Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Generic pwmlib implementation
   4 *
   5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   6 * Copyright (C) 2011-2012 Avionic Design GmbH
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/module.h>
 
 
  11#include <linux/pwm.h>
  12#include <linux/radix-tree.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/debugfs.h>
  19#include <linux/seq_file.h>
  20
  21#include <dt-bindings/pwm/pwm.h>
  22
  23#define MAX_PWMS 1024
 
  24
  25static DEFINE_MUTEX(pwm_lookup_lock);
  26static LIST_HEAD(pwm_lookup_list);
  27static DEFINE_MUTEX(pwm_lock);
  28static LIST_HEAD(pwm_chips);
  29static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  30static RADIX_TREE(pwm_tree, GFP_KERNEL);
  31
  32static struct pwm_device *pwm_to_device(unsigned int pwm)
 
 
 
  33{
  34	return radix_tree_lookup(&pwm_tree, pwm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35}
  36
  37static int alloc_pwms(int pwm, unsigned int count)
 
 
 
 
 
  38{
  39	unsigned int from = 0;
  40	unsigned int start;
  41
  42	if (pwm >= MAX_PWMS)
 
  43		return -EINVAL;
  44
  45	if (pwm >= 0)
  46		from = pwm;
 
 
 
 
 
 
  47
  48	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
  49					   count, 0);
 
 
  50
  51	if (pwm >= 0 && start != pwm)
  52		return -EEXIST;
  53
  54	if (start + count > MAX_PWMS)
  55		return -ENOSPC;
 
 
 
  56
  57	return start;
  58}
  59
  60static void free_pwms(struct pwm_chip *chip)
 
 
 
 
 
 
  61{
  62	unsigned int i;
  63
  64	for (i = 0; i < chip->npwm; i++) {
  65		struct pwm_device *pwm = &chip->pwms[i];
 
 
 
 
 
 
  66
  67		radix_tree_delete(&pwm_tree, pwm->pwm);
 
 
 
 
 
 
 
 
 
  68	}
  69
  70	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
 
 
  71
  72	kfree(chip->pwms);
  73	chip->pwms = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76static struct pwm_chip *pwmchip_find_by_name(const char *name)
  77{
  78	struct pwm_chip *chip;
 
  79
  80	if (!name)
  81		return NULL;
  82
  83	mutex_lock(&pwm_lock);
  84
  85	list_for_each_entry(chip, &pwm_chips, list) {
  86		const char *chip_name = dev_name(chip->dev);
  87
  88		if (chip_name && strcmp(chip_name, name) == 0) {
  89			mutex_unlock(&pwm_lock);
  90			return chip;
  91		}
  92	}
  93
  94	mutex_unlock(&pwm_lock);
  95
  96	return NULL;
  97}
  98
  99static int pwm_device_request(struct pwm_device *pwm, const char *label)
 100{
 101	int err;
 
 
 102
 103	if (test_bit(PWMF_REQUESTED, &pwm->flags))
 104		return -EBUSY;
 105
 106	if (!try_module_get(pwm->chip->ops->owner))
 107		return -ENODEV;
 108
 109	if (pwm->chip->ops->request) {
 110		err = pwm->chip->ops->request(pwm->chip, pwm);
 111		if (err) {
 112			module_put(pwm->chip->ops->owner);
 113			return err;
 114		}
 115	}
 116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117	set_bit(PWMF_REQUESTED, &pwm->flags);
 118	pwm->label = label;
 119
 120	return 0;
 121}
 122
 123struct pwm_device *
 124of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 
 
 
 
 
 
 
 
 
 
 
 125{
 126	struct pwm_device *pwm;
 
 127
 128	/* check, whether the driver supports a third cell for flags */
 129	if (pc->of_pwm_n_cells < 3)
 130		return ERR_PTR(-EINVAL);
 131
 132	/* flags in the third cell are optional */
 133	if (args->args_count < 2)
 134		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
 
 
 135
 136	if (args->args[0] >= pc->npwm)
 
 
 
 
 
 
 137		return ERR_PTR(-EINVAL);
 138
 139	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 140	if (IS_ERR(pwm))
 141		return pwm;
 142
 143	pwm->args.period = args->args[1];
 144	pwm->args.polarity = PWM_POLARITY_NORMAL;
 145
 
 146	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 147		pwm->args.polarity = PWM_POLARITY_INVERSED;
 148
 149	return pwm;
 150}
 151EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 152
 153static struct pwm_device *
 154of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
 155{
 156	struct pwm_device *pwm;
 157
 158	/* sanity check driver support */
 159	if (pc->of_pwm_n_cells < 2)
 160		return ERR_PTR(-EINVAL);
 161
 162	/* all cells are required */
 163	if (args->args_count != pc->of_pwm_n_cells)
 164		return ERR_PTR(-EINVAL);
 165
 166	if (args->args[0] >= pc->npwm)
 167		return ERR_PTR(-EINVAL);
 168
 169	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 170	if (IS_ERR(pwm))
 171		return pwm;
 172
 173	pwm->args.period = args->args[1];
 
 
 
 
 
 174
 175	return pwm;
 176}
 
 177
 178static void of_pwmchip_add(struct pwm_chip *chip)
 
 
 179{
 180	if (!chip->dev || !chip->dev->of_node)
 181		return;
 182
 183	if (!chip->of_xlate) {
 184		chip->of_xlate = of_pwm_simple_xlate;
 185		chip->of_pwm_n_cells = 2;
 186	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 187
 188	of_node_get(chip->dev->of_node);
 
 
 
 
 
 189}
 
 190
 191static void of_pwmchip_remove(struct pwm_chip *chip)
 192{
 193	if (chip->dev)
 194		of_node_put(chip->dev->of_node);
 
 195}
 196
 197/**
 198 * pwm_set_chip_data() - set private chip data for a PWM
 199 * @pwm: PWM device
 200 * @data: pointer to chip-specific data
 201 *
 202 * Returns: 0 on success or a negative error code on failure.
 203 */
 204int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 205{
 206	if (!pwm)
 207		return -EINVAL;
 208
 209	pwm->chip_data = data;
 
 
 210
 211	return 0;
 
 
 
 
 212}
 213EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 214
 215/**
 216 * pwm_get_chip_data() - get private chip data for a PWM
 217 * @pwm: PWM device
 218 *
 219 * Returns: A pointer to the chip-private data for the PWM device.
 220 */
 221void *pwm_get_chip_data(struct pwm_device *pwm)
 222{
 223	return pwm ? pwm->chip_data : NULL;
 
 
 
 
 
 
 224}
 225EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 226
 227static bool pwm_ops_check(const struct pwm_ops *ops)
 228{
 229	/* driver supports legacy, non-atomic operation */
 230	if (ops->config && ops->enable && ops->disable)
 231		return true;
 232
 233	/* driver supports atomic operation */
 234	if (ops->apply)
 235		return true;
 
 
 
 236
 237	return false;
 
 
 
 
 238}
 239
 240/**
 241 * pwmchip_add_with_polarity() - register a new PWM chip
 242 * @chip: the PWM chip to add
 243 * @polarity: initial polarity of PWM channels
 244 *
 245 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 246 * will be used. The initial polarity for all channels is specified by the
 247 * @polarity parameter.
 248 *
 249 * Returns: 0 on success or a negative error code on failure.
 250 */
 251int pwmchip_add_with_polarity(struct pwm_chip *chip,
 252			      enum pwm_polarity polarity)
 253{
 254	struct pwm_device *pwm;
 255	unsigned int i;
 256	int ret;
 257
 258	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 259		return -EINVAL;
 260
 261	if (!pwm_ops_check(chip->ops))
 262		return -EINVAL;
 263
 264	mutex_lock(&pwm_lock);
 265
 266	ret = alloc_pwms(chip->base, chip->npwm);
 267	if (ret < 0)
 268		goto out;
 269
 270	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 271	if (!chip->pwms) {
 272		ret = -ENOMEM;
 273		goto out;
 
 
 
 274	}
 275
 276	chip->base = ret;
 277
 278	for (i = 0; i < chip->npwm; i++) {
 279		pwm = &chip->pwms[i];
 280
 281		pwm->chip = chip;
 282		pwm->pwm = chip->base + i;
 283		pwm->hwpwm = i;
 284		pwm->state.polarity = polarity;
 285
 286		if (chip->ops->get_state)
 287			chip->ops->get_state(chip, pwm, &pwm->state);
 288
 289		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 290	}
 291
 292	bitmap_set(allocated_pwms, chip->base, chip->npwm);
 293
 294	INIT_LIST_HEAD(&chip->list);
 295	list_add(&chip->list, &pwm_chips);
 296
 297	ret = 0;
 298
 299	if (IS_ENABLED(CONFIG_OF))
 300		of_pwmchip_add(chip);
 301
 302out:
 303	mutex_unlock(&pwm_lock);
 304
 305	if (!ret)
 306		pwmchip_sysfs_export(chip);
 307
 308	return ret;
 309}
 310EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
 311
 312/**
 313 * pwmchip_add() - register a new PWM chip
 314 * @chip: the PWM chip to add
 315 *
 316 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 317 * will be used. The initial polarity for all channels is normal.
 318 *
 319 * Returns: 0 on success or a negative error code on failure.
 320 */
 321int pwmchip_add(struct pwm_chip *chip)
 322{
 323	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
 324}
 325EXPORT_SYMBOL_GPL(pwmchip_add);
 326
 327/**
 328 * pwmchip_remove() - remove a PWM chip
 329 * @chip: the PWM chip to remove
 330 *
 331 * Removes a PWM chip. This function may return busy if the PWM chip provides
 332 * a PWM device that is still requested.
 333 *
 334 * Returns: 0 on success or a negative error code on failure.
 335 */
 336int pwmchip_remove(struct pwm_chip *chip)
 337{
 338	unsigned int i;
 339	int ret = 0;
 340
 341	pwmchip_sysfs_unexport(chip);
 342
 343	mutex_lock(&pwm_lock);
 344
 345	for (i = 0; i < chip->npwm; i++) {
 346		struct pwm_device *pwm = &chip->pwms[i];
 347
 348		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
 349			ret = -EBUSY;
 350			goto out;
 351		}
 352	}
 353
 354	list_del_init(&chip->list);
 355
 356	if (IS_ENABLED(CONFIG_OF))
 357		of_pwmchip_remove(chip);
 358
 359	free_pwms(chip);
 360
 361out:
 362	mutex_unlock(&pwm_lock);
 363	return ret;
 364}
 365EXPORT_SYMBOL_GPL(pwmchip_remove);
 366
 367/**
 368 * pwm_request() - request a PWM device
 369 * @pwm: global PWM device index
 370 * @label: PWM device label
 371 *
 372 * This function is deprecated, use pwm_get() instead.
 373 *
 374 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 375 * failure.
 376 */
 377struct pwm_device *pwm_request(int pwm, const char *label)
 378{
 379	struct pwm_device *dev;
 380	int err;
 381
 382	if (pwm < 0 || pwm >= MAX_PWMS)
 383		return ERR_PTR(-EINVAL);
 384
 385	mutex_lock(&pwm_lock);
 386
 387	dev = pwm_to_device(pwm);
 388	if (!dev) {
 389		dev = ERR_PTR(-EPROBE_DEFER);
 390		goto out;
 391	}
 392
 393	err = pwm_device_request(dev, label);
 394	if (err < 0)
 395		dev = ERR_PTR(err);
 396
 397out:
 398	mutex_unlock(&pwm_lock);
 399
 400	return dev;
 401}
 402EXPORT_SYMBOL_GPL(pwm_request);
 403
 404/**
 405 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 406 * @chip: PWM chip
 407 * @index: per-chip index of the PWM to request
 408 * @label: a literal description string of this PWM
 409 *
 410 * Returns: A pointer to the PWM device at the given index of the given PWM
 411 * chip. A negative error code is returned if the index is not valid for the
 412 * specified PWM chip or if the PWM device cannot be requested.
 413 */
 414struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 415					 unsigned int index,
 416					 const char *label)
 417{
 418	struct pwm_device *pwm;
 419	int err;
 420
 421	if (!chip || index >= chip->npwm)
 422		return ERR_PTR(-EINVAL);
 423
 424	mutex_lock(&pwm_lock);
 425	pwm = &chip->pwms[index];
 426
 427	err = pwm_device_request(pwm, label);
 428	if (err < 0)
 429		pwm = ERR_PTR(err);
 430
 431	mutex_unlock(&pwm_lock);
 432	return pwm;
 433}
 434EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 435
 436/**
 437 * pwm_free() - free a PWM device
 438 * @pwm: PWM device
 439 *
 440 * This function is deprecated, use pwm_put() instead.
 441 */
 442void pwm_free(struct pwm_device *pwm)
 443{
 444	pwm_put(pwm);
 445}
 446EXPORT_SYMBOL_GPL(pwm_free);
 447
 448/**
 449 * pwm_apply_state() - atomically apply a new state to a PWM device
 450 * @pwm: PWM device
 451 * @state: new state to apply
 452 */
 453int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
 454{
 455	struct pwm_chip *chip;
 456	int err;
 457
 458	if (!pwm || !state || !state->period ||
 459	    state->duty_cycle > state->period)
 460		return -EINVAL;
 461
 462	chip = pwm->chip;
 463
 464	if (state->period == pwm->state.period &&
 465	    state->duty_cycle == pwm->state.duty_cycle &&
 466	    state->polarity == pwm->state.polarity &&
 467	    state->enabled == pwm->state.enabled)
 468		return 0;
 469
 470	if (chip->ops->apply) {
 471		err = chip->ops->apply(chip, pwm, state);
 472		if (err)
 473			return err;
 474
 475		pwm->state = *state;
 476	} else {
 477		/*
 478		 * FIXME: restore the initial state in case of error.
 479		 */
 480		if (state->polarity != pwm->state.polarity) {
 481			if (!chip->ops->set_polarity)
 482				return -ENOTSUPP;
 483
 484			/*
 485			 * Changing the polarity of a running PWM is
 486			 * only allowed when the PWM driver implements
 487			 * ->apply().
 488			 */
 489			if (pwm->state.enabled) {
 490				chip->ops->disable(chip, pwm);
 491				pwm->state.enabled = false;
 492			}
 493
 494			err = chip->ops->set_polarity(chip, pwm,
 495						      state->polarity);
 496			if (err)
 497				return err;
 498
 499			pwm->state.polarity = state->polarity;
 500		}
 501
 502		if (state->period != pwm->state.period ||
 503		    state->duty_cycle != pwm->state.duty_cycle) {
 504			err = chip->ops->config(pwm->chip, pwm,
 505						state->duty_cycle,
 506						state->period);
 507			if (err)
 508				return err;
 509
 510			pwm->state.duty_cycle = state->duty_cycle;
 511			pwm->state.period = state->period;
 512		}
 513
 514		if (state->enabled != pwm->state.enabled) {
 515			if (state->enabled) {
 516				err = chip->ops->enable(chip, pwm);
 517				if (err)
 518					return err;
 519			} else {
 520				chip->ops->disable(chip, pwm);
 521			}
 522
 523			pwm->state.enabled = state->enabled;
 524		}
 525	}
 526
 527	return 0;
 528}
 529EXPORT_SYMBOL_GPL(pwm_apply_state);
 530
 531/**
 532 * pwm_capture() - capture and report a PWM signal
 533 * @pwm: PWM device
 534 * @result: structure to fill with capture result
 535 * @timeout: time to wait, in milliseconds, before giving up on capture
 536 *
 537 * Returns: 0 on success or a negative error code on failure.
 538 */
 539int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 540		unsigned long timeout)
 541{
 542	int err;
 543
 544	if (!pwm || !pwm->chip->ops)
 545		return -EINVAL;
 546
 547	if (!pwm->chip->ops->capture)
 548		return -ENOSYS;
 549
 550	mutex_lock(&pwm_lock);
 551	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 552	mutex_unlock(&pwm_lock);
 553
 554	return err;
 555}
 556EXPORT_SYMBOL_GPL(pwm_capture);
 557
 558/**
 559 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 560 * @pwm: PWM device
 561 *
 562 * This function will adjust the PWM config to the PWM arguments provided
 563 * by the DT or PWM lookup table. This is particularly useful to adapt
 564 * the bootloader config to the Linux one.
 565 */
 566int pwm_adjust_config(struct pwm_device *pwm)
 567{
 568	struct pwm_state state;
 569	struct pwm_args pargs;
 570
 571	pwm_get_args(pwm, &pargs);
 572	pwm_get_state(pwm, &state);
 573
 574	/*
 575	 * If the current period is zero it means that either the PWM driver
 576	 * does not support initial state retrieval or the PWM has not yet
 577	 * been configured.
 578	 *
 579	 * In either case, we setup the new period and polarity, and assign a
 580	 * duty cycle of 0.
 581	 */
 582	if (!state.period) {
 583		state.duty_cycle = 0;
 584		state.period = pargs.period;
 585		state.polarity = pargs.polarity;
 586
 587		return pwm_apply_state(pwm, &state);
 588	}
 589
 590	/*
 591	 * Adjust the PWM duty cycle/period based on the period value provided
 592	 * in PWM args.
 593	 */
 594	if (pargs.period != state.period) {
 595		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 596
 597		do_div(dutycycle, state.period);
 598		state.duty_cycle = dutycycle;
 599		state.period = pargs.period;
 600	}
 601
 602	/*
 603	 * If the polarity changed, we should also change the duty cycle.
 604	 */
 605	if (pargs.polarity != state.polarity) {
 606		state.polarity = pargs.polarity;
 607		state.duty_cycle = state.period - state.duty_cycle;
 608	}
 609
 610	return pwm_apply_state(pwm, &state);
 611}
 612EXPORT_SYMBOL_GPL(pwm_adjust_config);
 613
 614static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
 615{
 616	struct pwm_chip *chip;
 617
 618	mutex_lock(&pwm_lock);
 619
 620	list_for_each_entry(chip, &pwm_chips, list)
 621		if (chip->dev && chip->dev->of_node == np) {
 622			mutex_unlock(&pwm_lock);
 623			return chip;
 624		}
 625
 626	mutex_unlock(&pwm_lock);
 
 
 627
 628	return ERR_PTR(-EPROBE_DEFER);
 629}
 
 630
 631static struct device_link *pwm_device_link_add(struct device *dev,
 632					       struct pwm_device *pwm)
 633{
 634	struct device_link *dl;
 635
 636	if (!dev) {
 637		/*
 638		 * No device for the PWM consumer has been provided. It may
 639		 * impact the PM sequence ordering: the PWM supplier may get
 640		 * suspended before the consumer.
 641		 */
 642		dev_warn(pwm->chip->dev,
 643			 "No consumer device specified to create a link to\n");
 644		return NULL;
 645	}
 646
 647	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
 648	if (!dl) {
 649		dev_err(dev, "failed to create device link to %s\n",
 650			dev_name(pwm->chip->dev));
 651		return ERR_PTR(-EINVAL);
 652	}
 653
 654	return dl;
 655}
 656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657/**
 658 * of_pwm_get() - request a PWM via the PWM framework
 659 * @dev: device for PWM consumer
 660 * @np: device node to get the PWM from
 661 * @con_id: consumer name
 662 *
 663 * Returns the PWM device parsed from the phandle and index specified in the
 664 * "pwms" property of a device tree node or a negative error-code on failure.
 665 * Values parsed from the device tree are stored in the returned PWM device
 666 * object.
 667 *
 668 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 669 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 670 * lookup of the PWM index. This also means that the "pwm-names" property
 671 * becomes mandatory for devices that look up the PWM device via the con_id
 672 * parameter.
 673 *
 674 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 675 * error code on failure.
 676 */
 677struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
 678			      const char *con_id)
 679{
 680	struct pwm_device *pwm = NULL;
 681	struct of_phandle_args args;
 682	struct device_link *dl;
 683	struct pwm_chip *pc;
 684	int index = 0;
 685	int err;
 686
 687	if (con_id) {
 688		index = of_property_match_string(np, "pwm-names", con_id);
 689		if (index < 0)
 690			return ERR_PTR(index);
 691	}
 692
 693	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 694					 &args);
 695	if (err) {
 696		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 697		return ERR_PTR(err);
 698	}
 699
 700	pc = of_node_to_pwmchip(args.np);
 701	if (IS_ERR(pc)) {
 702		if (PTR_ERR(pc) != -EPROBE_DEFER)
 703			pr_err("%s(): PWM chip not found\n", __func__);
 704
 705		pwm = ERR_CAST(pc);
 706		goto put;
 707	}
 708
 709	pwm = pc->of_xlate(pc, &args);
 710	if (IS_ERR(pwm))
 711		goto put;
 712
 713	dl = pwm_device_link_add(dev, pwm);
 714	if (IS_ERR(dl)) {
 715		/* of_xlate ended up calling pwm_request_from_chip() */
 716		pwm_free(pwm);
 717		pwm = ERR_CAST(dl);
 718		goto put;
 719	}
 720
 721	/*
 722	 * If a consumer name was not given, try to look it up from the
 723	 * "pwm-names" property if it exists. Otherwise use the name of
 724	 * the user device node.
 725	 */
 726	if (!con_id) {
 727		err = of_property_read_string_index(np, "pwm-names", index,
 728						    &con_id);
 729		if (err < 0)
 730			con_id = np->name;
 731	}
 732
 733	pwm->label = con_id;
 734
 735put:
 736	of_node_put(args.np);
 737
 738	return pwm;
 739}
 740EXPORT_SYMBOL_GPL(of_pwm_get);
 741
 742#if IS_ENABLED(CONFIG_ACPI)
 743static struct pwm_chip *device_to_pwmchip(struct device *dev)
 744{
 745	struct pwm_chip *chip;
 746
 747	mutex_lock(&pwm_lock);
 748
 749	list_for_each_entry(chip, &pwm_chips, list) {
 750		struct acpi_device *adev = ACPI_COMPANION(chip->dev);
 751
 752		if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
 753			mutex_unlock(&pwm_lock);
 754			return chip;
 755		}
 756	}
 757
 758	mutex_unlock(&pwm_lock);
 759
 760	return ERR_PTR(-EPROBE_DEFER);
 761}
 762#endif
 763
 764/**
 765 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
 766 * @fwnode: firmware node to get the "pwm" property from
 767 *
 768 * Returns the PWM device parsed from the fwnode and index specified in the
 769 * "pwms" property or a negative error-code on failure.
 770 * Values parsed from the device tree are stored in the returned PWM device
 771 * object.
 772 *
 773 * This is analogous to of_pwm_get() except con_id is not yet supported.
 774 * ACPI entries must look like
 775 * Package () {"pwms", Package ()
 776 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
 777 *
 778 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 779 * error code on failure.
 780 */
 781static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
 782{
 783	struct pwm_device *pwm = ERR_PTR(-ENODEV);
 784#if IS_ENABLED(CONFIG_ACPI)
 785	struct fwnode_reference_args args;
 786	struct acpi_device *acpi;
 787	struct pwm_chip *chip;
 788	int ret;
 789
 790	memset(&args, 0, sizeof(args));
 791
 792	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
 793	if (ret < 0)
 794		return ERR_PTR(ret);
 795
 796	acpi = to_acpi_device_node(args.fwnode);
 797	if (!acpi)
 798		return ERR_PTR(-EINVAL);
 799
 800	if (args.nargs < 2)
 801		return ERR_PTR(-EPROTO);
 802
 803	chip = device_to_pwmchip(&acpi->dev);
 804	if (IS_ERR(chip))
 805		return ERR_CAST(chip);
 806
 807	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
 808	if (IS_ERR(pwm))
 809		return pwm;
 810
 811	pwm->args.period = args.args[1];
 812	pwm->args.polarity = PWM_POLARITY_NORMAL;
 813
 814	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
 815		pwm->args.polarity = PWM_POLARITY_INVERSED;
 816#endif
 817
 818	return pwm;
 819}
 820
 
 
 
 821/**
 822 * pwm_add_table() - register PWM device consumers
 823 * @table: array of consumers to register
 824 * @num: number of consumers in table
 825 */
 826void pwm_add_table(struct pwm_lookup *table, size_t num)
 827{
 828	mutex_lock(&pwm_lookup_lock);
 829
 830	while (num--) {
 831		list_add_tail(&table->list, &pwm_lookup_list);
 832		table++;
 833	}
 834
 835	mutex_unlock(&pwm_lookup_lock);
 836}
 837
 838/**
 839 * pwm_remove_table() - unregister PWM device consumers
 840 * @table: array of consumers to unregister
 841 * @num: number of consumers in table
 842 */
 843void pwm_remove_table(struct pwm_lookup *table, size_t num)
 844{
 845	mutex_lock(&pwm_lookup_lock);
 846
 847	while (num--) {
 848		list_del(&table->list);
 849		table++;
 850	}
 851
 852	mutex_unlock(&pwm_lookup_lock);
 853}
 854
 855/**
 856 * pwm_get() - look up and request a PWM device
 857 * @dev: device for PWM consumer
 858 * @con_id: consumer name
 859 *
 860 * Lookup is first attempted using DT. If the device was not instantiated from
 861 * a device tree, a PWM chip and a relative index is looked up via a table
 862 * supplied by board setup code (see pwm_add_table()).
 863 *
 864 * Once a PWM chip has been found the specified PWM device will be requested
 865 * and is ready to be used.
 866 *
 867 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 868 * error code on failure.
 869 */
 870struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 871{
 
 872	const char *dev_id = dev ? dev_name(dev) : NULL;
 873	struct pwm_device *pwm;
 874	struct pwm_chip *chip;
 875	struct device_link *dl;
 876	unsigned int best = 0;
 877	struct pwm_lookup *p, *chosen = NULL;
 878	unsigned int match;
 879	int err;
 880
 881	/* look up via DT first */
 882	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
 883		return of_pwm_get(dev, dev->of_node, con_id);
 884
 885	/* then lookup via ACPI */
 886	if (dev && is_acpi_node(dev->fwnode)) {
 887		pwm = acpi_pwm_get(dev->fwnode);
 888		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
 889			return pwm;
 890	}
 891
 892	/*
 893	 * We look up the provider in the static table typically provided by
 894	 * board setup code. We first try to lookup the consumer device by
 895	 * name. If the consumer device was passed in as NULL or if no match
 896	 * was found, we try to find the consumer by directly looking it up
 897	 * by name.
 898	 *
 899	 * If a match is found, the provider PWM chip is looked up by name
 900	 * and a PWM device is requested using the PWM device per-chip index.
 901	 *
 902	 * The lookup algorithm was shamelessly taken from the clock
 903	 * framework:
 904	 *
 905	 * We do slightly fuzzy matching here:
 906	 *  An entry with a NULL ID is assumed to be a wildcard.
 907	 *  If an entry has a device ID, it must match
 908	 *  If an entry has a connection ID, it must match
 909	 * Then we take the most specific entry - with the following order
 910	 * of precedence: dev+con > dev only > con only.
 911	 */
 912	mutex_lock(&pwm_lookup_lock);
 913
 914	list_for_each_entry(p, &pwm_lookup_list, list) {
 915		match = 0;
 916
 917		if (p->dev_id) {
 918			if (!dev_id || strcmp(p->dev_id, dev_id))
 919				continue;
 920
 921			match += 2;
 922		}
 923
 924		if (p->con_id) {
 925			if (!con_id || strcmp(p->con_id, con_id))
 926				continue;
 927
 928			match += 1;
 929		}
 930
 931		if (match > best) {
 932			chosen = p;
 933
 934			if (match != 3)
 935				best = match;
 936			else
 937				break;
 938		}
 939	}
 940
 941	mutex_unlock(&pwm_lookup_lock);
 942
 943	if (!chosen)
 944		return ERR_PTR(-ENODEV);
 945
 946	chip = pwmchip_find_by_name(chosen->provider);
 947
 948	/*
 949	 * If the lookup entry specifies a module, load the module and retry
 950	 * the PWM chip lookup. This can be used to work around driver load
 951	 * ordering issues if driver's can't be made to properly support the
 952	 * deferred probe mechanism.
 953	 */
 954	if (!chip && chosen->module) {
 955		err = request_module(chosen->module);
 956		if (err == 0)
 957			chip = pwmchip_find_by_name(chosen->provider);
 958	}
 959
 960	if (!chip)
 961		return ERR_PTR(-EPROBE_DEFER);
 962
 963	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
 964	if (IS_ERR(pwm))
 965		return pwm;
 966
 967	dl = pwm_device_link_add(dev, pwm);
 968	if (IS_ERR(dl)) {
 969		pwm_free(pwm);
 970		return ERR_CAST(dl);
 971	}
 972
 973	pwm->args.period = chosen->period;
 974	pwm->args.polarity = chosen->polarity;
 975
 976	return pwm;
 977}
 978EXPORT_SYMBOL_GPL(pwm_get);
 979
 980/**
 981 * pwm_put() - release a PWM device
 982 * @pwm: PWM device
 983 */
 984void pwm_put(struct pwm_device *pwm)
 985{
 986	if (!pwm)
 987		return;
 988
 989	mutex_lock(&pwm_lock);
 990
 991	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
 992		pr_warn("PWM device already freed\n");
 993		goto out;
 994	}
 995
 996	if (pwm->chip->ops->free)
 997		pwm->chip->ops->free(pwm->chip, pwm);
 998
 999	pwm_set_chip_data(pwm, NULL);
1000	pwm->label = NULL;
1001
1002	module_put(pwm->chip->ops->owner);
1003out:
1004	mutex_unlock(&pwm_lock);
1005}
1006EXPORT_SYMBOL_GPL(pwm_put);
1007
1008static void devm_pwm_release(struct device *dev, void *res)
1009{
1010	pwm_put(*(struct pwm_device **)res);
1011}
1012
1013/**
1014 * devm_pwm_get() - resource managed pwm_get()
1015 * @dev: device for PWM consumer
1016 * @con_id: consumer name
1017 *
1018 * This function performs like pwm_get() but the acquired PWM device will
1019 * automatically be released on driver detach.
1020 *
1021 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1022 * error code on failure.
1023 */
1024struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1025{
1026	struct pwm_device **ptr, *pwm;
1027
1028	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1029	if (!ptr)
1030		return ERR_PTR(-ENOMEM);
1031
1032	pwm = pwm_get(dev, con_id);
1033	if (!IS_ERR(pwm)) {
1034		*ptr = pwm;
1035		devres_add(dev, ptr);
1036	} else {
1037		devres_free(ptr);
1038	}
1039
1040	return pwm;
1041}
1042EXPORT_SYMBOL_GPL(devm_pwm_get);
1043
1044/**
1045 * devm_of_pwm_get() - resource managed of_pwm_get()
1046 * @dev: device for PWM consumer
1047 * @np: device node to get the PWM from
1048 * @con_id: consumer name
1049 *
1050 * This function performs like of_pwm_get() but the acquired PWM device will
1051 * automatically be released on driver detach.
1052 *
1053 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1054 * error code on failure.
1055 */
1056struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1057				   const char *con_id)
1058{
1059	struct pwm_device **ptr, *pwm;
1060
1061	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1062	if (!ptr)
1063		return ERR_PTR(-ENOMEM);
1064
1065	pwm = of_pwm_get(dev, np, con_id);
1066	if (!IS_ERR(pwm)) {
1067		*ptr = pwm;
1068		devres_add(dev, ptr);
1069	} else {
1070		devres_free(ptr);
1071	}
1072
1073	return pwm;
1074}
1075EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1076
1077/**
1078 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1079 * @dev: device for PWM consumer
1080 * @fwnode: firmware node to get the PWM from
1081 * @con_id: consumer name
1082 *
1083 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1084 * acpi_pwm_get() for a detailed description.
1085 *
1086 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1087 * error code on failure.
1088 */
1089struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1090				       struct fwnode_handle *fwnode,
1091				       const char *con_id)
1092{
1093	struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1094
1095	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1096	if (!ptr)
1097		return ERR_PTR(-ENOMEM);
1098
1099	if (is_of_node(fwnode))
1100		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1101	else if (is_acpi_node(fwnode))
1102		pwm = acpi_pwm_get(fwnode);
 
 
1103
1104	if (!IS_ERR(pwm)) {
1105		*ptr = pwm;
1106		devres_add(dev, ptr);
1107	} else {
1108		devres_free(ptr);
1109	}
1110
1111	return pwm;
1112}
1113EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1114
1115static int devm_pwm_match(struct device *dev, void *res, void *data)
1116{
1117	struct pwm_device **p = res;
1118
1119	if (WARN_ON(!p || !*p))
1120		return 0;
1121
1122	return *p == data;
1123}
1124
1125/**
1126 * devm_pwm_put() - resource managed pwm_put()
1127 * @dev: device for PWM consumer
1128 * @pwm: PWM device
1129 *
1130 * Release a PWM previously allocated using devm_pwm_get(). Calling this
1131 * function is usually not needed because devm-allocated resources are
1132 * automatically released on driver detach.
1133 */
1134void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1135{
1136	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1137}
1138EXPORT_SYMBOL_GPL(devm_pwm_put);
1139
1140#ifdef CONFIG_DEBUG_FS
1141static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1142{
1143	unsigned int i;
1144
1145	for (i = 0; i < chip->npwm; i++) {
1146		struct pwm_device *pwm = &chip->pwms[i];
1147		struct pwm_state state;
1148
1149		pwm_get_state(pwm, &state);
1150
1151		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1152
1153		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1154			seq_puts(s, " requested");
1155
1156		if (state.enabled)
1157			seq_puts(s, " enabled");
1158
1159		seq_printf(s, " period: %u ns", state.period);
1160		seq_printf(s, " duty: %u ns", state.duty_cycle);
1161		seq_printf(s, " polarity: %s",
1162			   state.polarity ? "inverse" : "normal");
1163
 
 
 
1164		seq_puts(s, "\n");
1165	}
1166}
1167
1168static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1169{
 
 
 
1170	mutex_lock(&pwm_lock);
1171	s->private = "";
1172
1173	return seq_list_start(&pwm_chips, *pos);
 
 
1174}
1175
1176static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1177{
 
 
 
1178	s->private = "\n";
1179
1180	return seq_list_next(v, &pwm_chips, pos);
 
 
1181}
1182
1183static void pwm_seq_stop(struct seq_file *s, void *v)
1184{
1185	mutex_unlock(&pwm_lock);
1186}
1187
1188static int pwm_seq_show(struct seq_file *s, void *v)
1189{
1190	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1191
1192	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1193		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1194		   dev_name(chip->dev), chip->npwm,
 
1195		   (chip->npwm != 1) ? "s" : "");
1196
1197	pwm_dbg_show(chip, s);
1198
1199	return 0;
1200}
1201
1202static const struct seq_operations pwm_seq_ops = {
1203	.start = pwm_seq_start,
1204	.next = pwm_seq_next,
1205	.stop = pwm_seq_stop,
1206	.show = pwm_seq_show,
1207};
1208
1209static int pwm_seq_open(struct inode *inode, struct file *file)
1210{
1211	return seq_open(file, &pwm_seq_ops);
1212}
1213
1214static const struct file_operations pwm_debugfs_ops = {
1215	.owner = THIS_MODULE,
1216	.open = pwm_seq_open,
1217	.read = seq_read,
1218	.llseek = seq_lseek,
1219	.release = seq_release,
1220};
1221
1222static int __init pwm_debugfs_init(void)
1223{
1224	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1225			    &pwm_debugfs_ops);
1226
1227	return 0;
1228}
1229subsys_initcall(pwm_debugfs_init);
1230#endif /* CONFIG_DEBUG_FS */
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Generic pwmlib implementation
   4 *
   5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   6 * Copyright (C) 2011-2012 Avionic Design GmbH
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/module.h>
  11#include <linux/idr.h>
  12#include <linux/of.h>
  13#include <linux/pwm.h>
 
  14#include <linux/list.h>
  15#include <linux/mutex.h>
  16#include <linux/err.h>
  17#include <linux/slab.h>
  18#include <linux/device.h>
  19#include <linux/debugfs.h>
  20#include <linux/seq_file.h>
  21
  22#include <dt-bindings/pwm/pwm.h>
  23
  24#define CREATE_TRACE_POINTS
  25#include <trace/events/pwm.h>
  26
  27/* protects access to pwm_chips */
 
  28static DEFINE_MUTEX(pwm_lock);
 
 
 
  29
  30static DEFINE_IDR(pwm_chips);
  31
  32static void pwm_apply_debug(struct pwm_device *pwm,
  33			    const struct pwm_state *state)
  34{
  35	struct pwm_state *last = &pwm->last;
  36	struct pwm_chip *chip = pwm->chip;
  37	struct pwm_state s1 = { 0 }, s2 = { 0 };
  38	int err;
  39
  40	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
  41		return;
  42
  43	/* No reasonable diagnosis possible without .get_state() */
  44	if (!chip->ops->get_state)
  45		return;
  46
  47	/*
  48	 * *state was just applied. Read out the hardware state and do some
  49	 * checks.
  50	 */
  51
  52	err = chip->ops->get_state(chip, pwm, &s1);
  53	trace_pwm_get(pwm, &s1, err);
  54	if (err)
  55		/* If that failed there isn't much to debug */
  56		return;
  57
  58	/*
  59	 * The lowlevel driver either ignored .polarity (which is a bug) or as
  60	 * best effort inverted .polarity and fixed .duty_cycle respectively.
  61	 * Undo this inversion and fixup for further tests.
  62	 */
  63	if (s1.enabled && s1.polarity != state->polarity) {
  64		s2.polarity = state->polarity;
  65		s2.duty_cycle = s1.period - s1.duty_cycle;
  66		s2.period = s1.period;
  67		s2.enabled = s1.enabled;
  68	} else {
  69		s2 = s1;
  70	}
  71
  72	if (s2.polarity != state->polarity &&
  73	    state->duty_cycle < state->period)
  74		dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
  75
  76	if (state->enabled &&
  77	    last->polarity == state->polarity &&
  78	    last->period > s2.period &&
  79	    last->period <= state->period)
  80		dev_warn(pwmchip_parent(chip),
  81			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
  82			 state->period, s2.period, last->period);
  83
  84	if (state->enabled && state->period < s2.period)
  85		dev_warn(pwmchip_parent(chip),
  86			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
  87			 state->period, s2.period);
  88
  89	if (state->enabled &&
  90	    last->polarity == state->polarity &&
  91	    last->period == s2.period &&
  92	    last->duty_cycle > s2.duty_cycle &&
  93	    last->duty_cycle <= state->duty_cycle)
  94		dev_warn(pwmchip_parent(chip),
  95			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
  96			 state->duty_cycle, state->period,
  97			 s2.duty_cycle, s2.period,
  98			 last->duty_cycle, last->period);
  99
 100	if (state->enabled && state->duty_cycle < s2.duty_cycle)
 101		dev_warn(pwmchip_parent(chip),
 102			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
 103			 state->duty_cycle, state->period,
 104			 s2.duty_cycle, s2.period);
 105
 106	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
 107		dev_warn(pwmchip_parent(chip),
 108			 "requested disabled, but yielded enabled with duty > 0\n");
 109
 110	/* reapply the state that the driver reported being configured. */
 111	err = chip->ops->apply(chip, pwm, &s1);
 112	trace_pwm_apply(pwm, &s1, err);
 113	if (err) {
 114		*last = s1;
 115		dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
 116		return;
 117	}
 118
 119	*last = (struct pwm_state){ 0 };
 120	err = chip->ops->get_state(chip, pwm, last);
 121	trace_pwm_get(pwm, last, err);
 122	if (err)
 123		return;
 124
 125	/* reapplication of the current state should give an exact match */
 126	if (s1.enabled != last->enabled ||
 127	    s1.polarity != last->polarity ||
 128	    (s1.enabled && s1.period != last->period) ||
 129	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
 130		dev_err(pwmchip_parent(chip),
 131			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
 132			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
 133			last->enabled, last->polarity, last->duty_cycle,
 134			last->period);
 135	}
 136}
 137
 138/**
 139 * __pwm_apply() - atomically apply a new state to a PWM device
 140 * @pwm: PWM device
 141 * @state: new state to apply
 142 */
 143static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
 144{
 145	struct pwm_chip *chip;
 146	int err;
 147
 148	if (!pwm || !state || !state->period ||
 149	    state->duty_cycle > state->period)
 150		return -EINVAL;
 151
 152	chip = pwm->chip;
 153
 154	if (state->period == pwm->state.period &&
 155	    state->duty_cycle == pwm->state.duty_cycle &&
 156	    state->polarity == pwm->state.polarity &&
 157	    state->enabled == pwm->state.enabled &&
 158	    state->usage_power == pwm->state.usage_power)
 159		return 0;
 160
 161	err = chip->ops->apply(chip, pwm, state);
 162	trace_pwm_apply(pwm, state, err);
 163	if (err)
 164		return err;
 165
 166	pwm->state = *state;
 
 167
 168	/*
 169	 * only do this after pwm->state was applied as some
 170	 * implementations of .get_state depend on this
 171	 */
 172	pwm_apply_debug(pwm, state);
 173
 174	return 0;
 175}
 176
 177/**
 178 * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
 179 * Cannot be used in atomic context.
 180 * @pwm: PWM device
 181 * @state: new state to apply
 182 */
 183int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
 184{
 185	int err;
 186
 187	/*
 188	 * Some lowlevel driver's implementations of .apply() make use of
 189	 * mutexes, also with some drivers only returning when the new
 190	 * configuration is active calling pwm_apply_might_sleep() from atomic context
 191	 * is a bad idea. So make it explicit that calling this function might
 192	 * sleep.
 193	 */
 194	might_sleep();
 195
 196	if (IS_ENABLED(CONFIG_PWM_DEBUG) && pwm->chip->atomic) {
 197		/*
 198		 * Catch any drivers that have been marked as atomic but
 199		 * that will sleep anyway.
 200		 */
 201		non_block_start();
 202		err = __pwm_apply(pwm, state);
 203		non_block_end();
 204	} else {
 205		err = __pwm_apply(pwm, state);
 206	}
 207
 208	return err;
 209}
 210EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
 211
 212/**
 213 * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
 214 * Not all PWM devices support this function, check with pwm_might_sleep().
 215 * @pwm: PWM device
 216 * @state: new state to apply
 217 */
 218int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
 219{
 220	WARN_ONCE(!pwm->chip->atomic,
 221		  "sleeping PWM driver used in atomic context\n");
 222
 223	return __pwm_apply(pwm, state);
 224}
 225EXPORT_SYMBOL_GPL(pwm_apply_atomic);
 226
 227/**
 228 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 229 * @pwm: PWM device
 230 *
 231 * This function will adjust the PWM config to the PWM arguments provided
 232 * by the DT or PWM lookup table. This is particularly useful to adapt
 233 * the bootloader config to the Linux one.
 234 */
 235int pwm_adjust_config(struct pwm_device *pwm)
 236{
 237	struct pwm_state state;
 238	struct pwm_args pargs;
 239
 240	pwm_get_args(pwm, &pargs);
 241	pwm_get_state(pwm, &state);
 242
 243	/*
 244	 * If the current period is zero it means that either the PWM driver
 245	 * does not support initial state retrieval or the PWM has not yet
 246	 * been configured.
 247	 *
 248	 * In either case, we setup the new period and polarity, and assign a
 249	 * duty cycle of 0.
 250	 */
 251	if (!state.period) {
 252		state.duty_cycle = 0;
 253		state.period = pargs.period;
 254		state.polarity = pargs.polarity;
 255
 256		return pwm_apply_might_sleep(pwm, &state);
 257	}
 258
 259	/*
 260	 * Adjust the PWM duty cycle/period based on the period value provided
 261	 * in PWM args.
 262	 */
 263	if (pargs.period != state.period) {
 264		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 265
 266		do_div(dutycycle, state.period);
 267		state.duty_cycle = dutycycle;
 268		state.period = pargs.period;
 269	}
 270
 271	/*
 272	 * If the polarity changed, we should also change the duty cycle.
 273	 */
 274	if (pargs.polarity != state.polarity) {
 275		state.polarity = pargs.polarity;
 276		state.duty_cycle = state.period - state.duty_cycle;
 277	}
 278
 279	return pwm_apply_might_sleep(pwm, &state);
 280}
 281EXPORT_SYMBOL_GPL(pwm_adjust_config);
 282
 283/**
 284 * pwm_capture() - capture and report a PWM signal
 285 * @pwm: PWM device
 286 * @result: structure to fill with capture result
 287 * @timeout: time to wait, in milliseconds, before giving up on capture
 288 *
 289 * Returns: 0 on success or a negative error code on failure.
 290 */
 291int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 292		unsigned long timeout)
 293{
 294	int err;
 295
 296	if (!pwm || !pwm->chip->ops)
 297		return -EINVAL;
 298
 299	if (!pwm->chip->ops->capture)
 300		return -ENOSYS;
 301
 302	mutex_lock(&pwm_lock);
 303	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 304	mutex_unlock(&pwm_lock);
 305
 306	return err;
 307}
 308EXPORT_SYMBOL_GPL(pwm_capture);
 309
 310static struct pwm_chip *pwmchip_find_by_name(const char *name)
 311{
 312	struct pwm_chip *chip;
 313	unsigned long id, tmp;
 314
 315	if (!name)
 316		return NULL;
 317
 318	mutex_lock(&pwm_lock);
 319
 320	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
 321		const char *chip_name = dev_name(pwmchip_parent(chip));
 322
 323		if (chip_name && strcmp(chip_name, name) == 0) {
 324			mutex_unlock(&pwm_lock);
 325			return chip;
 326		}
 327	}
 328
 329	mutex_unlock(&pwm_lock);
 330
 331	return NULL;
 332}
 333
 334static int pwm_device_request(struct pwm_device *pwm, const char *label)
 335{
 336	int err;
 337	struct pwm_chip *chip = pwm->chip;
 338	const struct pwm_ops *ops = chip->ops;
 339
 340	if (test_bit(PWMF_REQUESTED, &pwm->flags))
 341		return -EBUSY;
 342
 343	if (!try_module_get(chip->owner))
 344		return -ENODEV;
 345
 346	if (ops->request) {
 347		err = ops->request(chip, pwm);
 348		if (err) {
 349			module_put(chip->owner);
 350			return err;
 351		}
 352	}
 353
 354	if (ops->get_state) {
 355		/*
 356		 * Zero-initialize state because most drivers are unaware of
 357		 * .usage_power. The other members of state are supposed to be
 358		 * set by lowlevel drivers. We still initialize the whole
 359		 * structure for simplicity even though this might paper over
 360		 * faulty implementations of .get_state().
 361		 */
 362		struct pwm_state state = { 0, };
 363
 364		err = ops->get_state(chip, pwm, &state);
 365		trace_pwm_get(pwm, &state, err);
 366
 367		if (!err)
 368			pwm->state = state;
 369
 370		if (IS_ENABLED(CONFIG_PWM_DEBUG))
 371			pwm->last = pwm->state;
 372	}
 373
 374	set_bit(PWMF_REQUESTED, &pwm->flags);
 375	pwm->label = label;
 376
 377	return 0;
 378}
 379
 380/**
 381 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 382 * @chip: PWM chip
 383 * @index: per-chip index of the PWM to request
 384 * @label: a literal description string of this PWM
 385 *
 386 * Returns: A pointer to the PWM device at the given index of the given PWM
 387 * chip. A negative error code is returned if the index is not valid for the
 388 * specified PWM chip or if the PWM device cannot be requested.
 389 */
 390struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 391					 unsigned int index,
 392					 const char *label)
 393{
 394	struct pwm_device *pwm;
 395	int err;
 396
 397	if (!chip || index >= chip->npwm)
 
 398		return ERR_PTR(-EINVAL);
 399
 400	mutex_lock(&pwm_lock);
 401	pwm = &chip->pwms[index];
 402
 403	err = pwm_device_request(pwm, label);
 404	if (err < 0)
 405		pwm = ERR_PTR(err);
 406
 407	mutex_unlock(&pwm_lock);
 408	return pwm;
 409}
 410EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 411
 412
 413struct pwm_device *
 414of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
 415{
 416	struct pwm_device *pwm;
 417
 418	/* period in the second cell and flags in the third cell are optional */
 419	if (args->args_count < 1)
 420		return ERR_PTR(-EINVAL);
 421
 422	pwm = pwm_request_from_chip(chip, args->args[0], NULL);
 423	if (IS_ERR(pwm))
 424		return pwm;
 425
 426	if (args->args_count > 1)
 427		pwm->args.period = args->args[1];
 428
 429	pwm->args.polarity = PWM_POLARITY_NORMAL;
 430	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 431		pwm->args.polarity = PWM_POLARITY_INVERSED;
 432
 433	return pwm;
 434}
 435EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 436
 437struct pwm_device *
 438of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
 439{
 440	struct pwm_device *pwm;
 441
 442	pwm = pwm_request_from_chip(chip, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 443	if (IS_ERR(pwm))
 444		return pwm;
 445
 446	if (args->args_count > 0)
 447		pwm->args.period = args->args[0];
 448
 449	pwm->args.polarity = PWM_POLARITY_NORMAL;
 450	if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
 451		pwm->args.polarity = PWM_POLARITY_INVERSED;
 452
 453	return pwm;
 454}
 455EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
 456
 457#define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
 458
 459static void *pwmchip_priv(struct pwm_chip *chip)
 460{
 461	return (void *)chip + ALIGN(sizeof(*chip), PWMCHIP_ALIGN);
 462}
 463
 464/* This is the counterpart to pwmchip_alloc() */
 465void pwmchip_put(struct pwm_chip *chip)
 466{
 467	kfree(chip);
 468}
 469EXPORT_SYMBOL_GPL(pwmchip_put);
 470
 471struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
 472{
 473	struct pwm_chip *chip;
 474	size_t alloc_size;
 475
 476	alloc_size = size_add(ALIGN(sizeof(*chip), PWMCHIP_ALIGN), sizeof_priv);
 477
 478	chip = kzalloc(alloc_size, GFP_KERNEL);
 479	if (!chip)
 480		return ERR_PTR(-ENOMEM);
 481
 482	chip->dev = parent;
 483	chip->npwm = npwm;
 484
 485	pwmchip_set_drvdata(chip, pwmchip_priv(chip));
 486
 487	return chip;
 488}
 489EXPORT_SYMBOL_GPL(pwmchip_alloc);
 490
 491static void devm_pwmchip_put(void *data)
 492{
 493	struct pwm_chip *chip = data;
 494
 495	pwmchip_put(chip);
 496}
 497
 498struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
 
 
 
 
 
 
 
 499{
 500	struct pwm_chip *chip;
 501	int ret;
 502
 503	chip = pwmchip_alloc(parent, npwm, sizeof_priv);
 504	if (IS_ERR(chip))
 505		return chip;
 506
 507	ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
 508	if (ret)
 509		return ERR_PTR(ret);
 510
 511	return chip;
 512}
 513EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
 514
 515static void of_pwmchip_add(struct pwm_chip *chip)
 
 
 
 
 
 
 516{
 517	if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
 518		return;
 519
 520	if (!chip->of_xlate)
 521		chip->of_xlate = of_pwm_xlate_with_flags;
 522
 523	of_node_get(pwmchip_parent(chip)->of_node);
 524}
 
 525
 526static void of_pwmchip_remove(struct pwm_chip *chip)
 527{
 528	if (pwmchip_parent(chip))
 529		of_node_put(pwmchip_parent(chip)->of_node);
 530}
 531
 532static bool pwm_ops_check(const struct pwm_chip *chip)
 533{
 534	const struct pwm_ops *ops = chip->ops;
 535
 536	if (!ops->apply)
 537		return false;
 538
 539	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
 540		dev_warn(pwmchip_parent(chip),
 541			 "Please implement the .get_state() callback\n");
 542
 543	return true;
 544}
 545
 546/**
 547 * __pwmchip_add() - register a new PWM chip
 548 * @chip: the PWM chip to add
 549 * @owner: reference to the module providing the chip.
 550 *
 551 * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
 552 * pwmchip_add wrapper to do this right.
 
 553 *
 554 * Returns: 0 on success or a negative error code on failure.
 555 */
 556int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
 
 557{
 
 558	unsigned int i;
 559	int ret;
 560
 561	if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
 562		return -EINVAL;
 563
 564	if (!pwm_ops_check(chip))
 565		return -EINVAL;
 566
 567	chip->owner = owner;
 568
 569	chip->pwms = kcalloc(chip->npwm, sizeof(*chip->pwms), GFP_KERNEL);
 570	if (!chip->pwms)
 571		return -ENOMEM;
 572
 573	mutex_lock(&pwm_lock);
 574
 575	ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
 576	if (ret < 0) {
 577		mutex_unlock(&pwm_lock);
 578		kfree(chip->pwms);
 579		return ret;
 580	}
 581
 582	chip->id = ret;
 583
 584	for (i = 0; i < chip->npwm; i++) {
 585		struct pwm_device *pwm = &chip->pwms[i];
 586
 587		pwm->chip = chip;
 
 588		pwm->hwpwm = i;
 
 
 
 
 
 
 589	}
 590
 591	mutex_unlock(&pwm_lock);
 
 
 
 
 
 592
 593	if (IS_ENABLED(CONFIG_OF))
 594		of_pwmchip_add(chip);
 595
 596	pwmchip_sysfs_export(chip);
 
 
 
 
 
 
 
 
 597
 598	return 0;
 
 
 
 
 
 
 
 
 
 
 
 599}
 600EXPORT_SYMBOL_GPL(__pwmchip_add);
 601
 602/**
 603 * pwmchip_remove() - remove a PWM chip
 604 * @chip: the PWM chip to remove
 605 *
 606 * Removes a PWM chip.
 
 
 
 607 */
 608void pwmchip_remove(struct pwm_chip *chip)
 609{
 
 
 
 610	pwmchip_sysfs_unexport(chip);
 611
 
 
 
 
 
 
 
 
 
 
 
 
 
 612	if (IS_ENABLED(CONFIG_OF))
 613		of_pwmchip_remove(chip);
 614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615	mutex_lock(&pwm_lock);
 
 616
 617	idr_remove(&pwm_chips, chip->id);
 
 
 618
 619	mutex_unlock(&pwm_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620
 621	kfree(chip->pwms);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622}
 623EXPORT_SYMBOL_GPL(pwmchip_remove);
 624
 625static void devm_pwmchip_remove(void *data)
 
 
 
 
 
 
 
 
 626{
 627	struct pwm_chip *chip = data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 628
 629	pwmchip_remove(chip);
 630}
 
 631
 632int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
 633{
 634	int ret;
 
 
 
 
 
 
 
 
 635
 636	ret = __pwmchip_add(chip, owner);
 637	if (ret)
 638		return ret;
 639
 640	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
 641}
 642EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
 643
 644static struct device_link *pwm_device_link_add(struct device *dev,
 645					       struct pwm_device *pwm)
 646{
 647	struct device_link *dl;
 648
 649	if (!dev) {
 650		/*
 651		 * No device for the PWM consumer has been provided. It may
 652		 * impact the PM sequence ordering: the PWM supplier may get
 653		 * suspended before the consumer.
 654		 */
 655		dev_warn(pwmchip_parent(pwm->chip),
 656			 "No consumer device specified to create a link to\n");
 657		return NULL;
 658	}
 659
 660	dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
 661	if (!dl) {
 662		dev_err(dev, "failed to create device link to %s\n",
 663			dev_name(pwmchip_parent(pwm->chip)));
 664		return ERR_PTR(-EINVAL);
 665	}
 666
 667	return dl;
 668}
 669
 670static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
 671{
 672	struct pwm_chip *chip;
 673	unsigned long id, tmp;
 674
 675	mutex_lock(&pwm_lock);
 676
 677	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
 678		if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode)) {
 679			mutex_unlock(&pwm_lock);
 680			return chip;
 681		}
 682
 683	mutex_unlock(&pwm_lock);
 684
 685	return ERR_PTR(-EPROBE_DEFER);
 686}
 687
 688/**
 689 * of_pwm_get() - request a PWM via the PWM framework
 690 * @dev: device for PWM consumer
 691 * @np: device node to get the PWM from
 692 * @con_id: consumer name
 693 *
 694 * Returns the PWM device parsed from the phandle and index specified in the
 695 * "pwms" property of a device tree node or a negative error-code on failure.
 696 * Values parsed from the device tree are stored in the returned PWM device
 697 * object.
 698 *
 699 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 700 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 701 * lookup of the PWM index. This also means that the "pwm-names" property
 702 * becomes mandatory for devices that look up the PWM device via the con_id
 703 * parameter.
 704 *
 705 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 706 * error code on failure.
 707 */
 708static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
 709				     const char *con_id)
 710{
 711	struct pwm_device *pwm = NULL;
 712	struct of_phandle_args args;
 713	struct device_link *dl;
 714	struct pwm_chip *chip;
 715	int index = 0;
 716	int err;
 717
 718	if (con_id) {
 719		index = of_property_match_string(np, "pwm-names", con_id);
 720		if (index < 0)
 721			return ERR_PTR(index);
 722	}
 723
 724	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 725					 &args);
 726	if (err) {
 727		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 728		return ERR_PTR(err);
 729	}
 730
 731	chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
 732	if (IS_ERR(chip)) {
 733		if (PTR_ERR(chip) != -EPROBE_DEFER)
 734			pr_err("%s(): PWM chip not found\n", __func__);
 735
 736		pwm = ERR_CAST(chip);
 737		goto put;
 738	}
 739
 740	pwm = chip->of_xlate(chip, &args);
 741	if (IS_ERR(pwm))
 742		goto put;
 743
 744	dl = pwm_device_link_add(dev, pwm);
 745	if (IS_ERR(dl)) {
 746		/* of_xlate ended up calling pwm_request_from_chip() */
 747		pwm_put(pwm);
 748		pwm = ERR_CAST(dl);
 749		goto put;
 750	}
 751
 752	/*
 753	 * If a consumer name was not given, try to look it up from the
 754	 * "pwm-names" property if it exists. Otherwise use the name of
 755	 * the user device node.
 756	 */
 757	if (!con_id) {
 758		err = of_property_read_string_index(np, "pwm-names", index,
 759						    &con_id);
 760		if (err < 0)
 761			con_id = np->name;
 762	}
 763
 764	pwm->label = con_id;
 765
 766put:
 767	of_node_put(args.np);
 768
 769	return pwm;
 770}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771
 772/**
 773 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
 774 * @fwnode: firmware node to get the "pwms" property from
 775 *
 776 * Returns the PWM device parsed from the fwnode and index specified in the
 777 * "pwms" property or a negative error-code on failure.
 778 * Values parsed from the device tree are stored in the returned PWM device
 779 * object.
 780 *
 781 * This is analogous to of_pwm_get() except con_id is not yet supported.
 782 * ACPI entries must look like
 783 * Package () {"pwms", Package ()
 784 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
 785 *
 786 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 787 * error code on failure.
 788 */
 789static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
 790{
 791	struct pwm_device *pwm;
 
 792	struct fwnode_reference_args args;
 
 793	struct pwm_chip *chip;
 794	int ret;
 795
 796	memset(&args, 0, sizeof(args));
 797
 798	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
 799	if (ret < 0)
 800		return ERR_PTR(ret);
 801
 
 
 
 
 802	if (args.nargs < 2)
 803		return ERR_PTR(-EPROTO);
 804
 805	chip = fwnode_to_pwmchip(args.fwnode);
 806	if (IS_ERR(chip))
 807		return ERR_CAST(chip);
 808
 809	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
 810	if (IS_ERR(pwm))
 811		return pwm;
 812
 813	pwm->args.period = args.args[1];
 814	pwm->args.polarity = PWM_POLARITY_NORMAL;
 815
 816	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
 817		pwm->args.polarity = PWM_POLARITY_INVERSED;
 
 818
 819	return pwm;
 820}
 821
 822static DEFINE_MUTEX(pwm_lookup_lock);
 823static LIST_HEAD(pwm_lookup_list);
 824
 825/**
 826 * pwm_add_table() - register PWM device consumers
 827 * @table: array of consumers to register
 828 * @num: number of consumers in table
 829 */
 830void pwm_add_table(struct pwm_lookup *table, size_t num)
 831{
 832	mutex_lock(&pwm_lookup_lock);
 833
 834	while (num--) {
 835		list_add_tail(&table->list, &pwm_lookup_list);
 836		table++;
 837	}
 838
 839	mutex_unlock(&pwm_lookup_lock);
 840}
 841
 842/**
 843 * pwm_remove_table() - unregister PWM device consumers
 844 * @table: array of consumers to unregister
 845 * @num: number of consumers in table
 846 */
 847void pwm_remove_table(struct pwm_lookup *table, size_t num)
 848{
 849	mutex_lock(&pwm_lookup_lock);
 850
 851	while (num--) {
 852		list_del(&table->list);
 853		table++;
 854	}
 855
 856	mutex_unlock(&pwm_lookup_lock);
 857}
 858
 859/**
 860 * pwm_get() - look up and request a PWM device
 861 * @dev: device for PWM consumer
 862 * @con_id: consumer name
 863 *
 864 * Lookup is first attempted using DT. If the device was not instantiated from
 865 * a device tree, a PWM chip and a relative index is looked up via a table
 866 * supplied by board setup code (see pwm_add_table()).
 867 *
 868 * Once a PWM chip has been found the specified PWM device will be requested
 869 * and is ready to be used.
 870 *
 871 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 872 * error code on failure.
 873 */
 874struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 875{
 876	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 877	const char *dev_id = dev ? dev_name(dev) : NULL;
 878	struct pwm_device *pwm;
 879	struct pwm_chip *chip;
 880	struct device_link *dl;
 881	unsigned int best = 0;
 882	struct pwm_lookup *p, *chosen = NULL;
 883	unsigned int match;
 884	int err;
 885
 886	/* look up via DT first */
 887	if (is_of_node(fwnode))
 888		return of_pwm_get(dev, to_of_node(fwnode), con_id);
 889
 890	/* then lookup via ACPI */
 891	if (is_acpi_node(fwnode)) {
 892		pwm = acpi_pwm_get(fwnode);
 893		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
 894			return pwm;
 895	}
 896
 897	/*
 898	 * We look up the provider in the static table typically provided by
 899	 * board setup code. We first try to lookup the consumer device by
 900	 * name. If the consumer device was passed in as NULL or if no match
 901	 * was found, we try to find the consumer by directly looking it up
 902	 * by name.
 903	 *
 904	 * If a match is found, the provider PWM chip is looked up by name
 905	 * and a PWM device is requested using the PWM device per-chip index.
 906	 *
 907	 * The lookup algorithm was shamelessly taken from the clock
 908	 * framework:
 909	 *
 910	 * We do slightly fuzzy matching here:
 911	 *  An entry with a NULL ID is assumed to be a wildcard.
 912	 *  If an entry has a device ID, it must match
 913	 *  If an entry has a connection ID, it must match
 914	 * Then we take the most specific entry - with the following order
 915	 * of precedence: dev+con > dev only > con only.
 916	 */
 917	mutex_lock(&pwm_lookup_lock);
 918
 919	list_for_each_entry(p, &pwm_lookup_list, list) {
 920		match = 0;
 921
 922		if (p->dev_id) {
 923			if (!dev_id || strcmp(p->dev_id, dev_id))
 924				continue;
 925
 926			match += 2;
 927		}
 928
 929		if (p->con_id) {
 930			if (!con_id || strcmp(p->con_id, con_id))
 931				continue;
 932
 933			match += 1;
 934		}
 935
 936		if (match > best) {
 937			chosen = p;
 938
 939			if (match != 3)
 940				best = match;
 941			else
 942				break;
 943		}
 944	}
 945
 946	mutex_unlock(&pwm_lookup_lock);
 947
 948	if (!chosen)
 949		return ERR_PTR(-ENODEV);
 950
 951	chip = pwmchip_find_by_name(chosen->provider);
 952
 953	/*
 954	 * If the lookup entry specifies a module, load the module and retry
 955	 * the PWM chip lookup. This can be used to work around driver load
 956	 * ordering issues if driver's can't be made to properly support the
 957	 * deferred probe mechanism.
 958	 */
 959	if (!chip && chosen->module) {
 960		err = request_module(chosen->module);
 961		if (err == 0)
 962			chip = pwmchip_find_by_name(chosen->provider);
 963	}
 964
 965	if (!chip)
 966		return ERR_PTR(-EPROBE_DEFER);
 967
 968	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
 969	if (IS_ERR(pwm))
 970		return pwm;
 971
 972	dl = pwm_device_link_add(dev, pwm);
 973	if (IS_ERR(dl)) {
 974		pwm_put(pwm);
 975		return ERR_CAST(dl);
 976	}
 977
 978	pwm->args.period = chosen->period;
 979	pwm->args.polarity = chosen->polarity;
 980
 981	return pwm;
 982}
 983EXPORT_SYMBOL_GPL(pwm_get);
 984
 985/**
 986 * pwm_put() - release a PWM device
 987 * @pwm: PWM device
 988 */
 989void pwm_put(struct pwm_device *pwm)
 990{
 991	if (!pwm)
 992		return;
 993
 994	mutex_lock(&pwm_lock);
 995
 996	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
 997		pr_warn("PWM device already freed\n");
 998		goto out;
 999	}
1000
1001	if (pwm->chip->ops->free)
1002		pwm->chip->ops->free(pwm->chip, pwm);
1003
 
1004	pwm->label = NULL;
1005
1006	module_put(pwm->chip->owner);
1007out:
1008	mutex_unlock(&pwm_lock);
1009}
1010EXPORT_SYMBOL_GPL(pwm_put);
1011
1012static void devm_pwm_release(void *pwm)
1013{
1014	pwm_put(pwm);
1015}
1016
1017/**
1018 * devm_pwm_get() - resource managed pwm_get()
1019 * @dev: device for PWM consumer
1020 * @con_id: consumer name
1021 *
1022 * This function performs like pwm_get() but the acquired PWM device will
1023 * automatically be released on driver detach.
1024 *
1025 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1026 * error code on failure.
1027 */
1028struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1029{
1030	struct pwm_device *pwm;
1031	int ret;
 
 
 
1032
1033	pwm = pwm_get(dev, con_id);
1034	if (IS_ERR(pwm))
1035		return pwm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036
1037	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1038	if (ret)
1039		return ERR_PTR(ret);
 
 
 
 
1040
1041	return pwm;
1042}
1043EXPORT_SYMBOL_GPL(devm_pwm_get);
1044
1045/**
1046 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1047 * @dev: device for PWM consumer
1048 * @fwnode: firmware node to get the PWM from
1049 * @con_id: consumer name
1050 *
1051 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1052 * acpi_pwm_get() for a detailed description.
1053 *
1054 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1055 * error code on failure.
1056 */
1057struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1058				       struct fwnode_handle *fwnode,
1059				       const char *con_id)
1060{
1061	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1062	int ret;
 
 
 
1063
1064	if (is_of_node(fwnode))
1065		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1066	else if (is_acpi_node(fwnode))
1067		pwm = acpi_pwm_get(fwnode);
1068	if (IS_ERR(pwm))
1069		return pwm;
1070
1071	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1072	if (ret)
1073		return ERR_PTR(ret);
 
 
 
1074
1075	return pwm;
1076}
1077EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1079#ifdef CONFIG_DEBUG_FS
1080static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1081{
1082	unsigned int i;
1083
1084	for (i = 0; i < chip->npwm; i++) {
1085		struct pwm_device *pwm = &chip->pwms[i];
1086		struct pwm_state state;
1087
1088		pwm_get_state(pwm, &state);
1089
1090		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1091
1092		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1093			seq_puts(s, " requested");
1094
1095		if (state.enabled)
1096			seq_puts(s, " enabled");
1097
1098		seq_printf(s, " period: %llu ns", state.period);
1099		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1100		seq_printf(s, " polarity: %s",
1101			   state.polarity ? "inverse" : "normal");
1102
1103		if (state.usage_power)
1104			seq_puts(s, " usage_power");
1105
1106		seq_puts(s, "\n");
1107	}
1108}
1109
1110static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1111{
1112	unsigned long id = *pos;
1113	void *ret;
1114
1115	mutex_lock(&pwm_lock);
1116	s->private = "";
1117
1118	ret = idr_get_next_ul(&pwm_chips, &id);
1119	*pos = id;
1120	return ret;
1121}
1122
1123static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1124{
1125	unsigned long id = *pos + 1;
1126	void *ret;
1127
1128	s->private = "\n";
1129
1130	ret = idr_get_next_ul(&pwm_chips, &id);
1131	*pos = id;
1132	return ret;
1133}
1134
1135static void pwm_seq_stop(struct seq_file *s, void *v)
1136{
1137	mutex_unlock(&pwm_lock);
1138}
1139
1140static int pwm_seq_show(struct seq_file *s, void *v)
1141{
1142	struct pwm_chip *chip = v;
1143
1144	seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
1145		   (char *)s->private, chip->id,
1146		   pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
1147		   dev_name(pwmchip_parent(chip)), chip->npwm,
1148		   (chip->npwm != 1) ? "s" : "");
1149
1150	pwm_dbg_show(chip, s);
1151
1152	return 0;
1153}
1154
1155static const struct seq_operations pwm_debugfs_sops = {
1156	.start = pwm_seq_start,
1157	.next = pwm_seq_next,
1158	.stop = pwm_seq_stop,
1159	.show = pwm_seq_show,
1160};
1161
1162DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
 
 
 
 
 
 
 
 
 
 
 
1163
1164static int __init pwm_debugfs_init(void)
1165{
1166	debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
 
1167
1168	return 0;
1169}
1170subsys_initcall(pwm_debugfs_init);
1171#endif /* CONFIG_DEBUG_FS */