Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Generic pwmlib implementation
   4 *
   5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   6 * Copyright (C) 2011-2012 Avionic Design GmbH
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/module.h>
  11#include <linux/pwm.h>
  12#include <linux/radix-tree.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/debugfs.h>
  19#include <linux/seq_file.h>
  20
  21#include <dt-bindings/pwm/pwm.h>
  22
 
 
 
  23#define MAX_PWMS 1024
  24
  25static DEFINE_MUTEX(pwm_lookup_lock);
  26static LIST_HEAD(pwm_lookup_list);
  27static DEFINE_MUTEX(pwm_lock);
  28static LIST_HEAD(pwm_chips);
  29static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  30static RADIX_TREE(pwm_tree, GFP_KERNEL);
  31
  32static struct pwm_device *pwm_to_device(unsigned int pwm)
  33{
  34	return radix_tree_lookup(&pwm_tree, pwm);
  35}
  36
  37static int alloc_pwms(int pwm, unsigned int count)
  38{
  39	unsigned int from = 0;
  40	unsigned int start;
  41
  42	if (pwm >= MAX_PWMS)
  43		return -EINVAL;
  44
  45	if (pwm >= 0)
  46		from = pwm;
  47
  48	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
  49					   count, 0);
  50
  51	if (pwm >= 0 && start != pwm)
  52		return -EEXIST;
  53
  54	if (start + count > MAX_PWMS)
  55		return -ENOSPC;
  56
  57	return start;
  58}
  59
  60static void free_pwms(struct pwm_chip *chip)
  61{
  62	unsigned int i;
  63
  64	for (i = 0; i < chip->npwm; i++) {
  65		struct pwm_device *pwm = &chip->pwms[i];
  66
  67		radix_tree_delete(&pwm_tree, pwm->pwm);
  68	}
  69
  70	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  71
  72	kfree(chip->pwms);
  73	chip->pwms = NULL;
  74}
  75
  76static struct pwm_chip *pwmchip_find_by_name(const char *name)
  77{
  78	struct pwm_chip *chip;
  79
  80	if (!name)
  81		return NULL;
  82
  83	mutex_lock(&pwm_lock);
  84
  85	list_for_each_entry(chip, &pwm_chips, list) {
  86		const char *chip_name = dev_name(chip->dev);
  87
  88		if (chip_name && strcmp(chip_name, name) == 0) {
  89			mutex_unlock(&pwm_lock);
  90			return chip;
  91		}
  92	}
  93
  94	mutex_unlock(&pwm_lock);
  95
  96	return NULL;
  97}
  98
  99static int pwm_device_request(struct pwm_device *pwm, const char *label)
 100{
 101	int err;
 102
 103	if (test_bit(PWMF_REQUESTED, &pwm->flags))
 104		return -EBUSY;
 105
 106	if (!try_module_get(pwm->chip->ops->owner))
 107		return -ENODEV;
 108
 109	if (pwm->chip->ops->request) {
 110		err = pwm->chip->ops->request(pwm->chip, pwm);
 111		if (err) {
 112			module_put(pwm->chip->ops->owner);
 113			return err;
 114		}
 115	}
 116
 
 
 
 
 
 
 
 
 117	set_bit(PWMF_REQUESTED, &pwm->flags);
 118	pwm->label = label;
 119
 120	return 0;
 121}
 122
 123struct pwm_device *
 124of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 125{
 126	struct pwm_device *pwm;
 127
 128	/* check, whether the driver supports a third cell for flags */
 129	if (pc->of_pwm_n_cells < 3)
 130		return ERR_PTR(-EINVAL);
 131
 132	/* flags in the third cell are optional */
 133	if (args->args_count < 2)
 134		return ERR_PTR(-EINVAL);
 135
 136	if (args->args[0] >= pc->npwm)
 137		return ERR_PTR(-EINVAL);
 138
 139	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 140	if (IS_ERR(pwm))
 141		return pwm;
 142
 143	pwm->args.period = args->args[1];
 144	pwm->args.polarity = PWM_POLARITY_NORMAL;
 145
 146	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 147		pwm->args.polarity = PWM_POLARITY_INVERSED;
 
 
 148
 149	return pwm;
 150}
 151EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 152
 153static struct pwm_device *
 154of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
 155{
 156	struct pwm_device *pwm;
 157
 158	/* sanity check driver support */
 159	if (pc->of_pwm_n_cells < 2)
 160		return ERR_PTR(-EINVAL);
 161
 162	/* all cells are required */
 163	if (args->args_count != pc->of_pwm_n_cells)
 164		return ERR_PTR(-EINVAL);
 165
 166	if (args->args[0] >= pc->npwm)
 167		return ERR_PTR(-EINVAL);
 168
 169	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 170	if (IS_ERR(pwm))
 171		return pwm;
 172
 173	pwm->args.period = args->args[1];
 174
 175	return pwm;
 176}
 177
 178static void of_pwmchip_add(struct pwm_chip *chip)
 179{
 180	if (!chip->dev || !chip->dev->of_node)
 181		return;
 182
 183	if (!chip->of_xlate) {
 184		chip->of_xlate = of_pwm_simple_xlate;
 185		chip->of_pwm_n_cells = 2;
 
 
 
 
 
 
 186	}
 187
 188	of_node_get(chip->dev->of_node);
 189}
 190
 191static void of_pwmchip_remove(struct pwm_chip *chip)
 192{
 193	if (chip->dev)
 194		of_node_put(chip->dev->of_node);
 195}
 196
 197/**
 198 * pwm_set_chip_data() - set private chip data for a PWM
 199 * @pwm: PWM device
 200 * @data: pointer to chip-specific data
 201 *
 202 * Returns: 0 on success or a negative error code on failure.
 203 */
 204int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 205{
 206	if (!pwm)
 207		return -EINVAL;
 208
 209	pwm->chip_data = data;
 210
 211	return 0;
 212}
 213EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 214
 215/**
 216 * pwm_get_chip_data() - get private chip data for a PWM
 217 * @pwm: PWM device
 218 *
 219 * Returns: A pointer to the chip-private data for the PWM device.
 220 */
 221void *pwm_get_chip_data(struct pwm_device *pwm)
 222{
 223	return pwm ? pwm->chip_data : NULL;
 224}
 225EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 226
 227static bool pwm_ops_check(const struct pwm_ops *ops)
 228{
 
 
 
 229	/* driver supports legacy, non-atomic operation */
 230	if (ops->config && ops->enable && ops->disable)
 231		return true;
 
 
 232
 233	/* driver supports atomic operation */
 234	if (ops->apply)
 235		return true;
 
 236
 237	return false;
 
 
 
 
 
 
 
 238}
 239
 240/**
 241 * pwmchip_add_with_polarity() - register a new PWM chip
 242 * @chip: the PWM chip to add
 243 * @polarity: initial polarity of PWM channels
 244 *
 245 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 246 * will be used. The initial polarity for all channels is specified by the
 247 * @polarity parameter.
 248 *
 249 * Returns: 0 on success or a negative error code on failure.
 250 */
 251int pwmchip_add_with_polarity(struct pwm_chip *chip,
 252			      enum pwm_polarity polarity)
 253{
 254	struct pwm_device *pwm;
 255	unsigned int i;
 256	int ret;
 257
 258	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 259		return -EINVAL;
 260
 261	if (!pwm_ops_check(chip->ops))
 262		return -EINVAL;
 263
 264	mutex_lock(&pwm_lock);
 265
 266	ret = alloc_pwms(chip->base, chip->npwm);
 267	if (ret < 0)
 268		goto out;
 269
 
 
 270	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 271	if (!chip->pwms) {
 272		ret = -ENOMEM;
 273		goto out;
 274	}
 275
 276	chip->base = ret;
 277
 278	for (i = 0; i < chip->npwm; i++) {
 279		pwm = &chip->pwms[i];
 280
 281		pwm->chip = chip;
 282		pwm->pwm = chip->base + i;
 283		pwm->hwpwm = i;
 284		pwm->state.polarity = polarity;
 285
 286		if (chip->ops->get_state)
 287			chip->ops->get_state(chip, pwm, &pwm->state);
 288
 289		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 290	}
 291
 292	bitmap_set(allocated_pwms, chip->base, chip->npwm);
 293
 294	INIT_LIST_HEAD(&chip->list);
 295	list_add(&chip->list, &pwm_chips);
 296
 297	ret = 0;
 298
 299	if (IS_ENABLED(CONFIG_OF))
 300		of_pwmchip_add(chip);
 301
 302out:
 303	mutex_unlock(&pwm_lock);
 304
 305	if (!ret)
 306		pwmchip_sysfs_export(chip);
 307
 308	return ret;
 309}
 310EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
 311
 312/**
 313 * pwmchip_add() - register a new PWM chip
 314 * @chip: the PWM chip to add
 315 *
 316 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 317 * will be used. The initial polarity for all channels is normal.
 318 *
 319 * Returns: 0 on success or a negative error code on failure.
 320 */
 321int pwmchip_add(struct pwm_chip *chip)
 322{
 323	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
 324}
 325EXPORT_SYMBOL_GPL(pwmchip_add);
 326
 327/**
 328 * pwmchip_remove() - remove a PWM chip
 329 * @chip: the PWM chip to remove
 330 *
 331 * Removes a PWM chip. This function may return busy if the PWM chip provides
 332 * a PWM device that is still requested.
 333 *
 334 * Returns: 0 on success or a negative error code on failure.
 335 */
 336int pwmchip_remove(struct pwm_chip *chip)
 337{
 338	unsigned int i;
 339	int ret = 0;
 340
 341	pwmchip_sysfs_unexport(chip);
 342
 343	mutex_lock(&pwm_lock);
 344
 345	for (i = 0; i < chip->npwm; i++) {
 346		struct pwm_device *pwm = &chip->pwms[i];
 347
 348		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
 349			ret = -EBUSY;
 350			goto out;
 351		}
 352	}
 353
 354	list_del_init(&chip->list);
 355
 356	if (IS_ENABLED(CONFIG_OF))
 357		of_pwmchip_remove(chip);
 358
 359	free_pwms(chip);
 360
 361out:
 362	mutex_unlock(&pwm_lock);
 363	return ret;
 
 364}
 365EXPORT_SYMBOL_GPL(pwmchip_remove);
 366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367/**
 368 * pwm_request() - request a PWM device
 369 * @pwm: global PWM device index
 370 * @label: PWM device label
 371 *
 372 * This function is deprecated, use pwm_get() instead.
 373 *
 374 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 375 * failure.
 376 */
 377struct pwm_device *pwm_request(int pwm, const char *label)
 378{
 379	struct pwm_device *dev;
 380	int err;
 381
 382	if (pwm < 0 || pwm >= MAX_PWMS)
 383		return ERR_PTR(-EINVAL);
 384
 385	mutex_lock(&pwm_lock);
 386
 387	dev = pwm_to_device(pwm);
 388	if (!dev) {
 389		dev = ERR_PTR(-EPROBE_DEFER);
 390		goto out;
 391	}
 392
 393	err = pwm_device_request(dev, label);
 394	if (err < 0)
 395		dev = ERR_PTR(err);
 396
 397out:
 398	mutex_unlock(&pwm_lock);
 399
 400	return dev;
 401}
 402EXPORT_SYMBOL_GPL(pwm_request);
 403
 404/**
 405 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 406 * @chip: PWM chip
 407 * @index: per-chip index of the PWM to request
 408 * @label: a literal description string of this PWM
 409 *
 410 * Returns: A pointer to the PWM device at the given index of the given PWM
 411 * chip. A negative error code is returned if the index is not valid for the
 412 * specified PWM chip or if the PWM device cannot be requested.
 413 */
 414struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 415					 unsigned int index,
 416					 const char *label)
 417{
 418	struct pwm_device *pwm;
 419	int err;
 420
 421	if (!chip || index >= chip->npwm)
 422		return ERR_PTR(-EINVAL);
 423
 424	mutex_lock(&pwm_lock);
 425	pwm = &chip->pwms[index];
 426
 427	err = pwm_device_request(pwm, label);
 428	if (err < 0)
 429		pwm = ERR_PTR(err);
 430
 431	mutex_unlock(&pwm_lock);
 432	return pwm;
 433}
 434EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 435
 436/**
 437 * pwm_free() - free a PWM device
 438 * @pwm: PWM device
 439 *
 440 * This function is deprecated, use pwm_put() instead.
 441 */
 442void pwm_free(struct pwm_device *pwm)
 443{
 444	pwm_put(pwm);
 445}
 446EXPORT_SYMBOL_GPL(pwm_free);
 447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448/**
 449 * pwm_apply_state() - atomically apply a new state to a PWM device
 450 * @pwm: PWM device
 451 * @state: new state to apply
 452 */
 453int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
 454{
 455	struct pwm_chip *chip;
 456	int err;
 457
 458	if (!pwm || !state || !state->period ||
 459	    state->duty_cycle > state->period)
 460		return -EINVAL;
 461
 462	chip = pwm->chip;
 463
 464	if (state->period == pwm->state.period &&
 465	    state->duty_cycle == pwm->state.duty_cycle &&
 466	    state->polarity == pwm->state.polarity &&
 467	    state->enabled == pwm->state.enabled)
 
 468		return 0;
 469
 470	if (chip->ops->apply) {
 471		err = chip->ops->apply(chip, pwm, state);
 472		if (err)
 473			return err;
 474
 
 
 475		pwm->state = *state;
 
 
 
 
 
 
 476	} else {
 477		/*
 478		 * FIXME: restore the initial state in case of error.
 479		 */
 480		if (state->polarity != pwm->state.polarity) {
 481			if (!chip->ops->set_polarity)
 482				return -ENOTSUPP;
 483
 484			/*
 485			 * Changing the polarity of a running PWM is
 486			 * only allowed when the PWM driver implements
 487			 * ->apply().
 488			 */
 489			if (pwm->state.enabled) {
 490				chip->ops->disable(chip, pwm);
 491				pwm->state.enabled = false;
 492			}
 493
 494			err = chip->ops->set_polarity(chip, pwm,
 495						      state->polarity);
 496			if (err)
 497				return err;
 498
 499			pwm->state.polarity = state->polarity;
 500		}
 501
 502		if (state->period != pwm->state.period ||
 503		    state->duty_cycle != pwm->state.duty_cycle) {
 504			err = chip->ops->config(pwm->chip, pwm,
 505						state->duty_cycle,
 506						state->period);
 507			if (err)
 508				return err;
 509
 510			pwm->state.duty_cycle = state->duty_cycle;
 511			pwm->state.period = state->period;
 512		}
 513
 514		if (state->enabled != pwm->state.enabled) {
 515			if (state->enabled) {
 516				err = chip->ops->enable(chip, pwm);
 517				if (err)
 518					return err;
 519			} else {
 520				chip->ops->disable(chip, pwm);
 521			}
 522
 523			pwm->state.enabled = state->enabled;
 524		}
 525	}
 526
 527	return 0;
 528}
 529EXPORT_SYMBOL_GPL(pwm_apply_state);
 530
 531/**
 532 * pwm_capture() - capture and report a PWM signal
 533 * @pwm: PWM device
 534 * @result: structure to fill with capture result
 535 * @timeout: time to wait, in milliseconds, before giving up on capture
 536 *
 537 * Returns: 0 on success or a negative error code on failure.
 538 */
 539int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 540		unsigned long timeout)
 541{
 542	int err;
 543
 544	if (!pwm || !pwm->chip->ops)
 545		return -EINVAL;
 546
 547	if (!pwm->chip->ops->capture)
 548		return -ENOSYS;
 549
 550	mutex_lock(&pwm_lock);
 551	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 552	mutex_unlock(&pwm_lock);
 553
 554	return err;
 555}
 556EXPORT_SYMBOL_GPL(pwm_capture);
 557
 558/**
 559 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 560 * @pwm: PWM device
 561 *
 562 * This function will adjust the PWM config to the PWM arguments provided
 563 * by the DT or PWM lookup table. This is particularly useful to adapt
 564 * the bootloader config to the Linux one.
 565 */
 566int pwm_adjust_config(struct pwm_device *pwm)
 567{
 568	struct pwm_state state;
 569	struct pwm_args pargs;
 570
 571	pwm_get_args(pwm, &pargs);
 572	pwm_get_state(pwm, &state);
 573
 574	/*
 575	 * If the current period is zero it means that either the PWM driver
 576	 * does not support initial state retrieval or the PWM has not yet
 577	 * been configured.
 578	 *
 579	 * In either case, we setup the new period and polarity, and assign a
 580	 * duty cycle of 0.
 581	 */
 582	if (!state.period) {
 583		state.duty_cycle = 0;
 584		state.period = pargs.period;
 585		state.polarity = pargs.polarity;
 586
 587		return pwm_apply_state(pwm, &state);
 588	}
 589
 590	/*
 591	 * Adjust the PWM duty cycle/period based on the period value provided
 592	 * in PWM args.
 593	 */
 594	if (pargs.period != state.period) {
 595		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 596
 597		do_div(dutycycle, state.period);
 598		state.duty_cycle = dutycycle;
 599		state.period = pargs.period;
 600	}
 601
 602	/*
 603	 * If the polarity changed, we should also change the duty cycle.
 604	 */
 605	if (pargs.polarity != state.polarity) {
 606		state.polarity = pargs.polarity;
 607		state.duty_cycle = state.period - state.duty_cycle;
 608	}
 609
 610	return pwm_apply_state(pwm, &state);
 611}
 612EXPORT_SYMBOL_GPL(pwm_adjust_config);
 613
 614static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
 615{
 616	struct pwm_chip *chip;
 617
 618	mutex_lock(&pwm_lock);
 619
 620	list_for_each_entry(chip, &pwm_chips, list)
 621		if (chip->dev && chip->dev->of_node == np) {
 622			mutex_unlock(&pwm_lock);
 623			return chip;
 624		}
 625
 626	mutex_unlock(&pwm_lock);
 627
 628	return ERR_PTR(-EPROBE_DEFER);
 629}
 630
 631static struct device_link *pwm_device_link_add(struct device *dev,
 632					       struct pwm_device *pwm)
 633{
 634	struct device_link *dl;
 635
 636	if (!dev) {
 637		/*
 638		 * No device for the PWM consumer has been provided. It may
 639		 * impact the PM sequence ordering: the PWM supplier may get
 640		 * suspended before the consumer.
 641		 */
 642		dev_warn(pwm->chip->dev,
 643			 "No consumer device specified to create a link to\n");
 644		return NULL;
 645	}
 646
 647	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
 648	if (!dl) {
 649		dev_err(dev, "failed to create device link to %s\n",
 650			dev_name(pwm->chip->dev));
 651		return ERR_PTR(-EINVAL);
 652	}
 653
 654	return dl;
 655}
 656
 657/**
 658 * of_pwm_get() - request a PWM via the PWM framework
 659 * @dev: device for PWM consumer
 660 * @np: device node to get the PWM from
 661 * @con_id: consumer name
 662 *
 663 * Returns the PWM device parsed from the phandle and index specified in the
 664 * "pwms" property of a device tree node or a negative error-code on failure.
 665 * Values parsed from the device tree are stored in the returned PWM device
 666 * object.
 667 *
 668 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 669 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 670 * lookup of the PWM index. This also means that the "pwm-names" property
 671 * becomes mandatory for devices that look up the PWM device via the con_id
 672 * parameter.
 673 *
 674 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 675 * error code on failure.
 676 */
 677struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
 678			      const char *con_id)
 679{
 680	struct pwm_device *pwm = NULL;
 681	struct of_phandle_args args;
 682	struct device_link *dl;
 683	struct pwm_chip *pc;
 684	int index = 0;
 685	int err;
 686
 687	if (con_id) {
 688		index = of_property_match_string(np, "pwm-names", con_id);
 689		if (index < 0)
 690			return ERR_PTR(index);
 691	}
 692
 693	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 694					 &args);
 695	if (err) {
 696		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 697		return ERR_PTR(err);
 698	}
 699
 700	pc = of_node_to_pwmchip(args.np);
 701	if (IS_ERR(pc)) {
 702		if (PTR_ERR(pc) != -EPROBE_DEFER)
 703			pr_err("%s(): PWM chip not found\n", __func__);
 704
 705		pwm = ERR_CAST(pc);
 706		goto put;
 707	}
 708
 709	pwm = pc->of_xlate(pc, &args);
 710	if (IS_ERR(pwm))
 711		goto put;
 712
 713	dl = pwm_device_link_add(dev, pwm);
 714	if (IS_ERR(dl)) {
 715		/* of_xlate ended up calling pwm_request_from_chip() */
 716		pwm_free(pwm);
 717		pwm = ERR_CAST(dl);
 718		goto put;
 719	}
 720
 721	/*
 722	 * If a consumer name was not given, try to look it up from the
 723	 * "pwm-names" property if it exists. Otherwise use the name of
 724	 * the user device node.
 725	 */
 726	if (!con_id) {
 727		err = of_property_read_string_index(np, "pwm-names", index,
 728						    &con_id);
 729		if (err < 0)
 730			con_id = np->name;
 731	}
 732
 733	pwm->label = con_id;
 734
 735put:
 736	of_node_put(args.np);
 737
 738	return pwm;
 739}
 740EXPORT_SYMBOL_GPL(of_pwm_get);
 741
 742#if IS_ENABLED(CONFIG_ACPI)
 743static struct pwm_chip *device_to_pwmchip(struct device *dev)
 744{
 745	struct pwm_chip *chip;
 746
 747	mutex_lock(&pwm_lock);
 748
 749	list_for_each_entry(chip, &pwm_chips, list) {
 750		struct acpi_device *adev = ACPI_COMPANION(chip->dev);
 751
 752		if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
 753			mutex_unlock(&pwm_lock);
 754			return chip;
 755		}
 756	}
 757
 758	mutex_unlock(&pwm_lock);
 759
 760	return ERR_PTR(-EPROBE_DEFER);
 761}
 762#endif
 763
 764/**
 765 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
 766 * @fwnode: firmware node to get the "pwm" property from
 767 *
 768 * Returns the PWM device parsed from the fwnode and index specified in the
 769 * "pwms" property or a negative error-code on failure.
 770 * Values parsed from the device tree are stored in the returned PWM device
 771 * object.
 772 *
 773 * This is analogous to of_pwm_get() except con_id is not yet supported.
 774 * ACPI entries must look like
 775 * Package () {"pwms", Package ()
 776 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
 777 *
 778 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 779 * error code on failure.
 780 */
 781static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
 782{
 783	struct pwm_device *pwm = ERR_PTR(-ENODEV);
 784#if IS_ENABLED(CONFIG_ACPI)
 785	struct fwnode_reference_args args;
 786	struct acpi_device *acpi;
 787	struct pwm_chip *chip;
 788	int ret;
 789
 790	memset(&args, 0, sizeof(args));
 791
 792	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
 793	if (ret < 0)
 794		return ERR_PTR(ret);
 795
 796	acpi = to_acpi_device_node(args.fwnode);
 797	if (!acpi)
 798		return ERR_PTR(-EINVAL);
 799
 800	if (args.nargs < 2)
 801		return ERR_PTR(-EPROTO);
 802
 803	chip = device_to_pwmchip(&acpi->dev);
 804	if (IS_ERR(chip))
 805		return ERR_CAST(chip);
 806
 807	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
 808	if (IS_ERR(pwm))
 809		return pwm;
 810
 811	pwm->args.period = args.args[1];
 812	pwm->args.polarity = PWM_POLARITY_NORMAL;
 813
 814	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
 815		pwm->args.polarity = PWM_POLARITY_INVERSED;
 816#endif
 817
 818	return pwm;
 819}
 820
 821/**
 822 * pwm_add_table() - register PWM device consumers
 823 * @table: array of consumers to register
 824 * @num: number of consumers in table
 825 */
 826void pwm_add_table(struct pwm_lookup *table, size_t num)
 827{
 828	mutex_lock(&pwm_lookup_lock);
 829
 830	while (num--) {
 831		list_add_tail(&table->list, &pwm_lookup_list);
 832		table++;
 833	}
 834
 835	mutex_unlock(&pwm_lookup_lock);
 836}
 837
 838/**
 839 * pwm_remove_table() - unregister PWM device consumers
 840 * @table: array of consumers to unregister
 841 * @num: number of consumers in table
 842 */
 843void pwm_remove_table(struct pwm_lookup *table, size_t num)
 844{
 845	mutex_lock(&pwm_lookup_lock);
 846
 847	while (num--) {
 848		list_del(&table->list);
 849		table++;
 850	}
 851
 852	mutex_unlock(&pwm_lookup_lock);
 853}
 854
 855/**
 856 * pwm_get() - look up and request a PWM device
 857 * @dev: device for PWM consumer
 858 * @con_id: consumer name
 859 *
 860 * Lookup is first attempted using DT. If the device was not instantiated from
 861 * a device tree, a PWM chip and a relative index is looked up via a table
 862 * supplied by board setup code (see pwm_add_table()).
 863 *
 864 * Once a PWM chip has been found the specified PWM device will be requested
 865 * and is ready to be used.
 866 *
 867 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 868 * error code on failure.
 869 */
 870struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 871{
 
 872	const char *dev_id = dev ? dev_name(dev) : NULL;
 873	struct pwm_device *pwm;
 874	struct pwm_chip *chip;
 875	struct device_link *dl;
 876	unsigned int best = 0;
 877	struct pwm_lookup *p, *chosen = NULL;
 878	unsigned int match;
 879	int err;
 880
 881	/* look up via DT first */
 882	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
 883		return of_pwm_get(dev, dev->of_node, con_id);
 884
 885	/* then lookup via ACPI */
 886	if (dev && is_acpi_node(dev->fwnode)) {
 887		pwm = acpi_pwm_get(dev->fwnode);
 888		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
 889			return pwm;
 890	}
 891
 892	/*
 893	 * We look up the provider in the static table typically provided by
 894	 * board setup code. We first try to lookup the consumer device by
 895	 * name. If the consumer device was passed in as NULL or if no match
 896	 * was found, we try to find the consumer by directly looking it up
 897	 * by name.
 898	 *
 899	 * If a match is found, the provider PWM chip is looked up by name
 900	 * and a PWM device is requested using the PWM device per-chip index.
 901	 *
 902	 * The lookup algorithm was shamelessly taken from the clock
 903	 * framework:
 904	 *
 905	 * We do slightly fuzzy matching here:
 906	 *  An entry with a NULL ID is assumed to be a wildcard.
 907	 *  If an entry has a device ID, it must match
 908	 *  If an entry has a connection ID, it must match
 909	 * Then we take the most specific entry - with the following order
 910	 * of precedence: dev+con > dev only > con only.
 911	 */
 912	mutex_lock(&pwm_lookup_lock);
 913
 914	list_for_each_entry(p, &pwm_lookup_list, list) {
 915		match = 0;
 916
 917		if (p->dev_id) {
 918			if (!dev_id || strcmp(p->dev_id, dev_id))
 919				continue;
 920
 921			match += 2;
 922		}
 923
 924		if (p->con_id) {
 925			if (!con_id || strcmp(p->con_id, con_id))
 926				continue;
 927
 928			match += 1;
 929		}
 930
 931		if (match > best) {
 932			chosen = p;
 933
 934			if (match != 3)
 935				best = match;
 936			else
 937				break;
 938		}
 939	}
 940
 941	mutex_unlock(&pwm_lookup_lock);
 942
 943	if (!chosen)
 944		return ERR_PTR(-ENODEV);
 945
 946	chip = pwmchip_find_by_name(chosen->provider);
 947
 948	/*
 949	 * If the lookup entry specifies a module, load the module and retry
 950	 * the PWM chip lookup. This can be used to work around driver load
 951	 * ordering issues if driver's can't be made to properly support the
 952	 * deferred probe mechanism.
 953	 */
 954	if (!chip && chosen->module) {
 955		err = request_module(chosen->module);
 956		if (err == 0)
 957			chip = pwmchip_find_by_name(chosen->provider);
 958	}
 959
 960	if (!chip)
 961		return ERR_PTR(-EPROBE_DEFER);
 962
 963	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
 964	if (IS_ERR(pwm))
 965		return pwm;
 966
 967	dl = pwm_device_link_add(dev, pwm);
 968	if (IS_ERR(dl)) {
 969		pwm_free(pwm);
 970		return ERR_CAST(dl);
 971	}
 972
 973	pwm->args.period = chosen->period;
 974	pwm->args.polarity = chosen->polarity;
 975
 976	return pwm;
 977}
 978EXPORT_SYMBOL_GPL(pwm_get);
 979
 980/**
 981 * pwm_put() - release a PWM device
 982 * @pwm: PWM device
 983 */
 984void pwm_put(struct pwm_device *pwm)
 985{
 986	if (!pwm)
 987		return;
 988
 989	mutex_lock(&pwm_lock);
 990
 991	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
 992		pr_warn("PWM device already freed\n");
 993		goto out;
 994	}
 995
 996	if (pwm->chip->ops->free)
 997		pwm->chip->ops->free(pwm->chip, pwm);
 998
 999	pwm_set_chip_data(pwm, NULL);
1000	pwm->label = NULL;
1001
1002	module_put(pwm->chip->ops->owner);
1003out:
1004	mutex_unlock(&pwm_lock);
1005}
1006EXPORT_SYMBOL_GPL(pwm_put);
1007
1008static void devm_pwm_release(struct device *dev, void *res)
1009{
1010	pwm_put(*(struct pwm_device **)res);
1011}
1012
1013/**
1014 * devm_pwm_get() - resource managed pwm_get()
1015 * @dev: device for PWM consumer
1016 * @con_id: consumer name
1017 *
1018 * This function performs like pwm_get() but the acquired PWM device will
1019 * automatically be released on driver detach.
1020 *
1021 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1022 * error code on failure.
1023 */
1024struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1025{
1026	struct pwm_device **ptr, *pwm;
1027
1028	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1029	if (!ptr)
1030		return ERR_PTR(-ENOMEM);
1031
1032	pwm = pwm_get(dev, con_id);
1033	if (!IS_ERR(pwm)) {
1034		*ptr = pwm;
1035		devres_add(dev, ptr);
1036	} else {
1037		devres_free(ptr);
1038	}
1039
1040	return pwm;
1041}
1042EXPORT_SYMBOL_GPL(devm_pwm_get);
1043
1044/**
1045 * devm_of_pwm_get() - resource managed of_pwm_get()
1046 * @dev: device for PWM consumer
1047 * @np: device node to get the PWM from
1048 * @con_id: consumer name
1049 *
1050 * This function performs like of_pwm_get() but the acquired PWM device will
1051 * automatically be released on driver detach.
1052 *
1053 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1054 * error code on failure.
1055 */
1056struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1057				   const char *con_id)
1058{
1059	struct pwm_device **ptr, *pwm;
1060
1061	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1062	if (!ptr)
1063		return ERR_PTR(-ENOMEM);
1064
1065	pwm = of_pwm_get(dev, np, con_id);
1066	if (!IS_ERR(pwm)) {
1067		*ptr = pwm;
1068		devres_add(dev, ptr);
1069	} else {
1070		devres_free(ptr);
1071	}
1072
1073	return pwm;
1074}
1075EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1076
1077/**
1078 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1079 * @dev: device for PWM consumer
1080 * @fwnode: firmware node to get the PWM from
1081 * @con_id: consumer name
1082 *
1083 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1084 * acpi_pwm_get() for a detailed description.
1085 *
1086 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1087 * error code on failure.
1088 */
1089struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1090				       struct fwnode_handle *fwnode,
1091				       const char *con_id)
1092{
1093	struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1094
1095	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1096	if (!ptr)
1097		return ERR_PTR(-ENOMEM);
1098
1099	if (is_of_node(fwnode))
1100		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1101	else if (is_acpi_node(fwnode))
1102		pwm = acpi_pwm_get(fwnode);
 
 
1103
1104	if (!IS_ERR(pwm)) {
1105		*ptr = pwm;
1106		devres_add(dev, ptr);
1107	} else {
1108		devres_free(ptr);
1109	}
1110
1111	return pwm;
1112}
1113EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1114
1115static int devm_pwm_match(struct device *dev, void *res, void *data)
1116{
1117	struct pwm_device **p = res;
1118
1119	if (WARN_ON(!p || !*p))
1120		return 0;
1121
1122	return *p == data;
1123}
1124
1125/**
1126 * devm_pwm_put() - resource managed pwm_put()
1127 * @dev: device for PWM consumer
1128 * @pwm: PWM device
1129 *
1130 * Release a PWM previously allocated using devm_pwm_get(). Calling this
1131 * function is usually not needed because devm-allocated resources are
1132 * automatically released on driver detach.
1133 */
1134void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1135{
1136	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1137}
1138EXPORT_SYMBOL_GPL(devm_pwm_put);
1139
1140#ifdef CONFIG_DEBUG_FS
1141static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1142{
1143	unsigned int i;
1144
1145	for (i = 0; i < chip->npwm; i++) {
1146		struct pwm_device *pwm = &chip->pwms[i];
1147		struct pwm_state state;
1148
1149		pwm_get_state(pwm, &state);
1150
1151		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1152
1153		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1154			seq_puts(s, " requested");
1155
1156		if (state.enabled)
1157			seq_puts(s, " enabled");
1158
1159		seq_printf(s, " period: %u ns", state.period);
1160		seq_printf(s, " duty: %u ns", state.duty_cycle);
1161		seq_printf(s, " polarity: %s",
1162			   state.polarity ? "inverse" : "normal");
1163
 
 
 
1164		seq_puts(s, "\n");
1165	}
1166}
1167
1168static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1169{
1170	mutex_lock(&pwm_lock);
1171	s->private = "";
1172
1173	return seq_list_start(&pwm_chips, *pos);
1174}
1175
1176static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1177{
1178	s->private = "\n";
1179
1180	return seq_list_next(v, &pwm_chips, pos);
1181}
1182
1183static void pwm_seq_stop(struct seq_file *s, void *v)
1184{
1185	mutex_unlock(&pwm_lock);
1186}
1187
1188static int pwm_seq_show(struct seq_file *s, void *v)
1189{
1190	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1191
1192	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1193		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1194		   dev_name(chip->dev), chip->npwm,
1195		   (chip->npwm != 1) ? "s" : "");
1196
1197	pwm_dbg_show(chip, s);
1198
1199	return 0;
1200}
1201
1202static const struct seq_operations pwm_seq_ops = {
1203	.start = pwm_seq_start,
1204	.next = pwm_seq_next,
1205	.stop = pwm_seq_stop,
1206	.show = pwm_seq_show,
1207};
1208
1209static int pwm_seq_open(struct inode *inode, struct file *file)
1210{
1211	return seq_open(file, &pwm_seq_ops);
1212}
1213
1214static const struct file_operations pwm_debugfs_ops = {
1215	.owner = THIS_MODULE,
1216	.open = pwm_seq_open,
1217	.read = seq_read,
1218	.llseek = seq_lseek,
1219	.release = seq_release,
1220};
1221
1222static int __init pwm_debugfs_init(void)
1223{
1224	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1225			    &pwm_debugfs_ops);
1226
1227	return 0;
1228}
1229subsys_initcall(pwm_debugfs_init);
1230#endif /* CONFIG_DEBUG_FS */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Generic pwmlib implementation
   4 *
   5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   6 * Copyright (C) 2011-2012 Avionic Design GmbH
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/module.h>
  11#include <linux/pwm.h>
  12#include <linux/radix-tree.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/debugfs.h>
  19#include <linux/seq_file.h>
  20
  21#include <dt-bindings/pwm/pwm.h>
  22
  23#define CREATE_TRACE_POINTS
  24#include <trace/events/pwm.h>
  25
  26#define MAX_PWMS 1024
  27
  28static DEFINE_MUTEX(pwm_lookup_lock);
  29static LIST_HEAD(pwm_lookup_list);
  30static DEFINE_MUTEX(pwm_lock);
  31static LIST_HEAD(pwm_chips);
  32static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  33static RADIX_TREE(pwm_tree, GFP_KERNEL);
  34
  35static struct pwm_device *pwm_to_device(unsigned int pwm)
  36{
  37	return radix_tree_lookup(&pwm_tree, pwm);
  38}
  39
  40static int alloc_pwms(unsigned int count)
  41{
 
  42	unsigned int start;
  43
  44	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
 
 
 
 
 
 
  45					   count, 0);
  46
 
 
 
  47	if (start + count > MAX_PWMS)
  48		return -ENOSPC;
  49
  50	return start;
  51}
  52
  53static void free_pwms(struct pwm_chip *chip)
  54{
  55	unsigned int i;
  56
  57	for (i = 0; i < chip->npwm; i++) {
  58		struct pwm_device *pwm = &chip->pwms[i];
  59
  60		radix_tree_delete(&pwm_tree, pwm->pwm);
  61	}
  62
  63	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  64
  65	kfree(chip->pwms);
  66	chip->pwms = NULL;
  67}
  68
  69static struct pwm_chip *pwmchip_find_by_name(const char *name)
  70{
  71	struct pwm_chip *chip;
  72
  73	if (!name)
  74		return NULL;
  75
  76	mutex_lock(&pwm_lock);
  77
  78	list_for_each_entry(chip, &pwm_chips, list) {
  79		const char *chip_name = dev_name(chip->dev);
  80
  81		if (chip_name && strcmp(chip_name, name) == 0) {
  82			mutex_unlock(&pwm_lock);
  83			return chip;
  84		}
  85	}
  86
  87	mutex_unlock(&pwm_lock);
  88
  89	return NULL;
  90}
  91
  92static int pwm_device_request(struct pwm_device *pwm, const char *label)
  93{
  94	int err;
  95
  96	if (test_bit(PWMF_REQUESTED, &pwm->flags))
  97		return -EBUSY;
  98
  99	if (!try_module_get(pwm->chip->ops->owner))
 100		return -ENODEV;
 101
 102	if (pwm->chip->ops->request) {
 103		err = pwm->chip->ops->request(pwm->chip, pwm);
 104		if (err) {
 105			module_put(pwm->chip->ops->owner);
 106			return err;
 107		}
 108	}
 109
 110	if (pwm->chip->ops->get_state) {
 111		pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
 112		trace_pwm_get(pwm, &pwm->state);
 113
 114		if (IS_ENABLED(CONFIG_PWM_DEBUG))
 115			pwm->last = pwm->state;
 116	}
 117
 118	set_bit(PWMF_REQUESTED, &pwm->flags);
 119	pwm->label = label;
 120
 121	return 0;
 122}
 123
 124struct pwm_device *
 125of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 126{
 127	struct pwm_device *pwm;
 128
 129	if (pc->of_pwm_n_cells < 2)
 
 130		return ERR_PTR(-EINVAL);
 131
 132	/* flags in the third cell are optional */
 133	if (args->args_count < 2)
 134		return ERR_PTR(-EINVAL);
 135
 136	if (args->args[0] >= pc->npwm)
 137		return ERR_PTR(-EINVAL);
 138
 139	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 140	if (IS_ERR(pwm))
 141		return pwm;
 142
 143	pwm->args.period = args->args[1];
 144	pwm->args.polarity = PWM_POLARITY_NORMAL;
 145
 146	if (pc->of_pwm_n_cells >= 3) {
 147		if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 148			pwm->args.polarity = PWM_POLARITY_INVERSED;
 149	}
 150
 151	return pwm;
 152}
 153EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155static void of_pwmchip_add(struct pwm_chip *chip)
 156{
 157	if (!chip->dev || !chip->dev->of_node)
 158		return;
 159
 160	if (!chip->of_xlate) {
 161		u32 pwm_cells;
 162
 163		if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
 164					 &pwm_cells))
 165			pwm_cells = 2;
 166
 167		chip->of_xlate = of_pwm_xlate_with_flags;
 168		chip->of_pwm_n_cells = pwm_cells;
 169	}
 170
 171	of_node_get(chip->dev->of_node);
 172}
 173
 174static void of_pwmchip_remove(struct pwm_chip *chip)
 175{
 176	if (chip->dev)
 177		of_node_put(chip->dev->of_node);
 178}
 179
 180/**
 181 * pwm_set_chip_data() - set private chip data for a PWM
 182 * @pwm: PWM device
 183 * @data: pointer to chip-specific data
 184 *
 185 * Returns: 0 on success or a negative error code on failure.
 186 */
 187int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 188{
 189	if (!pwm)
 190		return -EINVAL;
 191
 192	pwm->chip_data = data;
 193
 194	return 0;
 195}
 196EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 197
 198/**
 199 * pwm_get_chip_data() - get private chip data for a PWM
 200 * @pwm: PWM device
 201 *
 202 * Returns: A pointer to the chip-private data for the PWM device.
 203 */
 204void *pwm_get_chip_data(struct pwm_device *pwm)
 205{
 206	return pwm ? pwm->chip_data : NULL;
 207}
 208EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 209
 210static bool pwm_ops_check(const struct pwm_chip *chip)
 211{
 212
 213	const struct pwm_ops *ops = chip->ops;
 214
 215	/* driver supports legacy, non-atomic operation */
 216	if (ops->config && ops->enable && ops->disable) {
 217		if (IS_ENABLED(CONFIG_PWM_DEBUG))
 218			dev_warn(chip->dev,
 219				 "Driver needs updating to atomic API\n");
 220
 
 
 221		return true;
 222	}
 223
 224	if (!ops->apply)
 225		return false;
 226
 227	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
 228		dev_warn(chip->dev,
 229			 "Please implement the .get_state() callback\n");
 230
 231	return true;
 232}
 233
 234/**
 235 * pwmchip_add() - register a new PWM chip
 236 * @chip: the PWM chip to add
 
 237 *
 238 * Register a new PWM chip.
 
 
 239 *
 240 * Returns: 0 on success or a negative error code on failure.
 241 */
 242int pwmchip_add(struct pwm_chip *chip)
 
 243{
 244	struct pwm_device *pwm;
 245	unsigned int i;
 246	int ret;
 247
 248	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 249		return -EINVAL;
 250
 251	if (!pwm_ops_check(chip))
 252		return -EINVAL;
 253
 254	mutex_lock(&pwm_lock);
 255
 256	ret = alloc_pwms(chip->npwm);
 257	if (ret < 0)
 258		goto out;
 259
 260	chip->base = ret;
 261
 262	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 263	if (!chip->pwms) {
 264		ret = -ENOMEM;
 265		goto out;
 266	}
 267
 
 
 268	for (i = 0; i < chip->npwm; i++) {
 269		pwm = &chip->pwms[i];
 270
 271		pwm->chip = chip;
 272		pwm->pwm = chip->base + i;
 273		pwm->hwpwm = i;
 
 
 
 
 274
 275		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 276	}
 277
 278	bitmap_set(allocated_pwms, chip->base, chip->npwm);
 279
 280	INIT_LIST_HEAD(&chip->list);
 281	list_add(&chip->list, &pwm_chips);
 282
 283	ret = 0;
 284
 285	if (IS_ENABLED(CONFIG_OF))
 286		of_pwmchip_add(chip);
 287
 288out:
 289	mutex_unlock(&pwm_lock);
 290
 291	if (!ret)
 292		pwmchip_sysfs_export(chip);
 293
 294	return ret;
 295}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296EXPORT_SYMBOL_GPL(pwmchip_add);
 297
 298/**
 299 * pwmchip_remove() - remove a PWM chip
 300 * @chip: the PWM chip to remove
 301 *
 302 * Removes a PWM chip. This function may return busy if the PWM chip provides
 303 * a PWM device that is still requested.
 304 *
 305 * Returns: 0 on success or a negative error code on failure.
 306 */
 307int pwmchip_remove(struct pwm_chip *chip)
 308{
 
 
 
 309	pwmchip_sysfs_unexport(chip);
 310
 311	mutex_lock(&pwm_lock);
 312
 
 
 
 
 
 
 
 
 
 313	list_del_init(&chip->list);
 314
 315	if (IS_ENABLED(CONFIG_OF))
 316		of_pwmchip_remove(chip);
 317
 318	free_pwms(chip);
 319
 
 320	mutex_unlock(&pwm_lock);
 321
 322	return 0;
 323}
 324EXPORT_SYMBOL_GPL(pwmchip_remove);
 325
 326static void devm_pwmchip_remove(void *data)
 327{
 328	struct pwm_chip *chip = data;
 329
 330	pwmchip_remove(chip);
 331}
 332
 333int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
 334{
 335	int ret;
 336
 337	ret = pwmchip_add(chip);
 338	if (ret)
 339		return ret;
 340
 341	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
 342}
 343EXPORT_SYMBOL_GPL(devm_pwmchip_add);
 344
 345/**
 346 * pwm_request() - request a PWM device
 347 * @pwm: global PWM device index
 348 * @label: PWM device label
 349 *
 350 * This function is deprecated, use pwm_get() instead.
 351 *
 352 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 353 * failure.
 354 */
 355struct pwm_device *pwm_request(int pwm, const char *label)
 356{
 357	struct pwm_device *dev;
 358	int err;
 359
 360	if (pwm < 0 || pwm >= MAX_PWMS)
 361		return ERR_PTR(-EINVAL);
 362
 363	mutex_lock(&pwm_lock);
 364
 365	dev = pwm_to_device(pwm);
 366	if (!dev) {
 367		dev = ERR_PTR(-EPROBE_DEFER);
 368		goto out;
 369	}
 370
 371	err = pwm_device_request(dev, label);
 372	if (err < 0)
 373		dev = ERR_PTR(err);
 374
 375out:
 376	mutex_unlock(&pwm_lock);
 377
 378	return dev;
 379}
 380EXPORT_SYMBOL_GPL(pwm_request);
 381
 382/**
 383 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 384 * @chip: PWM chip
 385 * @index: per-chip index of the PWM to request
 386 * @label: a literal description string of this PWM
 387 *
 388 * Returns: A pointer to the PWM device at the given index of the given PWM
 389 * chip. A negative error code is returned if the index is not valid for the
 390 * specified PWM chip or if the PWM device cannot be requested.
 391 */
 392struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 393					 unsigned int index,
 394					 const char *label)
 395{
 396	struct pwm_device *pwm;
 397	int err;
 398
 399	if (!chip || index >= chip->npwm)
 400		return ERR_PTR(-EINVAL);
 401
 402	mutex_lock(&pwm_lock);
 403	pwm = &chip->pwms[index];
 404
 405	err = pwm_device_request(pwm, label);
 406	if (err < 0)
 407		pwm = ERR_PTR(err);
 408
 409	mutex_unlock(&pwm_lock);
 410	return pwm;
 411}
 412EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 413
 414/**
 415 * pwm_free() - free a PWM device
 416 * @pwm: PWM device
 417 *
 418 * This function is deprecated, use pwm_put() instead.
 419 */
 420void pwm_free(struct pwm_device *pwm)
 421{
 422	pwm_put(pwm);
 423}
 424EXPORT_SYMBOL_GPL(pwm_free);
 425
 426static void pwm_apply_state_debug(struct pwm_device *pwm,
 427				  const struct pwm_state *state)
 428{
 429	struct pwm_state *last = &pwm->last;
 430	struct pwm_chip *chip = pwm->chip;
 431	struct pwm_state s1, s2;
 432	int err;
 433
 434	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
 435		return;
 436
 437	/* No reasonable diagnosis possible without .get_state() */
 438	if (!chip->ops->get_state)
 439		return;
 440
 441	/*
 442	 * *state was just applied. Read out the hardware state and do some
 443	 * checks.
 444	 */
 445
 446	chip->ops->get_state(chip, pwm, &s1);
 447	trace_pwm_get(pwm, &s1);
 448
 449	/*
 450	 * The lowlevel driver either ignored .polarity (which is a bug) or as
 451	 * best effort inverted .polarity and fixed .duty_cycle respectively.
 452	 * Undo this inversion and fixup for further tests.
 453	 */
 454	if (s1.enabled && s1.polarity != state->polarity) {
 455		s2.polarity = state->polarity;
 456		s2.duty_cycle = s1.period - s1.duty_cycle;
 457		s2.period = s1.period;
 458		s2.enabled = s1.enabled;
 459	} else {
 460		s2 = s1;
 461	}
 462
 463	if (s2.polarity != state->polarity &&
 464	    state->duty_cycle < state->period)
 465		dev_warn(chip->dev, ".apply ignored .polarity\n");
 466
 467	if (state->enabled &&
 468	    last->polarity == state->polarity &&
 469	    last->period > s2.period &&
 470	    last->period <= state->period)
 471		dev_warn(chip->dev,
 472			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
 473			 state->period, s2.period, last->period);
 474
 475	if (state->enabled && state->period < s2.period)
 476		dev_warn(chip->dev,
 477			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
 478			 state->period, s2.period);
 479
 480	if (state->enabled &&
 481	    last->polarity == state->polarity &&
 482	    last->period == s2.period &&
 483	    last->duty_cycle > s2.duty_cycle &&
 484	    last->duty_cycle <= state->duty_cycle)
 485		dev_warn(chip->dev,
 486			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
 487			 state->duty_cycle, state->period,
 488			 s2.duty_cycle, s2.period,
 489			 last->duty_cycle, last->period);
 490
 491	if (state->enabled && state->duty_cycle < s2.duty_cycle)
 492		dev_warn(chip->dev,
 493			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
 494			 state->duty_cycle, state->period,
 495			 s2.duty_cycle, s2.period);
 496
 497	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
 498		dev_warn(chip->dev,
 499			 "requested disabled, but yielded enabled with duty > 0\n");
 500
 501	/* reapply the state that the driver reported being configured. */
 502	err = chip->ops->apply(chip, pwm, &s1);
 503	if (err) {
 504		*last = s1;
 505		dev_err(chip->dev, "failed to reapply current setting\n");
 506		return;
 507	}
 508
 509	trace_pwm_apply(pwm, &s1);
 510
 511	chip->ops->get_state(chip, pwm, last);
 512	trace_pwm_get(pwm, last);
 513
 514	/* reapplication of the current state should give an exact match */
 515	if (s1.enabled != last->enabled ||
 516	    s1.polarity != last->polarity ||
 517	    (s1.enabled && s1.period != last->period) ||
 518	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
 519		dev_err(chip->dev,
 520			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
 521			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
 522			last->enabled, last->polarity, last->duty_cycle,
 523			last->period);
 524	}
 525}
 526
 527/**
 528 * pwm_apply_state() - atomically apply a new state to a PWM device
 529 * @pwm: PWM device
 530 * @state: new state to apply
 531 */
 532int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
 533{
 534	struct pwm_chip *chip;
 535	int err;
 536
 537	if (!pwm || !state || !state->period ||
 538	    state->duty_cycle > state->period)
 539		return -EINVAL;
 540
 541	chip = pwm->chip;
 542
 543	if (state->period == pwm->state.period &&
 544	    state->duty_cycle == pwm->state.duty_cycle &&
 545	    state->polarity == pwm->state.polarity &&
 546	    state->enabled == pwm->state.enabled &&
 547	    state->usage_power == pwm->state.usage_power)
 548		return 0;
 549
 550	if (chip->ops->apply) {
 551		err = chip->ops->apply(chip, pwm, state);
 552		if (err)
 553			return err;
 554
 555		trace_pwm_apply(pwm, state);
 556
 557		pwm->state = *state;
 558
 559		/*
 560		 * only do this after pwm->state was applied as some
 561		 * implementations of .get_state depend on this
 562		 */
 563		pwm_apply_state_debug(pwm, state);
 564	} else {
 565		/*
 566		 * FIXME: restore the initial state in case of error.
 567		 */
 568		if (state->polarity != pwm->state.polarity) {
 569			if (!chip->ops->set_polarity)
 570				return -EINVAL;
 571
 572			/*
 573			 * Changing the polarity of a running PWM is
 574			 * only allowed when the PWM driver implements
 575			 * ->apply().
 576			 */
 577			if (pwm->state.enabled) {
 578				chip->ops->disable(chip, pwm);
 579				pwm->state.enabled = false;
 580			}
 581
 582			err = chip->ops->set_polarity(chip, pwm,
 583						      state->polarity);
 584			if (err)
 585				return err;
 586
 587			pwm->state.polarity = state->polarity;
 588		}
 589
 590		if (state->period != pwm->state.period ||
 591		    state->duty_cycle != pwm->state.duty_cycle) {
 592			err = chip->ops->config(pwm->chip, pwm,
 593						state->duty_cycle,
 594						state->period);
 595			if (err)
 596				return err;
 597
 598			pwm->state.duty_cycle = state->duty_cycle;
 599			pwm->state.period = state->period;
 600		}
 601
 602		if (state->enabled != pwm->state.enabled) {
 603			if (state->enabled) {
 604				err = chip->ops->enable(chip, pwm);
 605				if (err)
 606					return err;
 607			} else {
 608				chip->ops->disable(chip, pwm);
 609			}
 610
 611			pwm->state.enabled = state->enabled;
 612		}
 613	}
 614
 615	return 0;
 616}
 617EXPORT_SYMBOL_GPL(pwm_apply_state);
 618
 619/**
 620 * pwm_capture() - capture and report a PWM signal
 621 * @pwm: PWM device
 622 * @result: structure to fill with capture result
 623 * @timeout: time to wait, in milliseconds, before giving up on capture
 624 *
 625 * Returns: 0 on success or a negative error code on failure.
 626 */
 627int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 628		unsigned long timeout)
 629{
 630	int err;
 631
 632	if (!pwm || !pwm->chip->ops)
 633		return -EINVAL;
 634
 635	if (!pwm->chip->ops->capture)
 636		return -ENOSYS;
 637
 638	mutex_lock(&pwm_lock);
 639	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 640	mutex_unlock(&pwm_lock);
 641
 642	return err;
 643}
 644EXPORT_SYMBOL_GPL(pwm_capture);
 645
 646/**
 647 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 648 * @pwm: PWM device
 649 *
 650 * This function will adjust the PWM config to the PWM arguments provided
 651 * by the DT or PWM lookup table. This is particularly useful to adapt
 652 * the bootloader config to the Linux one.
 653 */
 654int pwm_adjust_config(struct pwm_device *pwm)
 655{
 656	struct pwm_state state;
 657	struct pwm_args pargs;
 658
 659	pwm_get_args(pwm, &pargs);
 660	pwm_get_state(pwm, &state);
 661
 662	/*
 663	 * If the current period is zero it means that either the PWM driver
 664	 * does not support initial state retrieval or the PWM has not yet
 665	 * been configured.
 666	 *
 667	 * In either case, we setup the new period and polarity, and assign a
 668	 * duty cycle of 0.
 669	 */
 670	if (!state.period) {
 671		state.duty_cycle = 0;
 672		state.period = pargs.period;
 673		state.polarity = pargs.polarity;
 674
 675		return pwm_apply_state(pwm, &state);
 676	}
 677
 678	/*
 679	 * Adjust the PWM duty cycle/period based on the period value provided
 680	 * in PWM args.
 681	 */
 682	if (pargs.period != state.period) {
 683		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 684
 685		do_div(dutycycle, state.period);
 686		state.duty_cycle = dutycycle;
 687		state.period = pargs.period;
 688	}
 689
 690	/*
 691	 * If the polarity changed, we should also change the duty cycle.
 692	 */
 693	if (pargs.polarity != state.polarity) {
 694		state.polarity = pargs.polarity;
 695		state.duty_cycle = state.period - state.duty_cycle;
 696	}
 697
 698	return pwm_apply_state(pwm, &state);
 699}
 700EXPORT_SYMBOL_GPL(pwm_adjust_config);
 701
 702static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
 703{
 704	struct pwm_chip *chip;
 705
 706	mutex_lock(&pwm_lock);
 707
 708	list_for_each_entry(chip, &pwm_chips, list)
 709		if (chip->dev && dev_fwnode(chip->dev) == fwnode) {
 710			mutex_unlock(&pwm_lock);
 711			return chip;
 712		}
 713
 714	mutex_unlock(&pwm_lock);
 715
 716	return ERR_PTR(-EPROBE_DEFER);
 717}
 718
 719static struct device_link *pwm_device_link_add(struct device *dev,
 720					       struct pwm_device *pwm)
 721{
 722	struct device_link *dl;
 723
 724	if (!dev) {
 725		/*
 726		 * No device for the PWM consumer has been provided. It may
 727		 * impact the PM sequence ordering: the PWM supplier may get
 728		 * suspended before the consumer.
 729		 */
 730		dev_warn(pwm->chip->dev,
 731			 "No consumer device specified to create a link to\n");
 732		return NULL;
 733	}
 734
 735	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
 736	if (!dl) {
 737		dev_err(dev, "failed to create device link to %s\n",
 738			dev_name(pwm->chip->dev));
 739		return ERR_PTR(-EINVAL);
 740	}
 741
 742	return dl;
 743}
 744
 745/**
 746 * of_pwm_get() - request a PWM via the PWM framework
 747 * @dev: device for PWM consumer
 748 * @np: device node to get the PWM from
 749 * @con_id: consumer name
 750 *
 751 * Returns the PWM device parsed from the phandle and index specified in the
 752 * "pwms" property of a device tree node or a negative error-code on failure.
 753 * Values parsed from the device tree are stored in the returned PWM device
 754 * object.
 755 *
 756 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 757 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 758 * lookup of the PWM index. This also means that the "pwm-names" property
 759 * becomes mandatory for devices that look up the PWM device via the con_id
 760 * parameter.
 761 *
 762 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 763 * error code on failure.
 764 */
 765struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
 766			      const char *con_id)
 767{
 768	struct pwm_device *pwm = NULL;
 769	struct of_phandle_args args;
 770	struct device_link *dl;
 771	struct pwm_chip *pc;
 772	int index = 0;
 773	int err;
 774
 775	if (con_id) {
 776		index = of_property_match_string(np, "pwm-names", con_id);
 777		if (index < 0)
 778			return ERR_PTR(index);
 779	}
 780
 781	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 782					 &args);
 783	if (err) {
 784		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 785		return ERR_PTR(err);
 786	}
 787
 788	pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
 789	if (IS_ERR(pc)) {
 790		if (PTR_ERR(pc) != -EPROBE_DEFER)
 791			pr_err("%s(): PWM chip not found\n", __func__);
 792
 793		pwm = ERR_CAST(pc);
 794		goto put;
 795	}
 796
 797	pwm = pc->of_xlate(pc, &args);
 798	if (IS_ERR(pwm))
 799		goto put;
 800
 801	dl = pwm_device_link_add(dev, pwm);
 802	if (IS_ERR(dl)) {
 803		/* of_xlate ended up calling pwm_request_from_chip() */
 804		pwm_free(pwm);
 805		pwm = ERR_CAST(dl);
 806		goto put;
 807	}
 808
 809	/*
 810	 * If a consumer name was not given, try to look it up from the
 811	 * "pwm-names" property if it exists. Otherwise use the name of
 812	 * the user device node.
 813	 */
 814	if (!con_id) {
 815		err = of_property_read_string_index(np, "pwm-names", index,
 816						    &con_id);
 817		if (err < 0)
 818			con_id = np->name;
 819	}
 820
 821	pwm->label = con_id;
 822
 823put:
 824	of_node_put(args.np);
 825
 826	return pwm;
 827}
 828EXPORT_SYMBOL_GPL(of_pwm_get);
 829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830/**
 831 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
 832 * @fwnode: firmware node to get the "pwms" property from
 833 *
 834 * Returns the PWM device parsed from the fwnode and index specified in the
 835 * "pwms" property or a negative error-code on failure.
 836 * Values parsed from the device tree are stored in the returned PWM device
 837 * object.
 838 *
 839 * This is analogous to of_pwm_get() except con_id is not yet supported.
 840 * ACPI entries must look like
 841 * Package () {"pwms", Package ()
 842 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
 843 *
 844 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 845 * error code on failure.
 846 */
 847static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
 848{
 849	struct pwm_device *pwm;
 
 850	struct fwnode_reference_args args;
 
 851	struct pwm_chip *chip;
 852	int ret;
 853
 854	memset(&args, 0, sizeof(args));
 855
 856	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
 857	if (ret < 0)
 858		return ERR_PTR(ret);
 859
 
 
 
 
 860	if (args.nargs < 2)
 861		return ERR_PTR(-EPROTO);
 862
 863	chip = fwnode_to_pwmchip(args.fwnode);
 864	if (IS_ERR(chip))
 865		return ERR_CAST(chip);
 866
 867	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
 868	if (IS_ERR(pwm))
 869		return pwm;
 870
 871	pwm->args.period = args.args[1];
 872	pwm->args.polarity = PWM_POLARITY_NORMAL;
 873
 874	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
 875		pwm->args.polarity = PWM_POLARITY_INVERSED;
 
 876
 877	return pwm;
 878}
 879
 880/**
 881 * pwm_add_table() - register PWM device consumers
 882 * @table: array of consumers to register
 883 * @num: number of consumers in table
 884 */
 885void pwm_add_table(struct pwm_lookup *table, size_t num)
 886{
 887	mutex_lock(&pwm_lookup_lock);
 888
 889	while (num--) {
 890		list_add_tail(&table->list, &pwm_lookup_list);
 891		table++;
 892	}
 893
 894	mutex_unlock(&pwm_lookup_lock);
 895}
 896
 897/**
 898 * pwm_remove_table() - unregister PWM device consumers
 899 * @table: array of consumers to unregister
 900 * @num: number of consumers in table
 901 */
 902void pwm_remove_table(struct pwm_lookup *table, size_t num)
 903{
 904	mutex_lock(&pwm_lookup_lock);
 905
 906	while (num--) {
 907		list_del(&table->list);
 908		table++;
 909	}
 910
 911	mutex_unlock(&pwm_lookup_lock);
 912}
 913
 914/**
 915 * pwm_get() - look up and request a PWM device
 916 * @dev: device for PWM consumer
 917 * @con_id: consumer name
 918 *
 919 * Lookup is first attempted using DT. If the device was not instantiated from
 920 * a device tree, a PWM chip and a relative index is looked up via a table
 921 * supplied by board setup code (see pwm_add_table()).
 922 *
 923 * Once a PWM chip has been found the specified PWM device will be requested
 924 * and is ready to be used.
 925 *
 926 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 927 * error code on failure.
 928 */
 929struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 930{
 931	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 932	const char *dev_id = dev ? dev_name(dev) : NULL;
 933	struct pwm_device *pwm;
 934	struct pwm_chip *chip;
 935	struct device_link *dl;
 936	unsigned int best = 0;
 937	struct pwm_lookup *p, *chosen = NULL;
 938	unsigned int match;
 939	int err;
 940
 941	/* look up via DT first */
 942	if (is_of_node(fwnode))
 943		return of_pwm_get(dev, to_of_node(fwnode), con_id);
 944
 945	/* then lookup via ACPI */
 946	if (is_acpi_node(fwnode)) {
 947		pwm = acpi_pwm_get(fwnode);
 948		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
 949			return pwm;
 950	}
 951
 952	/*
 953	 * We look up the provider in the static table typically provided by
 954	 * board setup code. We first try to lookup the consumer device by
 955	 * name. If the consumer device was passed in as NULL or if no match
 956	 * was found, we try to find the consumer by directly looking it up
 957	 * by name.
 958	 *
 959	 * If a match is found, the provider PWM chip is looked up by name
 960	 * and a PWM device is requested using the PWM device per-chip index.
 961	 *
 962	 * The lookup algorithm was shamelessly taken from the clock
 963	 * framework:
 964	 *
 965	 * We do slightly fuzzy matching here:
 966	 *  An entry with a NULL ID is assumed to be a wildcard.
 967	 *  If an entry has a device ID, it must match
 968	 *  If an entry has a connection ID, it must match
 969	 * Then we take the most specific entry - with the following order
 970	 * of precedence: dev+con > dev only > con only.
 971	 */
 972	mutex_lock(&pwm_lookup_lock);
 973
 974	list_for_each_entry(p, &pwm_lookup_list, list) {
 975		match = 0;
 976
 977		if (p->dev_id) {
 978			if (!dev_id || strcmp(p->dev_id, dev_id))
 979				continue;
 980
 981			match += 2;
 982		}
 983
 984		if (p->con_id) {
 985			if (!con_id || strcmp(p->con_id, con_id))
 986				continue;
 987
 988			match += 1;
 989		}
 990
 991		if (match > best) {
 992			chosen = p;
 993
 994			if (match != 3)
 995				best = match;
 996			else
 997				break;
 998		}
 999	}
1000
1001	mutex_unlock(&pwm_lookup_lock);
1002
1003	if (!chosen)
1004		return ERR_PTR(-ENODEV);
1005
1006	chip = pwmchip_find_by_name(chosen->provider);
1007
1008	/*
1009	 * If the lookup entry specifies a module, load the module and retry
1010	 * the PWM chip lookup. This can be used to work around driver load
1011	 * ordering issues if driver's can't be made to properly support the
1012	 * deferred probe mechanism.
1013	 */
1014	if (!chip && chosen->module) {
1015		err = request_module(chosen->module);
1016		if (err == 0)
1017			chip = pwmchip_find_by_name(chosen->provider);
1018	}
1019
1020	if (!chip)
1021		return ERR_PTR(-EPROBE_DEFER);
1022
1023	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1024	if (IS_ERR(pwm))
1025		return pwm;
1026
1027	dl = pwm_device_link_add(dev, pwm);
1028	if (IS_ERR(dl)) {
1029		pwm_free(pwm);
1030		return ERR_CAST(dl);
1031	}
1032
1033	pwm->args.period = chosen->period;
1034	pwm->args.polarity = chosen->polarity;
1035
1036	return pwm;
1037}
1038EXPORT_SYMBOL_GPL(pwm_get);
1039
1040/**
1041 * pwm_put() - release a PWM device
1042 * @pwm: PWM device
1043 */
1044void pwm_put(struct pwm_device *pwm)
1045{
1046	if (!pwm)
1047		return;
1048
1049	mutex_lock(&pwm_lock);
1050
1051	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1052		pr_warn("PWM device already freed\n");
1053		goto out;
1054	}
1055
1056	if (pwm->chip->ops->free)
1057		pwm->chip->ops->free(pwm->chip, pwm);
1058
1059	pwm_set_chip_data(pwm, NULL);
1060	pwm->label = NULL;
1061
1062	module_put(pwm->chip->ops->owner);
1063out:
1064	mutex_unlock(&pwm_lock);
1065}
1066EXPORT_SYMBOL_GPL(pwm_put);
1067
1068static void devm_pwm_release(void *pwm)
1069{
1070	pwm_put(pwm);
1071}
1072
1073/**
1074 * devm_pwm_get() - resource managed pwm_get()
1075 * @dev: device for PWM consumer
1076 * @con_id: consumer name
1077 *
1078 * This function performs like pwm_get() but the acquired PWM device will
1079 * automatically be released on driver detach.
1080 *
1081 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1082 * error code on failure.
1083 */
1084struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1085{
1086	struct pwm_device *pwm;
1087	int ret;
 
 
 
1088
1089	pwm = pwm_get(dev, con_id);
1090	if (IS_ERR(pwm))
1091		return pwm;
1092
1093	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1094	if (ret)
1095		return ERR_PTR(ret);
1096
1097	return pwm;
1098}
1099EXPORT_SYMBOL_GPL(devm_pwm_get);
1100
1101/**
1102 * devm_of_pwm_get() - resource managed of_pwm_get()
1103 * @dev: device for PWM consumer
1104 * @np: device node to get the PWM from
1105 * @con_id: consumer name
1106 *
1107 * This function performs like of_pwm_get() but the acquired PWM device will
1108 * automatically be released on driver detach.
1109 *
1110 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1111 * error code on failure.
1112 */
1113struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1114				   const char *con_id)
1115{
1116	struct pwm_device *pwm;
1117	int ret;
 
 
 
1118
1119	pwm = of_pwm_get(dev, np, con_id);
1120	if (IS_ERR(pwm))
1121		return pwm;
1122
1123	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1124	if (ret)
1125		return ERR_PTR(ret);
1126
1127	return pwm;
1128}
1129EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1130
1131/**
1132 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1133 * @dev: device for PWM consumer
1134 * @fwnode: firmware node to get the PWM from
1135 * @con_id: consumer name
1136 *
1137 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1138 * acpi_pwm_get() for a detailed description.
1139 *
1140 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1141 * error code on failure.
1142 */
1143struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1144				       struct fwnode_handle *fwnode,
1145				       const char *con_id)
1146{
1147	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1148	int ret;
 
 
 
1149
1150	if (is_of_node(fwnode))
1151		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1152	else if (is_acpi_node(fwnode))
1153		pwm = acpi_pwm_get(fwnode);
1154	if (IS_ERR(pwm))
1155		return pwm;
1156
1157	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1158	if (ret)
1159		return ERR_PTR(ret);
 
 
 
1160
1161	return pwm;
1162}
1163EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165#ifdef CONFIG_DEBUG_FS
1166static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1167{
1168	unsigned int i;
1169
1170	for (i = 0; i < chip->npwm; i++) {
1171		struct pwm_device *pwm = &chip->pwms[i];
1172		struct pwm_state state;
1173
1174		pwm_get_state(pwm, &state);
1175
1176		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1177
1178		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1179			seq_puts(s, " requested");
1180
1181		if (state.enabled)
1182			seq_puts(s, " enabled");
1183
1184		seq_printf(s, " period: %llu ns", state.period);
1185		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1186		seq_printf(s, " polarity: %s",
1187			   state.polarity ? "inverse" : "normal");
1188
1189		if (state.usage_power)
1190			seq_puts(s, " usage_power");
1191
1192		seq_puts(s, "\n");
1193	}
1194}
1195
1196static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1197{
1198	mutex_lock(&pwm_lock);
1199	s->private = "";
1200
1201	return seq_list_start(&pwm_chips, *pos);
1202}
1203
1204static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1205{
1206	s->private = "\n";
1207
1208	return seq_list_next(v, &pwm_chips, pos);
1209}
1210
1211static void pwm_seq_stop(struct seq_file *s, void *v)
1212{
1213	mutex_unlock(&pwm_lock);
1214}
1215
1216static int pwm_seq_show(struct seq_file *s, void *v)
1217{
1218	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1219
1220	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1221		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1222		   dev_name(chip->dev), chip->npwm,
1223		   (chip->npwm != 1) ? "s" : "");
1224
1225	pwm_dbg_show(chip, s);
1226
1227	return 0;
1228}
1229
1230static const struct seq_operations pwm_debugfs_sops = {
1231	.start = pwm_seq_start,
1232	.next = pwm_seq_next,
1233	.stop = pwm_seq_stop,
1234	.show = pwm_seq_show,
1235};
1236
1237DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
 
 
 
 
 
 
 
 
 
 
 
1238
1239static int __init pwm_debugfs_init(void)
1240{
1241	debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL,
1242			    &pwm_debugfs_fops);
1243
1244	return 0;
1245}
1246subsys_initcall(pwm_debugfs_init);
1247#endif /* CONFIG_DEBUG_FS */