Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2#include <linux/extable.h>
  3#include <linux/uaccess.h>
  4#include <linux/sched/debug.h>
 
  5#include <xen/xen.h>
  6
  7#include <asm/fpu/internal.h>
 
 
  8#include <asm/traps.h>
  9#include <asm/kdebug.h>
 
 
 10
 11typedef bool (*ex_handler_t)(const struct exception_table_entry *,
 12			    struct pt_regs *, int, unsigned long,
 13			    unsigned long);
 
 
 
 
 
 
 
 14
 15static inline unsigned long
 16ex_fixup_addr(const struct exception_table_entry *x)
 17{
 18	return (unsigned long)&x->fixup + x->fixup;
 19}
 20static inline ex_handler_t
 21ex_fixup_handler(const struct exception_table_entry *x)
 22{
 23	return (ex_handler_t)((unsigned long)&x->handler + x->handler);
 24}
 25
 26__visible bool ex_handler_default(const struct exception_table_entry *fixup,
 27				  struct pt_regs *regs, int trapnr,
 28				  unsigned long error_code,
 29				  unsigned long fault_addr)
 30{
 31	regs->ip = ex_fixup_addr(fixup);
 32	return true;
 33}
 34EXPORT_SYMBOL(ex_handler_default);
 35
 36__visible bool ex_handler_fault(const struct exception_table_entry *fixup,
 37				struct pt_regs *regs, int trapnr,
 38				unsigned long error_code,
 39				unsigned long fault_addr)
 40{
 41	regs->ip = ex_fixup_addr(fixup);
 42	regs->ax = trapnr;
 43	return true;
 44}
 45EXPORT_SYMBOL_GPL(ex_handler_fault);
 46
 47/*
 48 * Handler for UD0 exception following a failed test against the
 49 * result of a refcount inc/dec/add/sub.
 
 
 
 
 
 
 
 
 50 */
 51__visible bool ex_handler_refcount(const struct exception_table_entry *fixup,
 52				   struct pt_regs *regs, int trapnr,
 53				   unsigned long error_code,
 54				   unsigned long fault_addr)
 55{
 56	/* First unconditionally saturate the refcount. */
 57	*(int *)regs->cx = INT_MIN / 2;
 
 
 
 
 
 
 58
 59	/*
 60	 * Strictly speaking, this reports the fixup destination, not
 61	 * the fault location, and not the actually overflowing
 62	 * instruction, which is the instruction before the "js", but
 63	 * since that instruction could be a variety of lengths, just
 64	 * report the location after the overflow, which should be close
 65	 * enough for finding the overflow, as it's at least back in
 66	 * the function, having returned from .text.unlikely.
 67	 */
 68	regs->ip = ex_fixup_addr(fixup);
 69
 70	/*
 71	 * This function has been called because either a negative refcount
 72	 * value was seen by any of the refcount functions, or a zero
 73	 * refcount value was seen by refcount_dec().
 74	 *
 75	 * If we crossed from INT_MAX to INT_MIN, OF (Overflow Flag: result
 76	 * wrapped around) will be set. Additionally, seeing the refcount
 77	 * reach 0 will set ZF (Zero Flag: result was zero). In each of
 78	 * these cases we want a report, since it's a boundary condition.
 79	 * The SF case is not reported since it indicates post-boundary
 80	 * manipulations below zero or above INT_MAX. And if none of the
 81	 * flags are set, something has gone very wrong, so report it.
 82	 */
 83	if (regs->flags & (X86_EFLAGS_OF | X86_EFLAGS_ZF)) {
 84		bool zero = regs->flags & X86_EFLAGS_ZF;
 85
 86		refcount_error_report(regs, zero ? "hit zero" : "overflow");
 87	} else if ((regs->flags & X86_EFLAGS_SF) == 0) {
 88		/* Report if none of OF, ZF, nor SF are set. */
 89		refcount_error_report(regs, "unexpected saturation");
 90	}
 91
 92	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 93}
 94EXPORT_SYMBOL(ex_handler_refcount);
 95
 96/*
 97 * Handler for when we fail to restore a task's FPU state.  We should never get
 98 * here because the FPU state of a task using the FPU (task->thread.fpu.state)
 99 * should always be valid.  However, past bugs have allowed userspace to set
100 * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
101 * These caused XRSTOR to fail when switching to the task, leaking the FPU
102 * registers of the task previously executing on the CPU.  Mitigate this class
103 * of vulnerability by restoring from the initial state (essentially, zeroing
104 * out all the FPU registers) if we can't restore from the task's FPU state.
105 */
106__visible bool ex_handler_fprestore(const struct exception_table_entry *fixup,
107				    struct pt_regs *regs, int trapnr,
108				    unsigned long error_code,
109				    unsigned long fault_addr)
110{
111	regs->ip = ex_fixup_addr(fixup);
112
113	WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
114		  (void *)instruction_pointer(regs));
115
116	__copy_kernel_to_fpregs(&init_fpstate, -1);
117	return true;
118}
119EXPORT_SYMBOL_GPL(ex_handler_fprestore);
120
121__visible bool ex_handler_uaccess(const struct exception_table_entry *fixup,
122				  struct pt_regs *regs, int trapnr,
123				  unsigned long error_code,
124				  unsigned long fault_addr)
 
 
 
 
 
 
125{
126	WARN_ONCE(trapnr == X86_TRAP_GP, "General protection fault in user access. Non-canonical address?");
127	regs->ip = ex_fixup_addr(fixup);
128	return true;
 
 
 
 
 
 
 
 
129}
130EXPORT_SYMBOL(ex_handler_uaccess);
131
132__visible bool ex_handler_ext(const struct exception_table_entry *fixup,
133			      struct pt_regs *regs, int trapnr,
134			      unsigned long error_code,
135			      unsigned long fault_addr)
136{
137	/* Special hack for uaccess_err */
138	current->thread.uaccess_err = 1;
139	regs->ip = ex_fixup_addr(fixup);
140	return true;
141}
142EXPORT_SYMBOL(ex_handler_ext);
143
144__visible bool ex_handler_rdmsr_unsafe(const struct exception_table_entry *fixup,
145				       struct pt_regs *regs, int trapnr,
146				       unsigned long error_code,
147				       unsigned long fault_addr)
148{
149	if (pr_warn_once("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
150			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip))
151		show_stack_regs(regs);
152
153	/* Pretend that the read succeeded and returned 0. */
154	regs->ip = ex_fixup_addr(fixup);
155	regs->ax = 0;
156	regs->dx = 0;
157	return true;
158}
159EXPORT_SYMBOL(ex_handler_rdmsr_unsafe);
160
161__visible bool ex_handler_wrmsr_unsafe(const struct exception_table_entry *fixup,
162				       struct pt_regs *regs, int trapnr,
163				       unsigned long error_code,
164				       unsigned long fault_addr)
165{
166	if (pr_warn_once("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
167			 (unsigned int)regs->cx, (unsigned int)regs->dx,
168			 (unsigned int)regs->ax,  regs->ip, (void *)regs->ip))
169		show_stack_regs(regs);
 
170
171	/* Pretend that the write succeeded. */
172	regs->ip = ex_fixup_addr(fixup);
173	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
174}
175EXPORT_SYMBOL(ex_handler_wrmsr_unsafe);
176
177__visible bool ex_handler_clear_fs(const struct exception_table_entry *fixup,
178				   struct pt_regs *regs, int trapnr,
179				   unsigned long error_code,
180				   unsigned long fault_addr)
181{
182	if (static_cpu_has(X86_BUG_NULL_SEG))
183		asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS));
184	asm volatile ("mov %0, %%fs" : : "rm" (0));
185	return ex_handler_default(fixup, regs, trapnr, error_code, fault_addr);
186}
187EXPORT_SYMBOL(ex_handler_clear_fs);
188
189__visible bool ex_has_fault_handler(unsigned long ip)
 
190{
191	const struct exception_table_entry *e;
192	ex_handler_t handler;
 
193
194	e = search_exception_tables(ip);
195	if (!e)
196		return false;
197	handler = ex_fixup_handler(e);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
199	return handler == ex_handler_fault;
 
 
 
 
 
 
 
 
200}
201
202int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code,
203		    unsigned long fault_addr)
204{
205	const struct exception_table_entry *e;
206	ex_handler_t handler;
207
208#ifdef CONFIG_PNPBIOS
209	if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) {
210		extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
211		extern u32 pnp_bios_is_utter_crap;
212		pnp_bios_is_utter_crap = 1;
213		printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
214		__asm__ volatile(
215			"movl %0, %%esp\n\t"
216			"jmp *%1\n\t"
217			: : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
218		panic("do_trap: can't hit this");
219	}
220#endif
221
222	e = search_exception_tables(regs->ip);
223	if (!e)
224		return 0;
225
226	handler = ex_fixup_handler(e);
227	return handler(e, regs, trapnr, error_code, fault_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228}
229
230extern unsigned int early_recursion_flag;
231
232/* Restricted version used during very early boot */
233void __init early_fixup_exception(struct pt_regs *regs, int trapnr)
234{
235	/* Ignore early NMIs. */
236	if (trapnr == X86_TRAP_NMI)
237		return;
238
239	if (early_recursion_flag > 2)
240		goto halt_loop;
241
242	/*
243	 * Old CPUs leave the high bits of CS on the stack
244	 * undefined.  I'm not sure which CPUs do this, but at least
245	 * the 486 DX works this way.
246	 * Xen pv domains are not using the default __KERNEL_CS.
247	 */
248	if (!xen_pv_domain() && regs->cs != __KERNEL_CS)
249		goto fail;
250
251	/*
252	 * The full exception fixup machinery is available as soon as
253	 * the early IDT is loaded.  This means that it is the
254	 * responsibility of extable users to either function correctly
255	 * when handlers are invoked early or to simply avoid causing
256	 * exceptions before they're ready to handle them.
257	 *
258	 * This is better than filtering which handlers can be used,
259	 * because refusing to call a handler here is guaranteed to
260	 * result in a hard-to-debug panic.
261	 *
262	 * Keep in mind that not all vectors actually get here.  Early
263	 * page faults, for example, are special.
264	 */
265	if (fixup_exception(regs, trapnr, regs->orig_ax, 0))
266		return;
267
268	if (fixup_bug(regs, trapnr))
269		return;
 
 
 
 
 
 
 
 
 
 
 
270
271fail:
272	early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
273		     (unsigned)trapnr, (unsigned long)regs->cs, regs->ip,
274		     regs->orig_ax, read_cr2());
275
276	show_regs(regs);
277
278halt_loop:
279	while (true)
280		halt();
281}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2#include <linux/extable.h>
  3#include <linux/uaccess.h>
  4#include <linux/sched/debug.h>
  5#include <linux/bitfield.h>
  6#include <xen/xen.h>
  7
  8#include <asm/fpu/api.h>
  9#include <asm/fred.h>
 10#include <asm/sev.h>
 11#include <asm/traps.h>
 12#include <asm/kdebug.h>
 13#include <asm/insn-eval.h>
 14#include <asm/sgx.h>
 15
 16static inline unsigned long *pt_regs_nr(struct pt_regs *regs, int nr)
 17{
 18	int reg_offset = pt_regs_offset(regs, nr);
 19	static unsigned long __dummy;
 20
 21	if (WARN_ON_ONCE(reg_offset < 0))
 22		return &__dummy;
 23
 24	return (unsigned long *)((unsigned long)regs + reg_offset);
 25}
 26
 27static inline unsigned long
 28ex_fixup_addr(const struct exception_table_entry *x)
 29{
 30	return (unsigned long)&x->fixup + x->fixup;
 31}
 
 
 
 
 
 32
 33static bool ex_handler_default(const struct exception_table_entry *e,
 34			       struct pt_regs *regs)
 
 
 35{
 36	if (e->data & EX_FLAG_CLEAR_AX)
 37		regs->ax = 0;
 38	if (e->data & EX_FLAG_CLEAR_DX)
 39		regs->dx = 0;
 40
 41	regs->ip = ex_fixup_addr(e);
 
 
 
 
 
 
 42	return true;
 43}
 
 44
 45/*
 46 * This is the *very* rare case where we do a "load_unaligned_zeropad()"
 47 * and it's a page crosser into a non-existent page.
 48 *
 49 * This happens when we optimistically load a pathname a word-at-a-time
 50 * and the name is less than the full word and the  next page is not
 51 * mapped. Typically that only happens for CONFIG_DEBUG_PAGEALLOC.
 52 *
 53 * NOTE! The faulting address is always a 'mov mem,reg' type instruction
 54 * of size 'long', and the exception fixup must always point to right
 55 * after the instruction.
 56 */
 57static bool ex_handler_zeropad(const struct exception_table_entry *e,
 58			       struct pt_regs *regs,
 59			       unsigned long fault_addr)
 60{
 61	struct insn insn;
 62	const unsigned long mask = sizeof(long) - 1;
 63	unsigned long offset, addr, next_ip, len;
 64	unsigned long *reg;
 65
 66	next_ip = ex_fixup_addr(e);
 67	len = next_ip - regs->ip;
 68	if (len > MAX_INSN_SIZE)
 69		return false;
 70
 71	if (insn_decode(&insn, (void *) regs->ip, len, INSN_MODE_KERN))
 72		return false;
 73	if (insn.length != len)
 74		return false;
 
 
 
 
 
 
 75
 76	if (insn.opcode.bytes[0] != 0x8b)
 77		return false;
 78	if (insn.opnd_bytes != sizeof(long))
 79		return false;
 
 
 
 
 
 
 
 
 
 
 
 80
 81	addr = (unsigned long) insn_get_addr_ref(&insn, regs);
 82	if (addr == ~0ul)
 83		return false;
 
 
 84
 85	offset = addr & mask;
 86	addr = addr & ~mask;
 87	if (fault_addr != addr + sizeof(long))
 88		return false;
 89
 90	reg = insn_get_modrm_reg_ptr(&insn, regs);
 91	if (!reg)
 92		return false;
 93
 94	*reg = *(unsigned long *)addr >> (offset * 8);
 95	return ex_handler_default(e, regs);
 96}
 97
 98static bool ex_handler_fault(const struct exception_table_entry *fixup,
 99			     struct pt_regs *regs, int trapnr)
100{
101	regs->ax = trapnr;
102	return ex_handler_default(fixup, regs);
103}
104
105static bool ex_handler_sgx(const struct exception_table_entry *fixup,
106			   struct pt_regs *regs, int trapnr)
107{
108	regs->ax = trapnr | SGX_ENCLS_FAULT_FLAG;
109	return ex_handler_default(fixup, regs);
110}
 
111
112/*
113 * Handler for when we fail to restore a task's FPU state.  We should never get
114 * here because the FPU state of a task using the FPU (task->thread.fpu.state)
115 * should always be valid.  However, past bugs have allowed userspace to set
116 * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
117 * These caused XRSTOR to fail when switching to the task, leaking the FPU
118 * registers of the task previously executing on the CPU.  Mitigate this class
119 * of vulnerability by restoring from the initial state (essentially, zeroing
120 * out all the FPU registers) if we can't restore from the task's FPU state.
121 */
122static bool ex_handler_fprestore(const struct exception_table_entry *fixup,
123				 struct pt_regs *regs)
 
 
124{
125	regs->ip = ex_fixup_addr(fixup);
126
127	WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
128		  (void *)instruction_pointer(regs));
129
130	fpu_reset_from_exception_fixup();
131	return true;
132}
 
133
134/*
135 * On x86-64, we end up being imprecise with 'access_ok()', and allow
136 * non-canonical user addresses to make the range comparisons simpler,
137 * and to not have to worry about LAM being enabled.
138 *
139 * In fact, we allow up to one page of "slop" at the sign boundary,
140 * which means that we can do access_ok() by just checking the sign
141 * of the pointer for the common case of having a small access size.
142 */
143static bool gp_fault_address_ok(unsigned long fault_address)
144{
145#ifdef CONFIG_X86_64
146	/* Is it in the "user space" part of the non-canonical space? */
147	if (valid_user_address(fault_address))
148		return true;
149
150	/* .. or just above it? */
151	fault_address -= PAGE_SIZE;
152	if (valid_user_address(fault_address))
153		return true;
154#endif
155	return false;
156}
 
157
158static bool ex_handler_uaccess(const struct exception_table_entry *fixup,
159			       struct pt_regs *regs, int trapnr,
160			       unsigned long fault_address)
 
161{
162	WARN_ONCE(trapnr == X86_TRAP_GP && !gp_fault_address_ok(fault_address),
163		"General protection fault in user access. Non-canonical address?");
164	return ex_handler_default(fixup, regs);
 
165}
 
166
167static bool ex_handler_copy(const struct exception_table_entry *fixup,
168			    struct pt_regs *regs, int trapnr)
 
 
169{
170	WARN_ONCE(trapnr == X86_TRAP_GP, "General protection fault in user access. Non-canonical address?");
171	return ex_handler_fault(fixup, regs, trapnr);
 
 
 
 
 
 
 
172}
 
173
174static bool ex_handler_msr(const struct exception_table_entry *fixup,
175			   struct pt_regs *regs, bool wrmsr, bool safe, int reg)
176{
177	if (__ONCE_LITE_IF(!safe && wrmsr)) {
178		pr_warn("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
179			(unsigned int)regs->cx, (unsigned int)regs->dx,
180			(unsigned int)regs->ax,  regs->ip, (void *)regs->ip);
 
181		show_stack_regs(regs);
182	}
183
184	if (__ONCE_LITE_IF(!safe && !wrmsr)) {
185		pr_warn("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
186			(unsigned int)regs->cx, regs->ip, (void *)regs->ip);
187		show_stack_regs(regs);
188	}
189
190	if (!wrmsr) {
191		/* Pretend that the read succeeded and returned 0. */
192		regs->ax = 0;
193		regs->dx = 0;
194	}
195
196	if (safe)
197		*pt_regs_nr(regs, reg) = -EIO;
198
199	return ex_handler_default(fixup, regs);
200}
 
201
202static bool ex_handler_clear_fs(const struct exception_table_entry *fixup,
203				struct pt_regs *regs)
 
 
204{
205	if (static_cpu_has(X86_BUG_NULL_SEG))
206		asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS));
207	asm volatile ("mov %0, %%fs" : : "rm" (0));
208	return ex_handler_default(fixup, regs);
209}
 
210
211static bool ex_handler_imm_reg(const struct exception_table_entry *fixup,
212			       struct pt_regs *regs, int reg, int imm)
213{
214	*pt_regs_nr(regs, reg) = (long)imm;
215	return ex_handler_default(fixup, regs);
216}
217
218static bool ex_handler_ucopy_len(const struct exception_table_entry *fixup,
219				  struct pt_regs *regs, int trapnr,
220				  unsigned long fault_address,
221				  int reg, int imm)
222{
223	regs->cx = imm * regs->cx + *pt_regs_nr(regs, reg);
224	return ex_handler_uaccess(fixup, regs, trapnr, fault_address);
225}
226
227#ifdef CONFIG_X86_FRED
228static bool ex_handler_eretu(const struct exception_table_entry *fixup,
229			     struct pt_regs *regs, unsigned long error_code)
230{
231	struct pt_regs *uregs = (struct pt_regs *)(regs->sp - offsetof(struct pt_regs, orig_ax));
232	unsigned short ss = uregs->ss;
233	unsigned short cs = uregs->cs;
234
235	/*
236	 * Move the NMI bit from the invalid stack frame, which caused ERETU
237	 * to fault, to the fault handler's stack frame, thus to unblock NMI
238	 * with the fault handler's ERETS instruction ASAP if NMI is blocked.
239	 */
240	regs->fred_ss.nmi = uregs->fred_ss.nmi;
241
242	/*
243	 * Sync event information to uregs, i.e., the ERETU return frame, but
244	 * is it safe to write to the ERETU return frame which is just above
245	 * current event stack frame?
246	 *
247	 * The RSP used by FRED to push a stack frame is not the value in %rsp,
248	 * it is calculated from %rsp with the following 2 steps:
249	 * 1) RSP = %rsp - (IA32_FRED_CONFIG & 0x1c0)	// Reserve N*64 bytes
250	 * 2) RSP = RSP & ~0x3f		// Align to a 64-byte cache line
251	 * when an event delivery doesn't trigger a stack level change.
252	 *
253	 * Here is an example with N*64 (N=1) bytes reserved:
254	 *
255	 *  64-byte cache line ==>  ______________
256	 *                         |___Reserved___|
257	 *                         |__Event_data__|
258	 *                         |_____SS_______|
259	 *                         |_____RSP______|
260	 *                         |_____FLAGS____|
261	 *                         |_____CS_______|
262	 *                         |_____IP_______|
263	 *  64-byte cache line ==> |__Error_code__| <== ERETU return frame
264	 *                         |______________|
265	 *                         |______________|
266	 *                         |______________|
267	 *                         |______________|
268	 *                         |______________|
269	 *                         |______________|
270	 *                         |______________|
271	 *  64-byte cache line ==> |______________| <== RSP after step 1) and 2)
272	 *                         |___Reserved___|
273	 *                         |__Event_data__|
274	 *                         |_____SS_______|
275	 *                         |_____RSP______|
276	 *                         |_____FLAGS____|
277	 *                         |_____CS_______|
278	 *                         |_____IP_______|
279	 *  64-byte cache line ==> |__Error_code__| <== ERETS return frame
280	 *
281	 * Thus a new FRED stack frame will always be pushed below a previous
282	 * FRED stack frame ((N*64) bytes may be reserved between), and it is
283	 * safe to write to a previous FRED stack frame as they never overlap.
284	 */
285	fred_info(uregs)->edata = fred_event_data(regs);
286	uregs->ssx = regs->ssx;
287	uregs->fred_ss.ss = ss;
288	/* The NMI bit was moved away above */
289	uregs->fred_ss.nmi = 0;
290	uregs->csx = regs->csx;
291	uregs->fred_cs.sl = 0;
292	uregs->fred_cs.wfe = 0;
293	uregs->cs = cs;
294	uregs->orig_ax = error_code;
295
296	return ex_handler_default(fixup, regs);
297}
298#endif
299
300int ex_get_fixup_type(unsigned long ip)
301{
302	const struct exception_table_entry *e = search_exception_tables(ip);
303
304	return e ? FIELD_GET(EX_DATA_TYPE_MASK, e->data) : EX_TYPE_NONE;
305}
306
307int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code,
308		    unsigned long fault_addr)
309{
310	const struct exception_table_entry *e;
311	int type, reg, imm;
312
313#ifdef CONFIG_PNPBIOS
314	if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) {
315		extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
316		extern u32 pnp_bios_is_utter_crap;
317		pnp_bios_is_utter_crap = 1;
318		printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
319		__asm__ volatile(
320			"movl %0, %%esp\n\t"
321			"jmp *%1\n\t"
322			: : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
323		panic("do_trap: can't hit this");
324	}
325#endif
326
327	e = search_exception_tables(regs->ip);
328	if (!e)
329		return 0;
330
331	type = FIELD_GET(EX_DATA_TYPE_MASK, e->data);
332	reg  = FIELD_GET(EX_DATA_REG_MASK,  e->data);
333	imm  = FIELD_GET(EX_DATA_IMM_MASK,  e->data);
334
335	switch (type) {
336	case EX_TYPE_DEFAULT:
337	case EX_TYPE_DEFAULT_MCE_SAFE:
338		return ex_handler_default(e, regs);
339	case EX_TYPE_FAULT:
340	case EX_TYPE_FAULT_MCE_SAFE:
341		return ex_handler_fault(e, regs, trapnr);
342	case EX_TYPE_UACCESS:
343		return ex_handler_uaccess(e, regs, trapnr, fault_addr);
344	case EX_TYPE_COPY:
345		return ex_handler_copy(e, regs, trapnr);
346	case EX_TYPE_CLEAR_FS:
347		return ex_handler_clear_fs(e, regs);
348	case EX_TYPE_FPU_RESTORE:
349		return ex_handler_fprestore(e, regs);
350	case EX_TYPE_BPF:
351		return ex_handler_bpf(e, regs);
352	case EX_TYPE_WRMSR:
353		return ex_handler_msr(e, regs, true, false, reg);
354	case EX_TYPE_RDMSR:
355		return ex_handler_msr(e, regs, false, false, reg);
356	case EX_TYPE_WRMSR_SAFE:
357		return ex_handler_msr(e, regs, true, true, reg);
358	case EX_TYPE_RDMSR_SAFE:
359		return ex_handler_msr(e, regs, false, true, reg);
360	case EX_TYPE_WRMSR_IN_MCE:
361		ex_handler_msr_mce(regs, true);
362		break;
363	case EX_TYPE_RDMSR_IN_MCE:
364		ex_handler_msr_mce(regs, false);
365		break;
366	case EX_TYPE_POP_REG:
367		regs->sp += sizeof(long);
368		fallthrough;
369	case EX_TYPE_IMM_REG:
370		return ex_handler_imm_reg(e, regs, reg, imm);
371	case EX_TYPE_FAULT_SGX:
372		return ex_handler_sgx(e, regs, trapnr);
373	case EX_TYPE_UCOPY_LEN:
374		return ex_handler_ucopy_len(e, regs, trapnr, fault_addr, reg, imm);
375	case EX_TYPE_ZEROPAD:
376		return ex_handler_zeropad(e, regs, fault_addr);
377#ifdef CONFIG_X86_FRED
378	case EX_TYPE_ERETU:
379		return ex_handler_eretu(e, regs, error_code);
380#endif
381	}
382	BUG();
383}
384
385extern unsigned int early_recursion_flag;
386
387/* Restricted version used during very early boot */
388void __init early_fixup_exception(struct pt_regs *regs, int trapnr)
389{
390	/* Ignore early NMIs. */
391	if (trapnr == X86_TRAP_NMI)
392		return;
393
394	if (early_recursion_flag > 2)
395		goto halt_loop;
396
397	/*
398	 * Old CPUs leave the high bits of CS on the stack
399	 * undefined.  I'm not sure which CPUs do this, but at least
400	 * the 486 DX works this way.
401	 * Xen pv domains are not using the default __KERNEL_CS.
402	 */
403	if (!xen_pv_domain() && regs->cs != __KERNEL_CS)
404		goto fail;
405
406	/*
407	 * The full exception fixup machinery is available as soon as
408	 * the early IDT is loaded.  This means that it is the
409	 * responsibility of extable users to either function correctly
410	 * when handlers are invoked early or to simply avoid causing
411	 * exceptions before they're ready to handle them.
412	 *
413	 * This is better than filtering which handlers can be used,
414	 * because refusing to call a handler here is guaranteed to
415	 * result in a hard-to-debug panic.
416	 *
417	 * Keep in mind that not all vectors actually get here.  Early
418	 * page faults, for example, are special.
419	 */
420	if (fixup_exception(regs, trapnr, regs->orig_ax, 0))
421		return;
422
423	if (trapnr == X86_TRAP_UD) {
424		if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
425			/* Skip the ud2. */
426			regs->ip += LEN_UD2;
427			return;
428		}
429
430		/*
431		 * If this was a BUG and report_bug returns or if this
432		 * was just a normal #UD, we want to continue onward and
433		 * crash.
434		 */
435	}
436
437fail:
438	early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
439		     (unsigned)trapnr, (unsigned long)regs->cs, regs->ip,
440		     regs->orig_ax, read_cr2());
441
442	show_regs(regs);
443
444halt_loop:
445	while (true)
446		halt();
447}