Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * builtin-timechart.c - make an svg timechart of system activity
   4 *
   5 * (C) Copyright 2009 Intel Corporation
   6 *
   7 * Authors:
   8 *     Arjan van de Ven <arjan@linux.intel.com>
 
 
 
 
 
   9 */
  10
  11#include <errno.h>
  12#include <inttypes.h>
  13
  14#include "builtin.h"
 
 
 
  15#include "util/color.h"
  16#include <linux/list.h>
  17#include "util/evlist.h" // for struct evsel_str_handler
  18#include "util/evsel.h"
  19#include <linux/kernel.h>
  20#include <linux/rbtree.h>
  21#include <linux/time64.h>
  22#include <linux/zalloc.h>
  23#include "util/symbol.h"
  24#include "util/thread.h"
  25#include "util/callchain.h"
 
  26
  27#include "perf.h"
  28#include "util/header.h"
  29#include <subcmd/pager.h>
  30#include <subcmd/parse-options.h>
  31#include "util/parse-events.h"
  32#include "util/event.h"
  33#include "util/session.h"
  34#include "util/svghelper.h"
  35#include "util/tool.h"
  36#include "util/data.h"
  37#include "util/debug.h"
  38#include <linux/err.h>
  39
  40#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
  41FILE *open_memstream(char **ptr, size_t *sizeloc);
  42#endif
  43
  44#define SUPPORT_OLD_POWER_EVENTS 1
  45#define PWR_EVENT_EXIT -1
  46
  47struct per_pid;
  48struct power_event;
  49struct wake_event;
  50
  51struct timechart {
  52	struct perf_tool	tool;
  53	struct per_pid		*all_data;
  54	struct power_event	*power_events;
  55	struct wake_event	*wake_events;
  56	int			proc_num;
  57	unsigned int		numcpus;
  58	u64			min_freq,	/* Lowest CPU frequency seen */
  59				max_freq,	/* Highest CPU frequency seen */
  60				turbo_frequency,
  61				first_time, last_time;
  62	bool			power_only,
  63				tasks_only,
  64				with_backtrace,
  65				topology;
  66	bool			force;
  67	/* IO related settings */
  68	bool			io_only,
  69				skip_eagain;
  70	u64			io_events;
  71	u64			min_time,
  72				merge_dist;
  73};
  74
 
 
 
 
 
 
  75struct per_pidcomm;
 
  76struct cpu_sample;
  77struct io_sample;
 
 
 
  78
  79/*
  80 * Datastructure layout:
  81 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  82 * Each "pid" entry, has a list of "comm"s.
  83 *	this is because we want to track different programs different, while
  84 *	exec will reuse the original pid (by design).
  85 * Each comm has a list of samples that will be used to draw
  86 * final graph.
  87 */
  88
  89struct per_pid {
  90	struct per_pid *next;
  91
  92	int		pid;
  93	int		ppid;
  94
  95	u64		start_time;
  96	u64		end_time;
  97	u64		total_time;
  98	u64		total_bytes;
  99	int		display;
 100
 101	struct per_pidcomm *all;
 102	struct per_pidcomm *current;
 103};
 104
 105
 106struct per_pidcomm {
 107	struct per_pidcomm *next;
 108
 109	u64		start_time;
 110	u64		end_time;
 111	u64		total_time;
 112	u64		max_bytes;
 113	u64		total_bytes;
 114
 115	int		Y;
 116	int		display;
 117
 118	long		state;
 119	u64		state_since;
 120
 121	char		*comm;
 122
 123	struct cpu_sample *samples;
 124	struct io_sample  *io_samples;
 125};
 126
 127struct sample_wrapper {
 128	struct sample_wrapper *next;
 129
 130	u64		timestamp;
 131	unsigned char	data[0];
 132};
 133
 134#define TYPE_NONE	0
 135#define TYPE_RUNNING	1
 136#define TYPE_WAITING	2
 137#define TYPE_BLOCKED	3
 138
 139struct cpu_sample {
 140	struct cpu_sample *next;
 141
 142	u64 start_time;
 143	u64 end_time;
 144	int type;
 145	int cpu;
 146	const char *backtrace;
 147};
 148
 149enum {
 150	IOTYPE_READ,
 151	IOTYPE_WRITE,
 152	IOTYPE_SYNC,
 153	IOTYPE_TX,
 154	IOTYPE_RX,
 155	IOTYPE_POLL,
 156};
 157
 158struct io_sample {
 159	struct io_sample *next;
 160
 161	u64 start_time;
 162	u64 end_time;
 163	u64 bytes;
 164	int type;
 165	int fd;
 166	int err;
 167	int merges;
 168};
 169
 170#define CSTATE 1
 171#define PSTATE 2
 172
 173struct power_event {
 174	struct power_event *next;
 175	int type;
 176	int state;
 177	u64 start_time;
 178	u64 end_time;
 179	int cpu;
 180};
 181
 182struct wake_event {
 183	struct wake_event *next;
 184	int waker;
 185	int wakee;
 186	u64 time;
 187	const char *backtrace;
 188};
 189
 
 
 
 
 190struct process_filter {
 191	char			*name;
 192	int			pid;
 193	struct process_filter	*next;
 194};
 195
 196static struct process_filter *process_filter;
 197
 198
 199static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
 200{
 201	struct per_pid *cursor = tchart->all_data;
 202
 203	while (cursor) {
 204		if (cursor->pid == pid)
 205			return cursor;
 206		cursor = cursor->next;
 207	}
 208	cursor = zalloc(sizeof(*cursor));
 209	assert(cursor != NULL);
 
 210	cursor->pid = pid;
 211	cursor->next = tchart->all_data;
 212	tchart->all_data = cursor;
 213	return cursor;
 214}
 215
 216static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
 217{
 218	struct per_pid *p;
 219	struct per_pidcomm *c;
 220	p = find_create_pid(tchart, pid);
 221	c = p->all;
 222	while (c) {
 223		if (c->comm && strcmp(c->comm, comm) == 0) {
 224			p->current = c;
 225			return;
 226		}
 227		if (!c->comm) {
 228			c->comm = strdup(comm);
 229			p->current = c;
 230			return;
 231		}
 232		c = c->next;
 233	}
 234	c = zalloc(sizeof(*c));
 235	assert(c != NULL);
 
 236	c->comm = strdup(comm);
 237	p->current = c;
 238	c->next = p->all;
 239	p->all = c;
 240}
 241
 242static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
 243{
 244	struct per_pid *p, *pp;
 245	p = find_create_pid(tchart, pid);
 246	pp = find_create_pid(tchart, ppid);
 247	p->ppid = ppid;
 248	if (pp->current && pp->current->comm && !p->current)
 249		pid_set_comm(tchart, pid, pp->current->comm);
 250
 251	p->start_time = timestamp;
 252	if (p->current && !p->current->start_time) {
 253		p->current->start_time = timestamp;
 254		p->current->state_since = timestamp;
 255	}
 256}
 257
 258static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
 259{
 260	struct per_pid *p;
 261	p = find_create_pid(tchart, pid);
 262	p->end_time = timestamp;
 263	if (p->current)
 264		p->current->end_time = timestamp;
 265}
 266
 267static void pid_put_sample(struct timechart *tchart, int pid, int type,
 268			   unsigned int cpu, u64 start, u64 end,
 269			   const char *backtrace)
 270{
 271	struct per_pid *p;
 272	struct per_pidcomm *c;
 273	struct cpu_sample *sample;
 274
 275	p = find_create_pid(tchart, pid);
 276	c = p->current;
 277	if (!c) {
 278		c = zalloc(sizeof(*c));
 279		assert(c != NULL);
 
 280		p->current = c;
 281		c->next = p->all;
 282		p->all = c;
 283	}
 284
 285	sample = zalloc(sizeof(*sample));
 286	assert(sample != NULL);
 
 287	sample->start_time = start;
 288	sample->end_time = end;
 289	sample->type = type;
 290	sample->next = c->samples;
 291	sample->cpu = cpu;
 292	sample->backtrace = backtrace;
 293	c->samples = sample;
 294
 295	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 296		c->total_time += (end-start);
 297		p->total_time += (end-start);
 298	}
 299
 300	if (c->start_time == 0 || c->start_time > start)
 301		c->start_time = start;
 302	if (p->start_time == 0 || p->start_time > start)
 303		p->start_time = start;
 304}
 305
 306#define MAX_CPUS 4096
 307
 308static u64 cpus_cstate_start_times[MAX_CPUS];
 309static int cpus_cstate_state[MAX_CPUS];
 310static u64 cpus_pstate_start_times[MAX_CPUS];
 311static u64 cpus_pstate_state[MAX_CPUS];
 312
 313static int process_comm_event(struct perf_tool *tool,
 314			      union perf_event *event,
 315			      struct perf_sample *sample __maybe_unused,
 316			      struct machine *machine __maybe_unused)
 317{
 318	struct timechart *tchart = container_of(tool, struct timechart, tool);
 319	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
 320	return 0;
 321}
 322
 323static int process_fork_event(struct perf_tool *tool,
 324			      union perf_event *event,
 325			      struct perf_sample *sample __maybe_unused,
 326			      struct machine *machine __maybe_unused)
 327{
 328	struct timechart *tchart = container_of(tool, struct timechart, tool);
 329	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
 330	return 0;
 331}
 332
 333static int process_exit_event(struct perf_tool *tool,
 334			      union perf_event *event,
 335			      struct perf_sample *sample __maybe_unused,
 336			      struct machine *machine __maybe_unused)
 337{
 338	struct timechart *tchart = container_of(tool, struct timechart, tool);
 339	pid_exit(tchart, event->fork.pid, event->fork.time);
 340	return 0;
 341}
 342
 
 
 
 
 
 
 
 
 343#ifdef SUPPORT_OLD_POWER_EVENTS
 344static int use_old_power_events;
 
 
 
 
 
 
 345#endif
 346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347static void c_state_start(int cpu, u64 timestamp, int state)
 348{
 349	cpus_cstate_start_times[cpu] = timestamp;
 350	cpus_cstate_state[cpu] = state;
 351}
 352
 353static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
 354{
 355	struct power_event *pwr = zalloc(sizeof(*pwr));
 356
 357	if (!pwr)
 358		return;
 
 359
 360	pwr->state = cpus_cstate_state[cpu];
 361	pwr->start_time = cpus_cstate_start_times[cpu];
 362	pwr->end_time = timestamp;
 363	pwr->cpu = cpu;
 364	pwr->type = CSTATE;
 365	pwr->next = tchart->power_events;
 366
 367	tchart->power_events = pwr;
 368}
 369
 370static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
 371{
 372	struct power_event *pwr;
 
 373
 374	if (new_freq > 8000000) /* detect invalid data */
 375		return;
 376
 377	pwr = zalloc(sizeof(*pwr));
 378	if (!pwr)
 379		return;
 
 380
 381	pwr->state = cpus_pstate_state[cpu];
 382	pwr->start_time = cpus_pstate_start_times[cpu];
 383	pwr->end_time = timestamp;
 384	pwr->cpu = cpu;
 385	pwr->type = PSTATE;
 386	pwr->next = tchart->power_events;
 387
 388	if (!pwr->start_time)
 389		pwr->start_time = tchart->first_time;
 390
 391	tchart->power_events = pwr;
 392
 393	cpus_pstate_state[cpu] = new_freq;
 394	cpus_pstate_start_times[cpu] = timestamp;
 395
 396	if ((u64)new_freq > tchart->max_freq)
 397		tchart->max_freq = new_freq;
 398
 399	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
 400		tchart->min_freq = new_freq;
 401
 402	if (new_freq == tchart->max_freq - 1000)
 403		tchart->turbo_frequency = tchart->max_freq;
 404}
 405
 406static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
 407			 int waker, int wakee, u8 flags, const char *backtrace)
 408{
 
 409	struct per_pid *p;
 410	struct wake_event *we = zalloc(sizeof(*we));
 411
 
 412	if (!we)
 413		return;
 414
 
 415	we->time = timestamp;
 416	we->waker = waker;
 417	we->backtrace = backtrace;
 418
 419	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
 420		we->waker = -1;
 421
 422	we->wakee = wakee;
 423	we->next = tchart->wake_events;
 424	tchart->wake_events = we;
 425	p = find_create_pid(tchart, we->wakee);
 426
 427	if (p && p->current && p->current->state == TYPE_NONE) {
 428		p->current->state_since = timestamp;
 429		p->current->state = TYPE_WAITING;
 430	}
 431	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 432		pid_put_sample(tchart, p->pid, p->current->state, cpu,
 433			       p->current->state_since, timestamp, NULL);
 434		p->current->state_since = timestamp;
 435		p->current->state = TYPE_WAITING;
 436	}
 437}
 438
 439static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
 440			 int prev_pid, int next_pid, u64 prev_state,
 441			 const char *backtrace)
 442{
 443	struct per_pid *p = NULL, *prev_p;
 
 444
 445	prev_p = find_create_pid(tchart, prev_pid);
 446
 447	p = find_create_pid(tchart, next_pid);
 
 
 448
 449	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 450		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
 451			       prev_p->current->state_since, timestamp,
 452			       backtrace);
 453	if (p && p->current) {
 454		if (p->current->state != TYPE_NONE)
 455			pid_put_sample(tchart, next_pid, p->current->state, cpu,
 456				       p->current->state_since, timestamp,
 457				       backtrace);
 458
 459		p->current->state_since = timestamp;
 460		p->current->state = TYPE_RUNNING;
 461	}
 462
 463	if (prev_p->current) {
 464		prev_p->current->state = TYPE_NONE;
 465		prev_p->current->state_since = timestamp;
 466		if (prev_state & 2)
 467			prev_p->current->state = TYPE_BLOCKED;
 468		if (prev_state == 0)
 469			prev_p->current->state = TYPE_WAITING;
 470	}
 471}
 472
 473static const char *cat_backtrace(union perf_event *event,
 474				 struct perf_sample *sample,
 475				 struct machine *machine)
 476{
 477	struct addr_location al;
 478	unsigned int i;
 479	char *p = NULL;
 480	size_t p_len;
 481	u8 cpumode = PERF_RECORD_MISC_USER;
 482	struct addr_location tal;
 483	struct ip_callchain *chain = sample->callchain;
 484	FILE *f = open_memstream(&p, &p_len);
 485
 486	if (!f) {
 487		perror("open_memstream error");
 488		return NULL;
 489	}
 490
 491	if (!chain)
 492		goto exit;
 493
 494	if (machine__resolve(machine, &al, sample) < 0) {
 495		fprintf(stderr, "problem processing %d event, skipping it.\n",
 496			event->header.type);
 497		goto exit;
 498	}
 499
 500	for (i = 0; i < chain->nr; i++) {
 501		u64 ip;
 502
 503		if (callchain_param.order == ORDER_CALLEE)
 504			ip = chain->ips[i];
 505		else
 506			ip = chain->ips[chain->nr - i - 1];
 507
 508		if (ip >= PERF_CONTEXT_MAX) {
 509			switch (ip) {
 510			case PERF_CONTEXT_HV:
 511				cpumode = PERF_RECORD_MISC_HYPERVISOR;
 512				break;
 513			case PERF_CONTEXT_KERNEL:
 514				cpumode = PERF_RECORD_MISC_KERNEL;
 515				break;
 516			case PERF_CONTEXT_USER:
 517				cpumode = PERF_RECORD_MISC_USER;
 518				break;
 519			default:
 520				pr_debug("invalid callchain context: "
 521					 "%"PRId64"\n", (s64) ip);
 522
 523				/*
 524				 * It seems the callchain is corrupted.
 525				 * Discard all.
 526				 */
 527				zfree(&p);
 528				goto exit_put;
 529			}
 530			continue;
 531		}
 532
 533		tal.filtered = 0;
 534		if (thread__find_symbol(al.thread, cpumode, ip, &tal))
 535			fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
 536		else
 537			fprintf(f, "..... %016" PRIx64 "\n", ip);
 538	}
 539exit_put:
 540	addr_location__put(&al);
 541exit:
 542	fclose(f);
 543
 544	return p;
 545}
 546
 547typedef int (*tracepoint_handler)(struct timechart *tchart,
 548				  struct evsel *evsel,
 549				  struct perf_sample *sample,
 550				  const char *backtrace);
 551
 552static int process_sample_event(struct perf_tool *tool,
 553				union perf_event *event,
 554				struct perf_sample *sample,
 555				struct evsel *evsel,
 556				struct machine *machine)
 557{
 558	struct timechart *tchart = container_of(tool, struct timechart, tool);
 559
 560	if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
 561		if (!tchart->first_time || tchart->first_time > sample->time)
 562			tchart->first_time = sample->time;
 563		if (tchart->last_time < sample->time)
 564			tchart->last_time = sample->time;
 565	}
 566
 567	if (evsel->handler != NULL) {
 568		tracepoint_handler f = evsel->handler;
 569		return f(tchart, evsel, sample,
 570			 cat_backtrace(event, sample, machine));
 571	}
 572
 573	return 0;
 574}
 575
 576static int
 577process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
 578			struct evsel *evsel,
 579			struct perf_sample *sample,
 580			const char *backtrace __maybe_unused)
 581{
 582	u32 state = perf_evsel__intval(evsel, sample, "state");
 583	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 584
 585	if (state == (u32)PWR_EVENT_EXIT)
 586		c_state_end(tchart, cpu_id, sample->time);
 587	else
 588		c_state_start(cpu_id, sample->time, state);
 589	return 0;
 590}
 591
 592static int
 593process_sample_cpu_frequency(struct timechart *tchart,
 594			     struct evsel *evsel,
 595			     struct perf_sample *sample,
 596			     const char *backtrace __maybe_unused)
 597{
 598	u32 state = perf_evsel__intval(evsel, sample, "state");
 599	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 600
 601	p_state_change(tchart, cpu_id, sample->time, state);
 602	return 0;
 603}
 604
 605static int
 606process_sample_sched_wakeup(struct timechart *tchart,
 607			    struct evsel *evsel,
 608			    struct perf_sample *sample,
 609			    const char *backtrace)
 610{
 611	u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
 612	int waker = perf_evsel__intval(evsel, sample, "common_pid");
 613	int wakee = perf_evsel__intval(evsel, sample, "pid");
 614
 615	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
 616	return 0;
 617}
 618
 619static int
 620process_sample_sched_switch(struct timechart *tchart,
 621			    struct evsel *evsel,
 622			    struct perf_sample *sample,
 623			    const char *backtrace)
 624{
 625	int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
 626	int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 627	u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 628
 629	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
 630		     prev_state, backtrace);
 631	return 0;
 632}
 633
 634#ifdef SUPPORT_OLD_POWER_EVENTS
 635static int
 636process_sample_power_start(struct timechart *tchart __maybe_unused,
 637			   struct evsel *evsel,
 638			   struct perf_sample *sample,
 639			   const char *backtrace __maybe_unused)
 640{
 641	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 642	u64 value = perf_evsel__intval(evsel, sample, "value");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643
 644	c_state_start(cpu_id, sample->time, value);
 645	return 0;
 646}
 647
 648static int
 649process_sample_power_end(struct timechart *tchart,
 650			 struct evsel *evsel __maybe_unused,
 651			 struct perf_sample *sample,
 652			 const char *backtrace __maybe_unused)
 653{
 654	c_state_end(tchart, sample->cpu, sample->time);
 655	return 0;
 656}
 657
 658static int
 659process_sample_power_frequency(struct timechart *tchart,
 660			       struct evsel *evsel,
 661			       struct perf_sample *sample,
 662			       const char *backtrace __maybe_unused)
 663{
 664	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 665	u64 value = perf_evsel__intval(evsel, sample, "value");
 666
 667	p_state_change(tchart, cpu_id, sample->time, value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668	return 0;
 669}
 670#endif /* SUPPORT_OLD_POWER_EVENTS */
 671
 672/*
 673 * After the last sample we need to wrap up the current C/P state
 674 * and close out each CPU for these.
 675 */
 676static void end_sample_processing(struct timechart *tchart)
 677{
 678	u64 cpu;
 679	struct power_event *pwr;
 680
 681	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
 682		/* C state */
 683#if 0
 684		pwr = zalloc(sizeof(*pwr));
 685		if (!pwr)
 686			return;
 
 687
 
 
 688		pwr->state = cpus_cstate_state[cpu];
 689		pwr->start_time = cpus_cstate_start_times[cpu];
 690		pwr->end_time = tchart->last_time;
 691		pwr->cpu = cpu;
 692		pwr->type = CSTATE;
 693		pwr->next = tchart->power_events;
 694
 695		tchart->power_events = pwr;
 696#endif
 697		/* P state */
 698
 699		pwr = zalloc(sizeof(*pwr));
 700		if (!pwr)
 701			return;
 
 702
 703		pwr->state = cpus_pstate_state[cpu];
 704		pwr->start_time = cpus_pstate_start_times[cpu];
 705		pwr->end_time = tchart->last_time;
 706		pwr->cpu = cpu;
 707		pwr->type = PSTATE;
 708		pwr->next = tchart->power_events;
 709
 710		if (!pwr->start_time)
 711			pwr->start_time = tchart->first_time;
 712		if (!pwr->state)
 713			pwr->state = tchart->min_freq;
 714		tchart->power_events = pwr;
 715	}
 716}
 717
 718static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
 719			       u64 start, int fd)
 720{
 721	struct per_pid *p = find_create_pid(tchart, pid);
 722	struct per_pidcomm *c = p->current;
 723	struct io_sample *sample;
 724	struct io_sample *prev;
 725
 726	if (!c) {
 727		c = zalloc(sizeof(*c));
 728		if (!c)
 729			return -ENOMEM;
 730		p->current = c;
 731		c->next = p->all;
 732		p->all = c;
 733	}
 734
 735	prev = c->io_samples;
 736
 737	if (prev && prev->start_time && !prev->end_time) {
 738		pr_warning("Skip invalid start event: "
 739			   "previous event already started!\n");
 740
 741		/* remove previous event that has been started,
 742		 * we are not sure we will ever get an end for it */
 743		c->io_samples = prev->next;
 744		free(prev);
 745		return 0;
 746	}
 747
 748	sample = zalloc(sizeof(*sample));
 749	if (!sample)
 750		return -ENOMEM;
 751	sample->start_time = start;
 752	sample->type = type;
 753	sample->fd = fd;
 754	sample->next = c->io_samples;
 755	c->io_samples = sample;
 756
 757	if (c->start_time == 0 || c->start_time > start)
 758		c->start_time = start;
 759
 760	return 0;
 761}
 762
 763static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
 764			     u64 end, long ret)
 765{
 766	struct per_pid *p = find_create_pid(tchart, pid);
 767	struct per_pidcomm *c = p->current;
 768	struct io_sample *sample, *prev;
 769
 770	if (!c) {
 771		pr_warning("Invalid pidcomm!\n");
 772		return -1;
 773	}
 774
 775	sample = c->io_samples;
 776
 777	if (!sample) /* skip partially captured events */
 778		return 0;
 779
 780	if (sample->end_time) {
 781		pr_warning("Skip invalid end event: "
 782			   "previous event already ended!\n");
 783		return 0;
 784	}
 785
 786	if (sample->type != type) {
 787		pr_warning("Skip invalid end event: invalid event type!\n");
 788		return 0;
 789	}
 790
 791	sample->end_time = end;
 792	prev = sample->next;
 793
 794	/* we want to be able to see small and fast transfers, so make them
 795	 * at least min_time long, but don't overlap them */
 796	if (sample->end_time - sample->start_time < tchart->min_time)
 797		sample->end_time = sample->start_time + tchart->min_time;
 798	if (prev && sample->start_time < prev->end_time) {
 799		if (prev->err) /* try to make errors more visible */
 800			sample->start_time = prev->end_time;
 801		else
 802			prev->end_time = sample->start_time;
 803	}
 804
 805	if (ret < 0) {
 806		sample->err = ret;
 807	} else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
 808		   type == IOTYPE_TX || type == IOTYPE_RX) {
 809
 810		if ((u64)ret > c->max_bytes)
 811			c->max_bytes = ret;
 812
 813		c->total_bytes += ret;
 814		p->total_bytes += ret;
 815		sample->bytes = ret;
 816	}
 817
 818	/* merge two requests to make svg smaller and render-friendly */
 819	if (prev &&
 820	    prev->type == sample->type &&
 821	    prev->err == sample->err &&
 822	    prev->fd == sample->fd &&
 823	    prev->end_time + tchart->merge_dist >= sample->start_time) {
 824
 825		sample->bytes += prev->bytes;
 826		sample->merges += prev->merges + 1;
 827
 828		sample->start_time = prev->start_time;
 829		sample->next = prev->next;
 830		free(prev);
 831
 832		if (!sample->err && sample->bytes > c->max_bytes)
 833			c->max_bytes = sample->bytes;
 834	}
 835
 836	tchart->io_events++;
 837
 838	return 0;
 839}
 840
 841static int
 842process_enter_read(struct timechart *tchart,
 843		   struct evsel *evsel,
 844		   struct perf_sample *sample)
 845{
 846	long fd = perf_evsel__intval(evsel, sample, "fd");
 847	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
 848				   sample->time, fd);
 849}
 850
 851static int
 852process_exit_read(struct timechart *tchart,
 853		  struct evsel *evsel,
 854		  struct perf_sample *sample)
 855{
 856	long ret = perf_evsel__intval(evsel, sample, "ret");
 857	return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
 858				 sample->time, ret);
 859}
 860
 861static int
 862process_enter_write(struct timechart *tchart,
 863		    struct evsel *evsel,
 864		    struct perf_sample *sample)
 865{
 866	long fd = perf_evsel__intval(evsel, sample, "fd");
 867	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 868				   sample->time, fd);
 869}
 870
 871static int
 872process_exit_write(struct timechart *tchart,
 873		   struct evsel *evsel,
 874		   struct perf_sample *sample)
 875{
 876	long ret = perf_evsel__intval(evsel, sample, "ret");
 877	return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 878				 sample->time, ret);
 879}
 880
 881static int
 882process_enter_sync(struct timechart *tchart,
 883		   struct evsel *evsel,
 884		   struct perf_sample *sample)
 885{
 886	long fd = perf_evsel__intval(evsel, sample, "fd");
 887	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 888				   sample->time, fd);
 889}
 890
 891static int
 892process_exit_sync(struct timechart *tchart,
 893		  struct evsel *evsel,
 894		  struct perf_sample *sample)
 895{
 896	long ret = perf_evsel__intval(evsel, sample, "ret");
 897	return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 898				 sample->time, ret);
 899}
 900
 901static int
 902process_enter_tx(struct timechart *tchart,
 903		 struct evsel *evsel,
 904		 struct perf_sample *sample)
 905{
 906	long fd = perf_evsel__intval(evsel, sample, "fd");
 907	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
 908				   sample->time, fd);
 909}
 910
 911static int
 912process_exit_tx(struct timechart *tchart,
 913		struct evsel *evsel,
 914		struct perf_sample *sample)
 915{
 916	long ret = perf_evsel__intval(evsel, sample, "ret");
 917	return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
 918				 sample->time, ret);
 919}
 920
 921static int
 922process_enter_rx(struct timechart *tchart,
 923		 struct evsel *evsel,
 924		 struct perf_sample *sample)
 925{
 926	long fd = perf_evsel__intval(evsel, sample, "fd");
 927	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
 928				   sample->time, fd);
 929}
 930
 931static int
 932process_exit_rx(struct timechart *tchart,
 933		struct evsel *evsel,
 934		struct perf_sample *sample)
 935{
 936	long ret = perf_evsel__intval(evsel, sample, "ret");
 937	return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
 938				 sample->time, ret);
 939}
 940
 941static int
 942process_enter_poll(struct timechart *tchart,
 943		   struct evsel *evsel,
 944		   struct perf_sample *sample)
 945{
 946	long fd = perf_evsel__intval(evsel, sample, "fd");
 947	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
 948				   sample->time, fd);
 949}
 950
 951static int
 952process_exit_poll(struct timechart *tchart,
 953		  struct evsel *evsel,
 954		  struct perf_sample *sample)
 955{
 956	long ret = perf_evsel__intval(evsel, sample, "ret");
 957	return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
 958				 sample->time, ret);
 959}
 960
 961/*
 962 * Sort the pid datastructure
 963 */
 964static void sort_pids(struct timechart *tchart)
 965{
 966	struct per_pid *new_list, *p, *cursor, *prev;
 967	/* sort by ppid first, then by pid, lowest to highest */
 968
 969	new_list = NULL;
 970
 971	while (tchart->all_data) {
 972		p = tchart->all_data;
 973		tchart->all_data = p->next;
 974		p->next = NULL;
 975
 976		if (new_list == NULL) {
 977			new_list = p;
 978			p->next = NULL;
 979			continue;
 980		}
 981		prev = NULL;
 982		cursor = new_list;
 983		while (cursor) {
 984			if (cursor->ppid > p->ppid ||
 985				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 986				/* must insert before */
 987				if (prev) {
 988					p->next = prev->next;
 989					prev->next = p;
 990					cursor = NULL;
 991					continue;
 992				} else {
 993					p->next = new_list;
 994					new_list = p;
 995					cursor = NULL;
 996					continue;
 997				}
 998			}
 999
1000			prev = cursor;
1001			cursor = cursor->next;
1002			if (!cursor)
1003				prev->next = p;
1004		}
1005	}
1006	tchart->all_data = new_list;
1007}
1008
1009
1010static void draw_c_p_states(struct timechart *tchart)
1011{
1012	struct power_event *pwr;
1013	pwr = tchart->power_events;
1014
1015	/*
1016	 * two pass drawing so that the P state bars are on top of the C state blocks
1017	 */
1018	while (pwr) {
1019		if (pwr->type == CSTATE)
1020			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1021		pwr = pwr->next;
1022	}
1023
1024	pwr = tchart->power_events;
1025	while (pwr) {
1026		if (pwr->type == PSTATE) {
1027			if (!pwr->state)
1028				pwr->state = tchart->min_freq;
1029			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030		}
1031		pwr = pwr->next;
1032	}
1033}
1034
1035static void draw_wakeups(struct timechart *tchart)
1036{
1037	struct wake_event *we;
1038	struct per_pid *p;
1039	struct per_pidcomm *c;
1040
1041	we = tchart->wake_events;
1042	while (we) {
1043		int from = 0, to = 0;
1044		char *task_from = NULL, *task_to = NULL;
1045
1046		/* locate the column of the waker and wakee */
1047		p = tchart->all_data;
1048		while (p) {
1049			if (p->pid == we->waker || p->pid == we->wakee) {
1050				c = p->all;
1051				while (c) {
1052					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1053						if (p->pid == we->waker && !from) {
1054							from = c->Y;
1055							task_from = strdup(c->comm);
1056						}
1057						if (p->pid == we->wakee && !to) {
1058							to = c->Y;
1059							task_to = strdup(c->comm);
1060						}
1061					}
1062					c = c->next;
1063				}
1064				c = p->all;
1065				while (c) {
1066					if (p->pid == we->waker && !from) {
1067						from = c->Y;
1068						task_from = strdup(c->comm);
1069					}
1070					if (p->pid == we->wakee && !to) {
1071						to = c->Y;
1072						task_to = strdup(c->comm);
1073					}
1074					c = c->next;
1075				}
1076			}
1077			p = p->next;
1078		}
1079
1080		if (!task_from) {
1081			task_from = malloc(40);
1082			sprintf(task_from, "[%i]", we->waker);
1083		}
1084		if (!task_to) {
1085			task_to = malloc(40);
1086			sprintf(task_to, "[%i]", we->wakee);
1087		}
1088
1089		if (we->waker == -1)
1090			svg_interrupt(we->time, to, we->backtrace);
1091		else if (from && to && abs(from - to) == 1)
1092			svg_wakeline(we->time, from, to, we->backtrace);
1093		else
1094			svg_partial_wakeline(we->time, from, task_from, to,
1095					     task_to, we->backtrace);
1096		we = we->next;
1097
1098		free(task_from);
1099		free(task_to);
1100	}
1101}
1102
1103static void draw_cpu_usage(struct timechart *tchart)
1104{
1105	struct per_pid *p;
1106	struct per_pidcomm *c;
1107	struct cpu_sample *sample;
1108	p = tchart->all_data;
1109	while (p) {
1110		c = p->all;
1111		while (c) {
1112			sample = c->samples;
1113			while (sample) {
1114				if (sample->type == TYPE_RUNNING) {
1115					svg_process(sample->cpu,
1116						    sample->start_time,
1117						    sample->end_time,
1118						    p->pid,
1119						    c->comm,
1120						    sample->backtrace);
1121				}
1122
1123				sample = sample->next;
1124			}
1125			c = c->next;
1126		}
1127		p = p->next;
1128	}
1129}
1130
1131static void draw_io_bars(struct timechart *tchart)
1132{
1133	const char *suf;
1134	double bytes;
1135	char comm[256];
1136	struct per_pid *p;
1137	struct per_pidcomm *c;
1138	struct io_sample *sample;
1139	int Y = 1;
1140
1141	p = tchart->all_data;
1142	while (p) {
1143		c = p->all;
1144		while (c) {
1145			if (!c->display) {
1146				c->Y = 0;
1147				c = c->next;
1148				continue;
1149			}
1150
1151			svg_box(Y, c->start_time, c->end_time, "process3");
1152			sample = c->io_samples;
1153			for (sample = c->io_samples; sample; sample = sample->next) {
1154				double h = (double)sample->bytes / c->max_bytes;
1155
1156				if (tchart->skip_eagain &&
1157				    sample->err == -EAGAIN)
1158					continue;
1159
1160				if (sample->err)
1161					h = 1;
1162
1163				if (sample->type == IOTYPE_SYNC)
1164					svg_fbox(Y,
1165						sample->start_time,
1166						sample->end_time,
1167						1,
1168						sample->err ? "error" : "sync",
1169						sample->fd,
1170						sample->err,
1171						sample->merges);
1172				else if (sample->type == IOTYPE_POLL)
1173					svg_fbox(Y,
1174						sample->start_time,
1175						sample->end_time,
1176						1,
1177						sample->err ? "error" : "poll",
1178						sample->fd,
1179						sample->err,
1180						sample->merges);
1181				else if (sample->type == IOTYPE_READ)
1182					svg_ubox(Y,
1183						sample->start_time,
1184						sample->end_time,
1185						h,
1186						sample->err ? "error" : "disk",
1187						sample->fd,
1188						sample->err,
1189						sample->merges);
1190				else if (sample->type == IOTYPE_WRITE)
1191					svg_lbox(Y,
1192						sample->start_time,
1193						sample->end_time,
1194						h,
1195						sample->err ? "error" : "disk",
1196						sample->fd,
1197						sample->err,
1198						sample->merges);
1199				else if (sample->type == IOTYPE_RX)
1200					svg_ubox(Y,
1201						sample->start_time,
1202						sample->end_time,
1203						h,
1204						sample->err ? "error" : "net",
1205						sample->fd,
1206						sample->err,
1207						sample->merges);
1208				else if (sample->type == IOTYPE_TX)
1209					svg_lbox(Y,
1210						sample->start_time,
1211						sample->end_time,
1212						h,
1213						sample->err ? "error" : "net",
1214						sample->fd,
1215						sample->err,
1216						sample->merges);
1217			}
1218
1219			suf = "";
1220			bytes = c->total_bytes;
1221			if (bytes > 1024) {
1222				bytes = bytes / 1024;
1223				suf = "K";
1224			}
1225			if (bytes > 1024) {
1226				bytes = bytes / 1024;
1227				suf = "M";
1228			}
1229			if (bytes > 1024) {
1230				bytes = bytes / 1024;
1231				suf = "G";
1232			}
1233
1234
1235			sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1236			svg_text(Y, c->start_time, comm);
1237
1238			c->Y = Y;
1239			Y++;
1240			c = c->next;
1241		}
1242		p = p->next;
1243	}
1244}
1245
1246static void draw_process_bars(struct timechart *tchart)
1247{
1248	struct per_pid *p;
1249	struct per_pidcomm *c;
1250	struct cpu_sample *sample;
1251	int Y = 0;
1252
1253	Y = 2 * tchart->numcpus + 2;
1254
1255	p = tchart->all_data;
1256	while (p) {
1257		c = p->all;
1258		while (c) {
1259			if (!c->display) {
1260				c->Y = 0;
1261				c = c->next;
1262				continue;
1263			}
1264
1265			svg_box(Y, c->start_time, c->end_time, "process");
1266			sample = c->samples;
1267			while (sample) {
1268				if (sample->type == TYPE_RUNNING)
1269					svg_running(Y, sample->cpu,
1270						    sample->start_time,
1271						    sample->end_time,
1272						    sample->backtrace);
1273				if (sample->type == TYPE_BLOCKED)
1274					svg_blocked(Y, sample->cpu,
1275						    sample->start_time,
1276						    sample->end_time,
1277						    sample->backtrace);
1278				if (sample->type == TYPE_WAITING)
1279					svg_waiting(Y, sample->cpu,
1280						    sample->start_time,
1281						    sample->end_time,
1282						    sample->backtrace);
1283				sample = sample->next;
1284			}
1285
1286			if (c->comm) {
1287				char comm[256];
1288				if (c->total_time > 5000000000) /* 5 seconds */
1289					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1290				else
1291					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1292
1293				svg_text(Y, c->start_time, comm);
1294			}
1295			c->Y = Y;
1296			Y++;
1297			c = c->next;
1298		}
1299		p = p->next;
1300	}
1301}
1302
1303static void add_process_filter(const char *string)
1304{
1305	int pid = strtoull(string, NULL, 10);
1306	struct process_filter *filt = malloc(sizeof(*filt));
1307
 
 
1308	if (!filt)
1309		return;
1310
1311	filt->name = strdup(string);
1312	filt->pid  = pid;
1313	filt->next = process_filter;
1314
1315	process_filter = filt;
1316}
1317
1318static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1319{
1320	struct process_filter *filt;
1321	if (!process_filter)
1322		return 1;
1323
1324	filt = process_filter;
1325	while (filt) {
1326		if (filt->pid && p->pid == filt->pid)
1327			return 1;
1328		if (strcmp(filt->name, c->comm) == 0)
1329			return 1;
1330		filt = filt->next;
1331	}
1332	return 0;
1333}
1334
1335static int determine_display_tasks_filtered(struct timechart *tchart)
1336{
1337	struct per_pid *p;
1338	struct per_pidcomm *c;
1339	int count = 0;
1340
1341	p = tchart->all_data;
1342	while (p) {
1343		p->display = 0;
1344		if (p->start_time == 1)
1345			p->start_time = tchart->first_time;
1346
1347		/* no exit marker, task kept running to the end */
1348		if (p->end_time == 0)
1349			p->end_time = tchart->last_time;
1350
1351		c = p->all;
1352
1353		while (c) {
1354			c->display = 0;
1355
1356			if (c->start_time == 1)
1357				c->start_time = tchart->first_time;
1358
1359			if (passes_filter(p, c)) {
1360				c->display = 1;
1361				p->display = 1;
1362				count++;
1363			}
1364
1365			if (c->end_time == 0)
1366				c->end_time = tchart->last_time;
1367
1368			c = c->next;
1369		}
1370		p = p->next;
1371	}
1372	return count;
1373}
1374
1375static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1376{
1377	struct per_pid *p;
1378	struct per_pidcomm *c;
1379	int count = 0;
1380
1381	p = tchart->all_data;
 
 
 
1382	while (p) {
1383		p->display = 0;
1384		if (p->start_time == 1)
1385			p->start_time = tchart->first_time;
1386
1387		/* no exit marker, task kept running to the end */
1388		if (p->end_time == 0)
1389			p->end_time = tchart->last_time;
1390		if (p->total_time >= threshold)
1391			p->display = 1;
1392
1393		c = p->all;
1394
1395		while (c) {
1396			c->display = 0;
1397
1398			if (c->start_time == 1)
1399				c->start_time = tchart->first_time;
1400
1401			if (c->total_time >= threshold) {
1402				c->display = 1;
1403				count++;
1404			}
1405
1406			if (c->end_time == 0)
1407				c->end_time = tchart->last_time;
1408
1409			c = c->next;
1410		}
1411		p = p->next;
1412	}
1413	return count;
1414}
1415
1416static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1417{
1418	struct per_pid *p;
1419	struct per_pidcomm *c;
1420	int count = 0;
1421
1422	p = timechart->all_data;
1423	while (p) {
1424		/* no exit marker, task kept running to the end */
1425		if (p->end_time == 0)
1426			p->end_time = timechart->last_time;
1427
1428		c = p->all;
1429
1430		while (c) {
1431			c->display = 0;
1432
1433			if (c->total_bytes >= threshold) {
1434				c->display = 1;
1435				count++;
1436			}
1437
1438			if (c->end_time == 0)
1439				c->end_time = timechart->last_time;
1440
1441			c = c->next;
1442		}
1443		p = p->next;
1444	}
1445	return count;
1446}
1447
1448#define BYTES_THRESH (1 * 1024 * 1024)
1449#define TIME_THRESH 10000000
1450
1451static void write_svg_file(struct timechart *tchart, const char *filename)
1452{
1453	u64 i;
1454	int count;
1455	int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1456
1457	if (tchart->power_only)
1458		tchart->proc_num = 0;
1459
1460	/* We'd like to show at least proc_num tasks;
1461	 * be less picky if we have fewer */
1462	do {
1463		if (process_filter)
1464			count = determine_display_tasks_filtered(tchart);
1465		else if (tchart->io_events)
1466			count = determine_display_io_tasks(tchart, thresh);
1467		else
1468			count = determine_display_tasks(tchart, thresh);
1469		thresh /= 10;
1470	} while (!process_filter && thresh && count < tchart->proc_num);
1471
1472	if (!tchart->proc_num)
1473		count = 0;
1474
1475	if (tchart->io_events) {
1476		open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1477
1478		svg_time_grid(0.5);
1479		svg_io_legenda();
 
1480
1481		draw_io_bars(tchart);
1482	} else {
1483		open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1484
1485		svg_time_grid(0);
 
1486
1487		svg_legenda();
 
1488
1489		for (i = 0; i < tchart->numcpus; i++)
1490			svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1491
1492		draw_cpu_usage(tchart);
1493		if (tchart->proc_num)
1494			draw_process_bars(tchart);
1495		if (!tchart->tasks_only)
1496			draw_c_p_states(tchart);
1497		if (tchart->proc_num)
1498			draw_wakeups(tchart);
1499	}
1500
1501	svg_close();
1502}
1503
1504static int process_header(struct perf_file_section *section __maybe_unused,
1505			  struct perf_header *ph,
1506			  int feat,
1507			  int fd __maybe_unused,
1508			  void *data)
1509{
1510	struct timechart *tchart = data;
1511
1512	switch (feat) {
1513	case HEADER_NRCPUS:
1514		tchart->numcpus = ph->env.nr_cpus_avail;
1515		break;
1516
1517	case HEADER_CPU_TOPOLOGY:
1518		if (!tchart->topology)
1519			break;
1520
1521		if (svg_build_topology_map(&ph->env))
1522			fprintf(stderr, "problem building topology\n");
1523		break;
1524
1525	default:
1526		break;
1527	}
1528
1529	return 0;
1530}
1531
1532static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1533{
1534	const struct evsel_str_handler power_tracepoints[] = {
1535		{ "power:cpu_idle",		process_sample_cpu_idle },
1536		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1537		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1538		{ "sched:sched_switch",		process_sample_sched_switch },
1539#ifdef SUPPORT_OLD_POWER_EVENTS
1540		{ "power:power_start",		process_sample_power_start },
1541		{ "power:power_end",		process_sample_power_end },
1542		{ "power:power_frequency",	process_sample_power_frequency },
1543#endif
1544
1545		{ "syscalls:sys_enter_read",		process_enter_read },
1546		{ "syscalls:sys_enter_pread64",		process_enter_read },
1547		{ "syscalls:sys_enter_readv",		process_enter_read },
1548		{ "syscalls:sys_enter_preadv",		process_enter_read },
1549		{ "syscalls:sys_enter_write",		process_enter_write },
1550		{ "syscalls:sys_enter_pwrite64",	process_enter_write },
1551		{ "syscalls:sys_enter_writev",		process_enter_write },
1552		{ "syscalls:sys_enter_pwritev",		process_enter_write },
1553		{ "syscalls:sys_enter_sync",		process_enter_sync },
1554		{ "syscalls:sys_enter_sync_file_range",	process_enter_sync },
1555		{ "syscalls:sys_enter_fsync",		process_enter_sync },
1556		{ "syscalls:sys_enter_msync",		process_enter_sync },
1557		{ "syscalls:sys_enter_recvfrom",	process_enter_rx },
1558		{ "syscalls:sys_enter_recvmmsg",	process_enter_rx },
1559		{ "syscalls:sys_enter_recvmsg",		process_enter_rx },
1560		{ "syscalls:sys_enter_sendto",		process_enter_tx },
1561		{ "syscalls:sys_enter_sendmsg",		process_enter_tx },
1562		{ "syscalls:sys_enter_sendmmsg",	process_enter_tx },
1563		{ "syscalls:sys_enter_epoll_pwait",	process_enter_poll },
1564		{ "syscalls:sys_enter_epoll_wait",	process_enter_poll },
1565		{ "syscalls:sys_enter_poll",		process_enter_poll },
1566		{ "syscalls:sys_enter_ppoll",		process_enter_poll },
1567		{ "syscalls:sys_enter_pselect6",	process_enter_poll },
1568		{ "syscalls:sys_enter_select",		process_enter_poll },
1569
1570		{ "syscalls:sys_exit_read",		process_exit_read },
1571		{ "syscalls:sys_exit_pread64",		process_exit_read },
1572		{ "syscalls:sys_exit_readv",		process_exit_read },
1573		{ "syscalls:sys_exit_preadv",		process_exit_read },
1574		{ "syscalls:sys_exit_write",		process_exit_write },
1575		{ "syscalls:sys_exit_pwrite64",		process_exit_write },
1576		{ "syscalls:sys_exit_writev",		process_exit_write },
1577		{ "syscalls:sys_exit_pwritev",		process_exit_write },
1578		{ "syscalls:sys_exit_sync",		process_exit_sync },
1579		{ "syscalls:sys_exit_sync_file_range",	process_exit_sync },
1580		{ "syscalls:sys_exit_fsync",		process_exit_sync },
1581		{ "syscalls:sys_exit_msync",		process_exit_sync },
1582		{ "syscalls:sys_exit_recvfrom",		process_exit_rx },
1583		{ "syscalls:sys_exit_recvmmsg",		process_exit_rx },
1584		{ "syscalls:sys_exit_recvmsg",		process_exit_rx },
1585		{ "syscalls:sys_exit_sendto",		process_exit_tx },
1586		{ "syscalls:sys_exit_sendmsg",		process_exit_tx },
1587		{ "syscalls:sys_exit_sendmmsg",		process_exit_tx },
1588		{ "syscalls:sys_exit_epoll_pwait",	process_exit_poll },
1589		{ "syscalls:sys_exit_epoll_wait",	process_exit_poll },
1590		{ "syscalls:sys_exit_poll",		process_exit_poll },
1591		{ "syscalls:sys_exit_ppoll",		process_exit_poll },
1592		{ "syscalls:sys_exit_pselect6",		process_exit_poll },
1593		{ "syscalls:sys_exit_select",		process_exit_poll },
1594	};
1595	struct perf_data data = {
1596		.path  = input_name,
1597		.mode  = PERF_DATA_MODE_READ,
1598		.force = tchart->force,
1599	};
1600
1601	struct perf_session *session = perf_session__new(&data, false,
1602							 &tchart->tool);
1603	int ret = -EINVAL;
1604
1605	if (IS_ERR(session))
1606		return PTR_ERR(session);
1607
1608	symbol__init(&session->header.env);
1609
1610	(void)perf_header__process_sections(&session->header,
1611					    perf_data__fd(session->data),
1612					    tchart,
1613					    process_header);
1614
1615	if (!perf_session__has_traces(session, "timechart record"))
1616		goto out_delete;
1617
1618	if (perf_session__set_tracepoints_handlers(session,
1619						   power_tracepoints)) {
1620		pr_err("Initializing session tracepoint handlers failed\n");
1621		goto out_delete;
1622	}
1623
1624	ret = perf_session__process_events(session);
1625	if (ret)
1626		goto out_delete;
1627
1628	end_sample_processing(tchart);
1629
1630	sort_pids(tchart);
1631
1632	write_svg_file(tchart, output_name);
1633
1634	pr_info("Written %2.1f seconds of trace to %s.\n",
1635		(tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1636out_delete:
1637	perf_session__delete(session);
1638	return ret;
1639}
1640
1641static int timechart__io_record(int argc, const char **argv)
1642{
1643	unsigned int rec_argc, i;
1644	const char **rec_argv;
1645	const char **p;
1646	char *filter = NULL;
1647
1648	const char * const common_args[] = {
1649		"record", "-a", "-R", "-c", "1",
1650	};
1651	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1652
1653	const char * const disk_events[] = {
1654		"syscalls:sys_enter_read",
1655		"syscalls:sys_enter_pread64",
1656		"syscalls:sys_enter_readv",
1657		"syscalls:sys_enter_preadv",
1658		"syscalls:sys_enter_write",
1659		"syscalls:sys_enter_pwrite64",
1660		"syscalls:sys_enter_writev",
1661		"syscalls:sys_enter_pwritev",
1662		"syscalls:sys_enter_sync",
1663		"syscalls:sys_enter_sync_file_range",
1664		"syscalls:sys_enter_fsync",
1665		"syscalls:sys_enter_msync",
1666
1667		"syscalls:sys_exit_read",
1668		"syscalls:sys_exit_pread64",
1669		"syscalls:sys_exit_readv",
1670		"syscalls:sys_exit_preadv",
1671		"syscalls:sys_exit_write",
1672		"syscalls:sys_exit_pwrite64",
1673		"syscalls:sys_exit_writev",
1674		"syscalls:sys_exit_pwritev",
1675		"syscalls:sys_exit_sync",
1676		"syscalls:sys_exit_sync_file_range",
1677		"syscalls:sys_exit_fsync",
1678		"syscalls:sys_exit_msync",
1679	};
1680	unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1681
1682	const char * const net_events[] = {
1683		"syscalls:sys_enter_recvfrom",
1684		"syscalls:sys_enter_recvmmsg",
1685		"syscalls:sys_enter_recvmsg",
1686		"syscalls:sys_enter_sendto",
1687		"syscalls:sys_enter_sendmsg",
1688		"syscalls:sys_enter_sendmmsg",
1689
1690		"syscalls:sys_exit_recvfrom",
1691		"syscalls:sys_exit_recvmmsg",
1692		"syscalls:sys_exit_recvmsg",
1693		"syscalls:sys_exit_sendto",
1694		"syscalls:sys_exit_sendmsg",
1695		"syscalls:sys_exit_sendmmsg",
1696	};
1697	unsigned int net_events_nr = ARRAY_SIZE(net_events);
1698
1699	const char * const poll_events[] = {
1700		"syscalls:sys_enter_epoll_pwait",
1701		"syscalls:sys_enter_epoll_wait",
1702		"syscalls:sys_enter_poll",
1703		"syscalls:sys_enter_ppoll",
1704		"syscalls:sys_enter_pselect6",
1705		"syscalls:sys_enter_select",
1706
1707		"syscalls:sys_exit_epoll_pwait",
1708		"syscalls:sys_exit_epoll_wait",
1709		"syscalls:sys_exit_poll",
1710		"syscalls:sys_exit_ppoll",
1711		"syscalls:sys_exit_pselect6",
1712		"syscalls:sys_exit_select",
1713	};
1714	unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1715
1716	rec_argc = common_args_nr +
1717		disk_events_nr * 4 +
1718		net_events_nr * 4 +
1719		poll_events_nr * 4 +
1720		argc;
1721	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1722
1723	if (rec_argv == NULL)
1724		return -ENOMEM;
1725
1726	if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1727		free(rec_argv);
1728		return -ENOMEM;
1729	}
1730
1731	p = rec_argv;
1732	for (i = 0; i < common_args_nr; i++)
1733		*p++ = strdup(common_args[i]);
1734
1735	for (i = 0; i < disk_events_nr; i++) {
1736		if (!is_valid_tracepoint(disk_events[i])) {
1737			rec_argc -= 4;
1738			continue;
1739		}
1740
1741		*p++ = "-e";
1742		*p++ = strdup(disk_events[i]);
1743		*p++ = "--filter";
1744		*p++ = filter;
1745	}
1746	for (i = 0; i < net_events_nr; i++) {
1747		if (!is_valid_tracepoint(net_events[i])) {
1748			rec_argc -= 4;
1749			continue;
1750		}
1751
1752		*p++ = "-e";
1753		*p++ = strdup(net_events[i]);
1754		*p++ = "--filter";
1755		*p++ = filter;
1756	}
1757	for (i = 0; i < poll_events_nr; i++) {
1758		if (!is_valid_tracepoint(poll_events[i])) {
1759			rec_argc -= 4;
1760			continue;
1761		}
1762
1763		*p++ = "-e";
1764		*p++ = strdup(poll_events[i]);
1765		*p++ = "--filter";
1766		*p++ = filter;
1767	}
1768
1769	for (i = 0; i < (unsigned int)argc; i++)
1770		*p++ = argv[i];
1771
1772	return cmd_record(rec_argc, rec_argv);
1773}
 
 
 
 
 
 
 
 
 
 
 
 
1774
 
 
 
 
 
 
 
 
 
 
 
1775
1776static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1777{
1778	unsigned int rec_argc, i, j;
1779	const char **rec_argv;
1780	const char **p;
1781	unsigned int record_elems;
1782
1783	const char * const common_args[] = {
1784		"record", "-a", "-R", "-c", "1",
1785	};
1786	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1787
1788	const char * const backtrace_args[] = {
1789		"-g",
1790	};
1791	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1792
1793	const char * const power_args[] = {
1794		"-e", "power:cpu_frequency",
1795		"-e", "power:cpu_idle",
1796	};
1797	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1798
1799	const char * const old_power_args[] = {
1800#ifdef SUPPORT_OLD_POWER_EVENTS
1801		"-e", "power:power_start",
1802		"-e", "power:power_end",
1803		"-e", "power:power_frequency",
1804#endif
1805	};
1806	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1807
1808	const char * const tasks_args[] = {
1809		"-e", "sched:sched_wakeup",
1810		"-e", "sched:sched_switch",
1811	};
1812	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1813
1814#ifdef SUPPORT_OLD_POWER_EVENTS
1815	if (!is_valid_tracepoint("power:cpu_idle") &&
1816	    is_valid_tracepoint("power:power_start")) {
1817		use_old_power_events = 1;
1818		power_args_nr = 0;
1819	} else {
1820		old_power_args_nr = 0;
1821	}
1822#endif
1823
1824	if (tchart->power_only)
1825		tasks_args_nr = 0;
1826
1827	if (tchart->tasks_only) {
1828		power_args_nr = 0;
1829		old_power_args_nr = 0;
1830	}
1831
1832	if (!tchart->with_backtrace)
1833		backtrace_args_no = 0;
1834
1835	record_elems = common_args_nr + tasks_args_nr +
1836		power_args_nr + old_power_args_nr + backtrace_args_no;
1837
1838	rec_argc = record_elems + argc;
1839	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1840
1841	if (rec_argv == NULL)
1842		return -ENOMEM;
1843
1844	p = rec_argv;
1845	for (i = 0; i < common_args_nr; i++)
1846		*p++ = strdup(common_args[i]);
1847
1848	for (i = 0; i < backtrace_args_no; i++)
1849		*p++ = strdup(backtrace_args[i]);
1850
1851	for (i = 0; i < tasks_args_nr; i++)
1852		*p++ = strdup(tasks_args[i]);
1853
1854	for (i = 0; i < power_args_nr; i++)
1855		*p++ = strdup(power_args[i]);
1856
1857	for (i = 0; i < old_power_args_nr; i++)
1858		*p++ = strdup(old_power_args[i]);
1859
1860	for (j = 0; j < (unsigned int)argc; j++)
1861		*p++ = argv[j];
1862
1863	return cmd_record(rec_argc, rec_argv);
1864}
1865
1866static int
1867parse_process(const struct option *opt __maybe_unused, const char *arg,
1868	      int __maybe_unused unset)
1869{
1870	if (arg)
1871		add_process_filter(arg);
1872	return 0;
1873}
1874
1875static int
1876parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1877		int __maybe_unused unset)
1878{
1879	unsigned long duration = strtoul(arg, NULL, 0);
1880
1881	if (svg_highlight || svg_highlight_name)
1882		return -1;
1883
1884	if (duration)
1885		svg_highlight = duration;
1886	else
1887		svg_highlight_name = strdup(arg);
 
 
 
1888
1889	return 0;
1890}
1891
1892static int
1893parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1894{
1895	char unit = 'n';
1896	u64 *value = opt->value;
1897
1898	if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1899		switch (unit) {
1900		case 'm':
1901			*value *= NSEC_PER_MSEC;
1902			break;
1903		case 'u':
1904			*value *= NSEC_PER_USEC;
1905			break;
1906		case 'n':
1907			break;
1908		default:
1909			return -1;
1910		}
1911	}
1912
1913	return 0;
1914}
1915
1916int cmd_timechart(int argc, const char **argv)
1917{
1918	struct timechart tchart = {
1919		.tool = {
1920			.comm		 = process_comm_event,
1921			.fork		 = process_fork_event,
1922			.exit		 = process_exit_event,
1923			.sample		 = process_sample_event,
1924			.ordered_events	 = true,
1925		},
1926		.proc_num = 15,
1927		.min_time = NSEC_PER_MSEC,
1928		.merge_dist = 1000,
1929	};
1930	const char *output_name = "output.svg";
1931	const struct option timechart_common_options[] = {
1932	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1933	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1934	OPT_END()
1935	};
1936	const struct option timechart_options[] = {
1937	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1938	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1939	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1940	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1941		      "highlight tasks. Pass duration in ns or process name.",
1942		       parse_highlight),
1943	OPT_CALLBACK('p', "process", NULL, "process",
1944		      "process selector. Pass a pid or process name.",
1945		       parse_process),
1946	OPT_CALLBACK(0, "symfs", NULL, "directory",
1947		     "Look for files with symbols relative to this directory",
1948		     symbol__config_symfs),
1949	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1950		    "min. number of tasks to print"),
1951	OPT_BOOLEAN('t', "topology", &tchart.topology,
1952		    "sort CPUs according to topology"),
1953	OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1954		    "skip EAGAIN errors"),
1955	OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1956		     "all IO faster than min-time will visually appear longer",
1957		     parse_time),
1958	OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1959		     "merge events that are merge-dist us apart",
1960		     parse_time),
1961	OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1962	OPT_PARENT(timechart_common_options),
1963	};
1964	const char * const timechart_subcommands[] = { "record", NULL };
1965	const char *timechart_usage[] = {
1966		"perf timechart [<options>] {record}",
1967		NULL
1968	};
1969	const struct option timechart_record_options[] = {
1970	OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1971		    "record only IO data"),
1972	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1973	OPT_PARENT(timechart_common_options),
1974	};
1975	const char * const timechart_record_usage[] = {
1976		"perf timechart record [<options>]",
1977		NULL
1978	};
1979	argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1980			timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1981
1982	if (tchart.power_only && tchart.tasks_only) {
1983		pr_err("-P and -T options cannot be used at the same time.\n");
1984		return -1;
1985	}
1986
1987	if (argc && !strncmp(argv[0], "rec", 3)) {
1988		argc = parse_options(argc, argv, timechart_record_options,
1989				     timechart_record_usage,
1990				     PARSE_OPT_STOP_AT_NON_OPTION);
1991
1992		if (tchart.power_only && tchart.tasks_only) {
1993			pr_err("-P and -T options cannot be used at the same time.\n");
1994			return -1;
1995		}
1996
1997		if (tchart.io_only)
1998			return timechart__io_record(argc, argv);
1999		else
2000			return timechart__record(&tchart, argc, argv);
2001	} else if (argc)
2002		usage_with_options(timechart_usage, timechart_options);
2003
2004	setup_pager();
2005
2006	return __cmd_timechart(&tchart, output_name);
2007}
v3.1
 
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
 
 
 
  15#include "builtin.h"
  16
  17#include "util/util.h"
  18
  19#include "util/color.h"
  20#include <linux/list.h>
  21#include "util/cache.h"
 
 
  22#include <linux/rbtree.h>
 
 
  23#include "util/symbol.h"
 
  24#include "util/callchain.h"
  25#include "util/strlist.h"
  26
  27#include "perf.h"
  28#include "util/header.h"
  29#include "util/parse-options.h"
 
  30#include "util/parse-events.h"
  31#include "util/event.h"
  32#include "util/session.h"
  33#include "util/svghelper.h"
 
 
 
 
 
 
 
 
  34
  35#define SUPPORT_OLD_POWER_EVENTS 1
  36#define PWR_EVENT_EXIT -1
  37
 
 
 
  38
  39static char		const *input_name = "perf.data";
  40static char		const *output_name = "output.svg";
  41
  42static unsigned int	numcpus;
  43static u64		min_freq;	/* Lowest CPU frequency seen */
  44static u64		max_freq;	/* Highest CPU frequency seen */
  45static u64		turbo_frequency;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46
  47static u64		first_time, last_time;
  48
  49static bool		power_only;
  50
  51
  52struct per_pid;
  53struct per_pidcomm;
  54
  55struct cpu_sample;
  56struct power_event;
  57struct wake_event;
  58
  59struct sample_wrapper;
  60
  61/*
  62 * Datastructure layout:
  63 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  64 * Each "pid" entry, has a list of "comm"s.
  65 *	this is because we want to track different programs different, while
  66 *	exec will reuse the original pid (by design).
  67 * Each comm has a list of samples that will be used to draw
  68 * final graph.
  69 */
  70
  71struct per_pid {
  72	struct per_pid *next;
  73
  74	int		pid;
  75	int		ppid;
  76
  77	u64		start_time;
  78	u64		end_time;
  79	u64		total_time;
 
  80	int		display;
  81
  82	struct per_pidcomm *all;
  83	struct per_pidcomm *current;
  84};
  85
  86
  87struct per_pidcomm {
  88	struct per_pidcomm *next;
  89
  90	u64		start_time;
  91	u64		end_time;
  92	u64		total_time;
 
 
  93
  94	int		Y;
  95	int		display;
  96
  97	long		state;
  98	u64		state_since;
  99
 100	char		*comm;
 101
 102	struct cpu_sample *samples;
 
 103};
 104
 105struct sample_wrapper {
 106	struct sample_wrapper *next;
 107
 108	u64		timestamp;
 109	unsigned char	data[0];
 110};
 111
 112#define TYPE_NONE	0
 113#define TYPE_RUNNING	1
 114#define TYPE_WAITING	2
 115#define TYPE_BLOCKED	3
 116
 117struct cpu_sample {
 118	struct cpu_sample *next;
 119
 120	u64 start_time;
 121	u64 end_time;
 122	int type;
 123	int cpu;
 
 124};
 125
 126static struct per_pid *all_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127
 128#define CSTATE 1
 129#define PSTATE 2
 130
 131struct power_event {
 132	struct power_event *next;
 133	int type;
 134	int state;
 135	u64 start_time;
 136	u64 end_time;
 137	int cpu;
 138};
 139
 140struct wake_event {
 141	struct wake_event *next;
 142	int waker;
 143	int wakee;
 144	u64 time;
 
 145};
 146
 147static struct power_event    *power_events;
 148static struct wake_event     *wake_events;
 149
 150struct process_filter;
 151struct process_filter {
 152	char			*name;
 153	int			pid;
 154	struct process_filter	*next;
 155};
 156
 157static struct process_filter *process_filter;
 158
 159
 160static struct per_pid *find_create_pid(int pid)
 161{
 162	struct per_pid *cursor = all_data;
 163
 164	while (cursor) {
 165		if (cursor->pid == pid)
 166			return cursor;
 167		cursor = cursor->next;
 168	}
 169	cursor = malloc(sizeof(struct per_pid));
 170	assert(cursor != NULL);
 171	memset(cursor, 0, sizeof(struct per_pid));
 172	cursor->pid = pid;
 173	cursor->next = all_data;
 174	all_data = cursor;
 175	return cursor;
 176}
 177
 178static void pid_set_comm(int pid, char *comm)
 179{
 180	struct per_pid *p;
 181	struct per_pidcomm *c;
 182	p = find_create_pid(pid);
 183	c = p->all;
 184	while (c) {
 185		if (c->comm && strcmp(c->comm, comm) == 0) {
 186			p->current = c;
 187			return;
 188		}
 189		if (!c->comm) {
 190			c->comm = strdup(comm);
 191			p->current = c;
 192			return;
 193		}
 194		c = c->next;
 195	}
 196	c = malloc(sizeof(struct per_pidcomm));
 197	assert(c != NULL);
 198	memset(c, 0, sizeof(struct per_pidcomm));
 199	c->comm = strdup(comm);
 200	p->current = c;
 201	c->next = p->all;
 202	p->all = c;
 203}
 204
 205static void pid_fork(int pid, int ppid, u64 timestamp)
 206{
 207	struct per_pid *p, *pp;
 208	p = find_create_pid(pid);
 209	pp = find_create_pid(ppid);
 210	p->ppid = ppid;
 211	if (pp->current && pp->current->comm && !p->current)
 212		pid_set_comm(pid, pp->current->comm);
 213
 214	p->start_time = timestamp;
 215	if (p->current) {
 216		p->current->start_time = timestamp;
 217		p->current->state_since = timestamp;
 218	}
 219}
 220
 221static void pid_exit(int pid, u64 timestamp)
 222{
 223	struct per_pid *p;
 224	p = find_create_pid(pid);
 225	p->end_time = timestamp;
 226	if (p->current)
 227		p->current->end_time = timestamp;
 228}
 229
 230static void
 231pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
 
 232{
 233	struct per_pid *p;
 234	struct per_pidcomm *c;
 235	struct cpu_sample *sample;
 236
 237	p = find_create_pid(pid);
 238	c = p->current;
 239	if (!c) {
 240		c = malloc(sizeof(struct per_pidcomm));
 241		assert(c != NULL);
 242		memset(c, 0, sizeof(struct per_pidcomm));
 243		p->current = c;
 244		c->next = p->all;
 245		p->all = c;
 246	}
 247
 248	sample = malloc(sizeof(struct cpu_sample));
 249	assert(sample != NULL);
 250	memset(sample, 0, sizeof(struct cpu_sample));
 251	sample->start_time = start;
 252	sample->end_time = end;
 253	sample->type = type;
 254	sample->next = c->samples;
 255	sample->cpu = cpu;
 
 256	c->samples = sample;
 257
 258	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 259		c->total_time += (end-start);
 260		p->total_time += (end-start);
 261	}
 262
 263	if (c->start_time == 0 || c->start_time > start)
 264		c->start_time = start;
 265	if (p->start_time == 0 || p->start_time > start)
 266		p->start_time = start;
 267}
 268
 269#define MAX_CPUS 4096
 270
 271static u64 cpus_cstate_start_times[MAX_CPUS];
 272static int cpus_cstate_state[MAX_CPUS];
 273static u64 cpus_pstate_start_times[MAX_CPUS];
 274static u64 cpus_pstate_state[MAX_CPUS];
 275
 276static int process_comm_event(union perf_event *event,
 277			      struct perf_sample *sample __used,
 278			      struct perf_session *session __used)
 
 279{
 280	pid_set_comm(event->comm.tid, event->comm.comm);
 
 281	return 0;
 282}
 283
 284static int process_fork_event(union perf_event *event,
 285			      struct perf_sample *sample __used,
 286			      struct perf_session *session __used)
 
 287{
 288	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
 
 289	return 0;
 290}
 291
 292static int process_exit_event(union perf_event *event,
 293			      struct perf_sample *sample __used,
 294			      struct perf_session *session __used)
 
 295{
 296	pid_exit(event->fork.pid, event->fork.time);
 
 297	return 0;
 298}
 299
 300struct trace_entry {
 301	unsigned short		type;
 302	unsigned char		flags;
 303	unsigned char		preempt_count;
 304	int			pid;
 305	int			lock_depth;
 306};
 307
 308#ifdef SUPPORT_OLD_POWER_EVENTS
 309static int use_old_power_events;
 310struct power_entry_old {
 311	struct trace_entry te;
 312	u64	type;
 313	u64	value;
 314	u64	cpu_id;
 315};
 316#endif
 317
 318struct power_processor_entry {
 319	struct trace_entry te;
 320	u32	state;
 321	u32	cpu_id;
 322};
 323
 324#define TASK_COMM_LEN 16
 325struct wakeup_entry {
 326	struct trace_entry te;
 327	char comm[TASK_COMM_LEN];
 328	int   pid;
 329	int   prio;
 330	int   success;
 331};
 332
 333/*
 334 * trace_flag_type is an enumeration that holds different
 335 * states when a trace occurs. These are:
 336 *  IRQS_OFF            - interrupts were disabled
 337 *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
 338 *  NEED_RESCED         - reschedule is requested
 339 *  HARDIRQ             - inside an interrupt handler
 340 *  SOFTIRQ             - inside a softirq handler
 341 */
 342enum trace_flag_type {
 343	TRACE_FLAG_IRQS_OFF		= 0x01,
 344	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
 345	TRACE_FLAG_NEED_RESCHED		= 0x04,
 346	TRACE_FLAG_HARDIRQ		= 0x08,
 347	TRACE_FLAG_SOFTIRQ		= 0x10,
 348};
 349
 350
 351
 352struct sched_switch {
 353	struct trace_entry te;
 354	char prev_comm[TASK_COMM_LEN];
 355	int  prev_pid;
 356	int  prev_prio;
 357	long prev_state; /* Arjan weeps. */
 358	char next_comm[TASK_COMM_LEN];
 359	int  next_pid;
 360	int  next_prio;
 361};
 362
 363static void c_state_start(int cpu, u64 timestamp, int state)
 364{
 365	cpus_cstate_start_times[cpu] = timestamp;
 366	cpus_cstate_state[cpu] = state;
 367}
 368
 369static void c_state_end(int cpu, u64 timestamp)
 370{
 371	struct power_event *pwr;
 372	pwr = malloc(sizeof(struct power_event));
 373	if (!pwr)
 374		return;
 375	memset(pwr, 0, sizeof(struct power_event));
 376
 377	pwr->state = cpus_cstate_state[cpu];
 378	pwr->start_time = cpus_cstate_start_times[cpu];
 379	pwr->end_time = timestamp;
 380	pwr->cpu = cpu;
 381	pwr->type = CSTATE;
 382	pwr->next = power_events;
 383
 384	power_events = pwr;
 385}
 386
 387static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
 388{
 389	struct power_event *pwr;
 390	pwr = malloc(sizeof(struct power_event));
 391
 392	if (new_freq > 8000000) /* detect invalid data */
 393		return;
 394
 
 395	if (!pwr)
 396		return;
 397	memset(pwr, 0, sizeof(struct power_event));
 398
 399	pwr->state = cpus_pstate_state[cpu];
 400	pwr->start_time = cpus_pstate_start_times[cpu];
 401	pwr->end_time = timestamp;
 402	pwr->cpu = cpu;
 403	pwr->type = PSTATE;
 404	pwr->next = power_events;
 405
 406	if (!pwr->start_time)
 407		pwr->start_time = first_time;
 408
 409	power_events = pwr;
 410
 411	cpus_pstate_state[cpu] = new_freq;
 412	cpus_pstate_start_times[cpu] = timestamp;
 413
 414	if ((u64)new_freq > max_freq)
 415		max_freq = new_freq;
 416
 417	if (new_freq < min_freq || min_freq == 0)
 418		min_freq = new_freq;
 419
 420	if (new_freq == max_freq - 1000)
 421			turbo_frequency = max_freq;
 422}
 423
 424static void
 425sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
 426{
 427	struct wake_event *we;
 428	struct per_pid *p;
 429	struct wakeup_entry *wake = (void *)te;
 430
 431	we = malloc(sizeof(struct wake_event));
 432	if (!we)
 433		return;
 434
 435	memset(we, 0, sizeof(struct wake_event));
 436	we->time = timestamp;
 437	we->waker = pid;
 
 438
 439	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
 440		we->waker = -1;
 441
 442	we->wakee = wake->pid;
 443	we->next = wake_events;
 444	wake_events = we;
 445	p = find_create_pid(we->wakee);
 446
 447	if (p && p->current && p->current->state == TYPE_NONE) {
 448		p->current->state_since = timestamp;
 449		p->current->state = TYPE_WAITING;
 450	}
 451	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 452		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
 
 453		p->current->state_since = timestamp;
 454		p->current->state = TYPE_WAITING;
 455	}
 456}
 457
 458static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
 
 
 459{
 460	struct per_pid *p = NULL, *prev_p;
 461	struct sched_switch *sw = (void *)te;
 462
 
 463
 464	prev_p = find_create_pid(sw->prev_pid);
 465
 466	p = find_create_pid(sw->next_pid);
 467
 468	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 469		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
 
 
 470	if (p && p->current) {
 471		if (p->current->state != TYPE_NONE)
 472			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
 
 
 473
 474		p->current->state_since = timestamp;
 475		p->current->state = TYPE_RUNNING;
 476	}
 477
 478	if (prev_p->current) {
 479		prev_p->current->state = TYPE_NONE;
 480		prev_p->current->state_since = timestamp;
 481		if (sw->prev_state & 2)
 482			prev_p->current->state = TYPE_BLOCKED;
 483		if (sw->prev_state == 0)
 484			prev_p->current->state = TYPE_WAITING;
 485	}
 486}
 487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488
 489static int process_sample_event(union perf_event *event __used,
 
 490				struct perf_sample *sample,
 491				struct perf_evsel *evsel __used,
 492				struct perf_session *session)
 493{
 494	struct trace_entry *te;
 495
 496	if (session->sample_type & PERF_SAMPLE_TIME) {
 497		if (!first_time || first_time > sample->time)
 498			first_time = sample->time;
 499		if (last_time < sample->time)
 500			last_time = sample->time;
 
 
 
 
 
 
 501	}
 502
 503	te = (void *)sample->raw_data;
 504	if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) {
 505		char *event_str;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506#ifdef SUPPORT_OLD_POWER_EVENTS
 507		struct power_entry_old *peo;
 508		peo = (void *)te;
 509#endif
 510		/*
 511		 * FIXME: use evsel, its already mapped from id to perf_evsel,
 512		 * remove perf_header__find_event infrastructure bits.
 513		 * Mapping all these "power:cpu_idle" strings to the tracepoint
 514		 * ID and then just comparing against evsel->attr.config.
 515		 *
 516		 * e.g.:
 517		 *
 518		 * if (evsel->attr.config == power_cpu_idle_id)
 519		 */
 520		event_str = perf_header__find_event(te->type);
 521
 522		if (!event_str)
 523			return 0;
 524
 525		if (sample->cpu > numcpus)
 526			numcpus = sample->cpu;
 527
 528		if (strcmp(event_str, "power:cpu_idle") == 0) {
 529			struct power_processor_entry *ppe = (void *)te;
 530			if (ppe->state == (u32)PWR_EVENT_EXIT)
 531				c_state_end(ppe->cpu_id, sample->time);
 532			else
 533				c_state_start(ppe->cpu_id, sample->time,
 534					      ppe->state);
 535		}
 536		else if (strcmp(event_str, "power:cpu_frequency") == 0) {
 537			struct power_processor_entry *ppe = (void *)te;
 538			p_state_change(ppe->cpu_id, sample->time, ppe->state);
 539		}
 540
 541		else if (strcmp(event_str, "sched:sched_wakeup") == 0)
 542			sched_wakeup(sample->cpu, sample->time, sample->pid, te);
 
 543
 544		else if (strcmp(event_str, "sched:sched_switch") == 0)
 545			sched_switch(sample->cpu, sample->time, te);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546
 547#ifdef SUPPORT_OLD_POWER_EVENTS
 548		if (use_old_power_events) {
 549			if (strcmp(event_str, "power:power_start") == 0)
 550				c_state_start(peo->cpu_id, sample->time,
 551					      peo->value);
 552
 553			else if (strcmp(event_str, "power:power_end") == 0)
 554				c_state_end(sample->cpu, sample->time);
 555
 556			else if (strcmp(event_str,
 557					"power:power_frequency") == 0)
 558				p_state_change(peo->cpu_id, sample->time,
 559					       peo->value);
 560		}
 561#endif
 562	}
 563	return 0;
 564}
 
 565
 566/*
 567 * After the last sample we need to wrap up the current C/P state
 568 * and close out each CPU for these.
 569 */
 570static void end_sample_processing(void)
 571{
 572	u64 cpu;
 573	struct power_event *pwr;
 574
 575	for (cpu = 0; cpu <= numcpus; cpu++) {
 576		pwr = malloc(sizeof(struct power_event));
 
 
 577		if (!pwr)
 578			return;
 579		memset(pwr, 0, sizeof(struct power_event));
 580
 581		/* C state */
 582#if 0
 583		pwr->state = cpus_cstate_state[cpu];
 584		pwr->start_time = cpus_cstate_start_times[cpu];
 585		pwr->end_time = last_time;
 586		pwr->cpu = cpu;
 587		pwr->type = CSTATE;
 588		pwr->next = power_events;
 589
 590		power_events = pwr;
 591#endif
 592		/* P state */
 593
 594		pwr = malloc(sizeof(struct power_event));
 595		if (!pwr)
 596			return;
 597		memset(pwr, 0, sizeof(struct power_event));
 598
 599		pwr->state = cpus_pstate_state[cpu];
 600		pwr->start_time = cpus_pstate_start_times[cpu];
 601		pwr->end_time = last_time;
 602		pwr->cpu = cpu;
 603		pwr->type = PSTATE;
 604		pwr->next = power_events;
 605
 606		if (!pwr->start_time)
 607			pwr->start_time = first_time;
 608		if (!pwr->state)
 609			pwr->state = min_freq;
 610		power_events = pwr;
 611	}
 612}
 613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614/*
 615 * Sort the pid datastructure
 616 */
 617static void sort_pids(void)
 618{
 619	struct per_pid *new_list, *p, *cursor, *prev;
 620	/* sort by ppid first, then by pid, lowest to highest */
 621
 622	new_list = NULL;
 623
 624	while (all_data) {
 625		p = all_data;
 626		all_data = p->next;
 627		p->next = NULL;
 628
 629		if (new_list == NULL) {
 630			new_list = p;
 631			p->next = NULL;
 632			continue;
 633		}
 634		prev = NULL;
 635		cursor = new_list;
 636		while (cursor) {
 637			if (cursor->ppid > p->ppid ||
 638				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 639				/* must insert before */
 640				if (prev) {
 641					p->next = prev->next;
 642					prev->next = p;
 643					cursor = NULL;
 644					continue;
 645				} else {
 646					p->next = new_list;
 647					new_list = p;
 648					cursor = NULL;
 649					continue;
 650				}
 651			}
 652
 653			prev = cursor;
 654			cursor = cursor->next;
 655			if (!cursor)
 656				prev->next = p;
 657		}
 658	}
 659	all_data = new_list;
 660}
 661
 662
 663static void draw_c_p_states(void)
 664{
 665	struct power_event *pwr;
 666	pwr = power_events;
 667
 668	/*
 669	 * two pass drawing so that the P state bars are on top of the C state blocks
 670	 */
 671	while (pwr) {
 672		if (pwr->type == CSTATE)
 673			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 674		pwr = pwr->next;
 675	}
 676
 677	pwr = power_events;
 678	while (pwr) {
 679		if (pwr->type == PSTATE) {
 680			if (!pwr->state)
 681				pwr->state = min_freq;
 682			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 683		}
 684		pwr = pwr->next;
 685	}
 686}
 687
 688static void draw_wakeups(void)
 689{
 690	struct wake_event *we;
 691	struct per_pid *p;
 692	struct per_pidcomm *c;
 693
 694	we = wake_events;
 695	while (we) {
 696		int from = 0, to = 0;
 697		char *task_from = NULL, *task_to = NULL;
 698
 699		/* locate the column of the waker and wakee */
 700		p = all_data;
 701		while (p) {
 702			if (p->pid == we->waker || p->pid == we->wakee) {
 703				c = p->all;
 704				while (c) {
 705					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 706						if (p->pid == we->waker && !from) {
 707							from = c->Y;
 708							task_from = strdup(c->comm);
 709						}
 710						if (p->pid == we->wakee && !to) {
 711							to = c->Y;
 712							task_to = strdup(c->comm);
 713						}
 714					}
 715					c = c->next;
 716				}
 717				c = p->all;
 718				while (c) {
 719					if (p->pid == we->waker && !from) {
 720						from = c->Y;
 721						task_from = strdup(c->comm);
 722					}
 723					if (p->pid == we->wakee && !to) {
 724						to = c->Y;
 725						task_to = strdup(c->comm);
 726					}
 727					c = c->next;
 728				}
 729			}
 730			p = p->next;
 731		}
 732
 733		if (!task_from) {
 734			task_from = malloc(40);
 735			sprintf(task_from, "[%i]", we->waker);
 736		}
 737		if (!task_to) {
 738			task_to = malloc(40);
 739			sprintf(task_to, "[%i]", we->wakee);
 740		}
 741
 742		if (we->waker == -1)
 743			svg_interrupt(we->time, to);
 744		else if (from && to && abs(from - to) == 1)
 745			svg_wakeline(we->time, from, to);
 746		else
 747			svg_partial_wakeline(we->time, from, task_from, to, task_to);
 
 748		we = we->next;
 749
 750		free(task_from);
 751		free(task_to);
 752	}
 753}
 754
 755static void draw_cpu_usage(void)
 756{
 757	struct per_pid *p;
 758	struct per_pidcomm *c;
 759	struct cpu_sample *sample;
 760	p = all_data;
 761	while (p) {
 762		c = p->all;
 763		while (c) {
 764			sample = c->samples;
 765			while (sample) {
 766				if (sample->type == TYPE_RUNNING)
 767					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
 
 
 
 
 
 
 768
 769				sample = sample->next;
 770			}
 771			c = c->next;
 772		}
 773		p = p->next;
 774	}
 775}
 776
 777static void draw_process_bars(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778{
 779	struct per_pid *p;
 780	struct per_pidcomm *c;
 781	struct cpu_sample *sample;
 782	int Y = 0;
 783
 784	Y = 2 * numcpus + 2;
 785
 786	p = all_data;
 787	while (p) {
 788		c = p->all;
 789		while (c) {
 790			if (!c->display) {
 791				c->Y = 0;
 792				c = c->next;
 793				continue;
 794			}
 795
 796			svg_box(Y, c->start_time, c->end_time, "process");
 797			sample = c->samples;
 798			while (sample) {
 799				if (sample->type == TYPE_RUNNING)
 800					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
 
 
 
 801				if (sample->type == TYPE_BLOCKED)
 802					svg_box(Y, sample->start_time, sample->end_time, "blocked");
 
 
 
 803				if (sample->type == TYPE_WAITING)
 804					svg_waiting(Y, sample->start_time, sample->end_time);
 
 
 
 805				sample = sample->next;
 806			}
 807
 808			if (c->comm) {
 809				char comm[256];
 810				if (c->total_time > 5000000000) /* 5 seconds */
 811					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 812				else
 813					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 814
 815				svg_text(Y, c->start_time, comm);
 816			}
 817			c->Y = Y;
 818			Y++;
 819			c = c->next;
 820		}
 821		p = p->next;
 822	}
 823}
 824
 825static void add_process_filter(const char *string)
 826{
 827	struct process_filter *filt;
 828	int pid;
 829
 830	pid = strtoull(string, NULL, 10);
 831	filt = malloc(sizeof(struct process_filter));
 832	if (!filt)
 833		return;
 834
 835	filt->name = strdup(string);
 836	filt->pid  = pid;
 837	filt->next = process_filter;
 838
 839	process_filter = filt;
 840}
 841
 842static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 843{
 844	struct process_filter *filt;
 845	if (!process_filter)
 846		return 1;
 847
 848	filt = process_filter;
 849	while (filt) {
 850		if (filt->pid && p->pid == filt->pid)
 851			return 1;
 852		if (strcmp(filt->name, c->comm) == 0)
 853			return 1;
 854		filt = filt->next;
 855	}
 856	return 0;
 857}
 858
 859static int determine_display_tasks_filtered(void)
 860{
 861	struct per_pid *p;
 862	struct per_pidcomm *c;
 863	int count = 0;
 864
 865	p = all_data;
 866	while (p) {
 867		p->display = 0;
 868		if (p->start_time == 1)
 869			p->start_time = first_time;
 870
 871		/* no exit marker, task kept running to the end */
 872		if (p->end_time == 0)
 873			p->end_time = last_time;
 874
 875		c = p->all;
 876
 877		while (c) {
 878			c->display = 0;
 879
 880			if (c->start_time == 1)
 881				c->start_time = first_time;
 882
 883			if (passes_filter(p, c)) {
 884				c->display = 1;
 885				p->display = 1;
 886				count++;
 887			}
 888
 889			if (c->end_time == 0)
 890				c->end_time = last_time;
 891
 892			c = c->next;
 893		}
 894		p = p->next;
 895	}
 896	return count;
 897}
 898
 899static int determine_display_tasks(u64 threshold)
 900{
 901	struct per_pid *p;
 902	struct per_pidcomm *c;
 903	int count = 0;
 904
 905	if (process_filter)
 906		return determine_display_tasks_filtered();
 907
 908	p = all_data;
 909	while (p) {
 910		p->display = 0;
 911		if (p->start_time == 1)
 912			p->start_time = first_time;
 913
 914		/* no exit marker, task kept running to the end */
 915		if (p->end_time == 0)
 916			p->end_time = last_time;
 917		if (p->total_time >= threshold && !power_only)
 918			p->display = 1;
 919
 920		c = p->all;
 921
 922		while (c) {
 923			c->display = 0;
 924
 925			if (c->start_time == 1)
 926				c->start_time = first_time;
 927
 928			if (c->total_time >= threshold && !power_only) {
 929				c->display = 1;
 930				count++;
 931			}
 932
 933			if (c->end_time == 0)
 934				c->end_time = last_time;
 935
 936			c = c->next;
 937		}
 938		p = p->next;
 939	}
 940	return count;
 941}
 942
 
 
 
 
 
 943
 
 
 
 
 
 
 
 
 
 
 944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945#define TIME_THRESH 10000000
 946
 947static void write_svg_file(const char *filename)
 948{
 949	u64 i;
 950	int count;
 
 951
 952	numcpus++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 953
 
 
 954
 955	count = determine_display_tasks(TIME_THRESH);
 
 956
 957	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
 958	if (count < 15)
 959		count = determine_display_tasks(TIME_THRESH / 10);
 960
 961	open_svg(filename, numcpus, count, first_time, last_time);
 
 
 962
 963	svg_time_grid();
 964	svg_legenda();
 965
 966	for (i = 0; i < numcpus; i++)
 967		svg_cpu_box(i, max_freq, turbo_frequency);
 968
 969	draw_cpu_usage();
 970	draw_process_bars();
 971	draw_c_p_states();
 972	draw_wakeups();
 
 
 
 
 
 
 
 973
 974	svg_close();
 975}
 976
 977static struct perf_event_ops event_ops = {
 978	.comm			= process_comm_event,
 979	.fork			= process_fork_event,
 980	.exit			= process_exit_event,
 981	.sample			= process_sample_event,
 982	.ordered_samples	= true,
 983};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984
 985static int __cmd_timechart(void)
 986{
 987	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
 988							 0, false, &event_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989	int ret = -EINVAL;
 990
 991	if (session == NULL)
 992		return -ENOMEM;
 
 
 
 
 
 
 
 993
 994	if (!perf_session__has_traces(session, "timechart record"))
 995		goto out_delete;
 996
 997	ret = perf_session__process_events(session, &event_ops);
 
 
 
 
 
 
 998	if (ret)
 999		goto out_delete;
1000
1001	end_sample_processing();
1002
1003	sort_pids();
1004
1005	write_svg_file(output_name);
1006
1007	pr_info("Written %2.1f seconds of trace to %s.\n",
1008		(last_time - first_time) / 1000000000.0, output_name);
1009out_delete:
1010	perf_session__delete(session);
1011	return ret;
1012}
1013
1014static const char * const timechart_usage[] = {
1015	"perf timechart [<options>] {record}",
1016	NULL
1017};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018
1019#ifdef SUPPORT_OLD_POWER_EVENTS
1020static const char * const record_old_args[] = {
1021	"record",
1022	"-a",
1023	"-R",
1024	"-f",
1025	"-c", "1",
1026	"-e", "power:power_start",
1027	"-e", "power:power_end",
1028	"-e", "power:power_frequency",
1029	"-e", "sched:sched_wakeup",
1030	"-e", "sched:sched_switch",
1031};
1032#endif
1033
1034static const char * const record_new_args[] = {
1035	"record",
1036	"-a",
1037	"-R",
1038	"-f",
1039	"-c", "1",
1040	"-e", "power:cpu_frequency",
1041	"-e", "power:cpu_idle",
1042	"-e", "sched:sched_wakeup",
1043	"-e", "sched:sched_switch",
1044};
1045
1046static int __cmd_record(int argc, const char **argv)
1047{
1048	unsigned int rec_argc, i, j;
1049	const char **rec_argv;
1050	const char * const *record_args = record_new_args;
1051	unsigned int record_elems = ARRAY_SIZE(record_new_args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052
1053#ifdef SUPPORT_OLD_POWER_EVENTS
1054	if (!is_valid_tracepoint("power:cpu_idle") &&
1055	    is_valid_tracepoint("power:power_start")) {
1056		use_old_power_events = 1;
1057		record_args = record_old_args;
1058		record_elems = ARRAY_SIZE(record_old_args);
 
1059	}
1060#endif
1061
1062	rec_argc = record_elems + argc - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1064
1065	if (rec_argv == NULL)
1066		return -ENOMEM;
1067
1068	for (i = 0; i < record_elems; i++)
1069		rec_argv[i] = strdup(record_args[i]);
 
 
 
 
 
 
 
 
 
 
1070
1071	for (j = 1; j < (unsigned int)argc; j++, i++)
1072		rec_argv[i] = argv[j];
1073
1074	return cmd_record(i, rec_argv, NULL);
 
 
 
1075}
1076
1077static int
1078parse_process(const struct option *opt __used, const char *arg, int __used unset)
 
1079{
1080	if (arg)
1081		add_process_filter(arg);
1082	return 0;
1083}
1084
1085static const struct option options[] = {
1086	OPT_STRING('i', "input", &input_name, "file",
1087		    "input file name"),
1088	OPT_STRING('o', "output", &output_name, "file",
1089		    "output file name"),
1090	OPT_INTEGER('w', "width", &svg_page_width,
1091		    "page width"),
1092	OPT_BOOLEAN('P', "power-only", &power_only,
1093		    "output power data only"),
1094	OPT_CALLBACK('p', "process", NULL, "process",
1095		      "process selector. Pass a pid or process name.",
1096		       parse_process),
1097	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1098		    "Look for files with symbols relative to this directory"),
1099	OPT_END()
1100};
1101
 
 
1102
1103int cmd_timechart(int argc, const char **argv, const char *prefix __used)
 
1104{
1105	argc = parse_options(argc, argv, options, timechart_usage,
1106			PARSE_OPT_STOP_AT_NON_OPTION);
1107
1108	symbol__init();
 
 
 
 
 
 
 
 
 
 
 
 
 
1109
1110	if (argc && !strncmp(argv[0], "rec", 3))
1111		return __cmd_record(argc, argv);
1112	else if (argc)
1113		usage_with_options(timechart_usage, options);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114
1115	setup_pager();
1116
1117	return __cmd_timechart();
1118}