Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/pci.h>
  12#include <linux/iopoll.h>
  13#include <linux/irq.h>
  14#include <linux/log2.h>
  15#include <linux/module.h>
  16#include <linux/moduleparam.h>
  17#include <linux/slab.h>
  18#include <linux/dmi.h>
  19#include <linux/dma-mapping.h>
  20
  21#include "xhci.h"
  22#include "xhci-trace.h"
  23#include "xhci-mtk.h"
  24#include "xhci-debugfs.h"
  25#include "xhci-dbgcap.h"
  26
  27#define DRIVER_AUTHOR "Sarah Sharp"
  28#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  29
  30#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  31
  32/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  33static int link_quirk;
  34module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  35MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  36
  37static unsigned long long quirks;
  38module_param(quirks, ullong, S_IRUGO);
  39MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  40
  41static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
  42{
  43	struct xhci_segment *seg = ring->first_seg;
  44
  45	if (!td || !td->start_seg)
  46		return false;
  47	do {
  48		if (seg == td->start_seg)
  49			return true;
  50		seg = seg->next;
  51	} while (seg && seg != ring->first_seg);
  52
  53	return false;
  54}
  55
  56/*
  57 * xhci_handshake - spin reading hc until handshake completes or fails
  58 * @ptr: address of hc register to be read
  59 * @mask: bits to look at in result of read
  60 * @done: value of those bits when handshake succeeds
  61 * @usec: timeout in microseconds
  62 *
  63 * Returns negative errno, or zero on success
  64 *
  65 * Success happens when the "mask" bits have the specified value (hardware
  66 * handshake done).  There are two failure modes:  "usec" have passed (major
  67 * hardware flakeout), or the register reads as all-ones (hardware removed).
  68 */
  69int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
  70{
  71	u32	result;
  72	int	ret;
  73
  74	ret = readl_poll_timeout_atomic(ptr, result,
  75					(result & mask) == done ||
  76					result == U32_MAX,
  77					1, usec);
  78	if (result == U32_MAX)		/* card removed */
  79		return -ENODEV;
  80
  81	return ret;
 
 
 
 
 
 
 
 
 
 
  82}
  83
  84/*
  85 * Disable interrupts and begin the xHCI halting process.
  86 */
  87void xhci_quiesce(struct xhci_hcd *xhci)
  88{
  89	u32 halted;
  90	u32 cmd;
  91	u32 mask;
  92
  93	mask = ~(XHCI_IRQS);
  94	halted = readl(&xhci->op_regs->status) & STS_HALT;
  95	if (!halted)
  96		mask &= ~CMD_RUN;
  97
  98	cmd = readl(&xhci->op_regs->command);
  99	cmd &= mask;
 100	writel(cmd, &xhci->op_regs->command);
 101}
 102
 103/*
 104 * Force HC into halt state.
 105 *
 106 * Disable any IRQs and clear the run/stop bit.
 107 * HC will complete any current and actively pipelined transactions, and
 108 * should halt within 16 ms of the run/stop bit being cleared.
 109 * Read HC Halted bit in the status register to see when the HC is finished.
 110 */
 111int xhci_halt(struct xhci_hcd *xhci)
 112{
 113	int ret;
 114	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 115	xhci_quiesce(xhci);
 116
 117	ret = xhci_handshake(&xhci->op_regs->status,
 118			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 119	if (ret) {
 120		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 121		return ret;
 122	}
 123	xhci->xhc_state |= XHCI_STATE_HALTED;
 124	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 125	return ret;
 126}
 127
 128/*
 129 * Set the run bit and wait for the host to be running.
 130 */
 131int xhci_start(struct xhci_hcd *xhci)
 132{
 133	u32 temp;
 134	int ret;
 135
 136	temp = readl(&xhci->op_regs->command);
 137	temp |= (CMD_RUN);
 138	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 139			temp);
 140	writel(temp, &xhci->op_regs->command);
 141
 142	/*
 143	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 144	 * running.
 145	 */
 146	ret = xhci_handshake(&xhci->op_regs->status,
 147			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 148	if (ret == -ETIMEDOUT)
 149		xhci_err(xhci, "Host took too long to start, "
 150				"waited %u microseconds.\n",
 151				XHCI_MAX_HALT_USEC);
 152	if (!ret)
 153		/* clear state flags. Including dying, halted or removing */
 154		xhci->xhc_state = 0;
 155
 156	return ret;
 157}
 158
 159/*
 160 * Reset a halted HC.
 161 *
 162 * This resets pipelines, timers, counters, state machines, etc.
 163 * Transactions will be terminated immediately, and operational registers
 164 * will be set to their defaults.
 165 */
 166int xhci_reset(struct xhci_hcd *xhci)
 167{
 168	u32 command;
 169	u32 state;
 170	int ret;
 171
 172	state = readl(&xhci->op_regs->status);
 173
 174	if (state == ~(u32)0) {
 175		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 176		return -ENODEV;
 177	}
 178
 179	if ((state & STS_HALT) == 0) {
 180		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 181		return 0;
 182	}
 183
 184	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 185	command = readl(&xhci->op_regs->command);
 186	command |= CMD_RESET;
 187	writel(command, &xhci->op_regs->command);
 188
 189	/* Existing Intel xHCI controllers require a delay of 1 mS,
 190	 * after setting the CMD_RESET bit, and before accessing any
 191	 * HC registers. This allows the HC to complete the
 192	 * reset operation and be ready for HC register access.
 193	 * Without this delay, the subsequent HC register access,
 194	 * may result in a system hang very rarely.
 195	 */
 196	if (xhci->quirks & XHCI_INTEL_HOST)
 197		udelay(1000);
 198
 199	ret = xhci_handshake(&xhci->op_regs->command,
 200			CMD_RESET, 0, 10 * 1000 * 1000);
 201	if (ret)
 202		return ret;
 203
 204	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 205		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 206
 207	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 208			 "Wait for controller to be ready for doorbell rings");
 209	/*
 210	 * xHCI cannot write to any doorbells or operational registers other
 211	 * than status until the "Controller Not Ready" flag is cleared.
 212	 */
 213	ret = xhci_handshake(&xhci->op_regs->status,
 214			STS_CNR, 0, 10 * 1000 * 1000);
 215
 216	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
 217	xhci->usb2_rhub.bus_state.suspended_ports = 0;
 218	xhci->usb2_rhub.bus_state.resuming_ports = 0;
 219	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
 220	xhci->usb3_rhub.bus_state.suspended_ports = 0;
 221	xhci->usb3_rhub.bus_state.resuming_ports = 0;
 222
 223	return ret;
 224}
 225
 226static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
 227{
 228	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 229	int err, i;
 230	u64 val;
 231
 232	/*
 233	 * Some Renesas controllers get into a weird state if they are
 234	 * reset while programmed with 64bit addresses (they will preserve
 235	 * the top half of the address in internal, non visible
 236	 * registers). You end up with half the address coming from the
 237	 * kernel, and the other half coming from the firmware. Also,
 238	 * changing the programming leads to extra accesses even if the
 239	 * controller is supposed to be halted. The controller ends up with
 240	 * a fatal fault, and is then ripe for being properly reset.
 241	 *
 242	 * Special care is taken to only apply this if the device is behind
 243	 * an iommu. Doing anything when there is no iommu is definitely
 244	 * unsafe...
 245	 */
 246	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
 247		return;
 248
 249	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
 250
 251	/* Clear HSEIE so that faults do not get signaled */
 252	val = readl(&xhci->op_regs->command);
 253	val &= ~CMD_HSEIE;
 254	writel(val, &xhci->op_regs->command);
 255
 256	/* Clear HSE (aka FATAL) */
 257	val = readl(&xhci->op_regs->status);
 258	val |= STS_FATAL;
 259	writel(val, &xhci->op_regs->status);
 260
 261	/* Now zero the registers, and brace for impact */
 262	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 263	if (upper_32_bits(val))
 264		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
 265	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 266	if (upper_32_bits(val))
 267		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 268
 269	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
 270		struct xhci_intr_reg __iomem *ir;
 271
 272		ir = &xhci->run_regs->ir_set[i];
 273		val = xhci_read_64(xhci, &ir->erst_base);
 274		if (upper_32_bits(val))
 275			xhci_write_64(xhci, 0, &ir->erst_base);
 276		val= xhci_read_64(xhci, &ir->erst_dequeue);
 277		if (upper_32_bits(val))
 278			xhci_write_64(xhci, 0, &ir->erst_dequeue);
 279	}
 280
 281	/* Wait for the fault to appear. It will be cleared on reset */
 282	err = xhci_handshake(&xhci->op_regs->status,
 283			     STS_FATAL, STS_FATAL,
 284			     XHCI_MAX_HALT_USEC);
 285	if (!err)
 286		xhci_info(xhci, "Fault detected\n");
 287}
 288
 289#ifdef CONFIG_USB_PCI
 290/*
 291 * Set up MSI
 292 */
 293static int xhci_setup_msi(struct xhci_hcd *xhci)
 294{
 295	int ret;
 296	/*
 297	 * TODO:Check with MSI Soc for sysdev
 298	 */
 299	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 300
 301	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
 302	if (ret < 0) {
 303		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 304				"failed to allocate MSI entry");
 305		return ret;
 306	}
 307
 308	ret = request_irq(pdev->irq, xhci_msi_irq,
 309				0, "xhci_hcd", xhci_to_hcd(xhci));
 310	if (ret) {
 311		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 312				"disable MSI interrupt");
 313		pci_free_irq_vectors(pdev);
 314	}
 315
 316	return ret;
 317}
 318
 319/*
 320 * Set up MSI-X
 321 */
 322static int xhci_setup_msix(struct xhci_hcd *xhci)
 323{
 324	int i, ret = 0;
 325	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 326	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 327
 328	/*
 329	 * calculate number of msi-x vectors supported.
 330	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 331	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 332	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 333	 *   Add additional 1 vector to ensure always available interrupt.
 334	 */
 335	xhci->msix_count = min(num_online_cpus() + 1,
 336				HCS_MAX_INTRS(xhci->hcs_params1));
 337
 338	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
 339			PCI_IRQ_MSIX);
 340	if (ret < 0) {
 341		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 342				"Failed to enable MSI-X");
 343		return ret;
 344	}
 345
 346	for (i = 0; i < xhci->msix_count; i++) {
 347		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
 348				"xhci_hcd", xhci_to_hcd(xhci));
 349		if (ret)
 350			goto disable_msix;
 351	}
 352
 353	hcd->msix_enabled = 1;
 354	return ret;
 355
 356disable_msix:
 357	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 358	while (--i >= 0)
 359		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 360	pci_free_irq_vectors(pdev);
 361	return ret;
 362}
 363
 364/* Free any IRQs and disable MSI-X */
 365static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 366{
 367	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 368	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 369
 370	if (xhci->quirks & XHCI_PLAT)
 371		return;
 372
 373	/* return if using legacy interrupt */
 374	if (hcd->irq > 0)
 375		return;
 376
 377	if (hcd->msix_enabled) {
 378		int i;
 379
 380		for (i = 0; i < xhci->msix_count; i++)
 381			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 382	} else {
 383		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
 384	}
 385
 386	pci_free_irq_vectors(pdev);
 387	hcd->msix_enabled = 0;
 388}
 389
 390static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 391{
 392	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 393
 394	if (hcd->msix_enabled) {
 395		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 396		int i;
 397
 398		for (i = 0; i < xhci->msix_count; i++)
 399			synchronize_irq(pci_irq_vector(pdev, i));
 400	}
 401}
 402
 403static int xhci_try_enable_msi(struct usb_hcd *hcd)
 404{
 405	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 406	struct pci_dev  *pdev;
 407	int ret;
 408
 409	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 410	if (xhci->quirks & XHCI_PLAT)
 411		return 0;
 412
 413	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 414	/*
 415	 * Some Fresco Logic host controllers advertise MSI, but fail to
 416	 * generate interrupts.  Don't even try to enable MSI.
 417	 */
 418	if (xhci->quirks & XHCI_BROKEN_MSI)
 419		goto legacy_irq;
 420
 421	/* unregister the legacy interrupt */
 422	if (hcd->irq)
 423		free_irq(hcd->irq, hcd);
 424	hcd->irq = 0;
 425
 426	ret = xhci_setup_msix(xhci);
 427	if (ret)
 428		/* fall back to msi*/
 429		ret = xhci_setup_msi(xhci);
 430
 431	if (!ret) {
 432		hcd->msi_enabled = 1;
 433		return 0;
 434	}
 435
 436	if (!pdev->irq) {
 437		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 438		return -EINVAL;
 439	}
 440
 441 legacy_irq:
 442	if (!strlen(hcd->irq_descr))
 443		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 444			 hcd->driver->description, hcd->self.busnum);
 445
 446	/* fall back to legacy interrupt*/
 447	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 448			hcd->irq_descr, hcd);
 449	if (ret) {
 450		xhci_err(xhci, "request interrupt %d failed\n",
 451				pdev->irq);
 452		return ret;
 453	}
 454	hcd->irq = pdev->irq;
 455	return 0;
 456}
 457
 458#else
 459
 460static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 461{
 462	return 0;
 463}
 464
 465static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 466{
 467}
 468
 469static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 470{
 471}
 472
 473#endif
 474
 475static void compliance_mode_recovery(struct timer_list *t)
 476{
 477	struct xhci_hcd *xhci;
 478	struct usb_hcd *hcd;
 479	struct xhci_hub *rhub;
 480	u32 temp;
 481	int i;
 482
 483	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 484	rhub = &xhci->usb3_rhub;
 485
 486	for (i = 0; i < rhub->num_ports; i++) {
 487		temp = readl(rhub->ports[i]->addr);
 488		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 489			/*
 490			 * Compliance Mode Detected. Letting USB Core
 491			 * handle the Warm Reset
 492			 */
 493			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 494					"Compliance mode detected->port %d",
 495					i + 1);
 496			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 497					"Attempting compliance mode recovery");
 498			hcd = xhci->shared_hcd;
 499
 500			if (hcd->state == HC_STATE_SUSPENDED)
 501				usb_hcd_resume_root_hub(hcd);
 502
 503			usb_hcd_poll_rh_status(hcd);
 504		}
 505	}
 506
 507	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
 508		mod_timer(&xhci->comp_mode_recovery_timer,
 509			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 510}
 511
 512/*
 513 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 514 * that causes ports behind that hardware to enter compliance mode sometimes.
 515 * The quirk creates a timer that polls every 2 seconds the link state of
 516 * each host controller's port and recovers it by issuing a Warm reset
 517 * if Compliance mode is detected, otherwise the port will become "dead" (no
 518 * device connections or disconnections will be detected anymore). Becasue no
 519 * status event is generated when entering compliance mode (per xhci spec),
 520 * this quirk is needed on systems that have the failing hardware installed.
 521 */
 522static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 523{
 524	xhci->port_status_u0 = 0;
 525	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 526		    0);
 527	xhci->comp_mode_recovery_timer.expires = jiffies +
 528			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 529
 530	add_timer(&xhci->comp_mode_recovery_timer);
 531	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 532			"Compliance mode recovery timer initialized");
 533}
 534
 535/*
 536 * This function identifies the systems that have installed the SN65LVPE502CP
 537 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 538 * Systems:
 539 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 540 */
 541static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 542{
 543	const char *dmi_product_name, *dmi_sys_vendor;
 544
 545	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 546	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 547	if (!dmi_product_name || !dmi_sys_vendor)
 548		return false;
 549
 550	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 551		return false;
 552
 553	if (strstr(dmi_product_name, "Z420") ||
 554			strstr(dmi_product_name, "Z620") ||
 555			strstr(dmi_product_name, "Z820") ||
 556			strstr(dmi_product_name, "Z1 Workstation"))
 557		return true;
 558
 559	return false;
 560}
 561
 562static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 563{
 564	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
 565}
 566
 567
 568/*
 569 * Initialize memory for HCD and xHC (one-time init).
 570 *
 571 * Program the PAGESIZE register, initialize the device context array, create
 572 * device contexts (?), set up a command ring segment (or two?), create event
 573 * ring (one for now).
 574 */
 575static int xhci_init(struct usb_hcd *hcd)
 576{
 577	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 578	int retval = 0;
 579
 580	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 581	spin_lock_init(&xhci->lock);
 582	if (xhci->hci_version == 0x95 && link_quirk) {
 583		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 584				"QUIRK: Not clearing Link TRB chain bits.");
 585		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 586	} else {
 587		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 588				"xHCI doesn't need link TRB QUIRK");
 589	}
 590	retval = xhci_mem_init(xhci, GFP_KERNEL);
 591	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 592
 593	/* Initializing Compliance Mode Recovery Data If Needed */
 594	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 595		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 596		compliance_mode_recovery_timer_init(xhci);
 597	}
 598
 599	return retval;
 600}
 601
 602/*-------------------------------------------------------------------------*/
 603
 604
 605static int xhci_run_finished(struct xhci_hcd *xhci)
 606{
 607	if (xhci_start(xhci)) {
 608		xhci_halt(xhci);
 609		return -ENODEV;
 610	}
 611	xhci->shared_hcd->state = HC_STATE_RUNNING;
 612	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 613
 614	if (xhci->quirks & XHCI_NEC_HOST)
 615		xhci_ring_cmd_db(xhci);
 616
 617	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 618			"Finished xhci_run for USB3 roothub");
 619	return 0;
 620}
 621
 622/*
 623 * Start the HC after it was halted.
 624 *
 625 * This function is called by the USB core when the HC driver is added.
 626 * Its opposite is xhci_stop().
 627 *
 628 * xhci_init() must be called once before this function can be called.
 629 * Reset the HC, enable device slot contexts, program DCBAAP, and
 630 * set command ring pointer and event ring pointer.
 631 *
 632 * Setup MSI-X vectors and enable interrupts.
 633 */
 634int xhci_run(struct usb_hcd *hcd)
 635{
 636	u32 temp;
 637	u64 temp_64;
 638	int ret;
 639	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 640
 641	/* Start the xHCI host controller running only after the USB 2.0 roothub
 642	 * is setup.
 643	 */
 644
 645	hcd->uses_new_polling = 1;
 646	if (!usb_hcd_is_primary_hcd(hcd))
 647		return xhci_run_finished(xhci);
 648
 649	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 650
 651	ret = xhci_try_enable_msi(hcd);
 652	if (ret)
 653		return ret;
 654
 655	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 656	temp_64 &= ~ERST_PTR_MASK;
 657	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 658			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 659
 660	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 661			"// Set the interrupt modulation register");
 662	temp = readl(&xhci->ir_set->irq_control);
 663	temp &= ~ER_IRQ_INTERVAL_MASK;
 664	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 665	writel(temp, &xhci->ir_set->irq_control);
 666
 667	/* Set the HCD state before we enable the irqs */
 668	temp = readl(&xhci->op_regs->command);
 669	temp |= (CMD_EIE);
 670	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 671			"// Enable interrupts, cmd = 0x%x.", temp);
 672	writel(temp, &xhci->op_regs->command);
 673
 674	temp = readl(&xhci->ir_set->irq_pending);
 675	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 676			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 677			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 678	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 679
 680	if (xhci->quirks & XHCI_NEC_HOST) {
 681		struct xhci_command *command;
 682
 683		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 684		if (!command)
 685			return -ENOMEM;
 686
 687		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 688				TRB_TYPE(TRB_NEC_GET_FW));
 689		if (ret)
 690			xhci_free_command(xhci, command);
 691	}
 692	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 693			"Finished xhci_run for USB2 roothub");
 694
 695	xhci_dbc_init(xhci);
 696
 697	xhci_debugfs_init(xhci);
 698
 699	return 0;
 700}
 701EXPORT_SYMBOL_GPL(xhci_run);
 702
 703/*
 704 * Stop xHCI driver.
 705 *
 706 * This function is called by the USB core when the HC driver is removed.
 707 * Its opposite is xhci_run().
 708 *
 709 * Disable device contexts, disable IRQs, and quiesce the HC.
 710 * Reset the HC, finish any completed transactions, and cleanup memory.
 711 */
 712static void xhci_stop(struct usb_hcd *hcd)
 713{
 714	u32 temp;
 715	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 716
 717	mutex_lock(&xhci->mutex);
 718
 719	/* Only halt host and free memory after both hcds are removed */
 720	if (!usb_hcd_is_primary_hcd(hcd)) {
 
 
 721		mutex_unlock(&xhci->mutex);
 722		return;
 723	}
 724
 725	xhci_dbc_exit(xhci);
 726
 727	spin_lock_irq(&xhci->lock);
 728	xhci->xhc_state |= XHCI_STATE_HALTED;
 729	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 730	xhci_halt(xhci);
 731	xhci_reset(xhci);
 732	spin_unlock_irq(&xhci->lock);
 733
 734	xhci_cleanup_msix(xhci);
 735
 736	/* Deleting Compliance Mode Recovery Timer */
 737	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 738			(!(xhci_all_ports_seen_u0(xhci)))) {
 739		del_timer_sync(&xhci->comp_mode_recovery_timer);
 740		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 741				"%s: compliance mode recovery timer deleted",
 742				__func__);
 743	}
 744
 745	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 746		usb_amd_dev_put();
 747
 748	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 749			"// Disabling event ring interrupts");
 750	temp = readl(&xhci->op_regs->status);
 751	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 752	temp = readl(&xhci->ir_set->irq_pending);
 753	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 754
 755	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 756	xhci_mem_cleanup(xhci);
 757	xhci_debugfs_exit(xhci);
 758	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 759			"xhci_stop completed - status = %x",
 760			readl(&xhci->op_regs->status));
 761	mutex_unlock(&xhci->mutex);
 762}
 763
 764/*
 765 * Shutdown HC (not bus-specific)
 766 *
 767 * This is called when the machine is rebooting or halting.  We assume that the
 768 * machine will be powered off, and the HC's internal state will be reset.
 769 * Don't bother to free memory.
 770 *
 771 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 772 */
 773static void xhci_shutdown(struct usb_hcd *hcd)
 774{
 775	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 776
 777	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 778		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 779
 780	spin_lock_irq(&xhci->lock);
 781	xhci_halt(xhci);
 782	/* Workaround for spurious wakeups at shutdown with HSW */
 783	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 784		xhci_reset(xhci);
 785	spin_unlock_irq(&xhci->lock);
 786
 787	xhci_cleanup_msix(xhci);
 788
 789	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 790			"xhci_shutdown completed - status = %x",
 791			readl(&xhci->op_regs->status));
 792
 793	/* Yet another workaround for spurious wakeups at shutdown with HSW */
 794	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 795		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
 796}
 797
 798#ifdef CONFIG_PM
 799static void xhci_save_registers(struct xhci_hcd *xhci)
 800{
 801	xhci->s3.command = readl(&xhci->op_regs->command);
 802	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 803	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 804	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 805	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 806	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 807	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 808	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 809	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 810}
 811
 812static void xhci_restore_registers(struct xhci_hcd *xhci)
 813{
 814	writel(xhci->s3.command, &xhci->op_regs->command);
 815	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 816	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 817	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 818	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 819	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 820	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 821	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 822	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 823}
 824
 825static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 826{
 827	u64	val_64;
 828
 829	/* step 2: initialize command ring buffer */
 830	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 831	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 832		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 833				      xhci->cmd_ring->dequeue) &
 834		 (u64) ~CMD_RING_RSVD_BITS) |
 835		xhci->cmd_ring->cycle_state;
 836	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 837			"// Setting command ring address to 0x%llx",
 838			(long unsigned long) val_64);
 839	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 840}
 841
 842/*
 843 * The whole command ring must be cleared to zero when we suspend the host.
 844 *
 845 * The host doesn't save the command ring pointer in the suspend well, so we
 846 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 847 * aligned, because of the reserved bits in the command ring dequeue pointer
 848 * register.  Therefore, we can't just set the dequeue pointer back in the
 849 * middle of the ring (TRBs are 16-byte aligned).
 850 */
 851static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 852{
 853	struct xhci_ring *ring;
 854	struct xhci_segment *seg;
 855
 856	ring = xhci->cmd_ring;
 857	seg = ring->deq_seg;
 858	do {
 859		memset(seg->trbs, 0,
 860			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 861		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 862			cpu_to_le32(~TRB_CYCLE);
 863		seg = seg->next;
 864	} while (seg != ring->deq_seg);
 865
 866	/* Reset the software enqueue and dequeue pointers */
 867	ring->deq_seg = ring->first_seg;
 868	ring->dequeue = ring->first_seg->trbs;
 869	ring->enq_seg = ring->deq_seg;
 870	ring->enqueue = ring->dequeue;
 871
 872	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 873	/*
 874	 * Ring is now zeroed, so the HW should look for change of ownership
 875	 * when the cycle bit is set to 1.
 876	 */
 877	ring->cycle_state = 1;
 878
 879	/*
 880	 * Reset the hardware dequeue pointer.
 881	 * Yes, this will need to be re-written after resume, but we're paranoid
 882	 * and want to make sure the hardware doesn't access bogus memory
 883	 * because, say, the BIOS or an SMI started the host without changing
 884	 * the command ring pointers.
 885	 */
 886	xhci_set_cmd_ring_deq(xhci);
 887}
 888
 889static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
 890{
 891	struct xhci_port **ports;
 892	int port_index;
 
 893	unsigned long flags;
 894	u32 t1, t2, portsc;
 895
 896	spin_lock_irqsave(&xhci->lock, flags);
 897
 898	/* disable usb3 ports Wake bits */
 899	port_index = xhci->usb3_rhub.num_ports;
 900	ports = xhci->usb3_rhub.ports;
 901	while (port_index--) {
 902		t1 = readl(ports[port_index]->addr);
 903		portsc = t1;
 904		t1 = xhci_port_state_to_neutral(t1);
 905		t2 = t1 & ~PORT_WAKE_BITS;
 906		if (t1 != t2) {
 907			writel(t2, ports[port_index]->addr);
 908			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
 909				 xhci->usb3_rhub.hcd->self.busnum,
 910				 port_index + 1, portsc, t2);
 911		}
 912	}
 913
 914	/* disable usb2 ports Wake bits */
 915	port_index = xhci->usb2_rhub.num_ports;
 916	ports = xhci->usb2_rhub.ports;
 917	while (port_index--) {
 918		t1 = readl(ports[port_index]->addr);
 919		portsc = t1;
 920		t1 = xhci_port_state_to_neutral(t1);
 921		t2 = t1 & ~PORT_WAKE_BITS;
 922		if (t1 != t2) {
 923			writel(t2, ports[port_index]->addr);
 924			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
 925				 xhci->usb2_rhub.hcd->self.busnum,
 926				 port_index + 1, portsc, t2);
 927		}
 928	}
 929	spin_unlock_irqrestore(&xhci->lock, flags);
 930}
 931
 932static bool xhci_pending_portevent(struct xhci_hcd *xhci)
 933{
 934	struct xhci_port	**ports;
 935	int			port_index;
 936	u32			status;
 937	u32			portsc;
 938
 939	status = readl(&xhci->op_regs->status);
 940	if (status & STS_EINT)
 941		return true;
 942	/*
 943	 * Checking STS_EINT is not enough as there is a lag between a change
 944	 * bit being set and the Port Status Change Event that it generated
 945	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
 946	 */
 947
 948	port_index = xhci->usb2_rhub.num_ports;
 949	ports = xhci->usb2_rhub.ports;
 950	while (port_index--) {
 951		portsc = readl(ports[port_index]->addr);
 952		if (portsc & PORT_CHANGE_MASK ||
 953		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 954			return true;
 955	}
 956	port_index = xhci->usb3_rhub.num_ports;
 957	ports = xhci->usb3_rhub.ports;
 958	while (port_index--) {
 959		portsc = readl(ports[port_index]->addr);
 960		if (portsc & PORT_CHANGE_MASK ||
 961		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 962			return true;
 963	}
 964	return false;
 965}
 966
 967/*
 968 * Stop HC (not bus-specific)
 969 *
 970 * This is called when the machine transition into S3/S4 mode.
 971 *
 972 */
 973int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 974{
 975	int			rc = 0;
 976	unsigned int		delay = XHCI_MAX_HALT_USEC;
 977	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 978	u32			command;
 979	u32			res;
 980
 981	if (!hcd->state)
 982		return 0;
 983
 984	if (hcd->state != HC_STATE_SUSPENDED ||
 985			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 986		return -EINVAL;
 987
 988	xhci_dbc_suspend(xhci);
 989
 990	/* Clear root port wake on bits if wakeup not allowed. */
 991	if (!do_wakeup)
 992		xhci_disable_port_wake_on_bits(xhci);
 993
 994	/* Don't poll the roothubs on bus suspend. */
 995	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 996	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 997	del_timer_sync(&hcd->rh_timer);
 998	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 999	del_timer_sync(&xhci->shared_hcd->rh_timer);
1000
1001	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002		usleep_range(1000, 1500);
1003
1004	spin_lock_irq(&xhci->lock);
1005	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007	/* step 1: stop endpoint */
1008	/* skipped assuming that port suspend has done */
1009
1010	/* step 2: clear Run/Stop bit */
1011	command = readl(&xhci->op_regs->command);
1012	command &= ~CMD_RUN;
1013	writel(command, &xhci->op_regs->command);
1014
1015	/* Some chips from Fresco Logic need an extraordinary delay */
1016	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017
1018	if (xhci_handshake(&xhci->op_regs->status,
1019		      STS_HALT, STS_HALT, delay)) {
1020		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021		spin_unlock_irq(&xhci->lock);
1022		return -ETIMEDOUT;
1023	}
1024	xhci_clear_command_ring(xhci);
1025
1026	/* step 3: save registers */
1027	xhci_save_registers(xhci);
1028
1029	/* step 4: set CSS flag */
1030	command = readl(&xhci->op_regs->command);
1031	command |= CMD_CSS;
1032	writel(command, &xhci->op_regs->command);
1033	xhci->broken_suspend = 0;
1034	if (xhci_handshake(&xhci->op_regs->status,
1035				STS_SAVE, 0, 20 * 1000)) {
1036	/*
1037	 * AMD SNPS xHC 3.0 occasionally does not clear the
1038	 * SSS bit of USBSTS and when driver tries to poll
1039	 * to see if the xHC clears BIT(8) which never happens
1040	 * and driver assumes that controller is not responding
1041	 * and times out. To workaround this, its good to check
1042	 * if SRE and HCE bits are not set (as per xhci
1043	 * Section 5.4.2) and bypass the timeout.
1044	 */
1045		res = readl(&xhci->op_regs->status);
1046		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047		    (((res & STS_SRE) == 0) &&
1048				((res & STS_HCE) == 0))) {
1049			xhci->broken_suspend = 1;
1050		} else {
1051			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052			spin_unlock_irq(&xhci->lock);
1053			return -ETIMEDOUT;
1054		}
1055	}
1056	spin_unlock_irq(&xhci->lock);
1057
1058	/*
1059	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060	 * is about to be suspended.
1061	 */
1062	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063			(!(xhci_all_ports_seen_u0(xhci)))) {
1064		del_timer_sync(&xhci->comp_mode_recovery_timer);
1065		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066				"%s: compliance mode recovery timer deleted",
1067				__func__);
1068	}
1069
1070	/* step 5: remove core well power */
1071	/* synchronize irq when using MSI-X */
1072	xhci_msix_sync_irqs(xhci);
1073
1074	return rc;
1075}
1076EXPORT_SYMBOL_GPL(xhci_suspend);
1077
1078/*
1079 * start xHC (not bus-specific)
1080 *
1081 * This is called when the machine transition from S3/S4 mode.
1082 *
1083 */
1084int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085{
1086	u32			command, temp = 0;
1087	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1088	struct usb_hcd		*secondary_hcd;
1089	int			retval = 0;
1090	bool			comp_timer_running = false;
1091
1092	if (!hcd->state)
1093		return 0;
1094
1095	/* Wait a bit if either of the roothubs need to settle from the
1096	 * transition into bus suspend.
1097	 */
1098
1099	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101		msleep(100);
1102
1103	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1105
1106	spin_lock_irq(&xhci->lock);
1107	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108		hibernated = true;
1109
1110	if (!hibernated) {
1111		/*
1112		 * Some controllers might lose power during suspend, so wait
1113		 * for controller not ready bit to clear, just as in xHC init.
1114		 */
1115		retval = xhci_handshake(&xhci->op_regs->status,
1116					STS_CNR, 0, 10 * 1000 * 1000);
1117		if (retval) {
1118			xhci_warn(xhci, "Controller not ready at resume %d\n",
1119				  retval);
1120			spin_unlock_irq(&xhci->lock);
1121			return retval;
1122		}
1123		/* step 1: restore register */
1124		xhci_restore_registers(xhci);
1125		/* step 2: initialize command ring buffer */
1126		xhci_set_cmd_ring_deq(xhci);
1127		/* step 3: restore state and start state*/
1128		/* step 3: set CRS flag */
1129		command = readl(&xhci->op_regs->command);
1130		command |= CMD_CRS;
1131		writel(command, &xhci->op_regs->command);
1132		/*
1133		 * Some controllers take up to 55+ ms to complete the controller
1134		 * restore so setting the timeout to 100ms. Xhci specification
1135		 * doesn't mention any timeout value.
1136		 */
1137		if (xhci_handshake(&xhci->op_regs->status,
1138			      STS_RESTORE, 0, 100 * 1000)) {
1139			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1140			spin_unlock_irq(&xhci->lock);
1141			return -ETIMEDOUT;
1142		}
1143		temp = readl(&xhci->op_regs->status);
1144	}
1145
1146	/* If restore operation fails, re-initialize the HC during resume */
1147	if ((temp & STS_SRE) || hibernated) {
1148
1149		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1150				!(xhci_all_ports_seen_u0(xhci))) {
1151			del_timer_sync(&xhci->comp_mode_recovery_timer);
1152			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1153				"Compliance Mode Recovery Timer deleted!");
1154		}
1155
1156		/* Let the USB core know _both_ roothubs lost power. */
1157		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1158		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1159
1160		xhci_dbg(xhci, "Stop HCD\n");
1161		xhci_halt(xhci);
1162		xhci_zero_64b_regs(xhci);
1163		xhci_reset(xhci);
1164		spin_unlock_irq(&xhci->lock);
1165		xhci_cleanup_msix(xhci);
1166
1167		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1168		temp = readl(&xhci->op_regs->status);
1169		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1170		temp = readl(&xhci->ir_set->irq_pending);
1171		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1172
1173		xhci_dbg(xhci, "cleaning up memory\n");
1174		xhci_mem_cleanup(xhci);
1175		xhci_debugfs_exit(xhci);
1176		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1177			    readl(&xhci->op_regs->status));
1178
1179		/* USB core calls the PCI reinit and start functions twice:
1180		 * first with the primary HCD, and then with the secondary HCD.
1181		 * If we don't do the same, the host will never be started.
1182		 */
1183		if (!usb_hcd_is_primary_hcd(hcd))
1184			secondary_hcd = hcd;
1185		else
1186			secondary_hcd = xhci->shared_hcd;
1187
1188		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1189		retval = xhci_init(hcd->primary_hcd);
1190		if (retval)
1191			return retval;
1192		comp_timer_running = true;
1193
1194		xhci_dbg(xhci, "Start the primary HCD\n");
1195		retval = xhci_run(hcd->primary_hcd);
1196		if (!retval) {
1197			xhci_dbg(xhci, "Start the secondary HCD\n");
1198			retval = xhci_run(secondary_hcd);
1199		}
1200		hcd->state = HC_STATE_SUSPENDED;
1201		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1202		goto done;
1203	}
1204
1205	/* step 4: set Run/Stop bit */
1206	command = readl(&xhci->op_regs->command);
1207	command |= CMD_RUN;
1208	writel(command, &xhci->op_regs->command);
1209	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1210		  0, 250 * 1000);
1211
1212	/* step 5: walk topology and initialize portsc,
1213	 * portpmsc and portli
1214	 */
1215	/* this is done in bus_resume */
1216
1217	/* step 6: restart each of the previously
1218	 * Running endpoints by ringing their doorbells
1219	 */
1220
1221	spin_unlock_irq(&xhci->lock);
1222
1223	xhci_dbc_resume(xhci);
1224
1225 done:
1226	if (retval == 0) {
1227		/* Resume root hubs only when have pending events. */
1228		if (xhci_pending_portevent(xhci)) {
 
1229			usb_hcd_resume_root_hub(xhci->shared_hcd);
1230			usb_hcd_resume_root_hub(hcd);
1231		}
1232	}
1233
1234	/*
1235	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1236	 * be re-initialized Always after a system resume. Ports are subject
1237	 * to suffer the Compliance Mode issue again. It doesn't matter if
1238	 * ports have entered previously to U0 before system's suspension.
1239	 */
1240	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1241		compliance_mode_recovery_timer_init(xhci);
1242
1243	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1244		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1245
1246	/* Re-enable port polling. */
1247	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1248	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1249	usb_hcd_poll_rh_status(xhci->shared_hcd);
1250	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1251	usb_hcd_poll_rh_status(hcd);
1252
1253	return retval;
1254}
1255EXPORT_SYMBOL_GPL(xhci_resume);
1256#endif	/* CONFIG_PM */
1257
1258/*-------------------------------------------------------------------------*/
1259
1260/*
1261 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1262 * we'll copy the actual data into the TRB address register. This is limited to
1263 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1264 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1265 */
1266static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1267				gfp_t mem_flags)
1268{
1269	if (xhci_urb_suitable_for_idt(urb))
1270		return 0;
1271
1272	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1273}
1274
1275/**
1276 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1277 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1278 * value to right shift 1 for the bitmask.
1279 *
1280 * Index  = (epnum * 2) + direction - 1,
1281 * where direction = 0 for OUT, 1 for IN.
1282 * For control endpoints, the IN index is used (OUT index is unused), so
1283 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1284 */
1285unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1286{
1287	unsigned int index;
1288	if (usb_endpoint_xfer_control(desc))
1289		index = (unsigned int) (usb_endpoint_num(desc)*2);
1290	else
1291		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1292			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1293	return index;
1294}
1295
1296/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1297 * address from the XHCI endpoint index.
1298 */
1299unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1300{
1301	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1302	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1303	return direction | number;
1304}
1305
1306/* Find the flag for this endpoint (for use in the control context).  Use the
1307 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1308 * bit 1, etc.
1309 */
1310static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1311{
1312	return 1 << (xhci_get_endpoint_index(desc) + 1);
1313}
1314
1315/* Find the flag for this endpoint (for use in the control context).  Use the
1316 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1317 * bit 1, etc.
1318 */
1319static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1320{
1321	return 1 << (ep_index + 1);
1322}
1323
1324/* Compute the last valid endpoint context index.  Basically, this is the
1325 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1326 * we find the most significant bit set in the added contexts flags.
1327 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1328 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1329 */
1330unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1331{
1332	return fls(added_ctxs) - 1;
1333}
1334
1335/* Returns 1 if the arguments are OK;
1336 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1337 */
1338static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1339		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1340		const char *func) {
1341	struct xhci_hcd	*xhci;
1342	struct xhci_virt_device	*virt_dev;
1343
1344	if (!hcd || (check_ep && !ep) || !udev) {
1345		pr_debug("xHCI %s called with invalid args\n", func);
1346		return -EINVAL;
1347	}
1348	if (!udev->parent) {
1349		pr_debug("xHCI %s called for root hub\n", func);
1350		return 0;
1351	}
1352
1353	xhci = hcd_to_xhci(hcd);
1354	if (check_virt_dev) {
1355		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1356			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1357					func);
1358			return -EINVAL;
1359		}
1360
1361		virt_dev = xhci->devs[udev->slot_id];
1362		if (virt_dev->udev != udev) {
1363			xhci_dbg(xhci, "xHCI %s called with udev and "
1364					  "virt_dev does not match\n", func);
1365			return -EINVAL;
1366		}
1367	}
1368
1369	if (xhci->xhc_state & XHCI_STATE_HALTED)
1370		return -ENODEV;
1371
1372	return 1;
1373}
1374
1375static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1376		struct usb_device *udev, struct xhci_command *command,
1377		bool ctx_change, bool must_succeed);
1378
1379/*
1380 * Full speed devices may have a max packet size greater than 8 bytes, but the
1381 * USB core doesn't know that until it reads the first 8 bytes of the
1382 * descriptor.  If the usb_device's max packet size changes after that point,
1383 * we need to issue an evaluate context command and wait on it.
1384 */
1385static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1386		unsigned int ep_index, struct urb *urb)
1387{
1388	struct xhci_container_ctx *out_ctx;
1389	struct xhci_input_control_ctx *ctrl_ctx;
1390	struct xhci_ep_ctx *ep_ctx;
1391	struct xhci_command *command;
1392	int max_packet_size;
1393	int hw_max_packet_size;
1394	int ret = 0;
1395
1396	out_ctx = xhci->devs[slot_id]->out_ctx;
1397	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1398	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1399	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1400	if (hw_max_packet_size != max_packet_size) {
1401		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1402				"Max Packet Size for ep 0 changed.");
1403		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1404				"Max packet size in usb_device = %d",
1405				max_packet_size);
1406		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1407				"Max packet size in xHCI HW = %d",
1408				hw_max_packet_size);
1409		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1410				"Issuing evaluate context command.");
1411
1412		/* Set up the input context flags for the command */
1413		/* FIXME: This won't work if a non-default control endpoint
1414		 * changes max packet sizes.
1415		 */
1416
1417		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1418		if (!command)
1419			return -ENOMEM;
1420
1421		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1422		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1423		if (!ctrl_ctx) {
1424			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1425					__func__);
1426			ret = -ENOMEM;
1427			goto command_cleanup;
1428		}
1429		/* Set up the modified control endpoint 0 */
1430		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1431				xhci->devs[slot_id]->out_ctx, ep_index);
1432
1433		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1434		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1435		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1436
1437		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1438		ctrl_ctx->drop_flags = 0;
1439
1440		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1441				true, false);
1442
1443		/* Clean up the input context for later use by bandwidth
1444		 * functions.
1445		 */
1446		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1447command_cleanup:
1448		kfree(command->completion);
1449		kfree(command);
1450	}
1451	return ret;
1452}
1453
1454/*
1455 * non-error returns are a promise to giveback() the urb later
1456 * we drop ownership so next owner (or urb unlink) can get it
1457 */
1458static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1459{
1460	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1461	unsigned long flags;
1462	int ret = 0;
1463	unsigned int slot_id, ep_index;
1464	unsigned int *ep_state;
1465	struct urb_priv	*urb_priv;
1466	int num_tds;
1467
1468	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1469					true, true, __func__) <= 0)
1470		return -EINVAL;
1471
1472	slot_id = urb->dev->slot_id;
1473	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1474	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1475
1476	if (!HCD_HW_ACCESSIBLE(hcd)) {
1477		if (!in_interrupt())
1478			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1479		return -ESHUTDOWN;
1480	}
1481	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1482		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1483		return -ENODEV;
1484	}
1485
1486	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1487		num_tds = urb->number_of_packets;
1488	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1489	    urb->transfer_buffer_length > 0 &&
1490	    urb->transfer_flags & URB_ZERO_PACKET &&
1491	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1492		num_tds = 2;
1493	else
1494		num_tds = 1;
1495
1496	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
 
1497	if (!urb_priv)
1498		return -ENOMEM;
1499
1500	urb_priv->num_tds = num_tds;
1501	urb_priv->num_tds_done = 0;
1502	urb->hcpriv = urb_priv;
1503
1504	trace_xhci_urb_enqueue(urb);
1505
1506	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1507		/* Check to see if the max packet size for the default control
1508		 * endpoint changed during FS device enumeration
1509		 */
1510		if (urb->dev->speed == USB_SPEED_FULL) {
1511			ret = xhci_check_maxpacket(xhci, slot_id,
1512					ep_index, urb);
1513			if (ret < 0) {
1514				xhci_urb_free_priv(urb_priv);
1515				urb->hcpriv = NULL;
1516				return ret;
1517			}
1518		}
1519	}
1520
1521	spin_lock_irqsave(&xhci->lock, flags);
1522
1523	if (xhci->xhc_state & XHCI_STATE_DYING) {
1524		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1525			 urb->ep->desc.bEndpointAddress, urb);
1526		ret = -ESHUTDOWN;
1527		goto free_priv;
1528	}
1529	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1530		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1531			  *ep_state);
1532		ret = -EINVAL;
1533		goto free_priv;
1534	}
1535	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1536		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1537		ret = -EINVAL;
1538		goto free_priv;
1539	}
1540
1541	switch (usb_endpoint_type(&urb->ep->desc)) {
1542
1543	case USB_ENDPOINT_XFER_CONTROL:
1544		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1545					 slot_id, ep_index);
1546		break;
1547	case USB_ENDPOINT_XFER_BULK:
1548		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1549					 slot_id, ep_index);
1550		break;
1551	case USB_ENDPOINT_XFER_INT:
1552		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1553				slot_id, ep_index);
1554		break;
1555	case USB_ENDPOINT_XFER_ISOC:
1556		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1557				slot_id, ep_index);
1558	}
1559
1560	if (ret) {
1561free_priv:
1562		xhci_urb_free_priv(urb_priv);
1563		urb->hcpriv = NULL;
1564	}
1565	spin_unlock_irqrestore(&xhci->lock, flags);
1566	return ret;
1567}
1568
1569/*
1570 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1571 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1572 * should pick up where it left off in the TD, unless a Set Transfer Ring
1573 * Dequeue Pointer is issued.
1574 *
1575 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1576 * the ring.  Since the ring is a contiguous structure, they can't be physically
1577 * removed.  Instead, there are two options:
1578 *
1579 *  1) If the HC is in the middle of processing the URB to be canceled, we
1580 *     simply move the ring's dequeue pointer past those TRBs using the Set
1581 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1582 *     when drivers timeout on the last submitted URB and attempt to cancel.
1583 *
1584 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1585 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1586 *     HC will need to invalidate the any TRBs it has cached after the stop
1587 *     endpoint command, as noted in the xHCI 0.95 errata.
1588 *
1589 *  3) The TD may have completed by the time the Stop Endpoint Command
1590 *     completes, so software needs to handle that case too.
1591 *
1592 * This function should protect against the TD enqueueing code ringing the
1593 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1594 * It also needs to account for multiple cancellations on happening at the same
1595 * time for the same endpoint.
1596 *
1597 * Note that this function can be called in any context, or so says
1598 * usb_hcd_unlink_urb()
1599 */
1600static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1601{
1602	unsigned long flags;
1603	int ret, i;
1604	u32 temp;
1605	struct xhci_hcd *xhci;
1606	struct urb_priv	*urb_priv;
1607	struct xhci_td *td;
1608	unsigned int ep_index;
1609	struct xhci_ring *ep_ring;
1610	struct xhci_virt_ep *ep;
1611	struct xhci_command *command;
1612	struct xhci_virt_device *vdev;
1613
1614	xhci = hcd_to_xhci(hcd);
1615	spin_lock_irqsave(&xhci->lock, flags);
1616
1617	trace_xhci_urb_dequeue(urb);
1618
1619	/* Make sure the URB hasn't completed or been unlinked already */
1620	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1621	if (ret)
1622		goto done;
1623
1624	/* give back URB now if we can't queue it for cancel */
1625	vdev = xhci->devs[urb->dev->slot_id];
1626	urb_priv = urb->hcpriv;
1627	if (!vdev || !urb_priv)
1628		goto err_giveback;
1629
1630	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1631	ep = &vdev->eps[ep_index];
1632	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1633	if (!ep || !ep_ring)
1634		goto err_giveback;
1635
1636	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1637	temp = readl(&xhci->op_regs->status);
1638	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1639		xhci_hc_died(xhci);
1640		goto done;
1641	}
1642
1643	/*
1644	 * check ring is not re-allocated since URB was enqueued. If it is, then
1645	 * make sure none of the ring related pointers in this URB private data
1646	 * are touched, such as td_list, otherwise we overwrite freed data
1647	 */
1648	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1649		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1650		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1651			td = &urb_priv->td[i];
1652			if (!list_empty(&td->cancelled_td_list))
1653				list_del_init(&td->cancelled_td_list);
1654		}
1655		goto err_giveback;
1656	}
1657
1658	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1659		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1660				"HC halted, freeing TD manually.");
1661		for (i = urb_priv->num_tds_done;
1662		     i < urb_priv->num_tds;
1663		     i++) {
1664			td = &urb_priv->td[i];
1665			if (!list_empty(&td->td_list))
1666				list_del_init(&td->td_list);
1667			if (!list_empty(&td->cancelled_td_list))
1668				list_del_init(&td->cancelled_td_list);
1669		}
1670		goto err_giveback;
1671	}
1672
1673	i = urb_priv->num_tds_done;
1674	if (i < urb_priv->num_tds)
1675		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1676				"Cancel URB %p, dev %s, ep 0x%x, "
1677				"starting at offset 0x%llx",
1678				urb, urb->dev->devpath,
1679				urb->ep->desc.bEndpointAddress,
1680				(unsigned long long) xhci_trb_virt_to_dma(
1681					urb_priv->td[i].start_seg,
1682					urb_priv->td[i].first_trb));
1683
1684	for (; i < urb_priv->num_tds; i++) {
1685		td = &urb_priv->td[i];
1686		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1687	}
1688
1689	/* Queue a stop endpoint command, but only if this is
1690	 * the first cancellation to be handled.
1691	 */
1692	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1693		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1694		if (!command) {
1695			ret = -ENOMEM;
1696			goto done;
1697		}
1698		ep->ep_state |= EP_STOP_CMD_PENDING;
1699		ep->stop_cmd_timer.expires = jiffies +
1700			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1701		add_timer(&ep->stop_cmd_timer);
1702		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1703					 ep_index, 0);
1704		xhci_ring_cmd_db(xhci);
1705	}
1706done:
1707	spin_unlock_irqrestore(&xhci->lock, flags);
1708	return ret;
1709
1710err_giveback:
1711	if (urb_priv)
1712		xhci_urb_free_priv(urb_priv);
1713	usb_hcd_unlink_urb_from_ep(hcd, urb);
1714	spin_unlock_irqrestore(&xhci->lock, flags);
1715	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1716	return ret;
1717}
1718
1719/* Drop an endpoint from a new bandwidth configuration for this device.
1720 * Only one call to this function is allowed per endpoint before
1721 * check_bandwidth() or reset_bandwidth() must be called.
1722 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1723 * add the endpoint to the schedule with possibly new parameters denoted by a
1724 * different endpoint descriptor in usb_host_endpoint.
1725 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1726 * not allowed.
1727 *
1728 * The USB core will not allow URBs to be queued to an endpoint that is being
1729 * disabled, so there's no need for mutual exclusion to protect
1730 * the xhci->devs[slot_id] structure.
1731 */
1732static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1733		struct usb_host_endpoint *ep)
1734{
1735	struct xhci_hcd *xhci;
1736	struct xhci_container_ctx *in_ctx, *out_ctx;
1737	struct xhci_input_control_ctx *ctrl_ctx;
1738	unsigned int ep_index;
1739	struct xhci_ep_ctx *ep_ctx;
1740	u32 drop_flag;
1741	u32 new_add_flags, new_drop_flags;
1742	int ret;
1743
1744	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1745	if (ret <= 0)
1746		return ret;
1747	xhci = hcd_to_xhci(hcd);
1748	if (xhci->xhc_state & XHCI_STATE_DYING)
1749		return -ENODEV;
1750
1751	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1752	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1753	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1754		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1755				__func__, drop_flag);
1756		return 0;
1757	}
1758
1759	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1760	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1761	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1762	if (!ctrl_ctx) {
1763		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1764				__func__);
1765		return 0;
1766	}
1767
1768	ep_index = xhci_get_endpoint_index(&ep->desc);
1769	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1770	/* If the HC already knows the endpoint is disabled,
1771	 * or the HCD has noted it is disabled, ignore this request
1772	 */
1773	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1774	    le32_to_cpu(ctrl_ctx->drop_flags) &
1775	    xhci_get_endpoint_flag(&ep->desc)) {
1776		/* Do not warn when called after a usb_device_reset */
1777		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1778			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1779				  __func__, ep);
1780		return 0;
1781	}
1782
1783	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1784	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1785
1786	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1787	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1788
1789	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1790
1791	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1792
1793	if (xhci->quirks & XHCI_MTK_HOST)
1794		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1795
1796	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1797			(unsigned int) ep->desc.bEndpointAddress,
1798			udev->slot_id,
1799			(unsigned int) new_drop_flags,
1800			(unsigned int) new_add_flags);
1801	return 0;
1802}
1803
1804/* Add an endpoint to a new possible bandwidth configuration for this device.
1805 * Only one call to this function is allowed per endpoint before
1806 * check_bandwidth() or reset_bandwidth() must be called.
1807 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1808 * add the endpoint to the schedule with possibly new parameters denoted by a
1809 * different endpoint descriptor in usb_host_endpoint.
1810 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1811 * not allowed.
1812 *
1813 * The USB core will not allow URBs to be queued to an endpoint until the
1814 * configuration or alt setting is installed in the device, so there's no need
1815 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1816 */
1817static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1818		struct usb_host_endpoint *ep)
1819{
1820	struct xhci_hcd *xhci;
1821	struct xhci_container_ctx *in_ctx;
1822	unsigned int ep_index;
1823	struct xhci_input_control_ctx *ctrl_ctx;
1824	struct xhci_ep_ctx *ep_ctx;
1825	u32 added_ctxs;
1826	u32 new_add_flags, new_drop_flags;
1827	struct xhci_virt_device *virt_dev;
1828	int ret = 0;
1829
1830	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1831	if (ret <= 0) {
1832		/* So we won't queue a reset ep command for a root hub */
1833		ep->hcpriv = NULL;
1834		return ret;
1835	}
1836	xhci = hcd_to_xhci(hcd);
1837	if (xhci->xhc_state & XHCI_STATE_DYING)
1838		return -ENODEV;
1839
1840	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1841	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1842		/* FIXME when we have to issue an evaluate endpoint command to
1843		 * deal with ep0 max packet size changing once we get the
1844		 * descriptors
1845		 */
1846		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1847				__func__, added_ctxs);
1848		return 0;
1849	}
1850
1851	virt_dev = xhci->devs[udev->slot_id];
1852	in_ctx = virt_dev->in_ctx;
1853	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1854	if (!ctrl_ctx) {
1855		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1856				__func__);
1857		return 0;
1858	}
1859
1860	ep_index = xhci_get_endpoint_index(&ep->desc);
1861	/* If this endpoint is already in use, and the upper layers are trying
1862	 * to add it again without dropping it, reject the addition.
1863	 */
1864	if (virt_dev->eps[ep_index].ring &&
1865			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1866		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1867				"without dropping it.\n",
1868				(unsigned int) ep->desc.bEndpointAddress);
1869		return -EINVAL;
1870	}
1871
1872	/* If the HCD has already noted the endpoint is enabled,
1873	 * ignore this request.
1874	 */
1875	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1876		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1877				__func__, ep);
1878		return 0;
1879	}
1880
1881	/*
1882	 * Configuration and alternate setting changes must be done in
1883	 * process context, not interrupt context (or so documenation
1884	 * for usb_set_interface() and usb_set_configuration() claim).
1885	 */
1886	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1887		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1888				__func__, ep->desc.bEndpointAddress);
1889		return -ENOMEM;
1890	}
1891
1892	if (xhci->quirks & XHCI_MTK_HOST) {
1893		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1894		if (ret < 0) {
1895			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1896			virt_dev->eps[ep_index].new_ring = NULL;
1897			return ret;
1898		}
1899	}
1900
1901	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1902	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1903
1904	/* If xhci_endpoint_disable() was called for this endpoint, but the
1905	 * xHC hasn't been notified yet through the check_bandwidth() call,
1906	 * this re-adds a new state for the endpoint from the new endpoint
1907	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1908	 * drop flags alone.
1909	 */
1910	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1911
1912	/* Store the usb_device pointer for later use */
1913	ep->hcpriv = udev;
1914
1915	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1916	trace_xhci_add_endpoint(ep_ctx);
1917
1918	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1919
1920	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1921			(unsigned int) ep->desc.bEndpointAddress,
1922			udev->slot_id,
1923			(unsigned int) new_drop_flags,
1924			(unsigned int) new_add_flags);
1925	return 0;
1926}
1927
1928static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1929{
1930	struct xhci_input_control_ctx *ctrl_ctx;
1931	struct xhci_ep_ctx *ep_ctx;
1932	struct xhci_slot_ctx *slot_ctx;
1933	int i;
1934
1935	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1936	if (!ctrl_ctx) {
1937		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1938				__func__);
1939		return;
1940	}
1941
1942	/* When a device's add flag and drop flag are zero, any subsequent
1943	 * configure endpoint command will leave that endpoint's state
1944	 * untouched.  Make sure we don't leave any old state in the input
1945	 * endpoint contexts.
1946	 */
1947	ctrl_ctx->drop_flags = 0;
1948	ctrl_ctx->add_flags = 0;
1949	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1950	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1951	/* Endpoint 0 is always valid */
1952	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1953	for (i = 1; i < 31; i++) {
1954		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1955		ep_ctx->ep_info = 0;
1956		ep_ctx->ep_info2 = 0;
1957		ep_ctx->deq = 0;
1958		ep_ctx->tx_info = 0;
1959	}
1960}
1961
1962static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1963		struct usb_device *udev, u32 *cmd_status)
1964{
1965	int ret;
1966
1967	switch (*cmd_status) {
1968	case COMP_COMMAND_ABORTED:
1969	case COMP_COMMAND_RING_STOPPED:
1970		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1971		ret = -ETIME;
1972		break;
1973	case COMP_RESOURCE_ERROR:
1974		dev_warn(&udev->dev,
1975			 "Not enough host controller resources for new device state.\n");
1976		ret = -ENOMEM;
1977		/* FIXME: can we allocate more resources for the HC? */
1978		break;
1979	case COMP_BANDWIDTH_ERROR:
1980	case COMP_SECONDARY_BANDWIDTH_ERROR:
1981		dev_warn(&udev->dev,
1982			 "Not enough bandwidth for new device state.\n");
1983		ret = -ENOSPC;
1984		/* FIXME: can we go back to the old state? */
1985		break;
1986	case COMP_TRB_ERROR:
1987		/* the HCD set up something wrong */
1988		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1989				"add flag = 1, "
1990				"and endpoint is not disabled.\n");
1991		ret = -EINVAL;
1992		break;
1993	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1994		dev_warn(&udev->dev,
1995			 "ERROR: Incompatible device for endpoint configure command.\n");
1996		ret = -ENODEV;
1997		break;
1998	case COMP_SUCCESS:
1999		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2000				"Successful Endpoint Configure command");
2001		ret = 0;
2002		break;
2003	default:
2004		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2005				*cmd_status);
2006		ret = -EINVAL;
2007		break;
2008	}
2009	return ret;
2010}
2011
2012static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2013		struct usb_device *udev, u32 *cmd_status)
2014{
2015	int ret;
2016
2017	switch (*cmd_status) {
2018	case COMP_COMMAND_ABORTED:
2019	case COMP_COMMAND_RING_STOPPED:
2020		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2021		ret = -ETIME;
2022		break;
2023	case COMP_PARAMETER_ERROR:
2024		dev_warn(&udev->dev,
2025			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2026		ret = -EINVAL;
2027		break;
2028	case COMP_SLOT_NOT_ENABLED_ERROR:
2029		dev_warn(&udev->dev,
2030			"WARN: slot not enabled for evaluate context command.\n");
2031		ret = -EINVAL;
2032		break;
2033	case COMP_CONTEXT_STATE_ERROR:
2034		dev_warn(&udev->dev,
2035			"WARN: invalid context state for evaluate context command.\n");
2036		ret = -EINVAL;
2037		break;
2038	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2039		dev_warn(&udev->dev,
2040			"ERROR: Incompatible device for evaluate context command.\n");
2041		ret = -ENODEV;
2042		break;
2043	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2044		/* Max Exit Latency too large error */
2045		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2046		ret = -EINVAL;
2047		break;
2048	case COMP_SUCCESS:
2049		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2050				"Successful evaluate context command");
2051		ret = 0;
2052		break;
2053	default:
2054		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2055			*cmd_status);
2056		ret = -EINVAL;
2057		break;
2058	}
2059	return ret;
2060}
2061
2062static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2063		struct xhci_input_control_ctx *ctrl_ctx)
2064{
2065	u32 valid_add_flags;
2066	u32 valid_drop_flags;
2067
2068	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2069	 * (bit 1).  The default control endpoint is added during the Address
2070	 * Device command and is never removed until the slot is disabled.
2071	 */
2072	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2073	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2074
2075	/* Use hweight32 to count the number of ones in the add flags, or
2076	 * number of endpoints added.  Don't count endpoints that are changed
2077	 * (both added and dropped).
2078	 */
2079	return hweight32(valid_add_flags) -
2080		hweight32(valid_add_flags & valid_drop_flags);
2081}
2082
2083static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2084		struct xhci_input_control_ctx *ctrl_ctx)
2085{
2086	u32 valid_add_flags;
2087	u32 valid_drop_flags;
2088
2089	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2090	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2091
2092	return hweight32(valid_drop_flags) -
2093		hweight32(valid_add_flags & valid_drop_flags);
2094}
2095
2096/*
2097 * We need to reserve the new number of endpoints before the configure endpoint
2098 * command completes.  We can't subtract the dropped endpoints from the number
2099 * of active endpoints until the command completes because we can oversubscribe
2100 * the host in this case:
2101 *
2102 *  - the first configure endpoint command drops more endpoints than it adds
2103 *  - a second configure endpoint command that adds more endpoints is queued
2104 *  - the first configure endpoint command fails, so the config is unchanged
2105 *  - the second command may succeed, even though there isn't enough resources
2106 *
2107 * Must be called with xhci->lock held.
2108 */
2109static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2110		struct xhci_input_control_ctx *ctrl_ctx)
2111{
2112	u32 added_eps;
2113
2114	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2115	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2116		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2117				"Not enough ep ctxs: "
2118				"%u active, need to add %u, limit is %u.",
2119				xhci->num_active_eps, added_eps,
2120				xhci->limit_active_eps);
2121		return -ENOMEM;
2122	}
2123	xhci->num_active_eps += added_eps;
2124	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2125			"Adding %u ep ctxs, %u now active.", added_eps,
2126			xhci->num_active_eps);
2127	return 0;
2128}
2129
2130/*
2131 * The configure endpoint was failed by the xHC for some other reason, so we
2132 * need to revert the resources that failed configuration would have used.
2133 *
2134 * Must be called with xhci->lock held.
2135 */
2136static void xhci_free_host_resources(struct xhci_hcd *xhci,
2137		struct xhci_input_control_ctx *ctrl_ctx)
2138{
2139	u32 num_failed_eps;
2140
2141	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2142	xhci->num_active_eps -= num_failed_eps;
2143	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2144			"Removing %u failed ep ctxs, %u now active.",
2145			num_failed_eps,
2146			xhci->num_active_eps);
2147}
2148
2149/*
2150 * Now that the command has completed, clean up the active endpoint count by
2151 * subtracting out the endpoints that were dropped (but not changed).
2152 *
2153 * Must be called with xhci->lock held.
2154 */
2155static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2156		struct xhci_input_control_ctx *ctrl_ctx)
2157{
2158	u32 num_dropped_eps;
2159
2160	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2161	xhci->num_active_eps -= num_dropped_eps;
2162	if (num_dropped_eps)
2163		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2164				"Removing %u dropped ep ctxs, %u now active.",
2165				num_dropped_eps,
2166				xhci->num_active_eps);
2167}
2168
2169static unsigned int xhci_get_block_size(struct usb_device *udev)
2170{
2171	switch (udev->speed) {
2172	case USB_SPEED_LOW:
2173	case USB_SPEED_FULL:
2174		return FS_BLOCK;
2175	case USB_SPEED_HIGH:
2176		return HS_BLOCK;
2177	case USB_SPEED_SUPER:
2178	case USB_SPEED_SUPER_PLUS:
2179		return SS_BLOCK;
2180	case USB_SPEED_UNKNOWN:
2181	case USB_SPEED_WIRELESS:
2182	default:
2183		/* Should never happen */
2184		return 1;
2185	}
2186}
2187
2188static unsigned int
2189xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2190{
2191	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2192		return LS_OVERHEAD;
2193	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2194		return FS_OVERHEAD;
2195	return HS_OVERHEAD;
2196}
2197
2198/* If we are changing a LS/FS device under a HS hub,
2199 * make sure (if we are activating a new TT) that the HS bus has enough
2200 * bandwidth for this new TT.
2201 */
2202static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2203		struct xhci_virt_device *virt_dev,
2204		int old_active_eps)
2205{
2206	struct xhci_interval_bw_table *bw_table;
2207	struct xhci_tt_bw_info *tt_info;
2208
2209	/* Find the bandwidth table for the root port this TT is attached to. */
2210	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2211	tt_info = virt_dev->tt_info;
2212	/* If this TT already had active endpoints, the bandwidth for this TT
2213	 * has already been added.  Removing all periodic endpoints (and thus
2214	 * making the TT enactive) will only decrease the bandwidth used.
2215	 */
2216	if (old_active_eps)
2217		return 0;
2218	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2219		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2220			return -ENOMEM;
2221		return 0;
2222	}
2223	/* Not sure why we would have no new active endpoints...
2224	 *
2225	 * Maybe because of an Evaluate Context change for a hub update or a
2226	 * control endpoint 0 max packet size change?
2227	 * FIXME: skip the bandwidth calculation in that case.
2228	 */
2229	return 0;
2230}
2231
2232static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2233		struct xhci_virt_device *virt_dev)
2234{
2235	unsigned int bw_reserved;
2236
2237	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2238	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2239		return -ENOMEM;
2240
2241	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2242	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2243		return -ENOMEM;
2244
2245	return 0;
2246}
2247
2248/*
2249 * This algorithm is a very conservative estimate of the worst-case scheduling
2250 * scenario for any one interval.  The hardware dynamically schedules the
2251 * packets, so we can't tell which microframe could be the limiting factor in
2252 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2253 *
2254 * Obviously, we can't solve an NP complete problem to find the minimum worst
2255 * case scenario.  Instead, we come up with an estimate that is no less than
2256 * the worst case bandwidth used for any one microframe, but may be an
2257 * over-estimate.
2258 *
2259 * We walk the requirements for each endpoint by interval, starting with the
2260 * smallest interval, and place packets in the schedule where there is only one
2261 * possible way to schedule packets for that interval.  In order to simplify
2262 * this algorithm, we record the largest max packet size for each interval, and
2263 * assume all packets will be that size.
2264 *
2265 * For interval 0, we obviously must schedule all packets for each interval.
2266 * The bandwidth for interval 0 is just the amount of data to be transmitted
2267 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2268 * the number of packets).
2269 *
2270 * For interval 1, we have two possible microframes to schedule those packets
2271 * in.  For this algorithm, if we can schedule the same number of packets for
2272 * each possible scheduling opportunity (each microframe), we will do so.  The
2273 * remaining number of packets will be saved to be transmitted in the gaps in
2274 * the next interval's scheduling sequence.
2275 *
2276 * As we move those remaining packets to be scheduled with interval 2 packets,
2277 * we have to double the number of remaining packets to transmit.  This is
2278 * because the intervals are actually powers of 2, and we would be transmitting
2279 * the previous interval's packets twice in this interval.  We also have to be
2280 * sure that when we look at the largest max packet size for this interval, we
2281 * also look at the largest max packet size for the remaining packets and take
2282 * the greater of the two.
2283 *
2284 * The algorithm continues to evenly distribute packets in each scheduling
2285 * opportunity, and push the remaining packets out, until we get to the last
2286 * interval.  Then those packets and their associated overhead are just added
2287 * to the bandwidth used.
2288 */
2289static int xhci_check_bw_table(struct xhci_hcd *xhci,
2290		struct xhci_virt_device *virt_dev,
2291		int old_active_eps)
2292{
2293	unsigned int bw_reserved;
2294	unsigned int max_bandwidth;
2295	unsigned int bw_used;
2296	unsigned int block_size;
2297	struct xhci_interval_bw_table *bw_table;
2298	unsigned int packet_size = 0;
2299	unsigned int overhead = 0;
2300	unsigned int packets_transmitted = 0;
2301	unsigned int packets_remaining = 0;
2302	unsigned int i;
2303
2304	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2305		return xhci_check_ss_bw(xhci, virt_dev);
2306
2307	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2308		max_bandwidth = HS_BW_LIMIT;
2309		/* Convert percent of bus BW reserved to blocks reserved */
2310		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2311	} else {
2312		max_bandwidth = FS_BW_LIMIT;
2313		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2314	}
2315
2316	bw_table = virt_dev->bw_table;
2317	/* We need to translate the max packet size and max ESIT payloads into
2318	 * the units the hardware uses.
2319	 */
2320	block_size = xhci_get_block_size(virt_dev->udev);
2321
2322	/* If we are manipulating a LS/FS device under a HS hub, double check
2323	 * that the HS bus has enough bandwidth if we are activing a new TT.
2324	 */
2325	if (virt_dev->tt_info) {
2326		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2327				"Recalculating BW for rootport %u",
2328				virt_dev->real_port);
2329		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2330			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2331					"newly activated TT.\n");
2332			return -ENOMEM;
2333		}
2334		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2335				"Recalculating BW for TT slot %u port %u",
2336				virt_dev->tt_info->slot_id,
2337				virt_dev->tt_info->ttport);
2338	} else {
2339		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340				"Recalculating BW for rootport %u",
2341				virt_dev->real_port);
2342	}
2343
2344	/* Add in how much bandwidth will be used for interval zero, or the
2345	 * rounded max ESIT payload + number of packets * largest overhead.
2346	 */
2347	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2348		bw_table->interval_bw[0].num_packets *
2349		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2350
2351	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2352		unsigned int bw_added;
2353		unsigned int largest_mps;
2354		unsigned int interval_overhead;
2355
2356		/*
2357		 * How many packets could we transmit in this interval?
2358		 * If packets didn't fit in the previous interval, we will need
2359		 * to transmit that many packets twice within this interval.
2360		 */
2361		packets_remaining = 2 * packets_remaining +
2362			bw_table->interval_bw[i].num_packets;
2363
2364		/* Find the largest max packet size of this or the previous
2365		 * interval.
2366		 */
2367		if (list_empty(&bw_table->interval_bw[i].endpoints))
2368			largest_mps = 0;
2369		else {
2370			struct xhci_virt_ep *virt_ep;
2371			struct list_head *ep_entry;
2372
2373			ep_entry = bw_table->interval_bw[i].endpoints.next;
2374			virt_ep = list_entry(ep_entry,
2375					struct xhci_virt_ep, bw_endpoint_list);
2376			/* Convert to blocks, rounding up */
2377			largest_mps = DIV_ROUND_UP(
2378					virt_ep->bw_info.max_packet_size,
2379					block_size);
2380		}
2381		if (largest_mps > packet_size)
2382			packet_size = largest_mps;
2383
2384		/* Use the larger overhead of this or the previous interval. */
2385		interval_overhead = xhci_get_largest_overhead(
2386				&bw_table->interval_bw[i]);
2387		if (interval_overhead > overhead)
2388			overhead = interval_overhead;
2389
2390		/* How many packets can we evenly distribute across
2391		 * (1 << (i + 1)) possible scheduling opportunities?
2392		 */
2393		packets_transmitted = packets_remaining >> (i + 1);
2394
2395		/* Add in the bandwidth used for those scheduled packets */
2396		bw_added = packets_transmitted * (overhead + packet_size);
2397
2398		/* How many packets do we have remaining to transmit? */
2399		packets_remaining = packets_remaining % (1 << (i + 1));
2400
2401		/* What largest max packet size should those packets have? */
2402		/* If we've transmitted all packets, don't carry over the
2403		 * largest packet size.
2404		 */
2405		if (packets_remaining == 0) {
2406			packet_size = 0;
2407			overhead = 0;
2408		} else if (packets_transmitted > 0) {
2409			/* Otherwise if we do have remaining packets, and we've
2410			 * scheduled some packets in this interval, take the
2411			 * largest max packet size from endpoints with this
2412			 * interval.
2413			 */
2414			packet_size = largest_mps;
2415			overhead = interval_overhead;
2416		}
2417		/* Otherwise carry over packet_size and overhead from the last
2418		 * time we had a remainder.
2419		 */
2420		bw_used += bw_added;
2421		if (bw_used > max_bandwidth) {
2422			xhci_warn(xhci, "Not enough bandwidth. "
2423					"Proposed: %u, Max: %u\n",
2424				bw_used, max_bandwidth);
2425			return -ENOMEM;
2426		}
2427	}
2428	/*
2429	 * Ok, we know we have some packets left over after even-handedly
2430	 * scheduling interval 15.  We don't know which microframes they will
2431	 * fit into, so we over-schedule and say they will be scheduled every
2432	 * microframe.
2433	 */
2434	if (packets_remaining > 0)
2435		bw_used += overhead + packet_size;
2436
2437	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2438		unsigned int port_index = virt_dev->real_port - 1;
2439
2440		/* OK, we're manipulating a HS device attached to a
2441		 * root port bandwidth domain.  Include the number of active TTs
2442		 * in the bandwidth used.
2443		 */
2444		bw_used += TT_HS_OVERHEAD *
2445			xhci->rh_bw[port_index].num_active_tts;
2446	}
2447
2448	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2449		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2450		"Available: %u " "percent",
2451		bw_used, max_bandwidth, bw_reserved,
2452		(max_bandwidth - bw_used - bw_reserved) * 100 /
2453		max_bandwidth);
2454
2455	bw_used += bw_reserved;
2456	if (bw_used > max_bandwidth) {
2457		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2458				bw_used, max_bandwidth);
2459		return -ENOMEM;
2460	}
2461
2462	bw_table->bw_used = bw_used;
2463	return 0;
2464}
2465
2466static bool xhci_is_async_ep(unsigned int ep_type)
2467{
2468	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2469					ep_type != ISOC_IN_EP &&
2470					ep_type != INT_IN_EP);
2471}
2472
2473static bool xhci_is_sync_in_ep(unsigned int ep_type)
2474{
2475	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2476}
2477
2478static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2479{
2480	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2481
2482	if (ep_bw->ep_interval == 0)
2483		return SS_OVERHEAD_BURST +
2484			(ep_bw->mult * ep_bw->num_packets *
2485					(SS_OVERHEAD + mps));
2486	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2487				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2488				1 << ep_bw->ep_interval);
2489
2490}
2491
2492static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2493		struct xhci_bw_info *ep_bw,
2494		struct xhci_interval_bw_table *bw_table,
2495		struct usb_device *udev,
2496		struct xhci_virt_ep *virt_ep,
2497		struct xhci_tt_bw_info *tt_info)
2498{
2499	struct xhci_interval_bw	*interval_bw;
2500	int normalized_interval;
2501
2502	if (xhci_is_async_ep(ep_bw->type))
2503		return;
2504
2505	if (udev->speed >= USB_SPEED_SUPER) {
2506		if (xhci_is_sync_in_ep(ep_bw->type))
2507			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2508				xhci_get_ss_bw_consumed(ep_bw);
2509		else
2510			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2511				xhci_get_ss_bw_consumed(ep_bw);
2512		return;
2513	}
2514
2515	/* SuperSpeed endpoints never get added to intervals in the table, so
2516	 * this check is only valid for HS/FS/LS devices.
2517	 */
2518	if (list_empty(&virt_ep->bw_endpoint_list))
2519		return;
2520	/* For LS/FS devices, we need to translate the interval expressed in
2521	 * microframes to frames.
2522	 */
2523	if (udev->speed == USB_SPEED_HIGH)
2524		normalized_interval = ep_bw->ep_interval;
2525	else
2526		normalized_interval = ep_bw->ep_interval - 3;
2527
2528	if (normalized_interval == 0)
2529		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2530	interval_bw = &bw_table->interval_bw[normalized_interval];
2531	interval_bw->num_packets -= ep_bw->num_packets;
2532	switch (udev->speed) {
2533	case USB_SPEED_LOW:
2534		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2535		break;
2536	case USB_SPEED_FULL:
2537		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2538		break;
2539	case USB_SPEED_HIGH:
2540		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2541		break;
2542	case USB_SPEED_SUPER:
2543	case USB_SPEED_SUPER_PLUS:
2544	case USB_SPEED_UNKNOWN:
2545	case USB_SPEED_WIRELESS:
2546		/* Should never happen because only LS/FS/HS endpoints will get
2547		 * added to the endpoint list.
2548		 */
2549		return;
2550	}
2551	if (tt_info)
2552		tt_info->active_eps -= 1;
2553	list_del_init(&virt_ep->bw_endpoint_list);
2554}
2555
2556static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2557		struct xhci_bw_info *ep_bw,
2558		struct xhci_interval_bw_table *bw_table,
2559		struct usb_device *udev,
2560		struct xhci_virt_ep *virt_ep,
2561		struct xhci_tt_bw_info *tt_info)
2562{
2563	struct xhci_interval_bw	*interval_bw;
2564	struct xhci_virt_ep *smaller_ep;
2565	int normalized_interval;
2566
2567	if (xhci_is_async_ep(ep_bw->type))
2568		return;
2569
2570	if (udev->speed == USB_SPEED_SUPER) {
2571		if (xhci_is_sync_in_ep(ep_bw->type))
2572			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2573				xhci_get_ss_bw_consumed(ep_bw);
2574		else
2575			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2576				xhci_get_ss_bw_consumed(ep_bw);
2577		return;
2578	}
2579
2580	/* For LS/FS devices, we need to translate the interval expressed in
2581	 * microframes to frames.
2582	 */
2583	if (udev->speed == USB_SPEED_HIGH)
2584		normalized_interval = ep_bw->ep_interval;
2585	else
2586		normalized_interval = ep_bw->ep_interval - 3;
2587
2588	if (normalized_interval == 0)
2589		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2590	interval_bw = &bw_table->interval_bw[normalized_interval];
2591	interval_bw->num_packets += ep_bw->num_packets;
2592	switch (udev->speed) {
2593	case USB_SPEED_LOW:
2594		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2595		break;
2596	case USB_SPEED_FULL:
2597		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2598		break;
2599	case USB_SPEED_HIGH:
2600		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2601		break;
2602	case USB_SPEED_SUPER:
2603	case USB_SPEED_SUPER_PLUS:
2604	case USB_SPEED_UNKNOWN:
2605	case USB_SPEED_WIRELESS:
2606		/* Should never happen because only LS/FS/HS endpoints will get
2607		 * added to the endpoint list.
2608		 */
2609		return;
2610	}
2611
2612	if (tt_info)
2613		tt_info->active_eps += 1;
2614	/* Insert the endpoint into the list, largest max packet size first. */
2615	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2616			bw_endpoint_list) {
2617		if (ep_bw->max_packet_size >=
2618				smaller_ep->bw_info.max_packet_size) {
2619			/* Add the new ep before the smaller endpoint */
2620			list_add_tail(&virt_ep->bw_endpoint_list,
2621					&smaller_ep->bw_endpoint_list);
2622			return;
2623		}
2624	}
2625	/* Add the new endpoint at the end of the list. */
2626	list_add_tail(&virt_ep->bw_endpoint_list,
2627			&interval_bw->endpoints);
2628}
2629
2630void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2631		struct xhci_virt_device *virt_dev,
2632		int old_active_eps)
2633{
2634	struct xhci_root_port_bw_info *rh_bw_info;
2635	if (!virt_dev->tt_info)
2636		return;
2637
2638	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2639	if (old_active_eps == 0 &&
2640				virt_dev->tt_info->active_eps != 0) {
2641		rh_bw_info->num_active_tts += 1;
2642		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2643	} else if (old_active_eps != 0 &&
2644				virt_dev->tt_info->active_eps == 0) {
2645		rh_bw_info->num_active_tts -= 1;
2646		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2647	}
2648}
2649
2650static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2651		struct xhci_virt_device *virt_dev,
2652		struct xhci_container_ctx *in_ctx)
2653{
2654	struct xhci_bw_info ep_bw_info[31];
2655	int i;
2656	struct xhci_input_control_ctx *ctrl_ctx;
2657	int old_active_eps = 0;
2658
2659	if (virt_dev->tt_info)
2660		old_active_eps = virt_dev->tt_info->active_eps;
2661
2662	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2663	if (!ctrl_ctx) {
2664		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2665				__func__);
2666		return -ENOMEM;
2667	}
2668
2669	for (i = 0; i < 31; i++) {
2670		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2671			continue;
2672
2673		/* Make a copy of the BW info in case we need to revert this */
2674		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2675				sizeof(ep_bw_info[i]));
2676		/* Drop the endpoint from the interval table if the endpoint is
2677		 * being dropped or changed.
2678		 */
2679		if (EP_IS_DROPPED(ctrl_ctx, i))
2680			xhci_drop_ep_from_interval_table(xhci,
2681					&virt_dev->eps[i].bw_info,
2682					virt_dev->bw_table,
2683					virt_dev->udev,
2684					&virt_dev->eps[i],
2685					virt_dev->tt_info);
2686	}
2687	/* Overwrite the information stored in the endpoints' bw_info */
2688	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2689	for (i = 0; i < 31; i++) {
2690		/* Add any changed or added endpoints to the interval table */
2691		if (EP_IS_ADDED(ctrl_ctx, i))
2692			xhci_add_ep_to_interval_table(xhci,
2693					&virt_dev->eps[i].bw_info,
2694					virt_dev->bw_table,
2695					virt_dev->udev,
2696					&virt_dev->eps[i],
2697					virt_dev->tt_info);
2698	}
2699
2700	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2701		/* Ok, this fits in the bandwidth we have.
2702		 * Update the number of active TTs.
2703		 */
2704		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2705		return 0;
2706	}
2707
2708	/* We don't have enough bandwidth for this, revert the stored info. */
2709	for (i = 0; i < 31; i++) {
2710		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2711			continue;
2712
2713		/* Drop the new copies of any added or changed endpoints from
2714		 * the interval table.
2715		 */
2716		if (EP_IS_ADDED(ctrl_ctx, i)) {
2717			xhci_drop_ep_from_interval_table(xhci,
2718					&virt_dev->eps[i].bw_info,
2719					virt_dev->bw_table,
2720					virt_dev->udev,
2721					&virt_dev->eps[i],
2722					virt_dev->tt_info);
2723		}
2724		/* Revert the endpoint back to its old information */
2725		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2726				sizeof(ep_bw_info[i]));
2727		/* Add any changed or dropped endpoints back into the table */
2728		if (EP_IS_DROPPED(ctrl_ctx, i))
2729			xhci_add_ep_to_interval_table(xhci,
2730					&virt_dev->eps[i].bw_info,
2731					virt_dev->bw_table,
2732					virt_dev->udev,
2733					&virt_dev->eps[i],
2734					virt_dev->tt_info);
2735	}
2736	return -ENOMEM;
2737}
2738
2739
2740/* Issue a configure endpoint command or evaluate context command
2741 * and wait for it to finish.
2742 */
2743static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2744		struct usb_device *udev,
2745		struct xhci_command *command,
2746		bool ctx_change, bool must_succeed)
2747{
2748	int ret;
2749	unsigned long flags;
2750	struct xhci_input_control_ctx *ctrl_ctx;
2751	struct xhci_virt_device *virt_dev;
2752	struct xhci_slot_ctx *slot_ctx;
2753
2754	if (!command)
2755		return -EINVAL;
2756
2757	spin_lock_irqsave(&xhci->lock, flags);
2758
2759	if (xhci->xhc_state & XHCI_STATE_DYING) {
2760		spin_unlock_irqrestore(&xhci->lock, flags);
2761		return -ESHUTDOWN;
2762	}
2763
2764	virt_dev = xhci->devs[udev->slot_id];
2765
2766	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2767	if (!ctrl_ctx) {
2768		spin_unlock_irqrestore(&xhci->lock, flags);
2769		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2770				__func__);
2771		return -ENOMEM;
2772	}
2773
2774	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2775			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2776		spin_unlock_irqrestore(&xhci->lock, flags);
2777		xhci_warn(xhci, "Not enough host resources, "
2778				"active endpoint contexts = %u\n",
2779				xhci->num_active_eps);
2780		return -ENOMEM;
2781	}
2782	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2783	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2784		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2785			xhci_free_host_resources(xhci, ctrl_ctx);
2786		spin_unlock_irqrestore(&xhci->lock, flags);
2787		xhci_warn(xhci, "Not enough bandwidth\n");
2788		return -ENOMEM;
2789	}
2790
2791	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2792
2793	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2794	trace_xhci_configure_endpoint(slot_ctx);
2795
2796	if (!ctx_change)
2797		ret = xhci_queue_configure_endpoint(xhci, command,
2798				command->in_ctx->dma,
2799				udev->slot_id, must_succeed);
2800	else
2801		ret = xhci_queue_evaluate_context(xhci, command,
2802				command->in_ctx->dma,
2803				udev->slot_id, must_succeed);
2804	if (ret < 0) {
2805		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2806			xhci_free_host_resources(xhci, ctrl_ctx);
2807		spin_unlock_irqrestore(&xhci->lock, flags);
2808		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2809				"FIXME allocate a new ring segment");
2810		return -ENOMEM;
2811	}
2812	xhci_ring_cmd_db(xhci);
2813	spin_unlock_irqrestore(&xhci->lock, flags);
2814
2815	/* Wait for the configure endpoint command to complete */
2816	wait_for_completion(command->completion);
2817
2818	if (!ctx_change)
2819		ret = xhci_configure_endpoint_result(xhci, udev,
2820						     &command->status);
2821	else
2822		ret = xhci_evaluate_context_result(xhci, udev,
2823						   &command->status);
2824
2825	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2826		spin_lock_irqsave(&xhci->lock, flags);
2827		/* If the command failed, remove the reserved resources.
2828		 * Otherwise, clean up the estimate to include dropped eps.
2829		 */
2830		if (ret)
2831			xhci_free_host_resources(xhci, ctrl_ctx);
2832		else
2833			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2834		spin_unlock_irqrestore(&xhci->lock, flags);
2835	}
2836	return ret;
2837}
2838
2839static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2840	struct xhci_virt_device *vdev, int i)
2841{
2842	struct xhci_virt_ep *ep = &vdev->eps[i];
2843
2844	if (ep->ep_state & EP_HAS_STREAMS) {
2845		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2846				xhci_get_endpoint_address(i));
2847		xhci_free_stream_info(xhci, ep->stream_info);
2848		ep->stream_info = NULL;
2849		ep->ep_state &= ~EP_HAS_STREAMS;
2850	}
2851}
2852
2853/* Called after one or more calls to xhci_add_endpoint() or
2854 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2855 * to call xhci_reset_bandwidth().
2856 *
2857 * Since we are in the middle of changing either configuration or
2858 * installing a new alt setting, the USB core won't allow URBs to be
2859 * enqueued for any endpoint on the old config or interface.  Nothing
2860 * else should be touching the xhci->devs[slot_id] structure, so we
2861 * don't need to take the xhci->lock for manipulating that.
2862 */
2863static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2864{
2865	int i;
2866	int ret = 0;
2867	struct xhci_hcd *xhci;
2868	struct xhci_virt_device	*virt_dev;
2869	struct xhci_input_control_ctx *ctrl_ctx;
2870	struct xhci_slot_ctx *slot_ctx;
2871	struct xhci_command *command;
2872
2873	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2874	if (ret <= 0)
2875		return ret;
2876	xhci = hcd_to_xhci(hcd);
2877	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2878		(xhci->xhc_state & XHCI_STATE_REMOVING))
2879		return -ENODEV;
2880
2881	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2882	virt_dev = xhci->devs[udev->slot_id];
2883
2884	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2885	if (!command)
2886		return -ENOMEM;
2887
2888	command->in_ctx = virt_dev->in_ctx;
2889
2890	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2891	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2892	if (!ctrl_ctx) {
2893		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2894				__func__);
2895		ret = -ENOMEM;
2896		goto command_cleanup;
2897	}
2898	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2899	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2900	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2901
2902	/* Don't issue the command if there's no endpoints to update. */
2903	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2904	    ctrl_ctx->drop_flags == 0) {
2905		ret = 0;
2906		goto command_cleanup;
2907	}
2908	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2909	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2910	for (i = 31; i >= 1; i--) {
2911		__le32 le32 = cpu_to_le32(BIT(i));
2912
2913		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2914		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2915			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2916			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2917			break;
2918		}
2919	}
2920
2921	ret = xhci_configure_endpoint(xhci, udev, command,
2922			false, false);
2923	if (ret)
2924		/* Callee should call reset_bandwidth() */
2925		goto command_cleanup;
2926
2927	/* Free any rings that were dropped, but not changed. */
2928	for (i = 1; i < 31; i++) {
2929		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2930		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2931			xhci_free_endpoint_ring(xhci, virt_dev, i);
2932			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2933		}
2934	}
2935	xhci_zero_in_ctx(xhci, virt_dev);
2936	/*
2937	 * Install any rings for completely new endpoints or changed endpoints,
2938	 * and free any old rings from changed endpoints.
2939	 */
2940	for (i = 1; i < 31; i++) {
2941		if (!virt_dev->eps[i].new_ring)
2942			continue;
2943		/* Only free the old ring if it exists.
2944		 * It may not if this is the first add of an endpoint.
2945		 */
2946		if (virt_dev->eps[i].ring) {
2947			xhci_free_endpoint_ring(xhci, virt_dev, i);
2948		}
2949		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2950		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2951		virt_dev->eps[i].new_ring = NULL;
2952	}
2953command_cleanup:
2954	kfree(command->completion);
2955	kfree(command);
2956
2957	return ret;
2958}
2959
2960static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2961{
2962	struct xhci_hcd *xhci;
2963	struct xhci_virt_device	*virt_dev;
2964	int i, ret;
2965
2966	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2967	if (ret <= 0)
2968		return;
2969	xhci = hcd_to_xhci(hcd);
2970
2971	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2972	virt_dev = xhci->devs[udev->slot_id];
2973	/* Free any rings allocated for added endpoints */
2974	for (i = 0; i < 31; i++) {
2975		if (virt_dev->eps[i].new_ring) {
2976			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2977			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2978			virt_dev->eps[i].new_ring = NULL;
2979		}
2980	}
2981	xhci_zero_in_ctx(xhci, virt_dev);
2982}
2983
2984static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2985		struct xhci_container_ctx *in_ctx,
2986		struct xhci_container_ctx *out_ctx,
2987		struct xhci_input_control_ctx *ctrl_ctx,
2988		u32 add_flags, u32 drop_flags)
2989{
2990	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2991	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2992	xhci_slot_copy(xhci, in_ctx, out_ctx);
2993	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2994}
2995
2996static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2997		unsigned int slot_id, unsigned int ep_index,
2998		struct xhci_dequeue_state *deq_state)
2999{
3000	struct xhci_input_control_ctx *ctrl_ctx;
3001	struct xhci_container_ctx *in_ctx;
3002	struct xhci_ep_ctx *ep_ctx;
3003	u32 added_ctxs;
3004	dma_addr_t addr;
3005
3006	in_ctx = xhci->devs[slot_id]->in_ctx;
3007	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3008	if (!ctrl_ctx) {
3009		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3010				__func__);
3011		return;
3012	}
3013
3014	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3015			xhci->devs[slot_id]->out_ctx, ep_index);
3016	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3017	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3018			deq_state->new_deq_ptr);
3019	if (addr == 0) {
3020		xhci_warn(xhci, "WARN Cannot submit config ep after "
3021				"reset ep command\n");
3022		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3023				deq_state->new_deq_seg,
3024				deq_state->new_deq_ptr);
3025		return;
3026	}
3027	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3028
3029	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3030	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3031			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3032			added_ctxs, added_ctxs);
3033}
3034
3035void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3036			       unsigned int stream_id, struct xhci_td *td)
3037{
3038	struct xhci_dequeue_state deq_state;
3039	struct usb_device *udev = td->urb->dev;
3040
3041	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3042			"Cleaning up stalled endpoint ring");
3043	/* We need to move the HW's dequeue pointer past this TD,
3044	 * or it will attempt to resend it on the next doorbell ring.
3045	 */
3046	xhci_find_new_dequeue_state(xhci, udev->slot_id,
3047			ep_index, stream_id, td, &deq_state);
3048
3049	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3050		return;
3051
3052	/* HW with the reset endpoint quirk will use the saved dequeue state to
3053	 * issue a configure endpoint command later.
3054	 */
3055	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3056		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3057				"Queueing new dequeue state");
3058		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3059				ep_index, &deq_state);
3060	} else {
3061		/* Better hope no one uses the input context between now and the
3062		 * reset endpoint completion!
3063		 * XXX: No idea how this hardware will react when stream rings
3064		 * are enabled.
3065		 */
3066		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3067				"Setting up input context for "
3068				"configure endpoint command");
3069		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3070				ep_index, &deq_state);
3071	}
3072}
3073
3074static void xhci_endpoint_disable(struct usb_hcd *hcd,
3075				  struct usb_host_endpoint *host_ep)
3076{
3077	struct xhci_hcd		*xhci;
3078	struct xhci_virt_device	*vdev;
3079	struct xhci_virt_ep	*ep;
3080	struct usb_device	*udev;
3081	unsigned long		flags;
3082	unsigned int		ep_index;
3083
3084	xhci = hcd_to_xhci(hcd);
3085rescan:
3086	spin_lock_irqsave(&xhci->lock, flags);
3087
3088	udev = (struct usb_device *)host_ep->hcpriv;
3089	if (!udev || !udev->slot_id)
3090		goto done;
3091
3092	vdev = xhci->devs[udev->slot_id];
3093	if (!vdev)
3094		goto done;
3095
3096	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3097	ep = &vdev->eps[ep_index];
3098	if (!ep)
3099		goto done;
3100
3101	/* wait for hub_tt_work to finish clearing hub TT */
3102	if (ep->ep_state & EP_CLEARING_TT) {
3103		spin_unlock_irqrestore(&xhci->lock, flags);
3104		schedule_timeout_uninterruptible(1);
3105		goto rescan;
3106	}
3107
3108	if (ep->ep_state)
3109		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3110			 ep->ep_state);
3111done:
3112	host_ep->hcpriv = NULL;
3113	spin_unlock_irqrestore(&xhci->lock, flags);
3114}
3115
3116/*
3117 * Called after usb core issues a clear halt control message.
3118 * The host side of the halt should already be cleared by a reset endpoint
3119 * command issued when the STALL event was received.
3120 *
3121 * The reset endpoint command may only be issued to endpoints in the halted
3122 * state. For software that wishes to reset the data toggle or sequence number
3123 * of an endpoint that isn't in the halted state this function will issue a
3124 * configure endpoint command with the Drop and Add bits set for the target
3125 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3126 */
3127
3128static void xhci_endpoint_reset(struct usb_hcd *hcd,
3129		struct usb_host_endpoint *host_ep)
3130{
3131	struct xhci_hcd *xhci;
3132	struct usb_device *udev;
3133	struct xhci_virt_device *vdev;
3134	struct xhci_virt_ep *ep;
3135	struct xhci_input_control_ctx *ctrl_ctx;
3136	struct xhci_command *stop_cmd, *cfg_cmd;
3137	unsigned int ep_index;
3138	unsigned long flags;
3139	u32 ep_flag;
3140	int err;
3141
3142	xhci = hcd_to_xhci(hcd);
3143	if (!host_ep->hcpriv)
3144		return;
3145	udev = (struct usb_device *) host_ep->hcpriv;
3146	vdev = xhci->devs[udev->slot_id];
3147
3148	/*
3149	 * vdev may be lost due to xHC restore error and re-initialization
3150	 * during S3/S4 resume. A new vdev will be allocated later by
3151	 * xhci_discover_or_reset_device()
3152	 */
3153	if (!udev->slot_id || !vdev)
3154		return;
3155	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3156	ep = &vdev->eps[ep_index];
3157	if (!ep)
3158		return;
3159
3160	/* Bail out if toggle is already being cleared by a endpoint reset */
3161	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3162		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3163		return;
3164	}
3165	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3166	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3167	    usb_endpoint_xfer_isoc(&host_ep->desc))
3168		return;
3169
3170	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3171
3172	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3173		return;
3174
3175	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3176	if (!stop_cmd)
3177		return;
3178
3179	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3180	if (!cfg_cmd)
3181		goto cleanup;
3182
3183	spin_lock_irqsave(&xhci->lock, flags);
3184
3185	/* block queuing new trbs and ringing ep doorbell */
3186	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3187
3188	/*
3189	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3190	 * Driver is required to synchronously cancel all transfer request.
3191	 * Stop the endpoint to force xHC to update the output context
3192	 */
3193
3194	if (!list_empty(&ep->ring->td_list)) {
3195		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3196		spin_unlock_irqrestore(&xhci->lock, flags);
3197		xhci_free_command(xhci, cfg_cmd);
3198		goto cleanup;
3199	}
3200
3201	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3202					ep_index, 0);
3203	if (err < 0) {
3204		spin_unlock_irqrestore(&xhci->lock, flags);
3205		xhci_free_command(xhci, cfg_cmd);
3206		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3207				__func__, err);
3208		goto cleanup;
3209	}
3210
3211	xhci_ring_cmd_db(xhci);
3212	spin_unlock_irqrestore(&xhci->lock, flags);
3213
3214	wait_for_completion(stop_cmd->completion);
3215
3216	spin_lock_irqsave(&xhci->lock, flags);
3217
3218	/* config ep command clears toggle if add and drop ep flags are set */
3219	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3220	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3221					   ctrl_ctx, ep_flag, ep_flag);
3222	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3223
3224	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3225				      udev->slot_id, false);
3226	if (err < 0) {
3227		spin_unlock_irqrestore(&xhci->lock, flags);
3228		xhci_free_command(xhci, cfg_cmd);
3229		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3230				__func__, err);
3231		goto cleanup;
3232	}
3233
3234	xhci_ring_cmd_db(xhci);
3235	spin_unlock_irqrestore(&xhci->lock, flags);
3236
3237	wait_for_completion(cfg_cmd->completion);
3238
3239	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3240	xhci_free_command(xhci, cfg_cmd);
3241cleanup:
3242	xhci_free_command(xhci, stop_cmd);
3243}
3244
3245static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3246		struct usb_device *udev, struct usb_host_endpoint *ep,
3247		unsigned int slot_id)
3248{
3249	int ret;
3250	unsigned int ep_index;
3251	unsigned int ep_state;
3252
3253	if (!ep)
3254		return -EINVAL;
3255	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3256	if (ret <= 0)
3257		return -EINVAL;
3258	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3259		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3260				" descriptor for ep 0x%x does not support streams\n",
3261				ep->desc.bEndpointAddress);
3262		return -EINVAL;
3263	}
3264
3265	ep_index = xhci_get_endpoint_index(&ep->desc);
3266	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3267	if (ep_state & EP_HAS_STREAMS ||
3268			ep_state & EP_GETTING_STREAMS) {
3269		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3270				"already has streams set up.\n",
3271				ep->desc.bEndpointAddress);
3272		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3273				"dynamic stream context array reallocation.\n");
3274		return -EINVAL;
3275	}
3276	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3277		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3278				"endpoint 0x%x; URBs are pending.\n",
3279				ep->desc.bEndpointAddress);
3280		return -EINVAL;
3281	}
3282	return 0;
3283}
3284
3285static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3286		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3287{
3288	unsigned int max_streams;
3289
3290	/* The stream context array size must be a power of two */
3291	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3292	/*
3293	 * Find out how many primary stream array entries the host controller
3294	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3295	 * level page entries), but that's an optional feature for xHCI host
3296	 * controllers. xHCs must support at least 4 stream IDs.
3297	 */
3298	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3299	if (*num_stream_ctxs > max_streams) {
3300		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3301				max_streams);
3302		*num_stream_ctxs = max_streams;
3303		*num_streams = max_streams;
3304	}
3305}
3306
3307/* Returns an error code if one of the endpoint already has streams.
3308 * This does not change any data structures, it only checks and gathers
3309 * information.
3310 */
3311static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3312		struct usb_device *udev,
3313		struct usb_host_endpoint **eps, unsigned int num_eps,
3314		unsigned int *num_streams, u32 *changed_ep_bitmask)
3315{
3316	unsigned int max_streams;
3317	unsigned int endpoint_flag;
3318	int i;
3319	int ret;
3320
3321	for (i = 0; i < num_eps; i++) {
3322		ret = xhci_check_streams_endpoint(xhci, udev,
3323				eps[i], udev->slot_id);
3324		if (ret < 0)
3325			return ret;
3326
3327		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3328		if (max_streams < (*num_streams - 1)) {
3329			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3330					eps[i]->desc.bEndpointAddress,
3331					max_streams);
3332			*num_streams = max_streams+1;
3333		}
3334
3335		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3336		if (*changed_ep_bitmask & endpoint_flag)
3337			return -EINVAL;
3338		*changed_ep_bitmask |= endpoint_flag;
3339	}
3340	return 0;
3341}
3342
3343static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3344		struct usb_device *udev,
3345		struct usb_host_endpoint **eps, unsigned int num_eps)
3346{
3347	u32 changed_ep_bitmask = 0;
3348	unsigned int slot_id;
3349	unsigned int ep_index;
3350	unsigned int ep_state;
3351	int i;
3352
3353	slot_id = udev->slot_id;
3354	if (!xhci->devs[slot_id])
3355		return 0;
3356
3357	for (i = 0; i < num_eps; i++) {
3358		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3359		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3360		/* Are streams already being freed for the endpoint? */
3361		if (ep_state & EP_GETTING_NO_STREAMS) {
3362			xhci_warn(xhci, "WARN Can't disable streams for "
3363					"endpoint 0x%x, "
3364					"streams are being disabled already\n",
3365					eps[i]->desc.bEndpointAddress);
3366			return 0;
3367		}
3368		/* Are there actually any streams to free? */
3369		if (!(ep_state & EP_HAS_STREAMS) &&
3370				!(ep_state & EP_GETTING_STREAMS)) {
3371			xhci_warn(xhci, "WARN Can't disable streams for "
3372					"endpoint 0x%x, "
3373					"streams are already disabled!\n",
3374					eps[i]->desc.bEndpointAddress);
3375			xhci_warn(xhci, "WARN xhci_free_streams() called "
3376					"with non-streams endpoint\n");
3377			return 0;
3378		}
3379		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3380	}
3381	return changed_ep_bitmask;
3382}
3383
3384/*
3385 * The USB device drivers use this function (through the HCD interface in USB
3386 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3387 * coordinate mass storage command queueing across multiple endpoints (basically
3388 * a stream ID == a task ID).
3389 *
3390 * Setting up streams involves allocating the same size stream context array
3391 * for each endpoint and issuing a configure endpoint command for all endpoints.
3392 *
3393 * Don't allow the call to succeed if one endpoint only supports one stream
3394 * (which means it doesn't support streams at all).
3395 *
3396 * Drivers may get less stream IDs than they asked for, if the host controller
3397 * hardware or endpoints claim they can't support the number of requested
3398 * stream IDs.
3399 */
3400static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3401		struct usb_host_endpoint **eps, unsigned int num_eps,
3402		unsigned int num_streams, gfp_t mem_flags)
3403{
3404	int i, ret;
3405	struct xhci_hcd *xhci;
3406	struct xhci_virt_device *vdev;
3407	struct xhci_command *config_cmd;
3408	struct xhci_input_control_ctx *ctrl_ctx;
3409	unsigned int ep_index;
3410	unsigned int num_stream_ctxs;
3411	unsigned int max_packet;
3412	unsigned long flags;
3413	u32 changed_ep_bitmask = 0;
3414
3415	if (!eps)
3416		return -EINVAL;
3417
3418	/* Add one to the number of streams requested to account for
3419	 * stream 0 that is reserved for xHCI usage.
3420	 */
3421	num_streams += 1;
3422	xhci = hcd_to_xhci(hcd);
3423	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3424			num_streams);
3425
3426	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3427	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3428			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3429		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3430		return -ENOSYS;
3431	}
3432
3433	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3434	if (!config_cmd)
3435		return -ENOMEM;
3436
3437	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3438	if (!ctrl_ctx) {
3439		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3440				__func__);
3441		xhci_free_command(xhci, config_cmd);
3442		return -ENOMEM;
3443	}
3444
3445	/* Check to make sure all endpoints are not already configured for
3446	 * streams.  While we're at it, find the maximum number of streams that
3447	 * all the endpoints will support and check for duplicate endpoints.
3448	 */
3449	spin_lock_irqsave(&xhci->lock, flags);
3450	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3451			num_eps, &num_streams, &changed_ep_bitmask);
3452	if (ret < 0) {
3453		xhci_free_command(xhci, config_cmd);
3454		spin_unlock_irqrestore(&xhci->lock, flags);
3455		return ret;
3456	}
3457	if (num_streams <= 1) {
3458		xhci_warn(xhci, "WARN: endpoints can't handle "
3459				"more than one stream.\n");
3460		xhci_free_command(xhci, config_cmd);
3461		spin_unlock_irqrestore(&xhci->lock, flags);
3462		return -EINVAL;
3463	}
3464	vdev = xhci->devs[udev->slot_id];
3465	/* Mark each endpoint as being in transition, so
3466	 * xhci_urb_enqueue() will reject all URBs.
3467	 */
3468	for (i = 0; i < num_eps; i++) {
3469		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3470		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3471	}
3472	spin_unlock_irqrestore(&xhci->lock, flags);
3473
3474	/* Setup internal data structures and allocate HW data structures for
3475	 * streams (but don't install the HW structures in the input context
3476	 * until we're sure all memory allocation succeeded).
3477	 */
3478	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3479	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3480			num_stream_ctxs, num_streams);
3481
3482	for (i = 0; i < num_eps; i++) {
3483		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3484		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3485		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3486				num_stream_ctxs,
3487				num_streams,
3488				max_packet, mem_flags);
3489		if (!vdev->eps[ep_index].stream_info)
3490			goto cleanup;
3491		/* Set maxPstreams in endpoint context and update deq ptr to
3492		 * point to stream context array. FIXME
3493		 */
3494	}
3495
3496	/* Set up the input context for a configure endpoint command. */
3497	for (i = 0; i < num_eps; i++) {
3498		struct xhci_ep_ctx *ep_ctx;
3499
3500		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3501		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3502
3503		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3504				vdev->out_ctx, ep_index);
3505		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3506				vdev->eps[ep_index].stream_info);
3507	}
3508	/* Tell the HW to drop its old copy of the endpoint context info
3509	 * and add the updated copy from the input context.
3510	 */
3511	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3512			vdev->out_ctx, ctrl_ctx,
3513			changed_ep_bitmask, changed_ep_bitmask);
3514
3515	/* Issue and wait for the configure endpoint command */
3516	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3517			false, false);
3518
3519	/* xHC rejected the configure endpoint command for some reason, so we
3520	 * leave the old ring intact and free our internal streams data
3521	 * structure.
3522	 */
3523	if (ret < 0)
3524		goto cleanup;
3525
3526	spin_lock_irqsave(&xhci->lock, flags);
3527	for (i = 0; i < num_eps; i++) {
3528		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3529		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3530		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3531			 udev->slot_id, ep_index);
3532		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3533	}
3534	xhci_free_command(xhci, config_cmd);
3535	spin_unlock_irqrestore(&xhci->lock, flags);
3536
3537	/* Subtract 1 for stream 0, which drivers can't use */
3538	return num_streams - 1;
3539
3540cleanup:
3541	/* If it didn't work, free the streams! */
3542	for (i = 0; i < num_eps; i++) {
3543		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3544		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3545		vdev->eps[ep_index].stream_info = NULL;
3546		/* FIXME Unset maxPstreams in endpoint context and
3547		 * update deq ptr to point to normal string ring.
3548		 */
3549		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3550		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3551		xhci_endpoint_zero(xhci, vdev, eps[i]);
3552	}
3553	xhci_free_command(xhci, config_cmd);
3554	return -ENOMEM;
3555}
3556
3557/* Transition the endpoint from using streams to being a "normal" endpoint
3558 * without streams.
3559 *
3560 * Modify the endpoint context state, submit a configure endpoint command,
3561 * and free all endpoint rings for streams if that completes successfully.
3562 */
3563static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3564		struct usb_host_endpoint **eps, unsigned int num_eps,
3565		gfp_t mem_flags)
3566{
3567	int i, ret;
3568	struct xhci_hcd *xhci;
3569	struct xhci_virt_device *vdev;
3570	struct xhci_command *command;
3571	struct xhci_input_control_ctx *ctrl_ctx;
3572	unsigned int ep_index;
3573	unsigned long flags;
3574	u32 changed_ep_bitmask;
3575
3576	xhci = hcd_to_xhci(hcd);
3577	vdev = xhci->devs[udev->slot_id];
3578
3579	/* Set up a configure endpoint command to remove the streams rings */
3580	spin_lock_irqsave(&xhci->lock, flags);
3581	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3582			udev, eps, num_eps);
3583	if (changed_ep_bitmask == 0) {
3584		spin_unlock_irqrestore(&xhci->lock, flags);
3585		return -EINVAL;
3586	}
3587
3588	/* Use the xhci_command structure from the first endpoint.  We may have
3589	 * allocated too many, but the driver may call xhci_free_streams() for
3590	 * each endpoint it grouped into one call to xhci_alloc_streams().
3591	 */
3592	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3593	command = vdev->eps[ep_index].stream_info->free_streams_command;
3594	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3595	if (!ctrl_ctx) {
3596		spin_unlock_irqrestore(&xhci->lock, flags);
3597		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3598				__func__);
3599		return -EINVAL;
3600	}
3601
3602	for (i = 0; i < num_eps; i++) {
3603		struct xhci_ep_ctx *ep_ctx;
3604
3605		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3606		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3607		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3608			EP_GETTING_NO_STREAMS;
3609
3610		xhci_endpoint_copy(xhci, command->in_ctx,
3611				vdev->out_ctx, ep_index);
3612		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3613				&vdev->eps[ep_index]);
3614	}
3615	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3616			vdev->out_ctx, ctrl_ctx,
3617			changed_ep_bitmask, changed_ep_bitmask);
3618	spin_unlock_irqrestore(&xhci->lock, flags);
3619
3620	/* Issue and wait for the configure endpoint command,
3621	 * which must succeed.
3622	 */
3623	ret = xhci_configure_endpoint(xhci, udev, command,
3624			false, true);
3625
3626	/* xHC rejected the configure endpoint command for some reason, so we
3627	 * leave the streams rings intact.
3628	 */
3629	if (ret < 0)
3630		return ret;
3631
3632	spin_lock_irqsave(&xhci->lock, flags);
3633	for (i = 0; i < num_eps; i++) {
3634		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3635		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3636		vdev->eps[ep_index].stream_info = NULL;
3637		/* FIXME Unset maxPstreams in endpoint context and
3638		 * update deq ptr to point to normal string ring.
3639		 */
3640		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3641		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3642	}
3643	spin_unlock_irqrestore(&xhci->lock, flags);
3644
3645	return 0;
3646}
3647
3648/*
3649 * Deletes endpoint resources for endpoints that were active before a Reset
3650 * Device command, or a Disable Slot command.  The Reset Device command leaves
3651 * the control endpoint intact, whereas the Disable Slot command deletes it.
3652 *
3653 * Must be called with xhci->lock held.
3654 */
3655void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3656	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3657{
3658	int i;
3659	unsigned int num_dropped_eps = 0;
3660	unsigned int drop_flags = 0;
3661
3662	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3663		if (virt_dev->eps[i].ring) {
3664			drop_flags |= 1 << i;
3665			num_dropped_eps++;
3666		}
3667	}
3668	xhci->num_active_eps -= num_dropped_eps;
3669	if (num_dropped_eps)
3670		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3671				"Dropped %u ep ctxs, flags = 0x%x, "
3672				"%u now active.",
3673				num_dropped_eps, drop_flags,
3674				xhci->num_active_eps);
3675}
3676
3677/*
3678 * This submits a Reset Device Command, which will set the device state to 0,
3679 * set the device address to 0, and disable all the endpoints except the default
3680 * control endpoint.  The USB core should come back and call
3681 * xhci_address_device(), and then re-set up the configuration.  If this is
3682 * called because of a usb_reset_and_verify_device(), then the old alternate
3683 * settings will be re-installed through the normal bandwidth allocation
3684 * functions.
3685 *
3686 * Wait for the Reset Device command to finish.  Remove all structures
3687 * associated with the endpoints that were disabled.  Clear the input device
3688 * structure? Reset the control endpoint 0 max packet size?
3689 *
3690 * If the virt_dev to be reset does not exist or does not match the udev,
3691 * it means the device is lost, possibly due to the xHC restore error and
3692 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3693 * re-allocate the device.
3694 */
3695static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3696		struct usb_device *udev)
3697{
3698	int ret, i;
3699	unsigned long flags;
3700	struct xhci_hcd *xhci;
3701	unsigned int slot_id;
3702	struct xhci_virt_device *virt_dev;
3703	struct xhci_command *reset_device_cmd;
3704	struct xhci_slot_ctx *slot_ctx;
3705	int old_active_eps = 0;
3706
3707	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3708	if (ret <= 0)
3709		return ret;
3710	xhci = hcd_to_xhci(hcd);
3711	slot_id = udev->slot_id;
3712	virt_dev = xhci->devs[slot_id];
3713	if (!virt_dev) {
3714		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3715				"not exist. Re-allocate the device\n", slot_id);
3716		ret = xhci_alloc_dev(hcd, udev);
3717		if (ret == 1)
3718			return 0;
3719		else
3720			return -EINVAL;
3721	}
3722
3723	if (virt_dev->tt_info)
3724		old_active_eps = virt_dev->tt_info->active_eps;
3725
3726	if (virt_dev->udev != udev) {
3727		/* If the virt_dev and the udev does not match, this virt_dev
3728		 * may belong to another udev.
3729		 * Re-allocate the device.
3730		 */
3731		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3732				"not match the udev. Re-allocate the device\n",
3733				slot_id);
3734		ret = xhci_alloc_dev(hcd, udev);
3735		if (ret == 1)
3736			return 0;
3737		else
3738			return -EINVAL;
3739	}
3740
3741	/* If device is not setup, there is no point in resetting it */
3742	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3743	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3744						SLOT_STATE_DISABLED)
3745		return 0;
3746
3747	trace_xhci_discover_or_reset_device(slot_ctx);
3748
3749	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3750	/* Allocate the command structure that holds the struct completion.
3751	 * Assume we're in process context, since the normal device reset
3752	 * process has to wait for the device anyway.  Storage devices are
3753	 * reset as part of error handling, so use GFP_NOIO instead of
3754	 * GFP_KERNEL.
3755	 */
3756	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3757	if (!reset_device_cmd) {
3758		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3759		return -ENOMEM;
3760	}
3761
3762	/* Attempt to submit the Reset Device command to the command ring */
3763	spin_lock_irqsave(&xhci->lock, flags);
3764
3765	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3766	if (ret) {
3767		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3768		spin_unlock_irqrestore(&xhci->lock, flags);
3769		goto command_cleanup;
3770	}
3771	xhci_ring_cmd_db(xhci);
3772	spin_unlock_irqrestore(&xhci->lock, flags);
3773
3774	/* Wait for the Reset Device command to finish */
3775	wait_for_completion(reset_device_cmd->completion);
3776
3777	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3778	 * unless we tried to reset a slot ID that wasn't enabled,
3779	 * or the device wasn't in the addressed or configured state.
3780	 */
3781	ret = reset_device_cmd->status;
3782	switch (ret) {
3783	case COMP_COMMAND_ABORTED:
3784	case COMP_COMMAND_RING_STOPPED:
3785		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3786		ret = -ETIME;
3787		goto command_cleanup;
3788	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3789	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3790		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3791				slot_id,
3792				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3793		xhci_dbg(xhci, "Not freeing device rings.\n");
3794		/* Don't treat this as an error.  May change my mind later. */
3795		ret = 0;
3796		goto command_cleanup;
3797	case COMP_SUCCESS:
3798		xhci_dbg(xhci, "Successful reset device command.\n");
3799		break;
3800	default:
3801		if (xhci_is_vendor_info_code(xhci, ret))
3802			break;
3803		xhci_warn(xhci, "Unknown completion code %u for "
3804				"reset device command.\n", ret);
3805		ret = -EINVAL;
3806		goto command_cleanup;
3807	}
3808
3809	/* Free up host controller endpoint resources */
3810	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3811		spin_lock_irqsave(&xhci->lock, flags);
3812		/* Don't delete the default control endpoint resources */
3813		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3814		spin_unlock_irqrestore(&xhci->lock, flags);
3815	}
3816
3817	/* Everything but endpoint 0 is disabled, so free the rings. */
3818	for (i = 1; i < 31; i++) {
3819		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3820
3821		if (ep->ep_state & EP_HAS_STREAMS) {
3822			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3823					xhci_get_endpoint_address(i));
3824			xhci_free_stream_info(xhci, ep->stream_info);
3825			ep->stream_info = NULL;
3826			ep->ep_state &= ~EP_HAS_STREAMS;
3827		}
3828
3829		if (ep->ring) {
3830			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3831			xhci_free_endpoint_ring(xhci, virt_dev, i);
3832		}
3833		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3834			xhci_drop_ep_from_interval_table(xhci,
3835					&virt_dev->eps[i].bw_info,
3836					virt_dev->bw_table,
3837					udev,
3838					&virt_dev->eps[i],
3839					virt_dev->tt_info);
3840		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3841	}
3842	/* If necessary, update the number of active TTs on this root port */
3843	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3844	virt_dev->flags = 0;
3845	ret = 0;
3846
3847command_cleanup:
3848	xhci_free_command(xhci, reset_device_cmd);
3849	return ret;
3850}
3851
3852/*
3853 * At this point, the struct usb_device is about to go away, the device has
3854 * disconnected, and all traffic has been stopped and the endpoints have been
3855 * disabled.  Free any HC data structures associated with that device.
3856 */
3857static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3858{
3859	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3860	struct xhci_virt_device *virt_dev;
3861	struct xhci_slot_ctx *slot_ctx;
3862	int i, ret;
3863
3864#ifndef CONFIG_USB_DEFAULT_PERSIST
3865	/*
3866	 * We called pm_runtime_get_noresume when the device was attached.
3867	 * Decrement the counter here to allow controller to runtime suspend
3868	 * if no devices remain.
3869	 */
3870	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3871		pm_runtime_put_noidle(hcd->self.controller);
3872#endif
3873
3874	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3875	/* If the host is halted due to driver unload, we still need to free the
3876	 * device.
3877	 */
3878	if (ret <= 0 && ret != -ENODEV)
3879		return;
3880
3881	virt_dev = xhci->devs[udev->slot_id];
3882	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3883	trace_xhci_free_dev(slot_ctx);
3884
3885	/* Stop any wayward timer functions (which may grab the lock) */
3886	for (i = 0; i < 31; i++) {
3887		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3888		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3889	}
 
3890	virt_dev->udev = NULL;
3891	ret = xhci_disable_slot(xhci, udev->slot_id);
3892	if (ret)
3893		xhci_free_virt_device(xhci, udev->slot_id);
3894}
3895
3896int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3897{
3898	struct xhci_command *command;
3899	unsigned long flags;
3900	u32 state;
3901	int ret = 0;
3902
3903	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3904	if (!command)
3905		return -ENOMEM;
3906
3907	xhci_debugfs_remove_slot(xhci, slot_id);
3908
3909	spin_lock_irqsave(&xhci->lock, flags);
3910	/* Don't disable the slot if the host controller is dead. */
3911	state = readl(&xhci->op_regs->status);
3912	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3913			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3914		spin_unlock_irqrestore(&xhci->lock, flags);
3915		kfree(command);
3916		return -ENODEV;
3917	}
3918
3919	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3920				slot_id);
3921	if (ret) {
3922		spin_unlock_irqrestore(&xhci->lock, flags);
3923		kfree(command);
3924		return ret;
3925	}
3926	xhci_ring_cmd_db(xhci);
3927	spin_unlock_irqrestore(&xhci->lock, flags);
3928	return ret;
3929}
3930
3931/*
3932 * Checks if we have enough host controller resources for the default control
3933 * endpoint.
3934 *
3935 * Must be called with xhci->lock held.
3936 */
3937static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3938{
3939	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3940		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3941				"Not enough ep ctxs: "
3942				"%u active, need to add 1, limit is %u.",
3943				xhci->num_active_eps, xhci->limit_active_eps);
3944		return -ENOMEM;
3945	}
3946	xhci->num_active_eps += 1;
3947	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3948			"Adding 1 ep ctx, %u now active.",
3949			xhci->num_active_eps);
3950	return 0;
3951}
3952
3953
3954/*
3955 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3956 * timed out, or allocating memory failed.  Returns 1 on success.
3957 */
3958int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3959{
3960	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3961	struct xhci_virt_device *vdev;
3962	struct xhci_slot_ctx *slot_ctx;
3963	unsigned long flags;
3964	int ret, slot_id;
3965	struct xhci_command *command;
3966
3967	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3968	if (!command)
3969		return 0;
3970
3971	spin_lock_irqsave(&xhci->lock, flags);
3972	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3973	if (ret) {
3974		spin_unlock_irqrestore(&xhci->lock, flags);
3975		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3976		xhci_free_command(xhci, command);
3977		return 0;
3978	}
3979	xhci_ring_cmd_db(xhci);
3980	spin_unlock_irqrestore(&xhci->lock, flags);
3981
3982	wait_for_completion(command->completion);
3983	slot_id = command->slot_id;
3984
3985	if (!slot_id || command->status != COMP_SUCCESS) {
3986		xhci_err(xhci, "Error while assigning device slot ID\n");
3987		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3988				HCS_MAX_SLOTS(
3989					readl(&xhci->cap_regs->hcs_params1)));
3990		xhci_free_command(xhci, command);
3991		return 0;
3992	}
3993
3994	xhci_free_command(xhci, command);
3995
3996	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3997		spin_lock_irqsave(&xhci->lock, flags);
3998		ret = xhci_reserve_host_control_ep_resources(xhci);
3999		if (ret) {
4000			spin_unlock_irqrestore(&xhci->lock, flags);
4001			xhci_warn(xhci, "Not enough host resources, "
4002					"active endpoint contexts = %u\n",
4003					xhci->num_active_eps);
4004			goto disable_slot;
4005		}
4006		spin_unlock_irqrestore(&xhci->lock, flags);
4007	}
4008	/* Use GFP_NOIO, since this function can be called from
4009	 * xhci_discover_or_reset_device(), which may be called as part of
4010	 * mass storage driver error handling.
4011	 */
4012	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4013		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4014		goto disable_slot;
4015	}
4016	vdev = xhci->devs[slot_id];
4017	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4018	trace_xhci_alloc_dev(slot_ctx);
4019
4020	udev->slot_id = slot_id;
4021
4022	xhci_debugfs_create_slot(xhci, slot_id);
4023
4024#ifndef CONFIG_USB_DEFAULT_PERSIST
4025	/*
4026	 * If resetting upon resume, we can't put the controller into runtime
4027	 * suspend if there is a device attached.
4028	 */
4029	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4030		pm_runtime_get_noresume(hcd->self.controller);
4031#endif
4032
4033	/* Is this a LS or FS device under a HS hub? */
4034	/* Hub or peripherial? */
4035	return 1;
4036
4037disable_slot:
4038	ret = xhci_disable_slot(xhci, udev->slot_id);
4039	if (ret)
4040		xhci_free_virt_device(xhci, udev->slot_id);
4041
4042	return 0;
4043}
4044
4045/*
4046 * Issue an Address Device command and optionally send a corresponding
4047 * SetAddress request to the device.
4048 */
4049static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4050			     enum xhci_setup_dev setup)
4051{
4052	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4053	unsigned long flags;
4054	struct xhci_virt_device *virt_dev;
4055	int ret = 0;
4056	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4057	struct xhci_slot_ctx *slot_ctx;
4058	struct xhci_input_control_ctx *ctrl_ctx;
4059	u64 temp_64;
4060	struct xhci_command *command = NULL;
4061
4062	mutex_lock(&xhci->mutex);
4063
4064	if (xhci->xhc_state) {	/* dying, removing or halted */
4065		ret = -ESHUTDOWN;
4066		goto out;
4067	}
4068
4069	if (!udev->slot_id) {
4070		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4071				"Bad Slot ID %d", udev->slot_id);
4072		ret = -EINVAL;
4073		goto out;
4074	}
4075
4076	virt_dev = xhci->devs[udev->slot_id];
4077
4078	if (WARN_ON(!virt_dev)) {
4079		/*
4080		 * In plug/unplug torture test with an NEC controller,
4081		 * a zero-dereference was observed once due to virt_dev = 0.
4082		 * Print useful debug rather than crash if it is observed again!
4083		 */
4084		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4085			udev->slot_id);
4086		ret = -EINVAL;
4087		goto out;
4088	}
4089	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4090	trace_xhci_setup_device_slot(slot_ctx);
4091
4092	if (setup == SETUP_CONTEXT_ONLY) {
4093		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4094		    SLOT_STATE_DEFAULT) {
4095			xhci_dbg(xhci, "Slot already in default state\n");
4096			goto out;
4097		}
4098	}
4099
4100	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4101	if (!command) {
4102		ret = -ENOMEM;
4103		goto out;
4104	}
4105
4106	command->in_ctx = virt_dev->in_ctx;
4107
4108	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4109	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4110	if (!ctrl_ctx) {
4111		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4112				__func__);
4113		ret = -EINVAL;
4114		goto out;
4115	}
4116	/*
4117	 * If this is the first Set Address since device plug-in or
4118	 * virt_device realloaction after a resume with an xHCI power loss,
4119	 * then set up the slot context.
4120	 */
4121	if (!slot_ctx->dev_info)
4122		xhci_setup_addressable_virt_dev(xhci, udev);
4123	/* Otherwise, update the control endpoint ring enqueue pointer. */
4124	else
4125		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4126	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4127	ctrl_ctx->drop_flags = 0;
4128
4129	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4130				le32_to_cpu(slot_ctx->dev_info) >> 27);
4131
4132	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4133	spin_lock_irqsave(&xhci->lock, flags);
4134	trace_xhci_setup_device(virt_dev);
4135	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4136					udev->slot_id, setup);
4137	if (ret) {
4138		spin_unlock_irqrestore(&xhci->lock, flags);
4139		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4140				"FIXME: allocate a command ring segment");
4141		goto out;
4142	}
4143	xhci_ring_cmd_db(xhci);
4144	spin_unlock_irqrestore(&xhci->lock, flags);
4145
4146	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4147	wait_for_completion(command->completion);
4148
4149	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4150	 * the SetAddress() "recovery interval" required by USB and aborting the
4151	 * command on a timeout.
4152	 */
4153	switch (command->status) {
4154	case COMP_COMMAND_ABORTED:
4155	case COMP_COMMAND_RING_STOPPED:
4156		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4157		ret = -ETIME;
4158		break;
4159	case COMP_CONTEXT_STATE_ERROR:
4160	case COMP_SLOT_NOT_ENABLED_ERROR:
4161		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4162			 act, udev->slot_id);
4163		ret = -EINVAL;
4164		break;
4165	case COMP_USB_TRANSACTION_ERROR:
4166		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4167
4168		mutex_unlock(&xhci->mutex);
4169		ret = xhci_disable_slot(xhci, udev->slot_id);
4170		if (!ret)
4171			xhci_alloc_dev(hcd, udev);
4172		kfree(command->completion);
4173		kfree(command);
4174		return -EPROTO;
4175	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4176		dev_warn(&udev->dev,
4177			 "ERROR: Incompatible device for setup %s command\n", act);
4178		ret = -ENODEV;
4179		break;
4180	case COMP_SUCCESS:
4181		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4182			       "Successful setup %s command", act);
4183		break;
4184	default:
4185		xhci_err(xhci,
4186			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4187			 act, command->status);
4188		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4189		ret = -EINVAL;
4190		break;
4191	}
4192	if (ret)
4193		goto out;
4194	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4195	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4196			"Op regs DCBAA ptr = %#016llx", temp_64);
4197	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4198		"Slot ID %d dcbaa entry @%p = %#016llx",
4199		udev->slot_id,
4200		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4201		(unsigned long long)
4202		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4203	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4204			"Output Context DMA address = %#08llx",
4205			(unsigned long long)virt_dev->out_ctx->dma);
4206	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4207				le32_to_cpu(slot_ctx->dev_info) >> 27);
4208	/*
4209	 * USB core uses address 1 for the roothubs, so we add one to the
4210	 * address given back to us by the HC.
4211	 */
4212	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4213				le32_to_cpu(slot_ctx->dev_info) >> 27);
4214	/* Zero the input context control for later use */
4215	ctrl_ctx->add_flags = 0;
4216	ctrl_ctx->drop_flags = 0;
4217	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4218	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4219
4220	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221		       "Internal device address = %d",
4222		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4223out:
4224	mutex_unlock(&xhci->mutex);
4225	if (command) {
4226		kfree(command->completion);
4227		kfree(command);
4228	}
4229	return ret;
4230}
4231
4232static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4233{
4234	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4235}
4236
4237static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4238{
4239	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4240}
4241
4242/*
4243 * Transfer the port index into real index in the HW port status
4244 * registers. Caculate offset between the port's PORTSC register
4245 * and port status base. Divide the number of per port register
4246 * to get the real index. The raw port number bases 1.
4247 */
4248int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4249{
4250	struct xhci_hub *rhub;
 
 
 
 
 
 
 
 
4251
4252	rhub = xhci_get_rhub(hcd);
4253	return rhub->ports[port1 - 1]->hw_portnum + 1;
4254}
4255
4256/*
4257 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4258 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4259 */
4260static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4261			struct usb_device *udev, u16 max_exit_latency)
4262{
4263	struct xhci_virt_device *virt_dev;
4264	struct xhci_command *command;
4265	struct xhci_input_control_ctx *ctrl_ctx;
4266	struct xhci_slot_ctx *slot_ctx;
4267	unsigned long flags;
4268	int ret;
4269
4270	spin_lock_irqsave(&xhci->lock, flags);
4271
4272	virt_dev = xhci->devs[udev->slot_id];
4273
4274	/*
4275	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4276	 * xHC was re-initialized. Exit latency will be set later after
4277	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4278	 */
4279
4280	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4281		spin_unlock_irqrestore(&xhci->lock, flags);
4282		return 0;
4283	}
4284
4285	/* Attempt to issue an Evaluate Context command to change the MEL. */
4286	command = xhci->lpm_command;
4287	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4288	if (!ctrl_ctx) {
4289		spin_unlock_irqrestore(&xhci->lock, flags);
4290		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4291				__func__);
4292		return -ENOMEM;
4293	}
4294
4295	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4296	spin_unlock_irqrestore(&xhci->lock, flags);
4297
4298	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4299	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4300	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4301	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4302	slot_ctx->dev_state = 0;
4303
4304	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4305			"Set up evaluate context for LPM MEL change.");
4306
4307	/* Issue and wait for the evaluate context command. */
4308	ret = xhci_configure_endpoint(xhci, udev, command,
4309			true, true);
4310
4311	if (!ret) {
4312		spin_lock_irqsave(&xhci->lock, flags);
4313		virt_dev->current_mel = max_exit_latency;
4314		spin_unlock_irqrestore(&xhci->lock, flags);
4315	}
4316	return ret;
4317}
4318
4319#ifdef CONFIG_PM
4320
4321/* BESL to HIRD Encoding array for USB2 LPM */
4322static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4323	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4324
4325/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4326static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4327					struct usb_device *udev)
4328{
4329	int u2del, besl, besl_host;
4330	int besl_device = 0;
4331	u32 field;
4332
4333	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4334	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4335
4336	if (field & USB_BESL_SUPPORT) {
4337		for (besl_host = 0; besl_host < 16; besl_host++) {
4338			if (xhci_besl_encoding[besl_host] >= u2del)
4339				break;
4340		}
4341		/* Use baseline BESL value as default */
4342		if (field & USB_BESL_BASELINE_VALID)
4343			besl_device = USB_GET_BESL_BASELINE(field);
4344		else if (field & USB_BESL_DEEP_VALID)
4345			besl_device = USB_GET_BESL_DEEP(field);
4346	} else {
4347		if (u2del <= 50)
4348			besl_host = 0;
4349		else
4350			besl_host = (u2del - 51) / 75 + 1;
4351	}
4352
4353	besl = besl_host + besl_device;
4354	if (besl > 15)
4355		besl = 15;
4356
4357	return besl;
4358}
4359
4360/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4361static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4362{
4363	u32 field;
4364	int l1;
4365	int besld = 0;
4366	int hirdm = 0;
4367
4368	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4369
4370	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4371	l1 = udev->l1_params.timeout / 256;
4372
4373	/* device has preferred BESLD */
4374	if (field & USB_BESL_DEEP_VALID) {
4375		besld = USB_GET_BESL_DEEP(field);
4376		hirdm = 1;
4377	}
4378
4379	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4380}
4381
4382static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4383			struct usb_device *udev, int enable)
4384{
4385	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4386	struct xhci_port **ports;
4387	__le32 __iomem	*pm_addr, *hlpm_addr;
4388	u32		pm_val, hlpm_val, field;
4389	unsigned int	port_num;
4390	unsigned long	flags;
4391	int		hird, exit_latency;
4392	int		ret;
4393
4394	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4395			!udev->lpm_capable)
4396		return -EPERM;
4397
4398	if (!udev->parent || udev->parent->parent ||
4399			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4400		return -EPERM;
4401
4402	if (udev->usb2_hw_lpm_capable != 1)
4403		return -EPERM;
4404
4405	spin_lock_irqsave(&xhci->lock, flags);
4406
4407	ports = xhci->usb2_rhub.ports;
4408	port_num = udev->portnum - 1;
4409	pm_addr = ports[port_num]->addr + PORTPMSC;
4410	pm_val = readl(pm_addr);
4411	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
 
4412
4413	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4414			enable ? "enable" : "disable", port_num + 1);
4415
4416	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4417		/* Host supports BESL timeout instead of HIRD */
4418		if (udev->usb2_hw_lpm_besl_capable) {
4419			/* if device doesn't have a preferred BESL value use a
4420			 * default one which works with mixed HIRD and BESL
4421			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4422			 */
4423			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4424			if ((field & USB_BESL_SUPPORT) &&
4425			    (field & USB_BESL_BASELINE_VALID))
4426				hird = USB_GET_BESL_BASELINE(field);
4427			else
4428				hird = udev->l1_params.besl;
4429
4430			exit_latency = xhci_besl_encoding[hird];
4431			spin_unlock_irqrestore(&xhci->lock, flags);
4432
4433			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4434			 * input context for link powermanagement evaluate
4435			 * context commands. It is protected by hcd->bandwidth
4436			 * mutex and is shared by all devices. We need to set
4437			 * the max ext latency in USB 2 BESL LPM as well, so
4438			 * use the same mutex and xhci_change_max_exit_latency()
4439			 */
4440			mutex_lock(hcd->bandwidth_mutex);
4441			ret = xhci_change_max_exit_latency(xhci, udev,
4442							   exit_latency);
4443			mutex_unlock(hcd->bandwidth_mutex);
4444
4445			if (ret < 0)
4446				return ret;
4447			spin_lock_irqsave(&xhci->lock, flags);
4448
4449			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4450			writel(hlpm_val, hlpm_addr);
4451			/* flush write */
4452			readl(hlpm_addr);
4453		} else {
4454			hird = xhci_calculate_hird_besl(xhci, udev);
4455		}
4456
4457		pm_val &= ~PORT_HIRD_MASK;
4458		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4459		writel(pm_val, pm_addr);
4460		pm_val = readl(pm_addr);
4461		pm_val |= PORT_HLE;
4462		writel(pm_val, pm_addr);
4463		/* flush write */
4464		readl(pm_addr);
4465	} else {
4466		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4467		writel(pm_val, pm_addr);
4468		/* flush write */
4469		readl(pm_addr);
4470		if (udev->usb2_hw_lpm_besl_capable) {
4471			spin_unlock_irqrestore(&xhci->lock, flags);
4472			mutex_lock(hcd->bandwidth_mutex);
4473			xhci_change_max_exit_latency(xhci, udev, 0);
4474			mutex_unlock(hcd->bandwidth_mutex);
4475			return 0;
4476		}
4477	}
4478
4479	spin_unlock_irqrestore(&xhci->lock, flags);
4480	return 0;
4481}
4482
4483/* check if a usb2 port supports a given extened capability protocol
4484 * only USB2 ports extended protocol capability values are cached.
4485 * Return 1 if capability is supported
4486 */
4487static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4488					   unsigned capability)
4489{
4490	u32 port_offset, port_count;
4491	int i;
4492
4493	for (i = 0; i < xhci->num_ext_caps; i++) {
4494		if (xhci->ext_caps[i] & capability) {
4495			/* port offsets starts at 1 */
4496			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4497			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4498			if (port >= port_offset &&
4499			    port < port_offset + port_count)
4500				return 1;
4501		}
4502	}
4503	return 0;
4504}
4505
4506static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4507{
4508	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4509	int		portnum = udev->portnum - 1;
4510
4511	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
 
4512		return 0;
4513
4514	/* we only support lpm for non-hub device connected to root hub yet */
4515	if (!udev->parent || udev->parent->parent ||
4516			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4517		return 0;
4518
4519	if (xhci->hw_lpm_support == 1 &&
4520			xhci_check_usb2_port_capability(
4521				xhci, portnum, XHCI_HLC)) {
4522		udev->usb2_hw_lpm_capable = 1;
4523		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4524		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4525		if (xhci_check_usb2_port_capability(xhci, portnum,
4526					XHCI_BLC))
4527			udev->usb2_hw_lpm_besl_capable = 1;
4528	}
4529
4530	return 0;
4531}
4532
4533/*---------------------- USB 3.0 Link PM functions ------------------------*/
4534
4535/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4536static unsigned long long xhci_service_interval_to_ns(
4537		struct usb_endpoint_descriptor *desc)
4538{
4539	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4540}
4541
4542static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4543		enum usb3_link_state state)
4544{
4545	unsigned long long sel;
4546	unsigned long long pel;
4547	unsigned int max_sel_pel;
4548	char *state_name;
4549
4550	switch (state) {
4551	case USB3_LPM_U1:
4552		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4553		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4554		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4555		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4556		state_name = "U1";
4557		break;
4558	case USB3_LPM_U2:
4559		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4560		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4561		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4562		state_name = "U2";
4563		break;
4564	default:
4565		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4566				__func__);
4567		return USB3_LPM_DISABLED;
4568	}
4569
4570	if (sel <= max_sel_pel && pel <= max_sel_pel)
4571		return USB3_LPM_DEVICE_INITIATED;
4572
4573	if (sel > max_sel_pel)
4574		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4575				"due to long SEL %llu ms\n",
4576				state_name, sel);
4577	else
4578		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4579				"due to long PEL %llu ms\n",
4580				state_name, pel);
4581	return USB3_LPM_DISABLED;
4582}
4583
4584/* The U1 timeout should be the maximum of the following values:
4585 *  - For control endpoints, U1 system exit latency (SEL) * 3
4586 *  - For bulk endpoints, U1 SEL * 5
4587 *  - For interrupt endpoints:
4588 *    - Notification EPs, U1 SEL * 3
4589 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4590 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4591 */
4592static unsigned long long xhci_calculate_intel_u1_timeout(
4593		struct usb_device *udev,
4594		struct usb_endpoint_descriptor *desc)
4595{
4596	unsigned long long timeout_ns;
4597	int ep_type;
4598	int intr_type;
4599
4600	ep_type = usb_endpoint_type(desc);
4601	switch (ep_type) {
4602	case USB_ENDPOINT_XFER_CONTROL:
4603		timeout_ns = udev->u1_params.sel * 3;
4604		break;
4605	case USB_ENDPOINT_XFER_BULK:
4606		timeout_ns = udev->u1_params.sel * 5;
4607		break;
4608	case USB_ENDPOINT_XFER_INT:
4609		intr_type = usb_endpoint_interrupt_type(desc);
4610		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4611			timeout_ns = udev->u1_params.sel * 3;
4612			break;
4613		}
4614		/* Otherwise the calculation is the same as isoc eps */
4615		/* fall through */
4616	case USB_ENDPOINT_XFER_ISOC:
4617		timeout_ns = xhci_service_interval_to_ns(desc);
4618		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4619		if (timeout_ns < udev->u1_params.sel * 2)
4620			timeout_ns = udev->u1_params.sel * 2;
4621		break;
4622	default:
4623		return 0;
4624	}
4625
4626	return timeout_ns;
4627}
4628
4629/* Returns the hub-encoded U1 timeout value. */
4630static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4631		struct usb_device *udev,
4632		struct usb_endpoint_descriptor *desc)
4633{
4634	unsigned long long timeout_ns;
4635
4636	/* Prevent U1 if service interval is shorter than U1 exit latency */
4637	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4638		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4639			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4640			return USB3_LPM_DISABLED;
4641		}
4642	}
4643
4644	if (xhci->quirks & XHCI_INTEL_HOST)
4645		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4646	else
4647		timeout_ns = udev->u1_params.sel;
4648
4649	/* The U1 timeout is encoded in 1us intervals.
4650	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4651	 */
4652	if (timeout_ns == USB3_LPM_DISABLED)
4653		timeout_ns = 1;
4654	else
4655		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4656
4657	/* If the necessary timeout value is bigger than what we can set in the
4658	 * USB 3.0 hub, we have to disable hub-initiated U1.
4659	 */
4660	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4661		return timeout_ns;
4662	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4663			"due to long timeout %llu ms\n", timeout_ns);
4664	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4665}
4666
4667/* The U2 timeout should be the maximum of:
4668 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4669 *  - largest bInterval of any active periodic endpoint (to avoid going
4670 *    into lower power link states between intervals).
4671 *  - the U2 Exit Latency of the device
4672 */
4673static unsigned long long xhci_calculate_intel_u2_timeout(
4674		struct usb_device *udev,
4675		struct usb_endpoint_descriptor *desc)
4676{
4677	unsigned long long timeout_ns;
4678	unsigned long long u2_del_ns;
4679
4680	timeout_ns = 10 * 1000 * 1000;
4681
4682	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4683			(xhci_service_interval_to_ns(desc) > timeout_ns))
4684		timeout_ns = xhci_service_interval_to_ns(desc);
4685
4686	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4687	if (u2_del_ns > timeout_ns)
4688		timeout_ns = u2_del_ns;
4689
4690	return timeout_ns;
4691}
4692
4693/* Returns the hub-encoded U2 timeout value. */
4694static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4695		struct usb_device *udev,
4696		struct usb_endpoint_descriptor *desc)
4697{
4698	unsigned long long timeout_ns;
4699
4700	/* Prevent U2 if service interval is shorter than U2 exit latency */
4701	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4702		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4703			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4704			return USB3_LPM_DISABLED;
4705		}
4706	}
4707
4708	if (xhci->quirks & XHCI_INTEL_HOST)
4709		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4710	else
4711		timeout_ns = udev->u2_params.sel;
4712
4713	/* The U2 timeout is encoded in 256us intervals */
4714	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4715	/* If the necessary timeout value is bigger than what we can set in the
4716	 * USB 3.0 hub, we have to disable hub-initiated U2.
4717	 */
4718	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4719		return timeout_ns;
4720	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4721			"due to long timeout %llu ms\n", timeout_ns);
4722	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4723}
4724
4725static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4726		struct usb_device *udev,
4727		struct usb_endpoint_descriptor *desc,
4728		enum usb3_link_state state,
4729		u16 *timeout)
4730{
4731	if (state == USB3_LPM_U1)
4732		return xhci_calculate_u1_timeout(xhci, udev, desc);
4733	else if (state == USB3_LPM_U2)
4734		return xhci_calculate_u2_timeout(xhci, udev, desc);
4735
4736	return USB3_LPM_DISABLED;
4737}
4738
4739static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4740		struct usb_device *udev,
4741		struct usb_endpoint_descriptor *desc,
4742		enum usb3_link_state state,
4743		u16 *timeout)
4744{
4745	u16 alt_timeout;
4746
4747	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4748		desc, state, timeout);
4749
4750	/* If we found we can't enable hub-initiated LPM, and
4751	 * the U1 or U2 exit latency was too high to allow
4752	 * device-initiated LPM as well, then we will disable LPM
4753	 * for this device, so stop searching any further.
4754	 */
4755	if (alt_timeout == USB3_LPM_DISABLED) {
 
4756		*timeout = alt_timeout;
4757		return -E2BIG;
4758	}
4759	if (alt_timeout > *timeout)
4760		*timeout = alt_timeout;
4761	return 0;
4762}
4763
4764static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4765		struct usb_device *udev,
4766		struct usb_host_interface *alt,
4767		enum usb3_link_state state,
4768		u16 *timeout)
4769{
4770	int j;
4771
4772	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4773		if (xhci_update_timeout_for_endpoint(xhci, udev,
4774					&alt->endpoint[j].desc, state, timeout))
4775			return -E2BIG;
4776		continue;
4777	}
4778	return 0;
4779}
4780
4781static int xhci_check_intel_tier_policy(struct usb_device *udev,
4782		enum usb3_link_state state)
4783{
4784	struct usb_device *parent;
4785	unsigned int num_hubs;
4786
4787	if (state == USB3_LPM_U2)
4788		return 0;
4789
4790	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4791	for (parent = udev->parent, num_hubs = 0; parent->parent;
4792			parent = parent->parent)
4793		num_hubs++;
4794
4795	if (num_hubs < 2)
4796		return 0;
4797
4798	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4799			" below second-tier hub.\n");
4800	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4801			"to decrease power consumption.\n");
4802	return -E2BIG;
4803}
4804
4805static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4806		struct usb_device *udev,
4807		enum usb3_link_state state)
4808{
4809	if (xhci->quirks & XHCI_INTEL_HOST)
4810		return xhci_check_intel_tier_policy(udev, state);
4811	else
4812		return 0;
4813}
4814
4815/* Returns the U1 or U2 timeout that should be enabled.
4816 * If the tier check or timeout setting functions return with a non-zero exit
4817 * code, that means the timeout value has been finalized and we shouldn't look
4818 * at any more endpoints.
4819 */
4820static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4821			struct usb_device *udev, enum usb3_link_state state)
4822{
4823	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4824	struct usb_host_config *config;
4825	char *state_name;
4826	int i;
4827	u16 timeout = USB3_LPM_DISABLED;
4828
4829	if (state == USB3_LPM_U1)
4830		state_name = "U1";
4831	else if (state == USB3_LPM_U2)
4832		state_name = "U2";
4833	else {
4834		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4835				state);
4836		return timeout;
4837	}
4838
4839	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4840		return timeout;
4841
4842	/* Gather some information about the currently installed configuration
4843	 * and alternate interface settings.
4844	 */
4845	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4846			state, &timeout))
4847		return timeout;
4848
4849	config = udev->actconfig;
4850	if (!config)
4851		return timeout;
4852
4853	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4854		struct usb_driver *driver;
4855		struct usb_interface *intf = config->interface[i];
4856
4857		if (!intf)
4858			continue;
4859
4860		/* Check if any currently bound drivers want hub-initiated LPM
4861		 * disabled.
4862		 */
4863		if (intf->dev.driver) {
4864			driver = to_usb_driver(intf->dev.driver);
4865			if (driver && driver->disable_hub_initiated_lpm) {
4866				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4867					state_name, driver->name);
4868				timeout = xhci_get_timeout_no_hub_lpm(udev,
4869								      state);
4870				if (timeout == USB3_LPM_DISABLED)
4871					return timeout;
4872			}
4873		}
4874
4875		/* Not sure how this could happen... */
4876		if (!intf->cur_altsetting)
4877			continue;
4878
4879		if (xhci_update_timeout_for_interface(xhci, udev,
4880					intf->cur_altsetting,
4881					state, &timeout))
4882			return timeout;
4883	}
4884	return timeout;
4885}
4886
4887static int calculate_max_exit_latency(struct usb_device *udev,
4888		enum usb3_link_state state_changed,
4889		u16 hub_encoded_timeout)
4890{
4891	unsigned long long u1_mel_us = 0;
4892	unsigned long long u2_mel_us = 0;
4893	unsigned long long mel_us = 0;
4894	bool disabling_u1;
4895	bool disabling_u2;
4896	bool enabling_u1;
4897	bool enabling_u2;
4898
4899	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4900			hub_encoded_timeout == USB3_LPM_DISABLED);
4901	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4902			hub_encoded_timeout == USB3_LPM_DISABLED);
4903
4904	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4905			hub_encoded_timeout != USB3_LPM_DISABLED);
4906	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4907			hub_encoded_timeout != USB3_LPM_DISABLED);
4908
4909	/* If U1 was already enabled and we're not disabling it,
4910	 * or we're going to enable U1, account for the U1 max exit latency.
4911	 */
4912	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4913			enabling_u1)
4914		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4915	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4916			enabling_u2)
4917		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4918
4919	if (u1_mel_us > u2_mel_us)
4920		mel_us = u1_mel_us;
4921	else
4922		mel_us = u2_mel_us;
4923	/* xHCI host controller max exit latency field is only 16 bits wide. */
4924	if (mel_us > MAX_EXIT) {
4925		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4926				"is too big.\n", mel_us);
4927		return -E2BIG;
4928	}
4929	return mel_us;
4930}
4931
4932/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4933static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4934			struct usb_device *udev, enum usb3_link_state state)
4935{
4936	struct xhci_hcd	*xhci;
4937	u16 hub_encoded_timeout;
4938	int mel;
4939	int ret;
4940
4941	xhci = hcd_to_xhci(hcd);
4942	/* The LPM timeout values are pretty host-controller specific, so don't
4943	 * enable hub-initiated timeouts unless the vendor has provided
4944	 * information about their timeout algorithm.
4945	 */
4946	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4947			!xhci->devs[udev->slot_id])
4948		return USB3_LPM_DISABLED;
4949
4950	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4951	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4952	if (mel < 0) {
4953		/* Max Exit Latency is too big, disable LPM. */
4954		hub_encoded_timeout = USB3_LPM_DISABLED;
4955		mel = 0;
4956	}
4957
4958	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4959	if (ret)
4960		return ret;
4961	return hub_encoded_timeout;
4962}
4963
4964static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4965			struct usb_device *udev, enum usb3_link_state state)
4966{
4967	struct xhci_hcd	*xhci;
4968	u16 mel;
4969
4970	xhci = hcd_to_xhci(hcd);
4971	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4972			!xhci->devs[udev->slot_id])
4973		return 0;
4974
4975	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4976	return xhci_change_max_exit_latency(xhci, udev, mel);
4977}
4978#else /* CONFIG_PM */
4979
4980static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4981				struct usb_device *udev, int enable)
4982{
4983	return 0;
4984}
4985
4986static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4987{
4988	return 0;
4989}
4990
4991static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4992			struct usb_device *udev, enum usb3_link_state state)
4993{
4994	return USB3_LPM_DISABLED;
4995}
4996
4997static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4998			struct usb_device *udev, enum usb3_link_state state)
4999{
5000	return 0;
5001}
5002#endif	/* CONFIG_PM */
5003
5004/*-------------------------------------------------------------------------*/
5005
5006/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5007 * internal data structures for the device.
5008 */
5009static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5010			struct usb_tt *tt, gfp_t mem_flags)
5011{
5012	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5013	struct xhci_virt_device *vdev;
5014	struct xhci_command *config_cmd;
5015	struct xhci_input_control_ctx *ctrl_ctx;
5016	struct xhci_slot_ctx *slot_ctx;
5017	unsigned long flags;
5018	unsigned think_time;
5019	int ret;
5020
5021	/* Ignore root hubs */
5022	if (!hdev->parent)
5023		return 0;
5024
5025	vdev = xhci->devs[hdev->slot_id];
5026	if (!vdev) {
5027		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5028		return -EINVAL;
5029	}
5030
5031	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5032	if (!config_cmd)
5033		return -ENOMEM;
5034
5035	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5036	if (!ctrl_ctx) {
5037		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5038				__func__);
5039		xhci_free_command(xhci, config_cmd);
5040		return -ENOMEM;
5041	}
5042
5043	spin_lock_irqsave(&xhci->lock, flags);
5044	if (hdev->speed == USB_SPEED_HIGH &&
5045			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5046		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5047		xhci_free_command(xhci, config_cmd);
5048		spin_unlock_irqrestore(&xhci->lock, flags);
5049		return -ENOMEM;
5050	}
5051
5052	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5053	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5054	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5055	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5056	/*
5057	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5058	 * but it may be already set to 1 when setup an xHCI virtual
5059	 * device, so clear it anyway.
5060	 */
5061	if (tt->multi)
5062		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5063	else if (hdev->speed == USB_SPEED_FULL)
5064		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5065
5066	if (xhci->hci_version > 0x95) {
5067		xhci_dbg(xhci, "xHCI version %x needs hub "
5068				"TT think time and number of ports\n",
5069				(unsigned int) xhci->hci_version);
5070		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5071		/* Set TT think time - convert from ns to FS bit times.
5072		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5073		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5074		 *
5075		 * xHCI 1.0: this field shall be 0 if the device is not a
5076		 * High-spped hub.
5077		 */
5078		think_time = tt->think_time;
5079		if (think_time != 0)
5080			think_time = (think_time / 666) - 1;
5081		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5082			slot_ctx->tt_info |=
5083				cpu_to_le32(TT_THINK_TIME(think_time));
5084	} else {
5085		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5086				"TT think time or number of ports\n",
5087				(unsigned int) xhci->hci_version);
5088	}
5089	slot_ctx->dev_state = 0;
5090	spin_unlock_irqrestore(&xhci->lock, flags);
5091
5092	xhci_dbg(xhci, "Set up %s for hub device.\n",
5093			(xhci->hci_version > 0x95) ?
5094			"configure endpoint" : "evaluate context");
5095
5096	/* Issue and wait for the configure endpoint or
5097	 * evaluate context command.
5098	 */
5099	if (xhci->hci_version > 0x95)
5100		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5101				false, false);
5102	else
5103		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5104				true, false);
5105
5106	xhci_free_command(xhci, config_cmd);
5107	return ret;
5108}
5109
5110static int xhci_get_frame(struct usb_hcd *hcd)
5111{
5112	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5113	/* EHCI mods by the periodic size.  Why? */
5114	return readl(&xhci->run_regs->microframe_index) >> 3;
5115}
5116
5117int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5118{
5119	struct xhci_hcd		*xhci;
5120	/*
5121	 * TODO: Check with DWC3 clients for sysdev according to
5122	 * quirks
5123	 */
5124	struct device		*dev = hcd->self.sysdev;
5125	unsigned int		minor_rev;
5126	int			retval;
5127
5128	/* Accept arbitrarily long scatter-gather lists */
5129	hcd->self.sg_tablesize = ~0;
5130
5131	/* support to build packet from discontinuous buffers */
5132	hcd->self.no_sg_constraint = 1;
5133
5134	/* XHCI controllers don't stop the ep queue on short packets :| */
5135	hcd->self.no_stop_on_short = 1;
5136
5137	xhci = hcd_to_xhci(hcd);
5138
5139	if (usb_hcd_is_primary_hcd(hcd)) {
5140		xhci->main_hcd = hcd;
5141		xhci->usb2_rhub.hcd = hcd;
5142		/* Mark the first roothub as being USB 2.0.
5143		 * The xHCI driver will register the USB 3.0 roothub.
5144		 */
5145		hcd->speed = HCD_USB2;
5146		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5147		/*
5148		 * USB 2.0 roothub under xHCI has an integrated TT,
5149		 * (rate matching hub) as opposed to having an OHCI/UHCI
5150		 * companion controller.
5151		 */
5152		hcd->has_tt = 1;
5153	} else {
5154		/*
5155		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5156		 * should return 0x31 for sbrn, or that the minor revision
5157		 * is a two digit BCD containig minor and sub-minor numbers.
5158		 * This was later clarified in xHCI 1.2.
5159		 *
5160		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5161		 * minor revision set to 0x1 instead of 0x10.
5162		 */
5163		if (xhci->usb3_rhub.min_rev == 0x1)
5164			minor_rev = 1;
5165		else
5166			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5167
5168		switch (minor_rev) {
5169		case 2:
5170			hcd->speed = HCD_USB32;
5171			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5172			hcd->self.root_hub->rx_lanes = 2;
5173			hcd->self.root_hub->tx_lanes = 2;
5174			break;
5175		case 1:
5176			hcd->speed = HCD_USB31;
5177			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5178			break;
5179		}
5180		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5181			  minor_rev,
5182			  minor_rev ? "Enhanced " : "");
5183
5184		xhci->usb3_rhub.hcd = hcd;
5185		/* xHCI private pointer was set in xhci_pci_probe for the second
5186		 * registered roothub.
5187		 */
5188		return 0;
5189	}
5190
5191	mutex_init(&xhci->mutex);
5192	xhci->cap_regs = hcd->regs;
5193	xhci->op_regs = hcd->regs +
5194		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5195	xhci->run_regs = hcd->regs +
5196		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5197	/* Cache read-only capability registers */
5198	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5199	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5200	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5201	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5202	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5203	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5204	if (xhci->hci_version > 0x100)
5205		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5206
5207	xhci->quirks |= quirks;
5208
5209	get_quirks(dev, xhci);
5210
5211	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5212	 * success event after a short transfer. This quirk will ignore such
5213	 * spurious event.
5214	 */
5215	if (xhci->hci_version > 0x96)
5216		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5217
5218	/* Make sure the HC is halted. */
5219	retval = xhci_halt(xhci);
5220	if (retval)
5221		return retval;
5222
5223	xhci_zero_64b_regs(xhci);
5224
5225	xhci_dbg(xhci, "Resetting HCD\n");
5226	/* Reset the internal HC memory state and registers. */
5227	retval = xhci_reset(xhci);
5228	if (retval)
5229		return retval;
5230	xhci_dbg(xhci, "Reset complete\n");
5231
5232	/*
5233	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5234	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5235	 * address memory pointers actually. So, this driver clears the AC64
5236	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5237	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5238	 */
5239	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5240		xhci->hcc_params &= ~BIT(0);
5241
5242	/* Set dma_mask and coherent_dma_mask to 64-bits,
5243	 * if xHC supports 64-bit addressing */
5244	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5245			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5246		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5247		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5248	} else {
5249		/*
5250		 * This is to avoid error in cases where a 32-bit USB
5251		 * controller is used on a 64-bit capable system.
5252		 */
5253		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5254		if (retval)
5255			return retval;
5256		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5257		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5258	}
5259
5260	xhci_dbg(xhci, "Calling HCD init\n");
5261	/* Initialize HCD and host controller data structures. */
5262	retval = xhci_init(hcd);
5263	if (retval)
5264		return retval;
5265	xhci_dbg(xhci, "Called HCD init\n");
5266
5267	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5268		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5269
5270	return 0;
5271}
5272EXPORT_SYMBOL_GPL(xhci_gen_setup);
5273
5274static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5275		struct usb_host_endpoint *ep)
5276{
5277	struct xhci_hcd *xhci;
5278	struct usb_device *udev;
5279	unsigned int slot_id;
5280	unsigned int ep_index;
5281	unsigned long flags;
5282
5283	xhci = hcd_to_xhci(hcd);
5284
5285	spin_lock_irqsave(&xhci->lock, flags);
5286	udev = (struct usb_device *)ep->hcpriv;
5287	slot_id = udev->slot_id;
5288	ep_index = xhci_get_endpoint_index(&ep->desc);
5289
5290	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5291	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5292	spin_unlock_irqrestore(&xhci->lock, flags);
5293}
5294
5295static const struct hc_driver xhci_hc_driver = {
5296	.description =		"xhci-hcd",
5297	.product_desc =		"xHCI Host Controller",
5298	.hcd_priv_size =	sizeof(struct xhci_hcd),
5299
5300	/*
5301	 * generic hardware linkage
5302	 */
5303	.irq =			xhci_irq,
5304	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED,
5305
5306	/*
5307	 * basic lifecycle operations
5308	 */
5309	.reset =		NULL, /* set in xhci_init_driver() */
5310	.start =		xhci_run,
5311	.stop =			xhci_stop,
5312	.shutdown =		xhci_shutdown,
5313
5314	/*
5315	 * managing i/o requests and associated device resources
5316	 */
5317	.map_urb_for_dma =      xhci_map_urb_for_dma,
5318	.urb_enqueue =		xhci_urb_enqueue,
5319	.urb_dequeue =		xhci_urb_dequeue,
5320	.alloc_dev =		xhci_alloc_dev,
5321	.free_dev =		xhci_free_dev,
5322	.alloc_streams =	xhci_alloc_streams,
5323	.free_streams =		xhci_free_streams,
5324	.add_endpoint =		xhci_add_endpoint,
5325	.drop_endpoint =	xhci_drop_endpoint,
5326	.endpoint_disable =	xhci_endpoint_disable,
5327	.endpoint_reset =	xhci_endpoint_reset,
5328	.check_bandwidth =	xhci_check_bandwidth,
5329	.reset_bandwidth =	xhci_reset_bandwidth,
5330	.address_device =	xhci_address_device,
5331	.enable_device =	xhci_enable_device,
5332	.update_hub_device =	xhci_update_hub_device,
5333	.reset_device =		xhci_discover_or_reset_device,
5334
5335	/*
5336	 * scheduling support
5337	 */
5338	.get_frame_number =	xhci_get_frame,
5339
5340	/*
5341	 * root hub support
5342	 */
5343	.hub_control =		xhci_hub_control,
5344	.hub_status_data =	xhci_hub_status_data,
5345	.bus_suspend =		xhci_bus_suspend,
5346	.bus_resume =		xhci_bus_resume,
5347	.get_resuming_ports =	xhci_get_resuming_ports,
5348
5349	/*
5350	 * call back when device connected and addressed
5351	 */
5352	.update_device =        xhci_update_device,
5353	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5354	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5355	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5356	.find_raw_port_number =	xhci_find_raw_port_number,
5357	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5358};
5359
5360void xhci_init_driver(struct hc_driver *drv,
5361		      const struct xhci_driver_overrides *over)
5362{
5363	BUG_ON(!over);
5364
5365	/* Copy the generic table to drv then apply the overrides */
5366	*drv = xhci_hc_driver;
5367
5368	if (over) {
5369		drv->hcd_priv_size += over->extra_priv_size;
5370		if (over->reset)
5371			drv->reset = over->reset;
5372		if (over->start)
5373			drv->start = over->start;
5374	}
5375}
5376EXPORT_SYMBOL_GPL(xhci_init_driver);
5377
5378MODULE_DESCRIPTION(DRIVER_DESC);
5379MODULE_AUTHOR(DRIVER_AUTHOR);
5380MODULE_LICENSE("GPL");
5381
5382static int __init xhci_hcd_init(void)
5383{
5384	/*
5385	 * Check the compiler generated sizes of structures that must be laid
5386	 * out in specific ways for hardware access.
5387	 */
5388	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5389	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5390	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5391	/* xhci_device_control has eight fields, and also
5392	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5393	 */
5394	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5395	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5396	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5397	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5398	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5399	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5400	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5401
5402	if (usb_disabled())
5403		return -ENODEV;
5404
5405	xhci_debugfs_create_root();
5406
5407	return 0;
5408}
5409
5410/*
5411 * If an init function is provided, an exit function must also be provided
5412 * to allow module unload.
5413 */
5414static void __exit xhci_hcd_fini(void)
5415{
5416	xhci_debugfs_remove_root();
5417}
5418
5419module_init(xhci_hcd_init);
5420module_exit(xhci_hcd_fini);
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/pci.h>
 
  12#include <linux/irq.h>
  13#include <linux/log2.h>
  14#include <linux/module.h>
  15#include <linux/moduleparam.h>
  16#include <linux/slab.h>
  17#include <linux/dmi.h>
  18#include <linux/dma-mapping.h>
  19
  20#include "xhci.h"
  21#include "xhci-trace.h"
  22#include "xhci-mtk.h"
  23#include "xhci-debugfs.h"
  24#include "xhci-dbgcap.h"
  25
  26#define DRIVER_AUTHOR "Sarah Sharp"
  27#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  28
  29#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  30
  31/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  32static int link_quirk;
  33module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  34MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  35
  36static unsigned int quirks;
  37module_param(quirks, uint, S_IRUGO);
  38MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  39
  40/* TODO: copied from ehci-hcd.c - can this be refactored? */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41/*
  42 * xhci_handshake - spin reading hc until handshake completes or fails
  43 * @ptr: address of hc register to be read
  44 * @mask: bits to look at in result of read
  45 * @done: value of those bits when handshake succeeds
  46 * @usec: timeout in microseconds
  47 *
  48 * Returns negative errno, or zero on success
  49 *
  50 * Success happens when the "mask" bits have the specified value (hardware
  51 * handshake done).  There are two failure modes:  "usec" have passed (major
  52 * hardware flakeout), or the register reads as all-ones (hardware removed).
  53 */
  54int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
  55{
  56	u32	result;
 
 
 
 
 
 
 
 
  57
  58	do {
  59		result = readl(ptr);
  60		if (result == ~(u32)0)		/* card removed */
  61			return -ENODEV;
  62		result &= mask;
  63		if (result == done)
  64			return 0;
  65		udelay(1);
  66		usec--;
  67	} while (usec > 0);
  68	return -ETIMEDOUT;
  69}
  70
  71/*
  72 * Disable interrupts and begin the xHCI halting process.
  73 */
  74void xhci_quiesce(struct xhci_hcd *xhci)
  75{
  76	u32 halted;
  77	u32 cmd;
  78	u32 mask;
  79
  80	mask = ~(XHCI_IRQS);
  81	halted = readl(&xhci->op_regs->status) & STS_HALT;
  82	if (!halted)
  83		mask &= ~CMD_RUN;
  84
  85	cmd = readl(&xhci->op_regs->command);
  86	cmd &= mask;
  87	writel(cmd, &xhci->op_regs->command);
  88}
  89
  90/*
  91 * Force HC into halt state.
  92 *
  93 * Disable any IRQs and clear the run/stop bit.
  94 * HC will complete any current and actively pipelined transactions, and
  95 * should halt within 16 ms of the run/stop bit being cleared.
  96 * Read HC Halted bit in the status register to see when the HC is finished.
  97 */
  98int xhci_halt(struct xhci_hcd *xhci)
  99{
 100	int ret;
 101	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 102	xhci_quiesce(xhci);
 103
 104	ret = xhci_handshake(&xhci->op_regs->status,
 105			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 106	if (ret) {
 107		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 108		return ret;
 109	}
 110	xhci->xhc_state |= XHCI_STATE_HALTED;
 111	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 112	return ret;
 113}
 114
 115/*
 116 * Set the run bit and wait for the host to be running.
 117 */
 118int xhci_start(struct xhci_hcd *xhci)
 119{
 120	u32 temp;
 121	int ret;
 122
 123	temp = readl(&xhci->op_regs->command);
 124	temp |= (CMD_RUN);
 125	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 126			temp);
 127	writel(temp, &xhci->op_regs->command);
 128
 129	/*
 130	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 131	 * running.
 132	 */
 133	ret = xhci_handshake(&xhci->op_regs->status,
 134			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 135	if (ret == -ETIMEDOUT)
 136		xhci_err(xhci, "Host took too long to start, "
 137				"waited %u microseconds.\n",
 138				XHCI_MAX_HALT_USEC);
 139	if (!ret)
 140		/* clear state flags. Including dying, halted or removing */
 141		xhci->xhc_state = 0;
 142
 143	return ret;
 144}
 145
 146/*
 147 * Reset a halted HC.
 148 *
 149 * This resets pipelines, timers, counters, state machines, etc.
 150 * Transactions will be terminated immediately, and operational registers
 151 * will be set to their defaults.
 152 */
 153int xhci_reset(struct xhci_hcd *xhci)
 154{
 155	u32 command;
 156	u32 state;
 157	int ret, i;
 158
 159	state = readl(&xhci->op_regs->status);
 160
 161	if (state == ~(u32)0) {
 162		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 163		return -ENODEV;
 164	}
 165
 166	if ((state & STS_HALT) == 0) {
 167		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 168		return 0;
 169	}
 170
 171	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 172	command = readl(&xhci->op_regs->command);
 173	command |= CMD_RESET;
 174	writel(command, &xhci->op_regs->command);
 175
 176	/* Existing Intel xHCI controllers require a delay of 1 mS,
 177	 * after setting the CMD_RESET bit, and before accessing any
 178	 * HC registers. This allows the HC to complete the
 179	 * reset operation and be ready for HC register access.
 180	 * Without this delay, the subsequent HC register access,
 181	 * may result in a system hang very rarely.
 182	 */
 183	if (xhci->quirks & XHCI_INTEL_HOST)
 184		udelay(1000);
 185
 186	ret = xhci_handshake(&xhci->op_regs->command,
 187			CMD_RESET, 0, 10 * 1000 * 1000);
 188	if (ret)
 189		return ret;
 190
 191	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 192		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 193
 194	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 195			 "Wait for controller to be ready for doorbell rings");
 196	/*
 197	 * xHCI cannot write to any doorbells or operational registers other
 198	 * than status until the "Controller Not Ready" flag is cleared.
 199	 */
 200	ret = xhci_handshake(&xhci->op_regs->status,
 201			STS_CNR, 0, 10 * 1000 * 1000);
 202
 203	for (i = 0; i < 2; i++) {
 204		xhci->bus_state[i].port_c_suspend = 0;
 205		xhci->bus_state[i].suspended_ports = 0;
 206		xhci->bus_state[i].resuming_ports = 0;
 207	}
 
 208
 209	return ret;
 210}
 211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212
 213#ifdef CONFIG_USB_PCI
 214/*
 215 * Set up MSI
 216 */
 217static int xhci_setup_msi(struct xhci_hcd *xhci)
 218{
 219	int ret;
 220	/*
 221	 * TODO:Check with MSI Soc for sysdev
 222	 */
 223	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 224
 225	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
 226	if (ret < 0) {
 227		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 228				"failed to allocate MSI entry");
 229		return ret;
 230	}
 231
 232	ret = request_irq(pdev->irq, xhci_msi_irq,
 233				0, "xhci_hcd", xhci_to_hcd(xhci));
 234	if (ret) {
 235		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 236				"disable MSI interrupt");
 237		pci_free_irq_vectors(pdev);
 238	}
 239
 240	return ret;
 241}
 242
 243/*
 244 * Set up MSI-X
 245 */
 246static int xhci_setup_msix(struct xhci_hcd *xhci)
 247{
 248	int i, ret = 0;
 249	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 250	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 251
 252	/*
 253	 * calculate number of msi-x vectors supported.
 254	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 255	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 256	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 257	 *   Add additional 1 vector to ensure always available interrupt.
 258	 */
 259	xhci->msix_count = min(num_online_cpus() + 1,
 260				HCS_MAX_INTRS(xhci->hcs_params1));
 261
 262	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
 263			PCI_IRQ_MSIX);
 264	if (ret < 0) {
 265		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 266				"Failed to enable MSI-X");
 267		return ret;
 268	}
 269
 270	for (i = 0; i < xhci->msix_count; i++) {
 271		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
 272				"xhci_hcd", xhci_to_hcd(xhci));
 273		if (ret)
 274			goto disable_msix;
 275	}
 276
 277	hcd->msix_enabled = 1;
 278	return ret;
 279
 280disable_msix:
 281	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 282	while (--i >= 0)
 283		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 284	pci_free_irq_vectors(pdev);
 285	return ret;
 286}
 287
 288/* Free any IRQs and disable MSI-X */
 289static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 290{
 291	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 292	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 293
 294	if (xhci->quirks & XHCI_PLAT)
 295		return;
 296
 297	/* return if using legacy interrupt */
 298	if (hcd->irq > 0)
 299		return;
 300
 301	if (hcd->msix_enabled) {
 302		int i;
 303
 304		for (i = 0; i < xhci->msix_count; i++)
 305			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 306	} else {
 307		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
 308	}
 309
 310	pci_free_irq_vectors(pdev);
 311	hcd->msix_enabled = 0;
 312}
 313
 314static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 315{
 316	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 317
 318	if (hcd->msix_enabled) {
 319		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 320		int i;
 321
 322		for (i = 0; i < xhci->msix_count; i++)
 323			synchronize_irq(pci_irq_vector(pdev, i));
 324	}
 325}
 326
 327static int xhci_try_enable_msi(struct usb_hcd *hcd)
 328{
 329	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 330	struct pci_dev  *pdev;
 331	int ret;
 332
 333	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 334	if (xhci->quirks & XHCI_PLAT)
 335		return 0;
 336
 337	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 338	/*
 339	 * Some Fresco Logic host controllers advertise MSI, but fail to
 340	 * generate interrupts.  Don't even try to enable MSI.
 341	 */
 342	if (xhci->quirks & XHCI_BROKEN_MSI)
 343		goto legacy_irq;
 344
 345	/* unregister the legacy interrupt */
 346	if (hcd->irq)
 347		free_irq(hcd->irq, hcd);
 348	hcd->irq = 0;
 349
 350	ret = xhci_setup_msix(xhci);
 351	if (ret)
 352		/* fall back to msi*/
 353		ret = xhci_setup_msi(xhci);
 354
 355	if (!ret) {
 356		hcd->msi_enabled = 1;
 357		return 0;
 358	}
 359
 360	if (!pdev->irq) {
 361		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 362		return -EINVAL;
 363	}
 364
 365 legacy_irq:
 366	if (!strlen(hcd->irq_descr))
 367		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 368			 hcd->driver->description, hcd->self.busnum);
 369
 370	/* fall back to legacy interrupt*/
 371	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 372			hcd->irq_descr, hcd);
 373	if (ret) {
 374		xhci_err(xhci, "request interrupt %d failed\n",
 375				pdev->irq);
 376		return ret;
 377	}
 378	hcd->irq = pdev->irq;
 379	return 0;
 380}
 381
 382#else
 383
 384static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 385{
 386	return 0;
 387}
 388
 389static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 390{
 391}
 392
 393static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 394{
 395}
 396
 397#endif
 398
 399static void compliance_mode_recovery(struct timer_list *t)
 400{
 401	struct xhci_hcd *xhci;
 402	struct usb_hcd *hcd;
 
 403	u32 temp;
 404	int i;
 405
 406	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 
 407
 408	for (i = 0; i < xhci->num_usb3_ports; i++) {
 409		temp = readl(xhci->usb3_ports[i]);
 410		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 411			/*
 412			 * Compliance Mode Detected. Letting USB Core
 413			 * handle the Warm Reset
 414			 */
 415			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 416					"Compliance mode detected->port %d",
 417					i + 1);
 418			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 419					"Attempting compliance mode recovery");
 420			hcd = xhci->shared_hcd;
 421
 422			if (hcd->state == HC_STATE_SUSPENDED)
 423				usb_hcd_resume_root_hub(hcd);
 424
 425			usb_hcd_poll_rh_status(hcd);
 426		}
 427	}
 428
 429	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 430		mod_timer(&xhci->comp_mode_recovery_timer,
 431			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 432}
 433
 434/*
 435 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 436 * that causes ports behind that hardware to enter compliance mode sometimes.
 437 * The quirk creates a timer that polls every 2 seconds the link state of
 438 * each host controller's port and recovers it by issuing a Warm reset
 439 * if Compliance mode is detected, otherwise the port will become "dead" (no
 440 * device connections or disconnections will be detected anymore). Becasue no
 441 * status event is generated when entering compliance mode (per xhci spec),
 442 * this quirk is needed on systems that have the failing hardware installed.
 443 */
 444static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 445{
 446	xhci->port_status_u0 = 0;
 447	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 448		    0);
 449	xhci->comp_mode_recovery_timer.expires = jiffies +
 450			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 451
 452	add_timer(&xhci->comp_mode_recovery_timer);
 453	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 454			"Compliance mode recovery timer initialized");
 455}
 456
 457/*
 458 * This function identifies the systems that have installed the SN65LVPE502CP
 459 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 460 * Systems:
 461 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 462 */
 463static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 464{
 465	const char *dmi_product_name, *dmi_sys_vendor;
 466
 467	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 468	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 469	if (!dmi_product_name || !dmi_sys_vendor)
 470		return false;
 471
 472	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 473		return false;
 474
 475	if (strstr(dmi_product_name, "Z420") ||
 476			strstr(dmi_product_name, "Z620") ||
 477			strstr(dmi_product_name, "Z820") ||
 478			strstr(dmi_product_name, "Z1 Workstation"))
 479		return true;
 480
 481	return false;
 482}
 483
 484static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 485{
 486	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 487}
 488
 489
 490/*
 491 * Initialize memory for HCD and xHC (one-time init).
 492 *
 493 * Program the PAGESIZE register, initialize the device context array, create
 494 * device contexts (?), set up a command ring segment (or two?), create event
 495 * ring (one for now).
 496 */
 497static int xhci_init(struct usb_hcd *hcd)
 498{
 499	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 500	int retval = 0;
 501
 502	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 503	spin_lock_init(&xhci->lock);
 504	if (xhci->hci_version == 0x95 && link_quirk) {
 505		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 506				"QUIRK: Not clearing Link TRB chain bits.");
 507		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 508	} else {
 509		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 510				"xHCI doesn't need link TRB QUIRK");
 511	}
 512	retval = xhci_mem_init(xhci, GFP_KERNEL);
 513	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 514
 515	/* Initializing Compliance Mode Recovery Data If Needed */
 516	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 517		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 518		compliance_mode_recovery_timer_init(xhci);
 519	}
 520
 521	return retval;
 522}
 523
 524/*-------------------------------------------------------------------------*/
 525
 526
 527static int xhci_run_finished(struct xhci_hcd *xhci)
 528{
 529	if (xhci_start(xhci)) {
 530		xhci_halt(xhci);
 531		return -ENODEV;
 532	}
 533	xhci->shared_hcd->state = HC_STATE_RUNNING;
 534	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 535
 536	if (xhci->quirks & XHCI_NEC_HOST)
 537		xhci_ring_cmd_db(xhci);
 538
 539	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 540			"Finished xhci_run for USB3 roothub");
 541	return 0;
 542}
 543
 544/*
 545 * Start the HC after it was halted.
 546 *
 547 * This function is called by the USB core when the HC driver is added.
 548 * Its opposite is xhci_stop().
 549 *
 550 * xhci_init() must be called once before this function can be called.
 551 * Reset the HC, enable device slot contexts, program DCBAAP, and
 552 * set command ring pointer and event ring pointer.
 553 *
 554 * Setup MSI-X vectors and enable interrupts.
 555 */
 556int xhci_run(struct usb_hcd *hcd)
 557{
 558	u32 temp;
 559	u64 temp_64;
 560	int ret;
 561	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 562
 563	/* Start the xHCI host controller running only after the USB 2.0 roothub
 564	 * is setup.
 565	 */
 566
 567	hcd->uses_new_polling = 1;
 568	if (!usb_hcd_is_primary_hcd(hcd))
 569		return xhci_run_finished(xhci);
 570
 571	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 572
 573	ret = xhci_try_enable_msi(hcd);
 574	if (ret)
 575		return ret;
 576
 577	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 578	temp_64 &= ~ERST_PTR_MASK;
 579	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 580			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 581
 582	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 583			"// Set the interrupt modulation register");
 584	temp = readl(&xhci->ir_set->irq_control);
 585	temp &= ~ER_IRQ_INTERVAL_MASK;
 586	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 587	writel(temp, &xhci->ir_set->irq_control);
 588
 589	/* Set the HCD state before we enable the irqs */
 590	temp = readl(&xhci->op_regs->command);
 591	temp |= (CMD_EIE);
 592	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 593			"// Enable interrupts, cmd = 0x%x.", temp);
 594	writel(temp, &xhci->op_regs->command);
 595
 596	temp = readl(&xhci->ir_set->irq_pending);
 597	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 598			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 599			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 600	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 601
 602	if (xhci->quirks & XHCI_NEC_HOST) {
 603		struct xhci_command *command;
 604
 605		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 606		if (!command)
 607			return -ENOMEM;
 608
 609		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 610				TRB_TYPE(TRB_NEC_GET_FW));
 611		if (ret)
 612			xhci_free_command(xhci, command);
 613	}
 614	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 615			"Finished xhci_run for USB2 roothub");
 616
 617	xhci_dbc_init(xhci);
 618
 619	xhci_debugfs_init(xhci);
 620
 621	return 0;
 622}
 623EXPORT_SYMBOL_GPL(xhci_run);
 624
 625/*
 626 * Stop xHCI driver.
 627 *
 628 * This function is called by the USB core when the HC driver is removed.
 629 * Its opposite is xhci_run().
 630 *
 631 * Disable device contexts, disable IRQs, and quiesce the HC.
 632 * Reset the HC, finish any completed transactions, and cleanup memory.
 633 */
 634static void xhci_stop(struct usb_hcd *hcd)
 635{
 636	u32 temp;
 637	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 638
 639	mutex_lock(&xhci->mutex);
 640
 641	/* Only halt host and free memory after both hcds are removed */
 642	if (!usb_hcd_is_primary_hcd(hcd)) {
 643		/* usb core will free this hcd shortly, unset pointer */
 644		xhci->shared_hcd = NULL;
 645		mutex_unlock(&xhci->mutex);
 646		return;
 647	}
 648
 649	xhci_dbc_exit(xhci);
 650
 651	spin_lock_irq(&xhci->lock);
 652	xhci->xhc_state |= XHCI_STATE_HALTED;
 653	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 654	xhci_halt(xhci);
 655	xhci_reset(xhci);
 656	spin_unlock_irq(&xhci->lock);
 657
 658	xhci_cleanup_msix(xhci);
 659
 660	/* Deleting Compliance Mode Recovery Timer */
 661	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 662			(!(xhci_all_ports_seen_u0(xhci)))) {
 663		del_timer_sync(&xhci->comp_mode_recovery_timer);
 664		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 665				"%s: compliance mode recovery timer deleted",
 666				__func__);
 667	}
 668
 669	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 670		usb_amd_dev_put();
 671
 672	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 673			"// Disabling event ring interrupts");
 674	temp = readl(&xhci->op_regs->status);
 675	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 676	temp = readl(&xhci->ir_set->irq_pending);
 677	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 678
 679	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 680	xhci_mem_cleanup(xhci);
 681	xhci_debugfs_exit(xhci);
 682	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 683			"xhci_stop completed - status = %x",
 684			readl(&xhci->op_regs->status));
 685	mutex_unlock(&xhci->mutex);
 686}
 687
 688/*
 689 * Shutdown HC (not bus-specific)
 690 *
 691 * This is called when the machine is rebooting or halting.  We assume that the
 692 * machine will be powered off, and the HC's internal state will be reset.
 693 * Don't bother to free memory.
 694 *
 695 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 696 */
 697static void xhci_shutdown(struct usb_hcd *hcd)
 698{
 699	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 700
 701	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 702		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 703
 704	spin_lock_irq(&xhci->lock);
 705	xhci_halt(xhci);
 706	/* Workaround for spurious wakeups at shutdown with HSW */
 707	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 708		xhci_reset(xhci);
 709	spin_unlock_irq(&xhci->lock);
 710
 711	xhci_cleanup_msix(xhci);
 712
 713	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 714			"xhci_shutdown completed - status = %x",
 715			readl(&xhci->op_regs->status));
 716
 717	/* Yet another workaround for spurious wakeups at shutdown with HSW */
 718	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 719		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
 720}
 721
 722#ifdef CONFIG_PM
 723static void xhci_save_registers(struct xhci_hcd *xhci)
 724{
 725	xhci->s3.command = readl(&xhci->op_regs->command);
 726	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 727	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 728	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 729	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 730	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 731	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 732	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 733	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 734}
 735
 736static void xhci_restore_registers(struct xhci_hcd *xhci)
 737{
 738	writel(xhci->s3.command, &xhci->op_regs->command);
 739	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 740	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 741	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 742	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 743	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 744	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 745	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 746	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 747}
 748
 749static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 750{
 751	u64	val_64;
 752
 753	/* step 2: initialize command ring buffer */
 754	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 755	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 756		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 757				      xhci->cmd_ring->dequeue) &
 758		 (u64) ~CMD_RING_RSVD_BITS) |
 759		xhci->cmd_ring->cycle_state;
 760	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 761			"// Setting command ring address to 0x%llx",
 762			(long unsigned long) val_64);
 763	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 764}
 765
 766/*
 767 * The whole command ring must be cleared to zero when we suspend the host.
 768 *
 769 * The host doesn't save the command ring pointer in the suspend well, so we
 770 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 771 * aligned, because of the reserved bits in the command ring dequeue pointer
 772 * register.  Therefore, we can't just set the dequeue pointer back in the
 773 * middle of the ring (TRBs are 16-byte aligned).
 774 */
 775static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 776{
 777	struct xhci_ring *ring;
 778	struct xhci_segment *seg;
 779
 780	ring = xhci->cmd_ring;
 781	seg = ring->deq_seg;
 782	do {
 783		memset(seg->trbs, 0,
 784			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 785		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 786			cpu_to_le32(~TRB_CYCLE);
 787		seg = seg->next;
 788	} while (seg != ring->deq_seg);
 789
 790	/* Reset the software enqueue and dequeue pointers */
 791	ring->deq_seg = ring->first_seg;
 792	ring->dequeue = ring->first_seg->trbs;
 793	ring->enq_seg = ring->deq_seg;
 794	ring->enqueue = ring->dequeue;
 795
 796	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 797	/*
 798	 * Ring is now zeroed, so the HW should look for change of ownership
 799	 * when the cycle bit is set to 1.
 800	 */
 801	ring->cycle_state = 1;
 802
 803	/*
 804	 * Reset the hardware dequeue pointer.
 805	 * Yes, this will need to be re-written after resume, but we're paranoid
 806	 * and want to make sure the hardware doesn't access bogus memory
 807	 * because, say, the BIOS or an SMI started the host without changing
 808	 * the command ring pointers.
 809	 */
 810	xhci_set_cmd_ring_deq(xhci);
 811}
 812
 813static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
 814{
 
 815	int port_index;
 816	__le32 __iomem **port_array;
 817	unsigned long flags;
 818	u32 t1, t2;
 819
 820	spin_lock_irqsave(&xhci->lock, flags);
 821
 822	/* disable usb3 ports Wake bits */
 823	port_index = xhci->num_usb3_ports;
 824	port_array = xhci->usb3_ports;
 825	while (port_index--) {
 826		t1 = readl(port_array[port_index]);
 
 827		t1 = xhci_port_state_to_neutral(t1);
 828		t2 = t1 & ~PORT_WAKE_BITS;
 829		if (t1 != t2)
 830			writel(t2, port_array[port_index]);
 
 
 
 
 831	}
 832
 833	/* disable usb2 ports Wake bits */
 834	port_index = xhci->num_usb2_ports;
 835	port_array = xhci->usb2_ports;
 836	while (port_index--) {
 837		t1 = readl(port_array[port_index]);
 
 838		t1 = xhci_port_state_to_neutral(t1);
 839		t2 = t1 & ~PORT_WAKE_BITS;
 840		if (t1 != t2)
 841			writel(t2, port_array[port_index]);
 
 
 
 
 842	}
 
 
 843
 844	spin_unlock_irqrestore(&xhci->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845}
 846
 847/*
 848 * Stop HC (not bus-specific)
 849 *
 850 * This is called when the machine transition into S3/S4 mode.
 851 *
 852 */
 853int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 854{
 855	int			rc = 0;
 856	unsigned int		delay = XHCI_MAX_HALT_USEC;
 857	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 858	u32			command;
 
 859
 860	if (!hcd->state)
 861		return 0;
 862
 863	if (hcd->state != HC_STATE_SUSPENDED ||
 864			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 865		return -EINVAL;
 866
 867	xhci_dbc_suspend(xhci);
 868
 869	/* Clear root port wake on bits if wakeup not allowed. */
 870	if (!do_wakeup)
 871		xhci_disable_port_wake_on_bits(xhci);
 872
 873	/* Don't poll the roothubs on bus suspend. */
 874	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 875	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 876	del_timer_sync(&hcd->rh_timer);
 877	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 878	del_timer_sync(&xhci->shared_hcd->rh_timer);
 879
 880	if (xhci->quirks & XHCI_SUSPEND_DELAY)
 881		usleep_range(1000, 1500);
 882
 883	spin_lock_irq(&xhci->lock);
 884	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 885	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 886	/* step 1: stop endpoint */
 887	/* skipped assuming that port suspend has done */
 888
 889	/* step 2: clear Run/Stop bit */
 890	command = readl(&xhci->op_regs->command);
 891	command &= ~CMD_RUN;
 892	writel(command, &xhci->op_regs->command);
 893
 894	/* Some chips from Fresco Logic need an extraordinary delay */
 895	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
 896
 897	if (xhci_handshake(&xhci->op_regs->status,
 898		      STS_HALT, STS_HALT, delay)) {
 899		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 900		spin_unlock_irq(&xhci->lock);
 901		return -ETIMEDOUT;
 902	}
 903	xhci_clear_command_ring(xhci);
 904
 905	/* step 3: save registers */
 906	xhci_save_registers(xhci);
 907
 908	/* step 4: set CSS flag */
 909	command = readl(&xhci->op_regs->command);
 910	command |= CMD_CSS;
 911	writel(command, &xhci->op_regs->command);
 
 912	if (xhci_handshake(&xhci->op_regs->status,
 913				STS_SAVE, 0, 10 * 1000)) {
 914		xhci_warn(xhci, "WARN: xHC save state timeout\n");
 915		spin_unlock_irq(&xhci->lock);
 916		return -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917	}
 918	spin_unlock_irq(&xhci->lock);
 919
 920	/*
 921	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 922	 * is about to be suspended.
 923	 */
 924	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 925			(!(xhci_all_ports_seen_u0(xhci)))) {
 926		del_timer_sync(&xhci->comp_mode_recovery_timer);
 927		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 928				"%s: compliance mode recovery timer deleted",
 929				__func__);
 930	}
 931
 932	/* step 5: remove core well power */
 933	/* synchronize irq when using MSI-X */
 934	xhci_msix_sync_irqs(xhci);
 935
 936	return rc;
 937}
 938EXPORT_SYMBOL_GPL(xhci_suspend);
 939
 940/*
 941 * start xHC (not bus-specific)
 942 *
 943 * This is called when the machine transition from S3/S4 mode.
 944 *
 945 */
 946int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 947{
 948	u32			command, temp = 0, status;
 949	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 950	struct usb_hcd		*secondary_hcd;
 951	int			retval = 0;
 952	bool			comp_timer_running = false;
 953
 954	if (!hcd->state)
 955		return 0;
 956
 957	/* Wait a bit if either of the roothubs need to settle from the
 958	 * transition into bus suspend.
 959	 */
 960	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
 961			time_before(jiffies,
 962				xhci->bus_state[1].next_statechange))
 963		msleep(100);
 964
 965	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 966	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 967
 968	spin_lock_irq(&xhci->lock);
 969	if (xhci->quirks & XHCI_RESET_ON_RESUME)
 970		hibernated = true;
 971
 972	if (!hibernated) {
 
 
 
 
 
 
 
 
 
 
 
 
 973		/* step 1: restore register */
 974		xhci_restore_registers(xhci);
 975		/* step 2: initialize command ring buffer */
 976		xhci_set_cmd_ring_deq(xhci);
 977		/* step 3: restore state and start state*/
 978		/* step 3: set CRS flag */
 979		command = readl(&xhci->op_regs->command);
 980		command |= CMD_CRS;
 981		writel(command, &xhci->op_regs->command);
 
 
 
 
 
 982		if (xhci_handshake(&xhci->op_regs->status,
 983			      STS_RESTORE, 0, 10 * 1000)) {
 984			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
 985			spin_unlock_irq(&xhci->lock);
 986			return -ETIMEDOUT;
 987		}
 988		temp = readl(&xhci->op_regs->status);
 989	}
 990
 991	/* If restore operation fails, re-initialize the HC during resume */
 992	if ((temp & STS_SRE) || hibernated) {
 993
 994		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 995				!(xhci_all_ports_seen_u0(xhci))) {
 996			del_timer_sync(&xhci->comp_mode_recovery_timer);
 997			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 998				"Compliance Mode Recovery Timer deleted!");
 999		}
1000
1001		/* Let the USB core know _both_ roothubs lost power. */
1002		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1003		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1004
1005		xhci_dbg(xhci, "Stop HCD\n");
1006		xhci_halt(xhci);
 
1007		xhci_reset(xhci);
1008		spin_unlock_irq(&xhci->lock);
1009		xhci_cleanup_msix(xhci);
1010
1011		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1012		temp = readl(&xhci->op_regs->status);
1013		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1014		temp = readl(&xhci->ir_set->irq_pending);
1015		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1016
1017		xhci_dbg(xhci, "cleaning up memory\n");
1018		xhci_mem_cleanup(xhci);
1019		xhci_debugfs_exit(xhci);
1020		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1021			    readl(&xhci->op_regs->status));
1022
1023		/* USB core calls the PCI reinit and start functions twice:
1024		 * first with the primary HCD, and then with the secondary HCD.
1025		 * If we don't do the same, the host will never be started.
1026		 */
1027		if (!usb_hcd_is_primary_hcd(hcd))
1028			secondary_hcd = hcd;
1029		else
1030			secondary_hcd = xhci->shared_hcd;
1031
1032		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1033		retval = xhci_init(hcd->primary_hcd);
1034		if (retval)
1035			return retval;
1036		comp_timer_running = true;
1037
1038		xhci_dbg(xhci, "Start the primary HCD\n");
1039		retval = xhci_run(hcd->primary_hcd);
1040		if (!retval) {
1041			xhci_dbg(xhci, "Start the secondary HCD\n");
1042			retval = xhci_run(secondary_hcd);
1043		}
1044		hcd->state = HC_STATE_SUSPENDED;
1045		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1046		goto done;
1047	}
1048
1049	/* step 4: set Run/Stop bit */
1050	command = readl(&xhci->op_regs->command);
1051	command |= CMD_RUN;
1052	writel(command, &xhci->op_regs->command);
1053	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1054		  0, 250 * 1000);
1055
1056	/* step 5: walk topology and initialize portsc,
1057	 * portpmsc and portli
1058	 */
1059	/* this is done in bus_resume */
1060
1061	/* step 6: restart each of the previously
1062	 * Running endpoints by ringing their doorbells
1063	 */
1064
1065	spin_unlock_irq(&xhci->lock);
1066
1067	xhci_dbc_resume(xhci);
1068
1069 done:
1070	if (retval == 0) {
1071		/* Resume root hubs only when have pending events. */
1072		status = readl(&xhci->op_regs->status);
1073		if (status & STS_EINT) {
1074			usb_hcd_resume_root_hub(xhci->shared_hcd);
1075			usb_hcd_resume_root_hub(hcd);
1076		}
1077	}
1078
1079	/*
1080	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1081	 * be re-initialized Always after a system resume. Ports are subject
1082	 * to suffer the Compliance Mode issue again. It doesn't matter if
1083	 * ports have entered previously to U0 before system's suspension.
1084	 */
1085	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1086		compliance_mode_recovery_timer_init(xhci);
1087
1088	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1089		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1090
1091	/* Re-enable port polling. */
1092	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1093	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1094	usb_hcd_poll_rh_status(xhci->shared_hcd);
1095	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1096	usb_hcd_poll_rh_status(hcd);
1097
1098	return retval;
1099}
1100EXPORT_SYMBOL_GPL(xhci_resume);
1101#endif	/* CONFIG_PM */
1102
1103/*-------------------------------------------------------------------------*/
1104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105/**
1106 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1107 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1108 * value to right shift 1 for the bitmask.
1109 *
1110 * Index  = (epnum * 2) + direction - 1,
1111 * where direction = 0 for OUT, 1 for IN.
1112 * For control endpoints, the IN index is used (OUT index is unused), so
1113 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1114 */
1115unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1116{
1117	unsigned int index;
1118	if (usb_endpoint_xfer_control(desc))
1119		index = (unsigned int) (usb_endpoint_num(desc)*2);
1120	else
1121		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1122			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1123	return index;
1124}
1125
1126/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1127 * address from the XHCI endpoint index.
1128 */
1129unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1130{
1131	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1132	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1133	return direction | number;
1134}
1135
1136/* Find the flag for this endpoint (for use in the control context).  Use the
1137 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1138 * bit 1, etc.
1139 */
1140static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1141{
1142	return 1 << (xhci_get_endpoint_index(desc) + 1);
1143}
1144
1145/* Find the flag for this endpoint (for use in the control context).  Use the
1146 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1147 * bit 1, etc.
1148 */
1149static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1150{
1151	return 1 << (ep_index + 1);
1152}
1153
1154/* Compute the last valid endpoint context index.  Basically, this is the
1155 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1156 * we find the most significant bit set in the added contexts flags.
1157 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1158 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1159 */
1160unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1161{
1162	return fls(added_ctxs) - 1;
1163}
1164
1165/* Returns 1 if the arguments are OK;
1166 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1167 */
1168static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1169		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1170		const char *func) {
1171	struct xhci_hcd	*xhci;
1172	struct xhci_virt_device	*virt_dev;
1173
1174	if (!hcd || (check_ep && !ep) || !udev) {
1175		pr_debug("xHCI %s called with invalid args\n", func);
1176		return -EINVAL;
1177	}
1178	if (!udev->parent) {
1179		pr_debug("xHCI %s called for root hub\n", func);
1180		return 0;
1181	}
1182
1183	xhci = hcd_to_xhci(hcd);
1184	if (check_virt_dev) {
1185		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1186			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1187					func);
1188			return -EINVAL;
1189		}
1190
1191		virt_dev = xhci->devs[udev->slot_id];
1192		if (virt_dev->udev != udev) {
1193			xhci_dbg(xhci, "xHCI %s called with udev and "
1194					  "virt_dev does not match\n", func);
1195			return -EINVAL;
1196		}
1197	}
1198
1199	if (xhci->xhc_state & XHCI_STATE_HALTED)
1200		return -ENODEV;
1201
1202	return 1;
1203}
1204
1205static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1206		struct usb_device *udev, struct xhci_command *command,
1207		bool ctx_change, bool must_succeed);
1208
1209/*
1210 * Full speed devices may have a max packet size greater than 8 bytes, but the
1211 * USB core doesn't know that until it reads the first 8 bytes of the
1212 * descriptor.  If the usb_device's max packet size changes after that point,
1213 * we need to issue an evaluate context command and wait on it.
1214 */
1215static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1216		unsigned int ep_index, struct urb *urb)
1217{
1218	struct xhci_container_ctx *out_ctx;
1219	struct xhci_input_control_ctx *ctrl_ctx;
1220	struct xhci_ep_ctx *ep_ctx;
1221	struct xhci_command *command;
1222	int max_packet_size;
1223	int hw_max_packet_size;
1224	int ret = 0;
1225
1226	out_ctx = xhci->devs[slot_id]->out_ctx;
1227	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1228	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1229	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1230	if (hw_max_packet_size != max_packet_size) {
1231		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1232				"Max Packet Size for ep 0 changed.");
1233		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1234				"Max packet size in usb_device = %d",
1235				max_packet_size);
1236		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1237				"Max packet size in xHCI HW = %d",
1238				hw_max_packet_size);
1239		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1240				"Issuing evaluate context command.");
1241
1242		/* Set up the input context flags for the command */
1243		/* FIXME: This won't work if a non-default control endpoint
1244		 * changes max packet sizes.
1245		 */
1246
1247		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1248		if (!command)
1249			return -ENOMEM;
1250
1251		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1252		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1253		if (!ctrl_ctx) {
1254			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1255					__func__);
1256			ret = -ENOMEM;
1257			goto command_cleanup;
1258		}
1259		/* Set up the modified control endpoint 0 */
1260		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1261				xhci->devs[slot_id]->out_ctx, ep_index);
1262
1263		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1264		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1265		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1266
1267		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1268		ctrl_ctx->drop_flags = 0;
1269
1270		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1271				true, false);
1272
1273		/* Clean up the input context for later use by bandwidth
1274		 * functions.
1275		 */
1276		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1277command_cleanup:
1278		kfree(command->completion);
1279		kfree(command);
1280	}
1281	return ret;
1282}
1283
1284/*
1285 * non-error returns are a promise to giveback() the urb later
1286 * we drop ownership so next owner (or urb unlink) can get it
1287 */
1288static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1289{
1290	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1291	unsigned long flags;
1292	int ret = 0;
1293	unsigned int slot_id, ep_index;
1294	unsigned int *ep_state;
1295	struct urb_priv	*urb_priv;
1296	int num_tds;
1297
1298	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1299					true, true, __func__) <= 0)
1300		return -EINVAL;
1301
1302	slot_id = urb->dev->slot_id;
1303	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1304	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1305
1306	if (!HCD_HW_ACCESSIBLE(hcd)) {
1307		if (!in_interrupt())
1308			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1309		return -ESHUTDOWN;
1310	}
 
 
 
 
1311
1312	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1313		num_tds = urb->number_of_packets;
1314	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1315	    urb->transfer_buffer_length > 0 &&
1316	    urb->transfer_flags & URB_ZERO_PACKET &&
1317	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1318		num_tds = 2;
1319	else
1320		num_tds = 1;
1321
1322	urb_priv = kzalloc(sizeof(struct urb_priv) +
1323			   num_tds * sizeof(struct xhci_td), mem_flags);
1324	if (!urb_priv)
1325		return -ENOMEM;
1326
1327	urb_priv->num_tds = num_tds;
1328	urb_priv->num_tds_done = 0;
1329	urb->hcpriv = urb_priv;
1330
1331	trace_xhci_urb_enqueue(urb);
1332
1333	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1334		/* Check to see if the max packet size for the default control
1335		 * endpoint changed during FS device enumeration
1336		 */
1337		if (urb->dev->speed == USB_SPEED_FULL) {
1338			ret = xhci_check_maxpacket(xhci, slot_id,
1339					ep_index, urb);
1340			if (ret < 0) {
1341				xhci_urb_free_priv(urb_priv);
1342				urb->hcpriv = NULL;
1343				return ret;
1344			}
1345		}
1346	}
1347
1348	spin_lock_irqsave(&xhci->lock, flags);
1349
1350	if (xhci->xhc_state & XHCI_STATE_DYING) {
1351		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1352			 urb->ep->desc.bEndpointAddress, urb);
1353		ret = -ESHUTDOWN;
1354		goto free_priv;
1355	}
1356	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1357		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1358			  *ep_state);
1359		ret = -EINVAL;
1360		goto free_priv;
1361	}
1362	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1363		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1364		ret = -EINVAL;
1365		goto free_priv;
1366	}
1367
1368	switch (usb_endpoint_type(&urb->ep->desc)) {
1369
1370	case USB_ENDPOINT_XFER_CONTROL:
1371		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1372					 slot_id, ep_index);
1373		break;
1374	case USB_ENDPOINT_XFER_BULK:
1375		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1376					 slot_id, ep_index);
1377		break;
1378	case USB_ENDPOINT_XFER_INT:
1379		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1380				slot_id, ep_index);
1381		break;
1382	case USB_ENDPOINT_XFER_ISOC:
1383		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1384				slot_id, ep_index);
1385	}
1386
1387	if (ret) {
1388free_priv:
1389		xhci_urb_free_priv(urb_priv);
1390		urb->hcpriv = NULL;
1391	}
1392	spin_unlock_irqrestore(&xhci->lock, flags);
1393	return ret;
1394}
1395
1396/*
1397 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1398 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1399 * should pick up where it left off in the TD, unless a Set Transfer Ring
1400 * Dequeue Pointer is issued.
1401 *
1402 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1403 * the ring.  Since the ring is a contiguous structure, they can't be physically
1404 * removed.  Instead, there are two options:
1405 *
1406 *  1) If the HC is in the middle of processing the URB to be canceled, we
1407 *     simply move the ring's dequeue pointer past those TRBs using the Set
1408 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1409 *     when drivers timeout on the last submitted URB and attempt to cancel.
1410 *
1411 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1412 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1413 *     HC will need to invalidate the any TRBs it has cached after the stop
1414 *     endpoint command, as noted in the xHCI 0.95 errata.
1415 *
1416 *  3) The TD may have completed by the time the Stop Endpoint Command
1417 *     completes, so software needs to handle that case too.
1418 *
1419 * This function should protect against the TD enqueueing code ringing the
1420 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1421 * It also needs to account for multiple cancellations on happening at the same
1422 * time for the same endpoint.
1423 *
1424 * Note that this function can be called in any context, or so says
1425 * usb_hcd_unlink_urb()
1426 */
1427static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1428{
1429	unsigned long flags;
1430	int ret, i;
1431	u32 temp;
1432	struct xhci_hcd *xhci;
1433	struct urb_priv	*urb_priv;
1434	struct xhci_td *td;
1435	unsigned int ep_index;
1436	struct xhci_ring *ep_ring;
1437	struct xhci_virt_ep *ep;
1438	struct xhci_command *command;
1439	struct xhci_virt_device *vdev;
1440
1441	xhci = hcd_to_xhci(hcd);
1442	spin_lock_irqsave(&xhci->lock, flags);
1443
1444	trace_xhci_urb_dequeue(urb);
1445
1446	/* Make sure the URB hasn't completed or been unlinked already */
1447	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1448	if (ret)
1449		goto done;
1450
1451	/* give back URB now if we can't queue it for cancel */
1452	vdev = xhci->devs[urb->dev->slot_id];
1453	urb_priv = urb->hcpriv;
1454	if (!vdev || !urb_priv)
1455		goto err_giveback;
1456
1457	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1458	ep = &vdev->eps[ep_index];
1459	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1460	if (!ep || !ep_ring)
1461		goto err_giveback;
1462
1463	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1464	temp = readl(&xhci->op_regs->status);
1465	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1466		xhci_hc_died(xhci);
1467		goto done;
1468	}
1469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1471		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1472				"HC halted, freeing TD manually.");
1473		for (i = urb_priv->num_tds_done;
1474		     i < urb_priv->num_tds;
1475		     i++) {
1476			td = &urb_priv->td[i];
1477			if (!list_empty(&td->td_list))
1478				list_del_init(&td->td_list);
1479			if (!list_empty(&td->cancelled_td_list))
1480				list_del_init(&td->cancelled_td_list);
1481		}
1482		goto err_giveback;
1483	}
1484
1485	i = urb_priv->num_tds_done;
1486	if (i < urb_priv->num_tds)
1487		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1488				"Cancel URB %p, dev %s, ep 0x%x, "
1489				"starting at offset 0x%llx",
1490				urb, urb->dev->devpath,
1491				urb->ep->desc.bEndpointAddress,
1492				(unsigned long long) xhci_trb_virt_to_dma(
1493					urb_priv->td[i].start_seg,
1494					urb_priv->td[i].first_trb));
1495
1496	for (; i < urb_priv->num_tds; i++) {
1497		td = &urb_priv->td[i];
1498		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1499	}
1500
1501	/* Queue a stop endpoint command, but only if this is
1502	 * the first cancellation to be handled.
1503	 */
1504	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1505		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1506		if (!command) {
1507			ret = -ENOMEM;
1508			goto done;
1509		}
1510		ep->ep_state |= EP_STOP_CMD_PENDING;
1511		ep->stop_cmd_timer.expires = jiffies +
1512			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1513		add_timer(&ep->stop_cmd_timer);
1514		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1515					 ep_index, 0);
1516		xhci_ring_cmd_db(xhci);
1517	}
1518done:
1519	spin_unlock_irqrestore(&xhci->lock, flags);
1520	return ret;
1521
1522err_giveback:
1523	if (urb_priv)
1524		xhci_urb_free_priv(urb_priv);
1525	usb_hcd_unlink_urb_from_ep(hcd, urb);
1526	spin_unlock_irqrestore(&xhci->lock, flags);
1527	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1528	return ret;
1529}
1530
1531/* Drop an endpoint from a new bandwidth configuration for this device.
1532 * Only one call to this function is allowed per endpoint before
1533 * check_bandwidth() or reset_bandwidth() must be called.
1534 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1535 * add the endpoint to the schedule with possibly new parameters denoted by a
1536 * different endpoint descriptor in usb_host_endpoint.
1537 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1538 * not allowed.
1539 *
1540 * The USB core will not allow URBs to be queued to an endpoint that is being
1541 * disabled, so there's no need for mutual exclusion to protect
1542 * the xhci->devs[slot_id] structure.
1543 */
1544static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1545		struct usb_host_endpoint *ep)
1546{
1547	struct xhci_hcd *xhci;
1548	struct xhci_container_ctx *in_ctx, *out_ctx;
1549	struct xhci_input_control_ctx *ctrl_ctx;
1550	unsigned int ep_index;
1551	struct xhci_ep_ctx *ep_ctx;
1552	u32 drop_flag;
1553	u32 new_add_flags, new_drop_flags;
1554	int ret;
1555
1556	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1557	if (ret <= 0)
1558		return ret;
1559	xhci = hcd_to_xhci(hcd);
1560	if (xhci->xhc_state & XHCI_STATE_DYING)
1561		return -ENODEV;
1562
1563	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1564	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1565	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1566		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1567				__func__, drop_flag);
1568		return 0;
1569	}
1570
1571	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1572	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1573	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1574	if (!ctrl_ctx) {
1575		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1576				__func__);
1577		return 0;
1578	}
1579
1580	ep_index = xhci_get_endpoint_index(&ep->desc);
1581	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1582	/* If the HC already knows the endpoint is disabled,
1583	 * or the HCD has noted it is disabled, ignore this request
1584	 */
1585	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1586	    le32_to_cpu(ctrl_ctx->drop_flags) &
1587	    xhci_get_endpoint_flag(&ep->desc)) {
1588		/* Do not warn when called after a usb_device_reset */
1589		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1590			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1591				  __func__, ep);
1592		return 0;
1593	}
1594
1595	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1596	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1597
1598	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1599	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1600
1601	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1602
1603	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1604
1605	if (xhci->quirks & XHCI_MTK_HOST)
1606		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1607
1608	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1609			(unsigned int) ep->desc.bEndpointAddress,
1610			udev->slot_id,
1611			(unsigned int) new_drop_flags,
1612			(unsigned int) new_add_flags);
1613	return 0;
1614}
1615
1616/* Add an endpoint to a new possible bandwidth configuration for this device.
1617 * Only one call to this function is allowed per endpoint before
1618 * check_bandwidth() or reset_bandwidth() must be called.
1619 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1620 * add the endpoint to the schedule with possibly new parameters denoted by a
1621 * different endpoint descriptor in usb_host_endpoint.
1622 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1623 * not allowed.
1624 *
1625 * The USB core will not allow URBs to be queued to an endpoint until the
1626 * configuration or alt setting is installed in the device, so there's no need
1627 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1628 */
1629static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1630		struct usb_host_endpoint *ep)
1631{
1632	struct xhci_hcd *xhci;
1633	struct xhci_container_ctx *in_ctx;
1634	unsigned int ep_index;
1635	struct xhci_input_control_ctx *ctrl_ctx;
 
1636	u32 added_ctxs;
1637	u32 new_add_flags, new_drop_flags;
1638	struct xhci_virt_device *virt_dev;
1639	int ret = 0;
1640
1641	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1642	if (ret <= 0) {
1643		/* So we won't queue a reset ep command for a root hub */
1644		ep->hcpriv = NULL;
1645		return ret;
1646	}
1647	xhci = hcd_to_xhci(hcd);
1648	if (xhci->xhc_state & XHCI_STATE_DYING)
1649		return -ENODEV;
1650
1651	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1652	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1653		/* FIXME when we have to issue an evaluate endpoint command to
1654		 * deal with ep0 max packet size changing once we get the
1655		 * descriptors
1656		 */
1657		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1658				__func__, added_ctxs);
1659		return 0;
1660	}
1661
1662	virt_dev = xhci->devs[udev->slot_id];
1663	in_ctx = virt_dev->in_ctx;
1664	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1665	if (!ctrl_ctx) {
1666		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1667				__func__);
1668		return 0;
1669	}
1670
1671	ep_index = xhci_get_endpoint_index(&ep->desc);
1672	/* If this endpoint is already in use, and the upper layers are trying
1673	 * to add it again without dropping it, reject the addition.
1674	 */
1675	if (virt_dev->eps[ep_index].ring &&
1676			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1677		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1678				"without dropping it.\n",
1679				(unsigned int) ep->desc.bEndpointAddress);
1680		return -EINVAL;
1681	}
1682
1683	/* If the HCD has already noted the endpoint is enabled,
1684	 * ignore this request.
1685	 */
1686	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1687		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1688				__func__, ep);
1689		return 0;
1690	}
1691
1692	/*
1693	 * Configuration and alternate setting changes must be done in
1694	 * process context, not interrupt context (or so documenation
1695	 * for usb_set_interface() and usb_set_configuration() claim).
1696	 */
1697	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1698		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1699				__func__, ep->desc.bEndpointAddress);
1700		return -ENOMEM;
1701	}
1702
1703	if (xhci->quirks & XHCI_MTK_HOST) {
1704		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1705		if (ret < 0) {
1706			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1707			virt_dev->eps[ep_index].new_ring = NULL;
1708			return ret;
1709		}
1710	}
1711
1712	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1713	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1714
1715	/* If xhci_endpoint_disable() was called for this endpoint, but the
1716	 * xHC hasn't been notified yet through the check_bandwidth() call,
1717	 * this re-adds a new state for the endpoint from the new endpoint
1718	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1719	 * drop flags alone.
1720	 */
1721	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1722
1723	/* Store the usb_device pointer for later use */
1724	ep->hcpriv = udev;
1725
 
 
 
1726	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1727
1728	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1729			(unsigned int) ep->desc.bEndpointAddress,
1730			udev->slot_id,
1731			(unsigned int) new_drop_flags,
1732			(unsigned int) new_add_flags);
1733	return 0;
1734}
1735
1736static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1737{
1738	struct xhci_input_control_ctx *ctrl_ctx;
1739	struct xhci_ep_ctx *ep_ctx;
1740	struct xhci_slot_ctx *slot_ctx;
1741	int i;
1742
1743	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1744	if (!ctrl_ctx) {
1745		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1746				__func__);
1747		return;
1748	}
1749
1750	/* When a device's add flag and drop flag are zero, any subsequent
1751	 * configure endpoint command will leave that endpoint's state
1752	 * untouched.  Make sure we don't leave any old state in the input
1753	 * endpoint contexts.
1754	 */
1755	ctrl_ctx->drop_flags = 0;
1756	ctrl_ctx->add_flags = 0;
1757	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1758	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1759	/* Endpoint 0 is always valid */
1760	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1761	for (i = 1; i < 31; i++) {
1762		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1763		ep_ctx->ep_info = 0;
1764		ep_ctx->ep_info2 = 0;
1765		ep_ctx->deq = 0;
1766		ep_ctx->tx_info = 0;
1767	}
1768}
1769
1770static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1771		struct usb_device *udev, u32 *cmd_status)
1772{
1773	int ret;
1774
1775	switch (*cmd_status) {
1776	case COMP_COMMAND_ABORTED:
1777	case COMP_COMMAND_RING_STOPPED:
1778		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1779		ret = -ETIME;
1780		break;
1781	case COMP_RESOURCE_ERROR:
1782		dev_warn(&udev->dev,
1783			 "Not enough host controller resources for new device state.\n");
1784		ret = -ENOMEM;
1785		/* FIXME: can we allocate more resources for the HC? */
1786		break;
1787	case COMP_BANDWIDTH_ERROR:
1788	case COMP_SECONDARY_BANDWIDTH_ERROR:
1789		dev_warn(&udev->dev,
1790			 "Not enough bandwidth for new device state.\n");
1791		ret = -ENOSPC;
1792		/* FIXME: can we go back to the old state? */
1793		break;
1794	case COMP_TRB_ERROR:
1795		/* the HCD set up something wrong */
1796		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1797				"add flag = 1, "
1798				"and endpoint is not disabled.\n");
1799		ret = -EINVAL;
1800		break;
1801	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1802		dev_warn(&udev->dev,
1803			 "ERROR: Incompatible device for endpoint configure command.\n");
1804		ret = -ENODEV;
1805		break;
1806	case COMP_SUCCESS:
1807		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1808				"Successful Endpoint Configure command");
1809		ret = 0;
1810		break;
1811	default:
1812		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1813				*cmd_status);
1814		ret = -EINVAL;
1815		break;
1816	}
1817	return ret;
1818}
1819
1820static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1821		struct usb_device *udev, u32 *cmd_status)
1822{
1823	int ret;
1824
1825	switch (*cmd_status) {
1826	case COMP_COMMAND_ABORTED:
1827	case COMP_COMMAND_RING_STOPPED:
1828		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1829		ret = -ETIME;
1830		break;
1831	case COMP_PARAMETER_ERROR:
1832		dev_warn(&udev->dev,
1833			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1834		ret = -EINVAL;
1835		break;
1836	case COMP_SLOT_NOT_ENABLED_ERROR:
1837		dev_warn(&udev->dev,
1838			"WARN: slot not enabled for evaluate context command.\n");
1839		ret = -EINVAL;
1840		break;
1841	case COMP_CONTEXT_STATE_ERROR:
1842		dev_warn(&udev->dev,
1843			"WARN: invalid context state for evaluate context command.\n");
1844		ret = -EINVAL;
1845		break;
1846	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1847		dev_warn(&udev->dev,
1848			"ERROR: Incompatible device for evaluate context command.\n");
1849		ret = -ENODEV;
1850		break;
1851	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1852		/* Max Exit Latency too large error */
1853		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1854		ret = -EINVAL;
1855		break;
1856	case COMP_SUCCESS:
1857		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1858				"Successful evaluate context command");
1859		ret = 0;
1860		break;
1861	default:
1862		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1863			*cmd_status);
1864		ret = -EINVAL;
1865		break;
1866	}
1867	return ret;
1868}
1869
1870static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1871		struct xhci_input_control_ctx *ctrl_ctx)
1872{
1873	u32 valid_add_flags;
1874	u32 valid_drop_flags;
1875
1876	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1877	 * (bit 1).  The default control endpoint is added during the Address
1878	 * Device command and is never removed until the slot is disabled.
1879	 */
1880	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1881	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1882
1883	/* Use hweight32 to count the number of ones in the add flags, or
1884	 * number of endpoints added.  Don't count endpoints that are changed
1885	 * (both added and dropped).
1886	 */
1887	return hweight32(valid_add_flags) -
1888		hweight32(valid_add_flags & valid_drop_flags);
1889}
1890
1891static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1892		struct xhci_input_control_ctx *ctrl_ctx)
1893{
1894	u32 valid_add_flags;
1895	u32 valid_drop_flags;
1896
1897	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1898	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1899
1900	return hweight32(valid_drop_flags) -
1901		hweight32(valid_add_flags & valid_drop_flags);
1902}
1903
1904/*
1905 * We need to reserve the new number of endpoints before the configure endpoint
1906 * command completes.  We can't subtract the dropped endpoints from the number
1907 * of active endpoints until the command completes because we can oversubscribe
1908 * the host in this case:
1909 *
1910 *  - the first configure endpoint command drops more endpoints than it adds
1911 *  - a second configure endpoint command that adds more endpoints is queued
1912 *  - the first configure endpoint command fails, so the config is unchanged
1913 *  - the second command may succeed, even though there isn't enough resources
1914 *
1915 * Must be called with xhci->lock held.
1916 */
1917static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1918		struct xhci_input_control_ctx *ctrl_ctx)
1919{
1920	u32 added_eps;
1921
1922	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1923	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1924		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1925				"Not enough ep ctxs: "
1926				"%u active, need to add %u, limit is %u.",
1927				xhci->num_active_eps, added_eps,
1928				xhci->limit_active_eps);
1929		return -ENOMEM;
1930	}
1931	xhci->num_active_eps += added_eps;
1932	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1933			"Adding %u ep ctxs, %u now active.", added_eps,
1934			xhci->num_active_eps);
1935	return 0;
1936}
1937
1938/*
1939 * The configure endpoint was failed by the xHC for some other reason, so we
1940 * need to revert the resources that failed configuration would have used.
1941 *
1942 * Must be called with xhci->lock held.
1943 */
1944static void xhci_free_host_resources(struct xhci_hcd *xhci,
1945		struct xhci_input_control_ctx *ctrl_ctx)
1946{
1947	u32 num_failed_eps;
1948
1949	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1950	xhci->num_active_eps -= num_failed_eps;
1951	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1952			"Removing %u failed ep ctxs, %u now active.",
1953			num_failed_eps,
1954			xhci->num_active_eps);
1955}
1956
1957/*
1958 * Now that the command has completed, clean up the active endpoint count by
1959 * subtracting out the endpoints that were dropped (but not changed).
1960 *
1961 * Must be called with xhci->lock held.
1962 */
1963static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1964		struct xhci_input_control_ctx *ctrl_ctx)
1965{
1966	u32 num_dropped_eps;
1967
1968	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1969	xhci->num_active_eps -= num_dropped_eps;
1970	if (num_dropped_eps)
1971		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1972				"Removing %u dropped ep ctxs, %u now active.",
1973				num_dropped_eps,
1974				xhci->num_active_eps);
1975}
1976
1977static unsigned int xhci_get_block_size(struct usb_device *udev)
1978{
1979	switch (udev->speed) {
1980	case USB_SPEED_LOW:
1981	case USB_SPEED_FULL:
1982		return FS_BLOCK;
1983	case USB_SPEED_HIGH:
1984		return HS_BLOCK;
1985	case USB_SPEED_SUPER:
1986	case USB_SPEED_SUPER_PLUS:
1987		return SS_BLOCK;
1988	case USB_SPEED_UNKNOWN:
1989	case USB_SPEED_WIRELESS:
1990	default:
1991		/* Should never happen */
1992		return 1;
1993	}
1994}
1995
1996static unsigned int
1997xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1998{
1999	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2000		return LS_OVERHEAD;
2001	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2002		return FS_OVERHEAD;
2003	return HS_OVERHEAD;
2004}
2005
2006/* If we are changing a LS/FS device under a HS hub,
2007 * make sure (if we are activating a new TT) that the HS bus has enough
2008 * bandwidth for this new TT.
2009 */
2010static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2011		struct xhci_virt_device *virt_dev,
2012		int old_active_eps)
2013{
2014	struct xhci_interval_bw_table *bw_table;
2015	struct xhci_tt_bw_info *tt_info;
2016
2017	/* Find the bandwidth table for the root port this TT is attached to. */
2018	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2019	tt_info = virt_dev->tt_info;
2020	/* If this TT already had active endpoints, the bandwidth for this TT
2021	 * has already been added.  Removing all periodic endpoints (and thus
2022	 * making the TT enactive) will only decrease the bandwidth used.
2023	 */
2024	if (old_active_eps)
2025		return 0;
2026	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2027		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2028			return -ENOMEM;
2029		return 0;
2030	}
2031	/* Not sure why we would have no new active endpoints...
2032	 *
2033	 * Maybe because of an Evaluate Context change for a hub update or a
2034	 * control endpoint 0 max packet size change?
2035	 * FIXME: skip the bandwidth calculation in that case.
2036	 */
2037	return 0;
2038}
2039
2040static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2041		struct xhci_virt_device *virt_dev)
2042{
2043	unsigned int bw_reserved;
2044
2045	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2046	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2047		return -ENOMEM;
2048
2049	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2050	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2051		return -ENOMEM;
2052
2053	return 0;
2054}
2055
2056/*
2057 * This algorithm is a very conservative estimate of the worst-case scheduling
2058 * scenario for any one interval.  The hardware dynamically schedules the
2059 * packets, so we can't tell which microframe could be the limiting factor in
2060 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2061 *
2062 * Obviously, we can't solve an NP complete problem to find the minimum worst
2063 * case scenario.  Instead, we come up with an estimate that is no less than
2064 * the worst case bandwidth used for any one microframe, but may be an
2065 * over-estimate.
2066 *
2067 * We walk the requirements for each endpoint by interval, starting with the
2068 * smallest interval, and place packets in the schedule where there is only one
2069 * possible way to schedule packets for that interval.  In order to simplify
2070 * this algorithm, we record the largest max packet size for each interval, and
2071 * assume all packets will be that size.
2072 *
2073 * For interval 0, we obviously must schedule all packets for each interval.
2074 * The bandwidth for interval 0 is just the amount of data to be transmitted
2075 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2076 * the number of packets).
2077 *
2078 * For interval 1, we have two possible microframes to schedule those packets
2079 * in.  For this algorithm, if we can schedule the same number of packets for
2080 * each possible scheduling opportunity (each microframe), we will do so.  The
2081 * remaining number of packets will be saved to be transmitted in the gaps in
2082 * the next interval's scheduling sequence.
2083 *
2084 * As we move those remaining packets to be scheduled with interval 2 packets,
2085 * we have to double the number of remaining packets to transmit.  This is
2086 * because the intervals are actually powers of 2, and we would be transmitting
2087 * the previous interval's packets twice in this interval.  We also have to be
2088 * sure that when we look at the largest max packet size for this interval, we
2089 * also look at the largest max packet size for the remaining packets and take
2090 * the greater of the two.
2091 *
2092 * The algorithm continues to evenly distribute packets in each scheduling
2093 * opportunity, and push the remaining packets out, until we get to the last
2094 * interval.  Then those packets and their associated overhead are just added
2095 * to the bandwidth used.
2096 */
2097static int xhci_check_bw_table(struct xhci_hcd *xhci,
2098		struct xhci_virt_device *virt_dev,
2099		int old_active_eps)
2100{
2101	unsigned int bw_reserved;
2102	unsigned int max_bandwidth;
2103	unsigned int bw_used;
2104	unsigned int block_size;
2105	struct xhci_interval_bw_table *bw_table;
2106	unsigned int packet_size = 0;
2107	unsigned int overhead = 0;
2108	unsigned int packets_transmitted = 0;
2109	unsigned int packets_remaining = 0;
2110	unsigned int i;
2111
2112	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2113		return xhci_check_ss_bw(xhci, virt_dev);
2114
2115	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2116		max_bandwidth = HS_BW_LIMIT;
2117		/* Convert percent of bus BW reserved to blocks reserved */
2118		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2119	} else {
2120		max_bandwidth = FS_BW_LIMIT;
2121		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2122	}
2123
2124	bw_table = virt_dev->bw_table;
2125	/* We need to translate the max packet size and max ESIT payloads into
2126	 * the units the hardware uses.
2127	 */
2128	block_size = xhci_get_block_size(virt_dev->udev);
2129
2130	/* If we are manipulating a LS/FS device under a HS hub, double check
2131	 * that the HS bus has enough bandwidth if we are activing a new TT.
2132	 */
2133	if (virt_dev->tt_info) {
2134		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2135				"Recalculating BW for rootport %u",
2136				virt_dev->real_port);
2137		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2138			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2139					"newly activated TT.\n");
2140			return -ENOMEM;
2141		}
2142		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2143				"Recalculating BW for TT slot %u port %u",
2144				virt_dev->tt_info->slot_id,
2145				virt_dev->tt_info->ttport);
2146	} else {
2147		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2148				"Recalculating BW for rootport %u",
2149				virt_dev->real_port);
2150	}
2151
2152	/* Add in how much bandwidth will be used for interval zero, or the
2153	 * rounded max ESIT payload + number of packets * largest overhead.
2154	 */
2155	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2156		bw_table->interval_bw[0].num_packets *
2157		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2158
2159	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2160		unsigned int bw_added;
2161		unsigned int largest_mps;
2162		unsigned int interval_overhead;
2163
2164		/*
2165		 * How many packets could we transmit in this interval?
2166		 * If packets didn't fit in the previous interval, we will need
2167		 * to transmit that many packets twice within this interval.
2168		 */
2169		packets_remaining = 2 * packets_remaining +
2170			bw_table->interval_bw[i].num_packets;
2171
2172		/* Find the largest max packet size of this or the previous
2173		 * interval.
2174		 */
2175		if (list_empty(&bw_table->interval_bw[i].endpoints))
2176			largest_mps = 0;
2177		else {
2178			struct xhci_virt_ep *virt_ep;
2179			struct list_head *ep_entry;
2180
2181			ep_entry = bw_table->interval_bw[i].endpoints.next;
2182			virt_ep = list_entry(ep_entry,
2183					struct xhci_virt_ep, bw_endpoint_list);
2184			/* Convert to blocks, rounding up */
2185			largest_mps = DIV_ROUND_UP(
2186					virt_ep->bw_info.max_packet_size,
2187					block_size);
2188		}
2189		if (largest_mps > packet_size)
2190			packet_size = largest_mps;
2191
2192		/* Use the larger overhead of this or the previous interval. */
2193		interval_overhead = xhci_get_largest_overhead(
2194				&bw_table->interval_bw[i]);
2195		if (interval_overhead > overhead)
2196			overhead = interval_overhead;
2197
2198		/* How many packets can we evenly distribute across
2199		 * (1 << (i + 1)) possible scheduling opportunities?
2200		 */
2201		packets_transmitted = packets_remaining >> (i + 1);
2202
2203		/* Add in the bandwidth used for those scheduled packets */
2204		bw_added = packets_transmitted * (overhead + packet_size);
2205
2206		/* How many packets do we have remaining to transmit? */
2207		packets_remaining = packets_remaining % (1 << (i + 1));
2208
2209		/* What largest max packet size should those packets have? */
2210		/* If we've transmitted all packets, don't carry over the
2211		 * largest packet size.
2212		 */
2213		if (packets_remaining == 0) {
2214			packet_size = 0;
2215			overhead = 0;
2216		} else if (packets_transmitted > 0) {
2217			/* Otherwise if we do have remaining packets, and we've
2218			 * scheduled some packets in this interval, take the
2219			 * largest max packet size from endpoints with this
2220			 * interval.
2221			 */
2222			packet_size = largest_mps;
2223			overhead = interval_overhead;
2224		}
2225		/* Otherwise carry over packet_size and overhead from the last
2226		 * time we had a remainder.
2227		 */
2228		bw_used += bw_added;
2229		if (bw_used > max_bandwidth) {
2230			xhci_warn(xhci, "Not enough bandwidth. "
2231					"Proposed: %u, Max: %u\n",
2232				bw_used, max_bandwidth);
2233			return -ENOMEM;
2234		}
2235	}
2236	/*
2237	 * Ok, we know we have some packets left over after even-handedly
2238	 * scheduling interval 15.  We don't know which microframes they will
2239	 * fit into, so we over-schedule and say they will be scheduled every
2240	 * microframe.
2241	 */
2242	if (packets_remaining > 0)
2243		bw_used += overhead + packet_size;
2244
2245	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2246		unsigned int port_index = virt_dev->real_port - 1;
2247
2248		/* OK, we're manipulating a HS device attached to a
2249		 * root port bandwidth domain.  Include the number of active TTs
2250		 * in the bandwidth used.
2251		 */
2252		bw_used += TT_HS_OVERHEAD *
2253			xhci->rh_bw[port_index].num_active_tts;
2254	}
2255
2256	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2257		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2258		"Available: %u " "percent",
2259		bw_used, max_bandwidth, bw_reserved,
2260		(max_bandwidth - bw_used - bw_reserved) * 100 /
2261		max_bandwidth);
2262
2263	bw_used += bw_reserved;
2264	if (bw_used > max_bandwidth) {
2265		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2266				bw_used, max_bandwidth);
2267		return -ENOMEM;
2268	}
2269
2270	bw_table->bw_used = bw_used;
2271	return 0;
2272}
2273
2274static bool xhci_is_async_ep(unsigned int ep_type)
2275{
2276	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2277					ep_type != ISOC_IN_EP &&
2278					ep_type != INT_IN_EP);
2279}
2280
2281static bool xhci_is_sync_in_ep(unsigned int ep_type)
2282{
2283	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2284}
2285
2286static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2287{
2288	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2289
2290	if (ep_bw->ep_interval == 0)
2291		return SS_OVERHEAD_BURST +
2292			(ep_bw->mult * ep_bw->num_packets *
2293					(SS_OVERHEAD + mps));
2294	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2295				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2296				1 << ep_bw->ep_interval);
2297
2298}
2299
2300static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2301		struct xhci_bw_info *ep_bw,
2302		struct xhci_interval_bw_table *bw_table,
2303		struct usb_device *udev,
2304		struct xhci_virt_ep *virt_ep,
2305		struct xhci_tt_bw_info *tt_info)
2306{
2307	struct xhci_interval_bw	*interval_bw;
2308	int normalized_interval;
2309
2310	if (xhci_is_async_ep(ep_bw->type))
2311		return;
2312
2313	if (udev->speed >= USB_SPEED_SUPER) {
2314		if (xhci_is_sync_in_ep(ep_bw->type))
2315			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2316				xhci_get_ss_bw_consumed(ep_bw);
2317		else
2318			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2319				xhci_get_ss_bw_consumed(ep_bw);
2320		return;
2321	}
2322
2323	/* SuperSpeed endpoints never get added to intervals in the table, so
2324	 * this check is only valid for HS/FS/LS devices.
2325	 */
2326	if (list_empty(&virt_ep->bw_endpoint_list))
2327		return;
2328	/* For LS/FS devices, we need to translate the interval expressed in
2329	 * microframes to frames.
2330	 */
2331	if (udev->speed == USB_SPEED_HIGH)
2332		normalized_interval = ep_bw->ep_interval;
2333	else
2334		normalized_interval = ep_bw->ep_interval - 3;
2335
2336	if (normalized_interval == 0)
2337		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2338	interval_bw = &bw_table->interval_bw[normalized_interval];
2339	interval_bw->num_packets -= ep_bw->num_packets;
2340	switch (udev->speed) {
2341	case USB_SPEED_LOW:
2342		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2343		break;
2344	case USB_SPEED_FULL:
2345		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2346		break;
2347	case USB_SPEED_HIGH:
2348		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2349		break;
2350	case USB_SPEED_SUPER:
2351	case USB_SPEED_SUPER_PLUS:
2352	case USB_SPEED_UNKNOWN:
2353	case USB_SPEED_WIRELESS:
2354		/* Should never happen because only LS/FS/HS endpoints will get
2355		 * added to the endpoint list.
2356		 */
2357		return;
2358	}
2359	if (tt_info)
2360		tt_info->active_eps -= 1;
2361	list_del_init(&virt_ep->bw_endpoint_list);
2362}
2363
2364static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2365		struct xhci_bw_info *ep_bw,
2366		struct xhci_interval_bw_table *bw_table,
2367		struct usb_device *udev,
2368		struct xhci_virt_ep *virt_ep,
2369		struct xhci_tt_bw_info *tt_info)
2370{
2371	struct xhci_interval_bw	*interval_bw;
2372	struct xhci_virt_ep *smaller_ep;
2373	int normalized_interval;
2374
2375	if (xhci_is_async_ep(ep_bw->type))
2376		return;
2377
2378	if (udev->speed == USB_SPEED_SUPER) {
2379		if (xhci_is_sync_in_ep(ep_bw->type))
2380			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2381				xhci_get_ss_bw_consumed(ep_bw);
2382		else
2383			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2384				xhci_get_ss_bw_consumed(ep_bw);
2385		return;
2386	}
2387
2388	/* For LS/FS devices, we need to translate the interval expressed in
2389	 * microframes to frames.
2390	 */
2391	if (udev->speed == USB_SPEED_HIGH)
2392		normalized_interval = ep_bw->ep_interval;
2393	else
2394		normalized_interval = ep_bw->ep_interval - 3;
2395
2396	if (normalized_interval == 0)
2397		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2398	interval_bw = &bw_table->interval_bw[normalized_interval];
2399	interval_bw->num_packets += ep_bw->num_packets;
2400	switch (udev->speed) {
2401	case USB_SPEED_LOW:
2402		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2403		break;
2404	case USB_SPEED_FULL:
2405		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2406		break;
2407	case USB_SPEED_HIGH:
2408		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2409		break;
2410	case USB_SPEED_SUPER:
2411	case USB_SPEED_SUPER_PLUS:
2412	case USB_SPEED_UNKNOWN:
2413	case USB_SPEED_WIRELESS:
2414		/* Should never happen because only LS/FS/HS endpoints will get
2415		 * added to the endpoint list.
2416		 */
2417		return;
2418	}
2419
2420	if (tt_info)
2421		tt_info->active_eps += 1;
2422	/* Insert the endpoint into the list, largest max packet size first. */
2423	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2424			bw_endpoint_list) {
2425		if (ep_bw->max_packet_size >=
2426				smaller_ep->bw_info.max_packet_size) {
2427			/* Add the new ep before the smaller endpoint */
2428			list_add_tail(&virt_ep->bw_endpoint_list,
2429					&smaller_ep->bw_endpoint_list);
2430			return;
2431		}
2432	}
2433	/* Add the new endpoint at the end of the list. */
2434	list_add_tail(&virt_ep->bw_endpoint_list,
2435			&interval_bw->endpoints);
2436}
2437
2438void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2439		struct xhci_virt_device *virt_dev,
2440		int old_active_eps)
2441{
2442	struct xhci_root_port_bw_info *rh_bw_info;
2443	if (!virt_dev->tt_info)
2444		return;
2445
2446	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2447	if (old_active_eps == 0 &&
2448				virt_dev->tt_info->active_eps != 0) {
2449		rh_bw_info->num_active_tts += 1;
2450		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2451	} else if (old_active_eps != 0 &&
2452				virt_dev->tt_info->active_eps == 0) {
2453		rh_bw_info->num_active_tts -= 1;
2454		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2455	}
2456}
2457
2458static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2459		struct xhci_virt_device *virt_dev,
2460		struct xhci_container_ctx *in_ctx)
2461{
2462	struct xhci_bw_info ep_bw_info[31];
2463	int i;
2464	struct xhci_input_control_ctx *ctrl_ctx;
2465	int old_active_eps = 0;
2466
2467	if (virt_dev->tt_info)
2468		old_active_eps = virt_dev->tt_info->active_eps;
2469
2470	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2471	if (!ctrl_ctx) {
2472		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2473				__func__);
2474		return -ENOMEM;
2475	}
2476
2477	for (i = 0; i < 31; i++) {
2478		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2479			continue;
2480
2481		/* Make a copy of the BW info in case we need to revert this */
2482		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2483				sizeof(ep_bw_info[i]));
2484		/* Drop the endpoint from the interval table if the endpoint is
2485		 * being dropped or changed.
2486		 */
2487		if (EP_IS_DROPPED(ctrl_ctx, i))
2488			xhci_drop_ep_from_interval_table(xhci,
2489					&virt_dev->eps[i].bw_info,
2490					virt_dev->bw_table,
2491					virt_dev->udev,
2492					&virt_dev->eps[i],
2493					virt_dev->tt_info);
2494	}
2495	/* Overwrite the information stored in the endpoints' bw_info */
2496	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2497	for (i = 0; i < 31; i++) {
2498		/* Add any changed or added endpoints to the interval table */
2499		if (EP_IS_ADDED(ctrl_ctx, i))
2500			xhci_add_ep_to_interval_table(xhci,
2501					&virt_dev->eps[i].bw_info,
2502					virt_dev->bw_table,
2503					virt_dev->udev,
2504					&virt_dev->eps[i],
2505					virt_dev->tt_info);
2506	}
2507
2508	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2509		/* Ok, this fits in the bandwidth we have.
2510		 * Update the number of active TTs.
2511		 */
2512		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2513		return 0;
2514	}
2515
2516	/* We don't have enough bandwidth for this, revert the stored info. */
2517	for (i = 0; i < 31; i++) {
2518		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2519			continue;
2520
2521		/* Drop the new copies of any added or changed endpoints from
2522		 * the interval table.
2523		 */
2524		if (EP_IS_ADDED(ctrl_ctx, i)) {
2525			xhci_drop_ep_from_interval_table(xhci,
2526					&virt_dev->eps[i].bw_info,
2527					virt_dev->bw_table,
2528					virt_dev->udev,
2529					&virt_dev->eps[i],
2530					virt_dev->tt_info);
2531		}
2532		/* Revert the endpoint back to its old information */
2533		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2534				sizeof(ep_bw_info[i]));
2535		/* Add any changed or dropped endpoints back into the table */
2536		if (EP_IS_DROPPED(ctrl_ctx, i))
2537			xhci_add_ep_to_interval_table(xhci,
2538					&virt_dev->eps[i].bw_info,
2539					virt_dev->bw_table,
2540					virt_dev->udev,
2541					&virt_dev->eps[i],
2542					virt_dev->tt_info);
2543	}
2544	return -ENOMEM;
2545}
2546
2547
2548/* Issue a configure endpoint command or evaluate context command
2549 * and wait for it to finish.
2550 */
2551static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2552		struct usb_device *udev,
2553		struct xhci_command *command,
2554		bool ctx_change, bool must_succeed)
2555{
2556	int ret;
2557	unsigned long flags;
2558	struct xhci_input_control_ctx *ctrl_ctx;
2559	struct xhci_virt_device *virt_dev;
2560	struct xhci_slot_ctx *slot_ctx;
2561
2562	if (!command)
2563		return -EINVAL;
2564
2565	spin_lock_irqsave(&xhci->lock, flags);
2566
2567	if (xhci->xhc_state & XHCI_STATE_DYING) {
2568		spin_unlock_irqrestore(&xhci->lock, flags);
2569		return -ESHUTDOWN;
2570	}
2571
2572	virt_dev = xhci->devs[udev->slot_id];
2573
2574	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2575	if (!ctrl_ctx) {
2576		spin_unlock_irqrestore(&xhci->lock, flags);
2577		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2578				__func__);
2579		return -ENOMEM;
2580	}
2581
2582	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2583			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2584		spin_unlock_irqrestore(&xhci->lock, flags);
2585		xhci_warn(xhci, "Not enough host resources, "
2586				"active endpoint contexts = %u\n",
2587				xhci->num_active_eps);
2588		return -ENOMEM;
2589	}
2590	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2591	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2592		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2593			xhci_free_host_resources(xhci, ctrl_ctx);
2594		spin_unlock_irqrestore(&xhci->lock, flags);
2595		xhci_warn(xhci, "Not enough bandwidth\n");
2596		return -ENOMEM;
2597	}
2598
2599	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
 
 
2600	trace_xhci_configure_endpoint(slot_ctx);
2601
2602	if (!ctx_change)
2603		ret = xhci_queue_configure_endpoint(xhci, command,
2604				command->in_ctx->dma,
2605				udev->slot_id, must_succeed);
2606	else
2607		ret = xhci_queue_evaluate_context(xhci, command,
2608				command->in_ctx->dma,
2609				udev->slot_id, must_succeed);
2610	if (ret < 0) {
2611		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2612			xhci_free_host_resources(xhci, ctrl_ctx);
2613		spin_unlock_irqrestore(&xhci->lock, flags);
2614		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2615				"FIXME allocate a new ring segment");
2616		return -ENOMEM;
2617	}
2618	xhci_ring_cmd_db(xhci);
2619	spin_unlock_irqrestore(&xhci->lock, flags);
2620
2621	/* Wait for the configure endpoint command to complete */
2622	wait_for_completion(command->completion);
2623
2624	if (!ctx_change)
2625		ret = xhci_configure_endpoint_result(xhci, udev,
2626						     &command->status);
2627	else
2628		ret = xhci_evaluate_context_result(xhci, udev,
2629						   &command->status);
2630
2631	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2632		spin_lock_irqsave(&xhci->lock, flags);
2633		/* If the command failed, remove the reserved resources.
2634		 * Otherwise, clean up the estimate to include dropped eps.
2635		 */
2636		if (ret)
2637			xhci_free_host_resources(xhci, ctrl_ctx);
2638		else
2639			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2640		spin_unlock_irqrestore(&xhci->lock, flags);
2641	}
2642	return ret;
2643}
2644
2645static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2646	struct xhci_virt_device *vdev, int i)
2647{
2648	struct xhci_virt_ep *ep = &vdev->eps[i];
2649
2650	if (ep->ep_state & EP_HAS_STREAMS) {
2651		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2652				xhci_get_endpoint_address(i));
2653		xhci_free_stream_info(xhci, ep->stream_info);
2654		ep->stream_info = NULL;
2655		ep->ep_state &= ~EP_HAS_STREAMS;
2656	}
2657}
2658
2659/* Called after one or more calls to xhci_add_endpoint() or
2660 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2661 * to call xhci_reset_bandwidth().
2662 *
2663 * Since we are in the middle of changing either configuration or
2664 * installing a new alt setting, the USB core won't allow URBs to be
2665 * enqueued for any endpoint on the old config or interface.  Nothing
2666 * else should be touching the xhci->devs[slot_id] structure, so we
2667 * don't need to take the xhci->lock for manipulating that.
2668 */
2669static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2670{
2671	int i;
2672	int ret = 0;
2673	struct xhci_hcd *xhci;
2674	struct xhci_virt_device	*virt_dev;
2675	struct xhci_input_control_ctx *ctrl_ctx;
2676	struct xhci_slot_ctx *slot_ctx;
2677	struct xhci_command *command;
2678
2679	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2680	if (ret <= 0)
2681		return ret;
2682	xhci = hcd_to_xhci(hcd);
2683	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2684		(xhci->xhc_state & XHCI_STATE_REMOVING))
2685		return -ENODEV;
2686
2687	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2688	virt_dev = xhci->devs[udev->slot_id];
2689
2690	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2691	if (!command)
2692		return -ENOMEM;
2693
2694	command->in_ctx = virt_dev->in_ctx;
2695
2696	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2697	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2698	if (!ctrl_ctx) {
2699		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2700				__func__);
2701		ret = -ENOMEM;
2702		goto command_cleanup;
2703	}
2704	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2705	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2706	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2707
2708	/* Don't issue the command if there's no endpoints to update. */
2709	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2710	    ctrl_ctx->drop_flags == 0) {
2711		ret = 0;
2712		goto command_cleanup;
2713	}
2714	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2715	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2716	for (i = 31; i >= 1; i--) {
2717		__le32 le32 = cpu_to_le32(BIT(i));
2718
2719		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2720		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2721			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2722			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2723			break;
2724		}
2725	}
2726
2727	ret = xhci_configure_endpoint(xhci, udev, command,
2728			false, false);
2729	if (ret)
2730		/* Callee should call reset_bandwidth() */
2731		goto command_cleanup;
2732
2733	/* Free any rings that were dropped, but not changed. */
2734	for (i = 1; i < 31; i++) {
2735		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2736		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2737			xhci_free_endpoint_ring(xhci, virt_dev, i);
2738			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2739		}
2740	}
2741	xhci_zero_in_ctx(xhci, virt_dev);
2742	/*
2743	 * Install any rings for completely new endpoints or changed endpoints,
2744	 * and free any old rings from changed endpoints.
2745	 */
2746	for (i = 1; i < 31; i++) {
2747		if (!virt_dev->eps[i].new_ring)
2748			continue;
2749		/* Only free the old ring if it exists.
2750		 * It may not if this is the first add of an endpoint.
2751		 */
2752		if (virt_dev->eps[i].ring) {
2753			xhci_free_endpoint_ring(xhci, virt_dev, i);
2754		}
2755		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2756		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2757		virt_dev->eps[i].new_ring = NULL;
2758	}
2759command_cleanup:
2760	kfree(command->completion);
2761	kfree(command);
2762
2763	return ret;
2764}
2765
2766static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2767{
2768	struct xhci_hcd *xhci;
2769	struct xhci_virt_device	*virt_dev;
2770	int i, ret;
2771
2772	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2773	if (ret <= 0)
2774		return;
2775	xhci = hcd_to_xhci(hcd);
2776
2777	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2778	virt_dev = xhci->devs[udev->slot_id];
2779	/* Free any rings allocated for added endpoints */
2780	for (i = 0; i < 31; i++) {
2781		if (virt_dev->eps[i].new_ring) {
2782			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2783			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2784			virt_dev->eps[i].new_ring = NULL;
2785		}
2786	}
2787	xhci_zero_in_ctx(xhci, virt_dev);
2788}
2789
2790static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2791		struct xhci_container_ctx *in_ctx,
2792		struct xhci_container_ctx *out_ctx,
2793		struct xhci_input_control_ctx *ctrl_ctx,
2794		u32 add_flags, u32 drop_flags)
2795{
2796	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2797	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2798	xhci_slot_copy(xhci, in_ctx, out_ctx);
2799	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2800}
2801
2802static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2803		unsigned int slot_id, unsigned int ep_index,
2804		struct xhci_dequeue_state *deq_state)
2805{
2806	struct xhci_input_control_ctx *ctrl_ctx;
2807	struct xhci_container_ctx *in_ctx;
2808	struct xhci_ep_ctx *ep_ctx;
2809	u32 added_ctxs;
2810	dma_addr_t addr;
2811
2812	in_ctx = xhci->devs[slot_id]->in_ctx;
2813	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2814	if (!ctrl_ctx) {
2815		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2816				__func__);
2817		return;
2818	}
2819
2820	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2821			xhci->devs[slot_id]->out_ctx, ep_index);
2822	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2823	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2824			deq_state->new_deq_ptr);
2825	if (addr == 0) {
2826		xhci_warn(xhci, "WARN Cannot submit config ep after "
2827				"reset ep command\n");
2828		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2829				deq_state->new_deq_seg,
2830				deq_state->new_deq_ptr);
2831		return;
2832	}
2833	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2834
2835	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2836	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2837			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2838			added_ctxs, added_ctxs);
2839}
2840
2841void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2842			       unsigned int stream_id, struct xhci_td *td)
2843{
2844	struct xhci_dequeue_state deq_state;
2845	struct usb_device *udev = td->urb->dev;
2846
2847	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2848			"Cleaning up stalled endpoint ring");
2849	/* We need to move the HW's dequeue pointer past this TD,
2850	 * or it will attempt to resend it on the next doorbell ring.
2851	 */
2852	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2853			ep_index, stream_id, td, &deq_state);
2854
2855	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2856		return;
2857
2858	/* HW with the reset endpoint quirk will use the saved dequeue state to
2859	 * issue a configure endpoint command later.
2860	 */
2861	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2862		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2863				"Queueing new dequeue state");
2864		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2865				ep_index, &deq_state);
2866	} else {
2867		/* Better hope no one uses the input context between now and the
2868		 * reset endpoint completion!
2869		 * XXX: No idea how this hardware will react when stream rings
2870		 * are enabled.
2871		 */
2872		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2873				"Setting up input context for "
2874				"configure endpoint command");
2875		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2876				ep_index, &deq_state);
2877	}
2878}
2879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2880/*
2881 * Called after usb core issues a clear halt control message.
2882 * The host side of the halt should already be cleared by a reset endpoint
2883 * command issued when the STALL event was received.
2884 *
2885 * The reset endpoint command may only be issued to endpoints in the halted
2886 * state. For software that wishes to reset the data toggle or sequence number
2887 * of an endpoint that isn't in the halted state this function will issue a
2888 * configure endpoint command with the Drop and Add bits set for the target
2889 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
2890 */
2891
2892static void xhci_endpoint_reset(struct usb_hcd *hcd,
2893		struct usb_host_endpoint *host_ep)
2894{
2895	struct xhci_hcd *xhci;
2896	struct usb_device *udev;
2897	struct xhci_virt_device *vdev;
2898	struct xhci_virt_ep *ep;
2899	struct xhci_input_control_ctx *ctrl_ctx;
2900	struct xhci_command *stop_cmd, *cfg_cmd;
2901	unsigned int ep_index;
2902	unsigned long flags;
2903	u32 ep_flag;
 
2904
2905	xhci = hcd_to_xhci(hcd);
2906	if (!host_ep->hcpriv)
2907		return;
2908	udev = (struct usb_device *) host_ep->hcpriv;
2909	vdev = xhci->devs[udev->slot_id];
 
 
 
 
 
 
 
 
2910	ep_index = xhci_get_endpoint_index(&host_ep->desc);
2911	ep = &vdev->eps[ep_index];
 
 
2912
2913	/* Bail out if toggle is already being cleared by a endpoint reset */
2914	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
2915		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
2916		return;
2917	}
2918	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
2919	if (usb_endpoint_xfer_control(&host_ep->desc) ||
2920	    usb_endpoint_xfer_isoc(&host_ep->desc))
2921		return;
2922
2923	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
2924
2925	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
2926		return;
2927
2928	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
2929	if (!stop_cmd)
2930		return;
2931
2932	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
2933	if (!cfg_cmd)
2934		goto cleanup;
2935
2936	spin_lock_irqsave(&xhci->lock, flags);
2937
2938	/* block queuing new trbs and ringing ep doorbell */
2939	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
2940
2941	/*
2942	 * Make sure endpoint ring is empty before resetting the toggle/seq.
2943	 * Driver is required to synchronously cancel all transfer request.
2944	 * Stop the endpoint to force xHC to update the output context
2945	 */
2946
2947	if (!list_empty(&ep->ring->td_list)) {
2948		dev_err(&udev->dev, "EP not empty, refuse reset\n");
2949		spin_unlock_irqrestore(&xhci->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
2950		goto cleanup;
2951	}
2952	xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
2953	xhci_ring_cmd_db(xhci);
2954	spin_unlock_irqrestore(&xhci->lock, flags);
2955
2956	wait_for_completion(stop_cmd->completion);
2957
2958	spin_lock_irqsave(&xhci->lock, flags);
2959
2960	/* config ep command clears toggle if add and drop ep flags are set */
2961	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
2962	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
2963					   ctrl_ctx, ep_flag, ep_flag);
2964	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
2965
2966	xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
2967				      udev->slot_id, false);
 
 
 
 
 
 
 
 
2968	xhci_ring_cmd_db(xhci);
2969	spin_unlock_irqrestore(&xhci->lock, flags);
2970
2971	wait_for_completion(cfg_cmd->completion);
2972
2973	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
2974	xhci_free_command(xhci, cfg_cmd);
2975cleanup:
2976	xhci_free_command(xhci, stop_cmd);
2977}
2978
2979static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2980		struct usb_device *udev, struct usb_host_endpoint *ep,
2981		unsigned int slot_id)
2982{
2983	int ret;
2984	unsigned int ep_index;
2985	unsigned int ep_state;
2986
2987	if (!ep)
2988		return -EINVAL;
2989	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2990	if (ret <= 0)
2991		return -EINVAL;
2992	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2993		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2994				" descriptor for ep 0x%x does not support streams\n",
2995				ep->desc.bEndpointAddress);
2996		return -EINVAL;
2997	}
2998
2999	ep_index = xhci_get_endpoint_index(&ep->desc);
3000	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3001	if (ep_state & EP_HAS_STREAMS ||
3002			ep_state & EP_GETTING_STREAMS) {
3003		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3004				"already has streams set up.\n",
3005				ep->desc.bEndpointAddress);
3006		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3007				"dynamic stream context array reallocation.\n");
3008		return -EINVAL;
3009	}
3010	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3011		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3012				"endpoint 0x%x; URBs are pending.\n",
3013				ep->desc.bEndpointAddress);
3014		return -EINVAL;
3015	}
3016	return 0;
3017}
3018
3019static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3020		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3021{
3022	unsigned int max_streams;
3023
3024	/* The stream context array size must be a power of two */
3025	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3026	/*
3027	 * Find out how many primary stream array entries the host controller
3028	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3029	 * level page entries), but that's an optional feature for xHCI host
3030	 * controllers. xHCs must support at least 4 stream IDs.
3031	 */
3032	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3033	if (*num_stream_ctxs > max_streams) {
3034		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3035				max_streams);
3036		*num_stream_ctxs = max_streams;
3037		*num_streams = max_streams;
3038	}
3039}
3040
3041/* Returns an error code if one of the endpoint already has streams.
3042 * This does not change any data structures, it only checks and gathers
3043 * information.
3044 */
3045static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3046		struct usb_device *udev,
3047		struct usb_host_endpoint **eps, unsigned int num_eps,
3048		unsigned int *num_streams, u32 *changed_ep_bitmask)
3049{
3050	unsigned int max_streams;
3051	unsigned int endpoint_flag;
3052	int i;
3053	int ret;
3054
3055	for (i = 0; i < num_eps; i++) {
3056		ret = xhci_check_streams_endpoint(xhci, udev,
3057				eps[i], udev->slot_id);
3058		if (ret < 0)
3059			return ret;
3060
3061		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3062		if (max_streams < (*num_streams - 1)) {
3063			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3064					eps[i]->desc.bEndpointAddress,
3065					max_streams);
3066			*num_streams = max_streams+1;
3067		}
3068
3069		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3070		if (*changed_ep_bitmask & endpoint_flag)
3071			return -EINVAL;
3072		*changed_ep_bitmask |= endpoint_flag;
3073	}
3074	return 0;
3075}
3076
3077static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3078		struct usb_device *udev,
3079		struct usb_host_endpoint **eps, unsigned int num_eps)
3080{
3081	u32 changed_ep_bitmask = 0;
3082	unsigned int slot_id;
3083	unsigned int ep_index;
3084	unsigned int ep_state;
3085	int i;
3086
3087	slot_id = udev->slot_id;
3088	if (!xhci->devs[slot_id])
3089		return 0;
3090
3091	for (i = 0; i < num_eps; i++) {
3092		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3093		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3094		/* Are streams already being freed for the endpoint? */
3095		if (ep_state & EP_GETTING_NO_STREAMS) {
3096			xhci_warn(xhci, "WARN Can't disable streams for "
3097					"endpoint 0x%x, "
3098					"streams are being disabled already\n",
3099					eps[i]->desc.bEndpointAddress);
3100			return 0;
3101		}
3102		/* Are there actually any streams to free? */
3103		if (!(ep_state & EP_HAS_STREAMS) &&
3104				!(ep_state & EP_GETTING_STREAMS)) {
3105			xhci_warn(xhci, "WARN Can't disable streams for "
3106					"endpoint 0x%x, "
3107					"streams are already disabled!\n",
3108					eps[i]->desc.bEndpointAddress);
3109			xhci_warn(xhci, "WARN xhci_free_streams() called "
3110					"with non-streams endpoint\n");
3111			return 0;
3112		}
3113		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3114	}
3115	return changed_ep_bitmask;
3116}
3117
3118/*
3119 * The USB device drivers use this function (through the HCD interface in USB
3120 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3121 * coordinate mass storage command queueing across multiple endpoints (basically
3122 * a stream ID == a task ID).
3123 *
3124 * Setting up streams involves allocating the same size stream context array
3125 * for each endpoint and issuing a configure endpoint command for all endpoints.
3126 *
3127 * Don't allow the call to succeed if one endpoint only supports one stream
3128 * (which means it doesn't support streams at all).
3129 *
3130 * Drivers may get less stream IDs than they asked for, if the host controller
3131 * hardware or endpoints claim they can't support the number of requested
3132 * stream IDs.
3133 */
3134static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3135		struct usb_host_endpoint **eps, unsigned int num_eps,
3136		unsigned int num_streams, gfp_t mem_flags)
3137{
3138	int i, ret;
3139	struct xhci_hcd *xhci;
3140	struct xhci_virt_device *vdev;
3141	struct xhci_command *config_cmd;
3142	struct xhci_input_control_ctx *ctrl_ctx;
3143	unsigned int ep_index;
3144	unsigned int num_stream_ctxs;
3145	unsigned int max_packet;
3146	unsigned long flags;
3147	u32 changed_ep_bitmask = 0;
3148
3149	if (!eps)
3150		return -EINVAL;
3151
3152	/* Add one to the number of streams requested to account for
3153	 * stream 0 that is reserved for xHCI usage.
3154	 */
3155	num_streams += 1;
3156	xhci = hcd_to_xhci(hcd);
3157	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3158			num_streams);
3159
3160	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3161	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3162			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3163		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3164		return -ENOSYS;
3165	}
3166
3167	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3168	if (!config_cmd)
3169		return -ENOMEM;
3170
3171	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3172	if (!ctrl_ctx) {
3173		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3174				__func__);
3175		xhci_free_command(xhci, config_cmd);
3176		return -ENOMEM;
3177	}
3178
3179	/* Check to make sure all endpoints are not already configured for
3180	 * streams.  While we're at it, find the maximum number of streams that
3181	 * all the endpoints will support and check for duplicate endpoints.
3182	 */
3183	spin_lock_irqsave(&xhci->lock, flags);
3184	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3185			num_eps, &num_streams, &changed_ep_bitmask);
3186	if (ret < 0) {
3187		xhci_free_command(xhci, config_cmd);
3188		spin_unlock_irqrestore(&xhci->lock, flags);
3189		return ret;
3190	}
3191	if (num_streams <= 1) {
3192		xhci_warn(xhci, "WARN: endpoints can't handle "
3193				"more than one stream.\n");
3194		xhci_free_command(xhci, config_cmd);
3195		spin_unlock_irqrestore(&xhci->lock, flags);
3196		return -EINVAL;
3197	}
3198	vdev = xhci->devs[udev->slot_id];
3199	/* Mark each endpoint as being in transition, so
3200	 * xhci_urb_enqueue() will reject all URBs.
3201	 */
3202	for (i = 0; i < num_eps; i++) {
3203		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3204		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3205	}
3206	spin_unlock_irqrestore(&xhci->lock, flags);
3207
3208	/* Setup internal data structures and allocate HW data structures for
3209	 * streams (but don't install the HW structures in the input context
3210	 * until we're sure all memory allocation succeeded).
3211	 */
3212	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3213	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3214			num_stream_ctxs, num_streams);
3215
3216	for (i = 0; i < num_eps; i++) {
3217		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3218		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3219		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3220				num_stream_ctxs,
3221				num_streams,
3222				max_packet, mem_flags);
3223		if (!vdev->eps[ep_index].stream_info)
3224			goto cleanup;
3225		/* Set maxPstreams in endpoint context and update deq ptr to
3226		 * point to stream context array. FIXME
3227		 */
3228	}
3229
3230	/* Set up the input context for a configure endpoint command. */
3231	for (i = 0; i < num_eps; i++) {
3232		struct xhci_ep_ctx *ep_ctx;
3233
3234		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3236
3237		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3238				vdev->out_ctx, ep_index);
3239		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3240				vdev->eps[ep_index].stream_info);
3241	}
3242	/* Tell the HW to drop its old copy of the endpoint context info
3243	 * and add the updated copy from the input context.
3244	 */
3245	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3246			vdev->out_ctx, ctrl_ctx,
3247			changed_ep_bitmask, changed_ep_bitmask);
3248
3249	/* Issue and wait for the configure endpoint command */
3250	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3251			false, false);
3252
3253	/* xHC rejected the configure endpoint command for some reason, so we
3254	 * leave the old ring intact and free our internal streams data
3255	 * structure.
3256	 */
3257	if (ret < 0)
3258		goto cleanup;
3259
3260	spin_lock_irqsave(&xhci->lock, flags);
3261	for (i = 0; i < num_eps; i++) {
3262		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3263		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3264		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3265			 udev->slot_id, ep_index);
3266		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3267	}
3268	xhci_free_command(xhci, config_cmd);
3269	spin_unlock_irqrestore(&xhci->lock, flags);
3270
3271	/* Subtract 1 for stream 0, which drivers can't use */
3272	return num_streams - 1;
3273
3274cleanup:
3275	/* If it didn't work, free the streams! */
3276	for (i = 0; i < num_eps; i++) {
3277		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3278		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3279		vdev->eps[ep_index].stream_info = NULL;
3280		/* FIXME Unset maxPstreams in endpoint context and
3281		 * update deq ptr to point to normal string ring.
3282		 */
3283		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3284		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3285		xhci_endpoint_zero(xhci, vdev, eps[i]);
3286	}
3287	xhci_free_command(xhci, config_cmd);
3288	return -ENOMEM;
3289}
3290
3291/* Transition the endpoint from using streams to being a "normal" endpoint
3292 * without streams.
3293 *
3294 * Modify the endpoint context state, submit a configure endpoint command,
3295 * and free all endpoint rings for streams if that completes successfully.
3296 */
3297static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3298		struct usb_host_endpoint **eps, unsigned int num_eps,
3299		gfp_t mem_flags)
3300{
3301	int i, ret;
3302	struct xhci_hcd *xhci;
3303	struct xhci_virt_device *vdev;
3304	struct xhci_command *command;
3305	struct xhci_input_control_ctx *ctrl_ctx;
3306	unsigned int ep_index;
3307	unsigned long flags;
3308	u32 changed_ep_bitmask;
3309
3310	xhci = hcd_to_xhci(hcd);
3311	vdev = xhci->devs[udev->slot_id];
3312
3313	/* Set up a configure endpoint command to remove the streams rings */
3314	spin_lock_irqsave(&xhci->lock, flags);
3315	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3316			udev, eps, num_eps);
3317	if (changed_ep_bitmask == 0) {
3318		spin_unlock_irqrestore(&xhci->lock, flags);
3319		return -EINVAL;
3320	}
3321
3322	/* Use the xhci_command structure from the first endpoint.  We may have
3323	 * allocated too many, but the driver may call xhci_free_streams() for
3324	 * each endpoint it grouped into one call to xhci_alloc_streams().
3325	 */
3326	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3327	command = vdev->eps[ep_index].stream_info->free_streams_command;
3328	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3329	if (!ctrl_ctx) {
3330		spin_unlock_irqrestore(&xhci->lock, flags);
3331		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3332				__func__);
3333		return -EINVAL;
3334	}
3335
3336	for (i = 0; i < num_eps; i++) {
3337		struct xhci_ep_ctx *ep_ctx;
3338
3339		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3340		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3341		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3342			EP_GETTING_NO_STREAMS;
3343
3344		xhci_endpoint_copy(xhci, command->in_ctx,
3345				vdev->out_ctx, ep_index);
3346		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3347				&vdev->eps[ep_index]);
3348	}
3349	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3350			vdev->out_ctx, ctrl_ctx,
3351			changed_ep_bitmask, changed_ep_bitmask);
3352	spin_unlock_irqrestore(&xhci->lock, flags);
3353
3354	/* Issue and wait for the configure endpoint command,
3355	 * which must succeed.
3356	 */
3357	ret = xhci_configure_endpoint(xhci, udev, command,
3358			false, true);
3359
3360	/* xHC rejected the configure endpoint command for some reason, so we
3361	 * leave the streams rings intact.
3362	 */
3363	if (ret < 0)
3364		return ret;
3365
3366	spin_lock_irqsave(&xhci->lock, flags);
3367	for (i = 0; i < num_eps; i++) {
3368		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3369		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3370		vdev->eps[ep_index].stream_info = NULL;
3371		/* FIXME Unset maxPstreams in endpoint context and
3372		 * update deq ptr to point to normal string ring.
3373		 */
3374		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3375		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3376	}
3377	spin_unlock_irqrestore(&xhci->lock, flags);
3378
3379	return 0;
3380}
3381
3382/*
3383 * Deletes endpoint resources for endpoints that were active before a Reset
3384 * Device command, or a Disable Slot command.  The Reset Device command leaves
3385 * the control endpoint intact, whereas the Disable Slot command deletes it.
3386 *
3387 * Must be called with xhci->lock held.
3388 */
3389void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3390	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3391{
3392	int i;
3393	unsigned int num_dropped_eps = 0;
3394	unsigned int drop_flags = 0;
3395
3396	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3397		if (virt_dev->eps[i].ring) {
3398			drop_flags |= 1 << i;
3399			num_dropped_eps++;
3400		}
3401	}
3402	xhci->num_active_eps -= num_dropped_eps;
3403	if (num_dropped_eps)
3404		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3405				"Dropped %u ep ctxs, flags = 0x%x, "
3406				"%u now active.",
3407				num_dropped_eps, drop_flags,
3408				xhci->num_active_eps);
3409}
3410
3411/*
3412 * This submits a Reset Device Command, which will set the device state to 0,
3413 * set the device address to 0, and disable all the endpoints except the default
3414 * control endpoint.  The USB core should come back and call
3415 * xhci_address_device(), and then re-set up the configuration.  If this is
3416 * called because of a usb_reset_and_verify_device(), then the old alternate
3417 * settings will be re-installed through the normal bandwidth allocation
3418 * functions.
3419 *
3420 * Wait for the Reset Device command to finish.  Remove all structures
3421 * associated with the endpoints that were disabled.  Clear the input device
3422 * structure? Reset the control endpoint 0 max packet size?
3423 *
3424 * If the virt_dev to be reset does not exist or does not match the udev,
3425 * it means the device is lost, possibly due to the xHC restore error and
3426 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3427 * re-allocate the device.
3428 */
3429static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3430		struct usb_device *udev)
3431{
3432	int ret, i;
3433	unsigned long flags;
3434	struct xhci_hcd *xhci;
3435	unsigned int slot_id;
3436	struct xhci_virt_device *virt_dev;
3437	struct xhci_command *reset_device_cmd;
3438	struct xhci_slot_ctx *slot_ctx;
3439	int old_active_eps = 0;
3440
3441	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3442	if (ret <= 0)
3443		return ret;
3444	xhci = hcd_to_xhci(hcd);
3445	slot_id = udev->slot_id;
3446	virt_dev = xhci->devs[slot_id];
3447	if (!virt_dev) {
3448		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3449				"not exist. Re-allocate the device\n", slot_id);
3450		ret = xhci_alloc_dev(hcd, udev);
3451		if (ret == 1)
3452			return 0;
3453		else
3454			return -EINVAL;
3455	}
3456
3457	if (virt_dev->tt_info)
3458		old_active_eps = virt_dev->tt_info->active_eps;
3459
3460	if (virt_dev->udev != udev) {
3461		/* If the virt_dev and the udev does not match, this virt_dev
3462		 * may belong to another udev.
3463		 * Re-allocate the device.
3464		 */
3465		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3466				"not match the udev. Re-allocate the device\n",
3467				slot_id);
3468		ret = xhci_alloc_dev(hcd, udev);
3469		if (ret == 1)
3470			return 0;
3471		else
3472			return -EINVAL;
3473	}
3474
3475	/* If device is not setup, there is no point in resetting it */
3476	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3477	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3478						SLOT_STATE_DISABLED)
3479		return 0;
3480
3481	trace_xhci_discover_or_reset_device(slot_ctx);
3482
3483	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3484	/* Allocate the command structure that holds the struct completion.
3485	 * Assume we're in process context, since the normal device reset
3486	 * process has to wait for the device anyway.  Storage devices are
3487	 * reset as part of error handling, so use GFP_NOIO instead of
3488	 * GFP_KERNEL.
3489	 */
3490	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3491	if (!reset_device_cmd) {
3492		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3493		return -ENOMEM;
3494	}
3495
3496	/* Attempt to submit the Reset Device command to the command ring */
3497	spin_lock_irqsave(&xhci->lock, flags);
3498
3499	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3500	if (ret) {
3501		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3502		spin_unlock_irqrestore(&xhci->lock, flags);
3503		goto command_cleanup;
3504	}
3505	xhci_ring_cmd_db(xhci);
3506	spin_unlock_irqrestore(&xhci->lock, flags);
3507
3508	/* Wait for the Reset Device command to finish */
3509	wait_for_completion(reset_device_cmd->completion);
3510
3511	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3512	 * unless we tried to reset a slot ID that wasn't enabled,
3513	 * or the device wasn't in the addressed or configured state.
3514	 */
3515	ret = reset_device_cmd->status;
3516	switch (ret) {
3517	case COMP_COMMAND_ABORTED:
3518	case COMP_COMMAND_RING_STOPPED:
3519		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3520		ret = -ETIME;
3521		goto command_cleanup;
3522	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3523	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3524		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3525				slot_id,
3526				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3527		xhci_dbg(xhci, "Not freeing device rings.\n");
3528		/* Don't treat this as an error.  May change my mind later. */
3529		ret = 0;
3530		goto command_cleanup;
3531	case COMP_SUCCESS:
3532		xhci_dbg(xhci, "Successful reset device command.\n");
3533		break;
3534	default:
3535		if (xhci_is_vendor_info_code(xhci, ret))
3536			break;
3537		xhci_warn(xhci, "Unknown completion code %u for "
3538				"reset device command.\n", ret);
3539		ret = -EINVAL;
3540		goto command_cleanup;
3541	}
3542
3543	/* Free up host controller endpoint resources */
3544	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3545		spin_lock_irqsave(&xhci->lock, flags);
3546		/* Don't delete the default control endpoint resources */
3547		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3548		spin_unlock_irqrestore(&xhci->lock, flags);
3549	}
3550
3551	/* Everything but endpoint 0 is disabled, so free the rings. */
3552	for (i = 1; i < 31; i++) {
3553		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3554
3555		if (ep->ep_state & EP_HAS_STREAMS) {
3556			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3557					xhci_get_endpoint_address(i));
3558			xhci_free_stream_info(xhci, ep->stream_info);
3559			ep->stream_info = NULL;
3560			ep->ep_state &= ~EP_HAS_STREAMS;
3561		}
3562
3563		if (ep->ring) {
3564			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3565			xhci_free_endpoint_ring(xhci, virt_dev, i);
3566		}
3567		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3568			xhci_drop_ep_from_interval_table(xhci,
3569					&virt_dev->eps[i].bw_info,
3570					virt_dev->bw_table,
3571					udev,
3572					&virt_dev->eps[i],
3573					virt_dev->tt_info);
3574		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3575	}
3576	/* If necessary, update the number of active TTs on this root port */
3577	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
 
3578	ret = 0;
3579
3580command_cleanup:
3581	xhci_free_command(xhci, reset_device_cmd);
3582	return ret;
3583}
3584
3585/*
3586 * At this point, the struct usb_device is about to go away, the device has
3587 * disconnected, and all traffic has been stopped and the endpoints have been
3588 * disabled.  Free any HC data structures associated with that device.
3589 */
3590static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3591{
3592	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3593	struct xhci_virt_device *virt_dev;
3594	struct xhci_slot_ctx *slot_ctx;
3595	int i, ret;
3596
3597#ifndef CONFIG_USB_DEFAULT_PERSIST
3598	/*
3599	 * We called pm_runtime_get_noresume when the device was attached.
3600	 * Decrement the counter here to allow controller to runtime suspend
3601	 * if no devices remain.
3602	 */
3603	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3604		pm_runtime_put_noidle(hcd->self.controller);
3605#endif
3606
3607	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3608	/* If the host is halted due to driver unload, we still need to free the
3609	 * device.
3610	 */
3611	if (ret <= 0 && ret != -ENODEV)
3612		return;
3613
3614	virt_dev = xhci->devs[udev->slot_id];
3615	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3616	trace_xhci_free_dev(slot_ctx);
3617
3618	/* Stop any wayward timer functions (which may grab the lock) */
3619	for (i = 0; i < 31; i++) {
3620		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3621		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3622	}
3623	xhci_debugfs_remove_slot(xhci, udev->slot_id);
3624	virt_dev->udev = NULL;
3625	ret = xhci_disable_slot(xhci, udev->slot_id);
3626	if (ret)
3627		xhci_free_virt_device(xhci, udev->slot_id);
3628}
3629
3630int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3631{
3632	struct xhci_command *command;
3633	unsigned long flags;
3634	u32 state;
3635	int ret = 0;
3636
3637	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3638	if (!command)
3639		return -ENOMEM;
3640
 
 
3641	spin_lock_irqsave(&xhci->lock, flags);
3642	/* Don't disable the slot if the host controller is dead. */
3643	state = readl(&xhci->op_regs->status);
3644	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3645			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3646		spin_unlock_irqrestore(&xhci->lock, flags);
3647		kfree(command);
3648		return -ENODEV;
3649	}
3650
3651	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3652				slot_id);
3653	if (ret) {
3654		spin_unlock_irqrestore(&xhci->lock, flags);
3655		kfree(command);
3656		return ret;
3657	}
3658	xhci_ring_cmd_db(xhci);
3659	spin_unlock_irqrestore(&xhci->lock, flags);
3660	return ret;
3661}
3662
3663/*
3664 * Checks if we have enough host controller resources for the default control
3665 * endpoint.
3666 *
3667 * Must be called with xhci->lock held.
3668 */
3669static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3670{
3671	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3672		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3673				"Not enough ep ctxs: "
3674				"%u active, need to add 1, limit is %u.",
3675				xhci->num_active_eps, xhci->limit_active_eps);
3676		return -ENOMEM;
3677	}
3678	xhci->num_active_eps += 1;
3679	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3680			"Adding 1 ep ctx, %u now active.",
3681			xhci->num_active_eps);
3682	return 0;
3683}
3684
3685
3686/*
3687 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3688 * timed out, or allocating memory failed.  Returns 1 on success.
3689 */
3690int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3691{
3692	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3693	struct xhci_virt_device *vdev;
3694	struct xhci_slot_ctx *slot_ctx;
3695	unsigned long flags;
3696	int ret, slot_id;
3697	struct xhci_command *command;
3698
3699	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3700	if (!command)
3701		return 0;
3702
3703	spin_lock_irqsave(&xhci->lock, flags);
3704	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3705	if (ret) {
3706		spin_unlock_irqrestore(&xhci->lock, flags);
3707		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3708		xhci_free_command(xhci, command);
3709		return 0;
3710	}
3711	xhci_ring_cmd_db(xhci);
3712	spin_unlock_irqrestore(&xhci->lock, flags);
3713
3714	wait_for_completion(command->completion);
3715	slot_id = command->slot_id;
3716
3717	if (!slot_id || command->status != COMP_SUCCESS) {
3718		xhci_err(xhci, "Error while assigning device slot ID\n");
3719		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3720				HCS_MAX_SLOTS(
3721					readl(&xhci->cap_regs->hcs_params1)));
3722		xhci_free_command(xhci, command);
3723		return 0;
3724	}
3725
3726	xhci_free_command(xhci, command);
3727
3728	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3729		spin_lock_irqsave(&xhci->lock, flags);
3730		ret = xhci_reserve_host_control_ep_resources(xhci);
3731		if (ret) {
3732			spin_unlock_irqrestore(&xhci->lock, flags);
3733			xhci_warn(xhci, "Not enough host resources, "
3734					"active endpoint contexts = %u\n",
3735					xhci->num_active_eps);
3736			goto disable_slot;
3737		}
3738		spin_unlock_irqrestore(&xhci->lock, flags);
3739	}
3740	/* Use GFP_NOIO, since this function can be called from
3741	 * xhci_discover_or_reset_device(), which may be called as part of
3742	 * mass storage driver error handling.
3743	 */
3744	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3745		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3746		goto disable_slot;
3747	}
3748	vdev = xhci->devs[slot_id];
3749	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3750	trace_xhci_alloc_dev(slot_ctx);
3751
3752	udev->slot_id = slot_id;
3753
3754	xhci_debugfs_create_slot(xhci, slot_id);
3755
3756#ifndef CONFIG_USB_DEFAULT_PERSIST
3757	/*
3758	 * If resetting upon resume, we can't put the controller into runtime
3759	 * suspend if there is a device attached.
3760	 */
3761	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3762		pm_runtime_get_noresume(hcd->self.controller);
3763#endif
3764
3765	/* Is this a LS or FS device under a HS hub? */
3766	/* Hub or peripherial? */
3767	return 1;
3768
3769disable_slot:
3770	ret = xhci_disable_slot(xhci, udev->slot_id);
3771	if (ret)
3772		xhci_free_virt_device(xhci, udev->slot_id);
3773
3774	return 0;
3775}
3776
3777/*
3778 * Issue an Address Device command and optionally send a corresponding
3779 * SetAddress request to the device.
3780 */
3781static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3782			     enum xhci_setup_dev setup)
3783{
3784	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3785	unsigned long flags;
3786	struct xhci_virt_device *virt_dev;
3787	int ret = 0;
3788	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3789	struct xhci_slot_ctx *slot_ctx;
3790	struct xhci_input_control_ctx *ctrl_ctx;
3791	u64 temp_64;
3792	struct xhci_command *command = NULL;
3793
3794	mutex_lock(&xhci->mutex);
3795
3796	if (xhci->xhc_state) {	/* dying, removing or halted */
3797		ret = -ESHUTDOWN;
3798		goto out;
3799	}
3800
3801	if (!udev->slot_id) {
3802		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3803				"Bad Slot ID %d", udev->slot_id);
3804		ret = -EINVAL;
3805		goto out;
3806	}
3807
3808	virt_dev = xhci->devs[udev->slot_id];
3809
3810	if (WARN_ON(!virt_dev)) {
3811		/*
3812		 * In plug/unplug torture test with an NEC controller,
3813		 * a zero-dereference was observed once due to virt_dev = 0.
3814		 * Print useful debug rather than crash if it is observed again!
3815		 */
3816		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3817			udev->slot_id);
3818		ret = -EINVAL;
3819		goto out;
3820	}
3821	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3822	trace_xhci_setup_device_slot(slot_ctx);
3823
3824	if (setup == SETUP_CONTEXT_ONLY) {
3825		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3826		    SLOT_STATE_DEFAULT) {
3827			xhci_dbg(xhci, "Slot already in default state\n");
3828			goto out;
3829		}
3830	}
3831
3832	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3833	if (!command) {
3834		ret = -ENOMEM;
3835		goto out;
3836	}
3837
3838	command->in_ctx = virt_dev->in_ctx;
3839
3840	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3841	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3842	if (!ctrl_ctx) {
3843		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3844				__func__);
3845		ret = -EINVAL;
3846		goto out;
3847	}
3848	/*
3849	 * If this is the first Set Address since device plug-in or
3850	 * virt_device realloaction after a resume with an xHCI power loss,
3851	 * then set up the slot context.
3852	 */
3853	if (!slot_ctx->dev_info)
3854		xhci_setup_addressable_virt_dev(xhci, udev);
3855	/* Otherwise, update the control endpoint ring enqueue pointer. */
3856	else
3857		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3858	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3859	ctrl_ctx->drop_flags = 0;
3860
3861	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3862				le32_to_cpu(slot_ctx->dev_info) >> 27);
3863
 
3864	spin_lock_irqsave(&xhci->lock, flags);
3865	trace_xhci_setup_device(virt_dev);
3866	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3867					udev->slot_id, setup);
3868	if (ret) {
3869		spin_unlock_irqrestore(&xhci->lock, flags);
3870		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3871				"FIXME: allocate a command ring segment");
3872		goto out;
3873	}
3874	xhci_ring_cmd_db(xhci);
3875	spin_unlock_irqrestore(&xhci->lock, flags);
3876
3877	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3878	wait_for_completion(command->completion);
3879
3880	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3881	 * the SetAddress() "recovery interval" required by USB and aborting the
3882	 * command on a timeout.
3883	 */
3884	switch (command->status) {
3885	case COMP_COMMAND_ABORTED:
3886	case COMP_COMMAND_RING_STOPPED:
3887		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3888		ret = -ETIME;
3889		break;
3890	case COMP_CONTEXT_STATE_ERROR:
3891	case COMP_SLOT_NOT_ENABLED_ERROR:
3892		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3893			 act, udev->slot_id);
3894		ret = -EINVAL;
3895		break;
3896	case COMP_USB_TRANSACTION_ERROR:
3897		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3898
3899		mutex_unlock(&xhci->mutex);
3900		ret = xhci_disable_slot(xhci, udev->slot_id);
3901		if (!ret)
3902			xhci_alloc_dev(hcd, udev);
3903		kfree(command->completion);
3904		kfree(command);
3905		return -EPROTO;
3906	case COMP_INCOMPATIBLE_DEVICE_ERROR:
3907		dev_warn(&udev->dev,
3908			 "ERROR: Incompatible device for setup %s command\n", act);
3909		ret = -ENODEV;
3910		break;
3911	case COMP_SUCCESS:
3912		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3913			       "Successful setup %s command", act);
3914		break;
3915	default:
3916		xhci_err(xhci,
3917			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3918			 act, command->status);
3919		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3920		ret = -EINVAL;
3921		break;
3922	}
3923	if (ret)
3924		goto out;
3925	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3926	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3927			"Op regs DCBAA ptr = %#016llx", temp_64);
3928	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3929		"Slot ID %d dcbaa entry @%p = %#016llx",
3930		udev->slot_id,
3931		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3932		(unsigned long long)
3933		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3934	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3935			"Output Context DMA address = %#08llx",
3936			(unsigned long long)virt_dev->out_ctx->dma);
3937	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3938				le32_to_cpu(slot_ctx->dev_info) >> 27);
3939	/*
3940	 * USB core uses address 1 for the roothubs, so we add one to the
3941	 * address given back to us by the HC.
3942	 */
3943	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3944				le32_to_cpu(slot_ctx->dev_info) >> 27);
3945	/* Zero the input context control for later use */
3946	ctrl_ctx->add_flags = 0;
3947	ctrl_ctx->drop_flags = 0;
 
 
3948
3949	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3950		       "Internal device address = %d",
3951		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3952out:
3953	mutex_unlock(&xhci->mutex);
3954	if (command) {
3955		kfree(command->completion);
3956		kfree(command);
3957	}
3958	return ret;
3959}
3960
3961static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3962{
3963	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3964}
3965
3966static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3967{
3968	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3969}
3970
3971/*
3972 * Transfer the port index into real index in the HW port status
3973 * registers. Caculate offset between the port's PORTSC register
3974 * and port status base. Divide the number of per port register
3975 * to get the real index. The raw port number bases 1.
3976 */
3977int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3978{
3979	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3980	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3981	__le32 __iomem *addr;
3982	int raw_port;
3983
3984	if (hcd->speed < HCD_USB3)
3985		addr = xhci->usb2_ports[port1 - 1];
3986	else
3987		addr = xhci->usb3_ports[port1 - 1];
3988
3989	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3990	return raw_port;
3991}
3992
3993/*
3994 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3995 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3996 */
3997static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3998			struct usb_device *udev, u16 max_exit_latency)
3999{
4000	struct xhci_virt_device *virt_dev;
4001	struct xhci_command *command;
4002	struct xhci_input_control_ctx *ctrl_ctx;
4003	struct xhci_slot_ctx *slot_ctx;
4004	unsigned long flags;
4005	int ret;
4006
4007	spin_lock_irqsave(&xhci->lock, flags);
4008
4009	virt_dev = xhci->devs[udev->slot_id];
4010
4011	/*
4012	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4013	 * xHC was re-initialized. Exit latency will be set later after
4014	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4015	 */
4016
4017	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4018		spin_unlock_irqrestore(&xhci->lock, flags);
4019		return 0;
4020	}
4021
4022	/* Attempt to issue an Evaluate Context command to change the MEL. */
4023	command = xhci->lpm_command;
4024	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4025	if (!ctrl_ctx) {
4026		spin_unlock_irqrestore(&xhci->lock, flags);
4027		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4028				__func__);
4029		return -ENOMEM;
4030	}
4031
4032	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4033	spin_unlock_irqrestore(&xhci->lock, flags);
4034
4035	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4036	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4037	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4038	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4039	slot_ctx->dev_state = 0;
4040
4041	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4042			"Set up evaluate context for LPM MEL change.");
4043
4044	/* Issue and wait for the evaluate context command. */
4045	ret = xhci_configure_endpoint(xhci, udev, command,
4046			true, true);
4047
4048	if (!ret) {
4049		spin_lock_irqsave(&xhci->lock, flags);
4050		virt_dev->current_mel = max_exit_latency;
4051		spin_unlock_irqrestore(&xhci->lock, flags);
4052	}
4053	return ret;
4054}
4055
4056#ifdef CONFIG_PM
4057
4058/* BESL to HIRD Encoding array for USB2 LPM */
4059static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4060	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4061
4062/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4063static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4064					struct usb_device *udev)
4065{
4066	int u2del, besl, besl_host;
4067	int besl_device = 0;
4068	u32 field;
4069
4070	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4071	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4072
4073	if (field & USB_BESL_SUPPORT) {
4074		for (besl_host = 0; besl_host < 16; besl_host++) {
4075			if (xhci_besl_encoding[besl_host] >= u2del)
4076				break;
4077		}
4078		/* Use baseline BESL value as default */
4079		if (field & USB_BESL_BASELINE_VALID)
4080			besl_device = USB_GET_BESL_BASELINE(field);
4081		else if (field & USB_BESL_DEEP_VALID)
4082			besl_device = USB_GET_BESL_DEEP(field);
4083	} else {
4084		if (u2del <= 50)
4085			besl_host = 0;
4086		else
4087			besl_host = (u2del - 51) / 75 + 1;
4088	}
4089
4090	besl = besl_host + besl_device;
4091	if (besl > 15)
4092		besl = 15;
4093
4094	return besl;
4095}
4096
4097/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4098static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4099{
4100	u32 field;
4101	int l1;
4102	int besld = 0;
4103	int hirdm = 0;
4104
4105	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4106
4107	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4108	l1 = udev->l1_params.timeout / 256;
4109
4110	/* device has preferred BESLD */
4111	if (field & USB_BESL_DEEP_VALID) {
4112		besld = USB_GET_BESL_DEEP(field);
4113		hirdm = 1;
4114	}
4115
4116	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4117}
4118
4119static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4120			struct usb_device *udev, int enable)
4121{
4122	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4123	__le32 __iomem	**port_array;
4124	__le32 __iomem	*pm_addr, *hlpm_addr;
4125	u32		pm_val, hlpm_val, field;
4126	unsigned int	port_num;
4127	unsigned long	flags;
4128	int		hird, exit_latency;
4129	int		ret;
4130
4131	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4132			!udev->lpm_capable)
4133		return -EPERM;
4134
4135	if (!udev->parent || udev->parent->parent ||
4136			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4137		return -EPERM;
4138
4139	if (udev->usb2_hw_lpm_capable != 1)
4140		return -EPERM;
4141
4142	spin_lock_irqsave(&xhci->lock, flags);
4143
4144	port_array = xhci->usb2_ports;
4145	port_num = udev->portnum - 1;
4146	pm_addr = port_array[port_num] + PORTPMSC;
4147	pm_val = readl(pm_addr);
4148	hlpm_addr = port_array[port_num] + PORTHLPMC;
4149	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4150
4151	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4152			enable ? "enable" : "disable", port_num + 1);
4153
4154	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4155		/* Host supports BESL timeout instead of HIRD */
4156		if (udev->usb2_hw_lpm_besl_capable) {
4157			/* if device doesn't have a preferred BESL value use a
4158			 * default one which works with mixed HIRD and BESL
4159			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4160			 */
 
4161			if ((field & USB_BESL_SUPPORT) &&
4162			    (field & USB_BESL_BASELINE_VALID))
4163				hird = USB_GET_BESL_BASELINE(field);
4164			else
4165				hird = udev->l1_params.besl;
4166
4167			exit_latency = xhci_besl_encoding[hird];
4168			spin_unlock_irqrestore(&xhci->lock, flags);
4169
4170			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4171			 * input context for link powermanagement evaluate
4172			 * context commands. It is protected by hcd->bandwidth
4173			 * mutex and is shared by all devices. We need to set
4174			 * the max ext latency in USB 2 BESL LPM as well, so
4175			 * use the same mutex and xhci_change_max_exit_latency()
4176			 */
4177			mutex_lock(hcd->bandwidth_mutex);
4178			ret = xhci_change_max_exit_latency(xhci, udev,
4179							   exit_latency);
4180			mutex_unlock(hcd->bandwidth_mutex);
4181
4182			if (ret < 0)
4183				return ret;
4184			spin_lock_irqsave(&xhci->lock, flags);
4185
4186			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4187			writel(hlpm_val, hlpm_addr);
4188			/* flush write */
4189			readl(hlpm_addr);
4190		} else {
4191			hird = xhci_calculate_hird_besl(xhci, udev);
4192		}
4193
4194		pm_val &= ~PORT_HIRD_MASK;
4195		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4196		writel(pm_val, pm_addr);
4197		pm_val = readl(pm_addr);
4198		pm_val |= PORT_HLE;
4199		writel(pm_val, pm_addr);
4200		/* flush write */
4201		readl(pm_addr);
4202	} else {
4203		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4204		writel(pm_val, pm_addr);
4205		/* flush write */
4206		readl(pm_addr);
4207		if (udev->usb2_hw_lpm_besl_capable) {
4208			spin_unlock_irqrestore(&xhci->lock, flags);
4209			mutex_lock(hcd->bandwidth_mutex);
4210			xhci_change_max_exit_latency(xhci, udev, 0);
4211			mutex_unlock(hcd->bandwidth_mutex);
4212			return 0;
4213		}
4214	}
4215
4216	spin_unlock_irqrestore(&xhci->lock, flags);
4217	return 0;
4218}
4219
4220/* check if a usb2 port supports a given extened capability protocol
4221 * only USB2 ports extended protocol capability values are cached.
4222 * Return 1 if capability is supported
4223 */
4224static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4225					   unsigned capability)
4226{
4227	u32 port_offset, port_count;
4228	int i;
4229
4230	for (i = 0; i < xhci->num_ext_caps; i++) {
4231		if (xhci->ext_caps[i] & capability) {
4232			/* port offsets starts at 1 */
4233			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4234			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4235			if (port >= port_offset &&
4236			    port < port_offset + port_count)
4237				return 1;
4238		}
4239	}
4240	return 0;
4241}
4242
4243static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4244{
4245	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4246	int		portnum = udev->portnum - 1;
4247
4248	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4249			!udev->lpm_capable)
4250		return 0;
4251
4252	/* we only support lpm for non-hub device connected to root hub yet */
4253	if (!udev->parent || udev->parent->parent ||
4254			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4255		return 0;
4256
4257	if (xhci->hw_lpm_support == 1 &&
4258			xhci_check_usb2_port_capability(
4259				xhci, portnum, XHCI_HLC)) {
4260		udev->usb2_hw_lpm_capable = 1;
4261		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4262		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4263		if (xhci_check_usb2_port_capability(xhci, portnum,
4264					XHCI_BLC))
4265			udev->usb2_hw_lpm_besl_capable = 1;
4266	}
4267
4268	return 0;
4269}
4270
4271/*---------------------- USB 3.0 Link PM functions ------------------------*/
4272
4273/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4274static unsigned long long xhci_service_interval_to_ns(
4275		struct usb_endpoint_descriptor *desc)
4276{
4277	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4278}
4279
4280static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4281		enum usb3_link_state state)
4282{
4283	unsigned long long sel;
4284	unsigned long long pel;
4285	unsigned int max_sel_pel;
4286	char *state_name;
4287
4288	switch (state) {
4289	case USB3_LPM_U1:
4290		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4291		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4292		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4293		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4294		state_name = "U1";
4295		break;
4296	case USB3_LPM_U2:
4297		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4298		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4299		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4300		state_name = "U2";
4301		break;
4302	default:
4303		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4304				__func__);
4305		return USB3_LPM_DISABLED;
4306	}
4307
4308	if (sel <= max_sel_pel && pel <= max_sel_pel)
4309		return USB3_LPM_DEVICE_INITIATED;
4310
4311	if (sel > max_sel_pel)
4312		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4313				"due to long SEL %llu ms\n",
4314				state_name, sel);
4315	else
4316		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4317				"due to long PEL %llu ms\n",
4318				state_name, pel);
4319	return USB3_LPM_DISABLED;
4320}
4321
4322/* The U1 timeout should be the maximum of the following values:
4323 *  - For control endpoints, U1 system exit latency (SEL) * 3
4324 *  - For bulk endpoints, U1 SEL * 5
4325 *  - For interrupt endpoints:
4326 *    - Notification EPs, U1 SEL * 3
4327 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4328 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4329 */
4330static unsigned long long xhci_calculate_intel_u1_timeout(
4331		struct usb_device *udev,
4332		struct usb_endpoint_descriptor *desc)
4333{
4334	unsigned long long timeout_ns;
4335	int ep_type;
4336	int intr_type;
4337
4338	ep_type = usb_endpoint_type(desc);
4339	switch (ep_type) {
4340	case USB_ENDPOINT_XFER_CONTROL:
4341		timeout_ns = udev->u1_params.sel * 3;
4342		break;
4343	case USB_ENDPOINT_XFER_BULK:
4344		timeout_ns = udev->u1_params.sel * 5;
4345		break;
4346	case USB_ENDPOINT_XFER_INT:
4347		intr_type = usb_endpoint_interrupt_type(desc);
4348		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4349			timeout_ns = udev->u1_params.sel * 3;
4350			break;
4351		}
4352		/* Otherwise the calculation is the same as isoc eps */
4353		/* fall through */
4354	case USB_ENDPOINT_XFER_ISOC:
4355		timeout_ns = xhci_service_interval_to_ns(desc);
4356		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4357		if (timeout_ns < udev->u1_params.sel * 2)
4358			timeout_ns = udev->u1_params.sel * 2;
4359		break;
4360	default:
4361		return 0;
4362	}
4363
4364	return timeout_ns;
4365}
4366
4367/* Returns the hub-encoded U1 timeout value. */
4368static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4369		struct usb_device *udev,
4370		struct usb_endpoint_descriptor *desc)
4371{
4372	unsigned long long timeout_ns;
4373
 
 
 
 
 
 
 
 
4374	if (xhci->quirks & XHCI_INTEL_HOST)
4375		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4376	else
4377		timeout_ns = udev->u1_params.sel;
4378
4379	/* The U1 timeout is encoded in 1us intervals.
4380	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4381	 */
4382	if (timeout_ns == USB3_LPM_DISABLED)
4383		timeout_ns = 1;
4384	else
4385		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4386
4387	/* If the necessary timeout value is bigger than what we can set in the
4388	 * USB 3.0 hub, we have to disable hub-initiated U1.
4389	 */
4390	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4391		return timeout_ns;
4392	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4393			"due to long timeout %llu ms\n", timeout_ns);
4394	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4395}
4396
4397/* The U2 timeout should be the maximum of:
4398 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4399 *  - largest bInterval of any active periodic endpoint (to avoid going
4400 *    into lower power link states between intervals).
4401 *  - the U2 Exit Latency of the device
4402 */
4403static unsigned long long xhci_calculate_intel_u2_timeout(
4404		struct usb_device *udev,
4405		struct usb_endpoint_descriptor *desc)
4406{
4407	unsigned long long timeout_ns;
4408	unsigned long long u2_del_ns;
4409
4410	timeout_ns = 10 * 1000 * 1000;
4411
4412	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4413			(xhci_service_interval_to_ns(desc) > timeout_ns))
4414		timeout_ns = xhci_service_interval_to_ns(desc);
4415
4416	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4417	if (u2_del_ns > timeout_ns)
4418		timeout_ns = u2_del_ns;
4419
4420	return timeout_ns;
4421}
4422
4423/* Returns the hub-encoded U2 timeout value. */
4424static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4425		struct usb_device *udev,
4426		struct usb_endpoint_descriptor *desc)
4427{
4428	unsigned long long timeout_ns;
4429
 
 
 
 
 
 
 
 
4430	if (xhci->quirks & XHCI_INTEL_HOST)
4431		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4432	else
4433		timeout_ns = udev->u2_params.sel;
4434
4435	/* The U2 timeout is encoded in 256us intervals */
4436	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4437	/* If the necessary timeout value is bigger than what we can set in the
4438	 * USB 3.0 hub, we have to disable hub-initiated U2.
4439	 */
4440	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4441		return timeout_ns;
4442	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4443			"due to long timeout %llu ms\n", timeout_ns);
4444	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4445}
4446
4447static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4448		struct usb_device *udev,
4449		struct usb_endpoint_descriptor *desc,
4450		enum usb3_link_state state,
4451		u16 *timeout)
4452{
4453	if (state == USB3_LPM_U1)
4454		return xhci_calculate_u1_timeout(xhci, udev, desc);
4455	else if (state == USB3_LPM_U2)
4456		return xhci_calculate_u2_timeout(xhci, udev, desc);
4457
4458	return USB3_LPM_DISABLED;
4459}
4460
4461static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4462		struct usb_device *udev,
4463		struct usb_endpoint_descriptor *desc,
4464		enum usb3_link_state state,
4465		u16 *timeout)
4466{
4467	u16 alt_timeout;
4468
4469	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4470		desc, state, timeout);
4471
4472	/* If we found we can't enable hub-initiated LPM, or
4473	 * the U1 or U2 exit latency was too high to allow
4474	 * device-initiated LPM as well, just stop searching.
 
4475	 */
4476	if (alt_timeout == USB3_LPM_DISABLED ||
4477			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4478		*timeout = alt_timeout;
4479		return -E2BIG;
4480	}
4481	if (alt_timeout > *timeout)
4482		*timeout = alt_timeout;
4483	return 0;
4484}
4485
4486static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4487		struct usb_device *udev,
4488		struct usb_host_interface *alt,
4489		enum usb3_link_state state,
4490		u16 *timeout)
4491{
4492	int j;
4493
4494	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4495		if (xhci_update_timeout_for_endpoint(xhci, udev,
4496					&alt->endpoint[j].desc, state, timeout))
4497			return -E2BIG;
4498		continue;
4499	}
4500	return 0;
4501}
4502
4503static int xhci_check_intel_tier_policy(struct usb_device *udev,
4504		enum usb3_link_state state)
4505{
4506	struct usb_device *parent;
4507	unsigned int num_hubs;
4508
4509	if (state == USB3_LPM_U2)
4510		return 0;
4511
4512	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4513	for (parent = udev->parent, num_hubs = 0; parent->parent;
4514			parent = parent->parent)
4515		num_hubs++;
4516
4517	if (num_hubs < 2)
4518		return 0;
4519
4520	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4521			" below second-tier hub.\n");
4522	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4523			"to decrease power consumption.\n");
4524	return -E2BIG;
4525}
4526
4527static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4528		struct usb_device *udev,
4529		enum usb3_link_state state)
4530{
4531	if (xhci->quirks & XHCI_INTEL_HOST)
4532		return xhci_check_intel_tier_policy(udev, state);
4533	else
4534		return 0;
4535}
4536
4537/* Returns the U1 or U2 timeout that should be enabled.
4538 * If the tier check or timeout setting functions return with a non-zero exit
4539 * code, that means the timeout value has been finalized and we shouldn't look
4540 * at any more endpoints.
4541 */
4542static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4543			struct usb_device *udev, enum usb3_link_state state)
4544{
4545	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4546	struct usb_host_config *config;
4547	char *state_name;
4548	int i;
4549	u16 timeout = USB3_LPM_DISABLED;
4550
4551	if (state == USB3_LPM_U1)
4552		state_name = "U1";
4553	else if (state == USB3_LPM_U2)
4554		state_name = "U2";
4555	else {
4556		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4557				state);
4558		return timeout;
4559	}
4560
4561	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4562		return timeout;
4563
4564	/* Gather some information about the currently installed configuration
4565	 * and alternate interface settings.
4566	 */
4567	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4568			state, &timeout))
4569		return timeout;
4570
4571	config = udev->actconfig;
4572	if (!config)
4573		return timeout;
4574
4575	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4576		struct usb_driver *driver;
4577		struct usb_interface *intf = config->interface[i];
4578
4579		if (!intf)
4580			continue;
4581
4582		/* Check if any currently bound drivers want hub-initiated LPM
4583		 * disabled.
4584		 */
4585		if (intf->dev.driver) {
4586			driver = to_usb_driver(intf->dev.driver);
4587			if (driver && driver->disable_hub_initiated_lpm) {
4588				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4589						"at request of driver %s\n",
4590						state_name, driver->name);
4591				return xhci_get_timeout_no_hub_lpm(udev, state);
 
 
4592			}
4593		}
4594
4595		/* Not sure how this could happen... */
4596		if (!intf->cur_altsetting)
4597			continue;
4598
4599		if (xhci_update_timeout_for_interface(xhci, udev,
4600					intf->cur_altsetting,
4601					state, &timeout))
4602			return timeout;
4603	}
4604	return timeout;
4605}
4606
4607static int calculate_max_exit_latency(struct usb_device *udev,
4608		enum usb3_link_state state_changed,
4609		u16 hub_encoded_timeout)
4610{
4611	unsigned long long u1_mel_us = 0;
4612	unsigned long long u2_mel_us = 0;
4613	unsigned long long mel_us = 0;
4614	bool disabling_u1;
4615	bool disabling_u2;
4616	bool enabling_u1;
4617	bool enabling_u2;
4618
4619	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4620			hub_encoded_timeout == USB3_LPM_DISABLED);
4621	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4622			hub_encoded_timeout == USB3_LPM_DISABLED);
4623
4624	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4625			hub_encoded_timeout != USB3_LPM_DISABLED);
4626	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4627			hub_encoded_timeout != USB3_LPM_DISABLED);
4628
4629	/* If U1 was already enabled and we're not disabling it,
4630	 * or we're going to enable U1, account for the U1 max exit latency.
4631	 */
4632	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4633			enabling_u1)
4634		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4635	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4636			enabling_u2)
4637		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4638
4639	if (u1_mel_us > u2_mel_us)
4640		mel_us = u1_mel_us;
4641	else
4642		mel_us = u2_mel_us;
4643	/* xHCI host controller max exit latency field is only 16 bits wide. */
4644	if (mel_us > MAX_EXIT) {
4645		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4646				"is too big.\n", mel_us);
4647		return -E2BIG;
4648	}
4649	return mel_us;
4650}
4651
4652/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4653static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4654			struct usb_device *udev, enum usb3_link_state state)
4655{
4656	struct xhci_hcd	*xhci;
4657	u16 hub_encoded_timeout;
4658	int mel;
4659	int ret;
4660
4661	xhci = hcd_to_xhci(hcd);
4662	/* The LPM timeout values are pretty host-controller specific, so don't
4663	 * enable hub-initiated timeouts unless the vendor has provided
4664	 * information about their timeout algorithm.
4665	 */
4666	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4667			!xhci->devs[udev->slot_id])
4668		return USB3_LPM_DISABLED;
4669
4670	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4671	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4672	if (mel < 0) {
4673		/* Max Exit Latency is too big, disable LPM. */
4674		hub_encoded_timeout = USB3_LPM_DISABLED;
4675		mel = 0;
4676	}
4677
4678	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4679	if (ret)
4680		return ret;
4681	return hub_encoded_timeout;
4682}
4683
4684static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4685			struct usb_device *udev, enum usb3_link_state state)
4686{
4687	struct xhci_hcd	*xhci;
4688	u16 mel;
4689
4690	xhci = hcd_to_xhci(hcd);
4691	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4692			!xhci->devs[udev->slot_id])
4693		return 0;
4694
4695	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4696	return xhci_change_max_exit_latency(xhci, udev, mel);
4697}
4698#else /* CONFIG_PM */
4699
4700static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4701				struct usb_device *udev, int enable)
4702{
4703	return 0;
4704}
4705
4706static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4707{
4708	return 0;
4709}
4710
4711static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4712			struct usb_device *udev, enum usb3_link_state state)
4713{
4714	return USB3_LPM_DISABLED;
4715}
4716
4717static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4718			struct usb_device *udev, enum usb3_link_state state)
4719{
4720	return 0;
4721}
4722#endif	/* CONFIG_PM */
4723
4724/*-------------------------------------------------------------------------*/
4725
4726/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4727 * internal data structures for the device.
4728 */
4729static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4730			struct usb_tt *tt, gfp_t mem_flags)
4731{
4732	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4733	struct xhci_virt_device *vdev;
4734	struct xhci_command *config_cmd;
4735	struct xhci_input_control_ctx *ctrl_ctx;
4736	struct xhci_slot_ctx *slot_ctx;
4737	unsigned long flags;
4738	unsigned think_time;
4739	int ret;
4740
4741	/* Ignore root hubs */
4742	if (!hdev->parent)
4743		return 0;
4744
4745	vdev = xhci->devs[hdev->slot_id];
4746	if (!vdev) {
4747		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4748		return -EINVAL;
4749	}
4750
4751	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4752	if (!config_cmd)
4753		return -ENOMEM;
4754
4755	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4756	if (!ctrl_ctx) {
4757		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4758				__func__);
4759		xhci_free_command(xhci, config_cmd);
4760		return -ENOMEM;
4761	}
4762
4763	spin_lock_irqsave(&xhci->lock, flags);
4764	if (hdev->speed == USB_SPEED_HIGH &&
4765			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4766		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4767		xhci_free_command(xhci, config_cmd);
4768		spin_unlock_irqrestore(&xhci->lock, flags);
4769		return -ENOMEM;
4770	}
4771
4772	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4773	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4774	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4775	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4776	/*
4777	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4778	 * but it may be already set to 1 when setup an xHCI virtual
4779	 * device, so clear it anyway.
4780	 */
4781	if (tt->multi)
4782		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4783	else if (hdev->speed == USB_SPEED_FULL)
4784		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4785
4786	if (xhci->hci_version > 0x95) {
4787		xhci_dbg(xhci, "xHCI version %x needs hub "
4788				"TT think time and number of ports\n",
4789				(unsigned int) xhci->hci_version);
4790		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4791		/* Set TT think time - convert from ns to FS bit times.
4792		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4793		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4794		 *
4795		 * xHCI 1.0: this field shall be 0 if the device is not a
4796		 * High-spped hub.
4797		 */
4798		think_time = tt->think_time;
4799		if (think_time != 0)
4800			think_time = (think_time / 666) - 1;
4801		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4802			slot_ctx->tt_info |=
4803				cpu_to_le32(TT_THINK_TIME(think_time));
4804	} else {
4805		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4806				"TT think time or number of ports\n",
4807				(unsigned int) xhci->hci_version);
4808	}
4809	slot_ctx->dev_state = 0;
4810	spin_unlock_irqrestore(&xhci->lock, flags);
4811
4812	xhci_dbg(xhci, "Set up %s for hub device.\n",
4813			(xhci->hci_version > 0x95) ?
4814			"configure endpoint" : "evaluate context");
4815
4816	/* Issue and wait for the configure endpoint or
4817	 * evaluate context command.
4818	 */
4819	if (xhci->hci_version > 0x95)
4820		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4821				false, false);
4822	else
4823		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4824				true, false);
4825
4826	xhci_free_command(xhci, config_cmd);
4827	return ret;
4828}
4829
4830static int xhci_get_frame(struct usb_hcd *hcd)
4831{
4832	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4833	/* EHCI mods by the periodic size.  Why? */
4834	return readl(&xhci->run_regs->microframe_index) >> 3;
4835}
4836
4837int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4838{
4839	struct xhci_hcd		*xhci;
4840	/*
4841	 * TODO: Check with DWC3 clients for sysdev according to
4842	 * quirks
4843	 */
4844	struct device		*dev = hcd->self.sysdev;
4845	unsigned int		minor_rev;
4846	int			retval;
4847
4848	/* Accept arbitrarily long scatter-gather lists */
4849	hcd->self.sg_tablesize = ~0;
4850
4851	/* support to build packet from discontinuous buffers */
4852	hcd->self.no_sg_constraint = 1;
4853
4854	/* XHCI controllers don't stop the ep queue on short packets :| */
4855	hcd->self.no_stop_on_short = 1;
4856
4857	xhci = hcd_to_xhci(hcd);
4858
4859	if (usb_hcd_is_primary_hcd(hcd)) {
4860		xhci->main_hcd = hcd;
 
4861		/* Mark the first roothub as being USB 2.0.
4862		 * The xHCI driver will register the USB 3.0 roothub.
4863		 */
4864		hcd->speed = HCD_USB2;
4865		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4866		/*
4867		 * USB 2.0 roothub under xHCI has an integrated TT,
4868		 * (rate matching hub) as opposed to having an OHCI/UHCI
4869		 * companion controller.
4870		 */
4871		hcd->has_tt = 1;
4872	} else {
4873		/*
4874		 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
4875		 * minor revision instead of sbrn
 
 
 
 
 
4876		 */
4877		minor_rev = xhci->usb3_rhub.min_rev;
4878		if (minor_rev) {
 
 
 
 
 
 
 
 
 
 
 
4879			hcd->speed = HCD_USB31;
4880			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
 
4881		}
4882		xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
4883			  minor_rev,
4884			  minor_rev ? "Enhanced" : "");
4885
 
4886		/* xHCI private pointer was set in xhci_pci_probe for the second
4887		 * registered roothub.
4888		 */
4889		return 0;
4890	}
4891
4892	mutex_init(&xhci->mutex);
4893	xhci->cap_regs = hcd->regs;
4894	xhci->op_regs = hcd->regs +
4895		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4896	xhci->run_regs = hcd->regs +
4897		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4898	/* Cache read-only capability registers */
4899	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4900	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4901	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4902	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4903	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4904	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4905	if (xhci->hci_version > 0x100)
4906		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4907
4908	xhci->quirks |= quirks;
4909
4910	get_quirks(dev, xhci);
4911
4912	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4913	 * success event after a short transfer. This quirk will ignore such
4914	 * spurious event.
4915	 */
4916	if (xhci->hci_version > 0x96)
4917		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4918
4919	/* Make sure the HC is halted. */
4920	retval = xhci_halt(xhci);
4921	if (retval)
4922		return retval;
4923
 
 
4924	xhci_dbg(xhci, "Resetting HCD\n");
4925	/* Reset the internal HC memory state and registers. */
4926	retval = xhci_reset(xhci);
4927	if (retval)
4928		return retval;
4929	xhci_dbg(xhci, "Reset complete\n");
4930
4931	/*
4932	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4933	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4934	 * address memory pointers actually. So, this driver clears the AC64
4935	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4936	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4937	 */
4938	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4939		xhci->hcc_params &= ~BIT(0);
4940
4941	/* Set dma_mask and coherent_dma_mask to 64-bits,
4942	 * if xHC supports 64-bit addressing */
4943	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4944			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4945		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4946		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4947	} else {
4948		/*
4949		 * This is to avoid error in cases where a 32-bit USB
4950		 * controller is used on a 64-bit capable system.
4951		 */
4952		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4953		if (retval)
4954			return retval;
4955		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4956		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4957	}
4958
4959	xhci_dbg(xhci, "Calling HCD init\n");
4960	/* Initialize HCD and host controller data structures. */
4961	retval = xhci_init(hcd);
4962	if (retval)
4963		return retval;
4964	xhci_dbg(xhci, "Called HCD init\n");
4965
4966	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4967		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4968
4969	return 0;
4970}
4971EXPORT_SYMBOL_GPL(xhci_gen_setup);
4972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4973static const struct hc_driver xhci_hc_driver = {
4974	.description =		"xhci-hcd",
4975	.product_desc =		"xHCI Host Controller",
4976	.hcd_priv_size =	sizeof(struct xhci_hcd),
4977
4978	/*
4979	 * generic hardware linkage
4980	 */
4981	.irq =			xhci_irq,
4982	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4983
4984	/*
4985	 * basic lifecycle operations
4986	 */
4987	.reset =		NULL, /* set in xhci_init_driver() */
4988	.start =		xhci_run,
4989	.stop =			xhci_stop,
4990	.shutdown =		xhci_shutdown,
4991
4992	/*
4993	 * managing i/o requests and associated device resources
4994	 */
 
4995	.urb_enqueue =		xhci_urb_enqueue,
4996	.urb_dequeue =		xhci_urb_dequeue,
4997	.alloc_dev =		xhci_alloc_dev,
4998	.free_dev =		xhci_free_dev,
4999	.alloc_streams =	xhci_alloc_streams,
5000	.free_streams =		xhci_free_streams,
5001	.add_endpoint =		xhci_add_endpoint,
5002	.drop_endpoint =	xhci_drop_endpoint,
 
5003	.endpoint_reset =	xhci_endpoint_reset,
5004	.check_bandwidth =	xhci_check_bandwidth,
5005	.reset_bandwidth =	xhci_reset_bandwidth,
5006	.address_device =	xhci_address_device,
5007	.enable_device =	xhci_enable_device,
5008	.update_hub_device =	xhci_update_hub_device,
5009	.reset_device =		xhci_discover_or_reset_device,
5010
5011	/*
5012	 * scheduling support
5013	 */
5014	.get_frame_number =	xhci_get_frame,
5015
5016	/*
5017	 * root hub support
5018	 */
5019	.hub_control =		xhci_hub_control,
5020	.hub_status_data =	xhci_hub_status_data,
5021	.bus_suspend =		xhci_bus_suspend,
5022	.bus_resume =		xhci_bus_resume,
 
5023
5024	/*
5025	 * call back when device connected and addressed
5026	 */
5027	.update_device =        xhci_update_device,
5028	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5029	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5030	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5031	.find_raw_port_number =	xhci_find_raw_port_number,
 
5032};
5033
5034void xhci_init_driver(struct hc_driver *drv,
5035		      const struct xhci_driver_overrides *over)
5036{
5037	BUG_ON(!over);
5038
5039	/* Copy the generic table to drv then apply the overrides */
5040	*drv = xhci_hc_driver;
5041
5042	if (over) {
5043		drv->hcd_priv_size += over->extra_priv_size;
5044		if (over->reset)
5045			drv->reset = over->reset;
5046		if (over->start)
5047			drv->start = over->start;
5048	}
5049}
5050EXPORT_SYMBOL_GPL(xhci_init_driver);
5051
5052MODULE_DESCRIPTION(DRIVER_DESC);
5053MODULE_AUTHOR(DRIVER_AUTHOR);
5054MODULE_LICENSE("GPL");
5055
5056static int __init xhci_hcd_init(void)
5057{
5058	/*
5059	 * Check the compiler generated sizes of structures that must be laid
5060	 * out in specific ways for hardware access.
5061	 */
5062	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5063	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5064	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5065	/* xhci_device_control has eight fields, and also
5066	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5067	 */
5068	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5069	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5070	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5071	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5072	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5073	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5074	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5075
5076	if (usb_disabled())
5077		return -ENODEV;
5078
5079	xhci_debugfs_create_root();
5080
5081	return 0;
5082}
5083
5084/*
5085 * If an init function is provided, an exit function must also be provided
5086 * to allow module unload.
5087 */
5088static void __exit xhci_hcd_fini(void)
5089{
5090	xhci_debugfs_remove_root();
5091}
5092
5093module_init(xhci_hcd_init);
5094module_exit(xhci_hcd_fini);