Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * builtin-timechart.c - make an svg timechart of system activity
   4 *
   5 * (C) Copyright 2009 Intel Corporation
   6 *
   7 * Authors:
   8 *     Arjan van de Ven <arjan@linux.intel.com>
   9 */
  10
  11#include <errno.h>
  12#include <inttypes.h>
  13
  14#include "builtin.h"
  15#include "util/color.h"
  16#include <linux/list.h>
  17#include "util/evlist.h" // for struct evsel_str_handler
  18#include "util/evsel.h"
  19#include <linux/kernel.h>
  20#include <linux/rbtree.h>
  21#include <linux/time64.h>
  22#include <linux/zalloc.h>
  23#include "util/symbol.h"
  24#include "util/thread.h"
  25#include "util/callchain.h"
  26
  27#include "perf.h"
  28#include "util/header.h"
  29#include <subcmd/pager.h>
  30#include <subcmd/parse-options.h>
  31#include "util/parse-events.h"
  32#include "util/event.h"
  33#include "util/session.h"
  34#include "util/svghelper.h"
  35#include "util/tool.h"
  36#include "util/data.h"
  37#include "util/debug.h"
 
 
 
  38#include <linux/err.h>
 
  39
  40#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
  41FILE *open_memstream(char **ptr, size_t *sizeloc);
  42#endif
  43
  44#define SUPPORT_OLD_POWER_EVENTS 1
  45#define PWR_EVENT_EXIT -1
  46
  47struct per_pid;
  48struct power_event;
  49struct wake_event;
  50
  51struct timechart {
  52	struct perf_tool	tool;
  53	struct per_pid		*all_data;
  54	struct power_event	*power_events;
  55	struct wake_event	*wake_events;
  56	int			proc_num;
  57	unsigned int		numcpus;
  58	u64			min_freq,	/* Lowest CPU frequency seen */
  59				max_freq,	/* Highest CPU frequency seen */
  60				turbo_frequency,
  61				first_time, last_time;
  62	bool			power_only,
  63				tasks_only,
  64				with_backtrace,
  65				topology;
  66	bool			force;
  67	/* IO related settings */
  68	bool			io_only,
  69				skip_eagain;
  70	u64			io_events;
  71	u64			min_time,
  72				merge_dist;
  73};
  74
  75struct per_pidcomm;
  76struct cpu_sample;
  77struct io_sample;
  78
  79/*
  80 * Datastructure layout:
  81 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  82 * Each "pid" entry, has a list of "comm"s.
  83 *	this is because we want to track different programs different, while
  84 *	exec will reuse the original pid (by design).
  85 * Each comm has a list of samples that will be used to draw
  86 * final graph.
  87 */
  88
  89struct per_pid {
  90	struct per_pid *next;
  91
  92	int		pid;
  93	int		ppid;
  94
  95	u64		start_time;
  96	u64		end_time;
  97	u64		total_time;
  98	u64		total_bytes;
  99	int		display;
 100
 101	struct per_pidcomm *all;
 102	struct per_pidcomm *current;
 103};
 104
 105
 106struct per_pidcomm {
 107	struct per_pidcomm *next;
 108
 109	u64		start_time;
 110	u64		end_time;
 111	u64		total_time;
 112	u64		max_bytes;
 113	u64		total_bytes;
 114
 115	int		Y;
 116	int		display;
 117
 118	long		state;
 119	u64		state_since;
 120
 121	char		*comm;
 122
 123	struct cpu_sample *samples;
 124	struct io_sample  *io_samples;
 125};
 126
 127struct sample_wrapper {
 128	struct sample_wrapper *next;
 129
 130	u64		timestamp;
 131	unsigned char	data[0];
 132};
 133
 134#define TYPE_NONE	0
 135#define TYPE_RUNNING	1
 136#define TYPE_WAITING	2
 137#define TYPE_BLOCKED	3
 138
 139struct cpu_sample {
 140	struct cpu_sample *next;
 141
 142	u64 start_time;
 143	u64 end_time;
 144	int type;
 145	int cpu;
 146	const char *backtrace;
 147};
 148
 149enum {
 150	IOTYPE_READ,
 151	IOTYPE_WRITE,
 152	IOTYPE_SYNC,
 153	IOTYPE_TX,
 154	IOTYPE_RX,
 155	IOTYPE_POLL,
 156};
 157
 158struct io_sample {
 159	struct io_sample *next;
 160
 161	u64 start_time;
 162	u64 end_time;
 163	u64 bytes;
 164	int type;
 165	int fd;
 166	int err;
 167	int merges;
 168};
 169
 170#define CSTATE 1
 171#define PSTATE 2
 172
 173struct power_event {
 174	struct power_event *next;
 175	int type;
 176	int state;
 177	u64 start_time;
 178	u64 end_time;
 179	int cpu;
 180};
 181
 182struct wake_event {
 183	struct wake_event *next;
 184	int waker;
 185	int wakee;
 186	u64 time;
 187	const char *backtrace;
 188};
 189
 190struct process_filter {
 191	char			*name;
 192	int			pid;
 193	struct process_filter	*next;
 194};
 195
 196static struct process_filter *process_filter;
 197
 198
 199static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
 200{
 201	struct per_pid *cursor = tchart->all_data;
 202
 203	while (cursor) {
 204		if (cursor->pid == pid)
 205			return cursor;
 206		cursor = cursor->next;
 207	}
 208	cursor = zalloc(sizeof(*cursor));
 209	assert(cursor != NULL);
 210	cursor->pid = pid;
 211	cursor->next = tchart->all_data;
 212	tchart->all_data = cursor;
 213	return cursor;
 214}
 215
 
 
 
 
 
 
 
 
 
 
 
 
 
 216static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
 217{
 218	struct per_pid *p;
 219	struct per_pidcomm *c;
 220	p = find_create_pid(tchart, pid);
 221	c = p->all;
 222	while (c) {
 223		if (c->comm && strcmp(c->comm, comm) == 0) {
 224			p->current = c;
 225			return;
 226		}
 227		if (!c->comm) {
 228			c->comm = strdup(comm);
 229			p->current = c;
 230			return;
 231		}
 232		c = c->next;
 233	}
 234	c = zalloc(sizeof(*c));
 235	assert(c != NULL);
 236	c->comm = strdup(comm);
 237	p->current = c;
 238	c->next = p->all;
 239	p->all = c;
 240}
 241
 242static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
 243{
 244	struct per_pid *p, *pp;
 245	p = find_create_pid(tchart, pid);
 246	pp = find_create_pid(tchart, ppid);
 247	p->ppid = ppid;
 248	if (pp->current && pp->current->comm && !p->current)
 249		pid_set_comm(tchart, pid, pp->current->comm);
 250
 251	p->start_time = timestamp;
 252	if (p->current && !p->current->start_time) {
 253		p->current->start_time = timestamp;
 254		p->current->state_since = timestamp;
 255	}
 256}
 257
 258static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
 259{
 260	struct per_pid *p;
 261	p = find_create_pid(tchart, pid);
 262	p->end_time = timestamp;
 263	if (p->current)
 264		p->current->end_time = timestamp;
 265}
 266
 267static void pid_put_sample(struct timechart *tchart, int pid, int type,
 268			   unsigned int cpu, u64 start, u64 end,
 269			   const char *backtrace)
 270{
 271	struct per_pid *p;
 272	struct per_pidcomm *c;
 273	struct cpu_sample *sample;
 274
 275	p = find_create_pid(tchart, pid);
 276	c = p->current;
 277	if (!c) {
 278		c = zalloc(sizeof(*c));
 279		assert(c != NULL);
 280		p->current = c;
 281		c->next = p->all;
 282		p->all = c;
 283	}
 284
 285	sample = zalloc(sizeof(*sample));
 286	assert(sample != NULL);
 287	sample->start_time = start;
 288	sample->end_time = end;
 289	sample->type = type;
 290	sample->next = c->samples;
 291	sample->cpu = cpu;
 292	sample->backtrace = backtrace;
 293	c->samples = sample;
 294
 295	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 296		c->total_time += (end-start);
 297		p->total_time += (end-start);
 298	}
 299
 300	if (c->start_time == 0 || c->start_time > start)
 301		c->start_time = start;
 302	if (p->start_time == 0 || p->start_time > start)
 303		p->start_time = start;
 304}
 305
 306#define MAX_CPUS 4096
 307
 308static u64 cpus_cstate_start_times[MAX_CPUS];
 309static int cpus_cstate_state[MAX_CPUS];
 310static u64 cpus_pstate_start_times[MAX_CPUS];
 311static u64 cpus_pstate_state[MAX_CPUS];
 312
 313static int process_comm_event(struct perf_tool *tool,
 314			      union perf_event *event,
 315			      struct perf_sample *sample __maybe_unused,
 316			      struct machine *machine __maybe_unused)
 317{
 318	struct timechart *tchart = container_of(tool, struct timechart, tool);
 319	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
 320	return 0;
 321}
 322
 323static int process_fork_event(struct perf_tool *tool,
 324			      union perf_event *event,
 325			      struct perf_sample *sample __maybe_unused,
 326			      struct machine *machine __maybe_unused)
 327{
 328	struct timechart *tchart = container_of(tool, struct timechart, tool);
 329	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
 330	return 0;
 331}
 332
 333static int process_exit_event(struct perf_tool *tool,
 334			      union perf_event *event,
 335			      struct perf_sample *sample __maybe_unused,
 336			      struct machine *machine __maybe_unused)
 337{
 338	struct timechart *tchart = container_of(tool, struct timechart, tool);
 339	pid_exit(tchart, event->fork.pid, event->fork.time);
 340	return 0;
 341}
 342
 343#ifdef SUPPORT_OLD_POWER_EVENTS
 344static int use_old_power_events;
 345#endif
 346
 347static void c_state_start(int cpu, u64 timestamp, int state)
 348{
 349	cpus_cstate_start_times[cpu] = timestamp;
 350	cpus_cstate_state[cpu] = state;
 351}
 352
 353static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
 354{
 355	struct power_event *pwr = zalloc(sizeof(*pwr));
 356
 357	if (!pwr)
 358		return;
 359
 360	pwr->state = cpus_cstate_state[cpu];
 361	pwr->start_time = cpus_cstate_start_times[cpu];
 362	pwr->end_time = timestamp;
 363	pwr->cpu = cpu;
 364	pwr->type = CSTATE;
 365	pwr->next = tchart->power_events;
 366
 367	tchart->power_events = pwr;
 368}
 369
 370static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
 
 371{
 372	struct power_event *pwr;
 373
 374	if (new_freq > 8000000) /* detect invalid data */
 375		return;
 376
 377	pwr = zalloc(sizeof(*pwr));
 378	if (!pwr)
 379		return;
 380
 381	pwr->state = cpus_pstate_state[cpu];
 382	pwr->start_time = cpus_pstate_start_times[cpu];
 383	pwr->end_time = timestamp;
 384	pwr->cpu = cpu;
 385	pwr->type = PSTATE;
 386	pwr->next = tchart->power_events;
 387
 388	if (!pwr->start_time)
 389		pwr->start_time = tchart->first_time;
 390
 391	tchart->power_events = pwr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 392
 393	cpus_pstate_state[cpu] = new_freq;
 394	cpus_pstate_start_times[cpu] = timestamp;
 395
 396	if ((u64)new_freq > tchart->max_freq)
 397		tchart->max_freq = new_freq;
 398
 399	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
 400		tchart->min_freq = new_freq;
 401
 402	if (new_freq == tchart->max_freq - 1000)
 403		tchart->turbo_frequency = tchart->max_freq;
 404}
 405
 406static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
 407			 int waker, int wakee, u8 flags, const char *backtrace)
 408{
 409	struct per_pid *p;
 410	struct wake_event *we = zalloc(sizeof(*we));
 411
 412	if (!we)
 413		return;
 414
 415	we->time = timestamp;
 416	we->waker = waker;
 417	we->backtrace = backtrace;
 418
 419	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
 420		we->waker = -1;
 421
 422	we->wakee = wakee;
 423	we->next = tchart->wake_events;
 424	tchart->wake_events = we;
 425	p = find_create_pid(tchart, we->wakee);
 426
 427	if (p && p->current && p->current->state == TYPE_NONE) {
 428		p->current->state_since = timestamp;
 429		p->current->state = TYPE_WAITING;
 430	}
 431	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 432		pid_put_sample(tchart, p->pid, p->current->state, cpu,
 433			       p->current->state_since, timestamp, NULL);
 434		p->current->state_since = timestamp;
 435		p->current->state = TYPE_WAITING;
 436	}
 437}
 438
 439static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
 440			 int prev_pid, int next_pid, u64 prev_state,
 441			 const char *backtrace)
 442{
 443	struct per_pid *p = NULL, *prev_p;
 444
 445	prev_p = find_create_pid(tchart, prev_pid);
 446
 447	p = find_create_pid(tchart, next_pid);
 448
 449	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 450		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
 451			       prev_p->current->state_since, timestamp,
 452			       backtrace);
 453	if (p && p->current) {
 454		if (p->current->state != TYPE_NONE)
 455			pid_put_sample(tchart, next_pid, p->current->state, cpu,
 456				       p->current->state_since, timestamp,
 457				       backtrace);
 458
 459		p->current->state_since = timestamp;
 460		p->current->state = TYPE_RUNNING;
 461	}
 462
 463	if (prev_p->current) {
 464		prev_p->current->state = TYPE_NONE;
 465		prev_p->current->state_since = timestamp;
 466		if (prev_state & 2)
 467			prev_p->current->state = TYPE_BLOCKED;
 468		if (prev_state == 0)
 469			prev_p->current->state = TYPE_WAITING;
 470	}
 471}
 472
 473static const char *cat_backtrace(union perf_event *event,
 474				 struct perf_sample *sample,
 475				 struct machine *machine)
 476{
 477	struct addr_location al;
 478	unsigned int i;
 479	char *p = NULL;
 480	size_t p_len;
 481	u8 cpumode = PERF_RECORD_MISC_USER;
 482	struct addr_location tal;
 483	struct ip_callchain *chain = sample->callchain;
 484	FILE *f = open_memstream(&p, &p_len);
 485
 486	if (!f) {
 487		perror("open_memstream error");
 488		return NULL;
 489	}
 490
 
 491	if (!chain)
 492		goto exit;
 493
 494	if (machine__resolve(machine, &al, sample) < 0) {
 495		fprintf(stderr, "problem processing %d event, skipping it.\n",
 496			event->header.type);
 497		goto exit;
 498	}
 499
 500	for (i = 0; i < chain->nr; i++) {
 501		u64 ip;
 
 502
 503		if (callchain_param.order == ORDER_CALLEE)
 504			ip = chain->ips[i];
 505		else
 506			ip = chain->ips[chain->nr - i - 1];
 507
 508		if (ip >= PERF_CONTEXT_MAX) {
 509			switch (ip) {
 510			case PERF_CONTEXT_HV:
 511				cpumode = PERF_RECORD_MISC_HYPERVISOR;
 512				break;
 513			case PERF_CONTEXT_KERNEL:
 514				cpumode = PERF_RECORD_MISC_KERNEL;
 515				break;
 516			case PERF_CONTEXT_USER:
 517				cpumode = PERF_RECORD_MISC_USER;
 518				break;
 519			default:
 520				pr_debug("invalid callchain context: "
 521					 "%"PRId64"\n", (s64) ip);
 522
 523				/*
 524				 * It seems the callchain is corrupted.
 525				 * Discard all.
 526				 */
 527				zfree(&p);
 528				goto exit_put;
 529			}
 530			continue;
 531		}
 532
 
 533		tal.filtered = 0;
 534		if (thread__find_symbol(al.thread, cpumode, ip, &tal))
 535			fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
 536		else
 537			fprintf(f, "..... %016" PRIx64 "\n", ip);
 
 
 538	}
 539exit_put:
 540	addr_location__put(&al);
 541exit:
 
 542	fclose(f);
 543
 544	return p;
 545}
 546
 547typedef int (*tracepoint_handler)(struct timechart *tchart,
 548				  struct evsel *evsel,
 549				  struct perf_sample *sample,
 550				  const char *backtrace);
 551
 552static int process_sample_event(struct perf_tool *tool,
 553				union perf_event *event,
 554				struct perf_sample *sample,
 555				struct evsel *evsel,
 556				struct machine *machine)
 557{
 558	struct timechart *tchart = container_of(tool, struct timechart, tool);
 559
 560	if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
 561		if (!tchart->first_time || tchart->first_time > sample->time)
 562			tchart->first_time = sample->time;
 563		if (tchart->last_time < sample->time)
 564			tchart->last_time = sample->time;
 565	}
 566
 567	if (evsel->handler != NULL) {
 568		tracepoint_handler f = evsel->handler;
 569		return f(tchart, evsel, sample,
 570			 cat_backtrace(event, sample, machine));
 571	}
 572
 573	return 0;
 574}
 575
 576static int
 577process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
 578			struct evsel *evsel,
 579			struct perf_sample *sample,
 580			const char *backtrace __maybe_unused)
 581{
 582	u32 state = perf_evsel__intval(evsel, sample, "state");
 583	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 584
 585	if (state == (u32)PWR_EVENT_EXIT)
 586		c_state_end(tchart, cpu_id, sample->time);
 587	else
 588		c_state_start(cpu_id, sample->time, state);
 589	return 0;
 590}
 591
 592static int
 593process_sample_cpu_frequency(struct timechart *tchart,
 594			     struct evsel *evsel,
 595			     struct perf_sample *sample,
 596			     const char *backtrace __maybe_unused)
 597{
 598	u32 state = perf_evsel__intval(evsel, sample, "state");
 599	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 600
 601	p_state_change(tchart, cpu_id, sample->time, state);
 602	return 0;
 603}
 604
 605static int
 606process_sample_sched_wakeup(struct timechart *tchart,
 607			    struct evsel *evsel,
 608			    struct perf_sample *sample,
 609			    const char *backtrace)
 610{
 611	u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
 612	int waker = perf_evsel__intval(evsel, sample, "common_pid");
 613	int wakee = perf_evsel__intval(evsel, sample, "pid");
 614
 615	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
 616	return 0;
 617}
 618
 619static int
 620process_sample_sched_switch(struct timechart *tchart,
 621			    struct evsel *evsel,
 622			    struct perf_sample *sample,
 623			    const char *backtrace)
 624{
 625	int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
 626	int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 627	u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 628
 629	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
 630		     prev_state, backtrace);
 631	return 0;
 632}
 633
 634#ifdef SUPPORT_OLD_POWER_EVENTS
 635static int
 636process_sample_power_start(struct timechart *tchart __maybe_unused,
 637			   struct evsel *evsel,
 638			   struct perf_sample *sample,
 639			   const char *backtrace __maybe_unused)
 640{
 641	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 642	u64 value = perf_evsel__intval(evsel, sample, "value");
 643
 644	c_state_start(cpu_id, sample->time, value);
 645	return 0;
 646}
 647
 648static int
 649process_sample_power_end(struct timechart *tchart,
 650			 struct evsel *evsel __maybe_unused,
 651			 struct perf_sample *sample,
 652			 const char *backtrace __maybe_unused)
 653{
 654	c_state_end(tchart, sample->cpu, sample->time);
 655	return 0;
 656}
 657
 658static int
 659process_sample_power_frequency(struct timechart *tchart,
 660			       struct evsel *evsel,
 661			       struct perf_sample *sample,
 662			       const char *backtrace __maybe_unused)
 663{
 664	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 665	u64 value = perf_evsel__intval(evsel, sample, "value");
 666
 667	p_state_change(tchart, cpu_id, sample->time, value);
 668	return 0;
 669}
 670#endif /* SUPPORT_OLD_POWER_EVENTS */
 671
 672/*
 673 * After the last sample we need to wrap up the current C/P state
 674 * and close out each CPU for these.
 675 */
 676static void end_sample_processing(struct timechart *tchart)
 677{
 678	u64 cpu;
 679	struct power_event *pwr;
 680
 681	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
 682		/* C state */
 683#if 0
 684		pwr = zalloc(sizeof(*pwr));
 685		if (!pwr)
 686			return;
 687
 688		pwr->state = cpus_cstate_state[cpu];
 689		pwr->start_time = cpus_cstate_start_times[cpu];
 690		pwr->end_time = tchart->last_time;
 691		pwr->cpu = cpu;
 692		pwr->type = CSTATE;
 693		pwr->next = tchart->power_events;
 694
 695		tchart->power_events = pwr;
 696#endif
 697		/* P state */
 698
 699		pwr = zalloc(sizeof(*pwr));
 700		if (!pwr)
 701			return;
 702
 703		pwr->state = cpus_pstate_state[cpu];
 704		pwr->start_time = cpus_pstate_start_times[cpu];
 705		pwr->end_time = tchart->last_time;
 706		pwr->cpu = cpu;
 707		pwr->type = PSTATE;
 708		pwr->next = tchart->power_events;
 709
 710		if (!pwr->start_time)
 711			pwr->start_time = tchart->first_time;
 712		if (!pwr->state)
 713			pwr->state = tchart->min_freq;
 714		tchart->power_events = pwr;
 715	}
 716}
 717
 718static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
 719			       u64 start, int fd)
 720{
 721	struct per_pid *p = find_create_pid(tchart, pid);
 722	struct per_pidcomm *c = p->current;
 723	struct io_sample *sample;
 724	struct io_sample *prev;
 725
 726	if (!c) {
 727		c = zalloc(sizeof(*c));
 728		if (!c)
 729			return -ENOMEM;
 730		p->current = c;
 731		c->next = p->all;
 732		p->all = c;
 733	}
 734
 735	prev = c->io_samples;
 736
 737	if (prev && prev->start_time && !prev->end_time) {
 738		pr_warning("Skip invalid start event: "
 739			   "previous event already started!\n");
 740
 741		/* remove previous event that has been started,
 742		 * we are not sure we will ever get an end for it */
 743		c->io_samples = prev->next;
 744		free(prev);
 745		return 0;
 746	}
 747
 748	sample = zalloc(sizeof(*sample));
 749	if (!sample)
 750		return -ENOMEM;
 751	sample->start_time = start;
 752	sample->type = type;
 753	sample->fd = fd;
 754	sample->next = c->io_samples;
 755	c->io_samples = sample;
 756
 757	if (c->start_time == 0 || c->start_time > start)
 758		c->start_time = start;
 759
 760	return 0;
 761}
 762
 763static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
 764			     u64 end, long ret)
 765{
 766	struct per_pid *p = find_create_pid(tchart, pid);
 767	struct per_pidcomm *c = p->current;
 768	struct io_sample *sample, *prev;
 769
 770	if (!c) {
 771		pr_warning("Invalid pidcomm!\n");
 772		return -1;
 773	}
 774
 775	sample = c->io_samples;
 776
 777	if (!sample) /* skip partially captured events */
 778		return 0;
 779
 780	if (sample->end_time) {
 781		pr_warning("Skip invalid end event: "
 782			   "previous event already ended!\n");
 783		return 0;
 784	}
 785
 786	if (sample->type != type) {
 787		pr_warning("Skip invalid end event: invalid event type!\n");
 788		return 0;
 789	}
 790
 791	sample->end_time = end;
 792	prev = sample->next;
 793
 794	/* we want to be able to see small and fast transfers, so make them
 795	 * at least min_time long, but don't overlap them */
 796	if (sample->end_time - sample->start_time < tchart->min_time)
 797		sample->end_time = sample->start_time + tchart->min_time;
 798	if (prev && sample->start_time < prev->end_time) {
 799		if (prev->err) /* try to make errors more visible */
 800			sample->start_time = prev->end_time;
 801		else
 802			prev->end_time = sample->start_time;
 803	}
 804
 805	if (ret < 0) {
 806		sample->err = ret;
 807	} else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
 808		   type == IOTYPE_TX || type == IOTYPE_RX) {
 809
 810		if ((u64)ret > c->max_bytes)
 811			c->max_bytes = ret;
 812
 813		c->total_bytes += ret;
 814		p->total_bytes += ret;
 815		sample->bytes = ret;
 816	}
 817
 818	/* merge two requests to make svg smaller and render-friendly */
 819	if (prev &&
 820	    prev->type == sample->type &&
 821	    prev->err == sample->err &&
 822	    prev->fd == sample->fd &&
 823	    prev->end_time + tchart->merge_dist >= sample->start_time) {
 824
 825		sample->bytes += prev->bytes;
 826		sample->merges += prev->merges + 1;
 827
 828		sample->start_time = prev->start_time;
 829		sample->next = prev->next;
 830		free(prev);
 831
 832		if (!sample->err && sample->bytes > c->max_bytes)
 833			c->max_bytes = sample->bytes;
 834	}
 835
 836	tchart->io_events++;
 837
 838	return 0;
 839}
 840
 841static int
 842process_enter_read(struct timechart *tchart,
 843		   struct evsel *evsel,
 844		   struct perf_sample *sample)
 845{
 846	long fd = perf_evsel__intval(evsel, sample, "fd");
 847	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
 848				   sample->time, fd);
 849}
 850
 851static int
 852process_exit_read(struct timechart *tchart,
 853		  struct evsel *evsel,
 854		  struct perf_sample *sample)
 855{
 856	long ret = perf_evsel__intval(evsel, sample, "ret");
 857	return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
 858				 sample->time, ret);
 859}
 860
 861static int
 862process_enter_write(struct timechart *tchart,
 863		    struct evsel *evsel,
 864		    struct perf_sample *sample)
 865{
 866	long fd = perf_evsel__intval(evsel, sample, "fd");
 867	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 868				   sample->time, fd);
 869}
 870
 871static int
 872process_exit_write(struct timechart *tchart,
 873		   struct evsel *evsel,
 874		   struct perf_sample *sample)
 875{
 876	long ret = perf_evsel__intval(evsel, sample, "ret");
 877	return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 878				 sample->time, ret);
 879}
 880
 881static int
 882process_enter_sync(struct timechart *tchart,
 883		   struct evsel *evsel,
 884		   struct perf_sample *sample)
 885{
 886	long fd = perf_evsel__intval(evsel, sample, "fd");
 887	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 888				   sample->time, fd);
 889}
 890
 891static int
 892process_exit_sync(struct timechart *tchart,
 893		  struct evsel *evsel,
 894		  struct perf_sample *sample)
 895{
 896	long ret = perf_evsel__intval(evsel, sample, "ret");
 897	return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 898				 sample->time, ret);
 899}
 900
 901static int
 902process_enter_tx(struct timechart *tchart,
 903		 struct evsel *evsel,
 904		 struct perf_sample *sample)
 905{
 906	long fd = perf_evsel__intval(evsel, sample, "fd");
 907	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
 908				   sample->time, fd);
 909}
 910
 911static int
 912process_exit_tx(struct timechart *tchart,
 913		struct evsel *evsel,
 914		struct perf_sample *sample)
 915{
 916	long ret = perf_evsel__intval(evsel, sample, "ret");
 917	return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
 918				 sample->time, ret);
 919}
 920
 921static int
 922process_enter_rx(struct timechart *tchart,
 923		 struct evsel *evsel,
 924		 struct perf_sample *sample)
 925{
 926	long fd = perf_evsel__intval(evsel, sample, "fd");
 927	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
 928				   sample->time, fd);
 929}
 930
 931static int
 932process_exit_rx(struct timechart *tchart,
 933		struct evsel *evsel,
 934		struct perf_sample *sample)
 935{
 936	long ret = perf_evsel__intval(evsel, sample, "ret");
 937	return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
 938				 sample->time, ret);
 939}
 940
 941static int
 942process_enter_poll(struct timechart *tchart,
 943		   struct evsel *evsel,
 944		   struct perf_sample *sample)
 945{
 946	long fd = perf_evsel__intval(evsel, sample, "fd");
 947	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
 948				   sample->time, fd);
 949}
 950
 951static int
 952process_exit_poll(struct timechart *tchart,
 953		  struct evsel *evsel,
 954		  struct perf_sample *sample)
 955{
 956	long ret = perf_evsel__intval(evsel, sample, "ret");
 957	return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
 958				 sample->time, ret);
 959}
 960
 961/*
 962 * Sort the pid datastructure
 963 */
 964static void sort_pids(struct timechart *tchart)
 965{
 966	struct per_pid *new_list, *p, *cursor, *prev;
 967	/* sort by ppid first, then by pid, lowest to highest */
 968
 969	new_list = NULL;
 970
 971	while (tchart->all_data) {
 972		p = tchart->all_data;
 973		tchart->all_data = p->next;
 974		p->next = NULL;
 975
 976		if (new_list == NULL) {
 977			new_list = p;
 978			p->next = NULL;
 979			continue;
 980		}
 981		prev = NULL;
 982		cursor = new_list;
 983		while (cursor) {
 984			if (cursor->ppid > p->ppid ||
 985				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 986				/* must insert before */
 987				if (prev) {
 988					p->next = prev->next;
 989					prev->next = p;
 990					cursor = NULL;
 991					continue;
 992				} else {
 993					p->next = new_list;
 994					new_list = p;
 995					cursor = NULL;
 996					continue;
 997				}
 998			}
 999
1000			prev = cursor;
1001			cursor = cursor->next;
1002			if (!cursor)
1003				prev->next = p;
1004		}
1005	}
1006	tchart->all_data = new_list;
1007}
1008
1009
1010static void draw_c_p_states(struct timechart *tchart)
1011{
1012	struct power_event *pwr;
1013	pwr = tchart->power_events;
1014
1015	/*
1016	 * two pass drawing so that the P state bars are on top of the C state blocks
1017	 */
1018	while (pwr) {
1019		if (pwr->type == CSTATE)
1020			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1021		pwr = pwr->next;
1022	}
1023
1024	pwr = tchart->power_events;
1025	while (pwr) {
1026		if (pwr->type == PSTATE) {
1027			if (!pwr->state)
1028				pwr->state = tchart->min_freq;
1029			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030		}
1031		pwr = pwr->next;
1032	}
1033}
1034
1035static void draw_wakeups(struct timechart *tchart)
1036{
1037	struct wake_event *we;
1038	struct per_pid *p;
1039	struct per_pidcomm *c;
1040
1041	we = tchart->wake_events;
1042	while (we) {
1043		int from = 0, to = 0;
1044		char *task_from = NULL, *task_to = NULL;
1045
1046		/* locate the column of the waker and wakee */
1047		p = tchart->all_data;
1048		while (p) {
1049			if (p->pid == we->waker || p->pid == we->wakee) {
1050				c = p->all;
1051				while (c) {
1052					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1053						if (p->pid == we->waker && !from) {
1054							from = c->Y;
1055							task_from = strdup(c->comm);
1056						}
1057						if (p->pid == we->wakee && !to) {
1058							to = c->Y;
1059							task_to = strdup(c->comm);
1060						}
1061					}
1062					c = c->next;
1063				}
1064				c = p->all;
1065				while (c) {
1066					if (p->pid == we->waker && !from) {
1067						from = c->Y;
1068						task_from = strdup(c->comm);
1069					}
1070					if (p->pid == we->wakee && !to) {
1071						to = c->Y;
1072						task_to = strdup(c->comm);
1073					}
1074					c = c->next;
1075				}
1076			}
1077			p = p->next;
1078		}
1079
1080		if (!task_from) {
1081			task_from = malloc(40);
1082			sprintf(task_from, "[%i]", we->waker);
1083		}
1084		if (!task_to) {
1085			task_to = malloc(40);
1086			sprintf(task_to, "[%i]", we->wakee);
1087		}
1088
1089		if (we->waker == -1)
1090			svg_interrupt(we->time, to, we->backtrace);
1091		else if (from && to && abs(from - to) == 1)
1092			svg_wakeline(we->time, from, to, we->backtrace);
1093		else
1094			svg_partial_wakeline(we->time, from, task_from, to,
1095					     task_to, we->backtrace);
1096		we = we->next;
1097
1098		free(task_from);
1099		free(task_to);
1100	}
1101}
1102
1103static void draw_cpu_usage(struct timechart *tchart)
1104{
1105	struct per_pid *p;
1106	struct per_pidcomm *c;
1107	struct cpu_sample *sample;
1108	p = tchart->all_data;
1109	while (p) {
1110		c = p->all;
1111		while (c) {
1112			sample = c->samples;
1113			while (sample) {
1114				if (sample->type == TYPE_RUNNING) {
1115					svg_process(sample->cpu,
1116						    sample->start_time,
1117						    sample->end_time,
1118						    p->pid,
1119						    c->comm,
1120						    sample->backtrace);
1121				}
1122
1123				sample = sample->next;
1124			}
1125			c = c->next;
1126		}
1127		p = p->next;
1128	}
1129}
1130
1131static void draw_io_bars(struct timechart *tchart)
1132{
1133	const char *suf;
1134	double bytes;
1135	char comm[256];
1136	struct per_pid *p;
1137	struct per_pidcomm *c;
1138	struct io_sample *sample;
1139	int Y = 1;
1140
1141	p = tchart->all_data;
1142	while (p) {
1143		c = p->all;
1144		while (c) {
1145			if (!c->display) {
1146				c->Y = 0;
1147				c = c->next;
1148				continue;
1149			}
1150
1151			svg_box(Y, c->start_time, c->end_time, "process3");
1152			sample = c->io_samples;
1153			for (sample = c->io_samples; sample; sample = sample->next) {
1154				double h = (double)sample->bytes / c->max_bytes;
1155
1156				if (tchart->skip_eagain &&
1157				    sample->err == -EAGAIN)
1158					continue;
1159
1160				if (sample->err)
1161					h = 1;
1162
1163				if (sample->type == IOTYPE_SYNC)
1164					svg_fbox(Y,
1165						sample->start_time,
1166						sample->end_time,
1167						1,
1168						sample->err ? "error" : "sync",
1169						sample->fd,
1170						sample->err,
1171						sample->merges);
1172				else if (sample->type == IOTYPE_POLL)
1173					svg_fbox(Y,
1174						sample->start_time,
1175						sample->end_time,
1176						1,
1177						sample->err ? "error" : "poll",
1178						sample->fd,
1179						sample->err,
1180						sample->merges);
1181				else if (sample->type == IOTYPE_READ)
1182					svg_ubox(Y,
1183						sample->start_time,
1184						sample->end_time,
1185						h,
1186						sample->err ? "error" : "disk",
1187						sample->fd,
1188						sample->err,
1189						sample->merges);
1190				else if (sample->type == IOTYPE_WRITE)
1191					svg_lbox(Y,
1192						sample->start_time,
1193						sample->end_time,
1194						h,
1195						sample->err ? "error" : "disk",
1196						sample->fd,
1197						sample->err,
1198						sample->merges);
1199				else if (sample->type == IOTYPE_RX)
1200					svg_ubox(Y,
1201						sample->start_time,
1202						sample->end_time,
1203						h,
1204						sample->err ? "error" : "net",
1205						sample->fd,
1206						sample->err,
1207						sample->merges);
1208				else if (sample->type == IOTYPE_TX)
1209					svg_lbox(Y,
1210						sample->start_time,
1211						sample->end_time,
1212						h,
1213						sample->err ? "error" : "net",
1214						sample->fd,
1215						sample->err,
1216						sample->merges);
1217			}
1218
1219			suf = "";
1220			bytes = c->total_bytes;
1221			if (bytes > 1024) {
1222				bytes = bytes / 1024;
1223				suf = "K";
1224			}
1225			if (bytes > 1024) {
1226				bytes = bytes / 1024;
1227				suf = "M";
1228			}
1229			if (bytes > 1024) {
1230				bytes = bytes / 1024;
1231				suf = "G";
1232			}
1233
1234
1235			sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1236			svg_text(Y, c->start_time, comm);
1237
1238			c->Y = Y;
1239			Y++;
1240			c = c->next;
1241		}
1242		p = p->next;
1243	}
1244}
1245
1246static void draw_process_bars(struct timechart *tchart)
1247{
1248	struct per_pid *p;
1249	struct per_pidcomm *c;
1250	struct cpu_sample *sample;
1251	int Y = 0;
1252
1253	Y = 2 * tchart->numcpus + 2;
1254
1255	p = tchart->all_data;
1256	while (p) {
1257		c = p->all;
1258		while (c) {
1259			if (!c->display) {
1260				c->Y = 0;
1261				c = c->next;
1262				continue;
1263			}
1264
1265			svg_box(Y, c->start_time, c->end_time, "process");
1266			sample = c->samples;
1267			while (sample) {
1268				if (sample->type == TYPE_RUNNING)
1269					svg_running(Y, sample->cpu,
1270						    sample->start_time,
1271						    sample->end_time,
1272						    sample->backtrace);
1273				if (sample->type == TYPE_BLOCKED)
1274					svg_blocked(Y, sample->cpu,
1275						    sample->start_time,
1276						    sample->end_time,
1277						    sample->backtrace);
1278				if (sample->type == TYPE_WAITING)
1279					svg_waiting(Y, sample->cpu,
1280						    sample->start_time,
1281						    sample->end_time,
1282						    sample->backtrace);
1283				sample = sample->next;
1284			}
1285
1286			if (c->comm) {
1287				char comm[256];
1288				if (c->total_time > 5000000000) /* 5 seconds */
1289					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1290				else
1291					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1292
1293				svg_text(Y, c->start_time, comm);
1294			}
1295			c->Y = Y;
1296			Y++;
1297			c = c->next;
1298		}
1299		p = p->next;
1300	}
1301}
1302
1303static void add_process_filter(const char *string)
1304{
1305	int pid = strtoull(string, NULL, 10);
1306	struct process_filter *filt = malloc(sizeof(*filt));
1307
1308	if (!filt)
1309		return;
1310
1311	filt->name = strdup(string);
1312	filt->pid  = pid;
1313	filt->next = process_filter;
1314
1315	process_filter = filt;
1316}
1317
1318static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1319{
1320	struct process_filter *filt;
1321	if (!process_filter)
1322		return 1;
1323
1324	filt = process_filter;
1325	while (filt) {
1326		if (filt->pid && p->pid == filt->pid)
1327			return 1;
1328		if (strcmp(filt->name, c->comm) == 0)
1329			return 1;
1330		filt = filt->next;
1331	}
1332	return 0;
1333}
1334
1335static int determine_display_tasks_filtered(struct timechart *tchart)
1336{
1337	struct per_pid *p;
1338	struct per_pidcomm *c;
1339	int count = 0;
1340
1341	p = tchart->all_data;
1342	while (p) {
1343		p->display = 0;
1344		if (p->start_time == 1)
1345			p->start_time = tchart->first_time;
1346
1347		/* no exit marker, task kept running to the end */
1348		if (p->end_time == 0)
1349			p->end_time = tchart->last_time;
1350
1351		c = p->all;
1352
1353		while (c) {
1354			c->display = 0;
1355
1356			if (c->start_time == 1)
1357				c->start_time = tchart->first_time;
1358
1359			if (passes_filter(p, c)) {
1360				c->display = 1;
1361				p->display = 1;
1362				count++;
1363			}
1364
1365			if (c->end_time == 0)
1366				c->end_time = tchart->last_time;
1367
1368			c = c->next;
1369		}
1370		p = p->next;
1371	}
1372	return count;
1373}
1374
1375static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1376{
1377	struct per_pid *p;
1378	struct per_pidcomm *c;
1379	int count = 0;
1380
1381	p = tchart->all_data;
1382	while (p) {
1383		p->display = 0;
1384		if (p->start_time == 1)
1385			p->start_time = tchart->first_time;
1386
1387		/* no exit marker, task kept running to the end */
1388		if (p->end_time == 0)
1389			p->end_time = tchart->last_time;
1390		if (p->total_time >= threshold)
1391			p->display = 1;
1392
1393		c = p->all;
1394
1395		while (c) {
1396			c->display = 0;
1397
1398			if (c->start_time == 1)
1399				c->start_time = tchart->first_time;
1400
1401			if (c->total_time >= threshold) {
1402				c->display = 1;
1403				count++;
1404			}
1405
1406			if (c->end_time == 0)
1407				c->end_time = tchart->last_time;
1408
1409			c = c->next;
1410		}
1411		p = p->next;
1412	}
1413	return count;
1414}
1415
1416static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1417{
1418	struct per_pid *p;
1419	struct per_pidcomm *c;
1420	int count = 0;
1421
1422	p = timechart->all_data;
1423	while (p) {
1424		/* no exit marker, task kept running to the end */
1425		if (p->end_time == 0)
1426			p->end_time = timechart->last_time;
1427
1428		c = p->all;
1429
1430		while (c) {
1431			c->display = 0;
1432
1433			if (c->total_bytes >= threshold) {
1434				c->display = 1;
1435				count++;
1436			}
1437
1438			if (c->end_time == 0)
1439				c->end_time = timechart->last_time;
1440
1441			c = c->next;
1442		}
1443		p = p->next;
1444	}
1445	return count;
1446}
1447
1448#define BYTES_THRESH (1 * 1024 * 1024)
1449#define TIME_THRESH 10000000
1450
1451static void write_svg_file(struct timechart *tchart, const char *filename)
1452{
1453	u64 i;
1454	int count;
1455	int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1456
1457	if (tchart->power_only)
1458		tchart->proc_num = 0;
1459
1460	/* We'd like to show at least proc_num tasks;
1461	 * be less picky if we have fewer */
1462	do {
1463		if (process_filter)
1464			count = determine_display_tasks_filtered(tchart);
1465		else if (tchart->io_events)
1466			count = determine_display_io_tasks(tchart, thresh);
1467		else
1468			count = determine_display_tasks(tchart, thresh);
1469		thresh /= 10;
1470	} while (!process_filter && thresh && count < tchart->proc_num);
1471
1472	if (!tchart->proc_num)
1473		count = 0;
1474
1475	if (tchart->io_events) {
1476		open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1477
1478		svg_time_grid(0.5);
1479		svg_io_legenda();
1480
1481		draw_io_bars(tchart);
1482	} else {
1483		open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1484
1485		svg_time_grid(0);
1486
1487		svg_legenda();
1488
1489		for (i = 0; i < tchart->numcpus; i++)
1490			svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1491
1492		draw_cpu_usage(tchart);
1493		if (tchart->proc_num)
1494			draw_process_bars(tchart);
1495		if (!tchart->tasks_only)
1496			draw_c_p_states(tchart);
1497		if (tchart->proc_num)
1498			draw_wakeups(tchart);
1499	}
1500
1501	svg_close();
1502}
1503
1504static int process_header(struct perf_file_section *section __maybe_unused,
1505			  struct perf_header *ph,
1506			  int feat,
1507			  int fd __maybe_unused,
1508			  void *data)
1509{
1510	struct timechart *tchart = data;
1511
1512	switch (feat) {
1513	case HEADER_NRCPUS:
1514		tchart->numcpus = ph->env.nr_cpus_avail;
1515		break;
1516
1517	case HEADER_CPU_TOPOLOGY:
1518		if (!tchart->topology)
1519			break;
1520
1521		if (svg_build_topology_map(&ph->env))
1522			fprintf(stderr, "problem building topology\n");
1523		break;
1524
1525	default:
1526		break;
1527	}
1528
1529	return 0;
1530}
1531
1532static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1533{
1534	const struct evsel_str_handler power_tracepoints[] = {
1535		{ "power:cpu_idle",		process_sample_cpu_idle },
1536		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1537		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1538		{ "sched:sched_switch",		process_sample_sched_switch },
1539#ifdef SUPPORT_OLD_POWER_EVENTS
1540		{ "power:power_start",		process_sample_power_start },
1541		{ "power:power_end",		process_sample_power_end },
1542		{ "power:power_frequency",	process_sample_power_frequency },
1543#endif
1544
1545		{ "syscalls:sys_enter_read",		process_enter_read },
1546		{ "syscalls:sys_enter_pread64",		process_enter_read },
1547		{ "syscalls:sys_enter_readv",		process_enter_read },
1548		{ "syscalls:sys_enter_preadv",		process_enter_read },
1549		{ "syscalls:sys_enter_write",		process_enter_write },
1550		{ "syscalls:sys_enter_pwrite64",	process_enter_write },
1551		{ "syscalls:sys_enter_writev",		process_enter_write },
1552		{ "syscalls:sys_enter_pwritev",		process_enter_write },
1553		{ "syscalls:sys_enter_sync",		process_enter_sync },
1554		{ "syscalls:sys_enter_sync_file_range",	process_enter_sync },
1555		{ "syscalls:sys_enter_fsync",		process_enter_sync },
1556		{ "syscalls:sys_enter_msync",		process_enter_sync },
1557		{ "syscalls:sys_enter_recvfrom",	process_enter_rx },
1558		{ "syscalls:sys_enter_recvmmsg",	process_enter_rx },
1559		{ "syscalls:sys_enter_recvmsg",		process_enter_rx },
1560		{ "syscalls:sys_enter_sendto",		process_enter_tx },
1561		{ "syscalls:sys_enter_sendmsg",		process_enter_tx },
1562		{ "syscalls:sys_enter_sendmmsg",	process_enter_tx },
1563		{ "syscalls:sys_enter_epoll_pwait",	process_enter_poll },
1564		{ "syscalls:sys_enter_epoll_wait",	process_enter_poll },
1565		{ "syscalls:sys_enter_poll",		process_enter_poll },
1566		{ "syscalls:sys_enter_ppoll",		process_enter_poll },
1567		{ "syscalls:sys_enter_pselect6",	process_enter_poll },
1568		{ "syscalls:sys_enter_select",		process_enter_poll },
1569
1570		{ "syscalls:sys_exit_read",		process_exit_read },
1571		{ "syscalls:sys_exit_pread64",		process_exit_read },
1572		{ "syscalls:sys_exit_readv",		process_exit_read },
1573		{ "syscalls:sys_exit_preadv",		process_exit_read },
1574		{ "syscalls:sys_exit_write",		process_exit_write },
1575		{ "syscalls:sys_exit_pwrite64",		process_exit_write },
1576		{ "syscalls:sys_exit_writev",		process_exit_write },
1577		{ "syscalls:sys_exit_pwritev",		process_exit_write },
1578		{ "syscalls:sys_exit_sync",		process_exit_sync },
1579		{ "syscalls:sys_exit_sync_file_range",	process_exit_sync },
1580		{ "syscalls:sys_exit_fsync",		process_exit_sync },
1581		{ "syscalls:sys_exit_msync",		process_exit_sync },
1582		{ "syscalls:sys_exit_recvfrom",		process_exit_rx },
1583		{ "syscalls:sys_exit_recvmmsg",		process_exit_rx },
1584		{ "syscalls:sys_exit_recvmsg",		process_exit_rx },
1585		{ "syscalls:sys_exit_sendto",		process_exit_tx },
1586		{ "syscalls:sys_exit_sendmsg",		process_exit_tx },
1587		{ "syscalls:sys_exit_sendmmsg",		process_exit_tx },
1588		{ "syscalls:sys_exit_epoll_pwait",	process_exit_poll },
1589		{ "syscalls:sys_exit_epoll_wait",	process_exit_poll },
1590		{ "syscalls:sys_exit_poll",		process_exit_poll },
1591		{ "syscalls:sys_exit_ppoll",		process_exit_poll },
1592		{ "syscalls:sys_exit_pselect6",		process_exit_poll },
1593		{ "syscalls:sys_exit_select",		process_exit_poll },
1594	};
1595	struct perf_data data = {
1596		.path  = input_name,
1597		.mode  = PERF_DATA_MODE_READ,
1598		.force = tchart->force,
1599	};
1600
1601	struct perf_session *session = perf_session__new(&data, false,
1602							 &tchart->tool);
1603	int ret = -EINVAL;
1604
1605	if (IS_ERR(session))
1606		return PTR_ERR(session);
1607
1608	symbol__init(&session->header.env);
1609
1610	(void)perf_header__process_sections(&session->header,
1611					    perf_data__fd(session->data),
1612					    tchart,
1613					    process_header);
1614
1615	if (!perf_session__has_traces(session, "timechart record"))
1616		goto out_delete;
1617
1618	if (perf_session__set_tracepoints_handlers(session,
1619						   power_tracepoints)) {
1620		pr_err("Initializing session tracepoint handlers failed\n");
1621		goto out_delete;
1622	}
1623
1624	ret = perf_session__process_events(session);
1625	if (ret)
1626		goto out_delete;
1627
1628	end_sample_processing(tchart);
1629
1630	sort_pids(tchart);
1631
1632	write_svg_file(tchart, output_name);
1633
1634	pr_info("Written %2.1f seconds of trace to %s.\n",
1635		(tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1636out_delete:
1637	perf_session__delete(session);
1638	return ret;
1639}
1640
1641static int timechart__io_record(int argc, const char **argv)
1642{
1643	unsigned int rec_argc, i;
1644	const char **rec_argv;
1645	const char **p;
1646	char *filter = NULL;
1647
1648	const char * const common_args[] = {
1649		"record", "-a", "-R", "-c", "1",
1650	};
1651	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1652
1653	const char * const disk_events[] = {
1654		"syscalls:sys_enter_read",
1655		"syscalls:sys_enter_pread64",
1656		"syscalls:sys_enter_readv",
1657		"syscalls:sys_enter_preadv",
1658		"syscalls:sys_enter_write",
1659		"syscalls:sys_enter_pwrite64",
1660		"syscalls:sys_enter_writev",
1661		"syscalls:sys_enter_pwritev",
1662		"syscalls:sys_enter_sync",
1663		"syscalls:sys_enter_sync_file_range",
1664		"syscalls:sys_enter_fsync",
1665		"syscalls:sys_enter_msync",
1666
1667		"syscalls:sys_exit_read",
1668		"syscalls:sys_exit_pread64",
1669		"syscalls:sys_exit_readv",
1670		"syscalls:sys_exit_preadv",
1671		"syscalls:sys_exit_write",
1672		"syscalls:sys_exit_pwrite64",
1673		"syscalls:sys_exit_writev",
1674		"syscalls:sys_exit_pwritev",
1675		"syscalls:sys_exit_sync",
1676		"syscalls:sys_exit_sync_file_range",
1677		"syscalls:sys_exit_fsync",
1678		"syscalls:sys_exit_msync",
1679	};
1680	unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1681
1682	const char * const net_events[] = {
1683		"syscalls:sys_enter_recvfrom",
1684		"syscalls:sys_enter_recvmmsg",
1685		"syscalls:sys_enter_recvmsg",
1686		"syscalls:sys_enter_sendto",
1687		"syscalls:sys_enter_sendmsg",
1688		"syscalls:sys_enter_sendmmsg",
1689
1690		"syscalls:sys_exit_recvfrom",
1691		"syscalls:sys_exit_recvmmsg",
1692		"syscalls:sys_exit_recvmsg",
1693		"syscalls:sys_exit_sendto",
1694		"syscalls:sys_exit_sendmsg",
1695		"syscalls:sys_exit_sendmmsg",
1696	};
1697	unsigned int net_events_nr = ARRAY_SIZE(net_events);
1698
1699	const char * const poll_events[] = {
1700		"syscalls:sys_enter_epoll_pwait",
1701		"syscalls:sys_enter_epoll_wait",
1702		"syscalls:sys_enter_poll",
1703		"syscalls:sys_enter_ppoll",
1704		"syscalls:sys_enter_pselect6",
1705		"syscalls:sys_enter_select",
1706
1707		"syscalls:sys_exit_epoll_pwait",
1708		"syscalls:sys_exit_epoll_wait",
1709		"syscalls:sys_exit_poll",
1710		"syscalls:sys_exit_ppoll",
1711		"syscalls:sys_exit_pselect6",
1712		"syscalls:sys_exit_select",
1713	};
1714	unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1715
1716	rec_argc = common_args_nr +
1717		disk_events_nr * 4 +
1718		net_events_nr * 4 +
1719		poll_events_nr * 4 +
1720		argc;
1721	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1722
1723	if (rec_argv == NULL)
1724		return -ENOMEM;
1725
1726	if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1727		free(rec_argv);
1728		return -ENOMEM;
1729	}
1730
1731	p = rec_argv;
1732	for (i = 0; i < common_args_nr; i++)
1733		*p++ = strdup(common_args[i]);
1734
1735	for (i = 0; i < disk_events_nr; i++) {
1736		if (!is_valid_tracepoint(disk_events[i])) {
1737			rec_argc -= 4;
1738			continue;
1739		}
1740
1741		*p++ = "-e";
1742		*p++ = strdup(disk_events[i]);
1743		*p++ = "--filter";
1744		*p++ = filter;
1745	}
1746	for (i = 0; i < net_events_nr; i++) {
1747		if (!is_valid_tracepoint(net_events[i])) {
1748			rec_argc -= 4;
1749			continue;
1750		}
1751
1752		*p++ = "-e";
1753		*p++ = strdup(net_events[i]);
1754		*p++ = "--filter";
1755		*p++ = filter;
1756	}
1757	for (i = 0; i < poll_events_nr; i++) {
1758		if (!is_valid_tracepoint(poll_events[i])) {
1759			rec_argc -= 4;
1760			continue;
1761		}
1762
1763		*p++ = "-e";
1764		*p++ = strdup(poll_events[i]);
1765		*p++ = "--filter";
1766		*p++ = filter;
1767	}
1768
1769	for (i = 0; i < (unsigned int)argc; i++)
1770		*p++ = argv[i];
1771
1772	return cmd_record(rec_argc, rec_argv);
1773}
1774
1775
1776static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1777{
1778	unsigned int rec_argc, i, j;
1779	const char **rec_argv;
1780	const char **p;
1781	unsigned int record_elems;
1782
1783	const char * const common_args[] = {
1784		"record", "-a", "-R", "-c", "1",
1785	};
1786	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1787
1788	const char * const backtrace_args[] = {
1789		"-g",
1790	};
1791	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1792
1793	const char * const power_args[] = {
1794		"-e", "power:cpu_frequency",
1795		"-e", "power:cpu_idle",
1796	};
1797	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1798
1799	const char * const old_power_args[] = {
1800#ifdef SUPPORT_OLD_POWER_EVENTS
1801		"-e", "power:power_start",
1802		"-e", "power:power_end",
1803		"-e", "power:power_frequency",
1804#endif
1805	};
1806	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1807
1808	const char * const tasks_args[] = {
1809		"-e", "sched:sched_wakeup",
1810		"-e", "sched:sched_switch",
1811	};
1812	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1813
1814#ifdef SUPPORT_OLD_POWER_EVENTS
1815	if (!is_valid_tracepoint("power:cpu_idle") &&
1816	    is_valid_tracepoint("power:power_start")) {
1817		use_old_power_events = 1;
1818		power_args_nr = 0;
1819	} else {
1820		old_power_args_nr = 0;
1821	}
1822#endif
1823
1824	if (tchart->power_only)
1825		tasks_args_nr = 0;
1826
1827	if (tchart->tasks_only) {
1828		power_args_nr = 0;
1829		old_power_args_nr = 0;
1830	}
1831
1832	if (!tchart->with_backtrace)
1833		backtrace_args_no = 0;
1834
1835	record_elems = common_args_nr + tasks_args_nr +
1836		power_args_nr + old_power_args_nr + backtrace_args_no;
1837
1838	rec_argc = record_elems + argc;
1839	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1840
1841	if (rec_argv == NULL)
1842		return -ENOMEM;
1843
1844	p = rec_argv;
1845	for (i = 0; i < common_args_nr; i++)
1846		*p++ = strdup(common_args[i]);
1847
1848	for (i = 0; i < backtrace_args_no; i++)
1849		*p++ = strdup(backtrace_args[i]);
1850
1851	for (i = 0; i < tasks_args_nr; i++)
1852		*p++ = strdup(tasks_args[i]);
1853
1854	for (i = 0; i < power_args_nr; i++)
1855		*p++ = strdup(power_args[i]);
1856
1857	for (i = 0; i < old_power_args_nr; i++)
1858		*p++ = strdup(old_power_args[i]);
1859
1860	for (j = 0; j < (unsigned int)argc; j++)
1861		*p++ = argv[j];
1862
1863	return cmd_record(rec_argc, rec_argv);
1864}
1865
1866static int
1867parse_process(const struct option *opt __maybe_unused, const char *arg,
1868	      int __maybe_unused unset)
1869{
1870	if (arg)
1871		add_process_filter(arg);
1872	return 0;
1873}
1874
1875static int
1876parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1877		int __maybe_unused unset)
1878{
1879	unsigned long duration = strtoul(arg, NULL, 0);
1880
1881	if (svg_highlight || svg_highlight_name)
1882		return -1;
1883
1884	if (duration)
1885		svg_highlight = duration;
1886	else
1887		svg_highlight_name = strdup(arg);
1888
1889	return 0;
1890}
1891
1892static int
1893parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1894{
1895	char unit = 'n';
1896	u64 *value = opt->value;
1897
1898	if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1899		switch (unit) {
1900		case 'm':
1901			*value *= NSEC_PER_MSEC;
1902			break;
1903		case 'u':
1904			*value *= NSEC_PER_USEC;
1905			break;
1906		case 'n':
1907			break;
1908		default:
1909			return -1;
1910		}
1911	}
1912
1913	return 0;
1914}
1915
1916int cmd_timechart(int argc, const char **argv)
1917{
1918	struct timechart tchart = {
1919		.tool = {
1920			.comm		 = process_comm_event,
1921			.fork		 = process_fork_event,
1922			.exit		 = process_exit_event,
1923			.sample		 = process_sample_event,
1924			.ordered_events	 = true,
1925		},
1926		.proc_num = 15,
1927		.min_time = NSEC_PER_MSEC,
1928		.merge_dist = 1000,
1929	};
1930	const char *output_name = "output.svg";
1931	const struct option timechart_common_options[] = {
1932	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1933	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1934	OPT_END()
1935	};
1936	const struct option timechart_options[] = {
1937	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1938	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1939	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1940	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1941		      "highlight tasks. Pass duration in ns or process name.",
1942		       parse_highlight),
1943	OPT_CALLBACK('p', "process", NULL, "process",
1944		      "process selector. Pass a pid or process name.",
1945		       parse_process),
1946	OPT_CALLBACK(0, "symfs", NULL, "directory",
1947		     "Look for files with symbols relative to this directory",
1948		     symbol__config_symfs),
1949	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1950		    "min. number of tasks to print"),
1951	OPT_BOOLEAN('t', "topology", &tchart.topology,
1952		    "sort CPUs according to topology"),
1953	OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1954		    "skip EAGAIN errors"),
1955	OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1956		     "all IO faster than min-time will visually appear longer",
1957		     parse_time),
1958	OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1959		     "merge events that are merge-dist us apart",
1960		     parse_time),
1961	OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1962	OPT_PARENT(timechart_common_options),
1963	};
1964	const char * const timechart_subcommands[] = { "record", NULL };
1965	const char *timechart_usage[] = {
1966		"perf timechart [<options>] {record}",
1967		NULL
1968	};
1969	const struct option timechart_record_options[] = {
1970	OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1971		    "record only IO data"),
1972	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1973	OPT_PARENT(timechart_common_options),
1974	};
1975	const char * const timechart_record_usage[] = {
1976		"perf timechart record [<options>]",
1977		NULL
1978	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1979	argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1980			timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1981
1982	if (tchart.power_only && tchart.tasks_only) {
1983		pr_err("-P and -T options cannot be used at the same time.\n");
1984		return -1;
 
1985	}
1986
1987	if (argc && !strncmp(argv[0], "rec", 3)) {
1988		argc = parse_options(argc, argv, timechart_record_options,
1989				     timechart_record_usage,
1990				     PARSE_OPT_STOP_AT_NON_OPTION);
1991
1992		if (tchart.power_only && tchart.tasks_only) {
1993			pr_err("-P and -T options cannot be used at the same time.\n");
1994			return -1;
 
1995		}
1996
1997		if (tchart.io_only)
1998			return timechart__io_record(argc, argv);
1999		else
2000			return timechart__record(&tchart, argc, argv);
 
2001	} else if (argc)
2002		usage_with_options(timechart_usage, timechart_options);
2003
2004	setup_pager();
2005
2006	return __cmd_timechart(&tchart, output_name);
 
 
 
 
 
 
2007}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * builtin-timechart.c - make an svg timechart of system activity
   4 *
   5 * (C) Copyright 2009 Intel Corporation
   6 *
   7 * Authors:
   8 *     Arjan van de Ven <arjan@linux.intel.com>
   9 */
  10
  11#include <errno.h>
  12#include <inttypes.h>
  13
  14#include "builtin.h"
  15#include "util/color.h"
  16#include <linux/list.h>
  17#include "util/evlist.h" // for struct evsel_str_handler
  18#include "util/evsel.h"
  19#include <linux/kernel.h>
  20#include <linux/rbtree.h>
  21#include <linux/time64.h>
  22#include <linux/zalloc.h>
  23#include "util/symbol.h"
  24#include "util/thread.h"
  25#include "util/callchain.h"
  26
 
  27#include "util/header.h"
  28#include <subcmd/pager.h>
  29#include <subcmd/parse-options.h>
  30#include "util/parse-events.h"
  31#include "util/event.h"
  32#include "util/session.h"
  33#include "util/svghelper.h"
  34#include "util/tool.h"
  35#include "util/data.h"
  36#include "util/debug.h"
  37#include "util/string2.h"
  38#include "util/tracepoint.h"
  39#include "util/util.h"
  40#include <linux/err.h>
  41#include <traceevent/event-parse.h>
  42
  43#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
  44FILE *open_memstream(char **ptr, size_t *sizeloc);
  45#endif
  46
  47#define SUPPORT_OLD_POWER_EVENTS 1
  48#define PWR_EVENT_EXIT -1
  49
  50struct per_pid;
  51struct power_event;
  52struct wake_event;
  53
  54struct timechart {
  55	struct perf_tool	tool;
  56	struct per_pid		*all_data;
  57	struct power_event	*power_events;
  58	struct wake_event	*wake_events;
  59	int			proc_num;
  60	unsigned int		numcpus;
  61	u64			min_freq,	/* Lowest CPU frequency seen */
  62				max_freq,	/* Highest CPU frequency seen */
  63				turbo_frequency,
  64				first_time, last_time;
  65	bool			power_only,
  66				tasks_only,
  67				with_backtrace,
  68				topology;
  69	bool			force;
  70	/* IO related settings */
  71	bool			io_only,
  72				skip_eagain;
  73	u64			io_events;
  74	u64			min_time,
  75				merge_dist;
  76};
  77
  78struct per_pidcomm;
  79struct cpu_sample;
  80struct io_sample;
  81
  82/*
  83 * Datastructure layout:
  84 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  85 * Each "pid" entry, has a list of "comm"s.
  86 *	this is because we want to track different programs different, while
  87 *	exec will reuse the original pid (by design).
  88 * Each comm has a list of samples that will be used to draw
  89 * final graph.
  90 */
  91
  92struct per_pid {
  93	struct per_pid *next;
  94
  95	int		pid;
  96	int		ppid;
  97
  98	u64		start_time;
  99	u64		end_time;
 100	u64		total_time;
 101	u64		total_bytes;
 102	int		display;
 103
 104	struct per_pidcomm *all;
 105	struct per_pidcomm *current;
 106};
 107
 108
 109struct per_pidcomm {
 110	struct per_pidcomm *next;
 111
 112	u64		start_time;
 113	u64		end_time;
 114	u64		total_time;
 115	u64		max_bytes;
 116	u64		total_bytes;
 117
 118	int		Y;
 119	int		display;
 120
 121	long		state;
 122	u64		state_since;
 123
 124	char		*comm;
 125
 126	struct cpu_sample *samples;
 127	struct io_sample  *io_samples;
 128};
 129
 130struct sample_wrapper {
 131	struct sample_wrapper *next;
 132
 133	u64		timestamp;
 134	unsigned char	data[];
 135};
 136
 137#define TYPE_NONE	0
 138#define TYPE_RUNNING	1
 139#define TYPE_WAITING	2
 140#define TYPE_BLOCKED	3
 141
 142struct cpu_sample {
 143	struct cpu_sample *next;
 144
 145	u64 start_time;
 146	u64 end_time;
 147	int type;
 148	int cpu;
 149	const char *backtrace;
 150};
 151
 152enum {
 153	IOTYPE_READ,
 154	IOTYPE_WRITE,
 155	IOTYPE_SYNC,
 156	IOTYPE_TX,
 157	IOTYPE_RX,
 158	IOTYPE_POLL,
 159};
 160
 161struct io_sample {
 162	struct io_sample *next;
 163
 164	u64 start_time;
 165	u64 end_time;
 166	u64 bytes;
 167	int type;
 168	int fd;
 169	int err;
 170	int merges;
 171};
 172
 173#define CSTATE 1
 174#define PSTATE 2
 175
 176struct power_event {
 177	struct power_event *next;
 178	int type;
 179	int state;
 180	u64 start_time;
 181	u64 end_time;
 182	int cpu;
 183};
 184
 185struct wake_event {
 186	struct wake_event *next;
 187	int waker;
 188	int wakee;
 189	u64 time;
 190	const char *backtrace;
 191};
 192
 193struct process_filter {
 194	char			*name;
 195	int			pid;
 196	struct process_filter	*next;
 197};
 198
 199static struct process_filter *process_filter;
 200
 201
 202static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
 203{
 204	struct per_pid *cursor = tchart->all_data;
 205
 206	while (cursor) {
 207		if (cursor->pid == pid)
 208			return cursor;
 209		cursor = cursor->next;
 210	}
 211	cursor = zalloc(sizeof(*cursor));
 212	assert(cursor != NULL);
 213	cursor->pid = pid;
 214	cursor->next = tchart->all_data;
 215	tchart->all_data = cursor;
 216	return cursor;
 217}
 218
 219static struct per_pidcomm *create_pidcomm(struct per_pid *p)
 220{
 221	struct per_pidcomm *c;
 222
 223	c = zalloc(sizeof(*c));
 224	if (!c)
 225		return NULL;
 226	p->current = c;
 227	c->next = p->all;
 228	p->all = c;
 229	return c;
 230}
 231
 232static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
 233{
 234	struct per_pid *p;
 235	struct per_pidcomm *c;
 236	p = find_create_pid(tchart, pid);
 237	c = p->all;
 238	while (c) {
 239		if (c->comm && strcmp(c->comm, comm) == 0) {
 240			p->current = c;
 241			return;
 242		}
 243		if (!c->comm) {
 244			c->comm = strdup(comm);
 245			p->current = c;
 246			return;
 247		}
 248		c = c->next;
 249	}
 250	c = create_pidcomm(p);
 251	assert(c != NULL);
 252	c->comm = strdup(comm);
 
 
 
 253}
 254
 255static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
 256{
 257	struct per_pid *p, *pp;
 258	p = find_create_pid(tchart, pid);
 259	pp = find_create_pid(tchart, ppid);
 260	p->ppid = ppid;
 261	if (pp->current && pp->current->comm && !p->current)
 262		pid_set_comm(tchart, pid, pp->current->comm);
 263
 264	p->start_time = timestamp;
 265	if (p->current && !p->current->start_time) {
 266		p->current->start_time = timestamp;
 267		p->current->state_since = timestamp;
 268	}
 269}
 270
 271static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
 272{
 273	struct per_pid *p;
 274	p = find_create_pid(tchart, pid);
 275	p->end_time = timestamp;
 276	if (p->current)
 277		p->current->end_time = timestamp;
 278}
 279
 280static void pid_put_sample(struct timechart *tchart, int pid, int type,
 281			   unsigned int cpu, u64 start, u64 end,
 282			   const char *backtrace)
 283{
 284	struct per_pid *p;
 285	struct per_pidcomm *c;
 286	struct cpu_sample *sample;
 287
 288	p = find_create_pid(tchart, pid);
 289	c = p->current;
 290	if (!c) {
 291		c = create_pidcomm(p);
 292		assert(c != NULL);
 
 
 
 293	}
 294
 295	sample = zalloc(sizeof(*sample));
 296	assert(sample != NULL);
 297	sample->start_time = start;
 298	sample->end_time = end;
 299	sample->type = type;
 300	sample->next = c->samples;
 301	sample->cpu = cpu;
 302	sample->backtrace = backtrace;
 303	c->samples = sample;
 304
 305	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 306		c->total_time += (end-start);
 307		p->total_time += (end-start);
 308	}
 309
 310	if (c->start_time == 0 || c->start_time > start)
 311		c->start_time = start;
 312	if (p->start_time == 0 || p->start_time > start)
 313		p->start_time = start;
 314}
 315
 316#define MAX_CPUS 4096
 317
 318static u64 *cpus_cstate_start_times;
 319static int *cpus_cstate_state;
 320static u64 *cpus_pstate_start_times;
 321static u64 *cpus_pstate_state;
 322
 323static int process_comm_event(struct perf_tool *tool,
 324			      union perf_event *event,
 325			      struct perf_sample *sample __maybe_unused,
 326			      struct machine *machine __maybe_unused)
 327{
 328	struct timechart *tchart = container_of(tool, struct timechart, tool);
 329	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
 330	return 0;
 331}
 332
 333static int process_fork_event(struct perf_tool *tool,
 334			      union perf_event *event,
 335			      struct perf_sample *sample __maybe_unused,
 336			      struct machine *machine __maybe_unused)
 337{
 338	struct timechart *tchart = container_of(tool, struct timechart, tool);
 339	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
 340	return 0;
 341}
 342
 343static int process_exit_event(struct perf_tool *tool,
 344			      union perf_event *event,
 345			      struct perf_sample *sample __maybe_unused,
 346			      struct machine *machine __maybe_unused)
 347{
 348	struct timechart *tchart = container_of(tool, struct timechart, tool);
 349	pid_exit(tchart, event->fork.pid, event->fork.time);
 350	return 0;
 351}
 352
 353#ifdef SUPPORT_OLD_POWER_EVENTS
 354static int use_old_power_events;
 355#endif
 356
 357static void c_state_start(int cpu, u64 timestamp, int state)
 358{
 359	cpus_cstate_start_times[cpu] = timestamp;
 360	cpus_cstate_state[cpu] = state;
 361}
 362
 363static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
 364{
 365	struct power_event *pwr = zalloc(sizeof(*pwr));
 366
 367	if (!pwr)
 368		return;
 369
 370	pwr->state = cpus_cstate_state[cpu];
 371	pwr->start_time = cpus_cstate_start_times[cpu];
 372	pwr->end_time = timestamp;
 373	pwr->cpu = cpu;
 374	pwr->type = CSTATE;
 375	pwr->next = tchart->power_events;
 376
 377	tchart->power_events = pwr;
 378}
 379
 380static struct power_event *p_state_end(struct timechart *tchart, int cpu,
 381					u64 timestamp)
 382{
 383	struct power_event *pwr = zalloc(sizeof(*pwr));
 
 
 
 384
 
 385	if (!pwr)
 386		return NULL;
 387
 388	pwr->state = cpus_pstate_state[cpu];
 389	pwr->start_time = cpus_pstate_start_times[cpu];
 390	pwr->end_time = timestamp;
 391	pwr->cpu = cpu;
 392	pwr->type = PSTATE;
 393	pwr->next = tchart->power_events;
 
 394	if (!pwr->start_time)
 395		pwr->start_time = tchart->first_time;
 396
 397	tchart->power_events = pwr;
 398	return pwr;
 399}
 400
 401static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
 402{
 403	struct power_event *pwr;
 404
 405	if (new_freq > 8000000) /* detect invalid data */
 406		return;
 407
 408	pwr = p_state_end(tchart, cpu, timestamp);
 409	if (!pwr)
 410		return;
 411
 412	cpus_pstate_state[cpu] = new_freq;
 413	cpus_pstate_start_times[cpu] = timestamp;
 414
 415	if ((u64)new_freq > tchart->max_freq)
 416		tchart->max_freq = new_freq;
 417
 418	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
 419		tchart->min_freq = new_freq;
 420
 421	if (new_freq == tchart->max_freq - 1000)
 422		tchart->turbo_frequency = tchart->max_freq;
 423}
 424
 425static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
 426			 int waker, int wakee, u8 flags, const char *backtrace)
 427{
 428	struct per_pid *p;
 429	struct wake_event *we = zalloc(sizeof(*we));
 430
 431	if (!we)
 432		return;
 433
 434	we->time = timestamp;
 435	we->waker = waker;
 436	we->backtrace = backtrace;
 437
 438	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
 439		we->waker = -1;
 440
 441	we->wakee = wakee;
 442	we->next = tchart->wake_events;
 443	tchart->wake_events = we;
 444	p = find_create_pid(tchart, we->wakee);
 445
 446	if (p && p->current && p->current->state == TYPE_NONE) {
 447		p->current->state_since = timestamp;
 448		p->current->state = TYPE_WAITING;
 449	}
 450	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 451		pid_put_sample(tchart, p->pid, p->current->state, cpu,
 452			       p->current->state_since, timestamp, NULL);
 453		p->current->state_since = timestamp;
 454		p->current->state = TYPE_WAITING;
 455	}
 456}
 457
 458static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
 459			 int prev_pid, int next_pid, u64 prev_state,
 460			 const char *backtrace)
 461{
 462	struct per_pid *p = NULL, *prev_p;
 463
 464	prev_p = find_create_pid(tchart, prev_pid);
 465
 466	p = find_create_pid(tchart, next_pid);
 467
 468	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 469		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
 470			       prev_p->current->state_since, timestamp,
 471			       backtrace);
 472	if (p && p->current) {
 473		if (p->current->state != TYPE_NONE)
 474			pid_put_sample(tchart, next_pid, p->current->state, cpu,
 475				       p->current->state_since, timestamp,
 476				       backtrace);
 477
 478		p->current->state_since = timestamp;
 479		p->current->state = TYPE_RUNNING;
 480	}
 481
 482	if (prev_p->current) {
 483		prev_p->current->state = TYPE_NONE;
 484		prev_p->current->state_since = timestamp;
 485		if (prev_state & 2)
 486			prev_p->current->state = TYPE_BLOCKED;
 487		if (prev_state == 0)
 488			prev_p->current->state = TYPE_WAITING;
 489	}
 490}
 491
 492static const char *cat_backtrace(union perf_event *event,
 493				 struct perf_sample *sample,
 494				 struct machine *machine)
 495{
 496	struct addr_location al;
 497	unsigned int i;
 498	char *p = NULL;
 499	size_t p_len;
 500	u8 cpumode = PERF_RECORD_MISC_USER;
 
 501	struct ip_callchain *chain = sample->callchain;
 502	FILE *f = open_memstream(&p, &p_len);
 503
 504	if (!f) {
 505		perror("open_memstream error");
 506		return NULL;
 507	}
 508
 509	addr_location__init(&al);
 510	if (!chain)
 511		goto exit;
 512
 513	if (machine__resolve(machine, &al, sample) < 0) {
 514		fprintf(stderr, "problem processing %d event, skipping it.\n",
 515			event->header.type);
 516		goto exit;
 517	}
 518
 519	for (i = 0; i < chain->nr; i++) {
 520		u64 ip;
 521		struct addr_location tal;
 522
 523		if (callchain_param.order == ORDER_CALLEE)
 524			ip = chain->ips[i];
 525		else
 526			ip = chain->ips[chain->nr - i - 1];
 527
 528		if (ip >= PERF_CONTEXT_MAX) {
 529			switch (ip) {
 530			case PERF_CONTEXT_HV:
 531				cpumode = PERF_RECORD_MISC_HYPERVISOR;
 532				break;
 533			case PERF_CONTEXT_KERNEL:
 534				cpumode = PERF_RECORD_MISC_KERNEL;
 535				break;
 536			case PERF_CONTEXT_USER:
 537				cpumode = PERF_RECORD_MISC_USER;
 538				break;
 539			default:
 540				pr_debug("invalid callchain context: "
 541					 "%"PRId64"\n", (s64) ip);
 542
 543				/*
 544				 * It seems the callchain is corrupted.
 545				 * Discard all.
 546				 */
 547				zfree(&p);
 548				goto exit;
 549			}
 550			continue;
 551		}
 552
 553		addr_location__init(&tal);
 554		tal.filtered = 0;
 555		if (thread__find_symbol(al.thread, cpumode, ip, &tal))
 556			fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
 557		else
 558			fprintf(f, "..... %016" PRIx64 "\n", ip);
 559
 560		addr_location__exit(&tal);
 561	}
 
 
 562exit:
 563	addr_location__exit(&al);
 564	fclose(f);
 565
 566	return p;
 567}
 568
 569typedef int (*tracepoint_handler)(struct timechart *tchart,
 570				  struct evsel *evsel,
 571				  struct perf_sample *sample,
 572				  const char *backtrace);
 573
 574static int process_sample_event(struct perf_tool *tool,
 575				union perf_event *event,
 576				struct perf_sample *sample,
 577				struct evsel *evsel,
 578				struct machine *machine)
 579{
 580	struct timechart *tchart = container_of(tool, struct timechart, tool);
 581
 582	if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
 583		if (!tchart->first_time || tchart->first_time > sample->time)
 584			tchart->first_time = sample->time;
 585		if (tchart->last_time < sample->time)
 586			tchart->last_time = sample->time;
 587	}
 588
 589	if (evsel->handler != NULL) {
 590		tracepoint_handler f = evsel->handler;
 591		return f(tchart, evsel, sample,
 592			 cat_backtrace(event, sample, machine));
 593	}
 594
 595	return 0;
 596}
 597
 598static int
 599process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
 600			struct evsel *evsel,
 601			struct perf_sample *sample,
 602			const char *backtrace __maybe_unused)
 603{
 604	u32 state  = evsel__intval(evsel, sample, "state");
 605	u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 606
 607	if (state == (u32)PWR_EVENT_EXIT)
 608		c_state_end(tchart, cpu_id, sample->time);
 609	else
 610		c_state_start(cpu_id, sample->time, state);
 611	return 0;
 612}
 613
 614static int
 615process_sample_cpu_frequency(struct timechart *tchart,
 616			     struct evsel *evsel,
 617			     struct perf_sample *sample,
 618			     const char *backtrace __maybe_unused)
 619{
 620	u32 state  = evsel__intval(evsel, sample, "state");
 621	u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 622
 623	p_state_change(tchart, cpu_id, sample->time, state);
 624	return 0;
 625}
 626
 627static int
 628process_sample_sched_wakeup(struct timechart *tchart,
 629			    struct evsel *evsel,
 630			    struct perf_sample *sample,
 631			    const char *backtrace)
 632{
 633	u8 flags  = evsel__intval(evsel, sample, "common_flags");
 634	int waker = evsel__intval(evsel, sample, "common_pid");
 635	int wakee = evsel__intval(evsel, sample, "pid");
 636
 637	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
 638	return 0;
 639}
 640
 641static int
 642process_sample_sched_switch(struct timechart *tchart,
 643			    struct evsel *evsel,
 644			    struct perf_sample *sample,
 645			    const char *backtrace)
 646{
 647	int prev_pid   = evsel__intval(evsel, sample, "prev_pid");
 648	int next_pid   = evsel__intval(evsel, sample, "next_pid");
 649	u64 prev_state = evsel__intval(evsel, sample, "prev_state");
 650
 651	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
 652		     prev_state, backtrace);
 653	return 0;
 654}
 655
 656#ifdef SUPPORT_OLD_POWER_EVENTS
 657static int
 658process_sample_power_start(struct timechart *tchart __maybe_unused,
 659			   struct evsel *evsel,
 660			   struct perf_sample *sample,
 661			   const char *backtrace __maybe_unused)
 662{
 663	u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 664	u64 value  = evsel__intval(evsel, sample, "value");
 665
 666	c_state_start(cpu_id, sample->time, value);
 667	return 0;
 668}
 669
 670static int
 671process_sample_power_end(struct timechart *tchart,
 672			 struct evsel *evsel __maybe_unused,
 673			 struct perf_sample *sample,
 674			 const char *backtrace __maybe_unused)
 675{
 676	c_state_end(tchart, sample->cpu, sample->time);
 677	return 0;
 678}
 679
 680static int
 681process_sample_power_frequency(struct timechart *tchart,
 682			       struct evsel *evsel,
 683			       struct perf_sample *sample,
 684			       const char *backtrace __maybe_unused)
 685{
 686	u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 687	u64 value  = evsel__intval(evsel, sample, "value");
 688
 689	p_state_change(tchart, cpu_id, sample->time, value);
 690	return 0;
 691}
 692#endif /* SUPPORT_OLD_POWER_EVENTS */
 693
 694/*
 695 * After the last sample we need to wrap up the current C/P state
 696 * and close out each CPU for these.
 697 */
 698static void end_sample_processing(struct timechart *tchart)
 699{
 700	u64 cpu;
 701	struct power_event *pwr;
 702
 703	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
 704		/* C state */
 705#if 0
 706		pwr = zalloc(sizeof(*pwr));
 707		if (!pwr)
 708			return;
 709
 710		pwr->state = cpus_cstate_state[cpu];
 711		pwr->start_time = cpus_cstate_start_times[cpu];
 712		pwr->end_time = tchart->last_time;
 713		pwr->cpu = cpu;
 714		pwr->type = CSTATE;
 715		pwr->next = tchart->power_events;
 716
 717		tchart->power_events = pwr;
 718#endif
 719		/* P state */
 720
 721		pwr = p_state_end(tchart, cpu, tchart->last_time);
 722		if (!pwr)
 723			return;
 724
 
 
 
 
 
 
 
 
 
 725		if (!pwr->state)
 726			pwr->state = tchart->min_freq;
 
 727	}
 728}
 729
 730static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
 731			       u64 start, int fd)
 732{
 733	struct per_pid *p = find_create_pid(tchart, pid);
 734	struct per_pidcomm *c = p->current;
 735	struct io_sample *sample;
 736	struct io_sample *prev;
 737
 738	if (!c) {
 739		c = create_pidcomm(p);
 740		if (!c)
 741			return -ENOMEM;
 
 
 
 742	}
 743
 744	prev = c->io_samples;
 745
 746	if (prev && prev->start_time && !prev->end_time) {
 747		pr_warning("Skip invalid start event: "
 748			   "previous event already started!\n");
 749
 750		/* remove previous event that has been started,
 751		 * we are not sure we will ever get an end for it */
 752		c->io_samples = prev->next;
 753		free(prev);
 754		return 0;
 755	}
 756
 757	sample = zalloc(sizeof(*sample));
 758	if (!sample)
 759		return -ENOMEM;
 760	sample->start_time = start;
 761	sample->type = type;
 762	sample->fd = fd;
 763	sample->next = c->io_samples;
 764	c->io_samples = sample;
 765
 766	if (c->start_time == 0 || c->start_time > start)
 767		c->start_time = start;
 768
 769	return 0;
 770}
 771
 772static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
 773			     u64 end, long ret)
 774{
 775	struct per_pid *p = find_create_pid(tchart, pid);
 776	struct per_pidcomm *c = p->current;
 777	struct io_sample *sample, *prev;
 778
 779	if (!c) {
 780		pr_warning("Invalid pidcomm!\n");
 781		return -1;
 782	}
 783
 784	sample = c->io_samples;
 785
 786	if (!sample) /* skip partially captured events */
 787		return 0;
 788
 789	if (sample->end_time) {
 790		pr_warning("Skip invalid end event: "
 791			   "previous event already ended!\n");
 792		return 0;
 793	}
 794
 795	if (sample->type != type) {
 796		pr_warning("Skip invalid end event: invalid event type!\n");
 797		return 0;
 798	}
 799
 800	sample->end_time = end;
 801	prev = sample->next;
 802
 803	/* we want to be able to see small and fast transfers, so make them
 804	 * at least min_time long, but don't overlap them */
 805	if (sample->end_time - sample->start_time < tchart->min_time)
 806		sample->end_time = sample->start_time + tchart->min_time;
 807	if (prev && sample->start_time < prev->end_time) {
 808		if (prev->err) /* try to make errors more visible */
 809			sample->start_time = prev->end_time;
 810		else
 811			prev->end_time = sample->start_time;
 812	}
 813
 814	if (ret < 0) {
 815		sample->err = ret;
 816	} else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
 817		   type == IOTYPE_TX || type == IOTYPE_RX) {
 818
 819		if ((u64)ret > c->max_bytes)
 820			c->max_bytes = ret;
 821
 822		c->total_bytes += ret;
 823		p->total_bytes += ret;
 824		sample->bytes = ret;
 825	}
 826
 827	/* merge two requests to make svg smaller and render-friendly */
 828	if (prev &&
 829	    prev->type == sample->type &&
 830	    prev->err == sample->err &&
 831	    prev->fd == sample->fd &&
 832	    prev->end_time + tchart->merge_dist >= sample->start_time) {
 833
 834		sample->bytes += prev->bytes;
 835		sample->merges += prev->merges + 1;
 836
 837		sample->start_time = prev->start_time;
 838		sample->next = prev->next;
 839		free(prev);
 840
 841		if (!sample->err && sample->bytes > c->max_bytes)
 842			c->max_bytes = sample->bytes;
 843	}
 844
 845	tchart->io_events++;
 846
 847	return 0;
 848}
 849
 850static int
 851process_enter_read(struct timechart *tchart,
 852		   struct evsel *evsel,
 853		   struct perf_sample *sample)
 854{
 855	long fd = evsel__intval(evsel, sample, "fd");
 856	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
 857				   sample->time, fd);
 858}
 859
 860static int
 861process_exit_read(struct timechart *tchart,
 862		  struct evsel *evsel,
 863		  struct perf_sample *sample)
 864{
 865	long ret = evsel__intval(evsel, sample, "ret");
 866	return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
 867				 sample->time, ret);
 868}
 869
 870static int
 871process_enter_write(struct timechart *tchart,
 872		    struct evsel *evsel,
 873		    struct perf_sample *sample)
 874{
 875	long fd = evsel__intval(evsel, sample, "fd");
 876	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 877				   sample->time, fd);
 878}
 879
 880static int
 881process_exit_write(struct timechart *tchart,
 882		   struct evsel *evsel,
 883		   struct perf_sample *sample)
 884{
 885	long ret = evsel__intval(evsel, sample, "ret");
 886	return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 887				 sample->time, ret);
 888}
 889
 890static int
 891process_enter_sync(struct timechart *tchart,
 892		   struct evsel *evsel,
 893		   struct perf_sample *sample)
 894{
 895	long fd = evsel__intval(evsel, sample, "fd");
 896	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 897				   sample->time, fd);
 898}
 899
 900static int
 901process_exit_sync(struct timechart *tchart,
 902		  struct evsel *evsel,
 903		  struct perf_sample *sample)
 904{
 905	long ret = evsel__intval(evsel, sample, "ret");
 906	return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 907				 sample->time, ret);
 908}
 909
 910static int
 911process_enter_tx(struct timechart *tchart,
 912		 struct evsel *evsel,
 913		 struct perf_sample *sample)
 914{
 915	long fd = evsel__intval(evsel, sample, "fd");
 916	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
 917				   sample->time, fd);
 918}
 919
 920static int
 921process_exit_tx(struct timechart *tchart,
 922		struct evsel *evsel,
 923		struct perf_sample *sample)
 924{
 925	long ret = evsel__intval(evsel, sample, "ret");
 926	return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
 927				 sample->time, ret);
 928}
 929
 930static int
 931process_enter_rx(struct timechart *tchart,
 932		 struct evsel *evsel,
 933		 struct perf_sample *sample)
 934{
 935	long fd = evsel__intval(evsel, sample, "fd");
 936	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
 937				   sample->time, fd);
 938}
 939
 940static int
 941process_exit_rx(struct timechart *tchart,
 942		struct evsel *evsel,
 943		struct perf_sample *sample)
 944{
 945	long ret = evsel__intval(evsel, sample, "ret");
 946	return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
 947				 sample->time, ret);
 948}
 949
 950static int
 951process_enter_poll(struct timechart *tchart,
 952		   struct evsel *evsel,
 953		   struct perf_sample *sample)
 954{
 955	long fd = evsel__intval(evsel, sample, "fd");
 956	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
 957				   sample->time, fd);
 958}
 959
 960static int
 961process_exit_poll(struct timechart *tchart,
 962		  struct evsel *evsel,
 963		  struct perf_sample *sample)
 964{
 965	long ret = evsel__intval(evsel, sample, "ret");
 966	return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
 967				 sample->time, ret);
 968}
 969
 970/*
 971 * Sort the pid datastructure
 972 */
 973static void sort_pids(struct timechart *tchart)
 974{
 975	struct per_pid *new_list, *p, *cursor, *prev;
 976	/* sort by ppid first, then by pid, lowest to highest */
 977
 978	new_list = NULL;
 979
 980	while (tchart->all_data) {
 981		p = tchart->all_data;
 982		tchart->all_data = p->next;
 983		p->next = NULL;
 984
 985		if (new_list == NULL) {
 986			new_list = p;
 987			p->next = NULL;
 988			continue;
 989		}
 990		prev = NULL;
 991		cursor = new_list;
 992		while (cursor) {
 993			if (cursor->ppid > p->ppid ||
 994				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 995				/* must insert before */
 996				if (prev) {
 997					p->next = prev->next;
 998					prev->next = p;
 999					cursor = NULL;
1000					continue;
1001				} else {
1002					p->next = new_list;
1003					new_list = p;
1004					cursor = NULL;
1005					continue;
1006				}
1007			}
1008
1009			prev = cursor;
1010			cursor = cursor->next;
1011			if (!cursor)
1012				prev->next = p;
1013		}
1014	}
1015	tchart->all_data = new_list;
1016}
1017
1018
1019static void draw_c_p_states(struct timechart *tchart)
1020{
1021	struct power_event *pwr;
1022	pwr = tchart->power_events;
1023
1024	/*
1025	 * two pass drawing so that the P state bars are on top of the C state blocks
1026	 */
1027	while (pwr) {
1028		if (pwr->type == CSTATE)
1029			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030		pwr = pwr->next;
1031	}
1032
1033	pwr = tchart->power_events;
1034	while (pwr) {
1035		if (pwr->type == PSTATE) {
1036			if (!pwr->state)
1037				pwr->state = tchart->min_freq;
1038			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1039		}
1040		pwr = pwr->next;
1041	}
1042}
1043
1044static void draw_wakeups(struct timechart *tchart)
1045{
1046	struct wake_event *we;
1047	struct per_pid *p;
1048	struct per_pidcomm *c;
1049
1050	we = tchart->wake_events;
1051	while (we) {
1052		int from = 0, to = 0;
1053		char *task_from = NULL, *task_to = NULL;
1054
1055		/* locate the column of the waker and wakee */
1056		p = tchart->all_data;
1057		while (p) {
1058			if (p->pid == we->waker || p->pid == we->wakee) {
1059				c = p->all;
1060				while (c) {
1061					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1062						if (p->pid == we->waker && !from) {
1063							from = c->Y;
1064							task_from = strdup(c->comm);
1065						}
1066						if (p->pid == we->wakee && !to) {
1067							to = c->Y;
1068							task_to = strdup(c->comm);
1069						}
1070					}
1071					c = c->next;
1072				}
1073				c = p->all;
1074				while (c) {
1075					if (p->pid == we->waker && !from) {
1076						from = c->Y;
1077						task_from = strdup(c->comm);
1078					}
1079					if (p->pid == we->wakee && !to) {
1080						to = c->Y;
1081						task_to = strdup(c->comm);
1082					}
1083					c = c->next;
1084				}
1085			}
1086			p = p->next;
1087		}
1088
1089		if (!task_from) {
1090			task_from = malloc(40);
1091			sprintf(task_from, "[%i]", we->waker);
1092		}
1093		if (!task_to) {
1094			task_to = malloc(40);
1095			sprintf(task_to, "[%i]", we->wakee);
1096		}
1097
1098		if (we->waker == -1)
1099			svg_interrupt(we->time, to, we->backtrace);
1100		else if (from && to && abs(from - to) == 1)
1101			svg_wakeline(we->time, from, to, we->backtrace);
1102		else
1103			svg_partial_wakeline(we->time, from, task_from, to,
1104					     task_to, we->backtrace);
1105		we = we->next;
1106
1107		free(task_from);
1108		free(task_to);
1109	}
1110}
1111
1112static void draw_cpu_usage(struct timechart *tchart)
1113{
1114	struct per_pid *p;
1115	struct per_pidcomm *c;
1116	struct cpu_sample *sample;
1117	p = tchart->all_data;
1118	while (p) {
1119		c = p->all;
1120		while (c) {
1121			sample = c->samples;
1122			while (sample) {
1123				if (sample->type == TYPE_RUNNING) {
1124					svg_process(sample->cpu,
1125						    sample->start_time,
1126						    sample->end_time,
1127						    p->pid,
1128						    c->comm,
1129						    sample->backtrace);
1130				}
1131
1132				sample = sample->next;
1133			}
1134			c = c->next;
1135		}
1136		p = p->next;
1137	}
1138}
1139
1140static void draw_io_bars(struct timechart *tchart)
1141{
1142	const char *suf;
1143	double bytes;
1144	char comm[256];
1145	struct per_pid *p;
1146	struct per_pidcomm *c;
1147	struct io_sample *sample;
1148	int Y = 1;
1149
1150	p = tchart->all_data;
1151	while (p) {
1152		c = p->all;
1153		while (c) {
1154			if (!c->display) {
1155				c->Y = 0;
1156				c = c->next;
1157				continue;
1158			}
1159
1160			svg_box(Y, c->start_time, c->end_time, "process3");
1161			sample = c->io_samples;
1162			for (sample = c->io_samples; sample; sample = sample->next) {
1163				double h = (double)sample->bytes / c->max_bytes;
1164
1165				if (tchart->skip_eagain &&
1166				    sample->err == -EAGAIN)
1167					continue;
1168
1169				if (sample->err)
1170					h = 1;
1171
1172				if (sample->type == IOTYPE_SYNC)
1173					svg_fbox(Y,
1174						sample->start_time,
1175						sample->end_time,
1176						1,
1177						sample->err ? "error" : "sync",
1178						sample->fd,
1179						sample->err,
1180						sample->merges);
1181				else if (sample->type == IOTYPE_POLL)
1182					svg_fbox(Y,
1183						sample->start_time,
1184						sample->end_time,
1185						1,
1186						sample->err ? "error" : "poll",
1187						sample->fd,
1188						sample->err,
1189						sample->merges);
1190				else if (sample->type == IOTYPE_READ)
1191					svg_ubox(Y,
1192						sample->start_time,
1193						sample->end_time,
1194						h,
1195						sample->err ? "error" : "disk",
1196						sample->fd,
1197						sample->err,
1198						sample->merges);
1199				else if (sample->type == IOTYPE_WRITE)
1200					svg_lbox(Y,
1201						sample->start_time,
1202						sample->end_time,
1203						h,
1204						sample->err ? "error" : "disk",
1205						sample->fd,
1206						sample->err,
1207						sample->merges);
1208				else if (sample->type == IOTYPE_RX)
1209					svg_ubox(Y,
1210						sample->start_time,
1211						sample->end_time,
1212						h,
1213						sample->err ? "error" : "net",
1214						sample->fd,
1215						sample->err,
1216						sample->merges);
1217				else if (sample->type == IOTYPE_TX)
1218					svg_lbox(Y,
1219						sample->start_time,
1220						sample->end_time,
1221						h,
1222						sample->err ? "error" : "net",
1223						sample->fd,
1224						sample->err,
1225						sample->merges);
1226			}
1227
1228			suf = "";
1229			bytes = c->total_bytes;
1230			if (bytes > 1024) {
1231				bytes = bytes / 1024;
1232				suf = "K";
1233			}
1234			if (bytes > 1024) {
1235				bytes = bytes / 1024;
1236				suf = "M";
1237			}
1238			if (bytes > 1024) {
1239				bytes = bytes / 1024;
1240				suf = "G";
1241			}
1242
1243
1244			sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1245			svg_text(Y, c->start_time, comm);
1246
1247			c->Y = Y;
1248			Y++;
1249			c = c->next;
1250		}
1251		p = p->next;
1252	}
1253}
1254
1255static void draw_process_bars(struct timechart *tchart)
1256{
1257	struct per_pid *p;
1258	struct per_pidcomm *c;
1259	struct cpu_sample *sample;
1260	int Y = 0;
1261
1262	Y = 2 * tchart->numcpus + 2;
1263
1264	p = tchart->all_data;
1265	while (p) {
1266		c = p->all;
1267		while (c) {
1268			if (!c->display) {
1269				c->Y = 0;
1270				c = c->next;
1271				continue;
1272			}
1273
1274			svg_box(Y, c->start_time, c->end_time, "process");
1275			sample = c->samples;
1276			while (sample) {
1277				if (sample->type == TYPE_RUNNING)
1278					svg_running(Y, sample->cpu,
1279						    sample->start_time,
1280						    sample->end_time,
1281						    sample->backtrace);
1282				if (sample->type == TYPE_BLOCKED)
1283					svg_blocked(Y, sample->cpu,
1284						    sample->start_time,
1285						    sample->end_time,
1286						    sample->backtrace);
1287				if (sample->type == TYPE_WAITING)
1288					svg_waiting(Y, sample->cpu,
1289						    sample->start_time,
1290						    sample->end_time,
1291						    sample->backtrace);
1292				sample = sample->next;
1293			}
1294
1295			if (c->comm) {
1296				char comm[256];
1297				if (c->total_time > 5000000000) /* 5 seconds */
1298					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1299				else
1300					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1301
1302				svg_text(Y, c->start_time, comm);
1303			}
1304			c->Y = Y;
1305			Y++;
1306			c = c->next;
1307		}
1308		p = p->next;
1309	}
1310}
1311
1312static void add_process_filter(const char *string)
1313{
1314	int pid = strtoull(string, NULL, 10);
1315	struct process_filter *filt = malloc(sizeof(*filt));
1316
1317	if (!filt)
1318		return;
1319
1320	filt->name = strdup(string);
1321	filt->pid  = pid;
1322	filt->next = process_filter;
1323
1324	process_filter = filt;
1325}
1326
1327static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1328{
1329	struct process_filter *filt;
1330	if (!process_filter)
1331		return 1;
1332
1333	filt = process_filter;
1334	while (filt) {
1335		if (filt->pid && p->pid == filt->pid)
1336			return 1;
1337		if (strcmp(filt->name, c->comm) == 0)
1338			return 1;
1339		filt = filt->next;
1340	}
1341	return 0;
1342}
1343
1344static int determine_display_tasks_filtered(struct timechart *tchart)
1345{
1346	struct per_pid *p;
1347	struct per_pidcomm *c;
1348	int count = 0;
1349
1350	p = tchart->all_data;
1351	while (p) {
1352		p->display = 0;
1353		if (p->start_time == 1)
1354			p->start_time = tchart->first_time;
1355
1356		/* no exit marker, task kept running to the end */
1357		if (p->end_time == 0)
1358			p->end_time = tchart->last_time;
1359
1360		c = p->all;
1361
1362		while (c) {
1363			c->display = 0;
1364
1365			if (c->start_time == 1)
1366				c->start_time = tchart->first_time;
1367
1368			if (passes_filter(p, c)) {
1369				c->display = 1;
1370				p->display = 1;
1371				count++;
1372			}
1373
1374			if (c->end_time == 0)
1375				c->end_time = tchart->last_time;
1376
1377			c = c->next;
1378		}
1379		p = p->next;
1380	}
1381	return count;
1382}
1383
1384static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1385{
1386	struct per_pid *p;
1387	struct per_pidcomm *c;
1388	int count = 0;
1389
1390	p = tchart->all_data;
1391	while (p) {
1392		p->display = 0;
1393		if (p->start_time == 1)
1394			p->start_time = tchart->first_time;
1395
1396		/* no exit marker, task kept running to the end */
1397		if (p->end_time == 0)
1398			p->end_time = tchart->last_time;
1399		if (p->total_time >= threshold)
1400			p->display = 1;
1401
1402		c = p->all;
1403
1404		while (c) {
1405			c->display = 0;
1406
1407			if (c->start_time == 1)
1408				c->start_time = tchart->first_time;
1409
1410			if (c->total_time >= threshold) {
1411				c->display = 1;
1412				count++;
1413			}
1414
1415			if (c->end_time == 0)
1416				c->end_time = tchart->last_time;
1417
1418			c = c->next;
1419		}
1420		p = p->next;
1421	}
1422	return count;
1423}
1424
1425static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1426{
1427	struct per_pid *p;
1428	struct per_pidcomm *c;
1429	int count = 0;
1430
1431	p = timechart->all_data;
1432	while (p) {
1433		/* no exit marker, task kept running to the end */
1434		if (p->end_time == 0)
1435			p->end_time = timechart->last_time;
1436
1437		c = p->all;
1438
1439		while (c) {
1440			c->display = 0;
1441
1442			if (c->total_bytes >= threshold) {
1443				c->display = 1;
1444				count++;
1445			}
1446
1447			if (c->end_time == 0)
1448				c->end_time = timechart->last_time;
1449
1450			c = c->next;
1451		}
1452		p = p->next;
1453	}
1454	return count;
1455}
1456
1457#define BYTES_THRESH (1 * 1024 * 1024)
1458#define TIME_THRESH 10000000
1459
1460static void write_svg_file(struct timechart *tchart, const char *filename)
1461{
1462	u64 i;
1463	int count;
1464	int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1465
1466	if (tchart->power_only)
1467		tchart->proc_num = 0;
1468
1469	/* We'd like to show at least proc_num tasks;
1470	 * be less picky if we have fewer */
1471	do {
1472		if (process_filter)
1473			count = determine_display_tasks_filtered(tchart);
1474		else if (tchart->io_events)
1475			count = determine_display_io_tasks(tchart, thresh);
1476		else
1477			count = determine_display_tasks(tchart, thresh);
1478		thresh /= 10;
1479	} while (!process_filter && thresh && count < tchart->proc_num);
1480
1481	if (!tchart->proc_num)
1482		count = 0;
1483
1484	if (tchart->io_events) {
1485		open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1486
1487		svg_time_grid(0.5);
1488		svg_io_legenda();
1489
1490		draw_io_bars(tchart);
1491	} else {
1492		open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1493
1494		svg_time_grid(0);
1495
1496		svg_legenda();
1497
1498		for (i = 0; i < tchart->numcpus; i++)
1499			svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1500
1501		draw_cpu_usage(tchart);
1502		if (tchart->proc_num)
1503			draw_process_bars(tchart);
1504		if (!tchart->tasks_only)
1505			draw_c_p_states(tchart);
1506		if (tchart->proc_num)
1507			draw_wakeups(tchart);
1508	}
1509
1510	svg_close();
1511}
1512
1513static int process_header(struct perf_file_section *section __maybe_unused,
1514			  struct perf_header *ph,
1515			  int feat,
1516			  int fd __maybe_unused,
1517			  void *data)
1518{
1519	struct timechart *tchart = data;
1520
1521	switch (feat) {
1522	case HEADER_NRCPUS:
1523		tchart->numcpus = ph->env.nr_cpus_avail;
1524		break;
1525
1526	case HEADER_CPU_TOPOLOGY:
1527		if (!tchart->topology)
1528			break;
1529
1530		if (svg_build_topology_map(&ph->env))
1531			fprintf(stderr, "problem building topology\n");
1532		break;
1533
1534	default:
1535		break;
1536	}
1537
1538	return 0;
1539}
1540
1541static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1542{
1543	const struct evsel_str_handler power_tracepoints[] = {
1544		{ "power:cpu_idle",		process_sample_cpu_idle },
1545		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1546		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1547		{ "sched:sched_switch",		process_sample_sched_switch },
1548#ifdef SUPPORT_OLD_POWER_EVENTS
1549		{ "power:power_start",		process_sample_power_start },
1550		{ "power:power_end",		process_sample_power_end },
1551		{ "power:power_frequency",	process_sample_power_frequency },
1552#endif
1553
1554		{ "syscalls:sys_enter_read",		process_enter_read },
1555		{ "syscalls:sys_enter_pread64",		process_enter_read },
1556		{ "syscalls:sys_enter_readv",		process_enter_read },
1557		{ "syscalls:sys_enter_preadv",		process_enter_read },
1558		{ "syscalls:sys_enter_write",		process_enter_write },
1559		{ "syscalls:sys_enter_pwrite64",	process_enter_write },
1560		{ "syscalls:sys_enter_writev",		process_enter_write },
1561		{ "syscalls:sys_enter_pwritev",		process_enter_write },
1562		{ "syscalls:sys_enter_sync",		process_enter_sync },
1563		{ "syscalls:sys_enter_sync_file_range",	process_enter_sync },
1564		{ "syscalls:sys_enter_fsync",		process_enter_sync },
1565		{ "syscalls:sys_enter_msync",		process_enter_sync },
1566		{ "syscalls:sys_enter_recvfrom",	process_enter_rx },
1567		{ "syscalls:sys_enter_recvmmsg",	process_enter_rx },
1568		{ "syscalls:sys_enter_recvmsg",		process_enter_rx },
1569		{ "syscalls:sys_enter_sendto",		process_enter_tx },
1570		{ "syscalls:sys_enter_sendmsg",		process_enter_tx },
1571		{ "syscalls:sys_enter_sendmmsg",	process_enter_tx },
1572		{ "syscalls:sys_enter_epoll_pwait",	process_enter_poll },
1573		{ "syscalls:sys_enter_epoll_wait",	process_enter_poll },
1574		{ "syscalls:sys_enter_poll",		process_enter_poll },
1575		{ "syscalls:sys_enter_ppoll",		process_enter_poll },
1576		{ "syscalls:sys_enter_pselect6",	process_enter_poll },
1577		{ "syscalls:sys_enter_select",		process_enter_poll },
1578
1579		{ "syscalls:sys_exit_read",		process_exit_read },
1580		{ "syscalls:sys_exit_pread64",		process_exit_read },
1581		{ "syscalls:sys_exit_readv",		process_exit_read },
1582		{ "syscalls:sys_exit_preadv",		process_exit_read },
1583		{ "syscalls:sys_exit_write",		process_exit_write },
1584		{ "syscalls:sys_exit_pwrite64",		process_exit_write },
1585		{ "syscalls:sys_exit_writev",		process_exit_write },
1586		{ "syscalls:sys_exit_pwritev",		process_exit_write },
1587		{ "syscalls:sys_exit_sync",		process_exit_sync },
1588		{ "syscalls:sys_exit_sync_file_range",	process_exit_sync },
1589		{ "syscalls:sys_exit_fsync",		process_exit_sync },
1590		{ "syscalls:sys_exit_msync",		process_exit_sync },
1591		{ "syscalls:sys_exit_recvfrom",		process_exit_rx },
1592		{ "syscalls:sys_exit_recvmmsg",		process_exit_rx },
1593		{ "syscalls:sys_exit_recvmsg",		process_exit_rx },
1594		{ "syscalls:sys_exit_sendto",		process_exit_tx },
1595		{ "syscalls:sys_exit_sendmsg",		process_exit_tx },
1596		{ "syscalls:sys_exit_sendmmsg",		process_exit_tx },
1597		{ "syscalls:sys_exit_epoll_pwait",	process_exit_poll },
1598		{ "syscalls:sys_exit_epoll_wait",	process_exit_poll },
1599		{ "syscalls:sys_exit_poll",		process_exit_poll },
1600		{ "syscalls:sys_exit_ppoll",		process_exit_poll },
1601		{ "syscalls:sys_exit_pselect6",		process_exit_poll },
1602		{ "syscalls:sys_exit_select",		process_exit_poll },
1603	};
1604	struct perf_data data = {
1605		.path  = input_name,
1606		.mode  = PERF_DATA_MODE_READ,
1607		.force = tchart->force,
1608	};
1609
1610	struct perf_session *session = perf_session__new(&data, &tchart->tool);
 
1611	int ret = -EINVAL;
1612
1613	if (IS_ERR(session))
1614		return PTR_ERR(session);
1615
1616	symbol__init(&session->header.env);
1617
1618	(void)perf_header__process_sections(&session->header,
1619					    perf_data__fd(session->data),
1620					    tchart,
1621					    process_header);
1622
1623	if (!perf_session__has_traces(session, "timechart record"))
1624		goto out_delete;
1625
1626	if (perf_session__set_tracepoints_handlers(session,
1627						   power_tracepoints)) {
1628		pr_err("Initializing session tracepoint handlers failed\n");
1629		goto out_delete;
1630	}
1631
1632	ret = perf_session__process_events(session);
1633	if (ret)
1634		goto out_delete;
1635
1636	end_sample_processing(tchart);
1637
1638	sort_pids(tchart);
1639
1640	write_svg_file(tchart, output_name);
1641
1642	pr_info("Written %2.1f seconds of trace to %s.\n",
1643		(tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1644out_delete:
1645	perf_session__delete(session);
1646	return ret;
1647}
1648
1649static int timechart__io_record(int argc, const char **argv)
1650{
1651	unsigned int rec_argc, i;
1652	const char **rec_argv;
1653	const char **p;
1654	char *filter = NULL;
1655
1656	const char * const common_args[] = {
1657		"record", "-a", "-R", "-c", "1",
1658	};
1659	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1660
1661	const char * const disk_events[] = {
1662		"syscalls:sys_enter_read",
1663		"syscalls:sys_enter_pread64",
1664		"syscalls:sys_enter_readv",
1665		"syscalls:sys_enter_preadv",
1666		"syscalls:sys_enter_write",
1667		"syscalls:sys_enter_pwrite64",
1668		"syscalls:sys_enter_writev",
1669		"syscalls:sys_enter_pwritev",
1670		"syscalls:sys_enter_sync",
1671		"syscalls:sys_enter_sync_file_range",
1672		"syscalls:sys_enter_fsync",
1673		"syscalls:sys_enter_msync",
1674
1675		"syscalls:sys_exit_read",
1676		"syscalls:sys_exit_pread64",
1677		"syscalls:sys_exit_readv",
1678		"syscalls:sys_exit_preadv",
1679		"syscalls:sys_exit_write",
1680		"syscalls:sys_exit_pwrite64",
1681		"syscalls:sys_exit_writev",
1682		"syscalls:sys_exit_pwritev",
1683		"syscalls:sys_exit_sync",
1684		"syscalls:sys_exit_sync_file_range",
1685		"syscalls:sys_exit_fsync",
1686		"syscalls:sys_exit_msync",
1687	};
1688	unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1689
1690	const char * const net_events[] = {
1691		"syscalls:sys_enter_recvfrom",
1692		"syscalls:sys_enter_recvmmsg",
1693		"syscalls:sys_enter_recvmsg",
1694		"syscalls:sys_enter_sendto",
1695		"syscalls:sys_enter_sendmsg",
1696		"syscalls:sys_enter_sendmmsg",
1697
1698		"syscalls:sys_exit_recvfrom",
1699		"syscalls:sys_exit_recvmmsg",
1700		"syscalls:sys_exit_recvmsg",
1701		"syscalls:sys_exit_sendto",
1702		"syscalls:sys_exit_sendmsg",
1703		"syscalls:sys_exit_sendmmsg",
1704	};
1705	unsigned int net_events_nr = ARRAY_SIZE(net_events);
1706
1707	const char * const poll_events[] = {
1708		"syscalls:sys_enter_epoll_pwait",
1709		"syscalls:sys_enter_epoll_wait",
1710		"syscalls:sys_enter_poll",
1711		"syscalls:sys_enter_ppoll",
1712		"syscalls:sys_enter_pselect6",
1713		"syscalls:sys_enter_select",
1714
1715		"syscalls:sys_exit_epoll_pwait",
1716		"syscalls:sys_exit_epoll_wait",
1717		"syscalls:sys_exit_poll",
1718		"syscalls:sys_exit_ppoll",
1719		"syscalls:sys_exit_pselect6",
1720		"syscalls:sys_exit_select",
1721	};
1722	unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1723
1724	rec_argc = common_args_nr +
1725		disk_events_nr * 4 +
1726		net_events_nr * 4 +
1727		poll_events_nr * 4 +
1728		argc;
1729	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1730
1731	if (rec_argv == NULL)
1732		return -ENOMEM;
1733
1734	if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1735		free(rec_argv);
1736		return -ENOMEM;
1737	}
1738
1739	p = rec_argv;
1740	for (i = 0; i < common_args_nr; i++)
1741		*p++ = strdup(common_args[i]);
1742
1743	for (i = 0; i < disk_events_nr; i++) {
1744		if (!is_valid_tracepoint(disk_events[i])) {
1745			rec_argc -= 4;
1746			continue;
1747		}
1748
1749		*p++ = "-e";
1750		*p++ = strdup(disk_events[i]);
1751		*p++ = "--filter";
1752		*p++ = filter;
1753	}
1754	for (i = 0; i < net_events_nr; i++) {
1755		if (!is_valid_tracepoint(net_events[i])) {
1756			rec_argc -= 4;
1757			continue;
1758		}
1759
1760		*p++ = "-e";
1761		*p++ = strdup(net_events[i]);
1762		*p++ = "--filter";
1763		*p++ = filter;
1764	}
1765	for (i = 0; i < poll_events_nr; i++) {
1766		if (!is_valid_tracepoint(poll_events[i])) {
1767			rec_argc -= 4;
1768			continue;
1769		}
1770
1771		*p++ = "-e";
1772		*p++ = strdup(poll_events[i]);
1773		*p++ = "--filter";
1774		*p++ = filter;
1775	}
1776
1777	for (i = 0; i < (unsigned int)argc; i++)
1778		*p++ = argv[i];
1779
1780	return cmd_record(rec_argc, rec_argv);
1781}
1782
1783
1784static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1785{
1786	unsigned int rec_argc, i, j;
1787	const char **rec_argv;
1788	const char **p;
1789	unsigned int record_elems;
1790
1791	const char * const common_args[] = {
1792		"record", "-a", "-R", "-c", "1",
1793	};
1794	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1795
1796	const char * const backtrace_args[] = {
1797		"-g",
1798	};
1799	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1800
1801	const char * const power_args[] = {
1802		"-e", "power:cpu_frequency",
1803		"-e", "power:cpu_idle",
1804	};
1805	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1806
1807	const char * const old_power_args[] = {
1808#ifdef SUPPORT_OLD_POWER_EVENTS
1809		"-e", "power:power_start",
1810		"-e", "power:power_end",
1811		"-e", "power:power_frequency",
1812#endif
1813	};
1814	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1815
1816	const char * const tasks_args[] = {
1817		"-e", "sched:sched_wakeup",
1818		"-e", "sched:sched_switch",
1819	};
1820	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1821
1822#ifdef SUPPORT_OLD_POWER_EVENTS
1823	if (!is_valid_tracepoint("power:cpu_idle") &&
1824	    is_valid_tracepoint("power:power_start")) {
1825		use_old_power_events = 1;
1826		power_args_nr = 0;
1827	} else {
1828		old_power_args_nr = 0;
1829	}
1830#endif
1831
1832	if (tchart->power_only)
1833		tasks_args_nr = 0;
1834
1835	if (tchart->tasks_only) {
1836		power_args_nr = 0;
1837		old_power_args_nr = 0;
1838	}
1839
1840	if (!tchart->with_backtrace)
1841		backtrace_args_no = 0;
1842
1843	record_elems = common_args_nr + tasks_args_nr +
1844		power_args_nr + old_power_args_nr + backtrace_args_no;
1845
1846	rec_argc = record_elems + argc;
1847	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1848
1849	if (rec_argv == NULL)
1850		return -ENOMEM;
1851
1852	p = rec_argv;
1853	for (i = 0; i < common_args_nr; i++)
1854		*p++ = strdup(common_args[i]);
1855
1856	for (i = 0; i < backtrace_args_no; i++)
1857		*p++ = strdup(backtrace_args[i]);
1858
1859	for (i = 0; i < tasks_args_nr; i++)
1860		*p++ = strdup(tasks_args[i]);
1861
1862	for (i = 0; i < power_args_nr; i++)
1863		*p++ = strdup(power_args[i]);
1864
1865	for (i = 0; i < old_power_args_nr; i++)
1866		*p++ = strdup(old_power_args[i]);
1867
1868	for (j = 0; j < (unsigned int)argc; j++)
1869		*p++ = argv[j];
1870
1871	return cmd_record(rec_argc, rec_argv);
1872}
1873
1874static int
1875parse_process(const struct option *opt __maybe_unused, const char *arg,
1876	      int __maybe_unused unset)
1877{
1878	if (arg)
1879		add_process_filter(arg);
1880	return 0;
1881}
1882
1883static int
1884parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1885		int __maybe_unused unset)
1886{
1887	unsigned long duration = strtoul(arg, NULL, 0);
1888
1889	if (svg_highlight || svg_highlight_name)
1890		return -1;
1891
1892	if (duration)
1893		svg_highlight = duration;
1894	else
1895		svg_highlight_name = strdup(arg);
1896
1897	return 0;
1898}
1899
1900static int
1901parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1902{
1903	char unit = 'n';
1904	u64 *value = opt->value;
1905
1906	if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1907		switch (unit) {
1908		case 'm':
1909			*value *= NSEC_PER_MSEC;
1910			break;
1911		case 'u':
1912			*value *= NSEC_PER_USEC;
1913			break;
1914		case 'n':
1915			break;
1916		default:
1917			return -1;
1918		}
1919	}
1920
1921	return 0;
1922}
1923
1924int cmd_timechart(int argc, const char **argv)
1925{
1926	struct timechart tchart = {
1927		.tool = {
1928			.comm		 = process_comm_event,
1929			.fork		 = process_fork_event,
1930			.exit		 = process_exit_event,
1931			.sample		 = process_sample_event,
1932			.ordered_events	 = true,
1933		},
1934		.proc_num = 15,
1935		.min_time = NSEC_PER_MSEC,
1936		.merge_dist = 1000,
1937	};
1938	const char *output_name = "output.svg";
1939	const struct option timechart_common_options[] = {
1940	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1941	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1942	OPT_END()
1943	};
1944	const struct option timechart_options[] = {
1945	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1946	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1947	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1948	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1949		      "highlight tasks. Pass duration in ns or process name.",
1950		       parse_highlight),
1951	OPT_CALLBACK('p', "process", NULL, "process",
1952		      "process selector. Pass a pid or process name.",
1953		       parse_process),
1954	OPT_CALLBACK(0, "symfs", NULL, "directory",
1955		     "Look for files with symbols relative to this directory",
1956		     symbol__config_symfs),
1957	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1958		    "min. number of tasks to print"),
1959	OPT_BOOLEAN('t', "topology", &tchart.topology,
1960		    "sort CPUs according to topology"),
1961	OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1962		    "skip EAGAIN errors"),
1963	OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1964		     "all IO faster than min-time will visually appear longer",
1965		     parse_time),
1966	OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1967		     "merge events that are merge-dist us apart",
1968		     parse_time),
1969	OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1970	OPT_PARENT(timechart_common_options),
1971	};
1972	const char * const timechart_subcommands[] = { "record", NULL };
1973	const char *timechart_usage[] = {
1974		"perf timechart [<options>] {record}",
1975		NULL
1976	};
1977	const struct option timechart_record_options[] = {
1978	OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1979		    "record only IO data"),
1980	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1981	OPT_PARENT(timechart_common_options),
1982	};
1983	const char * const timechart_record_usage[] = {
1984		"perf timechart record [<options>]",
1985		NULL
1986	};
1987	int ret;
1988
1989	cpus_cstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_cstate_start_times));
1990	if (!cpus_cstate_start_times)
1991		return -ENOMEM;
1992	cpus_cstate_state = calloc(MAX_CPUS, sizeof(*cpus_cstate_state));
1993	if (!cpus_cstate_state) {
1994		ret = -ENOMEM;
1995		goto out;
1996	}
1997	cpus_pstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_pstate_start_times));
1998	if (!cpus_pstate_start_times) {
1999		ret = -ENOMEM;
2000		goto out;
2001	}
2002	cpus_pstate_state = calloc(MAX_CPUS, sizeof(*cpus_pstate_state));
2003	if (!cpus_pstate_state) {
2004		ret = -ENOMEM;
2005		goto out;
2006	}
2007
2008	argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
2009			timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
2010
2011	if (tchart.power_only && tchart.tasks_only) {
2012		pr_err("-P and -T options cannot be used at the same time.\n");
2013		ret = -1;
2014		goto out;
2015	}
2016
2017	if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
2018		argc = parse_options(argc, argv, timechart_record_options,
2019				     timechart_record_usage,
2020				     PARSE_OPT_STOP_AT_NON_OPTION);
2021
2022		if (tchart.power_only && tchart.tasks_only) {
2023			pr_err("-P and -T options cannot be used at the same time.\n");
2024			ret = -1;
2025			goto out;
2026		}
2027
2028		if (tchart.io_only)
2029			ret = timechart__io_record(argc, argv);
2030		else
2031			ret = timechart__record(&tchart, argc, argv);
2032		goto out;
2033	} else if (argc)
2034		usage_with_options(timechart_usage, timechart_options);
2035
2036	setup_pager();
2037
2038	ret = __cmd_timechart(&tchart, output_name);
2039out:
2040	zfree(&cpus_cstate_start_times);
2041	zfree(&cpus_cstate_state);
2042	zfree(&cpus_pstate_start_times);
2043	zfree(&cpus_pstate_state);
2044	return ret;
2045}