Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/extable.h>
3#include <linux/uaccess.h>
4#include <linux/sched/debug.h>
5#include <xen/xen.h>
6
7#include <asm/fpu/internal.h>
8#include <asm/traps.h>
9#include <asm/kdebug.h>
10
11typedef bool (*ex_handler_t)(const struct exception_table_entry *,
12 struct pt_regs *, int, unsigned long,
13 unsigned long);
14
15static inline unsigned long
16ex_fixup_addr(const struct exception_table_entry *x)
17{
18 return (unsigned long)&x->fixup + x->fixup;
19}
20static inline ex_handler_t
21ex_fixup_handler(const struct exception_table_entry *x)
22{
23 return (ex_handler_t)((unsigned long)&x->handler + x->handler);
24}
25
26__visible bool ex_handler_default(const struct exception_table_entry *fixup,
27 struct pt_regs *regs, int trapnr,
28 unsigned long error_code,
29 unsigned long fault_addr)
30{
31 regs->ip = ex_fixup_addr(fixup);
32 return true;
33}
34EXPORT_SYMBOL(ex_handler_default);
35
36__visible bool ex_handler_fault(const struct exception_table_entry *fixup,
37 struct pt_regs *regs, int trapnr,
38 unsigned long error_code,
39 unsigned long fault_addr)
40{
41 regs->ip = ex_fixup_addr(fixup);
42 regs->ax = trapnr;
43 return true;
44}
45EXPORT_SYMBOL_GPL(ex_handler_fault);
46
47/*
48 * Handler for UD0 exception following a failed test against the
49 * result of a refcount inc/dec/add/sub.
50 */
51__visible bool ex_handler_refcount(const struct exception_table_entry *fixup,
52 struct pt_regs *regs, int trapnr,
53 unsigned long error_code,
54 unsigned long fault_addr)
55{
56 /* First unconditionally saturate the refcount. */
57 *(int *)regs->cx = INT_MIN / 2;
58
59 /*
60 * Strictly speaking, this reports the fixup destination, not
61 * the fault location, and not the actually overflowing
62 * instruction, which is the instruction before the "js", but
63 * since that instruction could be a variety of lengths, just
64 * report the location after the overflow, which should be close
65 * enough for finding the overflow, as it's at least back in
66 * the function, having returned from .text.unlikely.
67 */
68 regs->ip = ex_fixup_addr(fixup);
69
70 /*
71 * This function has been called because either a negative refcount
72 * value was seen by any of the refcount functions, or a zero
73 * refcount value was seen by refcount_dec().
74 *
75 * If we crossed from INT_MAX to INT_MIN, OF (Overflow Flag: result
76 * wrapped around) will be set. Additionally, seeing the refcount
77 * reach 0 will set ZF (Zero Flag: result was zero). In each of
78 * these cases we want a report, since it's a boundary condition.
79 * The SF case is not reported since it indicates post-boundary
80 * manipulations below zero or above INT_MAX. And if none of the
81 * flags are set, something has gone very wrong, so report it.
82 */
83 if (regs->flags & (X86_EFLAGS_OF | X86_EFLAGS_ZF)) {
84 bool zero = regs->flags & X86_EFLAGS_ZF;
85
86 refcount_error_report(regs, zero ? "hit zero" : "overflow");
87 } else if ((regs->flags & X86_EFLAGS_SF) == 0) {
88 /* Report if none of OF, ZF, nor SF are set. */
89 refcount_error_report(regs, "unexpected saturation");
90 }
91
92 return true;
93}
94EXPORT_SYMBOL(ex_handler_refcount);
95
96/*
97 * Handler for when we fail to restore a task's FPU state. We should never get
98 * here because the FPU state of a task using the FPU (task->thread.fpu.state)
99 * should always be valid. However, past bugs have allowed userspace to set
100 * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
101 * These caused XRSTOR to fail when switching to the task, leaking the FPU
102 * registers of the task previously executing on the CPU. Mitigate this class
103 * of vulnerability by restoring from the initial state (essentially, zeroing
104 * out all the FPU registers) if we can't restore from the task's FPU state.
105 */
106__visible bool ex_handler_fprestore(const struct exception_table_entry *fixup,
107 struct pt_regs *regs, int trapnr,
108 unsigned long error_code,
109 unsigned long fault_addr)
110{
111 regs->ip = ex_fixup_addr(fixup);
112
113 WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
114 (void *)instruction_pointer(regs));
115
116 __copy_kernel_to_fpregs(&init_fpstate, -1);
117 return true;
118}
119EXPORT_SYMBOL_GPL(ex_handler_fprestore);
120
121__visible bool ex_handler_uaccess(const struct exception_table_entry *fixup,
122 struct pt_regs *regs, int trapnr,
123 unsigned long error_code,
124 unsigned long fault_addr)
125{
126 WARN_ONCE(trapnr == X86_TRAP_GP, "General protection fault in user access. Non-canonical address?");
127 regs->ip = ex_fixup_addr(fixup);
128 return true;
129}
130EXPORT_SYMBOL(ex_handler_uaccess);
131
132__visible bool ex_handler_ext(const struct exception_table_entry *fixup,
133 struct pt_regs *regs, int trapnr,
134 unsigned long error_code,
135 unsigned long fault_addr)
136{
137 /* Special hack for uaccess_err */
138 current->thread.uaccess_err = 1;
139 regs->ip = ex_fixup_addr(fixup);
140 return true;
141}
142EXPORT_SYMBOL(ex_handler_ext);
143
144__visible bool ex_handler_rdmsr_unsafe(const struct exception_table_entry *fixup,
145 struct pt_regs *regs, int trapnr,
146 unsigned long error_code,
147 unsigned long fault_addr)
148{
149 if (pr_warn_once("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
150 (unsigned int)regs->cx, regs->ip, (void *)regs->ip))
151 show_stack_regs(regs);
152
153 /* Pretend that the read succeeded and returned 0. */
154 regs->ip = ex_fixup_addr(fixup);
155 regs->ax = 0;
156 regs->dx = 0;
157 return true;
158}
159EXPORT_SYMBOL(ex_handler_rdmsr_unsafe);
160
161__visible bool ex_handler_wrmsr_unsafe(const struct exception_table_entry *fixup,
162 struct pt_regs *regs, int trapnr,
163 unsigned long error_code,
164 unsigned long fault_addr)
165{
166 if (pr_warn_once("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
167 (unsigned int)regs->cx, (unsigned int)regs->dx,
168 (unsigned int)regs->ax, regs->ip, (void *)regs->ip))
169 show_stack_regs(regs);
170
171 /* Pretend that the write succeeded. */
172 regs->ip = ex_fixup_addr(fixup);
173 return true;
174}
175EXPORT_SYMBOL(ex_handler_wrmsr_unsafe);
176
177__visible bool ex_handler_clear_fs(const struct exception_table_entry *fixup,
178 struct pt_regs *regs, int trapnr,
179 unsigned long error_code,
180 unsigned long fault_addr)
181{
182 if (static_cpu_has(X86_BUG_NULL_SEG))
183 asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS));
184 asm volatile ("mov %0, %%fs" : : "rm" (0));
185 return ex_handler_default(fixup, regs, trapnr, error_code, fault_addr);
186}
187EXPORT_SYMBOL(ex_handler_clear_fs);
188
189__visible bool ex_has_fault_handler(unsigned long ip)
190{
191 const struct exception_table_entry *e;
192 ex_handler_t handler;
193
194 e = search_exception_tables(ip);
195 if (!e)
196 return false;
197 handler = ex_fixup_handler(e);
198
199 return handler == ex_handler_fault;
200}
201
202int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code,
203 unsigned long fault_addr)
204{
205 const struct exception_table_entry *e;
206 ex_handler_t handler;
207
208#ifdef CONFIG_PNPBIOS
209 if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) {
210 extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
211 extern u32 pnp_bios_is_utter_crap;
212 pnp_bios_is_utter_crap = 1;
213 printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
214 __asm__ volatile(
215 "movl %0, %%esp\n\t"
216 "jmp *%1\n\t"
217 : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
218 panic("do_trap: can't hit this");
219 }
220#endif
221
222 e = search_exception_tables(regs->ip);
223 if (!e)
224 return 0;
225
226 handler = ex_fixup_handler(e);
227 return handler(e, regs, trapnr, error_code, fault_addr);
228}
229
230extern unsigned int early_recursion_flag;
231
232/* Restricted version used during very early boot */
233void __init early_fixup_exception(struct pt_regs *regs, int trapnr)
234{
235 /* Ignore early NMIs. */
236 if (trapnr == X86_TRAP_NMI)
237 return;
238
239 if (early_recursion_flag > 2)
240 goto halt_loop;
241
242 /*
243 * Old CPUs leave the high bits of CS on the stack
244 * undefined. I'm not sure which CPUs do this, but at least
245 * the 486 DX works this way.
246 * Xen pv domains are not using the default __KERNEL_CS.
247 */
248 if (!xen_pv_domain() && regs->cs != __KERNEL_CS)
249 goto fail;
250
251 /*
252 * The full exception fixup machinery is available as soon as
253 * the early IDT is loaded. This means that it is the
254 * responsibility of extable users to either function correctly
255 * when handlers are invoked early or to simply avoid causing
256 * exceptions before they're ready to handle them.
257 *
258 * This is better than filtering which handlers can be used,
259 * because refusing to call a handler here is guaranteed to
260 * result in a hard-to-debug panic.
261 *
262 * Keep in mind that not all vectors actually get here. Early
263 * page faults, for example, are special.
264 */
265 if (fixup_exception(regs, trapnr, regs->orig_ax, 0))
266 return;
267
268 if (fixup_bug(regs, trapnr))
269 return;
270
271fail:
272 early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
273 (unsigned)trapnr, (unsigned long)regs->cs, regs->ip,
274 regs->orig_ax, read_cr2());
275
276 show_regs(regs);
277
278halt_loop:
279 while (true)
280 halt();
281}
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/extable.h>
3#include <linux/uaccess.h>
4#include <linux/sched/debug.h>
5#include <linux/bitfield.h>
6#include <xen/xen.h>
7
8#include <asm/fpu/api.h>
9#include <asm/fred.h>
10#include <asm/sev.h>
11#include <asm/traps.h>
12#include <asm/kdebug.h>
13#include <asm/insn-eval.h>
14#include <asm/sgx.h>
15
16static inline unsigned long *pt_regs_nr(struct pt_regs *regs, int nr)
17{
18 int reg_offset = pt_regs_offset(regs, nr);
19 static unsigned long __dummy;
20
21 if (WARN_ON_ONCE(reg_offset < 0))
22 return &__dummy;
23
24 return (unsigned long *)((unsigned long)regs + reg_offset);
25}
26
27static inline unsigned long
28ex_fixup_addr(const struct exception_table_entry *x)
29{
30 return (unsigned long)&x->fixup + x->fixup;
31}
32
33static bool ex_handler_default(const struct exception_table_entry *e,
34 struct pt_regs *regs)
35{
36 if (e->data & EX_FLAG_CLEAR_AX)
37 regs->ax = 0;
38 if (e->data & EX_FLAG_CLEAR_DX)
39 regs->dx = 0;
40
41 regs->ip = ex_fixup_addr(e);
42 return true;
43}
44
45/*
46 * This is the *very* rare case where we do a "load_unaligned_zeropad()"
47 * and it's a page crosser into a non-existent page.
48 *
49 * This happens when we optimistically load a pathname a word-at-a-time
50 * and the name is less than the full word and the next page is not
51 * mapped. Typically that only happens for CONFIG_DEBUG_PAGEALLOC.
52 *
53 * NOTE! The faulting address is always a 'mov mem,reg' type instruction
54 * of size 'long', and the exception fixup must always point to right
55 * after the instruction.
56 */
57static bool ex_handler_zeropad(const struct exception_table_entry *e,
58 struct pt_regs *regs,
59 unsigned long fault_addr)
60{
61 struct insn insn;
62 const unsigned long mask = sizeof(long) - 1;
63 unsigned long offset, addr, next_ip, len;
64 unsigned long *reg;
65
66 next_ip = ex_fixup_addr(e);
67 len = next_ip - regs->ip;
68 if (len > MAX_INSN_SIZE)
69 return false;
70
71 if (insn_decode(&insn, (void *) regs->ip, len, INSN_MODE_KERN))
72 return false;
73 if (insn.length != len)
74 return false;
75
76 if (insn.opcode.bytes[0] != 0x8b)
77 return false;
78 if (insn.opnd_bytes != sizeof(long))
79 return false;
80
81 addr = (unsigned long) insn_get_addr_ref(&insn, regs);
82 if (addr == ~0ul)
83 return false;
84
85 offset = addr & mask;
86 addr = addr & ~mask;
87 if (fault_addr != addr + sizeof(long))
88 return false;
89
90 reg = insn_get_modrm_reg_ptr(&insn, regs);
91 if (!reg)
92 return false;
93
94 *reg = *(unsigned long *)addr >> (offset * 8);
95 return ex_handler_default(e, regs);
96}
97
98static bool ex_handler_fault(const struct exception_table_entry *fixup,
99 struct pt_regs *regs, int trapnr)
100{
101 regs->ax = trapnr;
102 return ex_handler_default(fixup, regs);
103}
104
105static bool ex_handler_sgx(const struct exception_table_entry *fixup,
106 struct pt_regs *regs, int trapnr)
107{
108 regs->ax = trapnr | SGX_ENCLS_FAULT_FLAG;
109 return ex_handler_default(fixup, regs);
110}
111
112/*
113 * Handler for when we fail to restore a task's FPU state. We should never get
114 * here because the FPU state of a task using the FPU (task->thread.fpu.state)
115 * should always be valid. However, past bugs have allowed userspace to set
116 * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
117 * These caused XRSTOR to fail when switching to the task, leaking the FPU
118 * registers of the task previously executing on the CPU. Mitigate this class
119 * of vulnerability by restoring from the initial state (essentially, zeroing
120 * out all the FPU registers) if we can't restore from the task's FPU state.
121 */
122static bool ex_handler_fprestore(const struct exception_table_entry *fixup,
123 struct pt_regs *regs)
124{
125 regs->ip = ex_fixup_addr(fixup);
126
127 WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
128 (void *)instruction_pointer(regs));
129
130 fpu_reset_from_exception_fixup();
131 return true;
132}
133
134/*
135 * On x86-64, we end up being imprecise with 'access_ok()', and allow
136 * non-canonical user addresses to make the range comparisons simpler,
137 * and to not have to worry about LAM being enabled.
138 *
139 * In fact, we allow up to one page of "slop" at the sign boundary,
140 * which means that we can do access_ok() by just checking the sign
141 * of the pointer for the common case of having a small access size.
142 */
143static bool gp_fault_address_ok(unsigned long fault_address)
144{
145#ifdef CONFIG_X86_64
146 /* Is it in the "user space" part of the non-canonical space? */
147 if (valid_user_address(fault_address))
148 return true;
149
150 /* .. or just above it? */
151 fault_address -= PAGE_SIZE;
152 if (valid_user_address(fault_address))
153 return true;
154#endif
155 return false;
156}
157
158static bool ex_handler_uaccess(const struct exception_table_entry *fixup,
159 struct pt_regs *regs, int trapnr,
160 unsigned long fault_address)
161{
162 WARN_ONCE(trapnr == X86_TRAP_GP && !gp_fault_address_ok(fault_address),
163 "General protection fault in user access. Non-canonical address?");
164 return ex_handler_default(fixup, regs);
165}
166
167static bool ex_handler_copy(const struct exception_table_entry *fixup,
168 struct pt_regs *regs, int trapnr)
169{
170 WARN_ONCE(trapnr == X86_TRAP_GP, "General protection fault in user access. Non-canonical address?");
171 return ex_handler_fault(fixup, regs, trapnr);
172}
173
174static bool ex_handler_msr(const struct exception_table_entry *fixup,
175 struct pt_regs *regs, bool wrmsr, bool safe, int reg)
176{
177 if (__ONCE_LITE_IF(!safe && wrmsr)) {
178 pr_warn("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
179 (unsigned int)regs->cx, (unsigned int)regs->dx,
180 (unsigned int)regs->ax, regs->ip, (void *)regs->ip);
181 show_stack_regs(regs);
182 }
183
184 if (__ONCE_LITE_IF(!safe && !wrmsr)) {
185 pr_warn("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
186 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
187 show_stack_regs(regs);
188 }
189
190 if (!wrmsr) {
191 /* Pretend that the read succeeded and returned 0. */
192 regs->ax = 0;
193 regs->dx = 0;
194 }
195
196 if (safe)
197 *pt_regs_nr(regs, reg) = -EIO;
198
199 return ex_handler_default(fixup, regs);
200}
201
202static bool ex_handler_clear_fs(const struct exception_table_entry *fixup,
203 struct pt_regs *regs)
204{
205 if (static_cpu_has(X86_BUG_NULL_SEG))
206 asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS));
207 asm volatile ("mov %0, %%fs" : : "rm" (0));
208 return ex_handler_default(fixup, regs);
209}
210
211static bool ex_handler_imm_reg(const struct exception_table_entry *fixup,
212 struct pt_regs *regs, int reg, int imm)
213{
214 *pt_regs_nr(regs, reg) = (long)imm;
215 return ex_handler_default(fixup, regs);
216}
217
218static bool ex_handler_ucopy_len(const struct exception_table_entry *fixup,
219 struct pt_regs *regs, int trapnr,
220 unsigned long fault_address,
221 int reg, int imm)
222{
223 regs->cx = imm * regs->cx + *pt_regs_nr(regs, reg);
224 return ex_handler_uaccess(fixup, regs, trapnr, fault_address);
225}
226
227#ifdef CONFIG_X86_FRED
228static bool ex_handler_eretu(const struct exception_table_entry *fixup,
229 struct pt_regs *regs, unsigned long error_code)
230{
231 struct pt_regs *uregs = (struct pt_regs *)(regs->sp - offsetof(struct pt_regs, orig_ax));
232 unsigned short ss = uregs->ss;
233 unsigned short cs = uregs->cs;
234
235 /*
236 * Move the NMI bit from the invalid stack frame, which caused ERETU
237 * to fault, to the fault handler's stack frame, thus to unblock NMI
238 * with the fault handler's ERETS instruction ASAP if NMI is blocked.
239 */
240 regs->fred_ss.nmi = uregs->fred_ss.nmi;
241
242 /*
243 * Sync event information to uregs, i.e., the ERETU return frame, but
244 * is it safe to write to the ERETU return frame which is just above
245 * current event stack frame?
246 *
247 * The RSP used by FRED to push a stack frame is not the value in %rsp,
248 * it is calculated from %rsp with the following 2 steps:
249 * 1) RSP = %rsp - (IA32_FRED_CONFIG & 0x1c0) // Reserve N*64 bytes
250 * 2) RSP = RSP & ~0x3f // Align to a 64-byte cache line
251 * when an event delivery doesn't trigger a stack level change.
252 *
253 * Here is an example with N*64 (N=1) bytes reserved:
254 *
255 * 64-byte cache line ==> ______________
256 * |___Reserved___|
257 * |__Event_data__|
258 * |_____SS_______|
259 * |_____RSP______|
260 * |_____FLAGS____|
261 * |_____CS_______|
262 * |_____IP_______|
263 * 64-byte cache line ==> |__Error_code__| <== ERETU return frame
264 * |______________|
265 * |______________|
266 * |______________|
267 * |______________|
268 * |______________|
269 * |______________|
270 * |______________|
271 * 64-byte cache line ==> |______________| <== RSP after step 1) and 2)
272 * |___Reserved___|
273 * |__Event_data__|
274 * |_____SS_______|
275 * |_____RSP______|
276 * |_____FLAGS____|
277 * |_____CS_______|
278 * |_____IP_______|
279 * 64-byte cache line ==> |__Error_code__| <== ERETS return frame
280 *
281 * Thus a new FRED stack frame will always be pushed below a previous
282 * FRED stack frame ((N*64) bytes may be reserved between), and it is
283 * safe to write to a previous FRED stack frame as they never overlap.
284 */
285 fred_info(uregs)->edata = fred_event_data(regs);
286 uregs->ssx = regs->ssx;
287 uregs->fred_ss.ss = ss;
288 /* The NMI bit was moved away above */
289 uregs->fred_ss.nmi = 0;
290 uregs->csx = regs->csx;
291 uregs->fred_cs.sl = 0;
292 uregs->fred_cs.wfe = 0;
293 uregs->cs = cs;
294 uregs->orig_ax = error_code;
295
296 return ex_handler_default(fixup, regs);
297}
298#endif
299
300int ex_get_fixup_type(unsigned long ip)
301{
302 const struct exception_table_entry *e = search_exception_tables(ip);
303
304 return e ? FIELD_GET(EX_DATA_TYPE_MASK, e->data) : EX_TYPE_NONE;
305}
306
307int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code,
308 unsigned long fault_addr)
309{
310 const struct exception_table_entry *e;
311 int type, reg, imm;
312
313#ifdef CONFIG_PNPBIOS
314 if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) {
315 extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
316 extern u32 pnp_bios_is_utter_crap;
317 pnp_bios_is_utter_crap = 1;
318 printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
319 __asm__ volatile(
320 "movl %0, %%esp\n\t"
321 "jmp *%1\n\t"
322 : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
323 panic("do_trap: can't hit this");
324 }
325#endif
326
327 e = search_exception_tables(regs->ip);
328 if (!e)
329 return 0;
330
331 type = FIELD_GET(EX_DATA_TYPE_MASK, e->data);
332 reg = FIELD_GET(EX_DATA_REG_MASK, e->data);
333 imm = FIELD_GET(EX_DATA_IMM_MASK, e->data);
334
335 switch (type) {
336 case EX_TYPE_DEFAULT:
337 case EX_TYPE_DEFAULT_MCE_SAFE:
338 return ex_handler_default(e, regs);
339 case EX_TYPE_FAULT:
340 case EX_TYPE_FAULT_MCE_SAFE:
341 return ex_handler_fault(e, regs, trapnr);
342 case EX_TYPE_UACCESS:
343 return ex_handler_uaccess(e, regs, trapnr, fault_addr);
344 case EX_TYPE_COPY:
345 return ex_handler_copy(e, regs, trapnr);
346 case EX_TYPE_CLEAR_FS:
347 return ex_handler_clear_fs(e, regs);
348 case EX_TYPE_FPU_RESTORE:
349 return ex_handler_fprestore(e, regs);
350 case EX_TYPE_BPF:
351 return ex_handler_bpf(e, regs);
352 case EX_TYPE_WRMSR:
353 return ex_handler_msr(e, regs, true, false, reg);
354 case EX_TYPE_RDMSR:
355 return ex_handler_msr(e, regs, false, false, reg);
356 case EX_TYPE_WRMSR_SAFE:
357 return ex_handler_msr(e, regs, true, true, reg);
358 case EX_TYPE_RDMSR_SAFE:
359 return ex_handler_msr(e, regs, false, true, reg);
360 case EX_TYPE_WRMSR_IN_MCE:
361 ex_handler_msr_mce(regs, true);
362 break;
363 case EX_TYPE_RDMSR_IN_MCE:
364 ex_handler_msr_mce(regs, false);
365 break;
366 case EX_TYPE_POP_REG:
367 regs->sp += sizeof(long);
368 fallthrough;
369 case EX_TYPE_IMM_REG:
370 return ex_handler_imm_reg(e, regs, reg, imm);
371 case EX_TYPE_FAULT_SGX:
372 return ex_handler_sgx(e, regs, trapnr);
373 case EX_TYPE_UCOPY_LEN:
374 return ex_handler_ucopy_len(e, regs, trapnr, fault_addr, reg, imm);
375 case EX_TYPE_ZEROPAD:
376 return ex_handler_zeropad(e, regs, fault_addr);
377#ifdef CONFIG_X86_FRED
378 case EX_TYPE_ERETU:
379 return ex_handler_eretu(e, regs, error_code);
380#endif
381 }
382 BUG();
383}
384
385extern unsigned int early_recursion_flag;
386
387/* Restricted version used during very early boot */
388void __init early_fixup_exception(struct pt_regs *regs, int trapnr)
389{
390 /* Ignore early NMIs. */
391 if (trapnr == X86_TRAP_NMI)
392 return;
393
394 if (early_recursion_flag > 2)
395 goto halt_loop;
396
397 /*
398 * Old CPUs leave the high bits of CS on the stack
399 * undefined. I'm not sure which CPUs do this, but at least
400 * the 486 DX works this way.
401 * Xen pv domains are not using the default __KERNEL_CS.
402 */
403 if (!xen_pv_domain() && regs->cs != __KERNEL_CS)
404 goto fail;
405
406 /*
407 * The full exception fixup machinery is available as soon as
408 * the early IDT is loaded. This means that it is the
409 * responsibility of extable users to either function correctly
410 * when handlers are invoked early or to simply avoid causing
411 * exceptions before they're ready to handle them.
412 *
413 * This is better than filtering which handlers can be used,
414 * because refusing to call a handler here is guaranteed to
415 * result in a hard-to-debug panic.
416 *
417 * Keep in mind that not all vectors actually get here. Early
418 * page faults, for example, are special.
419 */
420 if (fixup_exception(regs, trapnr, regs->orig_ax, 0))
421 return;
422
423 if (trapnr == X86_TRAP_UD) {
424 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
425 /* Skip the ud2. */
426 regs->ip += LEN_UD2;
427 return;
428 }
429
430 /*
431 * If this was a BUG and report_bug returns or if this
432 * was just a normal #UD, we want to continue onward and
433 * crash.
434 */
435 }
436
437fail:
438 early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
439 (unsigned)trapnr, (unsigned long)regs->cs, regs->ip,
440 regs->orig_ax, read_cr2());
441
442 show_regs(regs);
443
444halt_loop:
445 while (true)
446 halt();
447}