Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/extable.h> #include <linux/uaccess.h> #include <linux/sched/debug.h> #include <linux/bitfield.h> #include <xen/xen.h> #include <asm/fpu/api.h> #include <asm/fred.h> #include <asm/sev.h> #include <asm/traps.h> #include <asm/kdebug.h> #include <asm/insn-eval.h> #include <asm/sgx.h> static inline unsigned long *pt_regs_nr(struct pt_regs *regs, int nr) { int reg_offset = pt_regs_offset(regs, nr); static unsigned long __dummy; if (WARN_ON_ONCE(reg_offset < 0)) return &__dummy; return (unsigned long *)((unsigned long)regs + reg_offset); } static inline unsigned long ex_fixup_addr(const struct exception_table_entry *x) { return (unsigned long)&x->fixup + x->fixup; } static bool ex_handler_default(const struct exception_table_entry *e, struct pt_regs *regs) { if (e->data & EX_FLAG_CLEAR_AX) regs->ax = 0; if (e->data & EX_FLAG_CLEAR_DX) regs->dx = 0; regs->ip = ex_fixup_addr(e); return true; } /* * This is the *very* rare case where we do a "load_unaligned_zeropad()" * and it's a page crosser into a non-existent page. * * This happens when we optimistically load a pathname a word-at-a-time * and the name is less than the full word and the next page is not * mapped. Typically that only happens for CONFIG_DEBUG_PAGEALLOC. * * NOTE! The faulting address is always a 'mov mem,reg' type instruction * of size 'long', and the exception fixup must always point to right * after the instruction. */ static bool ex_handler_zeropad(const struct exception_table_entry *e, struct pt_regs *regs, unsigned long fault_addr) { struct insn insn; const unsigned long mask = sizeof(long) - 1; unsigned long offset, addr, next_ip, len; unsigned long *reg; next_ip = ex_fixup_addr(e); len = next_ip - regs->ip; if (len > MAX_INSN_SIZE) return false; if (insn_decode(&insn, (void *) regs->ip, len, INSN_MODE_KERN)) return false; if (insn.length != len) return false; if (insn.opcode.bytes[0] != 0x8b) return false; if (insn.opnd_bytes != sizeof(long)) return false; addr = (unsigned long) insn_get_addr_ref(&insn, regs); if (addr == ~0ul) return false; offset = addr & mask; addr = addr & ~mask; if (fault_addr != addr + sizeof(long)) return false; reg = insn_get_modrm_reg_ptr(&insn, regs); if (!reg) return false; *reg = *(unsigned long *)addr >> (offset * 8); return ex_handler_default(e, regs); } static bool ex_handler_fault(const struct exception_table_entry *fixup, struct pt_regs *regs, int trapnr) { regs->ax = trapnr; return ex_handler_default(fixup, regs); } static bool ex_handler_sgx(const struct exception_table_entry *fixup, struct pt_regs *regs, int trapnr) { regs->ax = trapnr | SGX_ENCLS_FAULT_FLAG; return ex_handler_default(fixup, regs); } /* * Handler for when we fail to restore a task's FPU state. We should never get * here because the FPU state of a task using the FPU (task->thread.fpu.state) * should always be valid. However, past bugs have allowed userspace to set * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn(). * These caused XRSTOR to fail when switching to the task, leaking the FPU * registers of the task previously executing on the CPU. Mitigate this class * of vulnerability by restoring from the initial state (essentially, zeroing * out all the FPU registers) if we can't restore from the task's FPU state. */ static bool ex_handler_fprestore(const struct exception_table_entry *fixup, struct pt_regs *regs) { regs->ip = ex_fixup_addr(fixup); WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.", (void *)instruction_pointer(regs)); fpu_reset_from_exception_fixup(); return true; } /* * On x86-64, we end up being imprecise with 'access_ok()', and allow * non-canonical user addresses to make the range comparisons simpler, * and to not have to worry about LAM being enabled. * * In fact, we allow up to one page of "slop" at the sign boundary, * which means that we can do access_ok() by just checking the sign * of the pointer for the common case of having a small access size. */ static bool gp_fault_address_ok(unsigned long fault_address) { #ifdef CONFIG_X86_64 /* Is it in the "user space" part of the non-canonical space? */ if (valid_user_address(fault_address)) return true; /* .. or just above it? */ fault_address -= PAGE_SIZE; if (valid_user_address(fault_address)) return true; #endif return false; } static bool ex_handler_uaccess(const struct exception_table_entry *fixup, struct pt_regs *regs, int trapnr, unsigned long fault_address) { WARN_ONCE(trapnr == X86_TRAP_GP && !gp_fault_address_ok(fault_address), "General protection fault in user access. Non-canonical address?"); return ex_handler_default(fixup, regs); } static bool ex_handler_copy(const struct exception_table_entry *fixup, struct pt_regs *regs, int trapnr) { WARN_ONCE(trapnr == X86_TRAP_GP, "General protection fault in user access. Non-canonical address?"); return ex_handler_fault(fixup, regs, trapnr); } static bool ex_handler_msr(const struct exception_table_entry *fixup, struct pt_regs *regs, bool wrmsr, bool safe, int reg) { if (__ONCE_LITE_IF(!safe && wrmsr)) { pr_warn("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, regs->ip, (void *)regs->ip); show_stack_regs(regs); } if (__ONCE_LITE_IF(!safe && !wrmsr)) { pr_warn("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", (unsigned int)regs->cx, regs->ip, (void *)regs->ip); show_stack_regs(regs); } if (!wrmsr) { /* Pretend that the read succeeded and returned 0. */ regs->ax = 0; regs->dx = 0; } if (safe) *pt_regs_nr(regs, reg) = -EIO; return ex_handler_default(fixup, regs); } static bool ex_handler_clear_fs(const struct exception_table_entry *fixup, struct pt_regs *regs) { if (static_cpu_has(X86_BUG_NULL_SEG)) asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS)); asm volatile ("mov %0, %%fs" : : "rm" (0)); return ex_handler_default(fixup, regs); } static bool ex_handler_imm_reg(const struct exception_table_entry *fixup, struct pt_regs *regs, int reg, int imm) { *pt_regs_nr(regs, reg) = (long)imm; return ex_handler_default(fixup, regs); } static bool ex_handler_ucopy_len(const struct exception_table_entry *fixup, struct pt_regs *regs, int trapnr, unsigned long fault_address, int reg, int imm) { regs->cx = imm * regs->cx + *pt_regs_nr(regs, reg); return ex_handler_uaccess(fixup, regs, trapnr, fault_address); } #ifdef CONFIG_X86_FRED static bool ex_handler_eretu(const struct exception_table_entry *fixup, struct pt_regs *regs, unsigned long error_code) { struct pt_regs *uregs = (struct pt_regs *)(regs->sp - offsetof(struct pt_regs, orig_ax)); unsigned short ss = uregs->ss; unsigned short cs = uregs->cs; /* * Move the NMI bit from the invalid stack frame, which caused ERETU * to fault, to the fault handler's stack frame, thus to unblock NMI * with the fault handler's ERETS instruction ASAP if NMI is blocked. */ regs->fred_ss.nmi = uregs->fred_ss.nmi; /* * Sync event information to uregs, i.e., the ERETU return frame, but * is it safe to write to the ERETU return frame which is just above * current event stack frame? * * The RSP used by FRED to push a stack frame is not the value in %rsp, * it is calculated from %rsp with the following 2 steps: * 1) RSP = %rsp - (IA32_FRED_CONFIG & 0x1c0) // Reserve N*64 bytes * 2) RSP = RSP & ~0x3f // Align to a 64-byte cache line * when an event delivery doesn't trigger a stack level change. * * Here is an example with N*64 (N=1) bytes reserved: * * 64-byte cache line ==> ______________ * |___Reserved___| * |__Event_data__| * |_____SS_______| * |_____RSP______| * |_____FLAGS____| * |_____CS_______| * |_____IP_______| * 64-byte cache line ==> |__Error_code__| <== ERETU return frame * |______________| * |______________| * |______________| * |______________| * |______________| * |______________| * |______________| * 64-byte cache line ==> |______________| <== RSP after step 1) and 2) * |___Reserved___| * |__Event_data__| * |_____SS_______| * |_____RSP______| * |_____FLAGS____| * |_____CS_______| * |_____IP_______| * 64-byte cache line ==> |__Error_code__| <== ERETS return frame * * Thus a new FRED stack frame will always be pushed below a previous * FRED stack frame ((N*64) bytes may be reserved between), and it is * safe to write to a previous FRED stack frame as they never overlap. */ fred_info(uregs)->edata = fred_event_data(regs); uregs->ssx = regs->ssx; uregs->fred_ss.ss = ss; /* The NMI bit was moved away above */ uregs->fred_ss.nmi = 0; uregs->csx = regs->csx; uregs->fred_cs.sl = 0; uregs->fred_cs.wfe = 0; uregs->cs = cs; uregs->orig_ax = error_code; return ex_handler_default(fixup, regs); } #endif int ex_get_fixup_type(unsigned long ip) { const struct exception_table_entry *e = search_exception_tables(ip); return e ? FIELD_GET(EX_DATA_TYPE_MASK, e->data) : EX_TYPE_NONE; } int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code, unsigned long fault_addr) { const struct exception_table_entry *e; int type, reg, imm; #ifdef CONFIG_PNPBIOS if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) { extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp; extern u32 pnp_bios_is_utter_crap; pnp_bios_is_utter_crap = 1; printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n"); __asm__ volatile( "movl %0, %%esp\n\t" "jmp *%1\n\t" : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip)); panic("do_trap: can't hit this"); } #endif e = search_exception_tables(regs->ip); if (!e) return 0; type = FIELD_GET(EX_DATA_TYPE_MASK, e->data); reg = FIELD_GET(EX_DATA_REG_MASK, e->data); imm = FIELD_GET(EX_DATA_IMM_MASK, e->data); switch (type) { case EX_TYPE_DEFAULT: case EX_TYPE_DEFAULT_MCE_SAFE: return ex_handler_default(e, regs); case EX_TYPE_FAULT: case EX_TYPE_FAULT_MCE_SAFE: return ex_handler_fault(e, regs, trapnr); case EX_TYPE_UACCESS: return ex_handler_uaccess(e, regs, trapnr, fault_addr); case EX_TYPE_COPY: return ex_handler_copy(e, regs, trapnr); case EX_TYPE_CLEAR_FS: return ex_handler_clear_fs(e, regs); case EX_TYPE_FPU_RESTORE: return ex_handler_fprestore(e, regs); case EX_TYPE_BPF: return ex_handler_bpf(e, regs); case EX_TYPE_WRMSR: return ex_handler_msr(e, regs, true, false, reg); case EX_TYPE_RDMSR: return ex_handler_msr(e, regs, false, false, reg); case EX_TYPE_WRMSR_SAFE: return ex_handler_msr(e, regs, true, true, reg); case EX_TYPE_RDMSR_SAFE: return ex_handler_msr(e, regs, false, true, reg); case EX_TYPE_WRMSR_IN_MCE: ex_handler_msr_mce(regs, true); break; case EX_TYPE_RDMSR_IN_MCE: ex_handler_msr_mce(regs, false); break; case EX_TYPE_POP_REG: regs->sp += sizeof(long); fallthrough; case EX_TYPE_IMM_REG: return ex_handler_imm_reg(e, regs, reg, imm); case EX_TYPE_FAULT_SGX: return ex_handler_sgx(e, regs, trapnr); case EX_TYPE_UCOPY_LEN: return ex_handler_ucopy_len(e, regs, trapnr, fault_addr, reg, imm); case EX_TYPE_ZEROPAD: return ex_handler_zeropad(e, regs, fault_addr); #ifdef CONFIG_X86_FRED case EX_TYPE_ERETU: return ex_handler_eretu(e, regs, error_code); #endif } BUG(); } extern unsigned int early_recursion_flag; /* Restricted version used during very early boot */ void __init early_fixup_exception(struct pt_regs *regs, int trapnr) { /* Ignore early NMIs. */ if (trapnr == X86_TRAP_NMI) return; if (early_recursion_flag > 2) goto halt_loop; /* * Old CPUs leave the high bits of CS on the stack * undefined. I'm not sure which CPUs do this, but at least * the 486 DX works this way. * Xen pv domains are not using the default __KERNEL_CS. */ if (!xen_pv_domain() && regs->cs != __KERNEL_CS) goto fail; /* * The full exception fixup machinery is available as soon as * the early IDT is loaded. This means that it is the * responsibility of extable users to either function correctly * when handlers are invoked early or to simply avoid causing * exceptions before they're ready to handle them. * * This is better than filtering which handlers can be used, * because refusing to call a handler here is guaranteed to * result in a hard-to-debug panic. * * Keep in mind that not all vectors actually get here. Early * page faults, for example, are special. */ if (fixup_exception(regs, trapnr, regs->orig_ax, 0)) return; if (trapnr == X86_TRAP_UD) { if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) { /* Skip the ud2. */ regs->ip += LEN_UD2; return; } /* * If this was a BUG and report_bug returns or if this * was just a normal #UD, we want to continue onward and * crash. */ } fail: early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n", (unsigned)trapnr, (unsigned long)regs->cs, regs->ip, regs->orig_ax, read_cr2()); show_regs(regs); halt_loop: while (true) halt(); } |