Loading...
1/*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2008,2010 Intel Corporation
5 */
6
7#include <linux/intel-iommu.h>
8#include <linux/dma-resv.h>
9#include <linux/sync_file.h>
10#include <linux/uaccess.h>
11
12#include <drm/drm_syncobj.h>
13#include <drm/i915_drm.h>
14
15#include "display/intel_frontbuffer.h"
16
17#include "gem/i915_gem_ioctls.h"
18#include "gt/intel_context.h"
19#include "gt/intel_engine_pool.h"
20#include "gt/intel_gt.h"
21#include "gt/intel_gt_pm.h"
22
23#include "i915_drv.h"
24#include "i915_gem_clflush.h"
25#include "i915_gem_context.h"
26#include "i915_gem_ioctls.h"
27#include "i915_trace.h"
28
29enum {
30 FORCE_CPU_RELOC = 1,
31 FORCE_GTT_RELOC,
32 FORCE_GPU_RELOC,
33#define DBG_FORCE_RELOC 0 /* choose one of the above! */
34};
35
36#define __EXEC_OBJECT_HAS_REF BIT(31)
37#define __EXEC_OBJECT_HAS_PIN BIT(30)
38#define __EXEC_OBJECT_HAS_FENCE BIT(29)
39#define __EXEC_OBJECT_NEEDS_MAP BIT(28)
40#define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
41#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
42#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
43
44#define __EXEC_HAS_RELOC BIT(31)
45#define __EXEC_VALIDATED BIT(30)
46#define __EXEC_INTERNAL_FLAGS (~0u << 30)
47#define UPDATE PIN_OFFSET_FIXED
48
49#define BATCH_OFFSET_BIAS (256*1024)
50
51#define __I915_EXEC_ILLEGAL_FLAGS \
52 (__I915_EXEC_UNKNOWN_FLAGS | \
53 I915_EXEC_CONSTANTS_MASK | \
54 I915_EXEC_RESOURCE_STREAMER)
55
56/* Catch emission of unexpected errors for CI! */
57#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
58#undef EINVAL
59#define EINVAL ({ \
60 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
61 22; \
62})
63#endif
64
65/**
66 * DOC: User command execution
67 *
68 * Userspace submits commands to be executed on the GPU as an instruction
69 * stream within a GEM object we call a batchbuffer. This instructions may
70 * refer to other GEM objects containing auxiliary state such as kernels,
71 * samplers, render targets and even secondary batchbuffers. Userspace does
72 * not know where in the GPU memory these objects reside and so before the
73 * batchbuffer is passed to the GPU for execution, those addresses in the
74 * batchbuffer and auxiliary objects are updated. This is known as relocation,
75 * or patching. To try and avoid having to relocate each object on the next
76 * execution, userspace is told the location of those objects in this pass,
77 * but this remains just a hint as the kernel may choose a new location for
78 * any object in the future.
79 *
80 * At the level of talking to the hardware, submitting a batchbuffer for the
81 * GPU to execute is to add content to a buffer from which the HW
82 * command streamer is reading.
83 *
84 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
85 * Execlists, this command is not placed on the same buffer as the
86 * remaining items.
87 *
88 * 2. Add a command to invalidate caches to the buffer.
89 *
90 * 3. Add a batchbuffer start command to the buffer; the start command is
91 * essentially a token together with the GPU address of the batchbuffer
92 * to be executed.
93 *
94 * 4. Add a pipeline flush to the buffer.
95 *
96 * 5. Add a memory write command to the buffer to record when the GPU
97 * is done executing the batchbuffer. The memory write writes the
98 * global sequence number of the request, ``i915_request::global_seqno``;
99 * the i915 driver uses the current value in the register to determine
100 * if the GPU has completed the batchbuffer.
101 *
102 * 6. Add a user interrupt command to the buffer. This command instructs
103 * the GPU to issue an interrupt when the command, pipeline flush and
104 * memory write are completed.
105 *
106 * 7. Inform the hardware of the additional commands added to the buffer
107 * (by updating the tail pointer).
108 *
109 * Processing an execbuf ioctl is conceptually split up into a few phases.
110 *
111 * 1. Validation - Ensure all the pointers, handles and flags are valid.
112 * 2. Reservation - Assign GPU address space for every object
113 * 3. Relocation - Update any addresses to point to the final locations
114 * 4. Serialisation - Order the request with respect to its dependencies
115 * 5. Construction - Construct a request to execute the batchbuffer
116 * 6. Submission (at some point in the future execution)
117 *
118 * Reserving resources for the execbuf is the most complicated phase. We
119 * neither want to have to migrate the object in the address space, nor do
120 * we want to have to update any relocations pointing to this object. Ideally,
121 * we want to leave the object where it is and for all the existing relocations
122 * to match. If the object is given a new address, or if userspace thinks the
123 * object is elsewhere, we have to parse all the relocation entries and update
124 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
125 * all the target addresses in all of its objects match the value in the
126 * relocation entries and that they all match the presumed offsets given by the
127 * list of execbuffer objects. Using this knowledge, we know that if we haven't
128 * moved any buffers, all the relocation entries are valid and we can skip
129 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
130 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
131 *
132 * The addresses written in the objects must match the corresponding
133 * reloc.presumed_offset which in turn must match the corresponding
134 * execobject.offset.
135 *
136 * Any render targets written to in the batch must be flagged with
137 * EXEC_OBJECT_WRITE.
138 *
139 * To avoid stalling, execobject.offset should match the current
140 * address of that object within the active context.
141 *
142 * The reservation is done is multiple phases. First we try and keep any
143 * object already bound in its current location - so as long as meets the
144 * constraints imposed by the new execbuffer. Any object left unbound after the
145 * first pass is then fitted into any available idle space. If an object does
146 * not fit, all objects are removed from the reservation and the process rerun
147 * after sorting the objects into a priority order (more difficult to fit
148 * objects are tried first). Failing that, the entire VM is cleared and we try
149 * to fit the execbuf once last time before concluding that it simply will not
150 * fit.
151 *
152 * A small complication to all of this is that we allow userspace not only to
153 * specify an alignment and a size for the object in the address space, but
154 * we also allow userspace to specify the exact offset. This objects are
155 * simpler to place (the location is known a priori) all we have to do is make
156 * sure the space is available.
157 *
158 * Once all the objects are in place, patching up the buried pointers to point
159 * to the final locations is a fairly simple job of walking over the relocation
160 * entry arrays, looking up the right address and rewriting the value into
161 * the object. Simple! ... The relocation entries are stored in user memory
162 * and so to access them we have to copy them into a local buffer. That copy
163 * has to avoid taking any pagefaults as they may lead back to a GEM object
164 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
165 * the relocation into multiple passes. First we try to do everything within an
166 * atomic context (avoid the pagefaults) which requires that we never wait. If
167 * we detect that we may wait, or if we need to fault, then we have to fallback
168 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
169 * bells yet?) Dropping the mutex means that we lose all the state we have
170 * built up so far for the execbuf and we must reset any global data. However,
171 * we do leave the objects pinned in their final locations - which is a
172 * potential issue for concurrent execbufs. Once we have left the mutex, we can
173 * allocate and copy all the relocation entries into a large array at our
174 * leisure, reacquire the mutex, reclaim all the objects and other state and
175 * then proceed to update any incorrect addresses with the objects.
176 *
177 * As we process the relocation entries, we maintain a record of whether the
178 * object is being written to. Using NORELOC, we expect userspace to provide
179 * this information instead. We also check whether we can skip the relocation
180 * by comparing the expected value inside the relocation entry with the target's
181 * final address. If they differ, we have to map the current object and rewrite
182 * the 4 or 8 byte pointer within.
183 *
184 * Serialising an execbuf is quite simple according to the rules of the GEM
185 * ABI. Execution within each context is ordered by the order of submission.
186 * Writes to any GEM object are in order of submission and are exclusive. Reads
187 * from a GEM object are unordered with respect to other reads, but ordered by
188 * writes. A write submitted after a read cannot occur before the read, and
189 * similarly any read submitted after a write cannot occur before the write.
190 * Writes are ordered between engines such that only one write occurs at any
191 * time (completing any reads beforehand) - using semaphores where available
192 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
193 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
194 * reads before starting, and any read (either using set-domain or pread) must
195 * flush all GPU writes before starting. (Note we only employ a barrier before,
196 * we currently rely on userspace not concurrently starting a new execution
197 * whilst reading or writing to an object. This may be an advantage or not
198 * depending on how much you trust userspace not to shoot themselves in the
199 * foot.) Serialisation may just result in the request being inserted into
200 * a DAG awaiting its turn, but most simple is to wait on the CPU until
201 * all dependencies are resolved.
202 *
203 * After all of that, is just a matter of closing the request and handing it to
204 * the hardware (well, leaving it in a queue to be executed). However, we also
205 * offer the ability for batchbuffers to be run with elevated privileges so
206 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
207 * Before any batch is given extra privileges we first must check that it
208 * contains no nefarious instructions, we check that each instruction is from
209 * our whitelist and all registers are also from an allowed list. We first
210 * copy the user's batchbuffer to a shadow (so that the user doesn't have
211 * access to it, either by the CPU or GPU as we scan it) and then parse each
212 * instruction. If everything is ok, we set a flag telling the hardware to run
213 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
214 */
215
216struct i915_execbuffer {
217 struct drm_i915_private *i915; /** i915 backpointer */
218 struct drm_file *file; /** per-file lookup tables and limits */
219 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
220 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
221 struct i915_vma **vma;
222 unsigned int *flags;
223
224 struct intel_engine_cs *engine; /** engine to queue the request to */
225 struct intel_context *context; /* logical state for the request */
226 struct i915_gem_context *gem_context; /** caller's context */
227
228 struct i915_request *request; /** our request to build */
229 struct i915_vma *batch; /** identity of the batch obj/vma */
230
231 /** actual size of execobj[] as we may extend it for the cmdparser */
232 unsigned int buffer_count;
233
234 /** list of vma not yet bound during reservation phase */
235 struct list_head unbound;
236
237 /** list of vma that have execobj.relocation_count */
238 struct list_head relocs;
239
240 /**
241 * Track the most recently used object for relocations, as we
242 * frequently have to perform multiple relocations within the same
243 * obj/page
244 */
245 struct reloc_cache {
246 struct drm_mm_node node; /** temporary GTT binding */
247 unsigned long vaddr; /** Current kmap address */
248 unsigned long page; /** Currently mapped page index */
249 unsigned int gen; /** Cached value of INTEL_GEN */
250 bool use_64bit_reloc : 1;
251 bool has_llc : 1;
252 bool has_fence : 1;
253 bool needs_unfenced : 1;
254
255 struct i915_request *rq;
256 u32 *rq_cmd;
257 unsigned int rq_size;
258 } reloc_cache;
259
260 u64 invalid_flags; /** Set of execobj.flags that are invalid */
261 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
262
263 u32 batch_start_offset; /** Location within object of batch */
264 u32 batch_len; /** Length of batch within object */
265 u32 batch_flags; /** Flags composed for emit_bb_start() */
266
267 /**
268 * Indicate either the size of the hastable used to resolve
269 * relocation handles, or if negative that we are using a direct
270 * index into the execobj[].
271 */
272 int lut_size;
273 struct hlist_head *buckets; /** ht for relocation handles */
274};
275
276#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
277
278/*
279 * Used to convert any address to canonical form.
280 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
281 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
282 * addresses to be in a canonical form:
283 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
284 * canonical form [63:48] == [47]."
285 */
286#define GEN8_HIGH_ADDRESS_BIT 47
287static inline u64 gen8_canonical_addr(u64 address)
288{
289 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
290}
291
292static inline u64 gen8_noncanonical_addr(u64 address)
293{
294 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
295}
296
297static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
298{
299 return intel_engine_requires_cmd_parser(eb->engine) ||
300 (intel_engine_using_cmd_parser(eb->engine) &&
301 eb->args->batch_len);
302}
303
304static int eb_create(struct i915_execbuffer *eb)
305{
306 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
307 unsigned int size = 1 + ilog2(eb->buffer_count);
308
309 /*
310 * Without a 1:1 association between relocation handles and
311 * the execobject[] index, we instead create a hashtable.
312 * We size it dynamically based on available memory, starting
313 * first with 1:1 assocative hash and scaling back until
314 * the allocation succeeds.
315 *
316 * Later on we use a positive lut_size to indicate we are
317 * using this hashtable, and a negative value to indicate a
318 * direct lookup.
319 */
320 do {
321 gfp_t flags;
322
323 /* While we can still reduce the allocation size, don't
324 * raise a warning and allow the allocation to fail.
325 * On the last pass though, we want to try as hard
326 * as possible to perform the allocation and warn
327 * if it fails.
328 */
329 flags = GFP_KERNEL;
330 if (size > 1)
331 flags |= __GFP_NORETRY | __GFP_NOWARN;
332
333 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
334 flags);
335 if (eb->buckets)
336 break;
337 } while (--size);
338
339 if (unlikely(!size))
340 return -ENOMEM;
341
342 eb->lut_size = size;
343 } else {
344 eb->lut_size = -eb->buffer_count;
345 }
346
347 return 0;
348}
349
350static bool
351eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
352 const struct i915_vma *vma,
353 unsigned int flags)
354{
355 if (vma->node.size < entry->pad_to_size)
356 return true;
357
358 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
359 return true;
360
361 if (flags & EXEC_OBJECT_PINNED &&
362 vma->node.start != entry->offset)
363 return true;
364
365 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
366 vma->node.start < BATCH_OFFSET_BIAS)
367 return true;
368
369 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
370 (vma->node.start + vma->node.size - 1) >> 32)
371 return true;
372
373 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
374 !i915_vma_is_map_and_fenceable(vma))
375 return true;
376
377 return false;
378}
379
380static inline bool
381eb_pin_vma(struct i915_execbuffer *eb,
382 const struct drm_i915_gem_exec_object2 *entry,
383 struct i915_vma *vma)
384{
385 unsigned int exec_flags = *vma->exec_flags;
386 u64 pin_flags;
387
388 if (vma->node.size)
389 pin_flags = vma->node.start;
390 else
391 pin_flags = entry->offset & PIN_OFFSET_MASK;
392
393 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
394 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
395 pin_flags |= PIN_GLOBAL;
396
397 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
398 return false;
399
400 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
401 if (unlikely(i915_vma_pin_fence(vma))) {
402 i915_vma_unpin(vma);
403 return false;
404 }
405
406 if (vma->fence)
407 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
408 }
409
410 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
411 return !eb_vma_misplaced(entry, vma, exec_flags);
412}
413
414static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
415{
416 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
417
418 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
419 __i915_vma_unpin_fence(vma);
420
421 __i915_vma_unpin(vma);
422}
423
424static inline void
425eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
426{
427 if (!(*flags & __EXEC_OBJECT_HAS_PIN))
428 return;
429
430 __eb_unreserve_vma(vma, *flags);
431 *flags &= ~__EXEC_OBJECT_RESERVED;
432}
433
434static int
435eb_validate_vma(struct i915_execbuffer *eb,
436 struct drm_i915_gem_exec_object2 *entry,
437 struct i915_vma *vma)
438{
439 if (unlikely(entry->flags & eb->invalid_flags))
440 return -EINVAL;
441
442 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
443 return -EINVAL;
444
445 /*
446 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
447 * any non-page-aligned or non-canonical addresses.
448 */
449 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
450 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
451 return -EINVAL;
452
453 /* pad_to_size was once a reserved field, so sanitize it */
454 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
455 if (unlikely(offset_in_page(entry->pad_to_size)))
456 return -EINVAL;
457 } else {
458 entry->pad_to_size = 0;
459 }
460
461 if (unlikely(vma->exec_flags)) {
462 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
463 entry->handle, (int)(entry - eb->exec));
464 return -EINVAL;
465 }
466
467 /*
468 * From drm_mm perspective address space is continuous,
469 * so from this point we're always using non-canonical
470 * form internally.
471 */
472 entry->offset = gen8_noncanonical_addr(entry->offset);
473
474 if (!eb->reloc_cache.has_fence) {
475 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
476 } else {
477 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
478 eb->reloc_cache.needs_unfenced) &&
479 i915_gem_object_is_tiled(vma->obj))
480 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
481 }
482
483 if (!(entry->flags & EXEC_OBJECT_PINNED))
484 entry->flags |= eb->context_flags;
485
486 return 0;
487}
488
489static int
490eb_add_vma(struct i915_execbuffer *eb,
491 unsigned int i, unsigned batch_idx,
492 struct i915_vma *vma)
493{
494 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
495 int err;
496
497 GEM_BUG_ON(i915_vma_is_closed(vma));
498
499 if (!(eb->args->flags & __EXEC_VALIDATED)) {
500 err = eb_validate_vma(eb, entry, vma);
501 if (unlikely(err))
502 return err;
503 }
504
505 if (eb->lut_size > 0) {
506 vma->exec_handle = entry->handle;
507 hlist_add_head(&vma->exec_node,
508 &eb->buckets[hash_32(entry->handle,
509 eb->lut_size)]);
510 }
511
512 if (entry->relocation_count)
513 list_add_tail(&vma->reloc_link, &eb->relocs);
514
515 /*
516 * Stash a pointer from the vma to execobj, so we can query its flags,
517 * size, alignment etc as provided by the user. Also we stash a pointer
518 * to the vma inside the execobj so that we can use a direct lookup
519 * to find the right target VMA when doing relocations.
520 */
521 eb->vma[i] = vma;
522 eb->flags[i] = entry->flags;
523 vma->exec_flags = &eb->flags[i];
524
525 /*
526 * SNA is doing fancy tricks with compressing batch buffers, which leads
527 * to negative relocation deltas. Usually that works out ok since the
528 * relocate address is still positive, except when the batch is placed
529 * very low in the GTT. Ensure this doesn't happen.
530 *
531 * Note that actual hangs have only been observed on gen7, but for
532 * paranoia do it everywhere.
533 */
534 if (i == batch_idx) {
535 if (entry->relocation_count &&
536 !(eb->flags[i] & EXEC_OBJECT_PINNED))
537 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
538 if (eb->reloc_cache.has_fence)
539 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
540
541 eb->batch = vma;
542 }
543
544 err = 0;
545 if (eb_pin_vma(eb, entry, vma)) {
546 if (entry->offset != vma->node.start) {
547 entry->offset = vma->node.start | UPDATE;
548 eb->args->flags |= __EXEC_HAS_RELOC;
549 }
550 } else {
551 eb_unreserve_vma(vma, vma->exec_flags);
552
553 list_add_tail(&vma->exec_link, &eb->unbound);
554 if (drm_mm_node_allocated(&vma->node))
555 err = i915_vma_unbind(vma);
556 if (unlikely(err))
557 vma->exec_flags = NULL;
558 }
559 return err;
560}
561
562static inline int use_cpu_reloc(const struct reloc_cache *cache,
563 const struct drm_i915_gem_object *obj)
564{
565 if (!i915_gem_object_has_struct_page(obj))
566 return false;
567
568 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
569 return true;
570
571 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
572 return false;
573
574 return (cache->has_llc ||
575 obj->cache_dirty ||
576 obj->cache_level != I915_CACHE_NONE);
577}
578
579static int eb_reserve_vma(const struct i915_execbuffer *eb,
580 struct i915_vma *vma)
581{
582 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
583 unsigned int exec_flags = *vma->exec_flags;
584 u64 pin_flags;
585 int err;
586
587 pin_flags = PIN_USER | PIN_NONBLOCK;
588 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
589 pin_flags |= PIN_GLOBAL;
590
591 /*
592 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
593 * limit address to the first 4GBs for unflagged objects.
594 */
595 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
596 pin_flags |= PIN_ZONE_4G;
597
598 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
599 pin_flags |= PIN_MAPPABLE;
600
601 if (exec_flags & EXEC_OBJECT_PINNED) {
602 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
603 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
604 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
605 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
606 }
607
608 err = i915_vma_pin(vma,
609 entry->pad_to_size, entry->alignment,
610 pin_flags);
611 if (err)
612 return err;
613
614 if (entry->offset != vma->node.start) {
615 entry->offset = vma->node.start | UPDATE;
616 eb->args->flags |= __EXEC_HAS_RELOC;
617 }
618
619 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
620 err = i915_vma_pin_fence(vma);
621 if (unlikely(err)) {
622 i915_vma_unpin(vma);
623 return err;
624 }
625
626 if (vma->fence)
627 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
628 }
629
630 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
631 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
632
633 return 0;
634}
635
636static int eb_reserve(struct i915_execbuffer *eb)
637{
638 const unsigned int count = eb->buffer_count;
639 struct list_head last;
640 struct i915_vma *vma;
641 unsigned int i, pass;
642 int err;
643
644 /*
645 * Attempt to pin all of the buffers into the GTT.
646 * This is done in 3 phases:
647 *
648 * 1a. Unbind all objects that do not match the GTT constraints for
649 * the execbuffer (fenceable, mappable, alignment etc).
650 * 1b. Increment pin count for already bound objects.
651 * 2. Bind new objects.
652 * 3. Decrement pin count.
653 *
654 * This avoid unnecessary unbinding of later objects in order to make
655 * room for the earlier objects *unless* we need to defragment.
656 */
657
658 pass = 0;
659 err = 0;
660 do {
661 list_for_each_entry(vma, &eb->unbound, exec_link) {
662 err = eb_reserve_vma(eb, vma);
663 if (err)
664 break;
665 }
666 if (err != -ENOSPC)
667 return err;
668
669 /* Resort *all* the objects into priority order */
670 INIT_LIST_HEAD(&eb->unbound);
671 INIT_LIST_HEAD(&last);
672 for (i = 0; i < count; i++) {
673 unsigned int flags = eb->flags[i];
674 struct i915_vma *vma = eb->vma[i];
675
676 if (flags & EXEC_OBJECT_PINNED &&
677 flags & __EXEC_OBJECT_HAS_PIN)
678 continue;
679
680 eb_unreserve_vma(vma, &eb->flags[i]);
681
682 if (flags & EXEC_OBJECT_PINNED)
683 /* Pinned must have their slot */
684 list_add(&vma->exec_link, &eb->unbound);
685 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
686 /* Map require the lowest 256MiB (aperture) */
687 list_add_tail(&vma->exec_link, &eb->unbound);
688 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
689 /* Prioritise 4GiB region for restricted bo */
690 list_add(&vma->exec_link, &last);
691 else
692 list_add_tail(&vma->exec_link, &last);
693 }
694 list_splice_tail(&last, &eb->unbound);
695
696 switch (pass++) {
697 case 0:
698 break;
699
700 case 1:
701 /* Too fragmented, unbind everything and retry */
702 err = i915_gem_evict_vm(eb->context->vm);
703 if (err)
704 return err;
705 break;
706
707 default:
708 return -ENOSPC;
709 }
710 } while (1);
711}
712
713static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
714{
715 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
716 return 0;
717 else
718 return eb->buffer_count - 1;
719}
720
721static int eb_select_context(struct i915_execbuffer *eb)
722{
723 struct i915_gem_context *ctx;
724
725 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
726 if (unlikely(!ctx))
727 return -ENOENT;
728
729 eb->gem_context = ctx;
730 if (ctx->vm)
731 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
732
733 eb->context_flags = 0;
734 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
735 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
736
737 return 0;
738}
739
740static int eb_lookup_vmas(struct i915_execbuffer *eb)
741{
742 struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
743 struct drm_i915_gem_object *obj;
744 unsigned int i, batch;
745 int err;
746
747 if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
748 return -EIO;
749
750 INIT_LIST_HEAD(&eb->relocs);
751 INIT_LIST_HEAD(&eb->unbound);
752
753 batch = eb_batch_index(eb);
754
755 mutex_lock(&eb->gem_context->mutex);
756 if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
757 err = -ENOENT;
758 goto err_ctx;
759 }
760
761 for (i = 0; i < eb->buffer_count; i++) {
762 u32 handle = eb->exec[i].handle;
763 struct i915_lut_handle *lut;
764 struct i915_vma *vma;
765
766 vma = radix_tree_lookup(handles_vma, handle);
767 if (likely(vma))
768 goto add_vma;
769
770 obj = i915_gem_object_lookup(eb->file, handle);
771 if (unlikely(!obj)) {
772 err = -ENOENT;
773 goto err_vma;
774 }
775
776 vma = i915_vma_instance(obj, eb->context->vm, NULL);
777 if (IS_ERR(vma)) {
778 err = PTR_ERR(vma);
779 goto err_obj;
780 }
781
782 lut = i915_lut_handle_alloc();
783 if (unlikely(!lut)) {
784 err = -ENOMEM;
785 goto err_obj;
786 }
787
788 err = radix_tree_insert(handles_vma, handle, vma);
789 if (unlikely(err)) {
790 i915_lut_handle_free(lut);
791 goto err_obj;
792 }
793
794 /* transfer ref to lut */
795 if (!atomic_fetch_inc(&vma->open_count))
796 i915_vma_reopen(vma);
797 lut->handle = handle;
798 lut->ctx = eb->gem_context;
799
800 i915_gem_object_lock(obj);
801 list_add(&lut->obj_link, &obj->lut_list);
802 i915_gem_object_unlock(obj);
803
804add_vma:
805 err = eb_add_vma(eb, i, batch, vma);
806 if (unlikely(err))
807 goto err_vma;
808
809 GEM_BUG_ON(vma != eb->vma[i]);
810 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
811 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
812 eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
813 }
814
815 mutex_unlock(&eb->gem_context->mutex);
816
817 eb->args->flags |= __EXEC_VALIDATED;
818 return eb_reserve(eb);
819
820err_obj:
821 i915_gem_object_put(obj);
822err_vma:
823 eb->vma[i] = NULL;
824err_ctx:
825 mutex_unlock(&eb->gem_context->mutex);
826 return err;
827}
828
829static struct i915_vma *
830eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
831{
832 if (eb->lut_size < 0) {
833 if (handle >= -eb->lut_size)
834 return NULL;
835 return eb->vma[handle];
836 } else {
837 struct hlist_head *head;
838 struct i915_vma *vma;
839
840 head = &eb->buckets[hash_32(handle, eb->lut_size)];
841 hlist_for_each_entry(vma, head, exec_node) {
842 if (vma->exec_handle == handle)
843 return vma;
844 }
845 return NULL;
846 }
847}
848
849static void eb_release_vmas(const struct i915_execbuffer *eb)
850{
851 const unsigned int count = eb->buffer_count;
852 unsigned int i;
853
854 for (i = 0; i < count; i++) {
855 struct i915_vma *vma = eb->vma[i];
856 unsigned int flags = eb->flags[i];
857
858 if (!vma)
859 break;
860
861 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
862 vma->exec_flags = NULL;
863 eb->vma[i] = NULL;
864
865 if (flags & __EXEC_OBJECT_HAS_PIN)
866 __eb_unreserve_vma(vma, flags);
867
868 if (flags & __EXEC_OBJECT_HAS_REF)
869 i915_vma_put(vma);
870 }
871}
872
873static void eb_reset_vmas(const struct i915_execbuffer *eb)
874{
875 eb_release_vmas(eb);
876 if (eb->lut_size > 0)
877 memset(eb->buckets, 0,
878 sizeof(struct hlist_head) << eb->lut_size);
879}
880
881static void eb_destroy(const struct i915_execbuffer *eb)
882{
883 GEM_BUG_ON(eb->reloc_cache.rq);
884
885 if (eb->lut_size > 0)
886 kfree(eb->buckets);
887}
888
889static inline u64
890relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
891 const struct i915_vma *target)
892{
893 return gen8_canonical_addr((int)reloc->delta + target->node.start);
894}
895
896static void reloc_cache_init(struct reloc_cache *cache,
897 struct drm_i915_private *i915)
898{
899 cache->page = -1;
900 cache->vaddr = 0;
901 /* Must be a variable in the struct to allow GCC to unroll. */
902 cache->gen = INTEL_GEN(i915);
903 cache->has_llc = HAS_LLC(i915);
904 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
905 cache->has_fence = cache->gen < 4;
906 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
907 cache->node.allocated = false;
908 cache->rq = NULL;
909 cache->rq_size = 0;
910}
911
912static inline void *unmask_page(unsigned long p)
913{
914 return (void *)(uintptr_t)(p & PAGE_MASK);
915}
916
917static inline unsigned int unmask_flags(unsigned long p)
918{
919 return p & ~PAGE_MASK;
920}
921
922#define KMAP 0x4 /* after CLFLUSH_FLAGS */
923
924static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
925{
926 struct drm_i915_private *i915 =
927 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
928 return &i915->ggtt;
929}
930
931static void reloc_gpu_flush(struct reloc_cache *cache)
932{
933 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
934 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
935
936 __i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
937 i915_gem_object_unpin_map(cache->rq->batch->obj);
938
939 intel_gt_chipset_flush(cache->rq->engine->gt);
940
941 i915_request_add(cache->rq);
942 cache->rq = NULL;
943}
944
945static void reloc_cache_reset(struct reloc_cache *cache)
946{
947 void *vaddr;
948
949 if (cache->rq)
950 reloc_gpu_flush(cache);
951
952 if (!cache->vaddr)
953 return;
954
955 vaddr = unmask_page(cache->vaddr);
956 if (cache->vaddr & KMAP) {
957 if (cache->vaddr & CLFLUSH_AFTER)
958 mb();
959
960 kunmap_atomic(vaddr);
961 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
962 } else {
963 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
964
965 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
966 io_mapping_unmap_atomic((void __iomem *)vaddr);
967
968 if (cache->node.allocated) {
969 ggtt->vm.clear_range(&ggtt->vm,
970 cache->node.start,
971 cache->node.size);
972 drm_mm_remove_node(&cache->node);
973 } else {
974 i915_vma_unpin((struct i915_vma *)cache->node.mm);
975 }
976 }
977
978 cache->vaddr = 0;
979 cache->page = -1;
980}
981
982static void *reloc_kmap(struct drm_i915_gem_object *obj,
983 struct reloc_cache *cache,
984 unsigned long page)
985{
986 void *vaddr;
987
988 if (cache->vaddr) {
989 kunmap_atomic(unmask_page(cache->vaddr));
990 } else {
991 unsigned int flushes;
992 int err;
993
994 err = i915_gem_object_prepare_write(obj, &flushes);
995 if (err)
996 return ERR_PTR(err);
997
998 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
999 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1000
1001 cache->vaddr = flushes | KMAP;
1002 cache->node.mm = (void *)obj;
1003 if (flushes)
1004 mb();
1005 }
1006
1007 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1008 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1009 cache->page = page;
1010
1011 return vaddr;
1012}
1013
1014static void *reloc_iomap(struct drm_i915_gem_object *obj,
1015 struct reloc_cache *cache,
1016 unsigned long page)
1017{
1018 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1019 unsigned long offset;
1020 void *vaddr;
1021
1022 if (cache->vaddr) {
1023 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1024 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1025 } else {
1026 struct i915_vma *vma;
1027 int err;
1028
1029 if (i915_gem_object_is_tiled(obj))
1030 return ERR_PTR(-EINVAL);
1031
1032 if (use_cpu_reloc(cache, obj))
1033 return NULL;
1034
1035 i915_gem_object_lock(obj);
1036 err = i915_gem_object_set_to_gtt_domain(obj, true);
1037 i915_gem_object_unlock(obj);
1038 if (err)
1039 return ERR_PTR(err);
1040
1041 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1042 PIN_MAPPABLE |
1043 PIN_NONBLOCK /* NOWARN */ |
1044 PIN_NOEVICT);
1045 if (IS_ERR(vma)) {
1046 memset(&cache->node, 0, sizeof(cache->node));
1047 err = drm_mm_insert_node_in_range
1048 (&ggtt->vm.mm, &cache->node,
1049 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1050 0, ggtt->mappable_end,
1051 DRM_MM_INSERT_LOW);
1052 if (err) /* no inactive aperture space, use cpu reloc */
1053 return NULL;
1054 } else {
1055 cache->node.start = vma->node.start;
1056 cache->node.mm = (void *)vma;
1057 }
1058 }
1059
1060 offset = cache->node.start;
1061 if (cache->node.allocated) {
1062 ggtt->vm.insert_page(&ggtt->vm,
1063 i915_gem_object_get_dma_address(obj, page),
1064 offset, I915_CACHE_NONE, 0);
1065 } else {
1066 offset += page << PAGE_SHIFT;
1067 }
1068
1069 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1070 offset);
1071 cache->page = page;
1072 cache->vaddr = (unsigned long)vaddr;
1073
1074 return vaddr;
1075}
1076
1077static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1078 struct reloc_cache *cache,
1079 unsigned long page)
1080{
1081 void *vaddr;
1082
1083 if (cache->page == page) {
1084 vaddr = unmask_page(cache->vaddr);
1085 } else {
1086 vaddr = NULL;
1087 if ((cache->vaddr & KMAP) == 0)
1088 vaddr = reloc_iomap(obj, cache, page);
1089 if (!vaddr)
1090 vaddr = reloc_kmap(obj, cache, page);
1091 }
1092
1093 return vaddr;
1094}
1095
1096static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1097{
1098 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1099 if (flushes & CLFLUSH_BEFORE) {
1100 clflushopt(addr);
1101 mb();
1102 }
1103
1104 *addr = value;
1105
1106 /*
1107 * Writes to the same cacheline are serialised by the CPU
1108 * (including clflush). On the write path, we only require
1109 * that it hits memory in an orderly fashion and place
1110 * mb barriers at the start and end of the relocation phase
1111 * to ensure ordering of clflush wrt to the system.
1112 */
1113 if (flushes & CLFLUSH_AFTER)
1114 clflushopt(addr);
1115 } else
1116 *addr = value;
1117}
1118
1119static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1120{
1121 struct drm_i915_gem_object *obj = vma->obj;
1122 int err;
1123
1124 i915_vma_lock(vma);
1125
1126 if (obj->cache_dirty & ~obj->cache_coherent)
1127 i915_gem_clflush_object(obj, 0);
1128 obj->write_domain = 0;
1129
1130 err = i915_request_await_object(rq, vma->obj, true);
1131 if (err == 0)
1132 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1133
1134 i915_vma_unlock(vma);
1135
1136 return err;
1137}
1138
1139static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1140 struct i915_vma *vma,
1141 unsigned int len)
1142{
1143 struct reloc_cache *cache = &eb->reloc_cache;
1144 struct intel_engine_pool_node *pool;
1145 struct i915_request *rq;
1146 struct i915_vma *batch;
1147 u32 *cmd;
1148 int err;
1149
1150 pool = intel_engine_pool_get(&eb->engine->pool, PAGE_SIZE);
1151 if (IS_ERR(pool))
1152 return PTR_ERR(pool);
1153
1154 cmd = i915_gem_object_pin_map(pool->obj,
1155 cache->has_llc ?
1156 I915_MAP_FORCE_WB :
1157 I915_MAP_FORCE_WC);
1158 if (IS_ERR(cmd)) {
1159 err = PTR_ERR(cmd);
1160 goto out_pool;
1161 }
1162
1163 batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1164 if (IS_ERR(batch)) {
1165 err = PTR_ERR(batch);
1166 goto err_unmap;
1167 }
1168
1169 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1170 if (err)
1171 goto err_unmap;
1172
1173 rq = i915_request_create(eb->context);
1174 if (IS_ERR(rq)) {
1175 err = PTR_ERR(rq);
1176 goto err_unpin;
1177 }
1178
1179 err = intel_engine_pool_mark_active(pool, rq);
1180 if (err)
1181 goto err_request;
1182
1183 err = reloc_move_to_gpu(rq, vma);
1184 if (err)
1185 goto err_request;
1186
1187 err = eb->engine->emit_bb_start(rq,
1188 batch->node.start, PAGE_SIZE,
1189 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1190 if (err)
1191 goto skip_request;
1192
1193 i915_vma_lock(batch);
1194 err = i915_request_await_object(rq, batch->obj, false);
1195 if (err == 0)
1196 err = i915_vma_move_to_active(batch, rq, 0);
1197 i915_vma_unlock(batch);
1198 if (err)
1199 goto skip_request;
1200
1201 rq->batch = batch;
1202 i915_vma_unpin(batch);
1203
1204 cache->rq = rq;
1205 cache->rq_cmd = cmd;
1206 cache->rq_size = 0;
1207
1208 /* Return with batch mapping (cmd) still pinned */
1209 goto out_pool;
1210
1211skip_request:
1212 i915_request_skip(rq, err);
1213err_request:
1214 i915_request_add(rq);
1215err_unpin:
1216 i915_vma_unpin(batch);
1217err_unmap:
1218 i915_gem_object_unpin_map(pool->obj);
1219out_pool:
1220 intel_engine_pool_put(pool);
1221 return err;
1222}
1223
1224static u32 *reloc_gpu(struct i915_execbuffer *eb,
1225 struct i915_vma *vma,
1226 unsigned int len)
1227{
1228 struct reloc_cache *cache = &eb->reloc_cache;
1229 u32 *cmd;
1230
1231 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1232 reloc_gpu_flush(cache);
1233
1234 if (unlikely(!cache->rq)) {
1235 int err;
1236
1237 /* If we need to copy for the cmdparser, we will stall anyway */
1238 if (eb_use_cmdparser(eb))
1239 return ERR_PTR(-EWOULDBLOCK);
1240
1241 if (!intel_engine_can_store_dword(eb->engine))
1242 return ERR_PTR(-ENODEV);
1243
1244 err = __reloc_gpu_alloc(eb, vma, len);
1245 if (unlikely(err))
1246 return ERR_PTR(err);
1247 }
1248
1249 cmd = cache->rq_cmd + cache->rq_size;
1250 cache->rq_size += len;
1251
1252 return cmd;
1253}
1254
1255static u64
1256relocate_entry(struct i915_vma *vma,
1257 const struct drm_i915_gem_relocation_entry *reloc,
1258 struct i915_execbuffer *eb,
1259 const struct i915_vma *target)
1260{
1261 u64 offset = reloc->offset;
1262 u64 target_offset = relocation_target(reloc, target);
1263 bool wide = eb->reloc_cache.use_64bit_reloc;
1264 void *vaddr;
1265
1266 if (!eb->reloc_cache.vaddr &&
1267 (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1268 !dma_resv_test_signaled_rcu(vma->resv, true))) {
1269 const unsigned int gen = eb->reloc_cache.gen;
1270 unsigned int len;
1271 u32 *batch;
1272 u64 addr;
1273
1274 if (wide)
1275 len = offset & 7 ? 8 : 5;
1276 else if (gen >= 4)
1277 len = 4;
1278 else
1279 len = 3;
1280
1281 batch = reloc_gpu(eb, vma, len);
1282 if (IS_ERR(batch))
1283 goto repeat;
1284
1285 addr = gen8_canonical_addr(vma->node.start + offset);
1286 if (wide) {
1287 if (offset & 7) {
1288 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1289 *batch++ = lower_32_bits(addr);
1290 *batch++ = upper_32_bits(addr);
1291 *batch++ = lower_32_bits(target_offset);
1292
1293 addr = gen8_canonical_addr(addr + 4);
1294
1295 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1296 *batch++ = lower_32_bits(addr);
1297 *batch++ = upper_32_bits(addr);
1298 *batch++ = upper_32_bits(target_offset);
1299 } else {
1300 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1301 *batch++ = lower_32_bits(addr);
1302 *batch++ = upper_32_bits(addr);
1303 *batch++ = lower_32_bits(target_offset);
1304 *batch++ = upper_32_bits(target_offset);
1305 }
1306 } else if (gen >= 6) {
1307 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1308 *batch++ = 0;
1309 *batch++ = addr;
1310 *batch++ = target_offset;
1311 } else if (gen >= 4) {
1312 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1313 *batch++ = 0;
1314 *batch++ = addr;
1315 *batch++ = target_offset;
1316 } else {
1317 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1318 *batch++ = addr;
1319 *batch++ = target_offset;
1320 }
1321
1322 goto out;
1323 }
1324
1325repeat:
1326 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1327 if (IS_ERR(vaddr))
1328 return PTR_ERR(vaddr);
1329
1330 clflush_write32(vaddr + offset_in_page(offset),
1331 lower_32_bits(target_offset),
1332 eb->reloc_cache.vaddr);
1333
1334 if (wide) {
1335 offset += sizeof(u32);
1336 target_offset >>= 32;
1337 wide = false;
1338 goto repeat;
1339 }
1340
1341out:
1342 return target->node.start | UPDATE;
1343}
1344
1345static u64
1346eb_relocate_entry(struct i915_execbuffer *eb,
1347 struct i915_vma *vma,
1348 const struct drm_i915_gem_relocation_entry *reloc)
1349{
1350 struct i915_vma *target;
1351 int err;
1352
1353 /* we've already hold a reference to all valid objects */
1354 target = eb_get_vma(eb, reloc->target_handle);
1355 if (unlikely(!target))
1356 return -ENOENT;
1357
1358 /* Validate that the target is in a valid r/w GPU domain */
1359 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1360 DRM_DEBUG("reloc with multiple write domains: "
1361 "target %d offset %d "
1362 "read %08x write %08x",
1363 reloc->target_handle,
1364 (int) reloc->offset,
1365 reloc->read_domains,
1366 reloc->write_domain);
1367 return -EINVAL;
1368 }
1369 if (unlikely((reloc->write_domain | reloc->read_domains)
1370 & ~I915_GEM_GPU_DOMAINS)) {
1371 DRM_DEBUG("reloc with read/write non-GPU domains: "
1372 "target %d offset %d "
1373 "read %08x write %08x",
1374 reloc->target_handle,
1375 (int) reloc->offset,
1376 reloc->read_domains,
1377 reloc->write_domain);
1378 return -EINVAL;
1379 }
1380
1381 if (reloc->write_domain) {
1382 *target->exec_flags |= EXEC_OBJECT_WRITE;
1383
1384 /*
1385 * Sandybridge PPGTT errata: We need a global gtt mapping
1386 * for MI and pipe_control writes because the gpu doesn't
1387 * properly redirect them through the ppgtt for non_secure
1388 * batchbuffers.
1389 */
1390 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1391 IS_GEN(eb->i915, 6)) {
1392 err = i915_vma_bind(target, target->obj->cache_level,
1393 PIN_GLOBAL);
1394 if (WARN_ONCE(err,
1395 "Unexpected failure to bind target VMA!"))
1396 return err;
1397 }
1398 }
1399
1400 /*
1401 * If the relocation already has the right value in it, no
1402 * more work needs to be done.
1403 */
1404 if (!DBG_FORCE_RELOC &&
1405 gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1406 return 0;
1407
1408 /* Check that the relocation address is valid... */
1409 if (unlikely(reloc->offset >
1410 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1411 DRM_DEBUG("Relocation beyond object bounds: "
1412 "target %d offset %d size %d.\n",
1413 reloc->target_handle,
1414 (int)reloc->offset,
1415 (int)vma->size);
1416 return -EINVAL;
1417 }
1418 if (unlikely(reloc->offset & 3)) {
1419 DRM_DEBUG("Relocation not 4-byte aligned: "
1420 "target %d offset %d.\n",
1421 reloc->target_handle,
1422 (int)reloc->offset);
1423 return -EINVAL;
1424 }
1425
1426 /*
1427 * If we write into the object, we need to force the synchronisation
1428 * barrier, either with an asynchronous clflush or if we executed the
1429 * patching using the GPU (though that should be serialised by the
1430 * timeline). To be completely sure, and since we are required to
1431 * do relocations we are already stalling, disable the user's opt
1432 * out of our synchronisation.
1433 */
1434 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1435
1436 /* and update the user's relocation entry */
1437 return relocate_entry(vma, reloc, eb, target);
1438}
1439
1440static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1441{
1442#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1443 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1444 struct drm_i915_gem_relocation_entry __user *urelocs;
1445 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1446 unsigned int remain;
1447
1448 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1449 remain = entry->relocation_count;
1450 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1451 return -EINVAL;
1452
1453 /*
1454 * We must check that the entire relocation array is safe
1455 * to read. However, if the array is not writable the user loses
1456 * the updated relocation values.
1457 */
1458 if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1459 return -EFAULT;
1460
1461 do {
1462 struct drm_i915_gem_relocation_entry *r = stack;
1463 unsigned int count =
1464 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1465 unsigned int copied;
1466
1467 /*
1468 * This is the fast path and we cannot handle a pagefault
1469 * whilst holding the struct mutex lest the user pass in the
1470 * relocations contained within a mmaped bo. For in such a case
1471 * we, the page fault handler would call i915_gem_fault() and
1472 * we would try to acquire the struct mutex again. Obviously
1473 * this is bad and so lockdep complains vehemently.
1474 */
1475 pagefault_disable();
1476 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1477 pagefault_enable();
1478 if (unlikely(copied)) {
1479 remain = -EFAULT;
1480 goto out;
1481 }
1482
1483 remain -= count;
1484 do {
1485 u64 offset = eb_relocate_entry(eb, vma, r);
1486
1487 if (likely(offset == 0)) {
1488 } else if ((s64)offset < 0) {
1489 remain = (int)offset;
1490 goto out;
1491 } else {
1492 /*
1493 * Note that reporting an error now
1494 * leaves everything in an inconsistent
1495 * state as we have *already* changed
1496 * the relocation value inside the
1497 * object. As we have not changed the
1498 * reloc.presumed_offset or will not
1499 * change the execobject.offset, on the
1500 * call we may not rewrite the value
1501 * inside the object, leaving it
1502 * dangling and causing a GPU hang. Unless
1503 * userspace dynamically rebuilds the
1504 * relocations on each execbuf rather than
1505 * presume a static tree.
1506 *
1507 * We did previously check if the relocations
1508 * were writable (access_ok), an error now
1509 * would be a strange race with mprotect,
1510 * having already demonstrated that we
1511 * can read from this userspace address.
1512 */
1513 offset = gen8_canonical_addr(offset & ~UPDATE);
1514 if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
1515 remain = -EFAULT;
1516 goto out;
1517 }
1518 }
1519 } while (r++, --count);
1520 urelocs += ARRAY_SIZE(stack);
1521 } while (remain);
1522out:
1523 reloc_cache_reset(&eb->reloc_cache);
1524 return remain;
1525}
1526
1527static int
1528eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1529{
1530 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1531 struct drm_i915_gem_relocation_entry *relocs =
1532 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1533 unsigned int i;
1534 int err;
1535
1536 for (i = 0; i < entry->relocation_count; i++) {
1537 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1538
1539 if ((s64)offset < 0) {
1540 err = (int)offset;
1541 goto err;
1542 }
1543 }
1544 err = 0;
1545err:
1546 reloc_cache_reset(&eb->reloc_cache);
1547 return err;
1548}
1549
1550static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1551{
1552 const char __user *addr, *end;
1553 unsigned long size;
1554 char __maybe_unused c;
1555
1556 size = entry->relocation_count;
1557 if (size == 0)
1558 return 0;
1559
1560 if (size > N_RELOC(ULONG_MAX))
1561 return -EINVAL;
1562
1563 addr = u64_to_user_ptr(entry->relocs_ptr);
1564 size *= sizeof(struct drm_i915_gem_relocation_entry);
1565 if (!access_ok(addr, size))
1566 return -EFAULT;
1567
1568 end = addr + size;
1569 for (; addr < end; addr += PAGE_SIZE) {
1570 int err = __get_user(c, addr);
1571 if (err)
1572 return err;
1573 }
1574 return __get_user(c, end - 1);
1575}
1576
1577static int eb_copy_relocations(const struct i915_execbuffer *eb)
1578{
1579 struct drm_i915_gem_relocation_entry *relocs;
1580 const unsigned int count = eb->buffer_count;
1581 unsigned int i;
1582 int err;
1583
1584 for (i = 0; i < count; i++) {
1585 const unsigned int nreloc = eb->exec[i].relocation_count;
1586 struct drm_i915_gem_relocation_entry __user *urelocs;
1587 unsigned long size;
1588 unsigned long copied;
1589
1590 if (nreloc == 0)
1591 continue;
1592
1593 err = check_relocations(&eb->exec[i]);
1594 if (err)
1595 goto err;
1596
1597 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1598 size = nreloc * sizeof(*relocs);
1599
1600 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1601 if (!relocs) {
1602 err = -ENOMEM;
1603 goto err;
1604 }
1605
1606 /* copy_from_user is limited to < 4GiB */
1607 copied = 0;
1608 do {
1609 unsigned int len =
1610 min_t(u64, BIT_ULL(31), size - copied);
1611
1612 if (__copy_from_user((char *)relocs + copied,
1613 (char __user *)urelocs + copied,
1614 len))
1615 goto end;
1616
1617 copied += len;
1618 } while (copied < size);
1619
1620 /*
1621 * As we do not update the known relocation offsets after
1622 * relocating (due to the complexities in lock handling),
1623 * we need to mark them as invalid now so that we force the
1624 * relocation processing next time. Just in case the target
1625 * object is evicted and then rebound into its old
1626 * presumed_offset before the next execbuffer - if that
1627 * happened we would make the mistake of assuming that the
1628 * relocations were valid.
1629 */
1630 if (!user_access_begin(urelocs, size))
1631 goto end;
1632
1633 for (copied = 0; copied < nreloc; copied++)
1634 unsafe_put_user(-1,
1635 &urelocs[copied].presumed_offset,
1636 end_user);
1637 user_access_end();
1638
1639 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1640 }
1641
1642 return 0;
1643
1644end_user:
1645 user_access_end();
1646end:
1647 kvfree(relocs);
1648 err = -EFAULT;
1649err:
1650 while (i--) {
1651 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1652 if (eb->exec[i].relocation_count)
1653 kvfree(relocs);
1654 }
1655 return err;
1656}
1657
1658static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1659{
1660 const unsigned int count = eb->buffer_count;
1661 unsigned int i;
1662
1663 if (unlikely(i915_modparams.prefault_disable))
1664 return 0;
1665
1666 for (i = 0; i < count; i++) {
1667 int err;
1668
1669 err = check_relocations(&eb->exec[i]);
1670 if (err)
1671 return err;
1672 }
1673
1674 return 0;
1675}
1676
1677static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1678{
1679 struct drm_device *dev = &eb->i915->drm;
1680 bool have_copy = false;
1681 struct i915_vma *vma;
1682 int err = 0;
1683
1684repeat:
1685 if (signal_pending(current)) {
1686 err = -ERESTARTSYS;
1687 goto out;
1688 }
1689
1690 /* We may process another execbuffer during the unlock... */
1691 eb_reset_vmas(eb);
1692 mutex_unlock(&dev->struct_mutex);
1693
1694 /*
1695 * We take 3 passes through the slowpatch.
1696 *
1697 * 1 - we try to just prefault all the user relocation entries and
1698 * then attempt to reuse the atomic pagefault disabled fast path again.
1699 *
1700 * 2 - we copy the user entries to a local buffer here outside of the
1701 * local and allow ourselves to wait upon any rendering before
1702 * relocations
1703 *
1704 * 3 - we already have a local copy of the relocation entries, but
1705 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1706 */
1707 if (!err) {
1708 err = eb_prefault_relocations(eb);
1709 } else if (!have_copy) {
1710 err = eb_copy_relocations(eb);
1711 have_copy = err == 0;
1712 } else {
1713 cond_resched();
1714 err = 0;
1715 }
1716 if (err) {
1717 mutex_lock(&dev->struct_mutex);
1718 goto out;
1719 }
1720
1721 /* A frequent cause for EAGAIN are currently unavailable client pages */
1722 flush_workqueue(eb->i915->mm.userptr_wq);
1723
1724 err = i915_mutex_lock_interruptible(dev);
1725 if (err) {
1726 mutex_lock(&dev->struct_mutex);
1727 goto out;
1728 }
1729
1730 /* reacquire the objects */
1731 err = eb_lookup_vmas(eb);
1732 if (err)
1733 goto err;
1734
1735 GEM_BUG_ON(!eb->batch);
1736
1737 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1738 if (!have_copy) {
1739 pagefault_disable();
1740 err = eb_relocate_vma(eb, vma);
1741 pagefault_enable();
1742 if (err)
1743 goto repeat;
1744 } else {
1745 err = eb_relocate_vma_slow(eb, vma);
1746 if (err)
1747 goto err;
1748 }
1749 }
1750
1751 /*
1752 * Leave the user relocations as are, this is the painfully slow path,
1753 * and we want to avoid the complication of dropping the lock whilst
1754 * having buffers reserved in the aperture and so causing spurious
1755 * ENOSPC for random operations.
1756 */
1757
1758err:
1759 if (err == -EAGAIN)
1760 goto repeat;
1761
1762out:
1763 if (have_copy) {
1764 const unsigned int count = eb->buffer_count;
1765 unsigned int i;
1766
1767 for (i = 0; i < count; i++) {
1768 const struct drm_i915_gem_exec_object2 *entry =
1769 &eb->exec[i];
1770 struct drm_i915_gem_relocation_entry *relocs;
1771
1772 if (!entry->relocation_count)
1773 continue;
1774
1775 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1776 kvfree(relocs);
1777 }
1778 }
1779
1780 return err;
1781}
1782
1783static int eb_relocate(struct i915_execbuffer *eb)
1784{
1785 if (eb_lookup_vmas(eb))
1786 goto slow;
1787
1788 /* The objects are in their final locations, apply the relocations. */
1789 if (eb->args->flags & __EXEC_HAS_RELOC) {
1790 struct i915_vma *vma;
1791
1792 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1793 if (eb_relocate_vma(eb, vma))
1794 goto slow;
1795 }
1796 }
1797
1798 return 0;
1799
1800slow:
1801 return eb_relocate_slow(eb);
1802}
1803
1804static int eb_move_to_gpu(struct i915_execbuffer *eb)
1805{
1806 const unsigned int count = eb->buffer_count;
1807 struct ww_acquire_ctx acquire;
1808 unsigned int i;
1809 int err = 0;
1810
1811 ww_acquire_init(&acquire, &reservation_ww_class);
1812
1813 for (i = 0; i < count; i++) {
1814 struct i915_vma *vma = eb->vma[i];
1815
1816 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1817 if (!err)
1818 continue;
1819
1820 GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */
1821
1822 if (err == -EDEADLK) {
1823 GEM_BUG_ON(i == 0);
1824 do {
1825 int j = i - 1;
1826
1827 ww_mutex_unlock(&eb->vma[j]->resv->lock);
1828
1829 swap(eb->flags[i], eb->flags[j]);
1830 swap(eb->vma[i], eb->vma[j]);
1831 eb->vma[i]->exec_flags = &eb->flags[i];
1832 } while (--i);
1833 GEM_BUG_ON(vma != eb->vma[0]);
1834 vma->exec_flags = &eb->flags[0];
1835
1836 err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1837 &acquire);
1838 }
1839 if (err)
1840 break;
1841 }
1842 ww_acquire_done(&acquire);
1843
1844 while (i--) {
1845 unsigned int flags = eb->flags[i];
1846 struct i915_vma *vma = eb->vma[i];
1847 struct drm_i915_gem_object *obj = vma->obj;
1848
1849 assert_vma_held(vma);
1850
1851 if (flags & EXEC_OBJECT_CAPTURE) {
1852 struct i915_capture_list *capture;
1853
1854 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1855 if (capture) {
1856 capture->next = eb->request->capture_list;
1857 capture->vma = vma;
1858 eb->request->capture_list = capture;
1859 }
1860 }
1861
1862 /*
1863 * If the GPU is not _reading_ through the CPU cache, we need
1864 * to make sure that any writes (both previous GPU writes from
1865 * before a change in snooping levels and normal CPU writes)
1866 * caught in that cache are flushed to main memory.
1867 *
1868 * We want to say
1869 * obj->cache_dirty &&
1870 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1871 * but gcc's optimiser doesn't handle that as well and emits
1872 * two jumps instead of one. Maybe one day...
1873 */
1874 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1875 if (i915_gem_clflush_object(obj, 0))
1876 flags &= ~EXEC_OBJECT_ASYNC;
1877 }
1878
1879 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1880 err = i915_request_await_object
1881 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1882 }
1883
1884 if (err == 0)
1885 err = i915_vma_move_to_active(vma, eb->request, flags);
1886
1887 i915_vma_unlock(vma);
1888
1889 __eb_unreserve_vma(vma, flags);
1890 vma->exec_flags = NULL;
1891
1892 if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1893 i915_vma_put(vma);
1894 }
1895 ww_acquire_fini(&acquire);
1896
1897 if (unlikely(err))
1898 goto err_skip;
1899
1900 eb->exec = NULL;
1901
1902 /* Unconditionally flush any chipset caches (for streaming writes). */
1903 intel_gt_chipset_flush(eb->engine->gt);
1904 return 0;
1905
1906err_skip:
1907 i915_request_skip(eb->request, err);
1908 return err;
1909}
1910
1911static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1912{
1913 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1914 return false;
1915
1916 /* Kernel clipping was a DRI1 misfeature */
1917 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1918 if (exec->num_cliprects || exec->cliprects_ptr)
1919 return false;
1920 }
1921
1922 if (exec->DR4 == 0xffffffff) {
1923 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1924 exec->DR4 = 0;
1925 }
1926 if (exec->DR1 || exec->DR4)
1927 return false;
1928
1929 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1930 return false;
1931
1932 return true;
1933}
1934
1935static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1936{
1937 u32 *cs;
1938 int i;
1939
1940 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1941 DRM_DEBUG("sol reset is gen7/rcs only\n");
1942 return -EINVAL;
1943 }
1944
1945 cs = intel_ring_begin(rq, 4 * 2 + 2);
1946 if (IS_ERR(cs))
1947 return PTR_ERR(cs);
1948
1949 *cs++ = MI_LOAD_REGISTER_IMM(4);
1950 for (i = 0; i < 4; i++) {
1951 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1952 *cs++ = 0;
1953 }
1954 *cs++ = MI_NOOP;
1955 intel_ring_advance(rq, cs);
1956
1957 return 0;
1958}
1959
1960static struct i915_vma *
1961shadow_batch_pin(struct i915_execbuffer *eb, struct drm_i915_gem_object *obj)
1962{
1963 struct drm_i915_private *dev_priv = eb->i915;
1964 struct i915_vma * const vma = *eb->vma;
1965 struct i915_address_space *vm;
1966 u64 flags;
1967
1968 /*
1969 * PPGTT backed shadow buffers must be mapped RO, to prevent
1970 * post-scan tampering
1971 */
1972 if (CMDPARSER_USES_GGTT(dev_priv)) {
1973 flags = PIN_GLOBAL;
1974 vm = &dev_priv->ggtt.vm;
1975 } else if (vma->vm->has_read_only) {
1976 flags = PIN_USER;
1977 vm = vma->vm;
1978 i915_gem_object_set_readonly(obj);
1979 } else {
1980 DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
1981 return ERR_PTR(-EINVAL);
1982 }
1983
1984 return i915_gem_object_pin(obj, vm, NULL, 0, 0, flags);
1985}
1986
1987static struct i915_vma *eb_parse(struct i915_execbuffer *eb)
1988{
1989 struct intel_engine_pool_node *pool;
1990 struct i915_vma *vma;
1991 u64 batch_start;
1992 u64 shadow_batch_start;
1993 int err;
1994
1995 pool = intel_engine_pool_get(&eb->engine->pool, eb->batch_len);
1996 if (IS_ERR(pool))
1997 return ERR_CAST(pool);
1998
1999 vma = shadow_batch_pin(eb, pool->obj);
2000 if (IS_ERR(vma))
2001 goto err;
2002
2003 batch_start = gen8_canonical_addr(eb->batch->node.start) +
2004 eb->batch_start_offset;
2005
2006 shadow_batch_start = gen8_canonical_addr(vma->node.start);
2007
2008 err = intel_engine_cmd_parser(eb->gem_context,
2009 eb->engine,
2010 eb->batch->obj,
2011 batch_start,
2012 eb->batch_start_offset,
2013 eb->batch_len,
2014 pool->obj,
2015 shadow_batch_start);
2016
2017 if (err) {
2018 i915_vma_unpin(vma);
2019
2020 /*
2021 * Unsafe GGTT-backed buffers can still be submitted safely
2022 * as non-secure.
2023 * For PPGTT backing however, we have no choice but to forcibly
2024 * reject unsafe buffers
2025 */
2026 if (CMDPARSER_USES_GGTT(eb->i915) && (err == -EACCES))
2027 /* Execute original buffer non-secure */
2028 vma = NULL;
2029 else
2030 vma = ERR_PTR(err);
2031 goto err;
2032 }
2033
2034 eb->vma[eb->buffer_count] = i915_vma_get(vma);
2035 eb->flags[eb->buffer_count] =
2036 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
2037 vma->exec_flags = &eb->flags[eb->buffer_count];
2038 eb->buffer_count++;
2039
2040 eb->batch_start_offset = 0;
2041 eb->batch = vma;
2042
2043 if (CMDPARSER_USES_GGTT(eb->i915))
2044 eb->batch_flags |= I915_DISPATCH_SECURE;
2045
2046 /* eb->batch_len unchanged */
2047
2048 vma->private = pool;
2049 return vma;
2050
2051err:
2052 intel_engine_pool_put(pool);
2053 return vma;
2054}
2055
2056static void
2057add_to_client(struct i915_request *rq, struct drm_file *file)
2058{
2059 struct drm_i915_file_private *file_priv = file->driver_priv;
2060
2061 rq->file_priv = file_priv;
2062
2063 spin_lock(&file_priv->mm.lock);
2064 list_add_tail(&rq->client_link, &file_priv->mm.request_list);
2065 spin_unlock(&file_priv->mm.lock);
2066}
2067
2068static int eb_submit(struct i915_execbuffer *eb)
2069{
2070 int err;
2071
2072 err = eb_move_to_gpu(eb);
2073 if (err)
2074 return err;
2075
2076 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2077 err = i915_reset_gen7_sol_offsets(eb->request);
2078 if (err)
2079 return err;
2080 }
2081
2082 /*
2083 * After we completed waiting for other engines (using HW semaphores)
2084 * then we can signal that this request/batch is ready to run. This
2085 * allows us to determine if the batch is still waiting on the GPU
2086 * or actually running by checking the breadcrumb.
2087 */
2088 if (eb->engine->emit_init_breadcrumb) {
2089 err = eb->engine->emit_init_breadcrumb(eb->request);
2090 if (err)
2091 return err;
2092 }
2093
2094 err = eb->engine->emit_bb_start(eb->request,
2095 eb->batch->node.start +
2096 eb->batch_start_offset,
2097 eb->batch_len,
2098 eb->batch_flags);
2099 if (err)
2100 return err;
2101
2102 return 0;
2103}
2104
2105static int num_vcs_engines(const struct drm_i915_private *i915)
2106{
2107 return hweight64(INTEL_INFO(i915)->engine_mask &
2108 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
2109}
2110
2111/*
2112 * Find one BSD ring to dispatch the corresponding BSD command.
2113 * The engine index is returned.
2114 */
2115static unsigned int
2116gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2117 struct drm_file *file)
2118{
2119 struct drm_i915_file_private *file_priv = file->driver_priv;
2120
2121 /* Check whether the file_priv has already selected one ring. */
2122 if ((int)file_priv->bsd_engine < 0)
2123 file_priv->bsd_engine =
2124 get_random_int() % num_vcs_engines(dev_priv);
2125
2126 return file_priv->bsd_engine;
2127}
2128
2129static const enum intel_engine_id user_ring_map[] = {
2130 [I915_EXEC_DEFAULT] = RCS0,
2131 [I915_EXEC_RENDER] = RCS0,
2132 [I915_EXEC_BLT] = BCS0,
2133 [I915_EXEC_BSD] = VCS0,
2134 [I915_EXEC_VEBOX] = VECS0
2135};
2136
2137static struct i915_request *eb_throttle(struct intel_context *ce)
2138{
2139 struct intel_ring *ring = ce->ring;
2140 struct intel_timeline *tl = ce->timeline;
2141 struct i915_request *rq;
2142
2143 /*
2144 * Completely unscientific finger-in-the-air estimates for suitable
2145 * maximum user request size (to avoid blocking) and then backoff.
2146 */
2147 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2148 return NULL;
2149
2150 /*
2151 * Find a request that after waiting upon, there will be at least half
2152 * the ring available. The hysteresis allows us to compete for the
2153 * shared ring and should mean that we sleep less often prior to
2154 * claiming our resources, but not so long that the ring completely
2155 * drains before we can submit our next request.
2156 */
2157 list_for_each_entry(rq, &tl->requests, link) {
2158 if (rq->ring != ring)
2159 continue;
2160
2161 if (__intel_ring_space(rq->postfix,
2162 ring->emit, ring->size) > ring->size / 2)
2163 break;
2164 }
2165 if (&rq->link == &tl->requests)
2166 return NULL; /* weird, we will check again later for real */
2167
2168 return i915_request_get(rq);
2169}
2170
2171static int
2172__eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2173{
2174 int err;
2175
2176 if (likely(atomic_inc_not_zero(&ce->pin_count)))
2177 return 0;
2178
2179 err = mutex_lock_interruptible(&eb->i915->drm.struct_mutex);
2180 if (err)
2181 return err;
2182
2183 err = __intel_context_do_pin(ce);
2184 mutex_unlock(&eb->i915->drm.struct_mutex);
2185
2186 return err;
2187}
2188
2189static void
2190__eb_unpin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2191{
2192 if (likely(atomic_add_unless(&ce->pin_count, -1, 1)))
2193 return;
2194
2195 mutex_lock(&eb->i915->drm.struct_mutex);
2196 intel_context_unpin(ce);
2197 mutex_unlock(&eb->i915->drm.struct_mutex);
2198}
2199
2200static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2201{
2202 struct intel_timeline *tl;
2203 struct i915_request *rq;
2204 int err;
2205
2206 /*
2207 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2208 * EIO if the GPU is already wedged.
2209 */
2210 err = intel_gt_terminally_wedged(ce->engine->gt);
2211 if (err)
2212 return err;
2213
2214 /*
2215 * Pinning the contexts may generate requests in order to acquire
2216 * GGTT space, so do this first before we reserve a seqno for
2217 * ourselves.
2218 */
2219 err = __eb_pin_context(eb, ce);
2220 if (err)
2221 return err;
2222
2223 /*
2224 * Take a local wakeref for preparing to dispatch the execbuf as
2225 * we expect to access the hardware fairly frequently in the
2226 * process, and require the engine to be kept awake between accesses.
2227 * Upon dispatch, we acquire another prolonged wakeref that we hold
2228 * until the timeline is idle, which in turn releases the wakeref
2229 * taken on the engine, and the parent device.
2230 */
2231 tl = intel_context_timeline_lock(ce);
2232 if (IS_ERR(tl)) {
2233 err = PTR_ERR(tl);
2234 goto err_unpin;
2235 }
2236
2237 intel_context_enter(ce);
2238 rq = eb_throttle(ce);
2239
2240 intel_context_timeline_unlock(tl);
2241
2242 if (rq) {
2243 if (i915_request_wait(rq,
2244 I915_WAIT_INTERRUPTIBLE,
2245 MAX_SCHEDULE_TIMEOUT) < 0) {
2246 i915_request_put(rq);
2247 err = -EINTR;
2248 goto err_exit;
2249 }
2250
2251 i915_request_put(rq);
2252 }
2253
2254 eb->engine = ce->engine;
2255 eb->context = ce;
2256 return 0;
2257
2258err_exit:
2259 mutex_lock(&tl->mutex);
2260 intel_context_exit(ce);
2261 intel_context_timeline_unlock(tl);
2262err_unpin:
2263 __eb_unpin_context(eb, ce);
2264 return err;
2265}
2266
2267static void eb_unpin_engine(struct i915_execbuffer *eb)
2268{
2269 struct intel_context *ce = eb->context;
2270 struct intel_timeline *tl = ce->timeline;
2271
2272 mutex_lock(&tl->mutex);
2273 intel_context_exit(ce);
2274 mutex_unlock(&tl->mutex);
2275
2276 __eb_unpin_context(eb, ce);
2277}
2278
2279static unsigned int
2280eb_select_legacy_ring(struct i915_execbuffer *eb,
2281 struct drm_file *file,
2282 struct drm_i915_gem_execbuffer2 *args)
2283{
2284 struct drm_i915_private *i915 = eb->i915;
2285 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2286
2287 if (user_ring_id != I915_EXEC_BSD &&
2288 (args->flags & I915_EXEC_BSD_MASK)) {
2289 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2290 "bsd dispatch flags: %d\n", (int)(args->flags));
2291 return -1;
2292 }
2293
2294 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2295 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2296
2297 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2298 bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2299 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2300 bsd_idx <= I915_EXEC_BSD_RING2) {
2301 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2302 bsd_idx--;
2303 } else {
2304 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2305 bsd_idx);
2306 return -1;
2307 }
2308
2309 return _VCS(bsd_idx);
2310 }
2311
2312 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2313 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2314 return -1;
2315 }
2316
2317 return user_ring_map[user_ring_id];
2318}
2319
2320static int
2321eb_pin_engine(struct i915_execbuffer *eb,
2322 struct drm_file *file,
2323 struct drm_i915_gem_execbuffer2 *args)
2324{
2325 struct intel_context *ce;
2326 unsigned int idx;
2327 int err;
2328
2329 if (i915_gem_context_user_engines(eb->gem_context))
2330 idx = args->flags & I915_EXEC_RING_MASK;
2331 else
2332 idx = eb_select_legacy_ring(eb, file, args);
2333
2334 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2335 if (IS_ERR(ce))
2336 return PTR_ERR(ce);
2337
2338 err = __eb_pin_engine(eb, ce);
2339 intel_context_put(ce);
2340
2341 return err;
2342}
2343
2344static void
2345__free_fence_array(struct drm_syncobj **fences, unsigned int n)
2346{
2347 while (n--)
2348 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2349 kvfree(fences);
2350}
2351
2352static struct drm_syncobj **
2353get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2354 struct drm_file *file)
2355{
2356 const unsigned long nfences = args->num_cliprects;
2357 struct drm_i915_gem_exec_fence __user *user;
2358 struct drm_syncobj **fences;
2359 unsigned long n;
2360 int err;
2361
2362 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2363 return NULL;
2364
2365 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2366 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2367 if (nfences > min_t(unsigned long,
2368 ULONG_MAX / sizeof(*user),
2369 SIZE_MAX / sizeof(*fences)))
2370 return ERR_PTR(-EINVAL);
2371
2372 user = u64_to_user_ptr(args->cliprects_ptr);
2373 if (!access_ok(user, nfences * sizeof(*user)))
2374 return ERR_PTR(-EFAULT);
2375
2376 fences = kvmalloc_array(nfences, sizeof(*fences),
2377 __GFP_NOWARN | GFP_KERNEL);
2378 if (!fences)
2379 return ERR_PTR(-ENOMEM);
2380
2381 for (n = 0; n < nfences; n++) {
2382 struct drm_i915_gem_exec_fence fence;
2383 struct drm_syncobj *syncobj;
2384
2385 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2386 err = -EFAULT;
2387 goto err;
2388 }
2389
2390 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2391 err = -EINVAL;
2392 goto err;
2393 }
2394
2395 syncobj = drm_syncobj_find(file, fence.handle);
2396 if (!syncobj) {
2397 DRM_DEBUG("Invalid syncobj handle provided\n");
2398 err = -ENOENT;
2399 goto err;
2400 }
2401
2402 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2403 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2404
2405 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2406 }
2407
2408 return fences;
2409
2410err:
2411 __free_fence_array(fences, n);
2412 return ERR_PTR(err);
2413}
2414
2415static void
2416put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2417 struct drm_syncobj **fences)
2418{
2419 if (fences)
2420 __free_fence_array(fences, args->num_cliprects);
2421}
2422
2423static int
2424await_fence_array(struct i915_execbuffer *eb,
2425 struct drm_syncobj **fences)
2426{
2427 const unsigned int nfences = eb->args->num_cliprects;
2428 unsigned int n;
2429 int err;
2430
2431 for (n = 0; n < nfences; n++) {
2432 struct drm_syncobj *syncobj;
2433 struct dma_fence *fence;
2434 unsigned int flags;
2435
2436 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2437 if (!(flags & I915_EXEC_FENCE_WAIT))
2438 continue;
2439
2440 fence = drm_syncobj_fence_get(syncobj);
2441 if (!fence)
2442 return -EINVAL;
2443
2444 err = i915_request_await_dma_fence(eb->request, fence);
2445 dma_fence_put(fence);
2446 if (err < 0)
2447 return err;
2448 }
2449
2450 return 0;
2451}
2452
2453static void
2454signal_fence_array(struct i915_execbuffer *eb,
2455 struct drm_syncobj **fences)
2456{
2457 const unsigned int nfences = eb->args->num_cliprects;
2458 struct dma_fence * const fence = &eb->request->fence;
2459 unsigned int n;
2460
2461 for (n = 0; n < nfences; n++) {
2462 struct drm_syncobj *syncobj;
2463 unsigned int flags;
2464
2465 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2466 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2467 continue;
2468
2469 drm_syncobj_replace_fence(syncobj, fence);
2470 }
2471}
2472
2473static int
2474i915_gem_do_execbuffer(struct drm_device *dev,
2475 struct drm_file *file,
2476 struct drm_i915_gem_execbuffer2 *args,
2477 struct drm_i915_gem_exec_object2 *exec,
2478 struct drm_syncobj **fences)
2479{
2480 struct drm_i915_private *i915 = to_i915(dev);
2481 struct i915_execbuffer eb;
2482 struct dma_fence *in_fence = NULL;
2483 struct dma_fence *exec_fence = NULL;
2484 struct sync_file *out_fence = NULL;
2485 int out_fence_fd = -1;
2486 int err;
2487
2488 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2489 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2490 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2491
2492 eb.i915 = i915;
2493 eb.file = file;
2494 eb.args = args;
2495 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2496 args->flags |= __EXEC_HAS_RELOC;
2497
2498 eb.exec = exec;
2499 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2500 eb.vma[0] = NULL;
2501 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2502
2503 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2504 reloc_cache_init(&eb.reloc_cache, eb.i915);
2505
2506 eb.buffer_count = args->buffer_count;
2507 eb.batch_start_offset = args->batch_start_offset;
2508 eb.batch_len = args->batch_len;
2509
2510 eb.batch_flags = 0;
2511 if (args->flags & I915_EXEC_SECURE) {
2512 if (INTEL_GEN(i915) >= 11)
2513 return -ENODEV;
2514
2515 /* Return -EPERM to trigger fallback code on old binaries. */
2516 if (!HAS_SECURE_BATCHES(i915))
2517 return -EPERM;
2518
2519 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2520 return -EPERM;
2521
2522 eb.batch_flags |= I915_DISPATCH_SECURE;
2523 }
2524 if (args->flags & I915_EXEC_IS_PINNED)
2525 eb.batch_flags |= I915_DISPATCH_PINNED;
2526
2527 if (args->flags & I915_EXEC_FENCE_IN) {
2528 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2529 if (!in_fence)
2530 return -EINVAL;
2531 }
2532
2533 if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2534 if (in_fence) {
2535 err = -EINVAL;
2536 goto err_in_fence;
2537 }
2538
2539 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2540 if (!exec_fence) {
2541 err = -EINVAL;
2542 goto err_in_fence;
2543 }
2544 }
2545
2546 if (args->flags & I915_EXEC_FENCE_OUT) {
2547 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2548 if (out_fence_fd < 0) {
2549 err = out_fence_fd;
2550 goto err_exec_fence;
2551 }
2552 }
2553
2554 err = eb_create(&eb);
2555 if (err)
2556 goto err_out_fence;
2557
2558 GEM_BUG_ON(!eb.lut_size);
2559
2560 err = eb_select_context(&eb);
2561 if (unlikely(err))
2562 goto err_destroy;
2563
2564 err = eb_pin_engine(&eb, file, args);
2565 if (unlikely(err))
2566 goto err_context;
2567
2568 err = i915_mutex_lock_interruptible(dev);
2569 if (err)
2570 goto err_engine;
2571
2572 err = eb_relocate(&eb);
2573 if (err) {
2574 /*
2575 * If the user expects the execobject.offset and
2576 * reloc.presumed_offset to be an exact match,
2577 * as for using NO_RELOC, then we cannot update
2578 * the execobject.offset until we have completed
2579 * relocation.
2580 */
2581 args->flags &= ~__EXEC_HAS_RELOC;
2582 goto err_vma;
2583 }
2584
2585 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2586 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2587 err = -EINVAL;
2588 goto err_vma;
2589 }
2590 if (eb.batch_start_offset > eb.batch->size ||
2591 eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2592 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2593 err = -EINVAL;
2594 goto err_vma;
2595 }
2596
2597 if (eb.batch_len == 0)
2598 eb.batch_len = eb.batch->size - eb.batch_start_offset;
2599
2600 if (eb_use_cmdparser(&eb)) {
2601 struct i915_vma *vma;
2602
2603 vma = eb_parse(&eb);
2604 if (IS_ERR(vma)) {
2605 err = PTR_ERR(vma);
2606 goto err_vma;
2607 }
2608 }
2609
2610 /*
2611 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2612 * batch" bit. Hence we need to pin secure batches into the global gtt.
2613 * hsw should have this fixed, but bdw mucks it up again. */
2614 if (eb.batch_flags & I915_DISPATCH_SECURE) {
2615 struct i915_vma *vma;
2616
2617 /*
2618 * So on first glance it looks freaky that we pin the batch here
2619 * outside of the reservation loop. But:
2620 * - The batch is already pinned into the relevant ppgtt, so we
2621 * already have the backing storage fully allocated.
2622 * - No other BO uses the global gtt (well contexts, but meh),
2623 * so we don't really have issues with multiple objects not
2624 * fitting due to fragmentation.
2625 * So this is actually safe.
2626 */
2627 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2628 if (IS_ERR(vma)) {
2629 err = PTR_ERR(vma);
2630 goto err_vma;
2631 }
2632
2633 eb.batch = vma;
2634 }
2635
2636 /* All GPU relocation batches must be submitted prior to the user rq */
2637 GEM_BUG_ON(eb.reloc_cache.rq);
2638
2639 /* Allocate a request for this batch buffer nice and early. */
2640 eb.request = i915_request_create(eb.context);
2641 if (IS_ERR(eb.request)) {
2642 err = PTR_ERR(eb.request);
2643 goto err_batch_unpin;
2644 }
2645
2646 if (in_fence) {
2647 err = i915_request_await_dma_fence(eb.request, in_fence);
2648 if (err < 0)
2649 goto err_request;
2650 }
2651
2652 if (exec_fence) {
2653 err = i915_request_await_execution(eb.request, exec_fence,
2654 eb.engine->bond_execute);
2655 if (err < 0)
2656 goto err_request;
2657 }
2658
2659 if (fences) {
2660 err = await_fence_array(&eb, fences);
2661 if (err)
2662 goto err_request;
2663 }
2664
2665 if (out_fence_fd != -1) {
2666 out_fence = sync_file_create(&eb.request->fence);
2667 if (!out_fence) {
2668 err = -ENOMEM;
2669 goto err_request;
2670 }
2671 }
2672
2673 /*
2674 * Whilst this request exists, batch_obj will be on the
2675 * active_list, and so will hold the active reference. Only when this
2676 * request is retired will the the batch_obj be moved onto the
2677 * inactive_list and lose its active reference. Hence we do not need
2678 * to explicitly hold another reference here.
2679 */
2680 eb.request->batch = eb.batch;
2681 if (eb.batch->private)
2682 intel_engine_pool_mark_active(eb.batch->private, eb.request);
2683
2684 trace_i915_request_queue(eb.request, eb.batch_flags);
2685 err = eb_submit(&eb);
2686err_request:
2687 add_to_client(eb.request, file);
2688 i915_request_add(eb.request);
2689
2690 if (fences)
2691 signal_fence_array(&eb, fences);
2692
2693 if (out_fence) {
2694 if (err == 0) {
2695 fd_install(out_fence_fd, out_fence->file);
2696 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2697 args->rsvd2 |= (u64)out_fence_fd << 32;
2698 out_fence_fd = -1;
2699 } else {
2700 fput(out_fence->file);
2701 }
2702 }
2703
2704err_batch_unpin:
2705 if (eb.batch_flags & I915_DISPATCH_SECURE)
2706 i915_vma_unpin(eb.batch);
2707 if (eb.batch->private)
2708 intel_engine_pool_put(eb.batch->private);
2709err_vma:
2710 if (eb.exec)
2711 eb_release_vmas(&eb);
2712 mutex_unlock(&dev->struct_mutex);
2713err_engine:
2714 eb_unpin_engine(&eb);
2715err_context:
2716 i915_gem_context_put(eb.gem_context);
2717err_destroy:
2718 eb_destroy(&eb);
2719err_out_fence:
2720 if (out_fence_fd != -1)
2721 put_unused_fd(out_fence_fd);
2722err_exec_fence:
2723 dma_fence_put(exec_fence);
2724err_in_fence:
2725 dma_fence_put(in_fence);
2726 return err;
2727}
2728
2729static size_t eb_element_size(void)
2730{
2731 return (sizeof(struct drm_i915_gem_exec_object2) +
2732 sizeof(struct i915_vma *) +
2733 sizeof(unsigned int));
2734}
2735
2736static bool check_buffer_count(size_t count)
2737{
2738 const size_t sz = eb_element_size();
2739
2740 /*
2741 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2742 * array size (see eb_create()). Otherwise, we can accept an array as
2743 * large as can be addressed (though use large arrays at your peril)!
2744 */
2745
2746 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2747}
2748
2749/*
2750 * Legacy execbuffer just creates an exec2 list from the original exec object
2751 * list array and passes it to the real function.
2752 */
2753int
2754i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2755 struct drm_file *file)
2756{
2757 struct drm_i915_gem_execbuffer *args = data;
2758 struct drm_i915_gem_execbuffer2 exec2;
2759 struct drm_i915_gem_exec_object *exec_list = NULL;
2760 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2761 const size_t count = args->buffer_count;
2762 unsigned int i;
2763 int err;
2764
2765 if (!check_buffer_count(count)) {
2766 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2767 return -EINVAL;
2768 }
2769
2770 exec2.buffers_ptr = args->buffers_ptr;
2771 exec2.buffer_count = args->buffer_count;
2772 exec2.batch_start_offset = args->batch_start_offset;
2773 exec2.batch_len = args->batch_len;
2774 exec2.DR1 = args->DR1;
2775 exec2.DR4 = args->DR4;
2776 exec2.num_cliprects = args->num_cliprects;
2777 exec2.cliprects_ptr = args->cliprects_ptr;
2778 exec2.flags = I915_EXEC_RENDER;
2779 i915_execbuffer2_set_context_id(exec2, 0);
2780
2781 if (!i915_gem_check_execbuffer(&exec2))
2782 return -EINVAL;
2783
2784 /* Copy in the exec list from userland */
2785 exec_list = kvmalloc_array(count, sizeof(*exec_list),
2786 __GFP_NOWARN | GFP_KERNEL);
2787 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2788 __GFP_NOWARN | GFP_KERNEL);
2789 if (exec_list == NULL || exec2_list == NULL) {
2790 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2791 args->buffer_count);
2792 kvfree(exec_list);
2793 kvfree(exec2_list);
2794 return -ENOMEM;
2795 }
2796 err = copy_from_user(exec_list,
2797 u64_to_user_ptr(args->buffers_ptr),
2798 sizeof(*exec_list) * count);
2799 if (err) {
2800 DRM_DEBUG("copy %d exec entries failed %d\n",
2801 args->buffer_count, err);
2802 kvfree(exec_list);
2803 kvfree(exec2_list);
2804 return -EFAULT;
2805 }
2806
2807 for (i = 0; i < args->buffer_count; i++) {
2808 exec2_list[i].handle = exec_list[i].handle;
2809 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2810 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2811 exec2_list[i].alignment = exec_list[i].alignment;
2812 exec2_list[i].offset = exec_list[i].offset;
2813 if (INTEL_GEN(to_i915(dev)) < 4)
2814 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2815 else
2816 exec2_list[i].flags = 0;
2817 }
2818
2819 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2820 if (exec2.flags & __EXEC_HAS_RELOC) {
2821 struct drm_i915_gem_exec_object __user *user_exec_list =
2822 u64_to_user_ptr(args->buffers_ptr);
2823
2824 /* Copy the new buffer offsets back to the user's exec list. */
2825 for (i = 0; i < args->buffer_count; i++) {
2826 if (!(exec2_list[i].offset & UPDATE))
2827 continue;
2828
2829 exec2_list[i].offset =
2830 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2831 exec2_list[i].offset &= PIN_OFFSET_MASK;
2832 if (__copy_to_user(&user_exec_list[i].offset,
2833 &exec2_list[i].offset,
2834 sizeof(user_exec_list[i].offset)))
2835 break;
2836 }
2837 }
2838
2839 kvfree(exec_list);
2840 kvfree(exec2_list);
2841 return err;
2842}
2843
2844int
2845i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2846 struct drm_file *file)
2847{
2848 struct drm_i915_gem_execbuffer2 *args = data;
2849 struct drm_i915_gem_exec_object2 *exec2_list;
2850 struct drm_syncobj **fences = NULL;
2851 const size_t count = args->buffer_count;
2852 int err;
2853
2854 if (!check_buffer_count(count)) {
2855 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2856 return -EINVAL;
2857 }
2858
2859 if (!i915_gem_check_execbuffer(args))
2860 return -EINVAL;
2861
2862 /* Allocate an extra slot for use by the command parser */
2863 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2864 __GFP_NOWARN | GFP_KERNEL);
2865 if (exec2_list == NULL) {
2866 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2867 count);
2868 return -ENOMEM;
2869 }
2870 if (copy_from_user(exec2_list,
2871 u64_to_user_ptr(args->buffers_ptr),
2872 sizeof(*exec2_list) * count)) {
2873 DRM_DEBUG("copy %zd exec entries failed\n", count);
2874 kvfree(exec2_list);
2875 return -EFAULT;
2876 }
2877
2878 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2879 fences = get_fence_array(args, file);
2880 if (IS_ERR(fences)) {
2881 kvfree(exec2_list);
2882 return PTR_ERR(fences);
2883 }
2884 }
2885
2886 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2887
2888 /*
2889 * Now that we have begun execution of the batchbuffer, we ignore
2890 * any new error after this point. Also given that we have already
2891 * updated the associated relocations, we try to write out the current
2892 * object locations irrespective of any error.
2893 */
2894 if (args->flags & __EXEC_HAS_RELOC) {
2895 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2896 u64_to_user_ptr(args->buffers_ptr);
2897 unsigned int i;
2898
2899 /* Copy the new buffer offsets back to the user's exec list. */
2900 /*
2901 * Note: count * sizeof(*user_exec_list) does not overflow,
2902 * because we checked 'count' in check_buffer_count().
2903 *
2904 * And this range already got effectively checked earlier
2905 * when we did the "copy_from_user()" above.
2906 */
2907 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2908 goto end;
2909
2910 for (i = 0; i < args->buffer_count; i++) {
2911 if (!(exec2_list[i].offset & UPDATE))
2912 continue;
2913
2914 exec2_list[i].offset =
2915 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2916 unsafe_put_user(exec2_list[i].offset,
2917 &user_exec_list[i].offset,
2918 end_user);
2919 }
2920end_user:
2921 user_access_end();
2922end:;
2923 }
2924
2925 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2926 put_fence_array(args, fences);
2927 kvfree(exec2_list);
2928 return err;
2929}
1/*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2008,2010 Intel Corporation
5 */
6
7#include <linux/dma-resv.h>
8#include <linux/highmem.h>
9#include <linux/sync_file.h>
10#include <linux/uaccess.h>
11
12#include <drm/drm_auth.h>
13#include <drm/drm_syncobj.h>
14
15#include "display/intel_frontbuffer.h"
16
17#include "gem/i915_gem_ioctls.h"
18#include "gt/intel_context.h"
19#include "gt/intel_gpu_commands.h"
20#include "gt/intel_gt.h"
21#include "gt/intel_gt_buffer_pool.h"
22#include "gt/intel_gt_pm.h"
23#include "gt/intel_ring.h"
24
25#include "pxp/intel_pxp.h"
26
27#include "i915_cmd_parser.h"
28#include "i915_drv.h"
29#include "i915_file_private.h"
30#include "i915_gem_clflush.h"
31#include "i915_gem_context.h"
32#include "i915_gem_evict.h"
33#include "i915_gem_ioctls.h"
34#include "i915_reg.h"
35#include "i915_trace.h"
36#include "i915_user_extensions.h"
37
38struct eb_vma {
39 struct i915_vma *vma;
40 unsigned int flags;
41
42 /** This vma's place in the execbuf reservation list */
43 struct drm_i915_gem_exec_object2 *exec;
44 struct list_head bind_link;
45 struct list_head reloc_link;
46
47 struct hlist_node node;
48 u32 handle;
49};
50
51enum {
52 FORCE_CPU_RELOC = 1,
53 FORCE_GTT_RELOC,
54 FORCE_GPU_RELOC,
55#define DBG_FORCE_RELOC 0 /* choose one of the above! */
56};
57
58/* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
59#define __EXEC_OBJECT_HAS_PIN BIT(29)
60#define __EXEC_OBJECT_HAS_FENCE BIT(28)
61#define __EXEC_OBJECT_USERPTR_INIT BIT(27)
62#define __EXEC_OBJECT_NEEDS_MAP BIT(26)
63#define __EXEC_OBJECT_NEEDS_BIAS BIT(25)
64#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 25) /* all of the above + */
65#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
66
67#define __EXEC_HAS_RELOC BIT(31)
68#define __EXEC_ENGINE_PINNED BIT(30)
69#define __EXEC_USERPTR_USED BIT(29)
70#define __EXEC_INTERNAL_FLAGS (~0u << 29)
71#define UPDATE PIN_OFFSET_FIXED
72
73#define BATCH_OFFSET_BIAS (256*1024)
74
75#define __I915_EXEC_ILLEGAL_FLAGS \
76 (__I915_EXEC_UNKNOWN_FLAGS | \
77 I915_EXEC_CONSTANTS_MASK | \
78 I915_EXEC_RESOURCE_STREAMER)
79
80/* Catch emission of unexpected errors for CI! */
81#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
82#undef EINVAL
83#define EINVAL ({ \
84 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
85 22; \
86})
87#endif
88
89/**
90 * DOC: User command execution
91 *
92 * Userspace submits commands to be executed on the GPU as an instruction
93 * stream within a GEM object we call a batchbuffer. This instructions may
94 * refer to other GEM objects containing auxiliary state such as kernels,
95 * samplers, render targets and even secondary batchbuffers. Userspace does
96 * not know where in the GPU memory these objects reside and so before the
97 * batchbuffer is passed to the GPU for execution, those addresses in the
98 * batchbuffer and auxiliary objects are updated. This is known as relocation,
99 * or patching. To try and avoid having to relocate each object on the next
100 * execution, userspace is told the location of those objects in this pass,
101 * but this remains just a hint as the kernel may choose a new location for
102 * any object in the future.
103 *
104 * At the level of talking to the hardware, submitting a batchbuffer for the
105 * GPU to execute is to add content to a buffer from which the HW
106 * command streamer is reading.
107 *
108 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
109 * Execlists, this command is not placed on the same buffer as the
110 * remaining items.
111 *
112 * 2. Add a command to invalidate caches to the buffer.
113 *
114 * 3. Add a batchbuffer start command to the buffer; the start command is
115 * essentially a token together with the GPU address of the batchbuffer
116 * to be executed.
117 *
118 * 4. Add a pipeline flush to the buffer.
119 *
120 * 5. Add a memory write command to the buffer to record when the GPU
121 * is done executing the batchbuffer. The memory write writes the
122 * global sequence number of the request, ``i915_request::global_seqno``;
123 * the i915 driver uses the current value in the register to determine
124 * if the GPU has completed the batchbuffer.
125 *
126 * 6. Add a user interrupt command to the buffer. This command instructs
127 * the GPU to issue an interrupt when the command, pipeline flush and
128 * memory write are completed.
129 *
130 * 7. Inform the hardware of the additional commands added to the buffer
131 * (by updating the tail pointer).
132 *
133 * Processing an execbuf ioctl is conceptually split up into a few phases.
134 *
135 * 1. Validation - Ensure all the pointers, handles and flags are valid.
136 * 2. Reservation - Assign GPU address space for every object
137 * 3. Relocation - Update any addresses to point to the final locations
138 * 4. Serialisation - Order the request with respect to its dependencies
139 * 5. Construction - Construct a request to execute the batchbuffer
140 * 6. Submission (at some point in the future execution)
141 *
142 * Reserving resources for the execbuf is the most complicated phase. We
143 * neither want to have to migrate the object in the address space, nor do
144 * we want to have to update any relocations pointing to this object. Ideally,
145 * we want to leave the object where it is and for all the existing relocations
146 * to match. If the object is given a new address, or if userspace thinks the
147 * object is elsewhere, we have to parse all the relocation entries and update
148 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
149 * all the target addresses in all of its objects match the value in the
150 * relocation entries and that they all match the presumed offsets given by the
151 * list of execbuffer objects. Using this knowledge, we know that if we haven't
152 * moved any buffers, all the relocation entries are valid and we can skip
153 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
154 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
155 *
156 * The addresses written in the objects must match the corresponding
157 * reloc.presumed_offset which in turn must match the corresponding
158 * execobject.offset.
159 *
160 * Any render targets written to in the batch must be flagged with
161 * EXEC_OBJECT_WRITE.
162 *
163 * To avoid stalling, execobject.offset should match the current
164 * address of that object within the active context.
165 *
166 * The reservation is done is multiple phases. First we try and keep any
167 * object already bound in its current location - so as long as meets the
168 * constraints imposed by the new execbuffer. Any object left unbound after the
169 * first pass is then fitted into any available idle space. If an object does
170 * not fit, all objects are removed from the reservation and the process rerun
171 * after sorting the objects into a priority order (more difficult to fit
172 * objects are tried first). Failing that, the entire VM is cleared and we try
173 * to fit the execbuf once last time before concluding that it simply will not
174 * fit.
175 *
176 * A small complication to all of this is that we allow userspace not only to
177 * specify an alignment and a size for the object in the address space, but
178 * we also allow userspace to specify the exact offset. This objects are
179 * simpler to place (the location is known a priori) all we have to do is make
180 * sure the space is available.
181 *
182 * Once all the objects are in place, patching up the buried pointers to point
183 * to the final locations is a fairly simple job of walking over the relocation
184 * entry arrays, looking up the right address and rewriting the value into
185 * the object. Simple! ... The relocation entries are stored in user memory
186 * and so to access them we have to copy them into a local buffer. That copy
187 * has to avoid taking any pagefaults as they may lead back to a GEM object
188 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
189 * the relocation into multiple passes. First we try to do everything within an
190 * atomic context (avoid the pagefaults) which requires that we never wait. If
191 * we detect that we may wait, or if we need to fault, then we have to fallback
192 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
193 * bells yet?) Dropping the mutex means that we lose all the state we have
194 * built up so far for the execbuf and we must reset any global data. However,
195 * we do leave the objects pinned in their final locations - which is a
196 * potential issue for concurrent execbufs. Once we have left the mutex, we can
197 * allocate and copy all the relocation entries into a large array at our
198 * leisure, reacquire the mutex, reclaim all the objects and other state and
199 * then proceed to update any incorrect addresses with the objects.
200 *
201 * As we process the relocation entries, we maintain a record of whether the
202 * object is being written to. Using NORELOC, we expect userspace to provide
203 * this information instead. We also check whether we can skip the relocation
204 * by comparing the expected value inside the relocation entry with the target's
205 * final address. If they differ, we have to map the current object and rewrite
206 * the 4 or 8 byte pointer within.
207 *
208 * Serialising an execbuf is quite simple according to the rules of the GEM
209 * ABI. Execution within each context is ordered by the order of submission.
210 * Writes to any GEM object are in order of submission and are exclusive. Reads
211 * from a GEM object are unordered with respect to other reads, but ordered by
212 * writes. A write submitted after a read cannot occur before the read, and
213 * similarly any read submitted after a write cannot occur before the write.
214 * Writes are ordered between engines such that only one write occurs at any
215 * time (completing any reads beforehand) - using semaphores where available
216 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
217 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
218 * reads before starting, and any read (either using set-domain or pread) must
219 * flush all GPU writes before starting. (Note we only employ a barrier before,
220 * we currently rely on userspace not concurrently starting a new execution
221 * whilst reading or writing to an object. This may be an advantage or not
222 * depending on how much you trust userspace not to shoot themselves in the
223 * foot.) Serialisation may just result in the request being inserted into
224 * a DAG awaiting its turn, but most simple is to wait on the CPU until
225 * all dependencies are resolved.
226 *
227 * After all of that, is just a matter of closing the request and handing it to
228 * the hardware (well, leaving it in a queue to be executed). However, we also
229 * offer the ability for batchbuffers to be run with elevated privileges so
230 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
231 * Before any batch is given extra privileges we first must check that it
232 * contains no nefarious instructions, we check that each instruction is from
233 * our whitelist and all registers are also from an allowed list. We first
234 * copy the user's batchbuffer to a shadow (so that the user doesn't have
235 * access to it, either by the CPU or GPU as we scan it) and then parse each
236 * instruction. If everything is ok, we set a flag telling the hardware to run
237 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
238 */
239
240struct eb_fence {
241 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
242 struct dma_fence *dma_fence;
243 u64 value;
244 struct dma_fence_chain *chain_fence;
245};
246
247struct i915_execbuffer {
248 struct drm_i915_private *i915; /** i915 backpointer */
249 struct drm_file *file; /** per-file lookup tables and limits */
250 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
251 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
252 struct eb_vma *vma;
253
254 struct intel_gt *gt; /* gt for the execbuf */
255 struct intel_context *context; /* logical state for the request */
256 struct i915_gem_context *gem_context; /** caller's context */
257 intel_wakeref_t wakeref;
258 intel_wakeref_t wakeref_gt0;
259
260 /** our requests to build */
261 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
262 /** identity of the batch obj/vma */
263 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
264 struct i915_vma *trampoline; /** trampoline used for chaining */
265
266 /** used for excl fence in dma_resv objects when > 1 BB submitted */
267 struct dma_fence *composite_fence;
268
269 /** actual size of execobj[] as we may extend it for the cmdparser */
270 unsigned int buffer_count;
271
272 /* number of batches in execbuf IOCTL */
273 unsigned int num_batches;
274
275 /** list of vma not yet bound during reservation phase */
276 struct list_head unbound;
277
278 /** list of vma that have execobj.relocation_count */
279 struct list_head relocs;
280
281 struct i915_gem_ww_ctx ww;
282
283 /**
284 * Track the most recently used object for relocations, as we
285 * frequently have to perform multiple relocations within the same
286 * obj/page
287 */
288 struct reloc_cache {
289 struct drm_mm_node node; /** temporary GTT binding */
290 unsigned long vaddr; /** Current kmap address */
291 unsigned long page; /** Currently mapped page index */
292 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
293 bool use_64bit_reloc : 1;
294 bool has_llc : 1;
295 bool has_fence : 1;
296 bool needs_unfenced : 1;
297 } reloc_cache;
298
299 u64 invalid_flags; /** Set of execobj.flags that are invalid */
300
301 /** Length of batch within object */
302 u64 batch_len[MAX_ENGINE_INSTANCE + 1];
303 u32 batch_start_offset; /** Location within object of batch */
304 u32 batch_flags; /** Flags composed for emit_bb_start() */
305 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
306
307 /**
308 * Indicate either the size of the hastable used to resolve
309 * relocation handles, or if negative that we are using a direct
310 * index into the execobj[].
311 */
312 int lut_size;
313 struct hlist_head *buckets; /** ht for relocation handles */
314
315 struct eb_fence *fences;
316 unsigned long num_fences;
317#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
318 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
319#endif
320};
321
322static int eb_parse(struct i915_execbuffer *eb);
323static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
324static void eb_unpin_engine(struct i915_execbuffer *eb);
325static void eb_capture_release(struct i915_execbuffer *eb);
326
327static bool eb_use_cmdparser(const struct i915_execbuffer *eb)
328{
329 return intel_engine_requires_cmd_parser(eb->context->engine) ||
330 (intel_engine_using_cmd_parser(eb->context->engine) &&
331 eb->args->batch_len);
332}
333
334static int eb_create(struct i915_execbuffer *eb)
335{
336 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
337 unsigned int size = 1 + ilog2(eb->buffer_count);
338
339 /*
340 * Without a 1:1 association between relocation handles and
341 * the execobject[] index, we instead create a hashtable.
342 * We size it dynamically based on available memory, starting
343 * first with 1:1 assocative hash and scaling back until
344 * the allocation succeeds.
345 *
346 * Later on we use a positive lut_size to indicate we are
347 * using this hashtable, and a negative value to indicate a
348 * direct lookup.
349 */
350 do {
351 gfp_t flags;
352
353 /* While we can still reduce the allocation size, don't
354 * raise a warning and allow the allocation to fail.
355 * On the last pass though, we want to try as hard
356 * as possible to perform the allocation and warn
357 * if it fails.
358 */
359 flags = GFP_KERNEL;
360 if (size > 1)
361 flags |= __GFP_NORETRY | __GFP_NOWARN;
362
363 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
364 flags);
365 if (eb->buckets)
366 break;
367 } while (--size);
368
369 if (unlikely(!size))
370 return -ENOMEM;
371
372 eb->lut_size = size;
373 } else {
374 eb->lut_size = -eb->buffer_count;
375 }
376
377 return 0;
378}
379
380static bool
381eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
382 const struct i915_vma *vma,
383 unsigned int flags)
384{
385 const u64 start = i915_vma_offset(vma);
386 const u64 size = i915_vma_size(vma);
387
388 if (size < entry->pad_to_size)
389 return true;
390
391 if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
392 return true;
393
394 if (flags & EXEC_OBJECT_PINNED &&
395 start != entry->offset)
396 return true;
397
398 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
399 start < BATCH_OFFSET_BIAS)
400 return true;
401
402 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
403 (start + size + 4095) >> 32)
404 return true;
405
406 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
407 !i915_vma_is_map_and_fenceable(vma))
408 return true;
409
410 return false;
411}
412
413static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
414 unsigned int exec_flags)
415{
416 u64 pin_flags = 0;
417
418 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
419 pin_flags |= PIN_GLOBAL;
420
421 /*
422 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
423 * limit address to the first 4GBs for unflagged objects.
424 */
425 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
426 pin_flags |= PIN_ZONE_4G;
427
428 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
429 pin_flags |= PIN_MAPPABLE;
430
431 if (exec_flags & EXEC_OBJECT_PINNED)
432 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
433 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
434 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
435
436 return pin_flags;
437}
438
439static int
440eb_pin_vma(struct i915_execbuffer *eb,
441 const struct drm_i915_gem_exec_object2 *entry,
442 struct eb_vma *ev)
443{
444 struct i915_vma *vma = ev->vma;
445 u64 pin_flags;
446 int err;
447
448 if (vma->node.size)
449 pin_flags = __i915_vma_offset(vma);
450 else
451 pin_flags = entry->offset & PIN_OFFSET_MASK;
452
453 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
454 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
455 pin_flags |= PIN_GLOBAL;
456
457 /* Attempt to reuse the current location if available */
458 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
459 if (err == -EDEADLK)
460 return err;
461
462 if (unlikely(err)) {
463 if (entry->flags & EXEC_OBJECT_PINNED)
464 return err;
465
466 /* Failing that pick any _free_ space if suitable */
467 err = i915_vma_pin_ww(vma, &eb->ww,
468 entry->pad_to_size,
469 entry->alignment,
470 eb_pin_flags(entry, ev->flags) |
471 PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
472 if (unlikely(err))
473 return err;
474 }
475
476 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
477 err = i915_vma_pin_fence(vma);
478 if (unlikely(err))
479 return err;
480
481 if (vma->fence)
482 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
483 }
484
485 ev->flags |= __EXEC_OBJECT_HAS_PIN;
486 if (eb_vma_misplaced(entry, vma, ev->flags))
487 return -EBADSLT;
488
489 return 0;
490}
491
492static void
493eb_unreserve_vma(struct eb_vma *ev)
494{
495 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
496 __i915_vma_unpin_fence(ev->vma);
497
498 ev->flags &= ~__EXEC_OBJECT_RESERVED;
499}
500
501static int
502eb_validate_vma(struct i915_execbuffer *eb,
503 struct drm_i915_gem_exec_object2 *entry,
504 struct i915_vma *vma)
505{
506 /* Relocations are disallowed for all platforms after TGL-LP. This
507 * also covers all platforms with local memory.
508 */
509 if (entry->relocation_count &&
510 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
511 return -EINVAL;
512
513 if (unlikely(entry->flags & eb->invalid_flags))
514 return -EINVAL;
515
516 if (unlikely(entry->alignment &&
517 !is_power_of_2_u64(entry->alignment)))
518 return -EINVAL;
519
520 /*
521 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
522 * any non-page-aligned or non-canonical addresses.
523 */
524 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
525 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
526 return -EINVAL;
527
528 /* pad_to_size was once a reserved field, so sanitize it */
529 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
530 if (unlikely(offset_in_page(entry->pad_to_size)))
531 return -EINVAL;
532 } else {
533 entry->pad_to_size = 0;
534 }
535 /*
536 * From drm_mm perspective address space is continuous,
537 * so from this point we're always using non-canonical
538 * form internally.
539 */
540 entry->offset = gen8_noncanonical_addr(entry->offset);
541
542 if (!eb->reloc_cache.has_fence) {
543 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
544 } else {
545 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
546 eb->reloc_cache.needs_unfenced) &&
547 i915_gem_object_is_tiled(vma->obj))
548 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
549 }
550
551 return 0;
552}
553
554static bool
555is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
556{
557 return eb->args->flags & I915_EXEC_BATCH_FIRST ?
558 buffer_idx < eb->num_batches :
559 buffer_idx >= eb->args->buffer_count - eb->num_batches;
560}
561
562static int
563eb_add_vma(struct i915_execbuffer *eb,
564 unsigned int *current_batch,
565 unsigned int i,
566 struct i915_vma *vma)
567{
568 struct drm_i915_private *i915 = eb->i915;
569 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
570 struct eb_vma *ev = &eb->vma[i];
571
572 ev->vma = vma;
573 ev->exec = entry;
574 ev->flags = entry->flags;
575
576 if (eb->lut_size > 0) {
577 ev->handle = entry->handle;
578 hlist_add_head(&ev->node,
579 &eb->buckets[hash_32(entry->handle,
580 eb->lut_size)]);
581 }
582
583 if (entry->relocation_count)
584 list_add_tail(&ev->reloc_link, &eb->relocs);
585
586 /*
587 * SNA is doing fancy tricks with compressing batch buffers, which leads
588 * to negative relocation deltas. Usually that works out ok since the
589 * relocate address is still positive, except when the batch is placed
590 * very low in the GTT. Ensure this doesn't happen.
591 *
592 * Note that actual hangs have only been observed on gen7, but for
593 * paranoia do it everywhere.
594 */
595 if (is_batch_buffer(eb, i)) {
596 if (entry->relocation_count &&
597 !(ev->flags & EXEC_OBJECT_PINNED))
598 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
599 if (eb->reloc_cache.has_fence)
600 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
601
602 eb->batches[*current_batch] = ev;
603
604 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
605 drm_dbg(&i915->drm,
606 "Attempting to use self-modifying batch buffer\n");
607 return -EINVAL;
608 }
609
610 if (range_overflows_t(u64,
611 eb->batch_start_offset,
612 eb->args->batch_len,
613 ev->vma->size)) {
614 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
615 return -EINVAL;
616 }
617
618 if (eb->args->batch_len == 0)
619 eb->batch_len[*current_batch] = ev->vma->size -
620 eb->batch_start_offset;
621 else
622 eb->batch_len[*current_batch] = eb->args->batch_len;
623 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
624 drm_dbg(&i915->drm, "Invalid batch length\n");
625 return -EINVAL;
626 }
627
628 ++*current_batch;
629 }
630
631 return 0;
632}
633
634static int use_cpu_reloc(const struct reloc_cache *cache,
635 const struct drm_i915_gem_object *obj)
636{
637 if (!i915_gem_object_has_struct_page(obj))
638 return false;
639
640 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
641 return true;
642
643 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
644 return false;
645
646 /*
647 * For objects created by userspace through GEM_CREATE with pat_index
648 * set by set_pat extension, i915_gem_object_has_cache_level() always
649 * return true, otherwise the call would fall back to checking whether
650 * the object is un-cached.
651 */
652 return (cache->has_llc ||
653 obj->cache_dirty ||
654 !i915_gem_object_has_cache_level(obj, I915_CACHE_NONE));
655}
656
657static int eb_reserve_vma(struct i915_execbuffer *eb,
658 struct eb_vma *ev,
659 u64 pin_flags)
660{
661 struct drm_i915_gem_exec_object2 *entry = ev->exec;
662 struct i915_vma *vma = ev->vma;
663 int err;
664
665 if (drm_mm_node_allocated(&vma->node) &&
666 eb_vma_misplaced(entry, vma, ev->flags)) {
667 err = i915_vma_unbind(vma);
668 if (err)
669 return err;
670 }
671
672 err = i915_vma_pin_ww(vma, &eb->ww,
673 entry->pad_to_size, entry->alignment,
674 eb_pin_flags(entry, ev->flags) | pin_flags);
675 if (err)
676 return err;
677
678 if (entry->offset != i915_vma_offset(vma)) {
679 entry->offset = i915_vma_offset(vma) | UPDATE;
680 eb->args->flags |= __EXEC_HAS_RELOC;
681 }
682
683 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
684 err = i915_vma_pin_fence(vma);
685 if (unlikely(err))
686 return err;
687
688 if (vma->fence)
689 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
690 }
691
692 ev->flags |= __EXEC_OBJECT_HAS_PIN;
693 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
694
695 return 0;
696}
697
698static bool eb_unbind(struct i915_execbuffer *eb, bool force)
699{
700 const unsigned int count = eb->buffer_count;
701 unsigned int i;
702 struct list_head last;
703 bool unpinned = false;
704
705 /* Resort *all* the objects into priority order */
706 INIT_LIST_HEAD(&eb->unbound);
707 INIT_LIST_HEAD(&last);
708
709 for (i = 0; i < count; i++) {
710 struct eb_vma *ev = &eb->vma[i];
711 unsigned int flags = ev->flags;
712
713 if (!force && flags & EXEC_OBJECT_PINNED &&
714 flags & __EXEC_OBJECT_HAS_PIN)
715 continue;
716
717 unpinned = true;
718 eb_unreserve_vma(ev);
719
720 if (flags & EXEC_OBJECT_PINNED)
721 /* Pinned must have their slot */
722 list_add(&ev->bind_link, &eb->unbound);
723 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
724 /* Map require the lowest 256MiB (aperture) */
725 list_add_tail(&ev->bind_link, &eb->unbound);
726 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
727 /* Prioritise 4GiB region for restricted bo */
728 list_add(&ev->bind_link, &last);
729 else
730 list_add_tail(&ev->bind_link, &last);
731 }
732
733 list_splice_tail(&last, &eb->unbound);
734 return unpinned;
735}
736
737static int eb_reserve(struct i915_execbuffer *eb)
738{
739 struct eb_vma *ev;
740 unsigned int pass;
741 int err = 0;
742
743 /*
744 * We have one more buffers that we couldn't bind, which could be due to
745 * various reasons. To resolve this we have 4 passes, with every next
746 * level turning the screws tighter:
747 *
748 * 0. Unbind all objects that do not match the GTT constraints for the
749 * execbuffer (fenceable, mappable, alignment etc). Bind all new
750 * objects. This avoids unnecessary unbinding of later objects in order
751 * to make room for the earlier objects *unless* we need to defragment.
752 *
753 * 1. Reorder the buffers, where objects with the most restrictive
754 * placement requirements go first (ignoring fixed location buffers for
755 * now). For example, objects needing the mappable aperture (the first
756 * 256M of GTT), should go first vs objects that can be placed just
757 * about anywhere. Repeat the previous pass.
758 *
759 * 2. Consider buffers that are pinned at a fixed location. Also try to
760 * evict the entire VM this time, leaving only objects that we were
761 * unable to lock. Try again to bind the buffers. (still using the new
762 * buffer order).
763 *
764 * 3. We likely have object lock contention for one or more stubborn
765 * objects in the VM, for which we need to evict to make forward
766 * progress (perhaps we are fighting the shrinker?). When evicting the
767 * VM this time around, anything that we can't lock we now track using
768 * the busy_bo, using the full lock (after dropping the vm->mutex to
769 * prevent deadlocks), instead of trylock. We then continue to evict the
770 * VM, this time with the stubborn object locked, which we can now
771 * hopefully unbind (if still bound in the VM). Repeat until the VM is
772 * evicted. Finally we should be able bind everything.
773 */
774 for (pass = 0; pass <= 3; pass++) {
775 int pin_flags = PIN_USER | PIN_VALIDATE;
776
777 if (pass == 0)
778 pin_flags |= PIN_NONBLOCK;
779
780 if (pass >= 1)
781 eb_unbind(eb, pass >= 2);
782
783 if (pass == 2) {
784 err = mutex_lock_interruptible(&eb->context->vm->mutex);
785 if (!err) {
786 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
787 mutex_unlock(&eb->context->vm->mutex);
788 }
789 if (err)
790 return err;
791 }
792
793 if (pass == 3) {
794retry:
795 err = mutex_lock_interruptible(&eb->context->vm->mutex);
796 if (!err) {
797 struct drm_i915_gem_object *busy_bo = NULL;
798
799 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
800 mutex_unlock(&eb->context->vm->mutex);
801 if (err && busy_bo) {
802 err = i915_gem_object_lock(busy_bo, &eb->ww);
803 i915_gem_object_put(busy_bo);
804 if (!err)
805 goto retry;
806 }
807 }
808 if (err)
809 return err;
810 }
811
812 list_for_each_entry(ev, &eb->unbound, bind_link) {
813 err = eb_reserve_vma(eb, ev, pin_flags);
814 if (err)
815 break;
816 }
817
818 if (err != -ENOSPC)
819 break;
820 }
821
822 return err;
823}
824
825static int eb_select_context(struct i915_execbuffer *eb)
826{
827 struct i915_gem_context *ctx;
828
829 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
830 if (unlikely(IS_ERR(ctx)))
831 return PTR_ERR(ctx);
832
833 eb->gem_context = ctx;
834 if (i915_gem_context_has_full_ppgtt(ctx))
835 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
836
837 return 0;
838}
839
840static int __eb_add_lut(struct i915_execbuffer *eb,
841 u32 handle, struct i915_vma *vma)
842{
843 struct i915_gem_context *ctx = eb->gem_context;
844 struct i915_lut_handle *lut;
845 int err;
846
847 lut = i915_lut_handle_alloc();
848 if (unlikely(!lut))
849 return -ENOMEM;
850
851 i915_vma_get(vma);
852 if (!atomic_fetch_inc(&vma->open_count))
853 i915_vma_reopen(vma);
854 lut->handle = handle;
855 lut->ctx = ctx;
856
857 /* Check that the context hasn't been closed in the meantime */
858 err = -EINTR;
859 if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
860 if (likely(!i915_gem_context_is_closed(ctx)))
861 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
862 else
863 err = -ENOENT;
864 if (err == 0) { /* And nor has this handle */
865 struct drm_i915_gem_object *obj = vma->obj;
866
867 spin_lock(&obj->lut_lock);
868 if (idr_find(&eb->file->object_idr, handle) == obj) {
869 list_add(&lut->obj_link, &obj->lut_list);
870 } else {
871 radix_tree_delete(&ctx->handles_vma, handle);
872 err = -ENOENT;
873 }
874 spin_unlock(&obj->lut_lock);
875 }
876 mutex_unlock(&ctx->lut_mutex);
877 }
878 if (unlikely(err))
879 goto err;
880
881 return 0;
882
883err:
884 i915_vma_close(vma);
885 i915_vma_put(vma);
886 i915_lut_handle_free(lut);
887 return err;
888}
889
890static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
891{
892 struct i915_address_space *vm = eb->context->vm;
893
894 do {
895 struct drm_i915_gem_object *obj;
896 struct i915_vma *vma;
897 int err;
898
899 rcu_read_lock();
900 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
901 if (likely(vma && vma->vm == vm))
902 vma = i915_vma_tryget(vma);
903 rcu_read_unlock();
904 if (likely(vma))
905 return vma;
906
907 obj = i915_gem_object_lookup(eb->file, handle);
908 if (unlikely(!obj))
909 return ERR_PTR(-ENOENT);
910
911 /*
912 * If the user has opted-in for protected-object tracking, make
913 * sure the object encryption can be used.
914 * We only need to do this when the object is first used with
915 * this context, because the context itself will be banned when
916 * the protected objects become invalid.
917 */
918 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
919 i915_gem_object_is_protected(obj)) {
920 err = intel_pxp_key_check(eb->i915->pxp, obj, true);
921 if (err) {
922 i915_gem_object_put(obj);
923 return ERR_PTR(err);
924 }
925 }
926
927 vma = i915_vma_instance(obj, vm, NULL);
928 if (IS_ERR(vma)) {
929 i915_gem_object_put(obj);
930 return vma;
931 }
932
933 err = __eb_add_lut(eb, handle, vma);
934 if (likely(!err))
935 return vma;
936
937 i915_gem_object_put(obj);
938 if (err != -EEXIST)
939 return ERR_PTR(err);
940 } while (1);
941}
942
943static int eb_lookup_vmas(struct i915_execbuffer *eb)
944{
945 unsigned int i, current_batch = 0;
946 int err = 0;
947
948 INIT_LIST_HEAD(&eb->relocs);
949
950 for (i = 0; i < eb->buffer_count; i++) {
951 struct i915_vma *vma;
952
953 vma = eb_lookup_vma(eb, eb->exec[i].handle);
954 if (IS_ERR(vma)) {
955 err = PTR_ERR(vma);
956 goto err;
957 }
958
959 err = eb_validate_vma(eb, &eb->exec[i], vma);
960 if (unlikely(err)) {
961 i915_vma_put(vma);
962 goto err;
963 }
964
965 err = eb_add_vma(eb, ¤t_batch, i, vma);
966 if (err)
967 return err;
968
969 if (i915_gem_object_is_userptr(vma->obj)) {
970 err = i915_gem_object_userptr_submit_init(vma->obj);
971 if (err) {
972 if (i + 1 < eb->buffer_count) {
973 /*
974 * Execbuffer code expects last vma entry to be NULL,
975 * since we already initialized this entry,
976 * set the next value to NULL or we mess up
977 * cleanup handling.
978 */
979 eb->vma[i + 1].vma = NULL;
980 }
981
982 return err;
983 }
984
985 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
986 eb->args->flags |= __EXEC_USERPTR_USED;
987 }
988 }
989
990 return 0;
991
992err:
993 eb->vma[i].vma = NULL;
994 return err;
995}
996
997static int eb_lock_vmas(struct i915_execbuffer *eb)
998{
999 unsigned int i;
1000 int err;
1001
1002 for (i = 0; i < eb->buffer_count; i++) {
1003 struct eb_vma *ev = &eb->vma[i];
1004 struct i915_vma *vma = ev->vma;
1005
1006 err = i915_gem_object_lock(vma->obj, &eb->ww);
1007 if (err)
1008 return err;
1009 }
1010
1011 return 0;
1012}
1013
1014static int eb_validate_vmas(struct i915_execbuffer *eb)
1015{
1016 unsigned int i;
1017 int err;
1018
1019 INIT_LIST_HEAD(&eb->unbound);
1020
1021 err = eb_lock_vmas(eb);
1022 if (err)
1023 return err;
1024
1025 for (i = 0; i < eb->buffer_count; i++) {
1026 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1027 struct eb_vma *ev = &eb->vma[i];
1028 struct i915_vma *vma = ev->vma;
1029
1030 err = eb_pin_vma(eb, entry, ev);
1031 if (err == -EDEADLK)
1032 return err;
1033
1034 if (!err) {
1035 if (entry->offset != i915_vma_offset(vma)) {
1036 entry->offset = i915_vma_offset(vma) | UPDATE;
1037 eb->args->flags |= __EXEC_HAS_RELOC;
1038 }
1039 } else {
1040 eb_unreserve_vma(ev);
1041
1042 list_add_tail(&ev->bind_link, &eb->unbound);
1043 if (drm_mm_node_allocated(&vma->node)) {
1044 err = i915_vma_unbind(vma);
1045 if (err)
1046 return err;
1047 }
1048 }
1049
1050 /* Reserve enough slots to accommodate composite fences */
1051 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1052 if (err)
1053 return err;
1054
1055 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1056 eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1057 }
1058
1059 if (!list_empty(&eb->unbound))
1060 return eb_reserve(eb);
1061
1062 return 0;
1063}
1064
1065static struct eb_vma *
1066eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1067{
1068 if (eb->lut_size < 0) {
1069 if (handle >= -eb->lut_size)
1070 return NULL;
1071 return &eb->vma[handle];
1072 } else {
1073 struct hlist_head *head;
1074 struct eb_vma *ev;
1075
1076 head = &eb->buckets[hash_32(handle, eb->lut_size)];
1077 hlist_for_each_entry(ev, head, node) {
1078 if (ev->handle == handle)
1079 return ev;
1080 }
1081 return NULL;
1082 }
1083}
1084
1085static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1086{
1087 const unsigned int count = eb->buffer_count;
1088 unsigned int i;
1089
1090 for (i = 0; i < count; i++) {
1091 struct eb_vma *ev = &eb->vma[i];
1092 struct i915_vma *vma = ev->vma;
1093
1094 if (!vma)
1095 break;
1096
1097 eb_unreserve_vma(ev);
1098
1099 if (final)
1100 i915_vma_put(vma);
1101 }
1102
1103 eb_capture_release(eb);
1104 eb_unpin_engine(eb);
1105}
1106
1107static void eb_destroy(const struct i915_execbuffer *eb)
1108{
1109 if (eb->lut_size > 0)
1110 kfree(eb->buckets);
1111}
1112
1113static u64
1114relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1115 const struct i915_vma *target)
1116{
1117 return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
1118}
1119
1120static void reloc_cache_init(struct reloc_cache *cache,
1121 struct drm_i915_private *i915)
1122{
1123 cache->page = -1;
1124 cache->vaddr = 0;
1125 /* Must be a variable in the struct to allow GCC to unroll. */
1126 cache->graphics_ver = GRAPHICS_VER(i915);
1127 cache->has_llc = HAS_LLC(i915);
1128 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1129 cache->has_fence = cache->graphics_ver < 4;
1130 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1131 cache->node.flags = 0;
1132}
1133
1134static void *unmask_page(unsigned long p)
1135{
1136 return (void *)(uintptr_t)(p & PAGE_MASK);
1137}
1138
1139static unsigned int unmask_flags(unsigned long p)
1140{
1141 return p & ~PAGE_MASK;
1142}
1143
1144#define KMAP 0x4 /* after CLFLUSH_FLAGS */
1145
1146static struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1147{
1148 struct drm_i915_private *i915 =
1149 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1150 return to_gt(i915)->ggtt;
1151}
1152
1153static void reloc_cache_unmap(struct reloc_cache *cache)
1154{
1155 void *vaddr;
1156
1157 if (!cache->vaddr)
1158 return;
1159
1160 vaddr = unmask_page(cache->vaddr);
1161 if (cache->vaddr & KMAP)
1162 kunmap_local(vaddr);
1163 else
1164 io_mapping_unmap_atomic((void __iomem *)vaddr);
1165}
1166
1167static void reloc_cache_remap(struct reloc_cache *cache,
1168 struct drm_i915_gem_object *obj)
1169{
1170 void *vaddr;
1171
1172 if (!cache->vaddr)
1173 return;
1174
1175 if (cache->vaddr & KMAP) {
1176 struct page *page = i915_gem_object_get_page(obj, cache->page);
1177
1178 vaddr = kmap_local_page(page);
1179 cache->vaddr = unmask_flags(cache->vaddr) |
1180 (unsigned long)vaddr;
1181 } else {
1182 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1183 unsigned long offset;
1184
1185 offset = cache->node.start;
1186 if (!drm_mm_node_allocated(&cache->node))
1187 offset += cache->page << PAGE_SHIFT;
1188
1189 cache->vaddr = (unsigned long)
1190 io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1191 }
1192}
1193
1194static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1195{
1196 void *vaddr;
1197
1198 if (!cache->vaddr)
1199 return;
1200
1201 vaddr = unmask_page(cache->vaddr);
1202 if (cache->vaddr & KMAP) {
1203 struct drm_i915_gem_object *obj =
1204 (struct drm_i915_gem_object *)cache->node.mm;
1205 if (cache->vaddr & CLFLUSH_AFTER)
1206 mb();
1207
1208 kunmap_local(vaddr);
1209 i915_gem_object_finish_access(obj);
1210 } else {
1211 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1212
1213 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1214 io_mapping_unmap_atomic((void __iomem *)vaddr);
1215
1216 if (drm_mm_node_allocated(&cache->node)) {
1217 ggtt->vm.clear_range(&ggtt->vm,
1218 cache->node.start,
1219 cache->node.size);
1220 mutex_lock(&ggtt->vm.mutex);
1221 drm_mm_remove_node(&cache->node);
1222 mutex_unlock(&ggtt->vm.mutex);
1223 } else {
1224 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1225 }
1226 }
1227
1228 cache->vaddr = 0;
1229 cache->page = -1;
1230}
1231
1232static void *reloc_kmap(struct drm_i915_gem_object *obj,
1233 struct reloc_cache *cache,
1234 unsigned long pageno)
1235{
1236 void *vaddr;
1237 struct page *page;
1238
1239 if (cache->vaddr) {
1240 kunmap_local(unmask_page(cache->vaddr));
1241 } else {
1242 unsigned int flushes;
1243 int err;
1244
1245 err = i915_gem_object_prepare_write(obj, &flushes);
1246 if (err)
1247 return ERR_PTR(err);
1248
1249 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1250 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1251
1252 cache->vaddr = flushes | KMAP;
1253 cache->node.mm = (void *)obj;
1254 if (flushes)
1255 mb();
1256 }
1257
1258 page = i915_gem_object_get_page(obj, pageno);
1259 if (!obj->mm.dirty)
1260 set_page_dirty(page);
1261
1262 vaddr = kmap_local_page(page);
1263 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1264 cache->page = pageno;
1265
1266 return vaddr;
1267}
1268
1269static void *reloc_iomap(struct i915_vma *batch,
1270 struct i915_execbuffer *eb,
1271 unsigned long page)
1272{
1273 struct drm_i915_gem_object *obj = batch->obj;
1274 struct reloc_cache *cache = &eb->reloc_cache;
1275 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1276 unsigned long offset;
1277 void *vaddr;
1278
1279 if (cache->vaddr) {
1280 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1281 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1282 } else {
1283 struct i915_vma *vma = ERR_PTR(-ENODEV);
1284 int err;
1285
1286 if (i915_gem_object_is_tiled(obj))
1287 return ERR_PTR(-EINVAL);
1288
1289 if (use_cpu_reloc(cache, obj))
1290 return NULL;
1291
1292 err = i915_gem_object_set_to_gtt_domain(obj, true);
1293 if (err)
1294 return ERR_PTR(err);
1295
1296 /*
1297 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1298 * VMA from the object list because we no longer pin.
1299 *
1300 * Only attempt to pin the batch buffer to ggtt if the current batch
1301 * is not inside ggtt, or the batch buffer is not misplaced.
1302 */
1303 if (!i915_is_ggtt(batch->vm) ||
1304 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1305 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1306 PIN_MAPPABLE |
1307 PIN_NONBLOCK /* NOWARN */ |
1308 PIN_NOEVICT);
1309 }
1310
1311 if (vma == ERR_PTR(-EDEADLK))
1312 return vma;
1313
1314 if (IS_ERR(vma)) {
1315 memset(&cache->node, 0, sizeof(cache->node));
1316 mutex_lock(&ggtt->vm.mutex);
1317 err = drm_mm_insert_node_in_range
1318 (&ggtt->vm.mm, &cache->node,
1319 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1320 0, ggtt->mappable_end,
1321 DRM_MM_INSERT_LOW);
1322 mutex_unlock(&ggtt->vm.mutex);
1323 if (err) /* no inactive aperture space, use cpu reloc */
1324 return NULL;
1325 } else {
1326 cache->node.start = i915_ggtt_offset(vma);
1327 cache->node.mm = (void *)vma;
1328 }
1329 }
1330
1331 offset = cache->node.start;
1332 if (drm_mm_node_allocated(&cache->node)) {
1333 ggtt->vm.insert_page(&ggtt->vm,
1334 i915_gem_object_get_dma_address(obj, page),
1335 offset,
1336 i915_gem_get_pat_index(ggtt->vm.i915,
1337 I915_CACHE_NONE),
1338 0);
1339 } else {
1340 offset += page << PAGE_SHIFT;
1341 }
1342
1343 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1344 offset);
1345 cache->page = page;
1346 cache->vaddr = (unsigned long)vaddr;
1347
1348 return vaddr;
1349}
1350
1351static void *reloc_vaddr(struct i915_vma *vma,
1352 struct i915_execbuffer *eb,
1353 unsigned long page)
1354{
1355 struct reloc_cache *cache = &eb->reloc_cache;
1356 void *vaddr;
1357
1358 if (cache->page == page) {
1359 vaddr = unmask_page(cache->vaddr);
1360 } else {
1361 vaddr = NULL;
1362 if ((cache->vaddr & KMAP) == 0)
1363 vaddr = reloc_iomap(vma, eb, page);
1364 if (!vaddr)
1365 vaddr = reloc_kmap(vma->obj, cache, page);
1366 }
1367
1368 return vaddr;
1369}
1370
1371static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1372{
1373 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1374 if (flushes & CLFLUSH_BEFORE)
1375 drm_clflush_virt_range(addr, sizeof(*addr));
1376
1377 *addr = value;
1378
1379 /*
1380 * Writes to the same cacheline are serialised by the CPU
1381 * (including clflush). On the write path, we only require
1382 * that it hits memory in an orderly fashion and place
1383 * mb barriers at the start and end of the relocation phase
1384 * to ensure ordering of clflush wrt to the system.
1385 */
1386 if (flushes & CLFLUSH_AFTER)
1387 drm_clflush_virt_range(addr, sizeof(*addr));
1388 } else
1389 *addr = value;
1390}
1391
1392static u64
1393relocate_entry(struct i915_vma *vma,
1394 const struct drm_i915_gem_relocation_entry *reloc,
1395 struct i915_execbuffer *eb,
1396 const struct i915_vma *target)
1397{
1398 u64 target_addr = relocation_target(reloc, target);
1399 u64 offset = reloc->offset;
1400 bool wide = eb->reloc_cache.use_64bit_reloc;
1401 void *vaddr;
1402
1403repeat:
1404 vaddr = reloc_vaddr(vma, eb,
1405 offset >> PAGE_SHIFT);
1406 if (IS_ERR(vaddr))
1407 return PTR_ERR(vaddr);
1408
1409 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1410 clflush_write32(vaddr + offset_in_page(offset),
1411 lower_32_bits(target_addr),
1412 eb->reloc_cache.vaddr);
1413
1414 if (wide) {
1415 offset += sizeof(u32);
1416 target_addr >>= 32;
1417 wide = false;
1418 goto repeat;
1419 }
1420
1421 return target->node.start | UPDATE;
1422}
1423
1424static u64
1425eb_relocate_entry(struct i915_execbuffer *eb,
1426 struct eb_vma *ev,
1427 const struct drm_i915_gem_relocation_entry *reloc)
1428{
1429 struct drm_i915_private *i915 = eb->i915;
1430 struct eb_vma *target;
1431 int err;
1432
1433 /* we've already hold a reference to all valid objects */
1434 target = eb_get_vma(eb, reloc->target_handle);
1435 if (unlikely(!target))
1436 return -ENOENT;
1437
1438 /* Validate that the target is in a valid r/w GPU domain */
1439 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1440 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1441 "target %d offset %d "
1442 "read %08x write %08x\n",
1443 reloc->target_handle,
1444 (int) reloc->offset,
1445 reloc->read_domains,
1446 reloc->write_domain);
1447 return -EINVAL;
1448 }
1449 if (unlikely((reloc->write_domain | reloc->read_domains)
1450 & ~I915_GEM_GPU_DOMAINS)) {
1451 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1452 "target %d offset %d "
1453 "read %08x write %08x\n",
1454 reloc->target_handle,
1455 (int) reloc->offset,
1456 reloc->read_domains,
1457 reloc->write_domain);
1458 return -EINVAL;
1459 }
1460
1461 if (reloc->write_domain) {
1462 target->flags |= EXEC_OBJECT_WRITE;
1463
1464 /*
1465 * Sandybridge PPGTT errata: We need a global gtt mapping
1466 * for MI and pipe_control writes because the gpu doesn't
1467 * properly redirect them through the ppgtt for non_secure
1468 * batchbuffers.
1469 */
1470 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1471 GRAPHICS_VER(eb->i915) == 6 &&
1472 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1473 struct i915_vma *vma = target->vma;
1474
1475 reloc_cache_unmap(&eb->reloc_cache);
1476 mutex_lock(&vma->vm->mutex);
1477 err = i915_vma_bind(target->vma,
1478 target->vma->obj->pat_index,
1479 PIN_GLOBAL, NULL, NULL);
1480 mutex_unlock(&vma->vm->mutex);
1481 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1482 if (err)
1483 return err;
1484 }
1485 }
1486
1487 /*
1488 * If the relocation already has the right value in it, no
1489 * more work needs to be done.
1490 */
1491 if (!DBG_FORCE_RELOC &&
1492 gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
1493 return 0;
1494
1495 /* Check that the relocation address is valid... */
1496 if (unlikely(reloc->offset >
1497 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1498 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1499 "target %d offset %d size %d.\n",
1500 reloc->target_handle,
1501 (int)reloc->offset,
1502 (int)ev->vma->size);
1503 return -EINVAL;
1504 }
1505 if (unlikely(reloc->offset & 3)) {
1506 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1507 "target %d offset %d.\n",
1508 reloc->target_handle,
1509 (int)reloc->offset);
1510 return -EINVAL;
1511 }
1512
1513 /*
1514 * If we write into the object, we need to force the synchronisation
1515 * barrier, either with an asynchronous clflush or if we executed the
1516 * patching using the GPU (though that should be serialised by the
1517 * timeline). To be completely sure, and since we are required to
1518 * do relocations we are already stalling, disable the user's opt
1519 * out of our synchronisation.
1520 */
1521 ev->flags &= ~EXEC_OBJECT_ASYNC;
1522
1523 /* and update the user's relocation entry */
1524 return relocate_entry(ev->vma, reloc, eb, target->vma);
1525}
1526
1527static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1528{
1529#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1530 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1531 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1532 struct drm_i915_gem_relocation_entry __user *urelocs =
1533 u64_to_user_ptr(entry->relocs_ptr);
1534 unsigned long remain = entry->relocation_count;
1535
1536 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1537 return -EINVAL;
1538
1539 /*
1540 * We must check that the entire relocation array is safe
1541 * to read. However, if the array is not writable the user loses
1542 * the updated relocation values.
1543 */
1544 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1545 return -EFAULT;
1546
1547 do {
1548 struct drm_i915_gem_relocation_entry *r = stack;
1549 unsigned int count =
1550 min_t(unsigned long, remain, ARRAY_SIZE(stack));
1551 unsigned int copied;
1552
1553 /*
1554 * This is the fast path and we cannot handle a pagefault
1555 * whilst holding the struct mutex lest the user pass in the
1556 * relocations contained within a mmaped bo. For in such a case
1557 * we, the page fault handler would call i915_gem_fault() and
1558 * we would try to acquire the struct mutex again. Obviously
1559 * this is bad and so lockdep complains vehemently.
1560 */
1561 pagefault_disable();
1562 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1563 pagefault_enable();
1564 if (unlikely(copied)) {
1565 remain = -EFAULT;
1566 goto out;
1567 }
1568
1569 remain -= count;
1570 do {
1571 u64 offset = eb_relocate_entry(eb, ev, r);
1572
1573 if (likely(offset == 0)) {
1574 } else if ((s64)offset < 0) {
1575 remain = (int)offset;
1576 goto out;
1577 } else {
1578 /*
1579 * Note that reporting an error now
1580 * leaves everything in an inconsistent
1581 * state as we have *already* changed
1582 * the relocation value inside the
1583 * object. As we have not changed the
1584 * reloc.presumed_offset or will not
1585 * change the execobject.offset, on the
1586 * call we may not rewrite the value
1587 * inside the object, leaving it
1588 * dangling and causing a GPU hang. Unless
1589 * userspace dynamically rebuilds the
1590 * relocations on each execbuf rather than
1591 * presume a static tree.
1592 *
1593 * We did previously check if the relocations
1594 * were writable (access_ok), an error now
1595 * would be a strange race with mprotect,
1596 * having already demonstrated that we
1597 * can read from this userspace address.
1598 */
1599 offset = gen8_canonical_addr(offset & ~UPDATE);
1600 __put_user(offset,
1601 &urelocs[r - stack].presumed_offset);
1602 }
1603 } while (r++, --count);
1604 urelocs += ARRAY_SIZE(stack);
1605 } while (remain);
1606out:
1607 reloc_cache_reset(&eb->reloc_cache, eb);
1608 return remain;
1609}
1610
1611static int
1612eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1613{
1614 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1615 struct drm_i915_gem_relocation_entry *relocs =
1616 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1617 unsigned int i;
1618 int err;
1619
1620 for (i = 0; i < entry->relocation_count; i++) {
1621 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1622
1623 if ((s64)offset < 0) {
1624 err = (int)offset;
1625 goto err;
1626 }
1627 }
1628 err = 0;
1629err:
1630 reloc_cache_reset(&eb->reloc_cache, eb);
1631 return err;
1632}
1633
1634static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1635{
1636 const char __user *addr, *end;
1637 unsigned long size;
1638 char __maybe_unused c;
1639
1640 size = entry->relocation_count;
1641 if (size == 0)
1642 return 0;
1643
1644 if (size > N_RELOC(ULONG_MAX))
1645 return -EINVAL;
1646
1647 addr = u64_to_user_ptr(entry->relocs_ptr);
1648 size *= sizeof(struct drm_i915_gem_relocation_entry);
1649 if (!access_ok(addr, size))
1650 return -EFAULT;
1651
1652 end = addr + size;
1653 for (; addr < end; addr += PAGE_SIZE) {
1654 int err = __get_user(c, addr);
1655 if (err)
1656 return err;
1657 }
1658 return __get_user(c, end - 1);
1659}
1660
1661static int eb_copy_relocations(const struct i915_execbuffer *eb)
1662{
1663 struct drm_i915_gem_relocation_entry *relocs;
1664 const unsigned int count = eb->buffer_count;
1665 unsigned int i;
1666 int err;
1667
1668 for (i = 0; i < count; i++) {
1669 const unsigned int nreloc = eb->exec[i].relocation_count;
1670 struct drm_i915_gem_relocation_entry __user *urelocs;
1671 unsigned long size;
1672 unsigned long copied;
1673
1674 if (nreloc == 0)
1675 continue;
1676
1677 err = check_relocations(&eb->exec[i]);
1678 if (err)
1679 goto err;
1680
1681 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1682 size = nreloc * sizeof(*relocs);
1683
1684 relocs = kvmalloc_array(1, size, GFP_KERNEL);
1685 if (!relocs) {
1686 err = -ENOMEM;
1687 goto err;
1688 }
1689
1690 /* copy_from_user is limited to < 4GiB */
1691 copied = 0;
1692 do {
1693 unsigned int len =
1694 min_t(u64, BIT_ULL(31), size - copied);
1695
1696 if (__copy_from_user((char *)relocs + copied,
1697 (char __user *)urelocs + copied,
1698 len))
1699 goto end;
1700
1701 copied += len;
1702 } while (copied < size);
1703
1704 /*
1705 * As we do not update the known relocation offsets after
1706 * relocating (due to the complexities in lock handling),
1707 * we need to mark them as invalid now so that we force the
1708 * relocation processing next time. Just in case the target
1709 * object is evicted and then rebound into its old
1710 * presumed_offset before the next execbuffer - if that
1711 * happened we would make the mistake of assuming that the
1712 * relocations were valid.
1713 */
1714 if (!user_access_begin(urelocs, size))
1715 goto end;
1716
1717 for (copied = 0; copied < nreloc; copied++)
1718 unsafe_put_user(-1,
1719 &urelocs[copied].presumed_offset,
1720 end_user);
1721 user_access_end();
1722
1723 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1724 }
1725
1726 return 0;
1727
1728end_user:
1729 user_access_end();
1730end:
1731 kvfree(relocs);
1732 err = -EFAULT;
1733err:
1734 while (i--) {
1735 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1736 if (eb->exec[i].relocation_count)
1737 kvfree(relocs);
1738 }
1739 return err;
1740}
1741
1742static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1743{
1744 const unsigned int count = eb->buffer_count;
1745 unsigned int i;
1746
1747 for (i = 0; i < count; i++) {
1748 int err;
1749
1750 err = check_relocations(&eb->exec[i]);
1751 if (err)
1752 return err;
1753 }
1754
1755 return 0;
1756}
1757
1758static int eb_reinit_userptr(struct i915_execbuffer *eb)
1759{
1760 const unsigned int count = eb->buffer_count;
1761 unsigned int i;
1762 int ret;
1763
1764 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1765 return 0;
1766
1767 for (i = 0; i < count; i++) {
1768 struct eb_vma *ev = &eb->vma[i];
1769
1770 if (!i915_gem_object_is_userptr(ev->vma->obj))
1771 continue;
1772
1773 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1774 if (ret)
1775 return ret;
1776
1777 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1778 }
1779
1780 return 0;
1781}
1782
1783static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1784{
1785 bool have_copy = false;
1786 struct eb_vma *ev;
1787 int err = 0;
1788
1789repeat:
1790 if (signal_pending(current)) {
1791 err = -ERESTARTSYS;
1792 goto out;
1793 }
1794
1795 /* We may process another execbuffer during the unlock... */
1796 eb_release_vmas(eb, false);
1797 i915_gem_ww_ctx_fini(&eb->ww);
1798
1799 /*
1800 * We take 3 passes through the slowpatch.
1801 *
1802 * 1 - we try to just prefault all the user relocation entries and
1803 * then attempt to reuse the atomic pagefault disabled fast path again.
1804 *
1805 * 2 - we copy the user entries to a local buffer here outside of the
1806 * local and allow ourselves to wait upon any rendering before
1807 * relocations
1808 *
1809 * 3 - we already have a local copy of the relocation entries, but
1810 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1811 */
1812 if (!err) {
1813 err = eb_prefault_relocations(eb);
1814 } else if (!have_copy) {
1815 err = eb_copy_relocations(eb);
1816 have_copy = err == 0;
1817 } else {
1818 cond_resched();
1819 err = 0;
1820 }
1821
1822 if (!err)
1823 err = eb_reinit_userptr(eb);
1824
1825 i915_gem_ww_ctx_init(&eb->ww, true);
1826 if (err)
1827 goto out;
1828
1829 /* reacquire the objects */
1830repeat_validate:
1831 err = eb_pin_engine(eb, false);
1832 if (err)
1833 goto err;
1834
1835 err = eb_validate_vmas(eb);
1836 if (err)
1837 goto err;
1838
1839 GEM_BUG_ON(!eb->batches[0]);
1840
1841 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1842 if (!have_copy) {
1843 err = eb_relocate_vma(eb, ev);
1844 if (err)
1845 break;
1846 } else {
1847 err = eb_relocate_vma_slow(eb, ev);
1848 if (err)
1849 break;
1850 }
1851 }
1852
1853 if (err == -EDEADLK)
1854 goto err;
1855
1856 if (err && !have_copy)
1857 goto repeat;
1858
1859 if (err)
1860 goto err;
1861
1862 /* as last step, parse the command buffer */
1863 err = eb_parse(eb);
1864 if (err)
1865 goto err;
1866
1867 /*
1868 * Leave the user relocations as are, this is the painfully slow path,
1869 * and we want to avoid the complication of dropping the lock whilst
1870 * having buffers reserved in the aperture and so causing spurious
1871 * ENOSPC for random operations.
1872 */
1873
1874err:
1875 if (err == -EDEADLK) {
1876 eb_release_vmas(eb, false);
1877 err = i915_gem_ww_ctx_backoff(&eb->ww);
1878 if (!err)
1879 goto repeat_validate;
1880 }
1881
1882 if (err == -EAGAIN)
1883 goto repeat;
1884
1885out:
1886 if (have_copy) {
1887 const unsigned int count = eb->buffer_count;
1888 unsigned int i;
1889
1890 for (i = 0; i < count; i++) {
1891 const struct drm_i915_gem_exec_object2 *entry =
1892 &eb->exec[i];
1893 struct drm_i915_gem_relocation_entry *relocs;
1894
1895 if (!entry->relocation_count)
1896 continue;
1897
1898 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1899 kvfree(relocs);
1900 }
1901 }
1902
1903 return err;
1904}
1905
1906static int eb_relocate_parse(struct i915_execbuffer *eb)
1907{
1908 int err;
1909 bool throttle = true;
1910
1911retry:
1912 err = eb_pin_engine(eb, throttle);
1913 if (err) {
1914 if (err != -EDEADLK)
1915 return err;
1916
1917 goto err;
1918 }
1919
1920 /* only throttle once, even if we didn't need to throttle */
1921 throttle = false;
1922
1923 err = eb_validate_vmas(eb);
1924 if (err == -EAGAIN)
1925 goto slow;
1926 else if (err)
1927 goto err;
1928
1929 /* The objects are in their final locations, apply the relocations. */
1930 if (eb->args->flags & __EXEC_HAS_RELOC) {
1931 struct eb_vma *ev;
1932
1933 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1934 err = eb_relocate_vma(eb, ev);
1935 if (err)
1936 break;
1937 }
1938
1939 if (err == -EDEADLK)
1940 goto err;
1941 else if (err)
1942 goto slow;
1943 }
1944
1945 if (!err)
1946 err = eb_parse(eb);
1947
1948err:
1949 if (err == -EDEADLK) {
1950 eb_release_vmas(eb, false);
1951 err = i915_gem_ww_ctx_backoff(&eb->ww);
1952 if (!err)
1953 goto retry;
1954 }
1955
1956 return err;
1957
1958slow:
1959 err = eb_relocate_parse_slow(eb);
1960 if (err)
1961 /*
1962 * If the user expects the execobject.offset and
1963 * reloc.presumed_offset to be an exact match,
1964 * as for using NO_RELOC, then we cannot update
1965 * the execobject.offset until we have completed
1966 * relocation.
1967 */
1968 eb->args->flags &= ~__EXEC_HAS_RELOC;
1969
1970 return err;
1971}
1972
1973/*
1974 * Using two helper loops for the order of which requests / batches are created
1975 * and added the to backend. Requests are created in order from the parent to
1976 * the last child. Requests are added in the reverse order, from the last child
1977 * to parent. This is done for locking reasons as the timeline lock is acquired
1978 * during request creation and released when the request is added to the
1979 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1980 * the ordering.
1981 */
1982#define for_each_batch_create_order(_eb, _i) \
1983 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1984#define for_each_batch_add_order(_eb, _i) \
1985 BUILD_BUG_ON(!typecheck(int, _i)); \
1986 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1987
1988static struct i915_request *
1989eb_find_first_request_added(struct i915_execbuffer *eb)
1990{
1991 int i;
1992
1993 for_each_batch_add_order(eb, i)
1994 if (eb->requests[i])
1995 return eb->requests[i];
1996
1997 GEM_BUG_ON("Request not found");
1998
1999 return NULL;
2000}
2001
2002#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
2003
2004/* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
2005static int eb_capture_stage(struct i915_execbuffer *eb)
2006{
2007 const unsigned int count = eb->buffer_count;
2008 unsigned int i = count, j;
2009
2010 while (i--) {
2011 struct eb_vma *ev = &eb->vma[i];
2012 struct i915_vma *vma = ev->vma;
2013 unsigned int flags = ev->flags;
2014
2015 if (!(flags & EXEC_OBJECT_CAPTURE))
2016 continue;
2017
2018 if (i915_gem_context_is_recoverable(eb->gem_context) &&
2019 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
2020 return -EINVAL;
2021
2022 for_each_batch_create_order(eb, j) {
2023 struct i915_capture_list *capture;
2024
2025 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2026 if (!capture)
2027 continue;
2028
2029 capture->next = eb->capture_lists[j];
2030 capture->vma_res = i915_vma_resource_get(vma->resource);
2031 eb->capture_lists[j] = capture;
2032 }
2033 }
2034
2035 return 0;
2036}
2037
2038/* Commit once we're in the critical path */
2039static void eb_capture_commit(struct i915_execbuffer *eb)
2040{
2041 unsigned int j;
2042
2043 for_each_batch_create_order(eb, j) {
2044 struct i915_request *rq = eb->requests[j];
2045
2046 if (!rq)
2047 break;
2048
2049 rq->capture_list = eb->capture_lists[j];
2050 eb->capture_lists[j] = NULL;
2051 }
2052}
2053
2054/*
2055 * Release anything that didn't get committed due to errors.
2056 * The capture_list will otherwise be freed at request retire.
2057 */
2058static void eb_capture_release(struct i915_execbuffer *eb)
2059{
2060 unsigned int j;
2061
2062 for_each_batch_create_order(eb, j) {
2063 if (eb->capture_lists[j]) {
2064 i915_request_free_capture_list(eb->capture_lists[j]);
2065 eb->capture_lists[j] = NULL;
2066 }
2067 }
2068}
2069
2070static void eb_capture_list_clear(struct i915_execbuffer *eb)
2071{
2072 memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2073}
2074
2075#else
2076
2077static int eb_capture_stage(struct i915_execbuffer *eb)
2078{
2079 return 0;
2080}
2081
2082static void eb_capture_commit(struct i915_execbuffer *eb)
2083{
2084}
2085
2086static void eb_capture_release(struct i915_execbuffer *eb)
2087{
2088}
2089
2090static void eb_capture_list_clear(struct i915_execbuffer *eb)
2091{
2092}
2093
2094#endif
2095
2096static int eb_move_to_gpu(struct i915_execbuffer *eb)
2097{
2098 const unsigned int count = eb->buffer_count;
2099 unsigned int i = count;
2100 int err = 0, j;
2101
2102 while (i--) {
2103 struct eb_vma *ev = &eb->vma[i];
2104 struct i915_vma *vma = ev->vma;
2105 unsigned int flags = ev->flags;
2106 struct drm_i915_gem_object *obj = vma->obj;
2107
2108 assert_vma_held(vma);
2109
2110 /*
2111 * If the GPU is not _reading_ through the CPU cache, we need
2112 * to make sure that any writes (both previous GPU writes from
2113 * before a change in snooping levels and normal CPU writes)
2114 * caught in that cache are flushed to main memory.
2115 *
2116 * We want to say
2117 * obj->cache_dirty &&
2118 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2119 * but gcc's optimiser doesn't handle that as well and emits
2120 * two jumps instead of one. Maybe one day...
2121 *
2122 * FIXME: There is also sync flushing in set_pages(), which
2123 * serves a different purpose(some of the time at least).
2124 *
2125 * We should consider:
2126 *
2127 * 1. Rip out the async flush code.
2128 *
2129 * 2. Or make the sync flushing use the async clflush path
2130 * using mandatory fences underneath. Currently the below
2131 * async flush happens after we bind the object.
2132 */
2133 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2134 if (i915_gem_clflush_object(obj, 0))
2135 flags &= ~EXEC_OBJECT_ASYNC;
2136 }
2137
2138 /* We only need to await on the first request */
2139 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2140 err = i915_request_await_object
2141 (eb_find_first_request_added(eb), obj,
2142 flags & EXEC_OBJECT_WRITE);
2143 }
2144
2145 for_each_batch_add_order(eb, j) {
2146 if (err)
2147 break;
2148 if (!eb->requests[j])
2149 continue;
2150
2151 err = _i915_vma_move_to_active(vma, eb->requests[j],
2152 j ? NULL :
2153 eb->composite_fence ?
2154 eb->composite_fence :
2155 &eb->requests[j]->fence,
2156 flags | __EXEC_OBJECT_NO_RESERVE |
2157 __EXEC_OBJECT_NO_REQUEST_AWAIT);
2158 }
2159 }
2160
2161#ifdef CONFIG_MMU_NOTIFIER
2162 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2163 for (i = 0; i < count; i++) {
2164 struct eb_vma *ev = &eb->vma[i];
2165 struct drm_i915_gem_object *obj = ev->vma->obj;
2166
2167 if (!i915_gem_object_is_userptr(obj))
2168 continue;
2169
2170 err = i915_gem_object_userptr_submit_done(obj);
2171 if (err)
2172 break;
2173 }
2174 }
2175#endif
2176
2177 if (unlikely(err))
2178 goto err_skip;
2179
2180 /* Unconditionally flush any chipset caches (for streaming writes). */
2181 intel_gt_chipset_flush(eb->gt);
2182 eb_capture_commit(eb);
2183
2184 return 0;
2185
2186err_skip:
2187 for_each_batch_create_order(eb, j) {
2188 if (!eb->requests[j])
2189 break;
2190
2191 i915_request_set_error_once(eb->requests[j], err);
2192 }
2193 return err;
2194}
2195
2196static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
2197 struct drm_i915_gem_execbuffer2 *exec)
2198{
2199 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2200 return -EINVAL;
2201
2202 /* Kernel clipping was a DRI1 misfeature */
2203 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2204 I915_EXEC_USE_EXTENSIONS))) {
2205 if (exec->num_cliprects || exec->cliprects_ptr)
2206 return -EINVAL;
2207 }
2208
2209 if (exec->DR4 == 0xffffffff) {
2210 drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
2211 exec->DR4 = 0;
2212 }
2213 if (exec->DR1 || exec->DR4)
2214 return -EINVAL;
2215
2216 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2217 return -EINVAL;
2218
2219 return 0;
2220}
2221
2222static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2223{
2224 u32 *cs;
2225 int i;
2226
2227 if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) {
2228 drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
2229 return -EINVAL;
2230 }
2231
2232 cs = intel_ring_begin(rq, 4 * 2 + 2);
2233 if (IS_ERR(cs))
2234 return PTR_ERR(cs);
2235
2236 *cs++ = MI_LOAD_REGISTER_IMM(4);
2237 for (i = 0; i < 4; i++) {
2238 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2239 *cs++ = 0;
2240 }
2241 *cs++ = MI_NOOP;
2242 intel_ring_advance(rq, cs);
2243
2244 return 0;
2245}
2246
2247static struct i915_vma *
2248shadow_batch_pin(struct i915_execbuffer *eb,
2249 struct drm_i915_gem_object *obj,
2250 struct i915_address_space *vm,
2251 unsigned int flags)
2252{
2253 struct i915_vma *vma;
2254 int err;
2255
2256 vma = i915_vma_instance(obj, vm, NULL);
2257 if (IS_ERR(vma))
2258 return vma;
2259
2260 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2261 if (err)
2262 return ERR_PTR(err);
2263
2264 return vma;
2265}
2266
2267static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2268{
2269 /*
2270 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2271 * batch" bit. Hence we need to pin secure batches into the global gtt.
2272 * hsw should have this fixed, but bdw mucks it up again. */
2273 if (eb->batch_flags & I915_DISPATCH_SECURE)
2274 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2275
2276 return NULL;
2277}
2278
2279static int eb_parse(struct i915_execbuffer *eb)
2280{
2281 struct drm_i915_private *i915 = eb->i915;
2282 struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2283 struct i915_vma *shadow, *trampoline, *batch;
2284 unsigned long len;
2285 int err;
2286
2287 if (!eb_use_cmdparser(eb)) {
2288 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2289 if (IS_ERR(batch))
2290 return PTR_ERR(batch);
2291
2292 goto secure_batch;
2293 }
2294
2295 if (intel_context_is_parallel(eb->context))
2296 return -EINVAL;
2297
2298 len = eb->batch_len[0];
2299 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2300 /*
2301 * ppGTT backed shadow buffers must be mapped RO, to prevent
2302 * post-scan tampering
2303 */
2304 if (!eb->context->vm->has_read_only) {
2305 drm_dbg(&i915->drm,
2306 "Cannot prevent post-scan tampering without RO capable vm\n");
2307 return -EINVAL;
2308 }
2309 } else {
2310 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2311 }
2312 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2313 return -EINVAL;
2314
2315 if (!pool) {
2316 pool = intel_gt_get_buffer_pool(eb->gt, len,
2317 I915_MAP_WB);
2318 if (IS_ERR(pool))
2319 return PTR_ERR(pool);
2320 eb->batch_pool = pool;
2321 }
2322
2323 err = i915_gem_object_lock(pool->obj, &eb->ww);
2324 if (err)
2325 return err;
2326
2327 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2328 if (IS_ERR(shadow))
2329 return PTR_ERR(shadow);
2330
2331 intel_gt_buffer_pool_mark_used(pool);
2332 i915_gem_object_set_readonly(shadow->obj);
2333 shadow->private = pool;
2334
2335 trampoline = NULL;
2336 if (CMDPARSER_USES_GGTT(eb->i915)) {
2337 trampoline = shadow;
2338
2339 shadow = shadow_batch_pin(eb, pool->obj,
2340 &eb->gt->ggtt->vm,
2341 PIN_GLOBAL);
2342 if (IS_ERR(shadow))
2343 return PTR_ERR(shadow);
2344
2345 shadow->private = pool;
2346
2347 eb->batch_flags |= I915_DISPATCH_SECURE;
2348 }
2349
2350 batch = eb_dispatch_secure(eb, shadow);
2351 if (IS_ERR(batch))
2352 return PTR_ERR(batch);
2353
2354 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2355 if (err)
2356 return err;
2357
2358 err = intel_engine_cmd_parser(eb->context->engine,
2359 eb->batches[0]->vma,
2360 eb->batch_start_offset,
2361 eb->batch_len[0],
2362 shadow, trampoline);
2363 if (err)
2364 return err;
2365
2366 eb->batches[0] = &eb->vma[eb->buffer_count++];
2367 eb->batches[0]->vma = i915_vma_get(shadow);
2368 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2369
2370 eb->trampoline = trampoline;
2371 eb->batch_start_offset = 0;
2372
2373secure_batch:
2374 if (batch) {
2375 if (intel_context_is_parallel(eb->context))
2376 return -EINVAL;
2377
2378 eb->batches[0] = &eb->vma[eb->buffer_count++];
2379 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2380 eb->batches[0]->vma = i915_vma_get(batch);
2381 }
2382 return 0;
2383}
2384
2385static int eb_request_submit(struct i915_execbuffer *eb,
2386 struct i915_request *rq,
2387 struct i915_vma *batch,
2388 u64 batch_len)
2389{
2390 int err;
2391
2392 if (intel_context_nopreempt(rq->context))
2393 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2394
2395 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2396 err = i915_reset_gen7_sol_offsets(rq);
2397 if (err)
2398 return err;
2399 }
2400
2401 /*
2402 * After we completed waiting for other engines (using HW semaphores)
2403 * then we can signal that this request/batch is ready to run. This
2404 * allows us to determine if the batch is still waiting on the GPU
2405 * or actually running by checking the breadcrumb.
2406 */
2407 if (rq->context->engine->emit_init_breadcrumb) {
2408 err = rq->context->engine->emit_init_breadcrumb(rq);
2409 if (err)
2410 return err;
2411 }
2412
2413 err = rq->context->engine->emit_bb_start(rq,
2414 i915_vma_offset(batch) +
2415 eb->batch_start_offset,
2416 batch_len,
2417 eb->batch_flags);
2418 if (err)
2419 return err;
2420
2421 if (eb->trampoline) {
2422 GEM_BUG_ON(intel_context_is_parallel(rq->context));
2423 GEM_BUG_ON(eb->batch_start_offset);
2424 err = rq->context->engine->emit_bb_start(rq,
2425 i915_vma_offset(eb->trampoline) +
2426 batch_len, 0, 0);
2427 if (err)
2428 return err;
2429 }
2430
2431 return 0;
2432}
2433
2434static int eb_submit(struct i915_execbuffer *eb)
2435{
2436 unsigned int i;
2437 int err;
2438
2439 err = eb_move_to_gpu(eb);
2440
2441 for_each_batch_create_order(eb, i) {
2442 if (!eb->requests[i])
2443 break;
2444
2445 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2446 if (!err)
2447 err = eb_request_submit(eb, eb->requests[i],
2448 eb->batches[i]->vma,
2449 eb->batch_len[i]);
2450 }
2451
2452 return err;
2453}
2454
2455/*
2456 * Find one BSD ring to dispatch the corresponding BSD command.
2457 * The engine index is returned.
2458 */
2459static unsigned int
2460gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2461 struct drm_file *file)
2462{
2463 struct drm_i915_file_private *file_priv = file->driver_priv;
2464
2465 /* Check whether the file_priv has already selected one ring. */
2466 if ((int)file_priv->bsd_engine < 0)
2467 file_priv->bsd_engine =
2468 get_random_u32_below(dev_priv->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]);
2469
2470 return file_priv->bsd_engine;
2471}
2472
2473static const enum intel_engine_id user_ring_map[] = {
2474 [I915_EXEC_DEFAULT] = RCS0,
2475 [I915_EXEC_RENDER] = RCS0,
2476 [I915_EXEC_BLT] = BCS0,
2477 [I915_EXEC_BSD] = VCS0,
2478 [I915_EXEC_VEBOX] = VECS0
2479};
2480
2481static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2482{
2483 struct intel_ring *ring = ce->ring;
2484 struct intel_timeline *tl = ce->timeline;
2485 struct i915_request *rq;
2486
2487 /*
2488 * Completely unscientific finger-in-the-air estimates for suitable
2489 * maximum user request size (to avoid blocking) and then backoff.
2490 */
2491 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2492 return NULL;
2493
2494 /*
2495 * Find a request that after waiting upon, there will be at least half
2496 * the ring available. The hysteresis allows us to compete for the
2497 * shared ring and should mean that we sleep less often prior to
2498 * claiming our resources, but not so long that the ring completely
2499 * drains before we can submit our next request.
2500 */
2501 list_for_each_entry(rq, &tl->requests, link) {
2502 if (rq->ring != ring)
2503 continue;
2504
2505 if (__intel_ring_space(rq->postfix,
2506 ring->emit, ring->size) > ring->size / 2)
2507 break;
2508 }
2509 if (&rq->link == &tl->requests)
2510 return NULL; /* weird, we will check again later for real */
2511
2512 return i915_request_get(rq);
2513}
2514
2515static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2516 bool throttle)
2517{
2518 struct intel_timeline *tl;
2519 struct i915_request *rq = NULL;
2520
2521 /*
2522 * Take a local wakeref for preparing to dispatch the execbuf as
2523 * we expect to access the hardware fairly frequently in the
2524 * process, and require the engine to be kept awake between accesses.
2525 * Upon dispatch, we acquire another prolonged wakeref that we hold
2526 * until the timeline is idle, which in turn releases the wakeref
2527 * taken on the engine, and the parent device.
2528 */
2529 tl = intel_context_timeline_lock(ce);
2530 if (IS_ERR(tl))
2531 return PTR_ERR(tl);
2532
2533 intel_context_enter(ce);
2534 if (throttle)
2535 rq = eb_throttle(eb, ce);
2536 intel_context_timeline_unlock(tl);
2537
2538 if (rq) {
2539 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2540 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2541
2542 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2543 timeout) < 0) {
2544 i915_request_put(rq);
2545
2546 /*
2547 * Error path, cannot use intel_context_timeline_lock as
2548 * that is user interruptable and this clean up step
2549 * must be done.
2550 */
2551 mutex_lock(&ce->timeline->mutex);
2552 intel_context_exit(ce);
2553 mutex_unlock(&ce->timeline->mutex);
2554
2555 if (nonblock)
2556 return -EWOULDBLOCK;
2557 else
2558 return -EINTR;
2559 }
2560 i915_request_put(rq);
2561 }
2562
2563 return 0;
2564}
2565
2566static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2567{
2568 struct intel_context *ce = eb->context, *child;
2569 int err;
2570 int i = 0, j = 0;
2571
2572 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2573
2574 if (unlikely(intel_context_is_banned(ce)))
2575 return -EIO;
2576
2577 /*
2578 * Pinning the contexts may generate requests in order to acquire
2579 * GGTT space, so do this first before we reserve a seqno for
2580 * ourselves.
2581 */
2582 err = intel_context_pin_ww(ce, &eb->ww);
2583 if (err)
2584 return err;
2585 for_each_child(ce, child) {
2586 err = intel_context_pin_ww(child, &eb->ww);
2587 GEM_BUG_ON(err); /* perma-pinned should incr a counter */
2588 }
2589
2590 for_each_child(ce, child) {
2591 err = eb_pin_timeline(eb, child, throttle);
2592 if (err)
2593 goto unwind;
2594 ++i;
2595 }
2596 err = eb_pin_timeline(eb, ce, throttle);
2597 if (err)
2598 goto unwind;
2599
2600 eb->args->flags |= __EXEC_ENGINE_PINNED;
2601 return 0;
2602
2603unwind:
2604 for_each_child(ce, child) {
2605 if (j++ < i) {
2606 mutex_lock(&child->timeline->mutex);
2607 intel_context_exit(child);
2608 mutex_unlock(&child->timeline->mutex);
2609 }
2610 }
2611 for_each_child(ce, child)
2612 intel_context_unpin(child);
2613 intel_context_unpin(ce);
2614 return err;
2615}
2616
2617static void eb_unpin_engine(struct i915_execbuffer *eb)
2618{
2619 struct intel_context *ce = eb->context, *child;
2620
2621 if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2622 return;
2623
2624 eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2625
2626 for_each_child(ce, child) {
2627 mutex_lock(&child->timeline->mutex);
2628 intel_context_exit(child);
2629 mutex_unlock(&child->timeline->mutex);
2630
2631 intel_context_unpin(child);
2632 }
2633
2634 mutex_lock(&ce->timeline->mutex);
2635 intel_context_exit(ce);
2636 mutex_unlock(&ce->timeline->mutex);
2637
2638 intel_context_unpin(ce);
2639}
2640
2641static unsigned int
2642eb_select_legacy_ring(struct i915_execbuffer *eb)
2643{
2644 struct drm_i915_private *i915 = eb->i915;
2645 struct drm_i915_gem_execbuffer2 *args = eb->args;
2646 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2647
2648 if (user_ring_id != I915_EXEC_BSD &&
2649 (args->flags & I915_EXEC_BSD_MASK)) {
2650 drm_dbg(&i915->drm,
2651 "execbuf with non bsd ring but with invalid "
2652 "bsd dispatch flags: %d\n", (int)(args->flags));
2653 return -1;
2654 }
2655
2656 if (user_ring_id == I915_EXEC_BSD &&
2657 i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) {
2658 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2659
2660 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2661 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2662 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2663 bsd_idx <= I915_EXEC_BSD_RING2) {
2664 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2665 bsd_idx--;
2666 } else {
2667 drm_dbg(&i915->drm,
2668 "execbuf with unknown bsd ring: %u\n",
2669 bsd_idx);
2670 return -1;
2671 }
2672
2673 return _VCS(bsd_idx);
2674 }
2675
2676 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2677 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2678 user_ring_id);
2679 return -1;
2680 }
2681
2682 return user_ring_map[user_ring_id];
2683}
2684
2685static int
2686eb_select_engine(struct i915_execbuffer *eb)
2687{
2688 struct intel_context *ce, *child;
2689 struct intel_gt *gt;
2690 unsigned int idx;
2691 int err;
2692
2693 if (i915_gem_context_user_engines(eb->gem_context))
2694 idx = eb->args->flags & I915_EXEC_RING_MASK;
2695 else
2696 idx = eb_select_legacy_ring(eb);
2697
2698 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2699 if (IS_ERR(ce))
2700 return PTR_ERR(ce);
2701
2702 if (intel_context_is_parallel(ce)) {
2703 if (eb->buffer_count < ce->parallel.number_children + 1) {
2704 intel_context_put(ce);
2705 return -EINVAL;
2706 }
2707 if (eb->batch_start_offset || eb->args->batch_len) {
2708 intel_context_put(ce);
2709 return -EINVAL;
2710 }
2711 }
2712 eb->num_batches = ce->parallel.number_children + 1;
2713 gt = ce->engine->gt;
2714
2715 for_each_child(ce, child)
2716 intel_context_get(child);
2717 eb->wakeref = intel_gt_pm_get(ce->engine->gt);
2718 /*
2719 * Keep GT0 active on MTL so that i915_vma_parked() doesn't
2720 * free VMAs while execbuf ioctl is validating VMAs.
2721 */
2722 if (gt->info.id)
2723 eb->wakeref_gt0 = intel_gt_pm_get(to_gt(gt->i915));
2724
2725 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2726 err = intel_context_alloc_state(ce);
2727 if (err)
2728 goto err;
2729 }
2730 for_each_child(ce, child) {
2731 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2732 err = intel_context_alloc_state(child);
2733 if (err)
2734 goto err;
2735 }
2736 }
2737
2738 /*
2739 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2740 * EIO if the GPU is already wedged.
2741 */
2742 err = intel_gt_terminally_wedged(ce->engine->gt);
2743 if (err)
2744 goto err;
2745
2746 if (!i915_vm_tryget(ce->vm)) {
2747 err = -ENOENT;
2748 goto err;
2749 }
2750
2751 eb->context = ce;
2752 eb->gt = ce->engine->gt;
2753
2754 /*
2755 * Make sure engine pool stays alive even if we call intel_context_put
2756 * during ww handling. The pool is destroyed when last pm reference
2757 * is dropped, which breaks our -EDEADLK handling.
2758 */
2759 return err;
2760
2761err:
2762 if (gt->info.id)
2763 intel_gt_pm_put(to_gt(gt->i915), eb->wakeref_gt0);
2764
2765 intel_gt_pm_put(ce->engine->gt, eb->wakeref);
2766 for_each_child(ce, child)
2767 intel_context_put(child);
2768 intel_context_put(ce);
2769 return err;
2770}
2771
2772static void
2773eb_put_engine(struct i915_execbuffer *eb)
2774{
2775 struct intel_context *child;
2776
2777 i915_vm_put(eb->context->vm);
2778 /*
2779 * This works in conjunction with eb_select_engine() to prevent
2780 * i915_vma_parked() from interfering while execbuf validates vmas.
2781 */
2782 if (eb->gt->info.id)
2783 intel_gt_pm_put(to_gt(eb->gt->i915), eb->wakeref_gt0);
2784 intel_gt_pm_put(eb->context->engine->gt, eb->wakeref);
2785 for_each_child(eb->context, child)
2786 intel_context_put(child);
2787 intel_context_put(eb->context);
2788}
2789
2790static void
2791__free_fence_array(struct eb_fence *fences, unsigned int n)
2792{
2793 while (n--) {
2794 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2795 dma_fence_put(fences[n].dma_fence);
2796 dma_fence_chain_free(fences[n].chain_fence);
2797 }
2798 kvfree(fences);
2799}
2800
2801static int
2802add_timeline_fence_array(struct i915_execbuffer *eb,
2803 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2804{
2805 struct drm_i915_gem_exec_fence __user *user_fences;
2806 u64 __user *user_values;
2807 struct eb_fence *f;
2808 u64 nfences;
2809 int err = 0;
2810
2811 nfences = timeline_fences->fence_count;
2812 if (!nfences)
2813 return 0;
2814
2815 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2816 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2817 if (nfences > min_t(unsigned long,
2818 ULONG_MAX / sizeof(*user_fences),
2819 SIZE_MAX / sizeof(*f)) - eb->num_fences)
2820 return -EINVAL;
2821
2822 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2823 if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2824 return -EFAULT;
2825
2826 user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2827 if (!access_ok(user_values, nfences * sizeof(*user_values)))
2828 return -EFAULT;
2829
2830 f = krealloc(eb->fences,
2831 (eb->num_fences + nfences) * sizeof(*f),
2832 __GFP_NOWARN | GFP_KERNEL);
2833 if (!f)
2834 return -ENOMEM;
2835
2836 eb->fences = f;
2837 f += eb->num_fences;
2838
2839 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2840 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2841
2842 while (nfences--) {
2843 struct drm_i915_gem_exec_fence user_fence;
2844 struct drm_syncobj *syncobj;
2845 struct dma_fence *fence = NULL;
2846 u64 point;
2847
2848 if (__copy_from_user(&user_fence,
2849 user_fences++,
2850 sizeof(user_fence)))
2851 return -EFAULT;
2852
2853 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2854 return -EINVAL;
2855
2856 if (__get_user(point, user_values++))
2857 return -EFAULT;
2858
2859 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2860 if (!syncobj) {
2861 drm_dbg(&eb->i915->drm,
2862 "Invalid syncobj handle provided\n");
2863 return -ENOENT;
2864 }
2865
2866 fence = drm_syncobj_fence_get(syncobj);
2867
2868 if (!fence && user_fence.flags &&
2869 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2870 drm_dbg(&eb->i915->drm,
2871 "Syncobj handle has no fence\n");
2872 drm_syncobj_put(syncobj);
2873 return -EINVAL;
2874 }
2875
2876 if (fence)
2877 err = dma_fence_chain_find_seqno(&fence, point);
2878
2879 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2880 drm_dbg(&eb->i915->drm,
2881 "Syncobj handle missing requested point %llu\n",
2882 point);
2883 dma_fence_put(fence);
2884 drm_syncobj_put(syncobj);
2885 return err;
2886 }
2887
2888 /*
2889 * A point might have been signaled already and
2890 * garbage collected from the timeline. In this case
2891 * just ignore the point and carry on.
2892 */
2893 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2894 drm_syncobj_put(syncobj);
2895 continue;
2896 }
2897
2898 /*
2899 * For timeline syncobjs we need to preallocate chains for
2900 * later signaling.
2901 */
2902 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2903 /*
2904 * Waiting and signaling the same point (when point !=
2905 * 0) would break the timeline.
2906 */
2907 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2908 drm_dbg(&eb->i915->drm,
2909 "Trying to wait & signal the same timeline point.\n");
2910 dma_fence_put(fence);
2911 drm_syncobj_put(syncobj);
2912 return -EINVAL;
2913 }
2914
2915 f->chain_fence = dma_fence_chain_alloc();
2916 if (!f->chain_fence) {
2917 drm_syncobj_put(syncobj);
2918 dma_fence_put(fence);
2919 return -ENOMEM;
2920 }
2921 } else {
2922 f->chain_fence = NULL;
2923 }
2924
2925 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2926 f->dma_fence = fence;
2927 f->value = point;
2928 f++;
2929 eb->num_fences++;
2930 }
2931
2932 return 0;
2933}
2934
2935static int add_fence_array(struct i915_execbuffer *eb)
2936{
2937 struct drm_i915_gem_execbuffer2 *args = eb->args;
2938 struct drm_i915_gem_exec_fence __user *user;
2939 unsigned long num_fences = args->num_cliprects;
2940 struct eb_fence *f;
2941
2942 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2943 return 0;
2944
2945 if (!num_fences)
2946 return 0;
2947
2948 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2949 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2950 if (num_fences > min_t(unsigned long,
2951 ULONG_MAX / sizeof(*user),
2952 SIZE_MAX / sizeof(*f) - eb->num_fences))
2953 return -EINVAL;
2954
2955 user = u64_to_user_ptr(args->cliprects_ptr);
2956 if (!access_ok(user, num_fences * sizeof(*user)))
2957 return -EFAULT;
2958
2959 f = krealloc(eb->fences,
2960 (eb->num_fences + num_fences) * sizeof(*f),
2961 __GFP_NOWARN | GFP_KERNEL);
2962 if (!f)
2963 return -ENOMEM;
2964
2965 eb->fences = f;
2966 f += eb->num_fences;
2967 while (num_fences--) {
2968 struct drm_i915_gem_exec_fence user_fence;
2969 struct drm_syncobj *syncobj;
2970 struct dma_fence *fence = NULL;
2971
2972 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2973 return -EFAULT;
2974
2975 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2976 return -EINVAL;
2977
2978 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2979 if (!syncobj) {
2980 drm_dbg(&eb->i915->drm,
2981 "Invalid syncobj handle provided\n");
2982 return -ENOENT;
2983 }
2984
2985 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2986 fence = drm_syncobj_fence_get(syncobj);
2987 if (!fence) {
2988 drm_dbg(&eb->i915->drm,
2989 "Syncobj handle has no fence\n");
2990 drm_syncobj_put(syncobj);
2991 return -EINVAL;
2992 }
2993 }
2994
2995 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2996 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2997
2998 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2999 f->dma_fence = fence;
3000 f->value = 0;
3001 f->chain_fence = NULL;
3002 f++;
3003 eb->num_fences++;
3004 }
3005
3006 return 0;
3007}
3008
3009static void put_fence_array(struct eb_fence *fences, int num_fences)
3010{
3011 if (fences)
3012 __free_fence_array(fences, num_fences);
3013}
3014
3015static int
3016await_fence_array(struct i915_execbuffer *eb,
3017 struct i915_request *rq)
3018{
3019 unsigned int n;
3020 int err;
3021
3022 for (n = 0; n < eb->num_fences; n++) {
3023 if (!eb->fences[n].dma_fence)
3024 continue;
3025
3026 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
3027 if (err < 0)
3028 return err;
3029 }
3030
3031 return 0;
3032}
3033
3034static void signal_fence_array(const struct i915_execbuffer *eb,
3035 struct dma_fence * const fence)
3036{
3037 unsigned int n;
3038
3039 for (n = 0; n < eb->num_fences; n++) {
3040 struct drm_syncobj *syncobj;
3041 unsigned int flags;
3042
3043 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3044 if (!(flags & I915_EXEC_FENCE_SIGNAL))
3045 continue;
3046
3047 if (eb->fences[n].chain_fence) {
3048 drm_syncobj_add_point(syncobj,
3049 eb->fences[n].chain_fence,
3050 fence,
3051 eb->fences[n].value);
3052 /*
3053 * The chain's ownership is transferred to the
3054 * timeline.
3055 */
3056 eb->fences[n].chain_fence = NULL;
3057 } else {
3058 drm_syncobj_replace_fence(syncobj, fence);
3059 }
3060 }
3061}
3062
3063static int
3064parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3065{
3066 struct i915_execbuffer *eb = data;
3067 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3068
3069 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3070 return -EFAULT;
3071
3072 return add_timeline_fence_array(eb, &timeline_fences);
3073}
3074
3075static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3076{
3077 struct i915_request *rq, *rn;
3078
3079 list_for_each_entry_safe(rq, rn, &tl->requests, link)
3080 if (rq == end || !i915_request_retire(rq))
3081 break;
3082}
3083
3084static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3085 int err, bool last_parallel)
3086{
3087 struct intel_timeline * const tl = i915_request_timeline(rq);
3088 struct i915_sched_attr attr = {};
3089 struct i915_request *prev;
3090
3091 lockdep_assert_held(&tl->mutex);
3092 lockdep_unpin_lock(&tl->mutex, rq->cookie);
3093
3094 trace_i915_request_add(rq);
3095
3096 prev = __i915_request_commit(rq);
3097
3098 /* Check that the context wasn't destroyed before submission */
3099 if (likely(!intel_context_is_closed(eb->context))) {
3100 attr = eb->gem_context->sched;
3101 } else {
3102 /* Serialise with context_close via the add_to_timeline */
3103 i915_request_set_error_once(rq, -ENOENT);
3104 __i915_request_skip(rq);
3105 err = -ENOENT; /* override any transient errors */
3106 }
3107
3108 if (intel_context_is_parallel(eb->context)) {
3109 if (err) {
3110 __i915_request_skip(rq);
3111 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3112 &rq->fence.flags);
3113 }
3114 if (last_parallel)
3115 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3116 &rq->fence.flags);
3117 }
3118
3119 __i915_request_queue(rq, &attr);
3120
3121 /* Try to clean up the client's timeline after submitting the request */
3122 if (prev)
3123 retire_requests(tl, prev);
3124
3125 mutex_unlock(&tl->mutex);
3126
3127 return err;
3128}
3129
3130static int eb_requests_add(struct i915_execbuffer *eb, int err)
3131{
3132 int i;
3133
3134 /*
3135 * We iterate in reverse order of creation to release timeline mutexes in
3136 * same order.
3137 */
3138 for_each_batch_add_order(eb, i) {
3139 struct i915_request *rq = eb->requests[i];
3140
3141 if (!rq)
3142 continue;
3143 err |= eb_request_add(eb, rq, err, i == 0);
3144 }
3145
3146 return err;
3147}
3148
3149static const i915_user_extension_fn execbuf_extensions[] = {
3150 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3151};
3152
3153static int
3154parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3155 struct i915_execbuffer *eb)
3156{
3157 if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3158 return 0;
3159
3160 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3161 * have another flag also using it at the same time.
3162 */
3163 if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3164 return -EINVAL;
3165
3166 if (args->num_cliprects != 0)
3167 return -EINVAL;
3168
3169 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3170 execbuf_extensions,
3171 ARRAY_SIZE(execbuf_extensions),
3172 eb);
3173}
3174
3175static void eb_requests_get(struct i915_execbuffer *eb)
3176{
3177 unsigned int i;
3178
3179 for_each_batch_create_order(eb, i) {
3180 if (!eb->requests[i])
3181 break;
3182
3183 i915_request_get(eb->requests[i]);
3184 }
3185}
3186
3187static void eb_requests_put(struct i915_execbuffer *eb)
3188{
3189 unsigned int i;
3190
3191 for_each_batch_create_order(eb, i) {
3192 if (!eb->requests[i])
3193 break;
3194
3195 i915_request_put(eb->requests[i]);
3196 }
3197}
3198
3199static struct sync_file *
3200eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3201{
3202 struct sync_file *out_fence = NULL;
3203 struct dma_fence_array *fence_array;
3204 struct dma_fence **fences;
3205 unsigned int i;
3206
3207 GEM_BUG_ON(!intel_context_is_parent(eb->context));
3208
3209 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3210 if (!fences)
3211 return ERR_PTR(-ENOMEM);
3212
3213 for_each_batch_create_order(eb, i) {
3214 fences[i] = &eb->requests[i]->fence;
3215 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3216 &eb->requests[i]->fence.flags);
3217 }
3218
3219 fence_array = dma_fence_array_create(eb->num_batches,
3220 fences,
3221 eb->context->parallel.fence_context,
3222 eb->context->parallel.seqno++,
3223 false);
3224 if (!fence_array) {
3225 kfree(fences);
3226 return ERR_PTR(-ENOMEM);
3227 }
3228
3229 /* Move ownership to the dma_fence_array created above */
3230 for_each_batch_create_order(eb, i)
3231 dma_fence_get(fences[i]);
3232
3233 if (out_fence_fd != -1) {
3234 out_fence = sync_file_create(&fence_array->base);
3235 /* sync_file now owns fence_arry, drop creation ref */
3236 dma_fence_put(&fence_array->base);
3237 if (!out_fence)
3238 return ERR_PTR(-ENOMEM);
3239 }
3240
3241 eb->composite_fence = &fence_array->base;
3242
3243 return out_fence;
3244}
3245
3246static struct sync_file *
3247eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3248 struct dma_fence *in_fence, int out_fence_fd)
3249{
3250 struct sync_file *out_fence = NULL;
3251 int err;
3252
3253 if (unlikely(eb->gem_context->syncobj)) {
3254 struct dma_fence *fence;
3255
3256 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3257 err = i915_request_await_dma_fence(rq, fence);
3258 dma_fence_put(fence);
3259 if (err)
3260 return ERR_PTR(err);
3261 }
3262
3263 if (in_fence) {
3264 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3265 err = i915_request_await_execution(rq, in_fence);
3266 else
3267 err = i915_request_await_dma_fence(rq, in_fence);
3268 if (err < 0)
3269 return ERR_PTR(err);
3270 }
3271
3272 if (eb->fences) {
3273 err = await_fence_array(eb, rq);
3274 if (err)
3275 return ERR_PTR(err);
3276 }
3277
3278 if (intel_context_is_parallel(eb->context)) {
3279 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3280 if (IS_ERR(out_fence))
3281 return ERR_PTR(-ENOMEM);
3282 } else if (out_fence_fd != -1) {
3283 out_fence = sync_file_create(&rq->fence);
3284 if (!out_fence)
3285 return ERR_PTR(-ENOMEM);
3286 }
3287
3288 return out_fence;
3289}
3290
3291static struct intel_context *
3292eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3293{
3294 struct intel_context *child;
3295
3296 if (likely(context_number == 0))
3297 return eb->context;
3298
3299 for_each_child(eb->context, child)
3300 if (!--context_number)
3301 return child;
3302
3303 GEM_BUG_ON("Context not found");
3304
3305 return NULL;
3306}
3307
3308static struct sync_file *
3309eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3310 int out_fence_fd)
3311{
3312 struct sync_file *out_fence = NULL;
3313 unsigned int i;
3314
3315 for_each_batch_create_order(eb, i) {
3316 /* Allocate a request for this batch buffer nice and early. */
3317 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3318 if (IS_ERR(eb->requests[i])) {
3319 out_fence = ERR_CAST(eb->requests[i]);
3320 eb->requests[i] = NULL;
3321 return out_fence;
3322 }
3323
3324 /*
3325 * Only the first request added (committed to backend) has to
3326 * take the in fences into account as all subsequent requests
3327 * will have fences inserted inbetween them.
3328 */
3329 if (i + 1 == eb->num_batches) {
3330 out_fence = eb_fences_add(eb, eb->requests[i],
3331 in_fence, out_fence_fd);
3332 if (IS_ERR(out_fence))
3333 return out_fence;
3334 }
3335
3336 /*
3337 * Not really on stack, but we don't want to call
3338 * kfree on the batch_snapshot when we put it, so use the
3339 * _onstack interface.
3340 */
3341 if (eb->batches[i]->vma)
3342 eb->requests[i]->batch_res =
3343 i915_vma_resource_get(eb->batches[i]->vma->resource);
3344 if (eb->batch_pool) {
3345 GEM_BUG_ON(intel_context_is_parallel(eb->context));
3346 intel_gt_buffer_pool_mark_active(eb->batch_pool,
3347 eb->requests[i]);
3348 }
3349 }
3350
3351 return out_fence;
3352}
3353
3354static int
3355i915_gem_do_execbuffer(struct drm_device *dev,
3356 struct drm_file *file,
3357 struct drm_i915_gem_execbuffer2 *args,
3358 struct drm_i915_gem_exec_object2 *exec)
3359{
3360 struct drm_i915_private *i915 = to_i915(dev);
3361 struct i915_execbuffer eb;
3362 struct dma_fence *in_fence = NULL;
3363 struct sync_file *out_fence = NULL;
3364 int out_fence_fd = -1;
3365 int err;
3366
3367 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3368 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3369 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3370
3371 eb.i915 = i915;
3372 eb.file = file;
3373 eb.args = args;
3374 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3375 args->flags |= __EXEC_HAS_RELOC;
3376
3377 eb.exec = exec;
3378 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3379 eb.vma[0].vma = NULL;
3380 eb.batch_pool = NULL;
3381
3382 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3383 reloc_cache_init(&eb.reloc_cache, eb.i915);
3384
3385 eb.buffer_count = args->buffer_count;
3386 eb.batch_start_offset = args->batch_start_offset;
3387 eb.trampoline = NULL;
3388
3389 eb.fences = NULL;
3390 eb.num_fences = 0;
3391
3392 eb_capture_list_clear(&eb);
3393
3394 memset(eb.requests, 0, sizeof(struct i915_request *) *
3395 ARRAY_SIZE(eb.requests));
3396 eb.composite_fence = NULL;
3397
3398 eb.batch_flags = 0;
3399 if (args->flags & I915_EXEC_SECURE) {
3400 if (GRAPHICS_VER(i915) >= 11)
3401 return -ENODEV;
3402
3403 /* Return -EPERM to trigger fallback code on old binaries. */
3404 if (!HAS_SECURE_BATCHES(i915))
3405 return -EPERM;
3406
3407 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3408 return -EPERM;
3409
3410 eb.batch_flags |= I915_DISPATCH_SECURE;
3411 }
3412 if (args->flags & I915_EXEC_IS_PINNED)
3413 eb.batch_flags |= I915_DISPATCH_PINNED;
3414
3415 err = parse_execbuf2_extensions(args, &eb);
3416 if (err)
3417 goto err_ext;
3418
3419 err = add_fence_array(&eb);
3420 if (err)
3421 goto err_ext;
3422
3423#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3424 if (args->flags & IN_FENCES) {
3425 if ((args->flags & IN_FENCES) == IN_FENCES)
3426 return -EINVAL;
3427
3428 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3429 if (!in_fence) {
3430 err = -EINVAL;
3431 goto err_ext;
3432 }
3433 }
3434#undef IN_FENCES
3435
3436 if (args->flags & I915_EXEC_FENCE_OUT) {
3437 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3438 if (out_fence_fd < 0) {
3439 err = out_fence_fd;
3440 goto err_in_fence;
3441 }
3442 }
3443
3444 err = eb_create(&eb);
3445 if (err)
3446 goto err_out_fence;
3447
3448 GEM_BUG_ON(!eb.lut_size);
3449
3450 err = eb_select_context(&eb);
3451 if (unlikely(err))
3452 goto err_destroy;
3453
3454 err = eb_select_engine(&eb);
3455 if (unlikely(err))
3456 goto err_context;
3457
3458 err = eb_lookup_vmas(&eb);
3459 if (err) {
3460 eb_release_vmas(&eb, true);
3461 goto err_engine;
3462 }
3463
3464 i915_gem_ww_ctx_init(&eb.ww, true);
3465
3466 err = eb_relocate_parse(&eb);
3467 if (err) {
3468 /*
3469 * If the user expects the execobject.offset and
3470 * reloc.presumed_offset to be an exact match,
3471 * as for using NO_RELOC, then we cannot update
3472 * the execobject.offset until we have completed
3473 * relocation.
3474 */
3475 args->flags &= ~__EXEC_HAS_RELOC;
3476 goto err_vma;
3477 }
3478
3479 ww_acquire_done(&eb.ww.ctx);
3480 err = eb_capture_stage(&eb);
3481 if (err)
3482 goto err_vma;
3483
3484 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3485 if (IS_ERR(out_fence)) {
3486 err = PTR_ERR(out_fence);
3487 out_fence = NULL;
3488 if (eb.requests[0])
3489 goto err_request;
3490 else
3491 goto err_vma;
3492 }
3493
3494 err = eb_submit(&eb);
3495
3496err_request:
3497 eb_requests_get(&eb);
3498 err = eb_requests_add(&eb, err);
3499
3500 if (eb.fences)
3501 signal_fence_array(&eb, eb.composite_fence ?
3502 eb.composite_fence :
3503 &eb.requests[0]->fence);
3504
3505 if (unlikely(eb.gem_context->syncobj)) {
3506 drm_syncobj_replace_fence(eb.gem_context->syncobj,
3507 eb.composite_fence ?
3508 eb.composite_fence :
3509 &eb.requests[0]->fence);
3510 }
3511
3512 if (out_fence) {
3513 if (err == 0) {
3514 fd_install(out_fence_fd, out_fence->file);
3515 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3516 args->rsvd2 |= (u64)out_fence_fd << 32;
3517 out_fence_fd = -1;
3518 } else {
3519 fput(out_fence->file);
3520 }
3521 }
3522
3523 if (!out_fence && eb.composite_fence)
3524 dma_fence_put(eb.composite_fence);
3525
3526 eb_requests_put(&eb);
3527
3528err_vma:
3529 eb_release_vmas(&eb, true);
3530 WARN_ON(err == -EDEADLK);
3531 i915_gem_ww_ctx_fini(&eb.ww);
3532
3533 if (eb.batch_pool)
3534 intel_gt_buffer_pool_put(eb.batch_pool);
3535err_engine:
3536 eb_put_engine(&eb);
3537err_context:
3538 i915_gem_context_put(eb.gem_context);
3539err_destroy:
3540 eb_destroy(&eb);
3541err_out_fence:
3542 if (out_fence_fd != -1)
3543 put_unused_fd(out_fence_fd);
3544err_in_fence:
3545 dma_fence_put(in_fence);
3546err_ext:
3547 put_fence_array(eb.fences, eb.num_fences);
3548 return err;
3549}
3550
3551static size_t eb_element_size(void)
3552{
3553 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3554}
3555
3556static bool check_buffer_count(size_t count)
3557{
3558 const size_t sz = eb_element_size();
3559
3560 /*
3561 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3562 * array size (see eb_create()). Otherwise, we can accept an array as
3563 * large as can be addressed (though use large arrays at your peril)!
3564 */
3565
3566 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3567}
3568
3569int
3570i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3571 struct drm_file *file)
3572{
3573 struct drm_i915_private *i915 = to_i915(dev);
3574 struct drm_i915_gem_execbuffer2 *args = data;
3575 struct drm_i915_gem_exec_object2 *exec2_list;
3576 const size_t count = args->buffer_count;
3577 int err;
3578
3579 if (!check_buffer_count(count)) {
3580 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3581 return -EINVAL;
3582 }
3583
3584 err = i915_gem_check_execbuffer(i915, args);
3585 if (err)
3586 return err;
3587
3588 /* Allocate extra slots for use by the command parser */
3589 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3590 __GFP_NOWARN | GFP_KERNEL);
3591 if (exec2_list == NULL) {
3592 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3593 count);
3594 return -ENOMEM;
3595 }
3596 if (copy_from_user(exec2_list,
3597 u64_to_user_ptr(args->buffers_ptr),
3598 sizeof(*exec2_list) * count)) {
3599 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3600 kvfree(exec2_list);
3601 return -EFAULT;
3602 }
3603
3604 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3605
3606 /*
3607 * Now that we have begun execution of the batchbuffer, we ignore
3608 * any new error after this point. Also given that we have already
3609 * updated the associated relocations, we try to write out the current
3610 * object locations irrespective of any error.
3611 */
3612 if (args->flags & __EXEC_HAS_RELOC) {
3613 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3614 u64_to_user_ptr(args->buffers_ptr);
3615 unsigned int i;
3616
3617 /* Copy the new buffer offsets back to the user's exec list. */
3618 /*
3619 * Note: count * sizeof(*user_exec_list) does not overflow,
3620 * because we checked 'count' in check_buffer_count().
3621 *
3622 * And this range already got effectively checked earlier
3623 * when we did the "copy_from_user()" above.
3624 */
3625 if (!user_write_access_begin(user_exec_list,
3626 count * sizeof(*user_exec_list)))
3627 goto end;
3628
3629 for (i = 0; i < args->buffer_count; i++) {
3630 if (!(exec2_list[i].offset & UPDATE))
3631 continue;
3632
3633 exec2_list[i].offset =
3634 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3635 unsafe_put_user(exec2_list[i].offset,
3636 &user_exec_list[i].offset,
3637 end_user);
3638 }
3639end_user:
3640 user_write_access_end();
3641end:;
3642 }
3643
3644 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3645 kvfree(exec2_list);
3646 return err;
3647}