this or the previous
2365 * interval.
2366 */
2367 if (list_empty(&bw_table->interval_bw[i].endpoints))
2368 largest_mps = 0;
2369 else {
2370 struct xhci_virt_ep *virt_ep;
2371 struct list_head *ep_entry;
2372
2373 ep_entry = bw_table->interval_bw[i].endpoints.next;
2374 virt_ep = list_entry(ep_entry,
2375 struct xhci_virt_ep, bw_endpoint_list);
2376 /* Convert to blocks, rounding up */
2377 largest_mps = DIV_ROUND_UP(
2378 virt_ep->bw_info.max_packet_size,
2379 block_size);
2380 }
2381 if (largest_mps > packet_size)
2382 packet_size = largest_mps;
2383
2384 /* Use the larger overhead of this or the previous interval. */
2385 interval_overhead = xhci_get_largest_overhead(
2386 &bw_table->interval_bw[i]);
2387 if (interval_overhead > overhead)
2388 overhead = interval_overhead;
2389
2390 /* How many packets can we evenly distribute across
2391 * (1 << (i + 1)) possible scheduling opportunities?
2392 */
2393 packets_transmitted = packets_remaining >> (i + 1);
2394
2395 /* Add in the bandwidth used for those scheduled packets */
2396 bw_added = packets_transmitted * (overhead + packet_size);
2397
2398 /* How many packets do we have remaining to transmit? */
2399 packets_remaining = packets_remaining % (1 << (i + 1));
2400
2401 /* What largest max packet size should those packets have? */
2402 /* If we've transmitted all packets, don't carry over the
2403 * largest packet size.
2404 */
2405 if (packets_remaining == 0) {
2406 packet_size = 0;
2407 overhead = 0;
2408 } else if (packets_transmitted > 0) {
2409 /* Otherwise if we do have remaining packets, and we've
2410 * scheduled some packets in this interval, take the
2411 * largest max packet size from endpoints with this
2412 * interval.
2413 */
2414 packet_size = largest_mps;
2415 overhead = interval_overhead;
2416 }
2417 /* Otherwise carry over packet_size and overhead from the last
2418 * time we had a remainder.
2419 */
2420 bw_used += bw_added;
2421 if (bw_used > max_bandwidth) {
2422 xhci_warn(xhci, "Not enough bandwidth. "
2423 "Proposed: %u, Max: %u\n",
2424 bw_used, max_bandwidth);
2425 return -ENOMEM;
2426 }
2427 }
2428 /*
2429 * Ok, we know we have some packets left over after even-handedly
2430 * scheduling interval 15. We don't know which microframes they will
2431 * fit into, so we over-schedule and say they will be scheduled every
2432 * microframe.
2433 */
2434 if (packets_remaining > 0)
2435 bw_used += overhead + packet_size;
2436
2437 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2438 unsigned int port_index = virt_dev->real_port - 1;
2439
2440 /* OK, we're manipulating a HS device attached to a
2441 * root port bandwidth domain. Include the number of active TTs
2442 * in the bandwidth used.
2443 */
2444 bw_used += TT_HS_OVERHEAD *
2445 xhci->rh_bw[port_index].num_active_tts;
2446 }
2447
2448 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2449 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2450 "Available: %u " "percent",
2451 bw_used, max_bandwidth, bw_reserved,
2452 (max_bandwidth - bw_used - bw_reserved) * 100 /
2453 max_bandwidth);
2454
2455 bw_used += bw_reserved;
2456 if (bw_used > max_bandwidth) {
2457 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2458 bw_used, max_bandwidth);
2459 return -ENOMEM;
2460 }
2461
2462 bw_table->bw_used = bw_used;
2463 return 0;
2464}
2465
2466static bool xhci_is_async_ep(unsigned int ep_type)
2467{
2468 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2469 ep_type != ISOC_IN_EP &&
2470 ep_type != INT_IN_EP);
2471}
2472
2473static bool xhci_is_sync_in_ep(unsigned int ep_type)
2474{
2475 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2476}
2477
2478static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2479{
2480 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2481
2482 if (ep_bw->ep_interval == 0)
2483 return SS_OVERHEAD_BURST +
2484 (ep_bw->mult * ep_bw->num_packets *
2485 (SS_OVERHEAD + mps));
2486 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2487 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2488 1 << ep_bw->ep_interval);
2489
2490}
2491
2492static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2493 struct xhci_bw_info *ep_bw,
2494 struct xhci_interval_bw_table *bw_table,
2495 struct usb_device *udev,
2496 struct xhci_virt_ep *virt_ep,
2497 struct xhci_tt_bw_info *tt_info)
2498{
2499 struct xhci_interval_bw *interval_bw;
2500 int normalized_interval;
2501
2502 if (xhci_is_async_ep(ep_bw->type))
2503 return;
2504
2505 if (udev->speed >= USB_SPEED_SUPER) {
2506 if (xhci_is_sync_in_ep(ep_bw->type))
2507 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2508 xhci_get_ss_bw_consumed(ep_bw);
2509 else
2510 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2511 xhci_get_ss_bw_consumed(ep_bw);
2512 return;
2513 }
2514
2515 /* SuperSpeed endpoints never get added to intervals in the table, so
2516 * this check is only valid for HS/FS/LS devices.
2517 */
2518 if (list_empty(&virt_ep->bw_endpoint_list))
2519 return;
2520 /* For LS/FS devices, we need to translate the interval expressed in
2521 * microframes to frames.
2522 */
2523 if (udev->speed == USB_SPEED_HIGH)
2524 normalized_interval = ep_bw->ep_interval;
2525 else
2526 normalized_interval = ep_bw->ep_interval - 3;
2527
2528 if (normalized_interval == 0)
2529 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2530 interval_bw = &bw_table->interval_bw[normalized_interval];
2531 interval_bw->num_packets -= ep_bw->num_packets;
2532 switch (udev->speed) {
2533 case USB_SPEED_LOW:
2534 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2535 break;
2536 case USB_SPEED_FULL:
2537 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2538 break;
2539 case USB_SPEED_HIGH:
2540 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2541 break;
2542 case USB_SPEED_SUPER:
2543 case USB_SPEED_SUPER_PLUS:
2544 case USB_SPEED_UNKNOWN:
2545 case USB_SPEED_WIRELESS:
2546 /* Should never happen because only LS/FS/HS endpoints will get
2547 * added to the endpoint list.
2548 */
2549 return;
2550 }
2551 if (tt_info)
2552 tt_info->active_eps -= 1;
2553 list_del_init(&virt_ep->bw_endpoint_list);
2554}
2555
2556static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2557 struct xhci_bw_info *ep_bw,
2558 struct xhci_interval_bw_table *bw_table,
2559 struct usb_device *udev,
2560 struct xhci_virt_ep *virt_ep,
2561 struct xhci_tt_bw_info *tt_info)
2562{
2563 struct xhci_interval_bw *interval_bw;
2564 struct xhci_virt_ep *smaller_ep;
2565 int normalized_interval;
2566
2567 if (xhci_is_async_ep(ep_bw->type))
2568 return;
2569
2570 if (udev->speed == USB_SPEED_SUPER) {
2571 if (xhci_is_sync_in_ep(ep_bw->type))
2572 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2573 xhci_get_ss_bw_consumed(ep_bw);
2574 else
2575 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2576 xhci_get_ss_bw_consumed(ep_bw);
2577 return;
2578 }
2579
2580 /* For LS/FS devices, we need to translate the interval expressed in
2581 * microframes to frames.
2582 */
2583 if (udev->speed == USB_SPEED_HIGH)
2584 normalized_interval = ep_bw->ep_interval;
2585 else
2586 normalized_interval = ep_bw->ep_interval - 3;
2587
2588 if (normalized_interval == 0)
2589 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2590 interval_bw = &bw_table->interval_bw[normalized_interval];
2591 interval_bw->num_packets += ep_bw->num_packets;
2592 switch (udev->speed) {
2593 case USB_SPEED_LOW:
2594 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2595 break;
2596 case USB_SPEED_FULL:
2597 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2598 break;
2599 case USB_SPEED_HIGH:
2600 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2601 break;
2602 case USB_SPEED_SUPER:
2603 case USB_SPEED_SUPER_PLUS:
2604 case USB_SPEED_UNKNOWN:
2605 case USB_SPEED_WIRELESS:
2606 /* Should never happen because only LS/FS/HS endpoints will get
2607 * added to the endpoint list.
2608 */
2609 return;
2610 }
2611
2612 if (tt_info)
2613 tt_info->active_eps += 1;
2614 /* Insert the endpoint into the list, largest max packet size first. */
2615 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2616 bw_endpoint_list) {
2617 if (ep_bw->max_packet_size >=
2618 smaller_ep->bw_info.max_packet_size) {
2619 /* Add the new ep before the smaller endpoint */
2620 list_add_tail(&virt_ep->bw_endpoint_list,
2621 &smaller_ep->bw_endpoint_list);
2622 return;
2623 }
2624 }
2625 /* Add the new endpoint at the end of the list. */
2626 list_add_tail(&virt_ep->bw_endpoint_list,
2627 &interval_bw->endpoints);
2628}
2629
2630void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2631 struct xhci_virt_device *virt_dev,
2632 int old_active_eps)
2633{
2634 struct xhci_root_port_bw_info *rh_bw_info;
2635 if (!virt_dev->tt_info)
2636 return;
2637
2638 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2639 if (old_active_eps == 0 &&
2640 virt_dev->tt_info->active_eps != 0) {
2641 rh_bw_info->num_active_tts += 1;
2642 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2643 } else if (old_active_eps != 0 &&
2644 virt_dev->tt_info->active_eps == 0) {
2645 rh_bw_info->num_active_tts -= 1;
2646 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2647 }
2648}
2649
2650static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2651 struct xhci_virt_device *virt_dev,
2652 struct xhci_container_ctx *in_ctx)
2653{
2654 struct xhci_bw_info ep_bw_info[31];
2655 int i;
2656 struct xhci_input_control_ctx *ctrl_ctx;
2657 int old_active_eps = 0;
2658
2659 if (virt_dev->tt_info)
2660 old_active_eps = virt_dev->tt_info->active_eps;
2661
2662 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2663 if (!ctrl_ctx) {
2664 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2665 __func__);
2666 return -ENOMEM;
2667 }
2668
2669 for (i = 0; i < 31; i++) {
2670 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2671 continue;
2672
2673 /* Make a copy of the BW info in case we need to revert this */
2674 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2675 sizeof(ep_bw_info[i]));
2676 /* Drop the endpoint from the interval table if the endpoint is
2677 * being dropped or changed.
2678 */
2679 if (EP_IS_DROPPED(ctrl_ctx, i))
2680 xhci_drop_ep_from_interval_table(xhci,
2681 &virt_dev->eps[i].bw_info,
2682 virt_dev->bw_table,
2683 virt_dev->udev,
2684 &virt_dev->eps[i],
2685 virt_dev->tt_info);
2686 }
2687 /* Overwrite the information stored in the endpoints' bw_info */
2688 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2689 for (i = 0; i < 31; i++) {
2690 /* Add any changed or added endpoints to the interval table */
2691 if (EP_IS_ADDED(ctrl_ctx, i))
2692 xhci_add_ep_to_interval_table(xhci,
2693 &virt_dev->eps[i].bw_info,
2694 virt_dev->bw_table,
2695 virt_dev->udev,
2696 &virt_dev->eps[i],
2697 virt_dev->tt_info);
2698 }
2699
2700 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2701 /* Ok, this fits in the bandwidth we have.
2702 * Update the number of active TTs.
2703 */
2704 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2705 return 0;
2706 }
2707
2708 /* We don't have enough bandwidth for this, revert the stored info. */
2709 for (i = 0; i < 31; i++) {
2710 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2711 continue;
2712
2713 /* Drop the new copies of any added or changed endpoints from
2714 * the interval table.
2715 */
2716 if (EP_IS_ADDED(ctrl_ctx, i)) {
2717 xhci_drop_ep_from_interval_table(xhci,
2718 &virt_dev->eps[i].bw_info,
2719 virt_dev->bw_table,
2720 virt_dev->udev,
2721 &virt_dev->eps[i],
2722 virt_dev->tt_info);
2723 }
2724 /* Revert the endpoint back to its old information */
2725 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2726 sizeof(ep_bw_info[i]));
2727 /* Add any changed or dropped endpoints back into the table */
2728 if (EP_IS_DROPPED(ctrl_ctx, i))
2729 xhci_add_ep_to_interval_table(xhci,
2730 &virt_dev->eps[i].bw_info,
2731 virt_dev->bw_table,
2732 virt_dev->udev,
2733 &virt_dev->eps[i],
2734 virt_dev->tt_info);
2735 }
2736 return -ENOMEM;
2737}
2738
2739
2740/* Issue a configure endpoint command or evaluate context command
2741 * and wait for it to finish.
2742 */
2743static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2744 struct usb_device *udev,
2745 struct xhci_command *command,
2746 bool ctx_change, bool must_succeed)
2747{
2748 int ret;
2749 unsigned long flags;
2750 struct xhci_input_control_ctx *ctrl_ctx;
2751 struct xhci_virt_device *virt_dev;
2752 struct xhci_slot_ctx *slot_ctx;
2753
2754 if (!command)
2755 return -EINVAL;
2756
2757 spin_lock_irqsave(&xhci->lock, flags);
2758
2759 if (xhci->xhc_state & XHCI_STATE_DYING) {
2760 spin_unlock_irqrestore(&xhci->lock, flags);
2761 return -ESHUTDOWN;
2762 }
2763
2764 virt_dev = xhci->devs[udev->slot_id];
2765
2766 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2767 if (!ctrl_ctx) {
2768 spin_unlock_irqrestore(&xhci->lock, flags);
2769 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2770 __func__);
2771 return -ENOMEM;
2772 }
2773
2774 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2775 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2776 spin_unlock_irqrestore(&xhci->lock, flags);
2777 xhci_warn(xhci, "Not enough host resources, "
2778 "active endpoint contexts = %u\n",
2779 xhci->num_active_eps);
2780 return -ENOMEM;
2781 }
2782 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2783 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2784 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2785 xhci_free_host_resources(xhci, ctrl_ctx);
2786 spin_unlock_irqrestore(&xhci->lock, flags);
2787 xhci_warn(xhci, "Not enough bandwidth\n");
2788 return -ENOMEM;
2789 }
2790
2791 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2792
2793 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2794 trace_xhci_configure_endpoint(slot_ctx);
2795
2796 if (!ctx_change)
2797 ret = xhci_queue_configure_endpoint(xhci, command,
2798 command->in_ctx->dma,
2799 udev->slot_id, must_succeed);
2800 else
2801 ret = xhci_queue_evaluate_context(xhci, command,
2802 command->in_ctx->dma,
2803 udev->slot_id, must_succeed);
2804 if (ret < 0) {
2805 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2806 xhci_free_host_resources(xhci, ctrl_ctx);
2807 spin_unlock_irqrestore(&xhci->lock, flags);
2808 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2809 "FIXME allocate a new ring segment");
2810 return -ENOMEM;
2811 }
2812 xhci_ring_cmd_db(xhci);
2813 spin_unlock_irqrestore(&xhci->lock, flags);
2814
2815 /* Wait for the configure endpoint command to complete */
2816 wait_for_completion(command->completion);
2817
2818 if (!ctx_change)
2819 ret = xhci_configure_endpoint_result(xhci, udev,
2820 &command->status);
2821 else
2822 ret = xhci_evaluate_context_result(xhci, udev,
2823 &command->status);
2824
2825 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2826 spin_lock_irqsave(&xhci->lock, flags);
2827 /* If the command failed, remove the reserved resources.
2828 * Otherwise, clean up the estimate to include dropped eps.
2829 */
2830 if (ret)
2831 xhci_free_host_resources(xhci, ctrl_ctx);
2832 else
2833 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2834 spin_unlock_irqrestore(&xhci->lock, flags);
2835 }
2836 return ret;
2837}
2838
2839static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2840 struct xhci_virt_device *vdev, int i)
2841{
2842 struct xhci_virt_ep *ep = &vdev->eps[i];
2843
2844 if (ep->ep_state & EP_HAS_STREAMS) {
2845 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2846 xhci_get_endpoint_address(i));
2847 xhci_free_stream_info(xhci, ep->stream_info);
2848 ep->stream_info = NULL;
2849 ep->ep_state &= ~EP_HAS_STREAMS;
2850 }
2851}
2852
2853/* Called after one or more calls to xhci_add_endpoint() or
2854 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2855 * to call xhci_reset_bandwidth().
2856 *
2857 * Since we are in the middle of changing either configuration or
2858 * installing a new alt setting, the USB core won't allow URBs to be
2859 * enqueued for any endpoint on the old config or interface. Nothing
2860 * else should be touching the xhci->devs[slot_id] structure, so we
2861 * don't need to take the xhci->lock for manipulating that.
2862 */
2863static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2864{
2865 int i;
2866 int ret = 0;
2867 struct xhci_hcd *xhci;
2868 struct xhci_virt_device *virt_dev;
2869 struct xhci_input_control_ctx *ctrl_ctx;
2870 struct xhci_slot_ctx *slot_ctx;
2871 struct xhci_command *command;
2872
2873 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2874 if (ret <= 0)
2875 return ret;
2876 xhci = hcd_to_xhci(hcd);
2877 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2878 (xhci->xhc_state & XHCI_STATE_REMOVING))
2879 return -ENODEV;
2880
2881 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2882 virt_dev = xhci->devs[udev->slot_id];
2883
2884 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2885 if (!command)
2886 return -ENOMEM;
2887
2888 command->in_ctx = virt_dev->in_ctx;
2889
2890 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2891 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2892 if (!ctrl_ctx) {
2893 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2894 __func__);
2895 ret = -ENOMEM;
2896 goto command_cleanup;
2897 }
2898 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2899 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2900 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2901
2902 /* Don't issue the command if there's no endpoints to update. */
2903 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2904 ctrl_ctx->drop_flags == 0) {
2905 ret = 0;
2906 goto command_cleanup;
2907 }
2908 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2909 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2910 for (i = 31; i >= 1; i--) {
2911 __le32 le32 = cpu_to_le32(BIT(i));
2912
2913 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2914 || (ctrl_ctx->add_flags & le32) || i == 1) {
2915 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2916 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2917 break;
2918 }
2919 }
2920
2921 ret = xhci_configure_endpoint(xhci, udev, command,
2922 false, false);
2923 if (ret)
2924 /* Callee should call reset_bandwidth() */
2925 goto command_cleanup;
2926
2927 /* Free any rings that were dropped, but not changed. */
2928 for (i = 1; i < 31; i++) {
2929 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2930 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2931 xhci_free_endpoint_ring(xhci, virt_dev, i);
2932 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2933 }
2934 }
2935 xhci_zero_in_ctx(xhci, virt_dev);
2936 /*
2937 * Install any rings for completely new endpoints or changed endpoints,
2938 * and free any old rings from changed endpoints.
2939 */
2940 for (i = 1; i < 31; i++) {
2941 if (!virt_dev->eps[i].new_ring)
2942 continue;
2943 /* Only free the old ring if it exists.
2944 * It may not if this is the first add of an endpoint.
2945 */
2946 if (virt_dev->eps[i].ring) {
2947 xhci_free_endpoint_ring(xhci, virt_dev, i);
2948 }
2949 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2950 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2951 virt_dev->eps[i].new_ring = NULL;
2952 }
2953command_cleanup:
2954 kfree(command->completion);
2955 kfree(command);
2956
2957 return ret;
2958}
2959
2960static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2961{
2962 struct xhci_hcd *xhci;
2963 struct xhci_virt_device *virt_dev;
2964 int i, ret;
2965
2966 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2967 if (ret <= 0)
2968 return;
2969 xhci = hcd_to_xhci(hcd);
2970
2971 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2972 virt_dev = xhci->devs[udev->slot_id];
2973 /* Free any rings allocated for added endpoints */
2974 for (i = 0; i < 31; i++) {
2975 if (virt_dev->eps[i].new_ring) {
2976 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2977 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2978 virt_dev->eps[i].new_ring = NULL;
2979 }
2980 }
2981 xhci_zero_in_ctx(xhci, virt_dev);
2982}
2983
2984static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2985 struct xhci_container_ctx *in_ctx,
2986 struct xhci_container_ctx *out_ctx,
2987 struct xhci_input_control_ctx *ctrl_ctx,
2988 u32 add_flags, u32 drop_flags)
2989{
2990 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2991 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2992 xhci_slot_copy(xhci, in_ctx, out_ctx);
2993 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2994}
2995
2996static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2997 unsigned int slot_id, unsigned int ep_index,
2998 struct xhci_dequeue_state *deq_state)
2999{
3000 struct xhci_input_control_ctx *ctrl_ctx;
3001 struct xhci_container_ctx *in_ctx;
3002 struct xhci_ep_ctx *ep_ctx;
3003 u32 added_ctxs;
3004 dma_addr_t addr;
3005
3006 in_ctx = xhci->devs[slot_id]->in_ctx;
3007 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3008 if (!ctrl_ctx) {
3009 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3010 __func__);
3011 return;
3012 }
3013
3014 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3015 xhci->devs[slot_id]->out_ctx, ep_index);
3016 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3017 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3018 deq_state->new_deq_ptr);
3019 if (addr == 0) {
3020 xhci_warn(xhci, "WARN Cannot submit config ep after "
3021 "reset ep command\n");
3022 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3023 deq_state->new_deq_seg,
3024 deq_state->new_deq_ptr);
3025 return;
3026 }
3027 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3028
3029 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3030 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3031 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3032 added_ctxs, added_ctxs);
3033}
3034
3035void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3036 unsigned int stream_id, struct xhci_td *td)
3037{
3038 struct xhci_dequeue_state deq_state;
3039 struct usb_device *udev = td->urb->dev;
3040
3041 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3042 "Cleaning up stalled endpoint ring");
3043 /* We need to move the HW's dequeue pointer past this TD,
3044 * or it will attempt to resend it on the next doorbell ring.
3045 */
3046 xhci_find_new_dequeue_state(xhci, udev->slot_id,
3047 ep_index, stream_id, td, &deq_state);
3048
3049 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3050 return;
3051
3052 /* HW with the reset endpoint quirk will use the saved dequeue state to
3053 * issue a configure endpoint command later.
3054 */
3055 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3056 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3057 "Queueing new dequeue state");
3058 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3059 ep_index, &deq_state);
3060 } else {
3061 /* Better hope no one uses the input context between now and the
3062 * reset endpoint completion!
3063 * XXX: No idea how this hardware will react when stream rings
3064 * are enabled.
3065 */
3066 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3067 "Setting up input context for "
3068 "configure endpoint command");
3069 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3070 ep_index, &deq_state);
3071 }
3072}
3073
3074static void xhci_endpoint_disable(struct usb_hcd *hcd,
3075 struct usb_host_endpoint *host_ep)
3076{
3077 struct xhci_hcd *xhci;
3078 struct xhci_virt_device *vdev;
3079 struct xhci_virt_ep *ep;
3080 struct usb_device *udev;
3081 unsigned long flags;
3082 unsigned int ep_index;
3083
3084 xhci = hcd_to_xhci(hcd);
3085rescan:
3086 spin_lock_irqsave(&xhci->lock, flags);
3087
3088 udev = (struct usb_device *)host_ep->hcpriv;
3089 if (!udev || !udev->slot_id)
3090 goto done;
3091
3092 vdev = xhci->devs[udev->slot_id];
3093 if (!vdev)
3094 goto done;
3095
3096 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3097 ep = &vdev->eps[ep_index];
3098 if (!ep)
3099 goto done;
3100
3101 /* wait for hub_tt_work to finish clearing hub TT */
3102 if (ep->ep_state & EP_CLEARING_TT) {
3103 spin_unlock_irqrestore(&xhci->lock, flags);
3104 schedule_timeout_uninterruptible(1);
3105 goto rescan;
3106 }
3107
3108 if (ep->ep_state)
3109 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3110 ep->ep_state);
3111done:
3112 host_ep->hcpriv = NULL;
3113 spin_unlock_irqrestore(&xhci->lock, flags);
3114}
3115
3116/*
3117 * Called after usb core issues a clear halt control message.
3118 * The host side of the halt should already be cleared by a reset endpoint
3119 * command issued when the STALL event was received.
3120 *
3121 * The reset endpoint command may only be issued to endpoints in the halted
3122 * state. For software that wishes to reset the data toggle or sequence number
3123 * of an endpoint that isn't in the halted state this function will issue a
3124 * configure endpoint command with the Drop and Add bits set for the target
3125 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3126 */
3127
3128static void xhci_endpoint_reset(struct usb_hcd *hcd,
3129 struct usb_host_endpoint *host_ep)
3130{
3131 struct xhci_hcd *xhci;
3132 struct usb_device *udev;
3133 struct xhci_virt_device *vdev;
3134 struct xhci_virt_ep *ep;
3135 struct xhci_input_control_ctx *ctrl_ctx;
3136 struct xhci_command *stop_cmd, *cfg_cmd;
3137 unsigned int ep_index;
3138 unsigned long flags;
3139 u32 ep_flag;
3140 int err;
3141
3142 xhci = hcd_to_xhci(hcd);
3143 if (!host_ep->hcpriv)
3144 return;
3145 udev = (struct usb_device *) host_ep->hcpriv;
3146 vdev = xhci->devs[udev->slot_id];
3147
3148 /*
3149 * vdev may be lost due to xHC restore error and re-initialization
3150 * during S3/S4 resume. A new vdev will be allocated later by
3151 * xhci_discover_or_reset_device()
3152 */
3153 if (!udev->slot_id || !vdev)
3154 return;
3155 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3156 ep = &vdev->eps[ep_index];
3157 if (!ep)
3158 return;
3159
3160 /* Bail out if toggle is already being cleared by a endpoint reset */
3161 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3162 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3163 return;
3164 }
3165 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3166 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3167 usb_endpoint_xfer_isoc(&host_ep->desc))
3168 return;
3169
3170 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3171
3172 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3173 return;
3174
3175 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3176 if (!stop_cmd)
3177 return;
3178
3179 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3180 if (!cfg_cmd)
3181 goto cleanup;
3182
3183 spin_lock_irqsave(&xhci->lock, flags);
3184
3185 /* block queuing new trbs and ringing ep doorbell */
3186 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3187
3188 /*
3189 * Make sure endpoint ring is empty before resetting the toggle/seq.
3190 * Driver is required to synchronously cancel all transfer request.
3191 * Stop the endpoint to force xHC to update the output context
3192 */
3193
3194 if (!list_empty(&ep->ring->td_list)) {
3195 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3196 spin_unlock_irqrestore(&xhci->lock, flags);
3197 xhci_free_command(xhci, cfg_cmd);
3198 goto cleanup;
3199 }
3200
3201 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3202 ep_index, 0);
3203 if (err < 0) {
3204 spin_unlock_irqrestore(&xhci->lock, flags);
3205 xhci_free_command(xhci, cfg_cmd);
3206 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3207 __func__, err);
3208 goto cleanup;
3209 }
3210
3211 xhci_ring_cmd_db(xhci);
3212 spin_unlock_irqrestore(&xhci->lock, flags);
3213
3214 wait_for_completion(stop_cmd->completion);
3215
3216 spin_lock_irqsave(&xhci->lock, flags);
3217
3218 /* config ep command clears toggle if add and drop ep flags are set */
3219 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3220 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3221 ctrl_ctx, ep_flag, ep_flag);
3222 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3223
3224 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3225 udev->slot_id, false);
3226 if (err < 0) {
3227 spin_unlock_irqrestore(&xhci->lock, flags);
3228 xhci_free_command(xhci, cfg_cmd);
3229 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3230 __func__, err);
3231 goto cleanup;
3232 }
3233
3234 xhci_ring_cmd_db(xhci);
3235 spin_unlock_irqrestore(&xhci->lock, flags);
3236
3237 wait_for_completion(cfg_cmd->completion);
3238
3239 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3240 xhci_free_command(xhci, cfg_cmd);
3241cleanup:
3242 xhci_free_command(xhci, stop_cmd);
3243}
3244
3245static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3246 struct usb_device *udev, struct usb_host_endpoint *ep,
3247 unsigned int slot_id)
3248{
3249 int ret;
3250 unsigned int ep_index;
3251 unsigned int ep_state;
3252
3253 if (!ep)
3254 return -EINVAL;
3255 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3256 if (ret <= 0)
3257 return -EINVAL;
3258 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3259 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3260 " descriptor for ep 0x%x does not support streams\n",
3261 ep->desc.bEndpointAddress);
3262 return -EINVAL;
3263 }
3264
3265 ep_index = xhci_get_endpoint_index(&ep->desc);
3266 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3267 if (ep_state & EP_HAS_STREAMS ||
3268 ep_state & EP_GETTING_STREAMS) {
3269 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3270 "already has streams set up.\n",
3271 ep->desc.bEndpointAddress);
3272 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3273 "dynamic stream context array reallocation.\n");
3274 return -EINVAL;
3275 }
3276 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3277 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3278 "endpoint 0x%x; URBs are pending.\n",
3279 ep->desc.bEndpointAddress);
3280 return -EINVAL;
3281 }
3282 return 0;
3283}
3284
3285static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3286 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3287{
3288 unsigned int max_streams;
3289
3290 /* The stream context array size must be a power of two */
3291 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3292 /*
3293 * Find out how many primary stream array entries the host controller
3294 * supports. Later we may use secondary stream arrays (similar to 2nd
3295 * level page entries), but that's an optional feature for xHCI host
3296 * controllers. xHCs must support at least 4 stream IDs.
3297 */
3298 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3299 if (*num_stream_ctxs > max_streams) {
3300 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3301 max_streams);
3302 *num_stream_ctxs = max_streams;
3303 *num_streams = max_streams;
3304 }
3305}
3306
3307/* Returns an error code if one of the endpoint already has streams.
3308 * This does not change any data structures, it only checks and gathers
3309 * information.
3310 */
3311static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3312 struct usb_device *udev,
3313 struct usb_host_endpoint **eps, unsigned int num_eps,
3314 unsigned int *num_streams, u32 *changed_ep_bitmask)
3315{
3316 unsigned int max_streams;
3317 unsigned int endpoint_flag;
3318 int i;
3319 int ret;
3320
3321 for (i = 0; i < num_eps; i++) {
3322 ret = xhci_check_streams_endpoint(xhci, udev,
3323 eps[i], udev->slot_id);
3324 if (ret < 0)
3325 return ret;
3326
3327 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3328 if (max_streams < (*num_streams - 1)) {
3329 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3330 eps[i]->desc.bEndpointAddress,
3331 max_streams);
3332 *num_streams = max_streams+1;
3333 }
3334
3335 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3336 if (*changed_ep_bitmask & endpoint_flag)
3337 return -EINVAL;
3338 *changed_ep_bitmask |= endpoint_flag;
3339 }
3340 return 0;
3341}
3342
3343static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3344 struct usb_device *udev,
3345 struct usb_host_endpoint **eps, unsigned int num_eps)
3346{
3347 u32 changed_ep_bitmask = 0;
3348 unsigned int slot_id;
3349 unsigned int ep_index;
3350 unsigned int ep_state;
3351 int i;
3352
3353 slot_id = udev->slot_id;
3354 if (!xhci->devs[slot_id])
3355 return 0;
3356
3357 for (i = 0; i < num_eps; i++) {
3358 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3359 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3360 /* Are streams already being freed for the endpoint? */
3361 if (ep_state & EP_GETTING_NO_STREAMS) {
3362 xhci_warn(xhci, "WARN Can't disable streams for "
3363 "endpoint 0x%x, "
3364 "streams are being disabled already\n",
3365 eps[i]->desc.bEndpointAddress);
3366 return 0;
3367 }
3368 /* Are there actually any streams to free? */
3369 if (!(ep_state & EP_HAS_STREAMS) &&
3370 !(ep_state & EP_GETTING_STREAMS)) {
3371 xhci_warn(xhci, "WARN Can't disable streams for "
3372 "endpoint 0x%x, "
3373 "streams are already disabled!\n",
3374 eps[i]->desc.bEndpointAddress);
3375 xhci_warn(xhci, "WARN xhci_free_streams() called "
3376 "with non-streams endpoint\n");
3377 return 0;
3378 }
3379 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3380 }
3381 return changed_ep_bitmask;
3382}
3383
3384/*
3385 * The USB device drivers use this function (through the HCD interface in USB
3386 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3387 * coordinate mass storage command queueing across multiple endpoints (basically
3388 * a stream ID == a task ID).
3389 *
3390 * Setting up streams involves allocating the same size stream context array
3391 * for each endpoint and issuing a configure endpoint command for all endpoints.
3392 *
3393 * Don't allow the call to succeed if one endpoint only supports one stream
3394 * (which means it doesn't support streams at all).
3395 *
3396 * Drivers may get less stream IDs than they asked for, if the host controller
3397 * hardware or endpoints claim they can't support the number of requested
3398 * stream IDs.
3399 */
3400static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3401 struct usb_host_endpoint **eps, unsigned int num_eps,
3402 unsigned int num_streams, gfp_t mem_flags)
3403{
3404 int i, ret;
3405 struct xhci_hcd *xhci;
3406 struct xhci_virt_device *vdev;
3407 struct xhci_command *config_cmd;
3408 struct xhci_input_control_ctx *ctrl_ctx;
3409 unsigned int ep_index;
3410 unsigned int num_stream_ctxs;
3411 unsigned int max_packet;
3412 unsigned long flags;
3413 u32 changed_ep_bitmask = 0;
3414
3415 if (!eps)
3416 return -EINVAL;
3417
3418 /* Add one to the number of streams requested to account for
3419 * stream 0 that is reserved for xHCI usage.
3420 */
3421 num_streams += 1;
3422 xhci = hcd_to_xhci(hcd);
3423 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3424 num_streams);
3425
3426 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3427 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3428 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3429 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3430 return -ENOSYS;
3431 }
3432
3433 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3434 if (!config_cmd)
3435 return -ENOMEM;
3436
3437 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3438 if (!ctrl_ctx) {
3439 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3440 __func__);
3441 xhci_free_command(xhci, config_cmd);
3442 return -ENOMEM;
3443 }
3444
3445 /* Check to make sure all endpoints are not already configured for
3446 * streams. While we're at it, find the maximum number of streams that
3447 * all the endpoints will support and check for duplicate endpoints.
3448 */
3449 spin_lock_irqsave(&xhci->lock, flags);
3450 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3451 num_eps, &num_streams, &changed_ep_bitmask);
3452 if (ret < 0) {
3453 xhci_free_command(xhci, config_cmd);
3454 spin_unlock_irqrestore(&xhci->lock, flags);
3455 return ret;
3456 }
3457 if (num_streams <= 1) {
3458 xhci_warn(xhci, "WARN: endpoints can't handle "
3459 "more than one stream.\n");
3460 xhci_free_command(xhci, config_cmd);
3461 spin_unlock_irqrestore(&xhci->lock, flags);
3462 return -EINVAL;
3463 }
3464 vdev = xhci->devs[udev->slot_id];
3465 /* Mark each endpoint as being in transition, so
3466 * xhci_urb_enqueue() will reject all URBs.
3467 */
3468 for (i = 0; i < num_eps; i++) {
3469 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3470 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3471 }
3472 spin_unlock_irqrestore(&xhci->lock, flags);
3473
3474 /* Setup internal data structures and allocate HW data structures for
3475 * streams (but don't install the HW structures in the input context
3476 * until we're sure all memory allocation succeeded).
3477 */
3478 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3479 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3480 num_stream_ctxs, num_streams);
3481
3482 for (i = 0; i < num_eps; i++) {
3483 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3484 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3485 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3486 num_stream_ctxs,
3487 num_streams,
3488 max_packet, mem_flags);
3489 if (!vdev->eps[ep_index].stream_info)
3490 goto cleanup;
3491 /* Set maxPstreams in endpoint context and update deq ptr to
3492 * point to stream context array. FIXME
3493 */
3494 }
3495
3496 /* Set up the input context for a configure endpoint command. */
3497 for (i = 0; i < num_eps; i++) {
3498 struct xhci_ep_ctx *ep_ctx;
3499
3500 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3501 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3502
3503 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3504 vdev->out_ctx, ep_index);
3505 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3506 vdev->eps[ep_index].stream_info);
3507 }
3508 /* Tell the HW to drop its old copy of the endpoint context info
3509 * and add the updated copy from the input context.
3510 */
3511 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3512 vdev->out_ctx, ctrl_ctx,
3513 changed_ep_bitmask, changed_ep_bitmask);
3514
3515 /* Issue and wait for the configure endpoint command */
3516 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3517 false, false);
3518
3519 /* xHC rejected the configure endpoint command for some reason, so we
3520 * leave the old ring intact and free our internal streams data
3521 * structure.
3522 */
3523 if (ret < 0)
3524 goto cleanup;
3525
3526 spin_lock_irqsave(&xhci->lock, flags);
3527 for (i = 0; i < num_eps; i++) {
3528 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3529 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3530 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3531 udev->slot_id, ep_index);
3532 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3533 }
3534 xhci_free_command(xhci, config_cmd);
3535 spin_unlock_irqrestore(&xhci->lock, flags);
3536
3537 /* Subtract 1 for stream 0, which drivers can't use */
3538 return num_streams - 1;
3539
3540cleanup:
3541 /* If it didn't work, free the streams! */
3542 for (i = 0; i < num_eps; i++) {
3543 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3544 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3545 vdev->eps[ep_index].stream_info = NULL;
3546 /* FIXME Unset maxPstreams in endpoint context and
3547 * update deq ptr to point to normal string ring.
3548 */
3549 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3550 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3551 xhci_endpoint_zero(xhci, vdev, eps[i]);
3552 }
3553 xhci_free_command(xhci, config_cmd);
3554 return -ENOMEM;
3555}
3556
3557/* Transition the endpoint from using streams to being a "normal" endpoint
3558 * without streams.
3559 *
3560 * Modify the endpoint context state, submit a configure endpoint command,
3561 * and free all endpoint rings for streams if that completes successfully.
3562 */
3563static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3564 struct usb_host_endpoint **eps, unsigned int num_eps,
3565 gfp_t mem_flags)
3566{
3567 int i, ret;
3568 struct xhci_hcd *xhci;
3569 struct xhci_virt_device *vdev;
3570 struct xhci_command *command;
3571 struct xhci_input_control_ctx *ctrl_ctx;
3572 unsigned int ep_index;
3573 unsigned long flags;
3574 u32 changed_ep_bitmask;
3575
3576 xhci = hcd_to_xhci(hcd);
3577 vdev = xhci->devs[udev->slot_id];
3578
3579 /* Set up a configure endpoint command to remove the streams rings */
3580 spin_lock_irqsave(&xhci->lock, flags);
3581 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3582 udev, eps, num_eps);
3583 if (changed_ep_bitmask == 0) {
3584 spin_unlock_irqrestore(&xhci->lock, flags);
3585 return -EINVAL;
3586 }
3587
3588 /* Use the xhci_command structure from the first endpoint. We may have
3589 * allocated too many, but the driver may call xhci_free_streams() for
3590 * each endpoint it grouped into one call to xhci_alloc_streams().
3591 */
3592 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3593 command = vdev->eps[ep_index].stream_info->free_streams_command;
3594 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3595 if (!ctrl_ctx) {
3596 spin_unlock_irqrestore(&xhci->lock, flags);
3597 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3598 __func__);
3599 return -EINVAL;
3600 }
3601
3602 for (i = 0; i < num_eps; i++) {
3603 struct xhci_ep_ctx *ep_ctx;
3604
3605 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3606 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3607 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3608 EP_GETTING_NO_STREAMS;
3609
3610 xhci_endpoint_copy(xhci, command->in_ctx,
3611 vdev->out_ctx, ep_index);
3612 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3613 &vdev->eps[ep_index]);
3614 }
3615 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3616 vdev->out_ctx, ctrl_ctx,
3617 changed_ep_bitmask, changed_ep_bitmask);
3618 spin_unlock_irqrestore(&xhci->lock, flags);
3619
3620 /* Issue and wait for the configure endpoint command,
3621 * which must succeed.
3622 */
3623 ret = xhci_configure_endpoint(xhci, udev, command,
3624 false, true);
3625
3626 /* xHC rejected the configure endpoint command for some reason, so we
3627 * leave the streams rings intact.
3628 */
3629 if (ret < 0)
3630 return ret;
3631
3632 spin_lock_irqsave(&xhci->lock, flags);
3633 for (i = 0; i < num_eps; i++) {
3634 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3635 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3636 vdev->eps[ep_index].stream_info = NULL;
3637 /* FIXME Unset maxPstreams in endpoint context and
3638 * update deq ptr to point to normal string ring.
3639 */
3640 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3641 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3642 }
3643 spin_unlock_irqrestore(&xhci->lock, flags);
3644
3645 return 0;
3646}
3647
3648/*
3649 * Deletes endpoint resources for endpoints that were active before a Reset
3650 * Device command, or a Disable Slot command. The Reset Device command leaves
3651 * the control endpoint intact, whereas the Disable Slot command deletes it.
3652 *
3653 * Must be called with xhci->lock held.
3654 */
3655void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3656 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3657{
3658 int i;
3659 unsigned int num_dropped_eps = 0;
3660 unsigned int drop_flags = 0;
3661
3662 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3663 if (virt_dev->eps[i].ring) {
3664 drop_flags |= 1 << i;
3665 num_dropped_eps++;
3666 }
3667 }
3668 xhci->num_active_eps -= num_dropped_eps;
3669 if (num_dropped_eps)
3670 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3671 "Dropped %u ep ctxs, flags = 0x%x, "
3672 "%u now active.",
3673 num_dropped_eps, drop_flags,
3674 xhci->num_active_eps);
3675}
3676
3677/*
3678 * This submits a Reset Device Command, which will set the device state to 0,
3679 * set the device address to 0, and disable all the endpoints except the default
3680 * control endpoint. The USB core should come back and call
3681 * xhci_address_device(), and then re-set up the configuration. If this is
3682 * called because of a usb_reset_and_verify_device(), then the old alternate
3683 * settings will be re-installed through the normal bandwidth allocation
3684 * functions.
3685 *
3686 * Wait for the Reset Device command to finish. Remove all structures
3687 * associated with the endpoints that were disabled. Clear the input device
3688 * structure? Reset the control endpoint 0 max packet size?
3689 *
3690 * If the virt_dev to be reset does not exist or does not match the udev,
3691 * it means the device is lost, possibly due to the xHC restore error and
3692 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3693 * re-allocate the device.
3694 */
3695static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3696 struct usb_device *udev)
3697{
3698 int ret, i;
3699 unsigned long flags;
3700 struct xhci_hcd *xhci;
3701 unsigned int slot_id;
3702 struct xhci_virt_device *virt_dev;
3703 struct xhci_command *reset_device_cmd;
3704 struct xhci_slot_ctx *slot_ctx;
3705 int old_active_eps = 0;
3706
3707 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3708 if (ret <= 0)
3709 return ret;
3710 xhci = hcd_to_xhci(hcd);
3711 slot_id = udev->slot_id;
3712 virt_dev = xhci->devs[slot_id];
3713 if (!virt_dev) {
3714 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3715 "not exist. Re-allocate the device\n", slot_id);
3716 ret = xhci_alloc_dev(hcd, udev);
3717 if (ret == 1)
3718 return 0;
3719 else
3720 return -EINVAL;
3721 }
3722
3723 if (virt_dev->tt_info)
3724 old_active_eps = virt_dev->tt_info->active_eps;
3725
3726 if (virt_dev->udev != udev) {
3727 /* If the virt_dev and the udev does not match, this virt_dev
3728 * may belong to another udev.
3729 * Re-allocate the device.
3730 */
3731 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3732 "not match the udev. Re-allocate the device\n",
3733 slot_id);
3734 ret = xhci_alloc_dev(hcd, udev);
3735 if (ret == 1)
3736 return 0;
3737 else
3738 return -EINVAL;
3739 }
3740
3741 /* If device is not setup, there is no point in resetting it */
3742 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3743 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3744 SLOT_STATE_DISABLED)
3745 return 0;
3746
3747 trace_xhci_discover_or_reset_device(slot_ctx);
3748
3749 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3750 /* Allocate the command structure that holds the struct completion.
3751 * Assume we're in process context, since the normal device reset
3752 * process has to wait for the device anyway. Storage devices are
3753 * reset as part of error handling, so use GFP_NOIO instead of
3754 * GFP_KERNEL.
3755 */
3756 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3757 if (!reset_device_cmd) {
3758 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3759 return -ENOMEM;
3760 }
3761
3762 /* Attempt to submit the Reset Device command to the command ring */
3763 spin_lock_irqsave(&xhci->lock, flags);
3764
3765 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3766 if (ret) {
3767 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3768 spin_unlock_irqrestore(&xhci->lock, flags);
3769 goto command_cleanup;
3770 }
3771 xhci_ring_cmd_db(xhci);
3772 spin_unlock_irqrestore(&xhci->lock, flags);
3773
3774 /* Wait for the Reset Device command to finish */
3775 wait_for_completion(reset_device_cmd->completion);
3776
3777 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3778 * unless we tried to reset a slot ID that wasn't enabled,
3779 * or the device wasn't in the addressed or configured state.
3780 */
3781 ret = reset_device_cmd->status;
3782 switch (ret) {
3783 case COMP_COMMAND_ABORTED:
3784 case COMP_COMMAND_RING_STOPPED:
3785 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3786 ret = -ETIME;
3787 goto command_cleanup;
3788 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3789 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3790 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3791 slot_id,
3792 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3793 xhci_dbg(xhci, "Not freeing device rings.\n");
3794 /* Don't treat this as an error. May change my mind later. */
3795 ret = 0;
3796 goto command_cleanup;
3797 case COMP_SUCCESS:
3798 xhci_dbg(xhci, "Successful reset device command.\n");
3799 break;
3800 default:
3801 if (xhci_is_vendor_info_code(xhci, ret))
3802 break;
3803 xhci_warn(xhci, "Unknown completion code %u for "
3804 "reset device command.\n", ret);
3805 ret = -EINVAL;
3806 goto command_cleanup;
3807 }
3808
3809 /* Free up host controller endpoint resources */
3810 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3811 spin_lock_irqsave(&xhci->lock, flags);
3812 /* Don't delete the default control endpoint resources */
3813 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3814 spin_unlock_irqrestore(&xhci->lock, flags);
3815 }
3816
3817 /* Everything but endpoint 0 is disabled, so free the rings. */
3818 for (i = 1; i < 31; i++) {
3819 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3820
3821 if (ep->ep_state & EP_HAS_STREAMS) {
3822 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3823 xhci_get_endpoint_address(i));
3824 xhci_free_stream_info(xhci, ep->stream_info);
3825 ep->stream_info = NULL;
3826 ep->ep_state &= ~EP_HAS_STREAMS;
3827 }
3828
3829 if (ep->ring) {
3830 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3831 xhci_free_endpoint_ring(xhci, virt_dev, i);
3832 }
3833 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3834 xhci_drop_ep_from_interval_table(xhci,
3835 &virt_dev->eps[i].bw_info,
3836 virt_dev->bw_table,
3837 udev,
3838 &virt_dev->eps[i],
3839 virt_dev->tt_info);
3840 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3841 }
3842 /* If necessary, update the number of active TTs on this root port */
3843 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3844 virt_dev->flags = 0;
3845 ret = 0;
3846
3847command_cleanup:
3848 xhci_free_command(xhci, reset_device_cmd);
3849 return ret;
3850}
3851
3852/*
3853 * At this point, the struct usb_device is about to go away, the device has
3854 * disconnected, and all traffic has been stopped and the endpoints have been
3855 * disabled. Free any HC data structures associated with that device.
3856 */
3857static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3858{
3859 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3860 struct xhci_virt_device *virt_dev;
3861 struct xhci_slot_ctx *slot_ctx;
3862 int i, ret;
3863
3864#ifndef CONFIG_USB_DEFAULT_PERSIST
3865 /*
3866 * We called pm_runtime_get_noresume when the device was attached.
3867 * Decrement the counter here to allow controller to runtime suspend
3868 * if no devices remain.
3869 */
3870 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3871 pm_runtime_put_noidle(hcd->self.controller);
3872#endif
3873
3874 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3875 /* If the host is halted due to driver unload, we still need to free the
3876 * device.
3877 */
3878 if (ret <= 0 && ret != -ENODEV)
3879 return;
3880
3881 virt_dev = xhci->devs[udev->slot_id];
3882 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3883 trace_xhci_free_dev(slot_ctx);
3884
3885 /* Stop any wayward timer functions (which may grab the lock) */
3886 for (i = 0; i < 31; i++) {
3887 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3888 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3889 }
3890 virt_dev->udev = NULL;
3891 ret = xhci_disable_slot(xhci, udev->slot_id);
3892 if (ret)
3893 xhci_free_virt_device(xhci, udev->slot_id);
3894}
3895
3896int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3897{
3898 struct xhci_command *command;
3899 unsigned long flags;
3900 u32 state;
3901 int ret = 0;
3902
3903 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3904 if (!command)
3905 return -ENOMEM;
3906
3907 xhci_debugfs_remove_slot(xhci, slot_id);
3908
3909 spin_lock_irqsave(&xhci->lock, flags);
3910 /* Don't disable the slot if the host controller is dead. */
3911 state = readl(&xhci->op_regs->status);
3912 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3913 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3914 spin_unlock_irqrestore(&xhci->lock, flags);
3915 kfree(command);
3916 return -ENODEV;
3917 }
3918
3919 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3920 slot_id);
3921 if (ret) {
3922 spin_unlock_irqrestore(&xhci->lock, flags);
3923 kfree(command);
3924 return ret;
3925 }
3926 xhci_ring_cmd_db(xhci);
3927 spin_unlock_irqrestore(&xhci->lock, flags);
3928 return ret;
3929}
3930
3931/*
3932 * Checks if we have enough host controller resources for the default control
3933 * endpoint.
3934 *
3935 * Must be called with xhci->lock held.
3936 */
3937static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3938{
3939 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3940 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3941 "Not enough ep ctxs: "
3942 "%u active, need to add 1, limit is %u.",
3943 xhci->num_active_eps, xhci->limit_active_eps);
3944 return -ENOMEM;
3945 }
3946 xhci->num_active_eps += 1;
3947 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3948 "Adding 1 ep ctx, %u now active.",
3949 xhci->num_active_eps);
3950 return 0;
3951}
3952
3953
3954/*
3955 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3956 * timed out, or allocating memory failed. Returns 1 on success.
3957 */
3958int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3959{
3960 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3961 struct xhci_virt_device *vdev;
3962 struct xhci_slot_ctx *slot_ctx;
3963 unsigned long flags;
3964 int ret, slot_id;
3965 struct xhci_command *command;
3966
3967 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3968 if (!command)
3969 return 0;
3970
3971 spin_lock_irqsave(&xhci->lock, flags);
3972 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3973 if (ret) {
3974 spin_unlock_irqrestore(&xhci->lock, flags);
3975 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3976 xhci_free_command(xhci, command);
3977 return 0;
3978 }
3979 xhci_ring_cmd_db(xhci);
3980 spin_unlock_irqrestore(&xhci->lock, flags);
3981
3982 wait_for_completion(command->completion);
3983 slot_id = command->slot_id;
3984
3985 if (!slot_id || command->status != COMP_SUCCESS) {
3986 xhci_err(xhci, "Error while assigning device slot ID\n");
3987 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3988 HCS_MAX_SLOTS(
3989 readl(&xhci->cap_regs->hcs_params1)));
3990 xhci_free_command(xhci, command);
3991 return 0;
3992 }
3993
3994 xhci_free_command(xhci, command);
3995
3996 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3997 spin_lock_irqsave(&xhci->lock, flags);
3998 ret = xhci_reserve_host_control_ep_resources(xhci);
3999 if (ret) {
4000 spin_unlock_irqrestore(&xhci->lock, flags);
4001 xhci_warn(xhci, "Not enough host resources, "
4002 "active endpoint contexts = %u\n",
4003 xhci->num_active_eps);
4004 goto disable_slot;
4005 }
4006 spin_unlock_irqrestore(&xhci->lock, flags);
4007 }
4008 /* Use GFP_NOIO, since this function can be called from
4009 * xhci_discover_or_reset_device(), which may be called as part of
4010 * mass storage driver error handling.
4011 */
4012 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4013 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4014 goto disable_slot;
4015 }
4016 vdev = xhci->devs[slot_id];
4017 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4018 trace_xhci_alloc_dev(slot_ctx);
4019
4020 udev->slot_id = slot_id;
4021
4022 xhci_debugfs_create_slot(xhci, slot_id);
4023
4024#ifndef CONFIG_USB_DEFAULT_PERSIST
4025 /*
4026 * If resetting upon resume, we can't put the controller into runtime
4027 * suspend if there is a device attached.
4028 */
4029 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4030 pm_runtime_get_noresume(hcd->self.controller);
4031#endif
4032
4033 /* Is this a LS or FS device under a HS hub? */
4034 /* Hub or peripherial? */
4035 return 1;
4036
4037disable_slot:
4038 ret = xhci_disable_slot(xhci, udev->slot_id);
4039 if (ret)
4040 xhci_free_virt_device(xhci, udev->slot_id);
4041
4042 return 0;
4043}
4044
4045/*
4046 * Issue an Address Device command and optionally send a corresponding
4047 * SetAddress request to the device.
4048 */
4049static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4050 enum xhci_setup_dev setup)
4051{
4052 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4053 unsigned long flags;
4054 struct xhci_virt_device *virt_dev;
4055 int ret = 0;
4056 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4057 struct xhci_slot_ctx *slot_ctx;
4058 struct xhci_input_control_ctx *ctrl_ctx;
4059 u64 temp_64;
4060 struct xhci_command *command = NULL;
4061
4062 mutex_lock(&xhci->mutex);
4063
4064 if (xhci->xhc_state) { /* dying, removing or halted */
4065 ret = -ESHUTDOWN;
4066 goto out;
4067 }
4068
4069 if (!udev->slot_id) {
4070 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4071 "Bad Slot ID %d", udev->slot_id);
4072 ret = -EINVAL;
4073 goto out;
4074 }
4075
4076 virt_dev = xhci->devs[udev->slot_id];
4077
4078 if (WARN_ON(!virt_dev)) {
4079 /*
4080 * In plug/unplug torture test with an NEC controller,
4081 * a zero-dereference was observed once due to virt_dev = 0.
4082 * Print useful debug rather than crash if it is observed again!
4083 */
4084 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4085 udev->slot_id);
4086 ret = -EINVAL;
4087 goto out;
4088 }
4089 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4090 trace_xhci_setup_device_slot(slot_ctx);
4091
4092 if (setup == SETUP_CONTEXT_ONLY) {
4093 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4094 SLOT_STATE_DEFAULT) {
4095 xhci_dbg(xhci, "Slot already in default state\n");
4096 goto out;
4097 }
4098 }
4099
4100 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4101 if (!command) {
4102 ret = -ENOMEM;
4103 goto out;
4104 }
4105
4106 command->in_ctx = virt_dev->in_ctx;
4107
4108 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4109 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4110 if (!ctrl_ctx) {
4111 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4112 __func__);
4113 ret = -EINVAL;
4114 goto out;
4115 }
4116 /*
4117 * If this is the first Set Address since device plug-in or
4118 * virt_device realloaction after a resume with an xHCI power loss,
4119 * then set up the slot context.
4120 */
4121 if (!slot_ctx->dev_info)
4122 xhci_setup_addressable_virt_dev(xhci, udev);
4123 /* Otherwise, update the control endpoint ring enqueue pointer. */
4124 else
4125 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4126 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4127 ctrl_ctx->drop_flags = 0;
4128
4129 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4130 le32_to_cpu(slot_ctx->dev_info) >> 27);
4131
4132 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4133 spin_lock_irqsave(&xhci->lock, flags);
4134 trace_xhci_setup_device(virt_dev);
4135 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4136 udev->slot_id, setup);
4137 if (ret) {
4138 spin_unlock_irqrestore(&xhci->lock, flags);
4139 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4140 "FIXME: allocate a command ring segment");
4141 goto out;
4142 }
4143 xhci_ring_cmd_db(xhci);
4144 spin_unlock_irqrestore(&xhci->lock, flags);
4145
4146 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4147 wait_for_completion(command->completion);
4148
4149 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4150 * the SetAddress() "recovery interval" required by USB and aborting the
4151 * command on a timeout.
4152 */
4153 switch (command->status) {
4154 case COMP_COMMAND_ABORTED:
4155 case COMP_COMMAND_RING_STOPPED:
4156 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4157 ret = -ETIME;
4158 break;
4159 case COMP_CONTEXT_STATE_ERROR:
4160 case COMP_SLOT_NOT_ENABLED_ERROR:
4161 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4162 act, udev->slot_id);
4163 ret = -EINVAL;
4164 break;
4165 case COMP_USB_TRANSACTION_ERROR:
4166 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4167
4168 mutex_unlock(&xhci->mutex);
4169 ret = xhci_disable_slot(xhci, udev->slot_id);
4170 if (!ret)
4171 xhci_alloc_dev(hcd, udev);
4172 kfree(command->completion);
4173 kfree(command);
4174 return -EPROTO;
4175 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4176 dev_warn(&udev->dev,
4177 "ERROR: Incompatible device for setup %s command\n", act);
4178 ret = -ENODEV;
4179 break;
4180 case COMP_SUCCESS:
4181 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4182 "Successful setup %s command", act);
4183 break;
4184 default:
4185 xhci_err(xhci,
4186 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4187 act, command->status);
4188 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4189 ret = -EINVAL;
4190 break;
4191 }
4192 if (ret)
4193 goto out;
4194 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4195 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4196 "Op regs DCBAA ptr = %#016llx", temp_64);
4197 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4198 "Slot ID %d dcbaa entry @%p = %#016llx",
4199 udev->slot_id,
4200 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4201 (unsigned long long)
4202 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4203 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4204 "Output Context DMA address = %#08llx",
4205 (unsigned long long)virt_dev->out_ctx->dma);
4206 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4207 le32_to_cpu(slot_ctx->dev_info) >> 27);
4208 /*
4209 * USB core uses address 1 for the roothubs, so we add one to the
4210 * address given back to us by the HC.
4211 */
4212 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4213 le32_to_cpu(slot_ctx->dev_info) >> 27);
4214 /* Zero the input context control for later use */
4215 ctrl_ctx->add_flags = 0;
4216 ctrl_ctx->drop_flags = 0;
4217 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4218 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4219
4220 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221 "Internal device address = %d",
4222 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4223out:
4224 mutex_unlock(&xhci->mutex);
4225 if (command) {
4226 kfree(command->completion);
4227 kfree(command);
4228 }
4229 return ret;
4230}
4231
4232static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4233{
4234 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4235}
4236
4237static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4238{
4239 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4240}
4241
4242/*
4243 * Transfer the port index into real index in the HW port status
4244 * registers. Caculate offset between the port's PORTSC register
4245 * and port status base. Divide the number of per port register
4246 * to get the real index. The raw port number bases 1.
4247 */
4248int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4249{
4250 struct xhci_hub *rhub;
4251
4252 rhub = xhci_get_rhub(hcd);
4253 return rhub->ports[port1 - 1]->hw_portnum + 1;
4254}
4255
4256/*
4257 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4258 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4259 */
4260static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4261 struct usb_device *udev, u16 max_exit_latency)
4262{
4263 struct xhci_virt_device *virt_dev;
4264 struct xhci_command *command;
4265 struct xhci_input_control_ctx *ctrl_ctx;
4266 struct xhci_slot_ctx *slot_ctx;
4267 unsigned long flags;
4268 int ret;
4269
4270 spin_lock_irqsave(&xhci->lock, flags);
4271
4272 virt_dev = xhci->devs[udev->slot_id];
4273
4274 /*
4275 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4276 * xHC was re-initialized. Exit latency will be set later after
4277 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4278 */
4279
4280 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4281 spin_unlock_irqrestore(&xhci->lock, flags);
4282 return 0;
4283 }
4284
4285 /* Attempt to issue an Evaluate Context command to change the MEL. */
4286 command = xhci->lpm_command;
4287 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4288 if (!ctrl_ctx) {
4289 spin_unlock_irqrestore(&xhci->lock, flags);
4290 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4291 __func__);
4292 return -ENOMEM;
4293 }
4294
4295 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4296 spin_unlock_irqrestore(&xhci->lock, flags);
4297
4298 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4299 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4300 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4301 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4302 slot_ctx->dev_state = 0;
4303
4304 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4305 "Set up evaluate context for LPM MEL change.");
4306
4307 /* Issue and wait for the evaluate context command. */
4308 ret = xhci_configure_endpoint(xhci, udev, command,
4309 true, true);
4310
4311 if (!ret) {
4312 spin_lock_irqsave(&xhci->lock, flags);
4313 virt_dev->current_mel = max_exit_latency;
4314 spin_unlock_irqrestore(&xhci->lock, flags);
4315 }
4316 return ret;
4317}
4318
4319#ifdef CONFIG_PM
4320
4321/* BESL to HIRD Encoding array for USB2 LPM */
4322static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4323 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4324
4325/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4326static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4327 struct usb_device *udev)
4328{
4329 int u2del, besl, besl_host;
4330 int besl_device = 0;
4331 u32 field;
4332
4333 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4334 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4335
4336 if (field & USB_BESL_SUPPORT) {
4337 for (besl_host = 0; besl_host < 16; besl_host++) {
4338 if (xhci_besl_encoding[besl_host] >= u2del)
4339 break;
4340 }
4341 /* Use baseline BESL value as default */
4342 if (field & USB_BESL_BASELINE_VALID)
4343 besl_device = USB_GET_BESL_BASELINE(field);
4344 else if (field & USB_BESL_DEEP_VALID)
4345 besl_device = USB_GET_BESL_DEEP(field);
4346 } else {
4347 if (u2del <= 50)
4348 besl_host = 0;
4349 else
4350 besl_host = (u2del - 51) / 75 + 1;
4351 }
4352
4353 besl = besl_host + besl_device;
4354 if (besl > 15)
4355 besl = 15;
4356
4357 return besl;
4358}
4359
4360/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4361static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4362{
4363 u32 field;
4364 int l1;
4365 int besld = 0;
4366 int hirdm = 0;
4367
4368 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4369
4370 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4371 l1 = udev->l1_params.timeout / 256;
4372
4373 /* device has preferred BESLD */
4374 if (field & USB_BESL_DEEP_VALID) {
4375 besld = USB_GET_BESL_DEEP(field);
4376 hirdm = 1;
4377 }
4378
4379 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4380}
4381
4382static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4383 struct usb_device *udev, int enable)
4384{
4385 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4386 struct xhci_port **ports;
4387 __le32 __iomem *pm_addr, *hlpm_addr;
4388 u32 pm_val, hlpm_val, field;
4389 unsigned int port_num;
4390 unsigned long flags;
4391 int hird, exit_latency;
4392 int ret;
4393
4394 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4395 !udev->lpm_capable)
4396 return -EPERM;
4397
4398 if (!udev->parent || udev->parent->parent ||
4399 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4400 return -EPERM;
4401
4402 if (udev->usb2_hw_lpm_capable != 1)
4403 return -EPERM;
4404
4405 spin_lock_irqsave(&xhci->lock, flags);
4406
4407 ports = xhci->usb2_rhub.ports;
4408 port_num = udev->portnum - 1;
4409 pm_addr = ports[port_num]->addr + PORTPMSC;
4410 pm_val = readl(pm_addr);
4411 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4412
4413 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4414 enable ? "enable" : "disable", port_num + 1);
4415
4416 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4417 /* Host supports BESL timeout instead of HIRD */
4418 if (udev->usb2_hw_lpm_besl_capable) {
4419 /* if device doesn't have a preferred BESL value use a
4420 * default one which works with mixed HIRD and BESL
4421 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4422 */
4423 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4424 if ((field & USB_BESL_SUPPORT) &&
4425 (field & USB_BESL_BASELINE_VALID))
4426 hird = USB_GET_BESL_BASELINE(field);
4427 else
4428 hird = udev->l1_params.besl;
4429
4430 exit_latency = xhci_besl_encoding[hird];
4431 spin_unlock_irqrestore(&xhci->lock, flags);
4432
4433 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4434 * input context for link powermanagement evaluate
4435 * context commands. It is protected by hcd->bandwidth
4436 * mutex and is shared by all devices. We need to set
4437 * the max ext latency in USB 2 BESL LPM as well, so
4438 * use the same mutex and xhci_change_max_exit_latency()
4439 */
4440 mutex_lock(hcd->bandwidth_mutex);
4441 ret = xhci_change_max_exit_latency(xhci, udev,
4442 exit_latency);
4443 mutex_unlock(hcd->bandwidth_mutex);
4444
4445 if (ret < 0)
4446 return ret;
4447 spin_lock_irqsave(&xhci->lock, flags);
4448
4449 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4450 writel(hlpm_val, hlpm_addr);
4451 /* flush write */
4452 readl(hlpm_addr);
4453 } else {
4454 hird = xhci_calculate_hird_besl(xhci, udev);
4455 }
4456
4457 pm_val &= ~PORT_HIRD_MASK;
4458 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4459 writel(pm_val, pm_addr);
4460 pm_val = readl(pm_addr);
4461 pm_val |= PORT_HLE;
4462 writel(pm_val, pm_addr);
4463 /* flush write */
4464 readl(pm_addr);
4465 } else {
4466 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4467 writel(pm_val, pm_addr);
4468 /* flush write */
4469 readl(pm_addr);
4470 if (udev->usb2_hw_lpm_besl_capable) {
4471 spin_unlock_irqrestore(&xhci->lock, flags);
4472 mutex_lock(hcd->bandwidth_mutex);
4473 xhci_change_max_exit_latency(xhci, udev, 0);
4474 mutex_unlock(hcd->bandwidth_mutex);
4475 return 0;
4476 }
4477 }
4478
4479 spin_unlock_irqrestore(&xhci->lock, flags);
4480 return 0;
4481}
4482
4483/* check if a usb2 port supports a given extened capability protocol
4484 * only USB2 ports extended protocol capability values are cached.
4485 * Return 1 if capability is supported
4486 */
4487static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4488 unsigned capability)
4489{
4490 u32 port_offset, port_count;
4491 int i;
4492
4493 for (i = 0; i < xhci->num_ext_caps; i++) {
4494 if (xhci->ext_caps[i] & capability) {
4495 /* port offsets starts at 1 */
4496 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4497 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4498 if (port >= port_offset &&
4499 port < port_offset + port_count)
4500 return 1;
4501 }
4502 }
4503 return 0;
4504}
4505
4506static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4507{
4508 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4509 int portnum = udev->portnum - 1;
4510
4511 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4512 return 0;
4513
4514 /* we only support lpm for non-hub device connected to root hub yet */
4515 if (!udev->parent || udev->parent->parent ||
4516 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4517 return 0;
4518
4519 if (xhci->hw_lpm_support == 1 &&
4520 xhci_check_usb2_port_capability(
4521 xhci, portnum, XHCI_HLC)) {
4522 udev->usb2_hw_lpm_capable = 1;
4523 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4524 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4525 if (xhci_check_usb2_port_capability(xhci, portnum,
4526 XHCI_BLC))
4527 udev->usb2_hw_lpm_besl_capable = 1;
4528 }
4529
4530 return 0;
4531}
4532
4533/*---------------------- USB 3.0 Link PM functions ------------------------*/
4534
4535/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4536static unsigned long long xhci_service_interval_to_ns(
4537 struct usb_endpoint_descriptor *desc)
4538{
4539 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4540}
4541
4542static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4543 enum usb3_link_state state)
4544{
4545 unsigned long long sel;
4546 unsigned long long pel;
4547 unsigned int max_sel_pel;
4548 char *state_name;
4549
4550 switch (state) {
4551 case USB3_LPM_U1:
4552 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4553 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4554 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4555 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4556 state_name = "U1";
4557 break;
4558 case USB3_LPM_U2:
4559 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4560 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4561 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4562 state_name = "U2";
4563 break;
4564 default:
4565 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4566 __func__);
4567 return USB3_LPM_DISABLED;
4568 }
4569
4570 if (sel <= max_sel_pel && pel <= max_sel_pel)
4571 return USB3_LPM_DEVICE_INITIATED;
4572
4573 if (sel > max_sel_pel)
4574 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4575 "due to long SEL %llu ms\n",
4576 state_name, sel);
4577 else
4578 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4579 "due to long PEL %llu ms\n",
4580 state_name, pel);
4581 return USB3_LPM_DISABLED;
4582}
4583
4584/* The U1 timeout should be the maximum of the following values:
4585 * - For control endpoints, U1 system exit latency (SEL) * 3
4586 * - For bulk endpoints, U1 SEL * 5
4587 * - For interrupt endpoints:
4588 * - Notification EPs, U1 SEL * 3
4589 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4590 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4591 */
4592static unsigned long long xhci_calculate_intel_u1_timeout(
4593 struct usb_device *udev,
4594 struct usb_endpoint_descriptor *desc)
4595{
4596 unsigned long long timeout_ns;
4597 int ep_type;
4598 int intr_type;
4599
4600 ep_type = usb_endpoint_type(desc);
4601 switch (ep_type) {
4602 case USB_ENDPOINT_XFER_CONTROL:
4603 timeout_ns = udev->u1_params.sel * 3;
4604 break;
4605 case USB_ENDPOINT_XFER_BULK:
4606 timeout_ns = udev->u1_params.sel * 5;
4607 break;
4608 case USB_ENDPOINT_XFER_INT:
4609 intr_type = usb_endpoint_interrupt_type(desc);
4610 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4611 timeout_ns = udev->u1_params.sel * 3;
4612 break;
4613 }
4614 /* Otherwise the calculation is the same as isoc eps */
4615 /* fall through */
4616 case USB_ENDPOINT_XFER_ISOC:
4617 timeout_ns = xhci_service_interval_to_ns(desc);
4618 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4619 if (timeout_ns < udev->u1_params.sel * 2)
4620 timeout_ns = udev->u1_params.sel * 2;
4621 break;
4622 default:
4623 return 0;
4624 }
4625
4626 return timeout_ns;
4627}
4628
4629/* Returns the hub-encoded U1 timeout value. */
4630static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4631 struct usb_device *udev,
4632 struct usb_endpoint_descriptor *desc)
4633{
4634 unsigned long long timeout_ns;
4635
4636 /* Prevent U1 if service interval is shorter than U1 exit latency */
4637 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4638 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4639 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4640 return USB3_LPM_DISABLED;
4641 }
4642 }
4643
4644 if (xhci->quirks & XHCI_INTEL_HOST)
4645 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4646 else
4647 timeout_ns = udev->u1_params.sel;
4648
4649 /* The U1 timeout is encoded in 1us intervals.
4650 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4651 */
4652 if (timeout_ns == USB3_LPM_DISABLED)
4653 timeout_ns = 1;
4654 else
4655 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4656
4657 /* If the necessary timeout value is bigger than what we can set in the
4658 * USB 3.0 hub, we have to disable hub-initiated U1.
4659 */
4660 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4661 return timeout_ns;
4662 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4663 "due to long timeout %llu ms\n", timeout_ns);
4664 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4665}
4666
4667/* The U2 timeout should be the maximum of:
4668 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4669 * - largest bInterval of any active periodic endpoint (to avoid going
4670 * into lower power link states between intervals).
4671 * - the U2 Exit Latency of the device
4672 */
4673static unsigned long long xhci_calculate_intel_u2_timeout(
4674 struct usb_device *udev,
4675 struct usb_endpoint_descriptor *desc)
4676{
4677 unsigned long long timeout_ns;
4678 unsigned long long u2_del_ns;
4679
4680 timeout_ns = 10 * 1000 * 1000;
4681
4682 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4683 (xhci_service_interval_to_ns(desc) > timeout_ns))
4684 timeout_ns = xhci_service_interval_to_ns(desc);
4685
4686 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4687 if (u2_del_ns > timeout_ns)
4688 timeout_ns = u2_del_ns;
4689
4690 return timeout_ns;
4691}
4692
4693/* Returns the hub-encoded U2 timeout value. */
4694static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4695 struct usb_device *udev,
4696 struct usb_endpoint_descriptor *desc)
4697{
4698 unsigned long long timeout_ns;
4699
4700 /* Prevent U2 if service interval is shorter than U2 exit latency */
4701 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4702 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4703 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4704 return USB3_LPM_DISABLED;
4705 }
4706 }
4707
4708 if (xhci->quirks & XHCI_INTEL_HOST)
4709 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4710 else
4711 timeout_ns = udev->u2_params.sel;
4712
4713 /* The U2 timeout is encoded in 256us intervals */
4714 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4715 /* If the necessary timeout value is bigger than what we can set in the
4716 * USB 3.0 hub, we have to disable hub-initiated U2.
4717 */
4718 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4719 return timeout_ns;
4720 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4721 "due to long timeout %llu ms\n", timeout_ns);
4722 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4723}
4724
4725static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4726 struct usb_device *udev,
4727 struct usb_endpoint_descriptor *desc,
4728 enum usb3_link_state state,
4729 u16 *timeout)
4730{
4731 if (state == USB3_LPM_U1)
4732 return xhci_calculate_u1_timeout(xhci, udev, desc);
4733 else if (state == USB3_LPM_U2)
4734 return xhci_calculate_u2_timeout(xhci, udev, desc);
4735
4736 return USB3_LPM_DISABLED;
4737}
4738
4739static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4740 struct usb_device *udev,
4741 struct usb_endpoint_descriptor *desc,
4742 enum usb3_link_state state,
4743 u16 *timeout)
4744{
4745 u16 alt_timeout;
4746
4747 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4748 desc, state, timeout);
4749
4750 /* If we found we can't enable hub-initiated LPM, and
4751 * the U1 or U2 exit latency was too high to allow
4752 * device-initiated LPM as well, then we will disable LPM
4753 * for this device, so stop searching any further.
4754 */
4755 if (alt_timeout == USB3_LPM_DISABLED) {
4756 *timeout = alt_timeout;
4757 return -E2BIG;
4758 }
4759 if (alt_timeout > *timeout)
4760 *timeout = alt_timeout;
4761 return 0;
4762}
4763
4764static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4765 struct usb_device *udev,
4766 struct usb_host_interface *alt,
4767 enum usb3_link_state state,
4768 u16 *timeout)
4769{
4770 int j;
4771
4772 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4773 if (xhci_update_timeout_for_endpoint(xhci, udev,
4774 &alt->endpoint[j].desc, state, timeout))
4775 return -E2BIG;
4776 continue;
4777 }
4778 return 0;
4779}
4780
4781static int xhci_check_intel_tier_policy(struct usb_device *udev,
4782 enum usb3_link_state state)
4783{
4784 struct usb_device *parent;
4785 unsigned int num_hubs;
4786
4787 if (state == USB3_LPM_U2)
4788 return 0;
4789
4790 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4791 for (parent = udev->parent, num_hubs = 0; parent->parent;
4792 parent = parent->parent)
4793 num_hubs++;
4794
4795 if (num_hubs < 2)
4796 return 0;
4797
4798 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4799 " below second-tier hub.\n");
4800 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4801 "to decrease power consumption.\n");
4802 return -E2BIG;
4803}
4804
4805static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4806 struct usb_device *udev,
4807 enum usb3_link_state state)
4808{
4809 if (xhci->quirks & XHCI_INTEL_HOST)
4810 return xhci_check_intel_tier_policy(udev, state);
4811 else
4812 return 0;
4813}
4814
4815/* Returns the U1 or U2 timeout that should be enabled.
4816 * If the tier check or timeout setting functions return with a non-zero exit
4817 * code, that means the timeout value has been finalized and we shouldn't look
4818 * at any more endpoints.
4819 */
4820static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4821 struct usb_device *udev, enum usb3_link_state state)
4822{
4823 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4824 struct usb_host_config *config;
4825 char *state_name;
4826 int i;
4827 u16 timeout = USB3_LPM_DISABLED;
4828
4829 if (state == USB3_LPM_U1)
4830 state_name = "U1";
4831 else if (state == USB3_LPM_U2)
4832 state_name = "U2";
4833 else {
4834 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4835 state);
4836 return timeout;
4837 }
4838
4839 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4840 return timeout;
4841
4842 /* Gather some information about the currently installed configuration
4843 * and alternate interface settings.
4844 */
4845 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4846 state, &timeout))
4847 return timeout;
4848
4849 config = udev->actconfig;
4850 if (!config)
4851 return timeout;
4852
4853 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4854 struct usb_driver *driver;
4855 struct usb_interface *intf = config->interface[i];
4856
4857 if (!intf)
4858 continue;
4859
4860 /* Check if any currently bound drivers want hub-initiated LPM
4861 * disabled.
4862 */
4863 if (intf->dev.driver) {
4864 driver = to_usb_driver(intf->dev.driver);
4865 if (driver && driver->disable_hub_initiated_lpm) {
4866 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4867 state_name, driver->name);
4868 timeout = xhci_get_timeout_no_hub_lpm(udev,
4869 state);
4870 if (timeout == USB3_LPM_DISABLED)
4871 return timeout;
4872 }
4873 }
4874
4875 /* Not sure how this could happen... */
4876 if (!intf->cur_altsetting)
4877 continue;
4878
4879 if (xhci_update_timeout_for_interface(xhci, udev,
4880 intf->cur_altsetting,
4881 state, &timeout))
4882 return timeout;
4883 }
4884 return timeout;
4885}
4886
4887static int calculate_max_exit_latency(struct usb_device *udev,
4888 enum usb3_link_state state_changed,
4889 u16 hub_encoded_timeout)
4890{
4891 unsigned long long u1_mel_us = 0;
4892 unsigned long long u2_mel_us = 0;
4893 unsigned long long mel_us = 0;
4894 bool disabling_u1;
4895 bool disabling_u2;
4896 bool enabling_u1;
4897 bool enabling_u2;
4898
4899 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4900 hub_encoded_timeout == USB3_LPM_DISABLED);
4901 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4902 hub_encoded_timeout == USB3_LPM_DISABLED);
4903
4904 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4905 hub_encoded_timeout != USB3_LPM_DISABLED);
4906 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4907 hub_encoded_timeout != USB3_LPM_DISABLED);
4908
4909 /* If U1 was already enabled and we're not disabling it,
4910 * or we're going to enable U1, account for the U1 max exit latency.
4911 */
4912 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4913 enabling_u1)
4914 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4915 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4916 enabling_u2)
4917 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4918
4919 if (u1_mel_us > u2_mel_us)
4920 mel_us = u1_mel_us;
4921 else
4922 mel_us = u2_mel_us;
4923 /* xHCI host controller max exit latency field is only 16 bits wide. */
4924 if (mel_us > MAX_EXIT) {
4925 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4926 "is too big.\n", mel_us);
4927 return -E2BIG;
4928 }
4929 return mel_us;
4930}
4931
4932/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4933static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4934 struct usb_device *udev, enum usb3_link_state state)
4935{
4936 struct xhci_hcd *xhci;
4937 u16 hub_encoded_timeout;
4938 int mel;
4939 int ret;
4940
4941 xhci = hcd_to_xhci(hcd);
4942 /* The LPM timeout values are pretty host-controller specific, so don't
4943 * enable hub-initiated timeouts unless the vendor has provided
4944 * information about their timeout algorithm.
4945 */
4946 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4947 !xhci->devs[udev->slot_id])
4948 return USB3_LPM_DISABLED;
4949
4950 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4951 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4952 if (mel < 0) {
4953 /* Max Exit Latency is too big, disable LPM. */
4954 hub_encoded_timeout = USB3_LPM_DISABLED;
4955 mel = 0;
4956 }
4957
4958 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4959 if (ret)
4960 return ret;
4961 return hub_encoded_timeout;
4962}
4963
4964static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4965 struct usb_device *udev, enum usb3_link_state state)
4966{
4967 struct xhci_hcd *xhci;
4968 u16 mel;
4969
4970 xhci = hcd_to_xhci(hcd);
4971 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4972 !xhci->devs[udev->slot_id])
4973 return 0;
4974
4975 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4976 return xhci_change_max_exit_latency(xhci, udev, mel);
4977}
4978#else /* CONFIG_PM */
4979
4980static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4981 struct usb_device *udev, int enable)
4982{
4983 return 0;
4984}
4985
4986static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4987{
4988 return 0;
4989}
4990
4991static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4992 struct usb_device *udev, enum usb3_link_state state)
4993{
4994 return USB3_LPM_DISABLED;
4995}
4996
4997static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4998 struct usb_device *udev, enum usb3_link_state state)
4999{
5000 return 0;
5001}
5002#endif /* CONFIG_PM */
5003
5004/*-------------------------------------------------------------------------*/
5005
5006/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5007 * internal data structures for the device.
5008 */
5009static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5010 struct usb_tt *tt, gfp_t mem_flags)
5011{
5012 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5013 struct xhci_virt_device *vdev;
5014 struct xhci_command *config_cmd;
5015 struct xhci_input_control_ctx *ctrl_ctx;
5016 struct xhci_slot_ctx *slot_ctx;
5017 unsigned long flags;
5018 unsigned think_time;
5019 int ret;
5020
5021 /* Ignore root hubs */
5022 if (!hdev->parent)
5023 return 0;
5024
5025 vdev = xhci->devs[hdev->slot_id];
5026 if (!vdev) {
5027 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5028 return -EINVAL;
5029 }
5030
5031 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5032 if (!config_cmd)
5033 return -ENOMEM;
5034
5035 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5036 if (!ctrl_ctx) {
5037 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5038 __func__);
5039 xhci_free_command(xhci, config_cmd);
5040 return -ENOMEM;
5041 }
5042
5043 spin_lock_irqsave(&xhci->lock, flags);
5044 if (hdev->speed == USB_SPEED_HIGH &&
5045 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5046 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5047 xhci_free_command(xhci, config_cmd);
5048 spin_unlock_irqrestore(&xhci->lock, flags);
5049 return -ENOMEM;
5050 }
5051
5052 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5053 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5054 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5055 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5056 /*
5057 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5058 * but it may be already set to 1 when setup an xHCI virtual
5059 * device, so clear it anyway.
5060 */
5061 if (tt->multi)
5062 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5063 else if (hdev->speed == USB_SPEED_FULL)
5064 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5065
5066 if (xhci->hci_version > 0x95) {
5067 xhci_dbg(xhci, "xHCI version %x needs hub "
5068 "TT think time and number of ports\n",
5069 (unsigned int) xhci->hci_version);
5070 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5071 /* Set TT think time - convert from ns to FS bit times.
5072 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5073 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5074 *
5075 * xHCI 1.0: this field shall be 0 if the device is not a
5076 * High-spped hub.
5077 */
5078 think_time = tt->think_time;
5079 if (think_time != 0)
5080 think_time = (think_time / 666) - 1;
5081 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5082 slot_ctx->tt_info |=
5083 cpu_to_le32(TT_THINK_TIME(think_time));
5084 } else {
5085 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5086 "TT think time or number of ports\n",
5087 (unsigned int) xhci->hci_version);
5088 }
5089 slot_ctx->dev_state = 0;
5090 spin_unlock_irqrestore(&xhci->lock, flags);
5091
5092 xhci_dbg(xhci, "Set up %s for hub device.\n",
5093 (xhci->hci_version > 0x95) ?
5094 "configure endpoint" : "evaluate context");
5095
5096 /* Issue and wait for the configure endpoint or
5097 * evaluate context command.
5098 */
5099 if (xhci->hci_version > 0x95)
5100 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5101 false, false);
5102 else
5103 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5104 true, false);
5105
5106 xhci_free_command(xhci, config_cmd);
5107 return ret;
5108}
5109
5110static int xhci_get_frame(struct usb_hcd *hcd)
5111{
5112 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5113 /* EHCI mods by the periodic size. Why? */
5114 return readl(&xhci->run_regs->microframe_index) >> 3;
5115}
5116
5117int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5118{
5119 struct xhci_hcd *xhci;
5120 /*
5121 * TODO: Check with DWC3 clients for sysdev according to
5122 * quirks
5123 */
5124 struct device *dev = hcd->self.sysdev;
5125 unsigned int minor_rev;
5126 int retval;
5127
5128 /* Accept arbitrarily long scatter-gather lists */
5129 hcd->self.sg_tablesize = ~0;
5130
5131 /* support to build packet from discontinuous buffers */
5132 hcd->self.no_sg_constraint = 1;
5133
5134 /* XHCI controllers don't stop the ep queue on short packets :| */
5135 hcd->self.no_stop_on_short = 1;
5136
5137 xhci = hcd_to_xhci(hcd);
5138
5139 if (usb_hcd_is_primary_hcd(hcd)) {
5140 xhci->main_hcd = hcd;
5141 xhci->usb2_rhub.hcd = hcd;
5142 /* Mark the first roothub as being USB 2.0.
5143 * The xHCI driver will register the USB 3.0 roothub.
5144 */
5145 hcd->speed = HCD_USB2;
5146 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5147 /*
5148 * USB 2.0 roothub under xHCI has an integrated TT,
5149 * (rate matching hub) as opposed to having an OHCI/UHCI
5150 * companion controller.
5151 */
5152 hcd->has_tt = 1;
5153 } else {
5154 /*
5155 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5156 * should return 0x31 for sbrn, or that the minor revision
5157 * is a two digit BCD containig minor and sub-minor numbers.
5158 * This was later clarified in xHCI 1.2.
5159 *
5160 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5161 * minor revision set to 0x1 instead of 0x10.
5162 */
5163 if (xhci->usb3_rhub.min_rev == 0x1)
5164 minor_rev = 1;
5165 else
5166 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5167
5168 switch (minor_rev) {
5169 case 2:
5170 hcd->speed = HCD_USB32;
5171 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5172 hcd->self.root_hub->rx_lanes = 2;
5173 hcd->self.root_hub->tx_lanes = 2;
5174 break;
5175 case 1:
5176 hcd->speed = HCD_USB31;
5177 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5178 break;
5179 }
5180 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5181 minor_rev,
5182 minor_rev ? "Enhanced " : "");
5183
5184 xhci->usb3_rhub.hcd = hcd;
5185 /* xHCI private pointer was set in xhci_pci_probe for the second
5186 * registered roothub.
5187 */
5188 return 0;
5189 }
5190
5191 mutex_init(&xhci->mutex);
5192 xhci->cap_regs = hcd->regs;
5193 xhci->op_regs = hcd->regs +
5194 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5195 xhci->run_regs = hcd->regs +
5196 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5197 /* Cache read-only capability registers */
5198 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5199 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5200 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5201 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5202 xhci->hci_version = HC_VERSION(xhci->hcc_params);
5203 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5204 if (xhci->hci_version > 0x100)
5205 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5206
5207 xhci->quirks |= quirks;
5208
5209 get_quirks(dev, xhci);
5210
5211 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5212 * success event after a short transfer. This quirk will ignore such
5213 * spurious event.
5214 */
5215 if (xhci->hci_version > 0x96)
5216 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5217
5218 /* Make sure the HC is halted. */
5219 retval = xhci_halt(xhci);
5220 if (retval)
5221 return retval;
5222
5223 xhci_zero_64b_regs(xhci);
5224
5225 xhci_dbg(xhci, "Resetting HCD\n");
5226 /* Reset the internal HC memory state and registers. */
5227 retval = xhci_reset(xhci);
5228 if (retval)
5229 return retval;
5230 xhci_dbg(xhci, "Reset complete\n");
5231
5232 /*
5233 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5234 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5235 * address memory pointers actually. So, this driver clears the AC64
5236 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5237 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5238 */
5239 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5240 xhci->hcc_params &= ~BIT(0);
5241
5242 /* Set dma_mask and coherent_dma_mask to 64-bits,
5243 * if xHC supports 64-bit addressing */
5244 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5245 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5246 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5247 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5248 } else {
5249 /*
5250 * This is to avoid error in cases where a 32-bit USB
5251 * controller is used on a 64-bit capable system.
5252 */
5253 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5254 if (retval)
5255 return retval;
5256 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5257 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5258 }
5259
5260 xhci_dbg(xhci, "Calling HCD init\n");
5261 /* Initialize HCD and host controller data structures. */
5262 retval = xhci_init(hcd);
5263 if (retval)
5264 return retval;
5265 xhci_dbg(xhci, "Called HCD init\n");
5266
5267 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5268 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5269
5270 return 0;
5271}
5272EXPORT_SYMBOL_GPL(xhci_gen_setup);
5273
5274static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5275 struct usb_host_endpoint *ep)
5276{
5277 struct xhci_hcd *xhci;
5278 struct usb_device *udev;
5279 unsigned int slot_id;
5280 unsigned int ep_index;
5281 unsigned long flags;
5282
5283 xhci = hcd_to_xhci(hcd);
5284
5285 spin_lock_irqsave(&xhci->lock, flags);
5286 udev = (struct usb_device *)ep->hcpriv;
5287 slot_id = udev->slot_id;
5288 ep_index = xhci_get_endpoint_index(&ep->desc);
5289
5290 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5291 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5292 spin_unlock_irqrestore(&xhci->lock, flags);
5293}
5294
5295static const struct hc_driver xhci_hc_driver = {
5296 .description = "xhci-hcd",
5297 .product_desc = "xHCI Host Controller",
5298 .hcd_priv_size = sizeof(struct xhci_hcd),
5299
5300 /*
5301 * generic hardware linkage
5302 */
5303 .irq = xhci_irq,
5304 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED,
5305
5306 /*
5307 * basic lifecycle operations
5308 */
5309 .reset = NULL, /* set in xhci_init_driver() */
5310 .start = xhci_run,
5311 .stop = xhci_stop,
5312 .shutdown = xhci_shutdown,
5313
5314 /*
5315 * managing i/o requests and associated device resources
5316 */
5317 .map_urb_for_dma = xhci_map_urb_for_dma,
5318 .urb_enqueue = xhci_urb_enqueue,
5319 .urb_dequeue = xhci_urb_dequeue,
5320 .alloc_dev = xhci_alloc_dev,
5321 .free_dev = xhci_free_dev,
5322 .alloc_streams = xhci_alloc_streams,
5323 .free_streams = xhci_free_streams,
5324 .add_endpoint = xhci_add_endpoint,
5325 .drop_endpoint = xhci_drop_endpoint,
5326 .endpoint_disable = xhci_endpoint_disable,
5327 .endpoint_reset = xhci_endpoint_reset,
5328 .check_bandwidth = xhci_check_bandwidth,
5329 .reset_bandwidth = xhci_reset_bandwidth,
5330 .address_device = xhci_address_device,
5331 .enable_device = xhci_enable_device,
5332 .update_hub_device = xhci_update_hub_device,
5333 .reset_device = xhci_discover_or_reset_device,
5334
5335 /*
5336 * scheduling support
5337 */
5338 .get_frame_number = xhci_get_frame,
5339
5340 /*
5341 * root hub support
5342 */
5343 .hub_control = xhci_hub_control,
5344 .hub_status_data = xhci_hub_status_data,
5345 .bus_suspend = xhci_bus_suspend,
5346 .bus_resume = xhci_bus_resume,
5347 .get_resuming_ports = xhci_get_resuming_ports,
5348
5349 /*
5350 * call back when device connected and addressed
5351 */
5352 .update_device = xhci_update_device,
5353 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5354 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5355 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5356 .find_raw_port_number = xhci_find_raw_port_number,
5357 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5358};
5359
5360void xhci_init_driver(struct hc_driver *drv,
5361 const struct xhci_driver_overrides *over)
5362{
5363 BUG_ON(!over);
5364
5365 /* Copy the generic table to drv then apply the overrides */
5366 *drv = xhci_hc_driver;
5367
5368 if (over) {
5369 drv->hcd_priv_size += over->extra_priv_size;
5370 if (over->reset)
5371 drv->reset = over->reset;
5372 if (over->start)
5373 drv->start = over->start;
5374 }
5375}
5376EXPORT_SYMBOL_GPL(xhci_init_driver);
5377
5378MODULE_DESCRIPTION(DRIVER_DESC);
5379MODULE_AUTHOR(DRIVER_AUTHOR);
5380MODULE_LICENSE("GPL");
5381
5382static int __init xhci_hcd_init(void)
5383{
5384 /*
5385 * Check the compiler generated sizes of structures that must be laid
5386 * out in specific ways for hardware access.
5387 */
5388 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5389 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5390 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5391 /* xhci_device_control has eight fields, and also
5392 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5393 */
5394 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5395 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5396 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5397 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5398 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5399 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5400 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5401
5402 if (usb_disabled())
5403 return -ENODEV;
5404
5405 xhci_debugfs_create_root();
5406
5407 return 0;
5408}
5409
5410/*
5411 * If an init function is provided, an exit function must also be provided
5412 * to allow module unload.
5413 */
5414static void __exit xhci_hcd_fini(void)
5415{
5416 xhci_debugfs_remove_root();
5417}
5418
5419module_init(xhci_hcd_init);
5420module_exit(xhci_hcd_fini);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/pci.h>
12#include <linux/iommu.h>
13#include <linux/iopoll.h>
14#include <linux/irq.h>
15#include <linux/log2.h>
16#include <linux/module.h>
17#include <linux/moduleparam.h>
18#include <linux/slab.h>
19#include <linux/dmi.h>
20#include <linux/dma-mapping.h>
21
22#include "xhci.h"
23#include "xhci-trace.h"
24#include "xhci-debugfs.h"
25#include "xhci-dbgcap.h"
26
27#define DRIVER_AUTHOR "Sarah Sharp"
28#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30#define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33static int link_quirk;
34module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37static unsigned long long quirks;
38module_param(quirks, ullong, S_IRUGO);
39MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42{
43 struct xhci_segment *seg = ring->first_seg;
44
45 if (!td || !td->start_seg)
46 return false;
47 do {
48 if (seg == td->start_seg)
49 return true;
50 seg = seg->next;
51 } while (seg && seg != ring->first_seg);
52
53 return false;
54}
55
56/*
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
62 *
63 * Returns negative errno, or zero on success
64 *
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
68 */
69int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70{
71 u32 result;
72 int ret;
73
74 ret = readl_poll_timeout_atomic(ptr, result,
75 (result & mask) == done ||
76 result == U32_MAX,
77 1, timeout_us);
78 if (result == U32_MAX) /* card removed */
79 return -ENODEV;
80
81 return ret;
82}
83
84/*
85 * xhci_handshake_check_state - same as xhci_handshake but takes an additional
86 * exit_state parameter, and bails out with an error immediately when xhc_state
87 * has exit_state flag set.
88 */
89int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
90 u32 mask, u32 done, int usec, unsigned int exit_state)
91{
92 u32 result;
93 int ret;
94
95 ret = readl_poll_timeout_atomic(ptr, result,
96 (result & mask) == done ||
97 result == U32_MAX ||
98 xhci->xhc_state & exit_state,
99 1, usec);
100
101 if (result == U32_MAX || xhci->xhc_state & exit_state)
102 return -ENODEV;
103
104 return ret;
105}
106
107/*
108 * Disable interrupts and begin the xHCI halting process.
109 */
110void xhci_quiesce(struct xhci_hcd *xhci)
111{
112 u32 halted;
113 u32 cmd;
114 u32 mask;
115
116 mask = ~(XHCI_IRQS);
117 halted = readl(&xhci->op_regs->status) & STS_HALT;
118 if (!halted)
119 mask &= ~CMD_RUN;
120
121 cmd = readl(&xhci->op_regs->command);
122 cmd &= mask;
123 writel(cmd, &xhci->op_regs->command);
124}
125
126/*
127 * Force HC into halt state.
128 *
129 * Disable any IRQs and clear the run/stop bit.
130 * HC will complete any current and actively pipelined transactions, and
131 * should halt within 16 ms of the run/stop bit being cleared.
132 * Read HC Halted bit in the status register to see when the HC is finished.
133 */
134int xhci_halt(struct xhci_hcd *xhci)
135{
136 int ret;
137
138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
139 xhci_quiesce(xhci);
140
141 ret = xhci_handshake(&xhci->op_regs->status,
142 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
143 if (ret) {
144 xhci_warn(xhci, "Host halt failed, %d\n", ret);
145 return ret;
146 }
147
148 xhci->xhc_state |= XHCI_STATE_HALTED;
149 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
150
151 return ret;
152}
153
154/*
155 * Set the run bit and wait for the host to be running.
156 */
157int xhci_start(struct xhci_hcd *xhci)
158{
159 u32 temp;
160 int ret;
161
162 temp = readl(&xhci->op_regs->command);
163 temp |= (CMD_RUN);
164 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
165 temp);
166 writel(temp, &xhci->op_regs->command);
167
168 /*
169 * Wait for the HCHalted Status bit to be 0 to indicate the host is
170 * running.
171 */
172 ret = xhci_handshake(&xhci->op_regs->status,
173 STS_HALT, 0, XHCI_MAX_HALT_USEC);
174 if (ret == -ETIMEDOUT)
175 xhci_err(xhci, "Host took too long to start, "
176 "waited %u microseconds.\n",
177 XHCI_MAX_HALT_USEC);
178 if (!ret) {
179 /* clear state flags. Including dying, halted or removing */
180 xhci->xhc_state = 0;
181 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
182 }
183
184 return ret;
185}
186
187/*
188 * Reset a halted HC.
189 *
190 * This resets pipelines, timers, counters, state machines, etc.
191 * Transactions will be terminated immediately, and operational registers
192 * will be set to their defaults.
193 */
194int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
195{
196 u32 command;
197 u32 state;
198 int ret;
199
200 state = readl(&xhci->op_regs->status);
201
202 if (state == ~(u32)0) {
203 xhci_warn(xhci, "Host not accessible, reset failed.\n");
204 return -ENODEV;
205 }
206
207 if ((state & STS_HALT) == 0) {
208 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
209 return 0;
210 }
211
212 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
213 command = readl(&xhci->op_regs->command);
214 command |= CMD_RESET;
215 writel(command, &xhci->op_regs->command);
216
217 /* Existing Intel xHCI controllers require a delay of 1 mS,
218 * after setting the CMD_RESET bit, and before accessing any
219 * HC registers. This allows the HC to complete the
220 * reset operation and be ready for HC register access.
221 * Without this delay, the subsequent HC register access,
222 * may result in a system hang very rarely.
223 */
224 if (xhci->quirks & XHCI_INTEL_HOST)
225 udelay(1000);
226
227 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
228 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
229 if (ret)
230 return ret;
231
232 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
233 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
234
235 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 "Wait for controller to be ready for doorbell rings");
237 /*
238 * xHCI cannot write to any doorbells or operational registers other
239 * than status until the "Controller Not Ready" flag is cleared.
240 */
241 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
242
243 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
244 xhci->usb2_rhub.bus_state.suspended_ports = 0;
245 xhci->usb2_rhub.bus_state.resuming_ports = 0;
246 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
247 xhci->usb3_rhub.bus_state.suspended_ports = 0;
248 xhci->usb3_rhub.bus_state.resuming_ports = 0;
249
250 return ret;
251}
252
253static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
254{
255 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
256 struct iommu_domain *domain;
257 int err, i;
258 u64 val;
259 u32 intrs;
260
261 /*
262 * Some Renesas controllers get into a weird state if they are
263 * reset while programmed with 64bit addresses (they will preserve
264 * the top half of the address in internal, non visible
265 * registers). You end up with half the address coming from the
266 * kernel, and the other half coming from the firmware. Also,
267 * changing the programming leads to extra accesses even if the
268 * controller is supposed to be halted. The controller ends up with
269 * a fatal fault, and is then ripe for being properly reset.
270 *
271 * Special care is taken to only apply this if the device is behind
272 * an iommu. Doing anything when there is no iommu is definitely
273 * unsafe...
274 */
275 domain = iommu_get_domain_for_dev(dev);
276 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
277 domain->type == IOMMU_DOMAIN_IDENTITY)
278 return;
279
280 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
281
282 /* Clear HSEIE so that faults do not get signaled */
283 val = readl(&xhci->op_regs->command);
284 val &= ~CMD_HSEIE;
285 writel(val, &xhci->op_regs->command);
286
287 /* Clear HSE (aka FATAL) */
288 val = readl(&xhci->op_regs->status);
289 val |= STS_FATAL;
290 writel(val, &xhci->op_regs->status);
291
292 /* Now zero the registers, and brace for impact */
293 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
294 if (upper_32_bits(val))
295 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
296 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
297 if (upper_32_bits(val))
298 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
299
300 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
301 ARRAY_SIZE(xhci->run_regs->ir_set));
302
303 for (i = 0; i < intrs; i++) {
304 struct xhci_intr_reg __iomem *ir;
305
306 ir = &xhci->run_regs->ir_set[i];
307 val = xhci_read_64(xhci, &ir->erst_base);
308 if (upper_32_bits(val))
309 xhci_write_64(xhci, 0, &ir->erst_base);
310 val= xhci_read_64(xhci, &ir->erst_dequeue);
311 if (upper_32_bits(val))
312 xhci_write_64(xhci, 0, &ir->erst_dequeue);
313 }
314
315 /* Wait for the fault to appear. It will be cleared on reset */
316 err = xhci_handshake(&xhci->op_regs->status,
317 STS_FATAL, STS_FATAL,
318 XHCI_MAX_HALT_USEC);
319 if (!err)
320 xhci_info(xhci, "Fault detected\n");
321}
322
323static int xhci_enable_interrupter(struct xhci_interrupter *ir)
324{
325 u32 iman;
326
327 if (!ir || !ir->ir_set)
328 return -EINVAL;
329
330 iman = readl(&ir->ir_set->irq_pending);
331 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
332
333 return 0;
334}
335
336static int xhci_disable_interrupter(struct xhci_interrupter *ir)
337{
338 u32 iman;
339
340 if (!ir || !ir->ir_set)
341 return -EINVAL;
342
343 iman = readl(&ir->ir_set->irq_pending);
344 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
345
346 return 0;
347}
348
349/* interrupt moderation interval imod_interval in nanoseconds */
350static int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
351 u32 imod_interval)
352{
353 u32 imod;
354
355 if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
356 return -EINVAL;
357
358 imod = readl(&ir->ir_set->irq_control);
359 imod &= ~ER_IRQ_INTERVAL_MASK;
360 imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
361 writel(imod, &ir->ir_set->irq_control);
362
363 return 0;
364}
365
366static void compliance_mode_recovery(struct timer_list *t)
367{
368 struct xhci_hcd *xhci;
369 struct usb_hcd *hcd;
370 struct xhci_hub *rhub;
371 u32 temp;
372 int i;
373
374 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
375 rhub = &xhci->usb3_rhub;
376 hcd = rhub->hcd;
377
378 if (!hcd)
379 return;
380
381 for (i = 0; i < rhub->num_ports; i++) {
382 temp = readl(rhub->ports[i]->addr);
383 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
384 /*
385 * Compliance Mode Detected. Letting USB Core
386 * handle the Warm Reset
387 */
388 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
389 "Compliance mode detected->port %d",
390 i + 1);
391 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
392 "Attempting compliance mode recovery");
393
394 if (hcd->state == HC_STATE_SUSPENDED)
395 usb_hcd_resume_root_hub(hcd);
396
397 usb_hcd_poll_rh_status(hcd);
398 }
399 }
400
401 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
402 mod_timer(&xhci->comp_mode_recovery_timer,
403 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
404}
405
406/*
407 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
408 * that causes ports behind that hardware to enter compliance mode sometimes.
409 * The quirk creates a timer that polls every 2 seconds the link state of
410 * each host controller's port and recovers it by issuing a Warm reset
411 * if Compliance mode is detected, otherwise the port will become "dead" (no
412 * device connections or disconnections will be detected anymore). Becasue no
413 * status event is generated when entering compliance mode (per xhci spec),
414 * this quirk is needed on systems that have the failing hardware installed.
415 */
416static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
417{
418 xhci->port_status_u0 = 0;
419 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
420 0);
421 xhci->comp_mode_recovery_timer.expires = jiffies +
422 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
423
424 add_timer(&xhci->comp_mode_recovery_timer);
425 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
426 "Compliance mode recovery timer initialized");
427}
428
429/*
430 * This function identifies the systems that have installed the SN65LVPE502CP
431 * USB3.0 re-driver and that need the Compliance Mode Quirk.
432 * Systems:
433 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
434 */
435static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
436{
437 const char *dmi_product_name, *dmi_sys_vendor;
438
439 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
440 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
441 if (!dmi_product_name || !dmi_sys_vendor)
442 return false;
443
444 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
445 return false;
446
447 if (strstr(dmi_product_name, "Z420") ||
448 strstr(dmi_product_name, "Z620") ||
449 strstr(dmi_product_name, "Z820") ||
450 strstr(dmi_product_name, "Z1 Workstation"))
451 return true;
452
453 return false;
454}
455
456static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
457{
458 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
459}
460
461
462/*
463 * Initialize memory for HCD and xHC (one-time init).
464 *
465 * Program the PAGESIZE register, initialize the device context array, create
466 * device contexts (?), set up a command ring segment (or two?), create event
467 * ring (one for now).
468 */
469static int xhci_init(struct usb_hcd *hcd)
470{
471 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
472 int retval;
473
474 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
475 spin_lock_init(&xhci->lock);
476 if (xhci->hci_version == 0x95 && link_quirk) {
477 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
478 "QUIRK: Not clearing Link TRB chain bits.");
479 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
480 } else {
481 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
482 "xHCI doesn't need link TRB QUIRK");
483 }
484 retval = xhci_mem_init(xhci, GFP_KERNEL);
485 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
486
487 /* Initializing Compliance Mode Recovery Data If Needed */
488 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
489 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
490 compliance_mode_recovery_timer_init(xhci);
491 }
492
493 return retval;
494}
495
496/*-------------------------------------------------------------------------*/
497
498static int xhci_run_finished(struct xhci_hcd *xhci)
499{
500 struct xhci_interrupter *ir = xhci->interrupters[0];
501 unsigned long flags;
502 u32 temp;
503
504 /*
505 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
506 * Protect the short window before host is running with a lock
507 */
508 spin_lock_irqsave(&xhci->lock, flags);
509
510 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
511 temp = readl(&xhci->op_regs->command);
512 temp |= (CMD_EIE);
513 writel(temp, &xhci->op_regs->command);
514
515 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
516 xhci_enable_interrupter(ir);
517
518 if (xhci_start(xhci)) {
519 xhci_halt(xhci);
520 spin_unlock_irqrestore(&xhci->lock, flags);
521 return -ENODEV;
522 }
523
524 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
525
526 if (xhci->quirks & XHCI_NEC_HOST)
527 xhci_ring_cmd_db(xhci);
528
529 spin_unlock_irqrestore(&xhci->lock, flags);
530
531 return 0;
532}
533
534/*
535 * Start the HC after it was halted.
536 *
537 * This function is called by the USB core when the HC driver is added.
538 * Its opposite is xhci_stop().
539 *
540 * xhci_init() must be called once before this function can be called.
541 * Reset the HC, enable device slot contexts, program DCBAAP, and
542 * set command ring pointer and event ring pointer.
543 *
544 * Setup MSI-X vectors and enable interrupts.
545 */
546int xhci_run(struct usb_hcd *hcd)
547{
548 u64 temp_64;
549 int ret;
550 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
551 struct xhci_interrupter *ir = xhci->interrupters[0];
552 /* Start the xHCI host controller running only after the USB 2.0 roothub
553 * is setup.
554 */
555
556 hcd->uses_new_polling = 1;
557 if (hcd->msi_enabled)
558 ir->ip_autoclear = true;
559
560 if (!usb_hcd_is_primary_hcd(hcd))
561 return xhci_run_finished(xhci);
562
563 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
564
565 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
566 temp_64 &= ERST_PTR_MASK;
567 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
568 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
569
570 xhci_set_interrupter_moderation(ir, xhci->imod_interval);
571
572 if (xhci->quirks & XHCI_NEC_HOST) {
573 struct xhci_command *command;
574
575 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
576 if (!command)
577 return -ENOMEM;
578
579 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
580 TRB_TYPE(TRB_NEC_GET_FW));
581 if (ret)
582 xhci_free_command(xhci, command);
583 }
584 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
585 "Finished %s for main hcd", __func__);
586
587 xhci_create_dbc_dev(xhci);
588
589 xhci_debugfs_init(xhci);
590
591 if (xhci_has_one_roothub(xhci))
592 return xhci_run_finished(xhci);
593
594 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
595
596 return 0;
597}
598EXPORT_SYMBOL_GPL(xhci_run);
599
600/*
601 * Stop xHCI driver.
602 *
603 * This function is called by the USB core when the HC driver is removed.
604 * Its opposite is xhci_run().
605 *
606 * Disable device contexts, disable IRQs, and quiesce the HC.
607 * Reset the HC, finish any completed transactions, and cleanup memory.
608 */
609void xhci_stop(struct usb_hcd *hcd)
610{
611 u32 temp;
612 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
613 struct xhci_interrupter *ir = xhci->interrupters[0];
614
615 mutex_lock(&xhci->mutex);
616
617 /* Only halt host and free memory after both hcds are removed */
618 if (!usb_hcd_is_primary_hcd(hcd)) {
619 mutex_unlock(&xhci->mutex);
620 return;
621 }
622
623 xhci_remove_dbc_dev(xhci);
624
625 spin_lock_irq(&xhci->lock);
626 xhci->xhc_state |= XHCI_STATE_HALTED;
627 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
628 xhci_halt(xhci);
629 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
630 spin_unlock_irq(&xhci->lock);
631
632 /* Deleting Compliance Mode Recovery Timer */
633 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
634 (!(xhci_all_ports_seen_u0(xhci)))) {
635 del_timer_sync(&xhci->comp_mode_recovery_timer);
636 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
637 "%s: compliance mode recovery timer deleted",
638 __func__);
639 }
640
641 if (xhci->quirks & XHCI_AMD_PLL_FIX)
642 usb_amd_dev_put();
643
644 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645 "// Disabling event ring interrupts");
646 temp = readl(&xhci->op_regs->status);
647 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
648 xhci_disable_interrupter(ir);
649
650 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
651 xhci_mem_cleanup(xhci);
652 xhci_debugfs_exit(xhci);
653 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654 "xhci_stop completed - status = %x",
655 readl(&xhci->op_regs->status));
656 mutex_unlock(&xhci->mutex);
657}
658EXPORT_SYMBOL_GPL(xhci_stop);
659
660/*
661 * Shutdown HC (not bus-specific)
662 *
663 * This is called when the machine is rebooting or halting. We assume that the
664 * machine will be powered off, and the HC's internal state will be reset.
665 * Don't bother to free memory.
666 *
667 * This will only ever be called with the main usb_hcd (the USB3 roothub).
668 */
669void xhci_shutdown(struct usb_hcd *hcd)
670{
671 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
672
673 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
674 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
675
676 /* Don't poll the roothubs after shutdown. */
677 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
678 __func__, hcd->self.busnum);
679 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
680 del_timer_sync(&hcd->rh_timer);
681
682 if (xhci->shared_hcd) {
683 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
684 del_timer_sync(&xhci->shared_hcd->rh_timer);
685 }
686
687 spin_lock_irq(&xhci->lock);
688 xhci_halt(xhci);
689
690 /*
691 * Workaround for spurious wakeps at shutdown with HSW, and for boot
692 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
693 */
694 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
695 xhci->quirks & XHCI_RESET_TO_DEFAULT)
696 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
697
698 spin_unlock_irq(&xhci->lock);
699
700 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
701 "xhci_shutdown completed - status = %x",
702 readl(&xhci->op_regs->status));
703}
704EXPORT_SYMBOL_GPL(xhci_shutdown);
705
706#ifdef CONFIG_PM
707static void xhci_save_registers(struct xhci_hcd *xhci)
708{
709 struct xhci_interrupter *ir;
710 unsigned int i;
711
712 xhci->s3.command = readl(&xhci->op_regs->command);
713 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
714 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
715 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
716
717 /* save both primary and all secondary interrupters */
718 /* fixme, shold we lock to prevent race with remove secondary interrupter? */
719 for (i = 0; i < xhci->max_interrupters; i++) {
720 ir = xhci->interrupters[i];
721 if (!ir)
722 continue;
723
724 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
725 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
726 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
727 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
728 ir->s3_irq_control = readl(&ir->ir_set->irq_control);
729 }
730}
731
732static void xhci_restore_registers(struct xhci_hcd *xhci)
733{
734 struct xhci_interrupter *ir;
735 unsigned int i;
736
737 writel(xhci->s3.command, &xhci->op_regs->command);
738 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
739 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
740 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
741
742 /* FIXME should we lock to protect against freeing of interrupters */
743 for (i = 0; i < xhci->max_interrupters; i++) {
744 ir = xhci->interrupters[i];
745 if (!ir)
746 continue;
747
748 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
749 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
750 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
751 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
752 writel(ir->s3_irq_control, &ir->ir_set->irq_control);
753 }
754}
755
756static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
757{
758 u64 val_64;
759
760 /* step 2: initialize command ring buffer */
761 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
762 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
763 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
764 xhci->cmd_ring->dequeue) &
765 (u64) ~CMD_RING_RSVD_BITS) |
766 xhci->cmd_ring->cycle_state;
767 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
768 "// Setting command ring address to 0x%llx",
769 (long unsigned long) val_64);
770 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
771}
772
773/*
774 * The whole command ring must be cleared to zero when we suspend the host.
775 *
776 * The host doesn't save the command ring pointer in the suspend well, so we
777 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
778 * aligned, because of the reserved bits in the command ring dequeue pointer
779 * register. Therefore, we can't just set the dequeue pointer back in the
780 * middle of the ring (TRBs are 16-byte aligned).
781 */
782static void xhci_clear_command_ring(struct xhci_hcd *xhci)
783{
784 struct xhci_ring *ring;
785 struct xhci_segment *seg;
786
787 ring = xhci->cmd_ring;
788 seg = ring->deq_seg;
789 do {
790 memset(seg->trbs, 0,
791 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
792 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
793 cpu_to_le32(~TRB_CYCLE);
794 seg = seg->next;
795 } while (seg != ring->deq_seg);
796
797 xhci_initialize_ring_info(ring, 1);
798 /*
799 * Reset the hardware dequeue pointer.
800 * Yes, this will need to be re-written after resume, but we're paranoid
801 * and want to make sure the hardware doesn't access bogus memory
802 * because, say, the BIOS or an SMI started the host without changing
803 * the command ring pointers.
804 */
805 xhci_set_cmd_ring_deq(xhci);
806}
807
808/*
809 * Disable port wake bits if do_wakeup is not set.
810 *
811 * Also clear a possible internal port wake state left hanging for ports that
812 * detected termination but never successfully enumerated (trained to 0U).
813 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
814 * at enumeration clears this wake, force one here as well for unconnected ports
815 */
816
817static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
818 struct xhci_hub *rhub,
819 bool do_wakeup)
820{
821 unsigned long flags;
822 u32 t1, t2, portsc;
823 int i;
824
825 spin_lock_irqsave(&xhci->lock, flags);
826
827 for (i = 0; i < rhub->num_ports; i++) {
828 portsc = readl(rhub->ports[i]->addr);
829 t1 = xhci_port_state_to_neutral(portsc);
830 t2 = t1;
831
832 /* clear wake bits if do_wake is not set */
833 if (!do_wakeup)
834 t2 &= ~PORT_WAKE_BITS;
835
836 /* Don't touch csc bit if connected or connect change is set */
837 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
838 t2 |= PORT_CSC;
839
840 if (t1 != t2) {
841 writel(t2, rhub->ports[i]->addr);
842 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
843 rhub->hcd->self.busnum, i + 1, portsc, t2);
844 }
845 }
846 spin_unlock_irqrestore(&xhci->lock, flags);
847}
848
849static bool xhci_pending_portevent(struct xhci_hcd *xhci)
850{
851 struct xhci_port **ports;
852 int port_index;
853 u32 status;
854 u32 portsc;
855
856 status = readl(&xhci->op_regs->status);
857 if (status & STS_EINT)
858 return true;
859 /*
860 * Checking STS_EINT is not enough as there is a lag between a change
861 * bit being set and the Port Status Change Event that it generated
862 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
863 */
864
865 port_index = xhci->usb2_rhub.num_ports;
866 ports = xhci->usb2_rhub.ports;
867 while (port_index--) {
868 portsc = readl(ports[port_index]->addr);
869 if (portsc & PORT_CHANGE_MASK ||
870 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
871 return true;
872 }
873 port_index = xhci->usb3_rhub.num_ports;
874 ports = xhci->usb3_rhub.ports;
875 while (port_index--) {
876 portsc = readl(ports[port_index]->addr);
877 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
878 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
879 return true;
880 }
881 return false;
882}
883
884/*
885 * Stop HC (not bus-specific)
886 *
887 * This is called when the machine transition into S3/S4 mode.
888 *
889 */
890int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
891{
892 int rc = 0;
893 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
894 struct usb_hcd *hcd = xhci_to_hcd(xhci);
895 u32 command;
896 u32 res;
897
898 if (!hcd->state)
899 return 0;
900
901 if (hcd->state != HC_STATE_SUSPENDED ||
902 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
903 return -EINVAL;
904
905 /* Clear root port wake on bits if wakeup not allowed. */
906 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
907 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
908
909 if (!HCD_HW_ACCESSIBLE(hcd))
910 return 0;
911
912 xhci_dbc_suspend(xhci);
913
914 /* Don't poll the roothubs on bus suspend. */
915 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
916 __func__, hcd->self.busnum);
917 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
918 del_timer_sync(&hcd->rh_timer);
919 if (xhci->shared_hcd) {
920 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
921 del_timer_sync(&xhci->shared_hcd->rh_timer);
922 }
923
924 if (xhci->quirks & XHCI_SUSPEND_DELAY)
925 usleep_range(1000, 1500);
926
927 spin_lock_irq(&xhci->lock);
928 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929 if (xhci->shared_hcd)
930 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
931 /* step 1: stop endpoint */
932 /* skipped assuming that port suspend has done */
933
934 /* step 2: clear Run/Stop bit */
935 command = readl(&xhci->op_regs->command);
936 command &= ~CMD_RUN;
937 writel(command, &xhci->op_regs->command);
938
939 /* Some chips from Fresco Logic need an extraordinary delay */
940 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
941
942 if (xhci_handshake(&xhci->op_regs->status,
943 STS_HALT, STS_HALT, delay)) {
944 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
945 spin_unlock_irq(&xhci->lock);
946 return -ETIMEDOUT;
947 }
948 xhci_clear_command_ring(xhci);
949
950 /* step 3: save registers */
951 xhci_save_registers(xhci);
952
953 /* step 4: set CSS flag */
954 command = readl(&xhci->op_regs->command);
955 command |= CMD_CSS;
956 writel(command, &xhci->op_regs->command);
957 xhci->broken_suspend = 0;
958 if (xhci_handshake(&xhci->op_regs->status,
959 STS_SAVE, 0, 20 * 1000)) {
960 /*
961 * AMD SNPS xHC 3.0 occasionally does not clear the
962 * SSS bit of USBSTS and when driver tries to poll
963 * to see if the xHC clears BIT(8) which never happens
964 * and driver assumes that controller is not responding
965 * and times out. To workaround this, its good to check
966 * if SRE and HCE bits are not set (as per xhci
967 * Section 5.4.2) and bypass the timeout.
968 */
969 res = readl(&xhci->op_regs->status);
970 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
971 (((res & STS_SRE) == 0) &&
972 ((res & STS_HCE) == 0))) {
973 xhci->broken_suspend = 1;
974 } else {
975 xhci_warn(xhci, "WARN: xHC save state timeout\n");
976 spin_unlock_irq(&xhci->lock);
977 return -ETIMEDOUT;
978 }
979 }
980 spin_unlock_irq(&xhci->lock);
981
982 /*
983 * Deleting Compliance Mode Recovery Timer because the xHCI Host
984 * is about to be suspended.
985 */
986 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
987 (!(xhci_all_ports_seen_u0(xhci)))) {
988 del_timer_sync(&xhci->comp_mode_recovery_timer);
989 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
990 "%s: compliance mode recovery timer deleted",
991 __func__);
992 }
993
994 return rc;
995}
996EXPORT_SYMBOL_GPL(xhci_suspend);
997
998/*
999 * start xHC (not bus-specific)
1000 *
1001 * This is called when the machine transition from S3/S4 mode.
1002 *
1003 */
1004int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
1005{
1006 bool hibernated = (msg.event == PM_EVENT_RESTORE);
1007 u32 command, temp = 0;
1008 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1009 int retval = 0;
1010 bool comp_timer_running = false;
1011 bool pending_portevent = false;
1012 bool suspended_usb3_devs = false;
1013 bool reinit_xhc = false;
1014
1015 if (!hcd->state)
1016 return 0;
1017
1018 /* Wait a bit if either of the roothubs need to settle from the
1019 * transition into bus suspend.
1020 */
1021
1022 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1023 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1024 msleep(100);
1025
1026 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1027 if (xhci->shared_hcd)
1028 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1029
1030 spin_lock_irq(&xhci->lock);
1031
1032 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1033 reinit_xhc = true;
1034
1035 if (!reinit_xhc) {
1036 /*
1037 * Some controllers might lose power during suspend, so wait
1038 * for controller not ready bit to clear, just as in xHC init.
1039 */
1040 retval = xhci_handshake(&xhci->op_regs->status,
1041 STS_CNR, 0, 10 * 1000 * 1000);
1042 if (retval) {
1043 xhci_warn(xhci, "Controller not ready at resume %d\n",
1044 retval);
1045 spin_unlock_irq(&xhci->lock);
1046 return retval;
1047 }
1048 /* step 1: restore register */
1049 xhci_restore_registers(xhci);
1050 /* step 2: initialize command ring buffer */
1051 xhci_set_cmd_ring_deq(xhci);
1052 /* step 3: restore state and start state*/
1053 /* step 3: set CRS flag */
1054 command = readl(&xhci->op_regs->command);
1055 command |= CMD_CRS;
1056 writel(command, &xhci->op_regs->command);
1057 /*
1058 * Some controllers take up to 55+ ms to complete the controller
1059 * restore so setting the timeout to 100ms. Xhci specification
1060 * doesn't mention any timeout value.
1061 */
1062 if (xhci_handshake(&xhci->op_regs->status,
1063 STS_RESTORE, 0, 100 * 1000)) {
1064 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1065 spin_unlock_irq(&xhci->lock);
1066 return -ETIMEDOUT;
1067 }
1068 }
1069
1070 temp = readl(&xhci->op_regs->status);
1071
1072 /* re-initialize the HC on Restore Error, or Host Controller Error */
1073 if ((temp & (STS_SRE | STS_HCE)) &&
1074 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1075 reinit_xhc = true;
1076 if (!xhci->broken_suspend)
1077 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1078 }
1079
1080 if (reinit_xhc) {
1081 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1082 !(xhci_all_ports_seen_u0(xhci))) {
1083 del_timer_sync(&xhci->comp_mode_recovery_timer);
1084 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1085 "Compliance Mode Recovery Timer deleted!");
1086 }
1087
1088 /* Let the USB core know _both_ roothubs lost power. */
1089 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1090 if (xhci->shared_hcd)
1091 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1092
1093 xhci_dbg(xhci, "Stop HCD\n");
1094 xhci_halt(xhci);
1095 xhci_zero_64b_regs(xhci);
1096 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1097 spin_unlock_irq(&xhci->lock);
1098 if (retval)
1099 return retval;
1100
1101 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1102 temp = readl(&xhci->op_regs->status);
1103 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1104 xhci_disable_interrupter(xhci->interrupters[0]);
1105
1106 xhci_dbg(xhci, "cleaning up memory\n");
1107 xhci_mem_cleanup(xhci);
1108 xhci_debugfs_exit(xhci);
1109 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1110 readl(&xhci->op_regs->status));
1111
1112 /* USB core calls the PCI reinit and start functions twice:
1113 * first with the primary HCD, and then with the secondary HCD.
1114 * If we don't do the same, the host will never be started.
1115 */
1116 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1117 retval = xhci_init(hcd);
1118 if (retval)
1119 return retval;
1120 comp_timer_running = true;
1121
1122 xhci_dbg(xhci, "Start the primary HCD\n");
1123 retval = xhci_run(hcd);
1124 if (!retval && xhci->shared_hcd) {
1125 xhci_dbg(xhci, "Start the secondary HCD\n");
1126 retval = xhci_run(xhci->shared_hcd);
1127 }
1128
1129 hcd->state = HC_STATE_SUSPENDED;
1130 if (xhci->shared_hcd)
1131 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1132 goto done;
1133 }
1134
1135 /* step 4: set Run/Stop bit */
1136 command = readl(&xhci->op_regs->command);
1137 command |= CMD_RUN;
1138 writel(command, &xhci->op_regs->command);
1139 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1140 0, 250 * 1000);
1141
1142 /* step 5: walk topology and initialize portsc,
1143 * portpmsc and portli
1144 */
1145 /* this is done in bus_resume */
1146
1147 /* step 6: restart each of the previously
1148 * Running endpoints by ringing their doorbells
1149 */
1150
1151 spin_unlock_irq(&xhci->lock);
1152
1153 xhci_dbc_resume(xhci);
1154
1155 done:
1156 if (retval == 0) {
1157 /*
1158 * Resume roothubs only if there are pending events.
1159 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1160 * the first wake signalling failed, give it that chance if
1161 * there are suspended USB 3 devices.
1162 */
1163 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1164 xhci->usb3_rhub.bus_state.bus_suspended)
1165 suspended_usb3_devs = true;
1166
1167 pending_portevent = xhci_pending_portevent(xhci);
1168
1169 if (suspended_usb3_devs && !pending_portevent &&
1170 msg.event == PM_EVENT_AUTO_RESUME) {
1171 msleep(120);
1172 pending_portevent = xhci_pending_portevent(xhci);
1173 }
1174
1175 if (pending_portevent) {
1176 if (xhci->shared_hcd)
1177 usb_hcd_resume_root_hub(xhci->shared_hcd);
1178 usb_hcd_resume_root_hub(hcd);
1179 }
1180 }
1181 /*
1182 * If system is subject to the Quirk, Compliance Mode Timer needs to
1183 * be re-initialized Always after a system resume. Ports are subject
1184 * to suffer the Compliance Mode issue again. It doesn't matter if
1185 * ports have entered previously to U0 before system's suspension.
1186 */
1187 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1188 compliance_mode_recovery_timer_init(xhci);
1189
1190 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1191 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1192
1193 /* Re-enable port polling. */
1194 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1195 __func__, hcd->self.busnum);
1196 if (xhci->shared_hcd) {
1197 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1198 usb_hcd_poll_rh_status(xhci->shared_hcd);
1199 }
1200 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1201 usb_hcd_poll_rh_status(hcd);
1202
1203 return retval;
1204}
1205EXPORT_SYMBOL_GPL(xhci_resume);
1206#endif /* CONFIG_PM */
1207
1208/*-------------------------------------------------------------------------*/
1209
1210static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1211{
1212 void *temp;
1213 int ret = 0;
1214 unsigned int buf_len;
1215 enum dma_data_direction dir;
1216
1217 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1218 buf_len = urb->transfer_buffer_length;
1219
1220 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1221 dev_to_node(hcd->self.sysdev));
1222 if (!temp)
1223 return -ENOMEM;
1224
1225 if (usb_urb_dir_out(urb))
1226 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1227 temp, buf_len, 0);
1228
1229 urb->transfer_buffer = temp;
1230 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1231 urb->transfer_buffer,
1232 urb->transfer_buffer_length,
1233 dir);
1234
1235 if (dma_mapping_error(hcd->self.sysdev,
1236 urb->transfer_dma)) {
1237 ret = -EAGAIN;
1238 kfree(temp);
1239 } else {
1240 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1241 }
1242
1243 return ret;
1244}
1245
1246static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1247 struct urb *urb)
1248{
1249 bool ret = false;
1250 unsigned int i;
1251 unsigned int len = 0;
1252 unsigned int trb_size;
1253 unsigned int max_pkt;
1254 struct scatterlist *sg;
1255 struct scatterlist *tail_sg;
1256
1257 tail_sg = urb->sg;
1258 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1259
1260 if (!urb->num_sgs)
1261 return ret;
1262
1263 if (urb->dev->speed >= USB_SPEED_SUPER)
1264 trb_size = TRB_CACHE_SIZE_SS;
1265 else
1266 trb_size = TRB_CACHE_SIZE_HS;
1267
1268 if (urb->transfer_buffer_length != 0 &&
1269 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1270 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1271 len = len + sg->length;
1272 if (i > trb_size - 2) {
1273 len = len - tail_sg->length;
1274 if (len < max_pkt) {
1275 ret = true;
1276 break;
1277 }
1278
1279 tail_sg = sg_next(tail_sg);
1280 }
1281 }
1282 }
1283 return ret;
1284}
1285
1286static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1287{
1288 unsigned int len;
1289 unsigned int buf_len;
1290 enum dma_data_direction dir;
1291
1292 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1293
1294 buf_len = urb->transfer_buffer_length;
1295
1296 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1297 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1298 dma_unmap_single(hcd->self.sysdev,
1299 urb->transfer_dma,
1300 urb->transfer_buffer_length,
1301 dir);
1302
1303 if (usb_urb_dir_in(urb)) {
1304 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1305 urb->transfer_buffer,
1306 buf_len,
1307 0);
1308 if (len != buf_len) {
1309 xhci_dbg(hcd_to_xhci(hcd),
1310 "Copy from tmp buf to urb sg list failed\n");
1311 urb->actual_length = len;
1312 }
1313 }
1314 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1315 kfree(urb->transfer_buffer);
1316 urb->transfer_buffer = NULL;
1317}
1318
1319/*
1320 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1321 * we'll copy the actual data into the TRB address register. This is limited to
1322 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1323 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1324 */
1325static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1326 gfp_t mem_flags)
1327{
1328 struct xhci_hcd *xhci;
1329
1330 xhci = hcd_to_xhci(hcd);
1331
1332 if (xhci_urb_suitable_for_idt(urb))
1333 return 0;
1334
1335 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1336 if (xhci_urb_temp_buffer_required(hcd, urb))
1337 return xhci_map_temp_buffer(hcd, urb);
1338 }
1339 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1340}
1341
1342static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1343{
1344 struct xhci_hcd *xhci;
1345 bool unmap_temp_buf = false;
1346
1347 xhci = hcd_to_xhci(hcd);
1348
1349 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1350 unmap_temp_buf = true;
1351
1352 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1353 xhci_unmap_temp_buf(hcd, urb);
1354 else
1355 usb_hcd_unmap_urb_for_dma(hcd, urb);
1356}
1357
1358/**
1359 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1360 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1361 * value to right shift 1 for the bitmask.
1362 *
1363 * Index = (epnum * 2) + direction - 1,
1364 * where direction = 0 for OUT, 1 for IN.
1365 * For control endpoints, the IN index is used (OUT index is unused), so
1366 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1367 */
1368unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1369{
1370 unsigned int index;
1371 if (usb_endpoint_xfer_control(desc))
1372 index = (unsigned int) (usb_endpoint_num(desc)*2);
1373 else
1374 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1375 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1376 return index;
1377}
1378EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1379
1380/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1381 * address from the XHCI endpoint index.
1382 */
1383static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1384{
1385 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1386 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1387 return direction | number;
1388}
1389
1390/* Find the flag for this endpoint (for use in the control context). Use the
1391 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1392 * bit 1, etc.
1393 */
1394static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1395{
1396 return 1 << (xhci_get_endpoint_index(desc) + 1);
1397}
1398
1399/* Compute the last valid endpoint context index. Basically, this is the
1400 * endpoint index plus one. For slot contexts with more than valid endpoint,
1401 * we find the most significant bit set in the added contexts flags.
1402 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1403 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1404 */
1405unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1406{
1407 return fls(added_ctxs) - 1;
1408}
1409
1410/* Returns 1 if the arguments are OK;
1411 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1412 */
1413static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1414 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1415 const char *func) {
1416 struct xhci_hcd *xhci;
1417 struct xhci_virt_device *virt_dev;
1418
1419 if (!hcd || (check_ep && !ep) || !udev) {
1420 pr_debug("xHCI %s called with invalid args\n", func);
1421 return -EINVAL;
1422 }
1423 if (!udev->parent) {
1424 pr_debug("xHCI %s called for root hub\n", func);
1425 return 0;
1426 }
1427
1428 xhci = hcd_to_xhci(hcd);
1429 if (check_virt_dev) {
1430 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1431 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1432 func);
1433 return -EINVAL;
1434 }
1435
1436 virt_dev = xhci->devs[udev->slot_id];
1437 if (virt_dev->udev != udev) {
1438 xhci_dbg(xhci, "xHCI %s called with udev and "
1439 "virt_dev does not match\n", func);
1440 return -EINVAL;
1441 }
1442 }
1443
1444 if (xhci->xhc_state & XHCI_STATE_HALTED)
1445 return -ENODEV;
1446
1447 return 1;
1448}
1449
1450static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1451 struct usb_device *udev, struct xhci_command *command,
1452 bool ctx_change, bool must_succeed);
1453
1454/*
1455 * Full speed devices may have a max packet size greater than 8 bytes, but the
1456 * USB core doesn't know that until it reads the first 8 bytes of the
1457 * descriptor. If the usb_device's max packet size changes after that point,
1458 * we need to issue an evaluate context command and wait on it.
1459 */
1460static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1461{
1462 struct xhci_input_control_ctx *ctrl_ctx;
1463 struct xhci_ep_ctx *ep_ctx;
1464 struct xhci_command *command;
1465 int max_packet_size;
1466 int hw_max_packet_size;
1467 int ret = 0;
1468
1469 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1470 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1471 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1472
1473 if (hw_max_packet_size == max_packet_size)
1474 return 0;
1475
1476 switch (max_packet_size) {
1477 case 8: case 16: case 32: case 64: case 9:
1478 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1479 "Max Packet Size for ep 0 changed.");
1480 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1481 "Max packet size in usb_device = %d",
1482 max_packet_size);
1483 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1484 "Max packet size in xHCI HW = %d",
1485 hw_max_packet_size);
1486 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1487 "Issuing evaluate context command.");
1488
1489 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1490 if (!command)
1491 return -ENOMEM;
1492
1493 command->in_ctx = vdev->in_ctx;
1494 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1495 if (!ctrl_ctx) {
1496 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1497 __func__);
1498 ret = -ENOMEM;
1499 break;
1500 }
1501 /* Set up the modified control endpoint 0 */
1502 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1503
1504 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1505 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1506 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1507 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1508
1509 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1510 ctrl_ctx->drop_flags = 0;
1511
1512 ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1513 true, false);
1514 /* Clean up the input context for later use by bandwidth functions */
1515 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1516 break;
1517 default:
1518 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1519 max_packet_size);
1520 return -EINVAL;
1521 }
1522
1523 kfree(command->completion);
1524 kfree(command);
1525
1526 return ret;
1527}
1528
1529/*
1530 * non-error returns are a promise to giveback() the urb later
1531 * we drop ownership so next owner (or urb unlink) can get it
1532 */
1533static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1534{
1535 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1536 unsigned long flags;
1537 int ret = 0;
1538 unsigned int slot_id, ep_index;
1539 unsigned int *ep_state;
1540 struct urb_priv *urb_priv;
1541 int num_tds;
1542
1543 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1544
1545 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1546 num_tds = urb->number_of_packets;
1547 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1548 urb->transfer_buffer_length > 0 &&
1549 urb->transfer_flags & URB_ZERO_PACKET &&
1550 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1551 num_tds = 2;
1552 else
1553 num_tds = 1;
1554
1555 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1556 if (!urb_priv)
1557 return -ENOMEM;
1558
1559 urb_priv->num_tds = num_tds;
1560 urb_priv->num_tds_done = 0;
1561 urb->hcpriv = urb_priv;
1562
1563 trace_xhci_urb_enqueue(urb);
1564
1565 spin_lock_irqsave(&xhci->lock, flags);
1566
1567 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1568 true, true, __func__);
1569 if (ret <= 0) {
1570 ret = ret ? ret : -EINVAL;
1571 goto free_priv;
1572 }
1573
1574 slot_id = urb->dev->slot_id;
1575
1576 if (!HCD_HW_ACCESSIBLE(hcd)) {
1577 ret = -ESHUTDOWN;
1578 goto free_priv;
1579 }
1580
1581 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1582 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1583 ret = -ENODEV;
1584 goto free_priv;
1585 }
1586
1587 if (xhci->xhc_state & XHCI_STATE_DYING) {
1588 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1589 urb->ep->desc.bEndpointAddress, urb);
1590 ret = -ESHUTDOWN;
1591 goto free_priv;
1592 }
1593
1594 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1595
1596 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1597 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1598 *ep_state);
1599 ret = -EINVAL;
1600 goto free_priv;
1601 }
1602 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1603 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1604 ret = -EINVAL;
1605 goto free_priv;
1606 }
1607
1608 switch (usb_endpoint_type(&urb->ep->desc)) {
1609
1610 case USB_ENDPOINT_XFER_CONTROL:
1611 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1612 slot_id, ep_index);
1613 break;
1614 case USB_ENDPOINT_XFER_BULK:
1615 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1616 slot_id, ep_index);
1617 break;
1618 case USB_ENDPOINT_XFER_INT:
1619 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1620 slot_id, ep_index);
1621 break;
1622 case USB_ENDPOINT_XFER_ISOC:
1623 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1624 slot_id, ep_index);
1625 }
1626
1627 if (ret) {
1628free_priv:
1629 xhci_urb_free_priv(urb_priv);
1630 urb->hcpriv = NULL;
1631 }
1632 spin_unlock_irqrestore(&xhci->lock, flags);
1633 return ret;
1634}
1635
1636/*
1637 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1638 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1639 * should pick up where it left off in the TD, unless a Set Transfer Ring
1640 * Dequeue Pointer is issued.
1641 *
1642 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1643 * the ring. Since the ring is a contiguous structure, they can't be physically
1644 * removed. Instead, there are two options:
1645 *
1646 * 1) If the HC is in the middle of processing the URB to be canceled, we
1647 * simply move the ring's dequeue pointer past those TRBs using the Set
1648 * Transfer Ring Dequeue Pointer command. This will be the common case,
1649 * when drivers timeout on the last submitted URB and attempt to cancel.
1650 *
1651 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1652 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1653 * HC will need to invalidate the any TRBs it has cached after the stop
1654 * endpoint command, as noted in the xHCI 0.95 errata.
1655 *
1656 * 3) The TD may have completed by the time the Stop Endpoint Command
1657 * completes, so software needs to handle that case too.
1658 *
1659 * This function should protect against the TD enqueueing code ringing the
1660 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1661 * It also needs to account for multiple cancellations on happening at the same
1662 * time for the same endpoint.
1663 *
1664 * Note that this function can be called in any context, or so says
1665 * usb_hcd_unlink_urb()
1666 */
1667static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1668{
1669 unsigned long flags;
1670 int ret, i;
1671 u32 temp;
1672 struct xhci_hcd *xhci;
1673 struct urb_priv *urb_priv;
1674 struct xhci_td *td;
1675 unsigned int ep_index;
1676 struct xhci_ring *ep_ring;
1677 struct xhci_virt_ep *ep;
1678 struct xhci_command *command;
1679 struct xhci_virt_device *vdev;
1680
1681 xhci = hcd_to_xhci(hcd);
1682 spin_lock_irqsave(&xhci->lock, flags);
1683
1684 trace_xhci_urb_dequeue(urb);
1685
1686 /* Make sure the URB hasn't completed or been unlinked already */
1687 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1688 if (ret)
1689 goto done;
1690
1691 /* give back URB now if we can't queue it for cancel */
1692 vdev = xhci->devs[urb->dev->slot_id];
1693 urb_priv = urb->hcpriv;
1694 if (!vdev || !urb_priv)
1695 goto err_giveback;
1696
1697 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1698 ep = &vdev->eps[ep_index];
1699 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1700 if (!ep || !ep_ring)
1701 goto err_giveback;
1702
1703 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1704 temp = readl(&xhci->op_regs->status);
1705 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1706 xhci_hc_died(xhci);
1707 goto done;
1708 }
1709
1710 /*
1711 * check ring is not re-allocated since URB was enqueued. If it is, then
1712 * make sure none of the ring related pointers in this URB private data
1713 * are touched, such as td_list, otherwise we overwrite freed data
1714 */
1715 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1716 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1717 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1718 td = &urb_priv->td[i];
1719 if (!list_empty(&td->cancelled_td_list))
1720 list_del_init(&td->cancelled_td_list);
1721 }
1722 goto err_giveback;
1723 }
1724
1725 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1726 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1727 "HC halted, freeing TD manually.");
1728 for (i = urb_priv->num_tds_done;
1729 i < urb_priv->num_tds;
1730 i++) {
1731 td = &urb_priv->td[i];
1732 if (!list_empty(&td->td_list))
1733 list_del_init(&td->td_list);
1734 if (!list_empty(&td->cancelled_td_list))
1735 list_del_init(&td->cancelled_td_list);
1736 }
1737 goto err_giveback;
1738 }
1739
1740 i = urb_priv->num_tds_done;
1741 if (i < urb_priv->num_tds)
1742 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1743 "Cancel URB %p, dev %s, ep 0x%x, "
1744 "starting at offset 0x%llx",
1745 urb, urb->dev->devpath,
1746 urb->ep->desc.bEndpointAddress,
1747 (unsigned long long) xhci_trb_virt_to_dma(
1748 urb_priv->td[i].start_seg,
1749 urb_priv->td[i].first_trb));
1750
1751 for (; i < urb_priv->num_tds; i++) {
1752 td = &urb_priv->td[i];
1753 /* TD can already be on cancelled list if ep halted on it */
1754 if (list_empty(&td->cancelled_td_list)) {
1755 td->cancel_status = TD_DIRTY;
1756 list_add_tail(&td->cancelled_td_list,
1757 &ep->cancelled_td_list);
1758 }
1759 }
1760
1761 /* Queue a stop endpoint command, but only if this is
1762 * the first cancellation to be handled.
1763 */
1764 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1765 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1766 if (!command) {
1767 ret = -ENOMEM;
1768 goto done;
1769 }
1770 ep->ep_state |= EP_STOP_CMD_PENDING;
1771 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1772 ep_index, 0);
1773 xhci_ring_cmd_db(xhci);
1774 }
1775done:
1776 spin_unlock_irqrestore(&xhci->lock, flags);
1777 return ret;
1778
1779err_giveback:
1780 if (urb_priv)
1781 xhci_urb_free_priv(urb_priv);
1782 usb_hcd_unlink_urb_from_ep(hcd, urb);
1783 spin_unlock_irqrestore(&xhci->lock, flags);
1784 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1785 return ret;
1786}
1787
1788/* Drop an endpoint from a new bandwidth configuration for this device.
1789 * Only one call to this function is allowed per endpoint before
1790 * check_bandwidth() or reset_bandwidth() must be called.
1791 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1792 * add the endpoint to the schedule with possibly new parameters denoted by a
1793 * different endpoint descriptor in usb_host_endpoint.
1794 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1795 * not allowed.
1796 *
1797 * The USB core will not allow URBs to be queued to an endpoint that is being
1798 * disabled, so there's no need for mutual exclusion to protect
1799 * the xhci->devs[slot_id] structure.
1800 */
1801int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1802 struct usb_host_endpoint *ep)
1803{
1804 struct xhci_hcd *xhci;
1805 struct xhci_container_ctx *in_ctx, *out_ctx;
1806 struct xhci_input_control_ctx *ctrl_ctx;
1807 unsigned int ep_index;
1808 struct xhci_ep_ctx *ep_ctx;
1809 u32 drop_flag;
1810 u32 new_add_flags, new_drop_flags;
1811 int ret;
1812
1813 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1814 if (ret <= 0)
1815 return ret;
1816 xhci = hcd_to_xhci(hcd);
1817 if (xhci->xhc_state & XHCI_STATE_DYING)
1818 return -ENODEV;
1819
1820 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1821 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1822 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1823 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1824 __func__, drop_flag);
1825 return 0;
1826 }
1827
1828 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1829 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1830 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1831 if (!ctrl_ctx) {
1832 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1833 __func__);
1834 return 0;
1835 }
1836
1837 ep_index = xhci_get_endpoint_index(&ep->desc);
1838 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1839 /* If the HC already knows the endpoint is disabled,
1840 * or the HCD has noted it is disabled, ignore this request
1841 */
1842 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1843 le32_to_cpu(ctrl_ctx->drop_flags) &
1844 xhci_get_endpoint_flag(&ep->desc)) {
1845 /* Do not warn when called after a usb_device_reset */
1846 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1847 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1848 __func__, ep);
1849 return 0;
1850 }
1851
1852 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1853 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1854
1855 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1856 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1857
1858 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1859
1860 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1861
1862 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1863 (unsigned int) ep->desc.bEndpointAddress,
1864 udev->slot_id,
1865 (unsigned int) new_drop_flags,
1866 (unsigned int) new_add_flags);
1867 return 0;
1868}
1869EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1870
1871/* Add an endpoint to a new possible bandwidth configuration for this device.
1872 * Only one call to this function is allowed per endpoint before
1873 * check_bandwidth() or reset_bandwidth() must be called.
1874 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1875 * add the endpoint to the schedule with possibly new parameters denoted by a
1876 * different endpoint descriptor in usb_host_endpoint.
1877 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1878 * not allowed.
1879 *
1880 * The USB core will not allow URBs to be queued to an endpoint until the
1881 * configuration or alt setting is installed in the device, so there's no need
1882 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1883 */
1884int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1885 struct usb_host_endpoint *ep)
1886{
1887 struct xhci_hcd *xhci;
1888 struct xhci_container_ctx *in_ctx;
1889 unsigned int ep_index;
1890 struct xhci_input_control_ctx *ctrl_ctx;
1891 struct xhci_ep_ctx *ep_ctx;
1892 u32 added_ctxs;
1893 u32 new_add_flags, new_drop_flags;
1894 struct xhci_virt_device *virt_dev;
1895 int ret = 0;
1896
1897 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1898 if (ret <= 0) {
1899 /* So we won't queue a reset ep command for a root hub */
1900 ep->hcpriv = NULL;
1901 return ret;
1902 }
1903 xhci = hcd_to_xhci(hcd);
1904 if (xhci->xhc_state & XHCI_STATE_DYING)
1905 return -ENODEV;
1906
1907 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1908 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1909 /* FIXME when we have to issue an evaluate endpoint command to
1910 * deal with ep0 max packet size changing once we get the
1911 * descriptors
1912 */
1913 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1914 __func__, added_ctxs);
1915 return 0;
1916 }
1917
1918 virt_dev = xhci->devs[udev->slot_id];
1919 in_ctx = virt_dev->in_ctx;
1920 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1921 if (!ctrl_ctx) {
1922 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1923 __func__);
1924 return 0;
1925 }
1926
1927 ep_index = xhci_get_endpoint_index(&ep->desc);
1928 /* If this endpoint is already in use, and the upper layers are trying
1929 * to add it again without dropping it, reject the addition.
1930 */
1931 if (virt_dev->eps[ep_index].ring &&
1932 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1933 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1934 "without dropping it.\n",
1935 (unsigned int) ep->desc.bEndpointAddress);
1936 return -EINVAL;
1937 }
1938
1939 /* If the HCD has already noted the endpoint is enabled,
1940 * ignore this request.
1941 */
1942 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1943 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1944 __func__, ep);
1945 return 0;
1946 }
1947
1948 /*
1949 * Configuration and alternate setting changes must be done in
1950 * process context, not interrupt context (or so documenation
1951 * for usb_set_interface() and usb_set_configuration() claim).
1952 */
1953 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1954 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1955 __func__, ep->desc.bEndpointAddress);
1956 return -ENOMEM;
1957 }
1958
1959 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1960 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1961
1962 /* If xhci_endpoint_disable() was called for this endpoint, but the
1963 * xHC hasn't been notified yet through the check_bandwidth() call,
1964 * this re-adds a new state for the endpoint from the new endpoint
1965 * descriptors. We must drop and re-add this endpoint, so we leave the
1966 * drop flags alone.
1967 */
1968 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1969
1970 /* Store the usb_device pointer for later use */
1971 ep->hcpriv = udev;
1972
1973 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1974 trace_xhci_add_endpoint(ep_ctx);
1975
1976 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1977 (unsigned int) ep->desc.bEndpointAddress,
1978 udev->slot_id,
1979 (unsigned int) new_drop_flags,
1980 (unsigned int) new_add_flags);
1981 return 0;
1982}
1983EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1984
1985static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1986{
1987 struct xhci_input_control_ctx *ctrl_ctx;
1988 struct xhci_ep_ctx *ep_ctx;
1989 struct xhci_slot_ctx *slot_ctx;
1990 int i;
1991
1992 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1993 if (!ctrl_ctx) {
1994 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1995 __func__);
1996 return;
1997 }
1998
1999 /* When a device's add flag and drop flag are zero, any subsequent
2000 * configure endpoint command will leave that endpoint's state
2001 * untouched. Make sure we don't leave any old state in the input
2002 * endpoint contexts.
2003 */
2004 ctrl_ctx->drop_flags = 0;
2005 ctrl_ctx->add_flags = 0;
2006 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2007 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2008 /* Endpoint 0 is always valid */
2009 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2010 for (i = 1; i < 31; i++) {
2011 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2012 ep_ctx->ep_info = 0;
2013 ep_ctx->ep_info2 = 0;
2014 ep_ctx->deq = 0;
2015 ep_ctx->tx_info = 0;
2016 }
2017}
2018
2019static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2020 struct usb_device *udev, u32 *cmd_status)
2021{
2022 int ret;
2023
2024 switch (*cmd_status) {
2025 case COMP_COMMAND_ABORTED:
2026 case COMP_COMMAND_RING_STOPPED:
2027 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2028 ret = -ETIME;
2029 break;
2030 case COMP_RESOURCE_ERROR:
2031 dev_warn(&udev->dev,
2032 "Not enough host controller resources for new device state.\n");
2033 ret = -ENOMEM;
2034 /* FIXME: can we allocate more resources for the HC? */
2035 break;
2036 case COMP_BANDWIDTH_ERROR:
2037 case COMP_SECONDARY_BANDWIDTH_ERROR:
2038 dev_warn(&udev->dev,
2039 "Not enough bandwidth for new device state.\n");
2040 ret = -ENOSPC;
2041 /* FIXME: can we go back to the old state? */
2042 break;
2043 case COMP_TRB_ERROR:
2044 /* the HCD set up something wrong */
2045 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2046 "add flag = 1, "
2047 "and endpoint is not disabled.\n");
2048 ret = -EINVAL;
2049 break;
2050 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2051 dev_warn(&udev->dev,
2052 "ERROR: Incompatible device for endpoint configure command.\n");
2053 ret = -ENODEV;
2054 break;
2055 case COMP_SUCCESS:
2056 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2057 "Successful Endpoint Configure command");
2058 ret = 0;
2059 break;
2060 default:
2061 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2062 *cmd_status);
2063 ret = -EINVAL;
2064 break;
2065 }
2066 return ret;
2067}
2068
2069static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2070 struct usb_device *udev, u32 *cmd_status)
2071{
2072 int ret;
2073
2074 switch (*cmd_status) {
2075 case COMP_COMMAND_ABORTED:
2076 case COMP_COMMAND_RING_STOPPED:
2077 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2078 ret = -ETIME;
2079 break;
2080 case COMP_PARAMETER_ERROR:
2081 dev_warn(&udev->dev,
2082 "WARN: xHCI driver setup invalid evaluate context command.\n");
2083 ret = -EINVAL;
2084 break;
2085 case COMP_SLOT_NOT_ENABLED_ERROR:
2086 dev_warn(&udev->dev,
2087 "WARN: slot not enabled for evaluate context command.\n");
2088 ret = -EINVAL;
2089 break;
2090 case COMP_CONTEXT_STATE_ERROR:
2091 dev_warn(&udev->dev,
2092 "WARN: invalid context state for evaluate context command.\n");
2093 ret = -EINVAL;
2094 break;
2095 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2096 dev_warn(&udev->dev,
2097 "ERROR: Incompatible device for evaluate context command.\n");
2098 ret = -ENODEV;
2099 break;
2100 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2101 /* Max Exit Latency too large error */
2102 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2103 ret = -EINVAL;
2104 break;
2105 case COMP_SUCCESS:
2106 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2107 "Successful evaluate context command");
2108 ret = 0;
2109 break;
2110 default:
2111 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2112 *cmd_status);
2113 ret = -EINVAL;
2114 break;
2115 }
2116 return ret;
2117}
2118
2119static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2120 struct xhci_input_control_ctx *ctrl_ctx)
2121{
2122 u32 valid_add_flags;
2123 u32 valid_drop_flags;
2124
2125 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2126 * (bit 1). The default control endpoint is added during the Address
2127 * Device command and is never removed until the slot is disabled.
2128 */
2129 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2130 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2131
2132 /* Use hweight32 to count the number of ones in the add flags, or
2133 * number of endpoints added. Don't count endpoints that are changed
2134 * (both added and dropped).
2135 */
2136 return hweight32(valid_add_flags) -
2137 hweight32(valid_add_flags & valid_drop_flags);
2138}
2139
2140static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2141 struct xhci_input_control_ctx *ctrl_ctx)
2142{
2143 u32 valid_add_flags;
2144 u32 valid_drop_flags;
2145
2146 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2147 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2148
2149 return hweight32(valid_drop_flags) -
2150 hweight32(valid_add_flags & valid_drop_flags);
2151}
2152
2153/*
2154 * We need to reserve the new number of endpoints before the configure endpoint
2155 * command completes. We can't subtract the dropped endpoints from the number
2156 * of active endpoints until the command completes because we can oversubscribe
2157 * the host in this case:
2158 *
2159 * - the first configure endpoint command drops more endpoints than it adds
2160 * - a second configure endpoint command that adds more endpoints is queued
2161 * - the first configure endpoint command fails, so the config is unchanged
2162 * - the second command may succeed, even though there isn't enough resources
2163 *
2164 * Must be called with xhci->lock held.
2165 */
2166static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2167 struct xhci_input_control_ctx *ctrl_ctx)
2168{
2169 u32 added_eps;
2170
2171 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2172 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2173 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2174 "Not enough ep ctxs: "
2175 "%u active, need to add %u, limit is %u.",
2176 xhci->num_active_eps, added_eps,
2177 xhci->limit_active_eps);
2178 return -ENOMEM;
2179 }
2180 xhci->num_active_eps += added_eps;
2181 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2182 "Adding %u ep ctxs, %u now active.", added_eps,
2183 xhci->num_active_eps);
2184 return 0;
2185}
2186
2187/*
2188 * The configure endpoint was failed by the xHC for some other reason, so we
2189 * need to revert the resources that failed configuration would have used.
2190 *
2191 * Must be called with xhci->lock held.
2192 */
2193static void xhci_free_host_resources(struct xhci_hcd *xhci,
2194 struct xhci_input_control_ctx *ctrl_ctx)
2195{
2196 u32 num_failed_eps;
2197
2198 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2199 xhci->num_active_eps -= num_failed_eps;
2200 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2201 "Removing %u failed ep ctxs, %u now active.",
2202 num_failed_eps,
2203 xhci->num_active_eps);
2204}
2205
2206/*
2207 * Now that the command has completed, clean up the active endpoint count by
2208 * subtracting out the endpoints that were dropped (but not changed).
2209 *
2210 * Must be called with xhci->lock held.
2211 */
2212static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2213 struct xhci_input_control_ctx *ctrl_ctx)
2214{
2215 u32 num_dropped_eps;
2216
2217 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2218 xhci->num_active_eps -= num_dropped_eps;
2219 if (num_dropped_eps)
2220 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2221 "Removing %u dropped ep ctxs, %u now active.",
2222 num_dropped_eps,
2223 xhci->num_active_eps);
2224}
2225
2226static unsigned int xhci_get_block_size(struct usb_device *udev)
2227{
2228 switch (udev->speed) {
2229 case USB_SPEED_LOW:
2230 case USB_SPEED_FULL:
2231 return FS_BLOCK;
2232 case USB_SPEED_HIGH:
2233 return HS_BLOCK;
2234 case USB_SPEED_SUPER:
2235 case USB_SPEED_SUPER_PLUS:
2236 return SS_BLOCK;
2237 case USB_SPEED_UNKNOWN:
2238 default:
2239 /* Should never happen */
2240 return 1;
2241 }
2242}
2243
2244static unsigned int
2245xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2246{
2247 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2248 return LS_OVERHEAD;
2249 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2250 return FS_OVERHEAD;
2251 return HS_OVERHEAD;
2252}
2253
2254/* If we are changing a LS/FS device under a HS hub,
2255 * make sure (if we are activating a new TT) that the HS bus has enough
2256 * bandwidth for this new TT.
2257 */
2258static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2259 struct xhci_virt_device *virt_dev,
2260 int old_active_eps)
2261{
2262 struct xhci_interval_bw_table *bw_table;
2263 struct xhci_tt_bw_info *tt_info;
2264
2265 /* Find the bandwidth table for the root port this TT is attached to. */
2266 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2267 tt_info = virt_dev->tt_info;
2268 /* If this TT already had active endpoints, the bandwidth for this TT
2269 * has already been added. Removing all periodic endpoints (and thus
2270 * making the TT enactive) will only decrease the bandwidth used.
2271 */
2272 if (old_active_eps)
2273 return 0;
2274 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2275 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2276 return -ENOMEM;
2277 return 0;
2278 }
2279 /* Not sure why we would have no new active endpoints...
2280 *
2281 * Maybe because of an Evaluate Context change for a hub update or a
2282 * control endpoint 0 max packet size change?
2283 * FIXME: skip the bandwidth calculation in that case.
2284 */
2285 return 0;
2286}
2287
2288static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2289 struct xhci_virt_device *virt_dev)
2290{
2291 unsigned int bw_reserved;
2292
2293 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2294 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2295 return -ENOMEM;
2296
2297 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2298 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2299 return -ENOMEM;
2300
2301 return 0;
2302}
2303
2304/*
2305 * This algorithm is a very conservative estimate of the worst-case scheduling
2306 * scenario for any one interval. The hardware dynamically schedules the
2307 * packets, so we can't tell which microframe could be the limiting factor in
2308 * the bandwidth scheduling. This only takes into account periodic endpoints.
2309 *
2310 * Obviously, we can't solve an NP complete problem to find the minimum worst
2311 * case scenario. Instead, we come up with an estimate that is no less than
2312 * the worst case bandwidth used for any one microframe, but may be an
2313 * over-estimate.
2314 *
2315 * We walk the requirements for each endpoint by interval, starting with the
2316 * smallest interval, and place packets in the schedule where there is only one
2317 * possible way to schedule packets for that interval. In order to simplify
2318 * this algorithm, we record the largest max packet size for each interval, and
2319 * assume all packets will be that size.
2320 *
2321 * For interval 0, we obviously must schedule all packets for each interval.
2322 * The bandwidth for interval 0 is just the amount of data to be transmitted
2323 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2324 * the number of packets).
2325 *
2326 * For interval 1, we have two possible microframes to schedule those packets
2327 * in. For this algorithm, if we can schedule the same number of packets for
2328 * each possible scheduling opportunity (each microframe), we will do so. The
2329 * remaining number of packets will be saved to be transmitted in the gaps in
2330 * the next interval's scheduling sequence.
2331 *
2332 * As we move those remaining packets to be scheduled with interval 2 packets,
2333 * we have to double the number of remaining packets to transmit. This is
2334 * because the intervals are actually powers of 2, and we would be transmitting
2335 * the previous interval's packets twice in this interval. We also have to be
2336 * sure that when we look at the largest max packet size for this interval, we
2337 * also look at the largest max packet size for the remaining packets and take
2338 * the greater of the two.
2339 *
2340 * The algorithm continues to evenly distribute packets in each scheduling
2341 * opportunity, and push the remaining packets out, until we get to the last
2342 * interval. Then those packets and their associated overhead are just added
2343 * to the bandwidth used.
2344 */
2345static int xhci_check_bw_table(struct xhci_hcd *xhci,
2346 struct xhci_virt_device *virt_dev,
2347 int old_active_eps)
2348{
2349 unsigned int bw_reserved;
2350 unsigned int max_bandwidth;
2351 unsigned int bw_used;
2352 unsigned int block_size;
2353 struct xhci_interval_bw_table *bw_table;
2354 unsigned int packet_size = 0;
2355 unsigned int overhead = 0;
2356 unsigned int packets_transmitted = 0;
2357 unsigned int packets_remaining = 0;
2358 unsigned int i;
2359
2360 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2361 return xhci_check_ss_bw(xhci, virt_dev);
2362
2363 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2364 max_bandwidth = HS_BW_LIMIT;
2365 /* Convert percent of bus BW reserved to blocks reserved */
2366 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2367 } else {
2368 max_bandwidth = FS_BW_LIMIT;
2369 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2370 }
2371
2372 bw_table = virt_dev->bw_table;
2373 /* We need to translate the max packet size and max ESIT payloads into
2374 * the units the hardware uses.
2375 */
2376 block_size = xhci_get_block_size(virt_dev->udev);
2377
2378 /* If we are manipulating a LS/FS device under a HS hub, double check
2379 * that the HS bus has enough bandwidth if we are activing a new TT.
2380 */
2381 if (virt_dev->tt_info) {
2382 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2383 "Recalculating BW for rootport %u",
2384 virt_dev->rhub_port->hw_portnum + 1);
2385 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2386 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2387 "newly activated TT.\n");
2388 return -ENOMEM;
2389 }
2390 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2391 "Recalculating BW for TT slot %u port %u",
2392 virt_dev->tt_info->slot_id,
2393 virt_dev->tt_info->ttport);
2394 } else {
2395 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2396 "Recalculating BW for rootport %u",
2397 virt_dev->rhub_port->hw_portnum + 1);
2398 }
2399
2400 /* Add in how much bandwidth will be used for interval zero, or the
2401 * rounded max ESIT payload + number of packets * largest overhead.
2402 */
2403 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2404 bw_table->interval_bw[0].num_packets *
2405 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2406
2407 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2408 unsigned int bw_added;
2409 unsigned int largest_mps;
2410 unsigned int interval_overhead;
2411
2412 /*
2413 * How many packets could we transmit in this interval?
2414 * If packets didn't fit in the previous interval, we will need
2415 * to transmit that many packets twice within this interval.
2416 */
2417 packets_remaining = 2 * packets_remaining +
2418 bw_table->interval_bw[i].num_packets;
2419
2420 /* Find the largest max packet size of this or the previous
2421 * interval.
2422 */
2423 if (list_empty(&bw_table->interval_bw[i].endpoints))
2424 largest_mps = 0;
2425 else {
2426 struct xhci_virt_ep *virt_ep;
2427 struct list_head *ep_entry;
2428
2429 ep_entry = bw_table->interval_bw[i].endpoints.next;
2430 virt_ep = list_entry(ep_entry,
2431 struct xhci_virt_ep, bw_endpoint_list);
2432 /* Convert to blocks, rounding up */
2433 largest_mps = DIV_ROUND_UP(
2434 virt_ep->bw_info.max_packet_size,
2435 block_size);
2436 }
2437 if (largest_mps > packet_size)
2438 packet_size = largest_mps;
2439
2440 /* Use the larger overhead of this or the previous interval. */
2441 interval_overhead = xhci_get_largest_overhead(
2442 &bw_table->interval_bw[i]);
2443 if (interval_overhead > overhead)
2444 overhead = interval_overhead;
2445
2446 /* How many packets can we evenly distribute across
2447 * (1 << (i + 1)) possible scheduling opportunities?
2448 */
2449 packets_transmitted = packets_remaining >> (i + 1);
2450
2451 /* Add in the bandwidth used for those scheduled packets */
2452 bw_added = packets_transmitted * (overhead + packet_size);
2453
2454 /* How many packets do we have remaining to transmit? */
2455 packets_remaining = packets_remaining % (1 << (i + 1));
2456
2457 /* What largest max packet size should those packets have? */
2458 /* If we've transmitted all packets, don't carry over the
2459 * largest packet size.
2460 */
2461 if (packets_remaining == 0) {
2462 packet_size = 0;
2463 overhead = 0;
2464 } else if (packets_transmitted > 0) {
2465 /* Otherwise if we do have remaining packets, and we've
2466 * scheduled some packets in this interval, take the
2467 * largest max packet size from endpoints with this
2468 * interval.
2469 */
2470 packet_size = largest_mps;
2471 overhead = interval_overhead;
2472 }
2473 /* Otherwise carry over packet_size and overhead from the last
2474 * time we had a remainder.
2475 */
2476 bw_used += bw_added;
2477 if (bw_used > max_bandwidth) {
2478 xhci_warn(xhci, "Not enough bandwidth. "
2479 "Proposed: %u, Max: %u\n",
2480 bw_used, max_bandwidth);
2481 return -ENOMEM;
2482 }
2483 }
2484 /*
2485 * Ok, we know we have some packets left over after even-handedly
2486 * scheduling interval 15. We don't know which microframes they will
2487 * fit into, so we over-schedule and say they will be scheduled every
2488 * microframe.
2489 */
2490 if (packets_remaining > 0)
2491 bw_used += overhead + packet_size;
2492
2493 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2494 /* OK, we're manipulating a HS device attached to a
2495 * root port bandwidth domain. Include the number of active TTs
2496 * in the bandwidth used.
2497 */
2498 bw_used += TT_HS_OVERHEAD *
2499 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2500 }
2501
2502 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2503 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2504 "Available: %u " "percent",
2505 bw_used, max_bandwidth, bw_reserved,
2506 (max_bandwidth - bw_used - bw_reserved) * 100 /
2507 max_bandwidth);
2508
2509 bw_used += bw_reserved;
2510 if (bw_used > max_bandwidth) {
2511 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2512 bw_used, max_bandwidth);
2513 return -ENOMEM;
2514 }
2515
2516 bw_table->bw_used = bw_used;
2517 return 0;
2518}
2519
2520static bool xhci_is_async_ep(unsigned int ep_type)
2521{
2522 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2523 ep_type != ISOC_IN_EP &&
2524 ep_type != INT_IN_EP);
2525}
2526
2527static bool xhci_is_sync_in_ep(unsigned int ep_type)
2528{
2529 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2530}
2531
2532static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2533{
2534 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2535
2536 if (ep_bw->ep_interval == 0)
2537 return SS_OVERHEAD_BURST +
2538 (ep_bw->mult * ep_bw->num_packets *
2539 (SS_OVERHEAD + mps));
2540 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2541 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2542 1 << ep_bw->ep_interval);
2543
2544}
2545
2546static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2547 struct xhci_bw_info *ep_bw,
2548 struct xhci_interval_bw_table *bw_table,
2549 struct usb_device *udev,
2550 struct xhci_virt_ep *virt_ep,
2551 struct xhci_tt_bw_info *tt_info)
2552{
2553 struct xhci_interval_bw *interval_bw;
2554 int normalized_interval;
2555
2556 if (xhci_is_async_ep(ep_bw->type))
2557 return;
2558
2559 if (udev->speed >= USB_SPEED_SUPER) {
2560 if (xhci_is_sync_in_ep(ep_bw->type))
2561 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2562 xhci_get_ss_bw_consumed(ep_bw);
2563 else
2564 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2565 xhci_get_ss_bw_consumed(ep_bw);
2566 return;
2567 }
2568
2569 /* SuperSpeed endpoints never get added to intervals in the table, so
2570 * this check is only valid for HS/FS/LS devices.
2571 */
2572 if (list_empty(&virt_ep->bw_endpoint_list))
2573 return;
2574 /* For LS/FS devices, we need to translate the interval expressed in
2575 * microframes to frames.
2576 */
2577 if (udev->speed == USB_SPEED_HIGH)
2578 normalized_interval = ep_bw->ep_interval;
2579 else
2580 normalized_interval = ep_bw->ep_interval - 3;
2581
2582 if (normalized_interval == 0)
2583 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2584 interval_bw = &bw_table->interval_bw[normalized_interval];
2585 interval_bw->num_packets -= ep_bw->num_packets;
2586 switch (udev->speed) {
2587 case USB_SPEED_LOW:
2588 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2589 break;
2590 case USB_SPEED_FULL:
2591 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2592 break;
2593 case USB_SPEED_HIGH:
2594 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2595 break;
2596 default:
2597 /* Should never happen because only LS/FS/HS endpoints will get
2598 * added to the endpoint list.
2599 */
2600 return;
2601 }
2602 if (tt_info)
2603 tt_info->active_eps -= 1;
2604 list_del_init(&virt_ep->bw_endpoint_list);
2605}
2606
2607static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2608 struct xhci_bw_info *ep_bw,
2609 struct xhci_interval_bw_table *bw_table,
2610 struct usb_device *udev,
2611 struct xhci_virt_ep *virt_ep,
2612 struct xhci_tt_bw_info *tt_info)
2613{
2614 struct xhci_interval_bw *interval_bw;
2615 struct xhci_virt_ep *smaller_ep;
2616 int normalized_interval;
2617
2618 if (xhci_is_async_ep(ep_bw->type))
2619 return;
2620
2621 if (udev->speed == USB_SPEED_SUPER) {
2622 if (xhci_is_sync_in_ep(ep_bw->type))
2623 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2624 xhci_get_ss_bw_consumed(ep_bw);
2625 else
2626 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2627 xhci_get_ss_bw_consumed(ep_bw);
2628 return;
2629 }
2630
2631 /* For LS/FS devices, we need to translate the interval expressed in
2632 * microframes to frames.
2633 */
2634 if (udev->speed == USB_SPEED_HIGH)
2635 normalized_interval = ep_bw->ep_interval;
2636 else
2637 normalized_interval = ep_bw->ep_interval - 3;
2638
2639 if (normalized_interval == 0)
2640 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2641 interval_bw = &bw_table->interval_bw[normalized_interval];
2642 interval_bw->num_packets += ep_bw->num_packets;
2643 switch (udev->speed) {
2644 case USB_SPEED_LOW:
2645 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2646 break;
2647 case USB_SPEED_FULL:
2648 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2649 break;
2650 case USB_SPEED_HIGH:
2651 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2652 break;
2653 default:
2654 /* Should never happen because only LS/FS/HS endpoints will get
2655 * added to the endpoint list.
2656 */
2657 return;
2658 }
2659
2660 if (tt_info)
2661 tt_info->active_eps += 1;
2662 /* Insert the endpoint into the list, largest max packet size first. */
2663 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2664 bw_endpoint_list) {
2665 if (ep_bw->max_packet_size >=
2666 smaller_ep->bw_info.max_packet_size) {
2667 /* Add the new ep before the smaller endpoint */
2668 list_add_tail(&virt_ep->bw_endpoint_list,
2669 &smaller_ep->bw_endpoint_list);
2670 return;
2671 }
2672 }
2673 /* Add the new endpoint at the end of the list. */
2674 list_add_tail(&virt_ep->bw_endpoint_list,
2675 &interval_bw->endpoints);
2676}
2677
2678void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2679 struct xhci_virt_device *virt_dev,
2680 int old_active_eps)
2681{
2682 struct xhci_root_port_bw_info *rh_bw_info;
2683 if (!virt_dev->tt_info)
2684 return;
2685
2686 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2687 if (old_active_eps == 0 &&
2688 virt_dev->tt_info->active_eps != 0) {
2689 rh_bw_info->num_active_tts += 1;
2690 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2691 } else if (old_active_eps != 0 &&
2692 virt_dev->tt_info->active_eps == 0) {
2693 rh_bw_info->num_active_tts -= 1;
2694 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2695 }
2696}
2697
2698static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2699 struct xhci_virt_device *virt_dev,
2700 struct xhci_container_ctx *in_ctx)
2701{
2702 struct xhci_bw_info ep_bw_info[31];
2703 int i;
2704 struct xhci_input_control_ctx *ctrl_ctx;
2705 int old_active_eps = 0;
2706
2707 if (virt_dev->tt_info)
2708 old_active_eps = virt_dev->tt_info->active_eps;
2709
2710 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2711 if (!ctrl_ctx) {
2712 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2713 __func__);
2714 return -ENOMEM;
2715 }
2716
2717 for (i = 0; i < 31; i++) {
2718 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2719 continue;
2720
2721 /* Make a copy of the BW info in case we need to revert this */
2722 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2723 sizeof(ep_bw_info[i]));
2724 /* Drop the endpoint from the interval table if the endpoint is
2725 * being dropped or changed.
2726 */
2727 if (EP_IS_DROPPED(ctrl_ctx, i))
2728 xhci_drop_ep_from_interval_table(xhci,
2729 &virt_dev->eps[i].bw_info,
2730 virt_dev->bw_table,
2731 virt_dev->udev,
2732 &virt_dev->eps[i],
2733 virt_dev->tt_info);
2734 }
2735 /* Overwrite the information stored in the endpoints' bw_info */
2736 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2737 for (i = 0; i < 31; i++) {
2738 /* Add any changed or added endpoints to the interval table */
2739 if (EP_IS_ADDED(ctrl_ctx, i))
2740 xhci_add_ep_to_interval_table(xhci,
2741 &virt_dev->eps[i].bw_info,
2742 virt_dev->bw_table,
2743 virt_dev->udev,
2744 &virt_dev->eps[i],
2745 virt_dev->tt_info);
2746 }
2747
2748 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2749 /* Ok, this fits in the bandwidth we have.
2750 * Update the number of active TTs.
2751 */
2752 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2753 return 0;
2754 }
2755
2756 /* We don't have enough bandwidth for this, revert the stored info. */
2757 for (i = 0; i < 31; i++) {
2758 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2759 continue;
2760
2761 /* Drop the new copies of any added or changed endpoints from
2762 * the interval table.
2763 */
2764 if (EP_IS_ADDED(ctrl_ctx, i)) {
2765 xhci_drop_ep_from_interval_table(xhci,
2766 &virt_dev->eps[i].bw_info,
2767 virt_dev->bw_table,
2768 virt_dev->udev,
2769 &virt_dev->eps[i],
2770 virt_dev->tt_info);
2771 }
2772 /* Revert the endpoint back to its old information */
2773 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2774 sizeof(ep_bw_info[i]));
2775 /* Add any changed or dropped endpoints back into the table */
2776 if (EP_IS_DROPPED(ctrl_ctx, i))
2777 xhci_add_ep_to_interval_table(xhci,
2778 &virt_dev->eps[i].bw_info,
2779 virt_dev->bw_table,
2780 virt_dev->udev,
2781 &virt_dev->eps[i],
2782 virt_dev->tt_info);
2783 }
2784 return -ENOMEM;
2785}
2786
2787
2788/* Issue a configure endpoint command or evaluate context command
2789 * and wait for it to finish.
2790 */
2791static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2792 struct usb_device *udev,
2793 struct xhci_command *command,
2794 bool ctx_change, bool must_succeed)
2795{
2796 int ret;
2797 unsigned long flags;
2798 struct xhci_input_control_ctx *ctrl_ctx;
2799 struct xhci_virt_device *virt_dev;
2800 struct xhci_slot_ctx *slot_ctx;
2801
2802 if (!command)
2803 return -EINVAL;
2804
2805 spin_lock_irqsave(&xhci->lock, flags);
2806
2807 if (xhci->xhc_state & XHCI_STATE_DYING) {
2808 spin_unlock_irqrestore(&xhci->lock, flags);
2809 return -ESHUTDOWN;
2810 }
2811
2812 virt_dev = xhci->devs[udev->slot_id];
2813
2814 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2815 if (!ctrl_ctx) {
2816 spin_unlock_irqrestore(&xhci->lock, flags);
2817 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2818 __func__);
2819 return -ENOMEM;
2820 }
2821
2822 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2823 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2824 spin_unlock_irqrestore(&xhci->lock, flags);
2825 xhci_warn(xhci, "Not enough host resources, "
2826 "active endpoint contexts = %u\n",
2827 xhci->num_active_eps);
2828 return -ENOMEM;
2829 }
2830 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2831 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2832 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2833 xhci_free_host_resources(xhci, ctrl_ctx);
2834 spin_unlock_irqrestore(&xhci->lock, flags);
2835 xhci_warn(xhci, "Not enough bandwidth\n");
2836 return -ENOMEM;
2837 }
2838
2839 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2840
2841 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2842 trace_xhci_configure_endpoint(slot_ctx);
2843
2844 if (!ctx_change)
2845 ret = xhci_queue_configure_endpoint(xhci, command,
2846 command->in_ctx->dma,
2847 udev->slot_id, must_succeed);
2848 else
2849 ret = xhci_queue_evaluate_context(xhci, command,
2850 command->in_ctx->dma,
2851 udev->slot_id, must_succeed);
2852 if (ret < 0) {
2853 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2854 xhci_free_host_resources(xhci, ctrl_ctx);
2855 spin_unlock_irqrestore(&xhci->lock, flags);
2856 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2857 "FIXME allocate a new ring segment");
2858 return -ENOMEM;
2859 }
2860 xhci_ring_cmd_db(xhci);
2861 spin_unlock_irqrestore(&xhci->lock, flags);
2862
2863 /* Wait for the configure endpoint command to complete */
2864 wait_for_completion(command->completion);
2865
2866 if (!ctx_change)
2867 ret = xhci_configure_endpoint_result(xhci, udev,
2868 &command->status);
2869 else
2870 ret = xhci_evaluate_context_result(xhci, udev,
2871 &command->status);
2872
2873 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2874 spin_lock_irqsave(&xhci->lock, flags);
2875 /* If the command failed, remove the reserved resources.
2876 * Otherwise, clean up the estimate to include dropped eps.
2877 */
2878 if (ret)
2879 xhci_free_host_resources(xhci, ctrl_ctx);
2880 else
2881 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2882 spin_unlock_irqrestore(&xhci->lock, flags);
2883 }
2884 return ret;
2885}
2886
2887static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2888 struct xhci_virt_device *vdev, int i)
2889{
2890 struct xhci_virt_ep *ep = &vdev->eps[i];
2891
2892 if (ep->ep_state & EP_HAS_STREAMS) {
2893 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2894 xhci_get_endpoint_address(i));
2895 xhci_free_stream_info(xhci, ep->stream_info);
2896 ep->stream_info = NULL;
2897 ep->ep_state &= ~EP_HAS_STREAMS;
2898 }
2899}
2900
2901/* Called after one or more calls to xhci_add_endpoint() or
2902 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2903 * to call xhci_reset_bandwidth().
2904 *
2905 * Since we are in the middle of changing either configuration or
2906 * installing a new alt setting, the USB core won't allow URBs to be
2907 * enqueued for any endpoint on the old config or interface. Nothing
2908 * else should be touching the xhci->devs[slot_id] structure, so we
2909 * don't need to take the xhci->lock for manipulating that.
2910 */
2911int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2912{
2913 int i;
2914 int ret = 0;
2915 struct xhci_hcd *xhci;
2916 struct xhci_virt_device *virt_dev;
2917 struct xhci_input_control_ctx *ctrl_ctx;
2918 struct xhci_slot_ctx *slot_ctx;
2919 struct xhci_command *command;
2920
2921 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2922 if (ret <= 0)
2923 return ret;
2924 xhci = hcd_to_xhci(hcd);
2925 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2926 (xhci->xhc_state & XHCI_STATE_REMOVING))
2927 return -ENODEV;
2928
2929 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2930 virt_dev = xhci->devs[udev->slot_id];
2931
2932 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2933 if (!command)
2934 return -ENOMEM;
2935
2936 command->in_ctx = virt_dev->in_ctx;
2937
2938 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2939 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2940 if (!ctrl_ctx) {
2941 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2942 __func__);
2943 ret = -ENOMEM;
2944 goto command_cleanup;
2945 }
2946 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2947 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2948 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2949
2950 /* Don't issue the command if there's no endpoints to update. */
2951 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2952 ctrl_ctx->drop_flags == 0) {
2953 ret = 0;
2954 goto command_cleanup;
2955 }
2956 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2957 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2958 for (i = 31; i >= 1; i--) {
2959 __le32 le32 = cpu_to_le32(BIT(i));
2960
2961 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2962 || (ctrl_ctx->add_flags & le32) || i == 1) {
2963 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2964 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2965 break;
2966 }
2967 }
2968
2969 ret = xhci_configure_endpoint(xhci, udev, command,
2970 false, false);
2971 if (ret)
2972 /* Callee should call reset_bandwidth() */
2973 goto command_cleanup;
2974
2975 /* Free any rings that were dropped, but not changed. */
2976 for (i = 1; i < 31; i++) {
2977 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2978 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2979 xhci_free_endpoint_ring(xhci, virt_dev, i);
2980 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2981 }
2982 }
2983 xhci_zero_in_ctx(xhci, virt_dev);
2984 /*
2985 * Install any rings for completely new endpoints or changed endpoints,
2986 * and free any old rings from changed endpoints.
2987 */
2988 for (i = 1; i < 31; i++) {
2989 if (!virt_dev->eps[i].new_ring)
2990 continue;
2991 /* Only free the old ring if it exists.
2992 * It may not if this is the first add of an endpoint.
2993 */
2994 if (virt_dev->eps[i].ring) {
2995 xhci_free_endpoint_ring(xhci, virt_dev, i);
2996 }
2997 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2998 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2999 virt_dev->eps[i].new_ring = NULL;
3000 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3001 }
3002command_cleanup:
3003 kfree(command->completion);
3004 kfree(command);
3005
3006 return ret;
3007}
3008EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3009
3010void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3011{
3012 struct xhci_hcd *xhci;
3013 struct xhci_virt_device *virt_dev;
3014 int i, ret;
3015
3016 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3017 if (ret <= 0)
3018 return;
3019 xhci = hcd_to_xhci(hcd);
3020
3021 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3022 virt_dev = xhci->devs[udev->slot_id];
3023 /* Free any rings allocated for added endpoints */
3024 for (i = 0; i < 31; i++) {
3025 if (virt_dev->eps[i].new_ring) {
3026 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3027 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3028 virt_dev->eps[i].new_ring = NULL;
3029 }
3030 }
3031 xhci_zero_in_ctx(xhci, virt_dev);
3032}
3033EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3034
3035static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3036 struct xhci_container_ctx *in_ctx,
3037 struct xhci_container_ctx *out_ctx,
3038 struct xhci_input_control_ctx *ctrl_ctx,
3039 u32 add_flags, u32 drop_flags)
3040{
3041 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3042 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3043 xhci_slot_copy(xhci, in_ctx, out_ctx);
3044 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3045}
3046
3047static void xhci_endpoint_disable(struct usb_hcd *hcd,
3048 struct usb_host_endpoint *host_ep)
3049{
3050 struct xhci_hcd *xhci;
3051 struct xhci_virt_device *vdev;
3052 struct xhci_virt_ep *ep;
3053 struct usb_device *udev;
3054 unsigned long flags;
3055 unsigned int ep_index;
3056
3057 xhci = hcd_to_xhci(hcd);
3058rescan:
3059 spin_lock_irqsave(&xhci->lock, flags);
3060
3061 udev = (struct usb_device *)host_ep->hcpriv;
3062 if (!udev || !udev->slot_id)
3063 goto done;
3064
3065 vdev = xhci->devs[udev->slot_id];
3066 if (!vdev)
3067 goto done;
3068
3069 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3070 ep = &vdev->eps[ep_index];
3071
3072 /* wait for hub_tt_work to finish clearing hub TT */
3073 if (ep->ep_state & EP_CLEARING_TT) {
3074 spin_unlock_irqrestore(&xhci->lock, flags);
3075 schedule_timeout_uninterruptible(1);
3076 goto rescan;
3077 }
3078
3079 if (ep->ep_state)
3080 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3081 ep->ep_state);
3082done:
3083 host_ep->hcpriv = NULL;
3084 spin_unlock_irqrestore(&xhci->lock, flags);
3085}
3086
3087/*
3088 * Called after usb core issues a clear halt control message.
3089 * The host side of the halt should already be cleared by a reset endpoint
3090 * command issued when the STALL event was received.
3091 *
3092 * The reset endpoint command may only be issued to endpoints in the halted
3093 * state. For software that wishes to reset the data toggle or sequence number
3094 * of an endpoint that isn't in the halted state this function will issue a
3095 * configure endpoint command with the Drop and Add bits set for the target
3096 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3097 *
3098 * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3099 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3100 */
3101
3102static void xhci_endpoint_reset(struct usb_hcd *hcd,
3103 struct usb_host_endpoint *host_ep)
3104{
3105 struct xhci_hcd *xhci;
3106 struct usb_device *udev;
3107 struct xhci_virt_device *vdev;
3108 struct xhci_virt_ep *ep;
3109 struct xhci_input_control_ctx *ctrl_ctx;
3110 struct xhci_command *stop_cmd, *cfg_cmd;
3111 unsigned int ep_index;
3112 unsigned long flags;
3113 u32 ep_flag;
3114 int err;
3115
3116 xhci = hcd_to_xhci(hcd);
3117 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3118
3119 /*
3120 * Usb core assumes a max packet value for ep0 on FS devices until the
3121 * real value is read from the descriptor. Core resets Ep0 if values
3122 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3123 */
3124 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3125
3126 udev = container_of(host_ep, struct usb_device, ep0);
3127 if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3128 return;
3129
3130 vdev = xhci->devs[udev->slot_id];
3131 if (!vdev || vdev->udev != udev)
3132 return;
3133
3134 xhci_check_ep0_maxpacket(xhci, vdev);
3135
3136 /* Nothing else should be done here for ep0 during ep reset */
3137 return;
3138 }
3139
3140 if (!host_ep->hcpriv)
3141 return;
3142 udev = (struct usb_device *) host_ep->hcpriv;
3143 vdev = xhci->devs[udev->slot_id];
3144
3145 if (!udev->slot_id || !vdev)
3146 return;
3147
3148 ep = &vdev->eps[ep_index];
3149
3150 /* Bail out if toggle is already being cleared by a endpoint reset */
3151 spin_lock_irqsave(&xhci->lock, flags);
3152 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3153 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3154 spin_unlock_irqrestore(&xhci->lock, flags);
3155 return;
3156 }
3157 spin_unlock_irqrestore(&xhci->lock, flags);
3158 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3159 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3160 usb_endpoint_xfer_isoc(&host_ep->desc))
3161 return;
3162
3163 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3164
3165 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3166 return;
3167
3168 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3169 if (!stop_cmd)
3170 return;
3171
3172 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3173 if (!cfg_cmd)
3174 goto cleanup;
3175
3176 spin_lock_irqsave(&xhci->lock, flags);
3177
3178 /* block queuing new trbs and ringing ep doorbell */
3179 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3180
3181 /*
3182 * Make sure endpoint ring is empty before resetting the toggle/seq.
3183 * Driver is required to synchronously cancel all transfer request.
3184 * Stop the endpoint to force xHC to update the output context
3185 */
3186
3187 if (!list_empty(&ep->ring->td_list)) {
3188 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3189 spin_unlock_irqrestore(&xhci->lock, flags);
3190 xhci_free_command(xhci, cfg_cmd);
3191 goto cleanup;
3192 }
3193
3194 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3195 ep_index, 0);
3196 if (err < 0) {
3197 spin_unlock_irqrestore(&xhci->lock, flags);
3198 xhci_free_command(xhci, cfg_cmd);
3199 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3200 __func__, err);
3201 goto cleanup;
3202 }
3203
3204 xhci_ring_cmd_db(xhci);
3205 spin_unlock_irqrestore(&xhci->lock, flags);
3206
3207 wait_for_completion(stop_cmd->completion);
3208
3209 spin_lock_irqsave(&xhci->lock, flags);
3210
3211 /* config ep command clears toggle if add and drop ep flags are set */
3212 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3213 if (!ctrl_ctx) {
3214 spin_unlock_irqrestore(&xhci->lock, flags);
3215 xhci_free_command(xhci, cfg_cmd);
3216 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3217 __func__);
3218 goto cleanup;
3219 }
3220
3221 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3222 ctrl_ctx, ep_flag, ep_flag);
3223 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3224
3225 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3226 udev->slot_id, false);
3227 if (err < 0) {
3228 spin_unlock_irqrestore(&xhci->lock, flags);
3229 xhci_free_command(xhci, cfg_cmd);
3230 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3231 __func__, err);
3232 goto cleanup;
3233 }
3234
3235 xhci_ring_cmd_db(xhci);
3236 spin_unlock_irqrestore(&xhci->lock, flags);
3237
3238 wait_for_completion(cfg_cmd->completion);
3239
3240 xhci_free_command(xhci, cfg_cmd);
3241cleanup:
3242 xhci_free_command(xhci, stop_cmd);
3243 spin_lock_irqsave(&xhci->lock, flags);
3244 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3245 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3246 spin_unlock_irqrestore(&xhci->lock, flags);
3247}
3248
3249static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3250 struct usb_device *udev, struct usb_host_endpoint *ep,
3251 unsigned int slot_id)
3252{
3253 int ret;
3254 unsigned int ep_index;
3255 unsigned int ep_state;
3256
3257 if (!ep)
3258 return -EINVAL;
3259 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3260 if (ret <= 0)
3261 return ret ? ret : -EINVAL;
3262 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3263 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3264 " descriptor for ep 0x%x does not support streams\n",
3265 ep->desc.bEndpointAddress);
3266 return -EINVAL;
3267 }
3268
3269 ep_index = xhci_get_endpoint_index(&ep->desc);
3270 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3271 if (ep_state & EP_HAS_STREAMS ||
3272 ep_state & EP_GETTING_STREAMS) {
3273 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3274 "already has streams set up.\n",
3275 ep->desc.bEndpointAddress);
3276 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3277 "dynamic stream context array reallocation.\n");
3278 return -EINVAL;
3279 }
3280 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3281 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3282 "endpoint 0x%x; URBs are pending.\n",
3283 ep->desc.bEndpointAddress);
3284 return -EINVAL;
3285 }
3286 return 0;
3287}
3288
3289static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3290 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3291{
3292 unsigned int max_streams;
3293
3294 /* The stream context array size must be a power of two */
3295 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3296 /*
3297 * Find out how many primary stream array entries the host controller
3298 * supports. Later we may use secondary stream arrays (similar to 2nd
3299 * level page entries), but that's an optional feature for xHCI host
3300 * controllers. xHCs must support at least 4 stream IDs.
3301 */
3302 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3303 if (*num_stream_ctxs > max_streams) {
3304 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3305 max_streams);
3306 *num_stream_ctxs = max_streams;
3307 *num_streams = max_streams;
3308 }
3309}
3310
3311/* Returns an error code if one of the endpoint already has streams.
3312 * This does not change any data structures, it only checks and gathers
3313 * information.
3314 */
3315static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3316 struct usb_device *udev,
3317 struct usb_host_endpoint **eps, unsigned int num_eps,
3318 unsigned int *num_streams, u32 *changed_ep_bitmask)
3319{
3320 unsigned int max_streams;
3321 unsigned int endpoint_flag;
3322 int i;
3323 int ret;
3324
3325 for (i = 0; i < num_eps; i++) {
3326 ret = xhci_check_streams_endpoint(xhci, udev,
3327 eps[i], udev->slot_id);
3328 if (ret < 0)
3329 return ret;
3330
3331 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3332 if (max_streams < (*num_streams - 1)) {
3333 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3334 eps[i]->desc.bEndpointAddress,
3335 max_streams);
3336 *num_streams = max_streams+1;
3337 }
3338
3339 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3340 if (*changed_ep_bitmask & endpoint_flag)
3341 return -EINVAL;
3342 *changed_ep_bitmask |= endpoint_flag;
3343 }
3344 return 0;
3345}
3346
3347static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3348 struct usb_device *udev,
3349 struct usb_host_endpoint **eps, unsigned int num_eps)
3350{
3351 u32 changed_ep_bitmask = 0;
3352 unsigned int slot_id;
3353 unsigned int ep_index;
3354 unsigned int ep_state;
3355 int i;
3356
3357 slot_id = udev->slot_id;
3358 if (!xhci->devs[slot_id])
3359 return 0;
3360
3361 for (i = 0; i < num_eps; i++) {
3362 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3363 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3364 /* Are streams already being freed for the endpoint? */
3365 if (ep_state & EP_GETTING_NO_STREAMS) {
3366 xhci_warn(xhci, "WARN Can't disable streams for "
3367 "endpoint 0x%x, "
3368 "streams are being disabled already\n",
3369 eps[i]->desc.bEndpointAddress);
3370 return 0;
3371 }
3372 /* Are there actually any streams to free? */
3373 if (!(ep_state & EP_HAS_STREAMS) &&
3374 !(ep_state & EP_GETTING_STREAMS)) {
3375 xhci_warn(xhci, "WARN Can't disable streams for "
3376 "endpoint 0x%x, "
3377 "streams are already disabled!\n",
3378 eps[i]->desc.bEndpointAddress);
3379 xhci_warn(xhci, "WARN xhci_free_streams() called "
3380 "with non-streams endpoint\n");
3381 return 0;
3382 }
3383 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3384 }
3385 return changed_ep_bitmask;
3386}
3387
3388/*
3389 * The USB device drivers use this function (through the HCD interface in USB
3390 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3391 * coordinate mass storage command queueing across multiple endpoints (basically
3392 * a stream ID == a task ID).
3393 *
3394 * Setting up streams involves allocating the same size stream context array
3395 * for each endpoint and issuing a configure endpoint command for all endpoints.
3396 *
3397 * Don't allow the call to succeed if one endpoint only supports one stream
3398 * (which means it doesn't support streams at all).
3399 *
3400 * Drivers may get less stream IDs than they asked for, if the host controller
3401 * hardware or endpoints claim they can't support the number of requested
3402 * stream IDs.
3403 */
3404static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3405 struct usb_host_endpoint **eps, unsigned int num_eps,
3406 unsigned int num_streams, gfp_t mem_flags)
3407{
3408 int i, ret;
3409 struct xhci_hcd *xhci;
3410 struct xhci_virt_device *vdev;
3411 struct xhci_command *config_cmd;
3412 struct xhci_input_control_ctx *ctrl_ctx;
3413 unsigned int ep_index;
3414 unsigned int num_stream_ctxs;
3415 unsigned int max_packet;
3416 unsigned long flags;
3417 u32 changed_ep_bitmask = 0;
3418
3419 if (!eps)
3420 return -EINVAL;
3421
3422 /* Add one to the number of streams requested to account for
3423 * stream 0 that is reserved for xHCI usage.
3424 */
3425 num_streams += 1;
3426 xhci = hcd_to_xhci(hcd);
3427 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3428 num_streams);
3429
3430 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3431 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3432 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3433 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3434 return -ENOSYS;
3435 }
3436
3437 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3438 if (!config_cmd)
3439 return -ENOMEM;
3440
3441 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3442 if (!ctrl_ctx) {
3443 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3444 __func__);
3445 xhci_free_command(xhci, config_cmd);
3446 return -ENOMEM;
3447 }
3448
3449 /* Check to make sure all endpoints are not already configured for
3450 * streams. While we're at it, find the maximum number of streams that
3451 * all the endpoints will support and check for duplicate endpoints.
3452 */
3453 spin_lock_irqsave(&xhci->lock, flags);
3454 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3455 num_eps, &num_streams, &changed_ep_bitmask);
3456 if (ret < 0) {
3457 xhci_free_command(xhci, config_cmd);
3458 spin_unlock_irqrestore(&xhci->lock, flags);
3459 return ret;
3460 }
3461 if (num_streams <= 1) {
3462 xhci_warn(xhci, "WARN: endpoints can't handle "
3463 "more than one stream.\n");
3464 xhci_free_command(xhci, config_cmd);
3465 spin_unlock_irqrestore(&xhci->lock, flags);
3466 return -EINVAL;
3467 }
3468 vdev = xhci->devs[udev->slot_id];
3469 /* Mark each endpoint as being in transition, so
3470 * xhci_urb_enqueue() will reject all URBs.
3471 */
3472 for (i = 0; i < num_eps; i++) {
3473 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3474 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3475 }
3476 spin_unlock_irqrestore(&xhci->lock, flags);
3477
3478 /* Setup internal data structures and allocate HW data structures for
3479 * streams (but don't install the HW structures in the input context
3480 * until we're sure all memory allocation succeeded).
3481 */
3482 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3483 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3484 num_stream_ctxs, num_streams);
3485
3486 for (i = 0; i < num_eps; i++) {
3487 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3488 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3489 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3490 num_stream_ctxs,
3491 num_streams,
3492 max_packet, mem_flags);
3493 if (!vdev->eps[ep_index].stream_info)
3494 goto cleanup;
3495 /* Set maxPstreams in endpoint context and update deq ptr to
3496 * point to stream context array. FIXME
3497 */
3498 }
3499
3500 /* Set up the input context for a configure endpoint command. */
3501 for (i = 0; i < num_eps; i++) {
3502 struct xhci_ep_ctx *ep_ctx;
3503
3504 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3505 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3506
3507 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3508 vdev->out_ctx, ep_index);
3509 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3510 vdev->eps[ep_index].stream_info);
3511 }
3512 /* Tell the HW to drop its old copy of the endpoint context info
3513 * and add the updated copy from the input context.
3514 */
3515 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3516 vdev->out_ctx, ctrl_ctx,
3517 changed_ep_bitmask, changed_ep_bitmask);
3518
3519 /* Issue and wait for the configure endpoint command */
3520 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3521 false, false);
3522
3523 /* xHC rejected the configure endpoint command for some reason, so we
3524 * leave the old ring intact and free our internal streams data
3525 * structure.
3526 */
3527 if (ret < 0)
3528 goto cleanup;
3529
3530 spin_lock_irqsave(&xhci->lock, flags);
3531 for (i = 0; i < num_eps; i++) {
3532 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3533 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3534 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3535 udev->slot_id, ep_index);
3536 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3537 }
3538 xhci_free_command(xhci, config_cmd);
3539 spin_unlock_irqrestore(&xhci->lock, flags);
3540
3541 for (i = 0; i < num_eps; i++) {
3542 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3543 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3544 }
3545 /* Subtract 1 for stream 0, which drivers can't use */
3546 return num_streams - 1;
3547
3548cleanup:
3549 /* If it didn't work, free the streams! */
3550 for (i = 0; i < num_eps; i++) {
3551 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3552 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3553 vdev->eps[ep_index].stream_info = NULL;
3554 /* FIXME Unset maxPstreams in endpoint context and
3555 * update deq ptr to point to normal string ring.
3556 */
3557 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3558 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3559 xhci_endpoint_zero(xhci, vdev, eps[i]);
3560 }
3561 xhci_free_command(xhci, config_cmd);
3562 return -ENOMEM;
3563}
3564
3565/* Transition the endpoint from using streams to being a "normal" endpoint
3566 * without streams.
3567 *
3568 * Modify the endpoint context state, submit a configure endpoint command,
3569 * and free all endpoint rings for streams if that completes successfully.
3570 */
3571static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3572 struct usb_host_endpoint **eps, unsigned int num_eps,
3573 gfp_t mem_flags)
3574{
3575 int i, ret;
3576 struct xhci_hcd *xhci;
3577 struct xhci_virt_device *vdev;
3578 struct xhci_command *command;
3579 struct xhci_input_control_ctx *ctrl_ctx;
3580 unsigned int ep_index;
3581 unsigned long flags;
3582 u32 changed_ep_bitmask;
3583
3584 xhci = hcd_to_xhci(hcd);
3585 vdev = xhci->devs[udev->slot_id];
3586
3587 /* Set up a configure endpoint command to remove the streams rings */
3588 spin_lock_irqsave(&xhci->lock, flags);
3589 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3590 udev, eps, num_eps);
3591 if (changed_ep_bitmask == 0) {
3592 spin_unlock_irqrestore(&xhci->lock, flags);
3593 return -EINVAL;
3594 }
3595
3596 /* Use the xhci_command structure from the first endpoint. We may have
3597 * allocated too many, but the driver may call xhci_free_streams() for
3598 * each endpoint it grouped into one call to xhci_alloc_streams().
3599 */
3600 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3601 command = vdev->eps[ep_index].stream_info->free_streams_command;
3602 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3603 if (!ctrl_ctx) {
3604 spin_unlock_irqrestore(&xhci->lock, flags);
3605 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3606 __func__);
3607 return -EINVAL;
3608 }
3609
3610 for (i = 0; i < num_eps; i++) {
3611 struct xhci_ep_ctx *ep_ctx;
3612
3613 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3614 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3615 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3616 EP_GETTING_NO_STREAMS;
3617
3618 xhci_endpoint_copy(xhci, command->in_ctx,
3619 vdev->out_ctx, ep_index);
3620 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3621 &vdev->eps[ep_index]);
3622 }
3623 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3624 vdev->out_ctx, ctrl_ctx,
3625 changed_ep_bitmask, changed_ep_bitmask);
3626 spin_unlock_irqrestore(&xhci->lock, flags);
3627
3628 /* Issue and wait for the configure endpoint command,
3629 * which must succeed.
3630 */
3631 ret = xhci_configure_endpoint(xhci, udev, command,
3632 false, true);
3633
3634 /* xHC rejected the configure endpoint command for some reason, so we
3635 * leave the streams rings intact.
3636 */
3637 if (ret < 0)
3638 return ret;
3639
3640 spin_lock_irqsave(&xhci->lock, flags);
3641 for (i = 0; i < num_eps; i++) {
3642 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3643 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3644 vdev->eps[ep_index].stream_info = NULL;
3645 /* FIXME Unset maxPstreams in endpoint context and
3646 * update deq ptr to point to normal string ring.
3647 */
3648 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3649 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3650 }
3651 spin_unlock_irqrestore(&xhci->lock, flags);
3652
3653 return 0;
3654}
3655
3656/*
3657 * Deletes endpoint resources for endpoints that were active before a Reset
3658 * Device command, or a Disable Slot command. The Reset Device command leaves
3659 * the control endpoint intact, whereas the Disable Slot command deletes it.
3660 *
3661 * Must be called with xhci->lock held.
3662 */
3663void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3664 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3665{
3666 int i;
3667 unsigned int num_dropped_eps = 0;
3668 unsigned int drop_flags = 0;
3669
3670 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3671 if (virt_dev->eps[i].ring) {
3672 drop_flags |= 1 << i;
3673 num_dropped_eps++;
3674 }
3675 }
3676 xhci->num_active_eps -= num_dropped_eps;
3677 if (num_dropped_eps)
3678 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3679 "Dropped %u ep ctxs, flags = 0x%x, "
3680 "%u now active.",
3681 num_dropped_eps, drop_flags,
3682 xhci->num_active_eps);
3683}
3684
3685/*
3686 * This submits a Reset Device Command, which will set the device state to 0,
3687 * set the device address to 0, and disable all the endpoints except the default
3688 * control endpoint. The USB core should come back and call
3689 * xhci_address_device(), and then re-set up the configuration. If this is
3690 * called because of a usb_reset_and_verify_device(), then the old alternate
3691 * settings will be re-installed through the normal bandwidth allocation
3692 * functions.
3693 *
3694 * Wait for the Reset Device command to finish. Remove all structures
3695 * associated with the endpoints that were disabled. Clear the input device
3696 * structure? Reset the control endpoint 0 max packet size?
3697 *
3698 * If the virt_dev to be reset does not exist or does not match the udev,
3699 * it means the device is lost, possibly due to the xHC restore error and
3700 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3701 * re-allocate the device.
3702 */
3703static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3704 struct usb_device *udev)
3705{
3706 int ret, i;
3707 unsigned long flags;
3708 struct xhci_hcd *xhci;
3709 unsigned int slot_id;
3710 struct xhci_virt_device *virt_dev;
3711 struct xhci_command *reset_device_cmd;
3712 struct xhci_slot_ctx *slot_ctx;
3713 int old_active_eps = 0;
3714
3715 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3716 if (ret <= 0)
3717 return ret;
3718 xhci = hcd_to_xhci(hcd);
3719 slot_id = udev->slot_id;
3720 virt_dev = xhci->devs[slot_id];
3721 if (!virt_dev) {
3722 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3723 "not exist. Re-allocate the device\n", slot_id);
3724 ret = xhci_alloc_dev(hcd, udev);
3725 if (ret == 1)
3726 return 0;
3727 else
3728 return -EINVAL;
3729 }
3730
3731 if (virt_dev->tt_info)
3732 old_active_eps = virt_dev->tt_info->active_eps;
3733
3734 if (virt_dev->udev != udev) {
3735 /* If the virt_dev and the udev does not match, this virt_dev
3736 * may belong to another udev.
3737 * Re-allocate the device.
3738 */
3739 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3740 "not match the udev. Re-allocate the device\n",
3741 slot_id);
3742 ret = xhci_alloc_dev(hcd, udev);
3743 if (ret == 1)
3744 return 0;
3745 else
3746 return -EINVAL;
3747 }
3748
3749 /* If device is not setup, there is no point in resetting it */
3750 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3751 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3752 SLOT_STATE_DISABLED)
3753 return 0;
3754
3755 trace_xhci_discover_or_reset_device(slot_ctx);
3756
3757 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3758 /* Allocate the command structure that holds the struct completion.
3759 * Assume we're in process context, since the normal device reset
3760 * process has to wait for the device anyway. Storage devices are
3761 * reset as part of error handling, so use GFP_NOIO instead of
3762 * GFP_KERNEL.
3763 */
3764 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3765 if (!reset_device_cmd) {
3766 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3767 return -ENOMEM;
3768 }
3769
3770 /* Attempt to submit the Reset Device command to the command ring */
3771 spin_lock_irqsave(&xhci->lock, flags);
3772
3773 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3774 if (ret) {
3775 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3776 spin_unlock_irqrestore(&xhci->lock, flags);
3777 goto command_cleanup;
3778 }
3779 xhci_ring_cmd_db(xhci);
3780 spin_unlock_irqrestore(&xhci->lock, flags);
3781
3782 /* Wait for the Reset Device command to finish */
3783 wait_for_completion(reset_device_cmd->completion);
3784
3785 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3786 * unless we tried to reset a slot ID that wasn't enabled,
3787 * or the device wasn't in the addressed or configured state.
3788 */
3789 ret = reset_device_cmd->status;
3790 switch (ret) {
3791 case COMP_COMMAND_ABORTED:
3792 case COMP_COMMAND_RING_STOPPED:
3793 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3794 ret = -ETIME;
3795 goto command_cleanup;
3796 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3797 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3798 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3799 slot_id,
3800 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3801 xhci_dbg(xhci, "Not freeing device rings.\n");
3802 /* Don't treat this as an error. May change my mind later. */
3803 ret = 0;
3804 goto command_cleanup;
3805 case COMP_SUCCESS:
3806 xhci_dbg(xhci, "Successful reset device command.\n");
3807 break;
3808 default:
3809 if (xhci_is_vendor_info_code(xhci, ret))
3810 break;
3811 xhci_warn(xhci, "Unknown completion code %u for "
3812 "reset device command.\n", ret);
3813 ret = -EINVAL;
3814 goto command_cleanup;
3815 }
3816
3817 /* Free up host controller endpoint resources */
3818 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3819 spin_lock_irqsave(&xhci->lock, flags);
3820 /* Don't delete the default control endpoint resources */
3821 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3822 spin_unlock_irqrestore(&xhci->lock, flags);
3823 }
3824
3825 /* Everything but endpoint 0 is disabled, so free the rings. */
3826 for (i = 1; i < 31; i++) {
3827 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3828
3829 if (ep->ep_state & EP_HAS_STREAMS) {
3830 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3831 xhci_get_endpoint_address(i));
3832 xhci_free_stream_info(xhci, ep->stream_info);
3833 ep->stream_info = NULL;
3834 ep->ep_state &= ~EP_HAS_STREAMS;
3835 }
3836
3837 if (ep->ring) {
3838 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3839 xhci_free_endpoint_ring(xhci, virt_dev, i);
3840 }
3841 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3842 xhci_drop_ep_from_interval_table(xhci,
3843 &virt_dev->eps[i].bw_info,
3844 virt_dev->bw_table,
3845 udev,
3846 &virt_dev->eps[i],
3847 virt_dev->tt_info);
3848 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3849 }
3850 /* If necessary, update the number of active TTs on this root port */
3851 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3852 virt_dev->flags = 0;
3853 ret = 0;
3854
3855command_cleanup:
3856 xhci_free_command(xhci, reset_device_cmd);
3857 return ret;
3858}
3859
3860/*
3861 * At this point, the struct usb_device is about to go away, the device has
3862 * disconnected, and all traffic has been stopped and the endpoints have been
3863 * disabled. Free any HC data structures associated with that device.
3864 */
3865static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3866{
3867 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3868 struct xhci_virt_device *virt_dev;
3869 struct xhci_slot_ctx *slot_ctx;
3870 unsigned long flags;
3871 int i, ret;
3872
3873 /*
3874 * We called pm_runtime_get_noresume when the device was attached.
3875 * Decrement the counter here to allow controller to runtime suspend
3876 * if no devices remain.
3877 */
3878 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3879 pm_runtime_put_noidle(hcd->self.controller);
3880
3881 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3882 /* If the host is halted due to driver unload, we still need to free the
3883 * device.
3884 */
3885 if (ret <= 0 && ret != -ENODEV)
3886 return;
3887
3888 virt_dev = xhci->devs[udev->slot_id];
3889 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3890 trace_xhci_free_dev(slot_ctx);
3891
3892 /* Stop any wayward timer functions (which may grab the lock) */
3893 for (i = 0; i < 31; i++)
3894 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3895 virt_dev->udev = NULL;
3896 xhci_disable_slot(xhci, udev->slot_id);
3897
3898 spin_lock_irqsave(&xhci->lock, flags);
3899 xhci_free_virt_device(xhci, udev->slot_id);
3900 spin_unlock_irqrestore(&xhci->lock, flags);
3901
3902}
3903
3904int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3905{
3906 struct xhci_command *command;
3907 unsigned long flags;
3908 u32 state;
3909 int ret;
3910
3911 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3912 if (!command)
3913 return -ENOMEM;
3914
3915 xhci_debugfs_remove_slot(xhci, slot_id);
3916
3917 spin_lock_irqsave(&xhci->lock, flags);
3918 /* Don't disable the slot if the host controller is dead. */
3919 state = readl(&xhci->op_regs->status);
3920 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3921 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3922 spin_unlock_irqrestore(&xhci->lock, flags);
3923 kfree(command);
3924 return -ENODEV;
3925 }
3926
3927 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3928 slot_id);
3929 if (ret) {
3930 spin_unlock_irqrestore(&xhci->lock, flags);
3931 kfree(command);
3932 return ret;
3933 }
3934 xhci_ring_cmd_db(xhci);
3935 spin_unlock_irqrestore(&xhci->lock, flags);
3936
3937 wait_for_completion(command->completion);
3938
3939 if (command->status != COMP_SUCCESS)
3940 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3941 slot_id, command->status);
3942
3943 xhci_free_command(xhci, command);
3944
3945 return 0;
3946}
3947
3948/*
3949 * Checks if we have enough host controller resources for the default control
3950 * endpoint.
3951 *
3952 * Must be called with xhci->lock held.
3953 */
3954static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3955{
3956 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3957 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3958 "Not enough ep ctxs: "
3959 "%u active, need to add 1, limit is %u.",
3960 xhci->num_active_eps, xhci->limit_active_eps);
3961 return -ENOMEM;
3962 }
3963 xhci->num_active_eps += 1;
3964 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3965 "Adding 1 ep ctx, %u now active.",
3966 xhci->num_active_eps);
3967 return 0;
3968}
3969
3970
3971/*
3972 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3973 * timed out, or allocating memory failed. Returns 1 on success.
3974 */
3975int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3976{
3977 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3978 struct xhci_virt_device *vdev;
3979 struct xhci_slot_ctx *slot_ctx;
3980 unsigned long flags;
3981 int ret, slot_id;
3982 struct xhci_command *command;
3983
3984 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3985 if (!command)
3986 return 0;
3987
3988 spin_lock_irqsave(&xhci->lock, flags);
3989 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3990 if (ret) {
3991 spin_unlock_irqrestore(&xhci->lock, flags);
3992 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3993 xhci_free_command(xhci, command);
3994 return 0;
3995 }
3996 xhci_ring_cmd_db(xhci);
3997 spin_unlock_irqrestore(&xhci->lock, flags);
3998
3999 wait_for_completion(command->completion);
4000 slot_id = command->slot_id;
4001
4002 if (!slot_id || command->status != COMP_SUCCESS) {
4003 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4004 xhci_trb_comp_code_string(command->status));
4005 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4006 HCS_MAX_SLOTS(
4007 readl(&xhci->cap_regs->hcs_params1)));
4008 xhci_free_command(xhci, command);
4009 return 0;
4010 }
4011
4012 xhci_free_command(xhci, command);
4013
4014 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4015 spin_lock_irqsave(&xhci->lock, flags);
4016 ret = xhci_reserve_host_control_ep_resources(xhci);
4017 if (ret) {
4018 spin_unlock_irqrestore(&xhci->lock, flags);
4019 xhci_warn(xhci, "Not enough host resources, "
4020 "active endpoint contexts = %u\n",
4021 xhci->num_active_eps);
4022 goto disable_slot;
4023 }
4024 spin_unlock_irqrestore(&xhci->lock, flags);
4025 }
4026 /* Use GFP_NOIO, since this function can be called from
4027 * xhci_discover_or_reset_device(), which may be called as part of
4028 * mass storage driver error handling.
4029 */
4030 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4031 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4032 goto disable_slot;
4033 }
4034 vdev = xhci->devs[slot_id];
4035 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4036 trace_xhci_alloc_dev(slot_ctx);
4037
4038 udev->slot_id = slot_id;
4039
4040 xhci_debugfs_create_slot(xhci, slot_id);
4041
4042 /*
4043 * If resetting upon resume, we can't put the controller into runtime
4044 * suspend if there is a device attached.
4045 */
4046 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4047 pm_runtime_get_noresume(hcd->self.controller);
4048
4049 /* Is this a LS or FS device under a HS hub? */
4050 /* Hub or peripherial? */
4051 return 1;
4052
4053disable_slot:
4054 xhci_disable_slot(xhci, udev->slot_id);
4055 xhci_free_virt_device(xhci, udev->slot_id);
4056
4057 return 0;
4058}
4059
4060/**
4061 * xhci_setup_device - issues an Address Device command to assign a unique
4062 * USB bus address.
4063 * @hcd: USB host controller data structure.
4064 * @udev: USB dev structure representing the connected device.
4065 * @setup: Enum specifying setup mode: address only or with context.
4066 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4067 *
4068 * Return: 0 if successful; otherwise, negative error code.
4069 */
4070static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4071 enum xhci_setup_dev setup, unsigned int timeout_ms)
4072{
4073 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4074 unsigned long flags;
4075 struct xhci_virt_device *virt_dev;
4076 int ret = 0;
4077 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4078 struct xhci_slot_ctx *slot_ctx;
4079 struct xhci_input_control_ctx *ctrl_ctx;
4080 u64 temp_64;
4081 struct xhci_command *command = NULL;
4082
4083 mutex_lock(&xhci->mutex);
4084
4085 if (xhci->xhc_state) { /* dying, removing or halted */
4086 ret = -ESHUTDOWN;
4087 goto out;
4088 }
4089
4090 if (!udev->slot_id) {
4091 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4092 "Bad Slot ID %d", udev->slot_id);
4093 ret = -EINVAL;
4094 goto out;
4095 }
4096
4097 virt_dev = xhci->devs[udev->slot_id];
4098
4099 if (WARN_ON(!virt_dev)) {
4100 /*
4101 * In plug/unplug torture test with an NEC controller,
4102 * a zero-dereference was observed once due to virt_dev = 0.
4103 * Print useful debug rather than crash if it is observed again!
4104 */
4105 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4106 udev->slot_id);
4107 ret = -EINVAL;
4108 goto out;
4109 }
4110 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4111 trace_xhci_setup_device_slot(slot_ctx);
4112
4113 if (setup == SETUP_CONTEXT_ONLY) {
4114 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4115 SLOT_STATE_DEFAULT) {
4116 xhci_dbg(xhci, "Slot already in default state\n");
4117 goto out;
4118 }
4119 }
4120
4121 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4122 if (!command) {
4123 ret = -ENOMEM;
4124 goto out;
4125 }
4126
4127 command->in_ctx = virt_dev->in_ctx;
4128 command->timeout_ms = timeout_ms;
4129
4130 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4131 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4132 if (!ctrl_ctx) {
4133 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4134 __func__);
4135 ret = -EINVAL;
4136 goto out;
4137 }
4138 /*
4139 * If this is the first Set Address since device plug-in or
4140 * virt_device realloaction after a resume with an xHCI power loss,
4141 * then set up the slot context.
4142 */
4143 if (!slot_ctx->dev_info)
4144 xhci_setup_addressable_virt_dev(xhci, udev);
4145 /* Otherwise, update the control endpoint ring enqueue pointer. */
4146 else
4147 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4148 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4149 ctrl_ctx->drop_flags = 0;
4150
4151 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4152 le32_to_cpu(slot_ctx->dev_info) >> 27);
4153
4154 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4155 spin_lock_irqsave(&xhci->lock, flags);
4156 trace_xhci_setup_device(virt_dev);
4157 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4158 udev->slot_id, setup);
4159 if (ret) {
4160 spin_unlock_irqrestore(&xhci->lock, flags);
4161 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4162 "FIXME: allocate a command ring segment");
4163 goto out;
4164 }
4165 xhci_ring_cmd_db(xhci);
4166 spin_unlock_irqrestore(&xhci->lock, flags);
4167
4168 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4169 wait_for_completion(command->completion);
4170
4171 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4172 * the SetAddress() "recovery interval" required by USB and aborting the
4173 * command on a timeout.
4174 */
4175 switch (command->status) {
4176 case COMP_COMMAND_ABORTED:
4177 case COMP_COMMAND_RING_STOPPED:
4178 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4179 ret = -ETIME;
4180 break;
4181 case COMP_CONTEXT_STATE_ERROR:
4182 case COMP_SLOT_NOT_ENABLED_ERROR:
4183 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4184 act, udev->slot_id);
4185 ret = -EINVAL;
4186 break;
4187 case COMP_USB_TRANSACTION_ERROR:
4188 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4189
4190 mutex_unlock(&xhci->mutex);
4191 ret = xhci_disable_slot(xhci, udev->slot_id);
4192 xhci_free_virt_device(xhci, udev->slot_id);
4193 if (!ret)
4194 xhci_alloc_dev(hcd, udev);
4195 kfree(command->completion);
4196 kfree(command);
4197 return -EPROTO;
4198 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4199 dev_warn(&udev->dev,
4200 "ERROR: Incompatible device for setup %s command\n", act);
4201 ret = -ENODEV;
4202 break;
4203 case COMP_SUCCESS:
4204 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4205 "Successful setup %s command", act);
4206 break;
4207 default:
4208 xhci_err(xhci,
4209 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4210 act, command->status);
4211 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4212 ret = -EINVAL;
4213 break;
4214 }
4215 if (ret)
4216 goto out;
4217 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4218 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4219 "Op regs DCBAA ptr = %#016llx", temp_64);
4220 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221 "Slot ID %d dcbaa entry @%p = %#016llx",
4222 udev->slot_id,
4223 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4224 (unsigned long long)
4225 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4226 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4227 "Output Context DMA address = %#08llx",
4228 (unsigned long long)virt_dev->out_ctx->dma);
4229 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4230 le32_to_cpu(slot_ctx->dev_info) >> 27);
4231 /*
4232 * USB core uses address 1 for the roothubs, so we add one to the
4233 * address given back to us by the HC.
4234 */
4235 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4236 le32_to_cpu(slot_ctx->dev_info) >> 27);
4237 /* Zero the input context control for later use */
4238 ctrl_ctx->add_flags = 0;
4239 ctrl_ctx->drop_flags = 0;
4240 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4241 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4242
4243 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4244 "Internal device address = %d",
4245 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4246out:
4247 mutex_unlock(&xhci->mutex);
4248 if (command) {
4249 kfree(command->completion);
4250 kfree(command);
4251 }
4252 return ret;
4253}
4254
4255static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4256 unsigned int timeout_ms)
4257{
4258 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4259}
4260
4261static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4262{
4263 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4264 XHCI_CMD_DEFAULT_TIMEOUT);
4265}
4266
4267/*
4268 * Transfer the port index into real index in the HW port status
4269 * registers. Caculate offset between the port's PORTSC register
4270 * and port status base. Divide the number of per port register
4271 * to get the real index. The raw port number bases 1.
4272 */
4273int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4274{
4275 struct xhci_hub *rhub;
4276
4277 rhub = xhci_get_rhub(hcd);
4278 return rhub->ports[port1 - 1]->hw_portnum + 1;
4279}
4280
4281/*
4282 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4283 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4284 */
4285static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4286 struct usb_device *udev, u16 max_exit_latency)
4287{
4288 struct xhci_virt_device *virt_dev;
4289 struct xhci_command *command;
4290 struct xhci_input_control_ctx *ctrl_ctx;
4291 struct xhci_slot_ctx *slot_ctx;
4292 unsigned long flags;
4293 int ret;
4294
4295 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4296 if (!command)
4297 return -ENOMEM;
4298
4299 spin_lock_irqsave(&xhci->lock, flags);
4300
4301 virt_dev = xhci->devs[udev->slot_id];
4302
4303 /*
4304 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4305 * xHC was re-initialized. Exit latency will be set later after
4306 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4307 */
4308
4309 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4310 spin_unlock_irqrestore(&xhci->lock, flags);
4311 xhci_free_command(xhci, command);
4312 return 0;
4313 }
4314
4315 /* Attempt to issue an Evaluate Context command to change the MEL. */
4316 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4317 if (!ctrl_ctx) {
4318 spin_unlock_irqrestore(&xhci->lock, flags);
4319 xhci_free_command(xhci, command);
4320 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4321 __func__);
4322 return -ENOMEM;
4323 }
4324
4325 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4326 spin_unlock_irqrestore(&xhci->lock, flags);
4327
4328 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4329 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4330 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4331 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4332 slot_ctx->dev_state = 0;
4333
4334 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4335 "Set up evaluate context for LPM MEL change.");
4336
4337 /* Issue and wait for the evaluate context command. */
4338 ret = xhci_configure_endpoint(xhci, udev, command,
4339 true, true);
4340
4341 if (!ret) {
4342 spin_lock_irqsave(&xhci->lock, flags);
4343 virt_dev->current_mel = max_exit_latency;
4344 spin_unlock_irqrestore(&xhci->lock, flags);
4345 }
4346
4347 xhci_free_command(xhci, command);
4348
4349 return ret;
4350}
4351
4352#ifdef CONFIG_PM
4353
4354/* BESL to HIRD Encoding array for USB2 LPM */
4355static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4356 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4357
4358/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4359static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4360 struct usb_device *udev)
4361{
4362 int u2del, besl, besl_host;
4363 int besl_device = 0;
4364 u32 field;
4365
4366 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4367 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4368
4369 if (field & USB_BESL_SUPPORT) {
4370 for (besl_host = 0; besl_host < 16; besl_host++) {
4371 if (xhci_besl_encoding[besl_host] >= u2del)
4372 break;
4373 }
4374 /* Use baseline BESL value as default */
4375 if (field & USB_BESL_BASELINE_VALID)
4376 besl_device = USB_GET_BESL_BASELINE(field);
4377 else if (field & USB_BESL_DEEP_VALID)
4378 besl_device = USB_GET_BESL_DEEP(field);
4379 } else {
4380 if (u2del <= 50)
4381 besl_host = 0;
4382 else
4383 besl_host = (u2del - 51) / 75 + 1;
4384 }
4385
4386 besl = besl_host + besl_device;
4387 if (besl > 15)
4388 besl = 15;
4389
4390 return besl;
4391}
4392
4393/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4394static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4395{
4396 u32 field;
4397 int l1;
4398 int besld = 0;
4399 int hirdm = 0;
4400
4401 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4402
4403 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4404 l1 = udev->l1_params.timeout / 256;
4405
4406 /* device has preferred BESLD */
4407 if (field & USB_BESL_DEEP_VALID) {
4408 besld = USB_GET_BESL_DEEP(field);
4409 hirdm = 1;
4410 }
4411
4412 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4413}
4414
4415static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4416 struct usb_device *udev, int enable)
4417{
4418 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4419 struct xhci_port **ports;
4420 __le32 __iomem *pm_addr, *hlpm_addr;
4421 u32 pm_val, hlpm_val, field;
4422 unsigned int port_num;
4423 unsigned long flags;
4424 int hird, exit_latency;
4425 int ret;
4426
4427 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4428 return -EPERM;
4429
4430 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4431 !udev->lpm_capable)
4432 return -EPERM;
4433
4434 if (!udev->parent || udev->parent->parent ||
4435 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4436 return -EPERM;
4437
4438 if (udev->usb2_hw_lpm_capable != 1)
4439 return -EPERM;
4440
4441 spin_lock_irqsave(&xhci->lock, flags);
4442
4443 ports = xhci->usb2_rhub.ports;
4444 port_num = udev->portnum - 1;
4445 pm_addr = ports[port_num]->addr + PORTPMSC;
4446 pm_val = readl(pm_addr);
4447 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4448
4449 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4450 enable ? "enable" : "disable", port_num + 1);
4451
4452 if (enable) {
4453 /* Host supports BESL timeout instead of HIRD */
4454 if (udev->usb2_hw_lpm_besl_capable) {
4455 /* if device doesn't have a preferred BESL value use a
4456 * default one which works with mixed HIRD and BESL
4457 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4458 */
4459 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4460 if ((field & USB_BESL_SUPPORT) &&
4461 (field & USB_BESL_BASELINE_VALID))
4462 hird = USB_GET_BESL_BASELINE(field);
4463 else
4464 hird = udev->l1_params.besl;
4465
4466 exit_latency = xhci_besl_encoding[hird];
4467 spin_unlock_irqrestore(&xhci->lock, flags);
4468
4469 ret = xhci_change_max_exit_latency(xhci, udev,
4470 exit_latency);
4471 if (ret < 0)
4472 return ret;
4473 spin_lock_irqsave(&xhci->lock, flags);
4474
4475 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4476 writel(hlpm_val, hlpm_addr);
4477 /* flush write */
4478 readl(hlpm_addr);
4479 } else {
4480 hird = xhci_calculate_hird_besl(xhci, udev);
4481 }
4482
4483 pm_val &= ~PORT_HIRD_MASK;
4484 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4485 writel(pm_val, pm_addr);
4486 pm_val = readl(pm_addr);
4487 pm_val |= PORT_HLE;
4488 writel(pm_val, pm_addr);
4489 /* flush write */
4490 readl(pm_addr);
4491 } else {
4492 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4493 writel(pm_val, pm_addr);
4494 /* flush write */
4495 readl(pm_addr);
4496 if (udev->usb2_hw_lpm_besl_capable) {
4497 spin_unlock_irqrestore(&xhci->lock, flags);
4498 xhci_change_max_exit_latency(xhci, udev, 0);
4499 readl_poll_timeout(ports[port_num]->addr, pm_val,
4500 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4501 100, 10000);
4502 return 0;
4503 }
4504 }
4505
4506 spin_unlock_irqrestore(&xhci->lock, flags);
4507 return 0;
4508}
4509
4510/* check if a usb2 port supports a given extened capability protocol
4511 * only USB2 ports extended protocol capability values are cached.
4512 * Return 1 if capability is supported
4513 */
4514static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4515 unsigned capability)
4516{
4517 u32 port_offset, port_count;
4518 int i;
4519
4520 for (i = 0; i < xhci->num_ext_caps; i++) {
4521 if (xhci->ext_caps[i] & capability) {
4522 /* port offsets starts at 1 */
4523 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4524 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4525 if (port >= port_offset &&
4526 port < port_offset + port_count)
4527 return 1;
4528 }
4529 }
4530 return 0;
4531}
4532
4533static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4534{
4535 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4536 int portnum = udev->portnum - 1;
4537
4538 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4539 return 0;
4540
4541 /* we only support lpm for non-hub device connected to root hub yet */
4542 if (!udev->parent || udev->parent->parent ||
4543 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4544 return 0;
4545
4546 if (xhci->hw_lpm_support == 1 &&
4547 xhci_check_usb2_port_capability(
4548 xhci, portnum, XHCI_HLC)) {
4549 udev->usb2_hw_lpm_capable = 1;
4550 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4551 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4552 if (xhci_check_usb2_port_capability(xhci, portnum,
4553 XHCI_BLC))
4554 udev->usb2_hw_lpm_besl_capable = 1;
4555 }
4556
4557 return 0;
4558}
4559
4560/*---------------------- USB 3.0 Link PM functions ------------------------*/
4561
4562/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4563static unsigned long long xhci_service_interval_to_ns(
4564 struct usb_endpoint_descriptor *desc)
4565{
4566 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4567}
4568
4569static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4570 enum usb3_link_state state)
4571{
4572 unsigned long long sel;
4573 unsigned long long pel;
4574 unsigned int max_sel_pel;
4575 char *state_name;
4576
4577 switch (state) {
4578 case USB3_LPM_U1:
4579 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4580 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4581 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4582 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4583 state_name = "U1";
4584 break;
4585 case USB3_LPM_U2:
4586 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4587 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4588 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4589 state_name = "U2";
4590 break;
4591 default:
4592 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4593 __func__);
4594 return USB3_LPM_DISABLED;
4595 }
4596
4597 if (sel <= max_sel_pel && pel <= max_sel_pel)
4598 return USB3_LPM_DEVICE_INITIATED;
4599
4600 if (sel > max_sel_pel)
4601 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4602 "due to long SEL %llu ms\n",
4603 state_name, sel);
4604 else
4605 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4606 "due to long PEL %llu ms\n",
4607 state_name, pel);
4608 return USB3_LPM_DISABLED;
4609}
4610
4611/* The U1 timeout should be the maximum of the following values:
4612 * - For control endpoints, U1 system exit latency (SEL) * 3
4613 * - For bulk endpoints, U1 SEL * 5
4614 * - For interrupt endpoints:
4615 * - Notification EPs, U1 SEL * 3
4616 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4617 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4618 */
4619static unsigned long long xhci_calculate_intel_u1_timeout(
4620 struct usb_device *udev,
4621 struct usb_endpoint_descriptor *desc)
4622{
4623 unsigned long long timeout_ns;
4624 int ep_type;
4625 int intr_type;
4626
4627 ep_type = usb_endpoint_type(desc);
4628 switch (ep_type) {
4629 case USB_ENDPOINT_XFER_CONTROL:
4630 timeout_ns = udev->u1_params.sel * 3;
4631 break;
4632 case USB_ENDPOINT_XFER_BULK:
4633 timeout_ns = udev->u1_params.sel * 5;
4634 break;
4635 case USB_ENDPOINT_XFER_INT:
4636 intr_type = usb_endpoint_interrupt_type(desc);
4637 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4638 timeout_ns = udev->u1_params.sel * 3;
4639 break;
4640 }
4641 /* Otherwise the calculation is the same as isoc eps */
4642 fallthrough;
4643 case USB_ENDPOINT_XFER_ISOC:
4644 timeout_ns = xhci_service_interval_to_ns(desc);
4645 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4646 if (timeout_ns < udev->u1_params.sel * 2)
4647 timeout_ns = udev->u1_params.sel * 2;
4648 break;
4649 default:
4650 return 0;
4651 }
4652
4653 return timeout_ns;
4654}
4655
4656/* Returns the hub-encoded U1 timeout value. */
4657static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4658 struct usb_device *udev,
4659 struct usb_endpoint_descriptor *desc)
4660{
4661 unsigned long long timeout_ns;
4662
4663 /* Prevent U1 if service interval is shorter than U1 exit latency */
4664 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4665 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4666 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4667 return USB3_LPM_DISABLED;
4668 }
4669 }
4670
4671 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4672 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4673 else
4674 timeout_ns = udev->u1_params.sel;
4675
4676 /* The U1 timeout is encoded in 1us intervals.
4677 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4678 */
4679 if (timeout_ns == USB3_LPM_DISABLED)
4680 timeout_ns = 1;
4681 else
4682 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4683
4684 /* If the necessary timeout value is bigger than what we can set in the
4685 * USB 3.0 hub, we have to disable hub-initiated U1.
4686 */
4687 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4688 return timeout_ns;
4689 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4690 "due to long timeout %llu ms\n", timeout_ns);
4691 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4692}
4693
4694/* The U2 timeout should be the maximum of:
4695 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4696 * - largest bInterval of any active periodic endpoint (to avoid going
4697 * into lower power link states between intervals).
4698 * - the U2 Exit Latency of the device
4699 */
4700static unsigned long long xhci_calculate_intel_u2_timeout(
4701 struct usb_device *udev,
4702 struct usb_endpoint_descriptor *desc)
4703{
4704 unsigned long long timeout_ns;
4705 unsigned long long u2_del_ns;
4706
4707 timeout_ns = 10 * 1000 * 1000;
4708
4709 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4710 (xhci_service_interval_to_ns(desc) > timeout_ns))
4711 timeout_ns = xhci_service_interval_to_ns(desc);
4712
4713 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4714 if (u2_del_ns > timeout_ns)
4715 timeout_ns = u2_del_ns;
4716
4717 return timeout_ns;
4718}
4719
4720/* Returns the hub-encoded U2 timeout value. */
4721static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4722 struct usb_device *udev,
4723 struct usb_endpoint_descriptor *desc)
4724{
4725 unsigned long long timeout_ns;
4726
4727 /* Prevent U2 if service interval is shorter than U2 exit latency */
4728 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4729 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4730 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4731 return USB3_LPM_DISABLED;
4732 }
4733 }
4734
4735 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4736 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4737 else
4738 timeout_ns = udev->u2_params.sel;
4739
4740 /* The U2 timeout is encoded in 256us intervals */
4741 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4742 /* If the necessary timeout value is bigger than what we can set in the
4743 * USB 3.0 hub, we have to disable hub-initiated U2.
4744 */
4745 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4746 return timeout_ns;
4747 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4748 "due to long timeout %llu ms\n", timeout_ns);
4749 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4750}
4751
4752static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4753 struct usb_device *udev,
4754 struct usb_endpoint_descriptor *desc,
4755 enum usb3_link_state state,
4756 u16 *timeout)
4757{
4758 if (state == USB3_LPM_U1)
4759 return xhci_calculate_u1_timeout(xhci, udev, desc);
4760 else if (state == USB3_LPM_U2)
4761 return xhci_calculate_u2_timeout(xhci, udev, desc);
4762
4763 return USB3_LPM_DISABLED;
4764}
4765
4766static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4767 struct usb_device *udev,
4768 struct usb_endpoint_descriptor *desc,
4769 enum usb3_link_state state,
4770 u16 *timeout)
4771{
4772 u16 alt_timeout;
4773
4774 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4775 desc, state, timeout);
4776
4777 /* If we found we can't enable hub-initiated LPM, and
4778 * the U1 or U2 exit latency was too high to allow
4779 * device-initiated LPM as well, then we will disable LPM
4780 * for this device, so stop searching any further.
4781 */
4782 if (alt_timeout == USB3_LPM_DISABLED) {
4783 *timeout = alt_timeout;
4784 return -E2BIG;
4785 }
4786 if (alt_timeout > *timeout)
4787 *timeout = alt_timeout;
4788 return 0;
4789}
4790
4791static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4792 struct usb_device *udev,
4793 struct usb_host_interface *alt,
4794 enum usb3_link_state state,
4795 u16 *timeout)
4796{
4797 int j;
4798
4799 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4800 if (xhci_update_timeout_for_endpoint(xhci, udev,
4801 &alt->endpoint[j].desc, state, timeout))
4802 return -E2BIG;
4803 }
4804 return 0;
4805}
4806
4807static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4808 struct usb_device *udev,
4809 enum usb3_link_state state)
4810{
4811 struct usb_device *parent = udev->parent;
4812 int tier = 1; /* roothub is tier1 */
4813
4814 while (parent) {
4815 parent = parent->parent;
4816 tier++;
4817 }
4818
4819 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4820 goto fail;
4821 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4822 goto fail;
4823
4824 return 0;
4825fail:
4826 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4827 tier);
4828 return -E2BIG;
4829}
4830
4831/* Returns the U1 or U2 timeout that should be enabled.
4832 * If the tier check or timeout setting functions return with a non-zero exit
4833 * code, that means the timeout value has been finalized and we shouldn't look
4834 * at any more endpoints.
4835 */
4836static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4837 struct usb_device *udev, enum usb3_link_state state)
4838{
4839 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4840 struct usb_host_config *config;
4841 char *state_name;
4842 int i;
4843 u16 timeout = USB3_LPM_DISABLED;
4844
4845 if (state == USB3_LPM_U1)
4846 state_name = "U1";
4847 else if (state == USB3_LPM_U2)
4848 state_name = "U2";
4849 else {
4850 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4851 state);
4852 return timeout;
4853 }
4854
4855 /* Gather some information about the currently installed configuration
4856 * and alternate interface settings.
4857 */
4858 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4859 state, &timeout))
4860 return timeout;
4861
4862 config = udev->actconfig;
4863 if (!config)
4864 return timeout;
4865
4866 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4867 struct usb_driver *driver;
4868 struct usb_interface *intf = config->interface[i];
4869
4870 if (!intf)
4871 continue;
4872
4873 /* Check if any currently bound drivers want hub-initiated LPM
4874 * disabled.
4875 */
4876 if (intf->dev.driver) {
4877 driver = to_usb_driver(intf->dev.driver);
4878 if (driver && driver->disable_hub_initiated_lpm) {
4879 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4880 state_name, driver->name);
4881 timeout = xhci_get_timeout_no_hub_lpm(udev,
4882 state);
4883 if (timeout == USB3_LPM_DISABLED)
4884 return timeout;
4885 }
4886 }
4887
4888 /* Not sure how this could happen... */
4889 if (!intf->cur_altsetting)
4890 continue;
4891
4892 if (xhci_update_timeout_for_interface(xhci, udev,
4893 intf->cur_altsetting,
4894 state, &timeout))
4895 return timeout;
4896 }
4897 return timeout;
4898}
4899
4900static int calculate_max_exit_latency(struct usb_device *udev,
4901 enum usb3_link_state state_changed,
4902 u16 hub_encoded_timeout)
4903{
4904 unsigned long long u1_mel_us = 0;
4905 unsigned long long u2_mel_us = 0;
4906 unsigned long long mel_us = 0;
4907 bool disabling_u1;
4908 bool disabling_u2;
4909 bool enabling_u1;
4910 bool enabling_u2;
4911
4912 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4913 hub_encoded_timeout == USB3_LPM_DISABLED);
4914 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4915 hub_encoded_timeout == USB3_LPM_DISABLED);
4916
4917 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4918 hub_encoded_timeout != USB3_LPM_DISABLED);
4919 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4920 hub_encoded_timeout != USB3_LPM_DISABLED);
4921
4922 /* If U1 was already enabled and we're not disabling it,
4923 * or we're going to enable U1, account for the U1 max exit latency.
4924 */
4925 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4926 enabling_u1)
4927 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4928 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4929 enabling_u2)
4930 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4931
4932 mel_us = max(u1_mel_us, u2_mel_us);
4933
4934 /* xHCI host controller max exit latency field is only 16 bits wide. */
4935 if (mel_us > MAX_EXIT) {
4936 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4937 "is too big.\n", mel_us);
4938 return -E2BIG;
4939 }
4940 return mel_us;
4941}
4942
4943/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4944static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4945 struct usb_device *udev, enum usb3_link_state state)
4946{
4947 struct xhci_hcd *xhci;
4948 struct xhci_port *port;
4949 u16 hub_encoded_timeout;
4950 int mel;
4951 int ret;
4952
4953 xhci = hcd_to_xhci(hcd);
4954 /* The LPM timeout values are pretty host-controller specific, so don't
4955 * enable hub-initiated timeouts unless the vendor has provided
4956 * information about their timeout algorithm.
4957 */
4958 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4959 !xhci->devs[udev->slot_id])
4960 return USB3_LPM_DISABLED;
4961
4962 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4963 return USB3_LPM_DISABLED;
4964
4965 /* If connected to root port then check port can handle lpm */
4966 if (udev->parent && !udev->parent->parent) {
4967 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4968 if (port->lpm_incapable)
4969 return USB3_LPM_DISABLED;
4970 }
4971
4972 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4973 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4974 if (mel < 0) {
4975 /* Max Exit Latency is too big, disable LPM. */
4976 hub_encoded_timeout = USB3_LPM_DISABLED;
4977 mel = 0;
4978 }
4979
4980 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4981 if (ret)
4982 return ret;
4983 return hub_encoded_timeout;
4984}
4985
4986static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4987 struct usb_device *udev, enum usb3_link_state state)
4988{
4989 struct xhci_hcd *xhci;
4990 u16 mel;
4991
4992 xhci = hcd_to_xhci(hcd);
4993 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4994 !xhci->devs[udev->slot_id])
4995 return 0;
4996
4997 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4998 return xhci_change_max_exit_latency(xhci, udev, mel);
4999}
5000#else /* CONFIG_PM */
5001
5002static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5003 struct usb_device *udev, int enable)
5004{
5005 return 0;
5006}
5007
5008static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5009{
5010 return 0;
5011}
5012
5013static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5014 struct usb_device *udev, enum usb3_link_state state)
5015{
5016 return USB3_LPM_DISABLED;
5017}
5018
5019static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5020 struct usb_device *udev, enum usb3_link_state state)
5021{
5022 return 0;
5023}
5024#endif /* CONFIG_PM */
5025
5026/*-------------------------------------------------------------------------*/
5027
5028/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5029 * internal data structures for the device.
5030 */
5031int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5032 struct usb_tt *tt, gfp_t mem_flags)
5033{
5034 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5035 struct xhci_virt_device *vdev;
5036 struct xhci_command *config_cmd;
5037 struct xhci_input_control_ctx *ctrl_ctx;
5038 struct xhci_slot_ctx *slot_ctx;
5039 unsigned long flags;
5040 unsigned think_time;
5041 int ret;
5042
5043 /* Ignore root hubs */
5044 if (!hdev->parent)
5045 return 0;
5046
5047 vdev = xhci->devs[hdev->slot_id];
5048 if (!vdev) {
5049 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5050 return -EINVAL;
5051 }
5052
5053 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5054 if (!config_cmd)
5055 return -ENOMEM;
5056
5057 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5058 if (!ctrl_ctx) {
5059 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5060 __func__);
5061 xhci_free_command(xhci, config_cmd);
5062 return -ENOMEM;
5063 }
5064
5065 spin_lock_irqsave(&xhci->lock, flags);
5066 if (hdev->speed == USB_SPEED_HIGH &&
5067 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5068 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5069 xhci_free_command(xhci, config_cmd);
5070 spin_unlock_irqrestore(&xhci->lock, flags);
5071 return -ENOMEM;
5072 }
5073
5074 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5075 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5076 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5077 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5078 /*
5079 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5080 * but it may be already set to 1 when setup an xHCI virtual
5081 * device, so clear it anyway.
5082 */
5083 if (tt->multi)
5084 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5085 else if (hdev->speed == USB_SPEED_FULL)
5086 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5087
5088 if (xhci->hci_version > 0x95) {
5089 xhci_dbg(xhci, "xHCI version %x needs hub "
5090 "TT think time and number of ports\n",
5091 (unsigned int) xhci->hci_version);
5092 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5093 /* Set TT think time - convert from ns to FS bit times.
5094 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5095 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5096 *
5097 * xHCI 1.0: this field shall be 0 if the device is not a
5098 * High-spped hub.
5099 */
5100 think_time = tt->think_time;
5101 if (think_time != 0)
5102 think_time = (think_time / 666) - 1;
5103 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5104 slot_ctx->tt_info |=
5105 cpu_to_le32(TT_THINK_TIME(think_time));
5106 } else {
5107 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5108 "TT think time or number of ports\n",
5109 (unsigned int) xhci->hci_version);
5110 }
5111 slot_ctx->dev_state = 0;
5112 spin_unlock_irqrestore(&xhci->lock, flags);
5113
5114 xhci_dbg(xhci, "Set up %s for hub device.\n",
5115 (xhci->hci_version > 0x95) ?
5116 "configure endpoint" : "evaluate context");
5117
5118 /* Issue and wait for the configure endpoint or
5119 * evaluate context command.
5120 */
5121 if (xhci->hci_version > 0x95)
5122 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5123 false, false);
5124 else
5125 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5126 true, false);
5127
5128 xhci_free_command(xhci, config_cmd);
5129 return ret;
5130}
5131EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5132
5133static int xhci_get_frame(struct usb_hcd *hcd)
5134{
5135 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5136 /* EHCI mods by the periodic size. Why? */
5137 return readl(&xhci->run_regs->microframe_index) >> 3;
5138}
5139
5140static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5141{
5142 xhci->usb2_rhub.hcd = hcd;
5143 hcd->speed = HCD_USB2;
5144 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5145 /*
5146 * USB 2.0 roothub under xHCI has an integrated TT,
5147 * (rate matching hub) as opposed to having an OHCI/UHCI
5148 * companion controller.
5149 */
5150 hcd->has_tt = 1;
5151}
5152
5153static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5154{
5155 unsigned int minor_rev;
5156
5157 /*
5158 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5159 * should return 0x31 for sbrn, or that the minor revision
5160 * is a two digit BCD containig minor and sub-minor numbers.
5161 * This was later clarified in xHCI 1.2.
5162 *
5163 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5164 * minor revision set to 0x1 instead of 0x10.
5165 */
5166 if (xhci->usb3_rhub.min_rev == 0x1)
5167 minor_rev = 1;
5168 else
5169 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5170
5171 switch (minor_rev) {
5172 case 2:
5173 hcd->speed = HCD_USB32;
5174 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5175 hcd->self.root_hub->rx_lanes = 2;
5176 hcd->self.root_hub->tx_lanes = 2;
5177 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5178 break;
5179 case 1:
5180 hcd->speed = HCD_USB31;
5181 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5182 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5183 break;
5184 }
5185 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5186 minor_rev, minor_rev ? "Enhanced " : "");
5187
5188 xhci->usb3_rhub.hcd = hcd;
5189}
5190
5191int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5192{
5193 struct xhci_hcd *xhci;
5194 /*
5195 * TODO: Check with DWC3 clients for sysdev according to
5196 * quirks
5197 */
5198 struct device *dev = hcd->self.sysdev;
5199 int retval;
5200
5201 /* Accept arbitrarily long scatter-gather lists */
5202 hcd->self.sg_tablesize = ~0;
5203
5204 /* support to build packet from discontinuous buffers */
5205 hcd->self.no_sg_constraint = 1;
5206
5207 /* XHCI controllers don't stop the ep queue on short packets :| */
5208 hcd->self.no_stop_on_short = 1;
5209
5210 xhci = hcd_to_xhci(hcd);
5211
5212 if (!usb_hcd_is_primary_hcd(hcd)) {
5213 xhci_hcd_init_usb3_data(xhci, hcd);
5214 return 0;
5215 }
5216
5217 mutex_init(&xhci->mutex);
5218 xhci->main_hcd = hcd;
5219 xhci->cap_regs = hcd->regs;
5220 xhci->op_regs = hcd->regs +
5221 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5222 xhci->run_regs = hcd->regs +
5223 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5224 /* Cache read-only capability registers */
5225 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5226 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5227 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5228 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5229 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5230 if (xhci->hci_version > 0x100)
5231 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5232
5233 /* xhci-plat or xhci-pci might have set max_interrupters already */
5234 if ((!xhci->max_interrupters) ||
5235 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5236 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5237
5238 xhci->quirks |= quirks;
5239
5240 if (get_quirks)
5241 get_quirks(dev, xhci);
5242
5243 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5244 * success event after a short transfer. This quirk will ignore such
5245 * spurious event.
5246 */
5247 if (xhci->hci_version > 0x96)
5248 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5249
5250 /* Make sure the HC is halted. */
5251 retval = xhci_halt(xhci);
5252 if (retval)
5253 return retval;
5254
5255 xhci_zero_64b_regs(xhci);
5256
5257 xhci_dbg(xhci, "Resetting HCD\n");
5258 /* Reset the internal HC memory state and registers. */
5259 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5260 if (retval)
5261 return retval;
5262 xhci_dbg(xhci, "Reset complete\n");
5263
5264 /*
5265 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5266 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5267 * address memory pointers actually. So, this driver clears the AC64
5268 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5269 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5270 */
5271 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5272 xhci->hcc_params &= ~BIT(0);
5273
5274 /* Set dma_mask and coherent_dma_mask to 64-bits,
5275 * if xHC supports 64-bit addressing */
5276 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5277 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5278 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5279 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5280 } else {
5281 /*
5282 * This is to avoid error in cases where a 32-bit USB
5283 * controller is used on a 64-bit capable system.
5284 */
5285 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5286 if (retval)
5287 return retval;
5288 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5289 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5290 }
5291
5292 xhci_dbg(xhci, "Calling HCD init\n");
5293 /* Initialize HCD and host controller data structures. */
5294 retval = xhci_init(hcd);
5295 if (retval)
5296 return retval;
5297 xhci_dbg(xhci, "Called HCD init\n");
5298
5299 if (xhci_hcd_is_usb3(hcd))
5300 xhci_hcd_init_usb3_data(xhci, hcd);
5301 else
5302 xhci_hcd_init_usb2_data(xhci, hcd);
5303
5304 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5305 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5306
5307 return 0;
5308}
5309EXPORT_SYMBOL_GPL(xhci_gen_setup);
5310
5311static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5312 struct usb_host_endpoint *ep)
5313{
5314 struct xhci_hcd *xhci;
5315 struct usb_device *udev;
5316 unsigned int slot_id;
5317 unsigned int ep_index;
5318 unsigned long flags;
5319
5320 xhci = hcd_to_xhci(hcd);
5321
5322 spin_lock_irqsave(&xhci->lock, flags);
5323 udev = (struct usb_device *)ep->hcpriv;
5324 slot_id = udev->slot_id;
5325 ep_index = xhci_get_endpoint_index(&ep->desc);
5326
5327 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5328 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5329 spin_unlock_irqrestore(&xhci->lock, flags);
5330}
5331
5332static const struct hc_driver xhci_hc_driver = {
5333 .description = "xhci-hcd",
5334 .product_desc = "xHCI Host Controller",
5335 .hcd_priv_size = sizeof(struct xhci_hcd),
5336
5337 /*
5338 * generic hardware linkage
5339 */
5340 .irq = xhci_irq,
5341 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5342 HCD_BH,
5343
5344 /*
5345 * basic lifecycle operations
5346 */
5347 .reset = NULL, /* set in xhci_init_driver() */
5348 .start = xhci_run,
5349 .stop = xhci_stop,
5350 .shutdown = xhci_shutdown,
5351
5352 /*
5353 * managing i/o requests and associated device resources
5354 */
5355 .map_urb_for_dma = xhci_map_urb_for_dma,
5356 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5357 .urb_enqueue = xhci_urb_enqueue,
5358 .urb_dequeue = xhci_urb_dequeue,
5359 .alloc_dev = xhci_alloc_dev,
5360 .free_dev = xhci_free_dev,
5361 .alloc_streams = xhci_alloc_streams,
5362 .free_streams = xhci_free_streams,
5363 .add_endpoint = xhci_add_endpoint,
5364 .drop_endpoint = xhci_drop_endpoint,
5365 .endpoint_disable = xhci_endpoint_disable,
5366 .endpoint_reset = xhci_endpoint_reset,
5367 .check_bandwidth = xhci_check_bandwidth,
5368 .reset_bandwidth = xhci_reset_bandwidth,
5369 .address_device = xhci_address_device,
5370 .enable_device = xhci_enable_device,
5371 .update_hub_device = xhci_update_hub_device,
5372 .reset_device = xhci_discover_or_reset_device,
5373
5374 /*
5375 * scheduling support
5376 */
5377 .get_frame_number = xhci_get_frame,
5378
5379 /*
5380 * root hub support
5381 */
5382 .hub_control = xhci_hub_control,
5383 .hub_status_data = xhci_hub_status_data,
5384 .bus_suspend = xhci_bus_suspend,
5385 .bus_resume = xhci_bus_resume,
5386 .get_resuming_ports = xhci_get_resuming_ports,
5387
5388 /*
5389 * call back when device connected and addressed
5390 */
5391 .update_device = xhci_update_device,
5392 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5393 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5394 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5395 .find_raw_port_number = xhci_find_raw_port_number,
5396 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5397};
5398
5399void xhci_init_driver(struct hc_driver *drv,
5400 const struct xhci_driver_overrides *over)
5401{
5402 BUG_ON(!over);
5403
5404 /* Copy the generic table to drv then apply the overrides */
5405 *drv = xhci_hc_driver;
5406
5407 if (over) {
5408 drv->hcd_priv_size += over->extra_priv_size;
5409 if (over->reset)
5410 drv->reset = over->reset;
5411 if (over->start)
5412 drv->start = over->start;
5413 if (over->add_endpoint)
5414 drv->add_endpoint = over->add_endpoint;
5415 if (over->drop_endpoint)
5416 drv->drop_endpoint = over->drop_endpoint;
5417 if (over->check_bandwidth)
5418 drv->check_bandwidth = over->check_bandwidth;
5419 if (over->reset_bandwidth)
5420 drv->reset_bandwidth = over->reset_bandwidth;
5421 if (over->update_hub_device)
5422 drv->update_hub_device = over->update_hub_device;
5423 if (over->hub_control)
5424 drv->hub_control = over->hub_control;
5425 }
5426}
5427EXPORT_SYMBOL_GPL(xhci_init_driver);
5428
5429MODULE_DESCRIPTION(DRIVER_DESC);
5430MODULE_AUTHOR(DRIVER_AUTHOR);
5431MODULE_LICENSE("GPL");
5432
5433static int __init xhci_hcd_init(void)
5434{
5435 /*
5436 * Check the compiler generated sizes of structures that must be laid
5437 * out in specific ways for hardware access.
5438 */
5439 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5440 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5441 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5442 /* xhci_device_control has eight fields, and also
5443 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5444 */
5445 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5446 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5447 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5448 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5449 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5450 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5451 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5452
5453 if (usb_disabled())
5454 return -ENODEV;
5455
5456 xhci_debugfs_create_root();
5457 xhci_dbc_init();
5458
5459 return 0;
5460}
5461
5462/*
5463 * If an init function is provided, an exit function must also be provided
5464 * to allow module unload.
5465 */
5466static void __exit xhci_hcd_fini(void)
5467{
5468 xhci_debugfs_remove_root();
5469 xhci_dbc_exit();
5470}
5471
5472module_init(xhci_hcd_init);
5473module_exit(xhci_hcd_fini);