Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * User-space Probes (UProbes)
4 *
5 * Copyright (C) IBM Corporation, 2008-2012
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10 */
11
12#include <linux/kernel.h>
13#include <linux/highmem.h>
14#include <linux/pagemap.h> /* read_mapping_page */
15#include <linux/slab.h>
16#include <linux/sched.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/coredump.h>
19#include <linux/export.h>
20#include <linux/rmap.h> /* anon_vma_prepare */
21#include <linux/mmu_notifier.h> /* set_pte_at_notify */
22#include <linux/swap.h> /* try_to_free_swap */
23#include <linux/ptrace.h> /* user_enable_single_step */
24#include <linux/kdebug.h> /* notifier mechanism */
25#include "../../mm/internal.h" /* munlock_vma_page */
26#include <linux/percpu-rwsem.h>
27#include <linux/task_work.h>
28#include <linux/shmem_fs.h>
29#include <linux/khugepaged.h>
30
31#include <linux/uprobes.h>
32
33#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
35
36static struct rb_root uprobes_tree = RB_ROOT;
37/*
38 * allows us to skip the uprobe_mmap if there are no uprobe events active
39 * at this time. Probably a fine grained per inode count is better?
40 */
41#define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
42
43static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
44
45#define UPROBES_HASH_SZ 13
46/* serialize uprobe->pending_list */
47static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49
50DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51
52/* Have a copy of original instruction */
53#define UPROBE_COPY_INSN 0
54
55struct uprobe {
56 struct rb_node rb_node; /* node in the rb tree */
57 refcount_t ref;
58 struct rw_semaphore register_rwsem;
59 struct rw_semaphore consumer_rwsem;
60 struct list_head pending_list;
61 struct uprobe_consumer *consumers;
62 struct inode *inode; /* Also hold a ref to inode */
63 loff_t offset;
64 loff_t ref_ctr_offset;
65 unsigned long flags;
66
67 /*
68 * The generic code assumes that it has two members of unknown type
69 * owned by the arch-specific code:
70 *
71 * insn - copy_insn() saves the original instruction here for
72 * arch_uprobe_analyze_insn().
73 *
74 * ixol - potentially modified instruction to execute out of
75 * line, copied to xol_area by xol_get_insn_slot().
76 */
77 struct arch_uprobe arch;
78};
79
80struct delayed_uprobe {
81 struct list_head list;
82 struct uprobe *uprobe;
83 struct mm_struct *mm;
84};
85
86static DEFINE_MUTEX(delayed_uprobe_lock);
87static LIST_HEAD(delayed_uprobe_list);
88
89/*
90 * Execute out of line area: anonymous executable mapping installed
91 * by the probed task to execute the copy of the original instruction
92 * mangled by set_swbp().
93 *
94 * On a breakpoint hit, thread contests for a slot. It frees the
95 * slot after singlestep. Currently a fixed number of slots are
96 * allocated.
97 */
98struct xol_area {
99 wait_queue_head_t wq; /* if all slots are busy */
100 atomic_t slot_count; /* number of in-use slots */
101 unsigned long *bitmap; /* 0 = free slot */
102
103 struct vm_special_mapping xol_mapping;
104 struct page *pages[2];
105 /*
106 * We keep the vma's vm_start rather than a pointer to the vma
107 * itself. The probed process or a naughty kernel module could make
108 * the vma go away, and we must handle that reasonably gracefully.
109 */
110 unsigned long vaddr; /* Page(s) of instruction slots */
111};
112
113/*
114 * valid_vma: Verify if the specified vma is an executable vma
115 * Relax restrictions while unregistering: vm_flags might have
116 * changed after breakpoint was inserted.
117 * - is_register: indicates if we are in register context.
118 * - Return 1 if the specified virtual address is in an
119 * executable vma.
120 */
121static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122{
123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125 if (is_register)
126 flags |= VM_WRITE;
127
128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129}
130
131static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132{
133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134}
135
136static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137{
138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139}
140
141/**
142 * __replace_page - replace page in vma by new page.
143 * based on replace_page in mm/ksm.c
144 *
145 * @vma: vma that holds the pte pointing to page
146 * @addr: address the old @page is mapped at
147 * @old_page: the page we are replacing by new_page
148 * @new_page: the modified page we replace page by
149 *
150 * If @new_page is NULL, only unmap @old_page.
151 *
152 * Returns 0 on success, negative error code otherwise.
153 */
154static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155 struct page *old_page, struct page *new_page)
156{
157 struct mm_struct *mm = vma->vm_mm;
158 struct page_vma_mapped_walk pvmw = {
159 .page = compound_head(old_page),
160 .vma = vma,
161 .address = addr,
162 };
163 int err;
164 struct mmu_notifier_range range;
165 struct mem_cgroup *memcg;
166
167 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
168 addr + PAGE_SIZE);
169
170 if (new_page) {
171 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
172 &memcg, false);
173 if (err)
174 return err;
175 }
176
177 /* For try_to_free_swap() and munlock_vma_page() below */
178 lock_page(old_page);
179
180 mmu_notifier_invalidate_range_start(&range);
181 err = -EAGAIN;
182 if (!page_vma_mapped_walk(&pvmw)) {
183 if (new_page)
184 mem_cgroup_cancel_charge(new_page, memcg, false);
185 goto unlock;
186 }
187 VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
188
189 if (new_page) {
190 get_page(new_page);
191 page_add_new_anon_rmap(new_page, vma, addr, false);
192 mem_cgroup_commit_charge(new_page, memcg, false, false);
193 lru_cache_add_active_or_unevictable(new_page, vma);
194 } else
195 /* no new page, just dec_mm_counter for old_page */
196 dec_mm_counter(mm, MM_ANONPAGES);
197
198 if (!PageAnon(old_page)) {
199 dec_mm_counter(mm, mm_counter_file(old_page));
200 inc_mm_counter(mm, MM_ANONPAGES);
201 }
202
203 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
204 ptep_clear_flush_notify(vma, addr, pvmw.pte);
205 if (new_page)
206 set_pte_at_notify(mm, addr, pvmw.pte,
207 mk_pte(new_page, vma->vm_page_prot));
208
209 page_remove_rmap(old_page, false);
210 if (!page_mapped(old_page))
211 try_to_free_swap(old_page);
212 page_vma_mapped_walk_done(&pvmw);
213
214 if (vma->vm_flags & VM_LOCKED)
215 munlock_vma_page(old_page);
216 put_page(old_page);
217
218 err = 0;
219 unlock:
220 mmu_notifier_invalidate_range_end(&range);
221 unlock_page(old_page);
222 return err;
223}
224
225/**
226 * is_swbp_insn - check if instruction is breakpoint instruction.
227 * @insn: instruction to be checked.
228 * Default implementation of is_swbp_insn
229 * Returns true if @insn is a breakpoint instruction.
230 */
231bool __weak is_swbp_insn(uprobe_opcode_t *insn)
232{
233 return *insn == UPROBE_SWBP_INSN;
234}
235
236/**
237 * is_trap_insn - check if instruction is breakpoint instruction.
238 * @insn: instruction to be checked.
239 * Default implementation of is_trap_insn
240 * Returns true if @insn is a breakpoint instruction.
241 *
242 * This function is needed for the case where an architecture has multiple
243 * trap instructions (like powerpc).
244 */
245bool __weak is_trap_insn(uprobe_opcode_t *insn)
246{
247 return is_swbp_insn(insn);
248}
249
250static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
251{
252 void *kaddr = kmap_atomic(page);
253 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
254 kunmap_atomic(kaddr);
255}
256
257static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
258{
259 void *kaddr = kmap_atomic(page);
260 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
261 kunmap_atomic(kaddr);
262}
263
264static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
265{
266 uprobe_opcode_t old_opcode;
267 bool is_swbp;
268
269 /*
270 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
271 * We do not check if it is any other 'trap variant' which could
272 * be conditional trap instruction such as the one powerpc supports.
273 *
274 * The logic is that we do not care if the underlying instruction
275 * is a trap variant; uprobes always wins over any other (gdb)
276 * breakpoint.
277 */
278 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
279 is_swbp = is_swbp_insn(&old_opcode);
280
281 if (is_swbp_insn(new_opcode)) {
282 if (is_swbp) /* register: already installed? */
283 return 0;
284 } else {
285 if (!is_swbp) /* unregister: was it changed by us? */
286 return 0;
287 }
288
289 return 1;
290}
291
292static struct delayed_uprobe *
293delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
294{
295 struct delayed_uprobe *du;
296
297 list_for_each_entry(du, &delayed_uprobe_list, list)
298 if (du->uprobe == uprobe && du->mm == mm)
299 return du;
300 return NULL;
301}
302
303static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
304{
305 struct delayed_uprobe *du;
306
307 if (delayed_uprobe_check(uprobe, mm))
308 return 0;
309
310 du = kzalloc(sizeof(*du), GFP_KERNEL);
311 if (!du)
312 return -ENOMEM;
313
314 du->uprobe = uprobe;
315 du->mm = mm;
316 list_add(&du->list, &delayed_uprobe_list);
317 return 0;
318}
319
320static void delayed_uprobe_delete(struct delayed_uprobe *du)
321{
322 if (WARN_ON(!du))
323 return;
324 list_del(&du->list);
325 kfree(du);
326}
327
328static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
329{
330 struct list_head *pos, *q;
331 struct delayed_uprobe *du;
332
333 if (!uprobe && !mm)
334 return;
335
336 list_for_each_safe(pos, q, &delayed_uprobe_list) {
337 du = list_entry(pos, struct delayed_uprobe, list);
338
339 if (uprobe && du->uprobe != uprobe)
340 continue;
341 if (mm && du->mm != mm)
342 continue;
343
344 delayed_uprobe_delete(du);
345 }
346}
347
348static bool valid_ref_ctr_vma(struct uprobe *uprobe,
349 struct vm_area_struct *vma)
350{
351 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
352
353 return uprobe->ref_ctr_offset &&
354 vma->vm_file &&
355 file_inode(vma->vm_file) == uprobe->inode &&
356 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
357 vma->vm_start <= vaddr &&
358 vma->vm_end > vaddr;
359}
360
361static struct vm_area_struct *
362find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
363{
364 struct vm_area_struct *tmp;
365
366 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
367 if (valid_ref_ctr_vma(uprobe, tmp))
368 return tmp;
369
370 return NULL;
371}
372
373static int
374__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
375{
376 void *kaddr;
377 struct page *page;
378 struct vm_area_struct *vma;
379 int ret;
380 short *ptr;
381
382 if (!vaddr || !d)
383 return -EINVAL;
384
385 ret = get_user_pages_remote(NULL, mm, vaddr, 1,
386 FOLL_WRITE, &page, &vma, NULL);
387 if (unlikely(ret <= 0)) {
388 /*
389 * We are asking for 1 page. If get_user_pages_remote() fails,
390 * it may return 0, in that case we have to return error.
391 */
392 return ret == 0 ? -EBUSY : ret;
393 }
394
395 kaddr = kmap_atomic(page);
396 ptr = kaddr + (vaddr & ~PAGE_MASK);
397
398 if (unlikely(*ptr + d < 0)) {
399 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
400 "curr val: %d, delta: %d\n", vaddr, *ptr, d);
401 ret = -EINVAL;
402 goto out;
403 }
404
405 *ptr += d;
406 ret = 0;
407out:
408 kunmap_atomic(kaddr);
409 put_page(page);
410 return ret;
411}
412
413static void update_ref_ctr_warn(struct uprobe *uprobe,
414 struct mm_struct *mm, short d)
415{
416 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
417 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
418 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
419 (unsigned long long) uprobe->offset,
420 (unsigned long long) uprobe->ref_ctr_offset, mm);
421}
422
423static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
424 short d)
425{
426 struct vm_area_struct *rc_vma;
427 unsigned long rc_vaddr;
428 int ret = 0;
429
430 rc_vma = find_ref_ctr_vma(uprobe, mm);
431
432 if (rc_vma) {
433 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
434 ret = __update_ref_ctr(mm, rc_vaddr, d);
435 if (ret)
436 update_ref_ctr_warn(uprobe, mm, d);
437
438 if (d > 0)
439 return ret;
440 }
441
442 mutex_lock(&delayed_uprobe_lock);
443 if (d > 0)
444 ret = delayed_uprobe_add(uprobe, mm);
445 else
446 delayed_uprobe_remove(uprobe, mm);
447 mutex_unlock(&delayed_uprobe_lock);
448
449 return ret;
450}
451
452/*
453 * NOTE:
454 * Expect the breakpoint instruction to be the smallest size instruction for
455 * the architecture. If an arch has variable length instruction and the
456 * breakpoint instruction is not of the smallest length instruction
457 * supported by that architecture then we need to modify is_trap_at_addr and
458 * uprobe_write_opcode accordingly. This would never be a problem for archs
459 * that have fixed length instructions.
460 *
461 * uprobe_write_opcode - write the opcode at a given virtual address.
462 * @mm: the probed process address space.
463 * @vaddr: the virtual address to store the opcode.
464 * @opcode: opcode to be written at @vaddr.
465 *
466 * Called with mm->mmap_sem held for write.
467 * Return 0 (success) or a negative errno.
468 */
469int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
470 unsigned long vaddr, uprobe_opcode_t opcode)
471{
472 struct uprobe *uprobe;
473 struct page *old_page, *new_page;
474 struct vm_area_struct *vma;
475 int ret, is_register, ref_ctr_updated = 0;
476 bool orig_page_huge = false;
477 unsigned int gup_flags = FOLL_FORCE;
478
479 is_register = is_swbp_insn(&opcode);
480 uprobe = container_of(auprobe, struct uprobe, arch);
481
482retry:
483 if (is_register)
484 gup_flags |= FOLL_SPLIT_PMD;
485 /* Read the page with vaddr into memory */
486 ret = get_user_pages_remote(NULL, mm, vaddr, 1, gup_flags,
487 &old_page, &vma, NULL);
488 if (ret <= 0)
489 return ret;
490
491 ret = verify_opcode(old_page, vaddr, &opcode);
492 if (ret <= 0)
493 goto put_old;
494
495 if (WARN(!is_register && PageCompound(old_page),
496 "uprobe unregister should never work on compound page\n")) {
497 ret = -EINVAL;
498 goto put_old;
499 }
500
501 /* We are going to replace instruction, update ref_ctr. */
502 if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
503 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
504 if (ret)
505 goto put_old;
506
507 ref_ctr_updated = 1;
508 }
509
510 ret = 0;
511 if (!is_register && !PageAnon(old_page))
512 goto put_old;
513
514 ret = anon_vma_prepare(vma);
515 if (ret)
516 goto put_old;
517
518 ret = -ENOMEM;
519 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
520 if (!new_page)
521 goto put_old;
522
523 __SetPageUptodate(new_page);
524 copy_highpage(new_page, old_page);
525 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
526
527 if (!is_register) {
528 struct page *orig_page;
529 pgoff_t index;
530
531 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
532
533 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
534 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
535 index);
536
537 if (orig_page) {
538 if (PageUptodate(orig_page) &&
539 pages_identical(new_page, orig_page)) {
540 /* let go new_page */
541 put_page(new_page);
542 new_page = NULL;
543
544 if (PageCompound(orig_page))
545 orig_page_huge = true;
546 }
547 put_page(orig_page);
548 }
549 }
550
551 ret = __replace_page(vma, vaddr, old_page, new_page);
552 if (new_page)
553 put_page(new_page);
554put_old:
555 put_page(old_page);
556
557 if (unlikely(ret == -EAGAIN))
558 goto retry;
559
560 /* Revert back reference counter if instruction update failed. */
561 if (ret && is_register && ref_ctr_updated)
562 update_ref_ctr(uprobe, mm, -1);
563
564 /* try collapse pmd for compound page */
565 if (!ret && orig_page_huge)
566 collapse_pte_mapped_thp(mm, vaddr);
567
568 return ret;
569}
570
571/**
572 * set_swbp - store breakpoint at a given address.
573 * @auprobe: arch specific probepoint information.
574 * @mm: the probed process address space.
575 * @vaddr: the virtual address to insert the opcode.
576 *
577 * For mm @mm, store the breakpoint instruction at @vaddr.
578 * Return 0 (success) or a negative errno.
579 */
580int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
581{
582 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
583}
584
585/**
586 * set_orig_insn - Restore the original instruction.
587 * @mm: the probed process address space.
588 * @auprobe: arch specific probepoint information.
589 * @vaddr: the virtual address to insert the opcode.
590 *
591 * For mm @mm, restore the original opcode (opcode) at @vaddr.
592 * Return 0 (success) or a negative errno.
593 */
594int __weak
595set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
596{
597 return uprobe_write_opcode(auprobe, mm, vaddr,
598 *(uprobe_opcode_t *)&auprobe->insn);
599}
600
601static struct uprobe *get_uprobe(struct uprobe *uprobe)
602{
603 refcount_inc(&uprobe->ref);
604 return uprobe;
605}
606
607static void put_uprobe(struct uprobe *uprobe)
608{
609 if (refcount_dec_and_test(&uprobe->ref)) {
610 /*
611 * If application munmap(exec_vma) before uprobe_unregister()
612 * gets called, we don't get a chance to remove uprobe from
613 * delayed_uprobe_list from remove_breakpoint(). Do it here.
614 */
615 mutex_lock(&delayed_uprobe_lock);
616 delayed_uprobe_remove(uprobe, NULL);
617 mutex_unlock(&delayed_uprobe_lock);
618 kfree(uprobe);
619 }
620}
621
622static int match_uprobe(struct uprobe *l, struct uprobe *r)
623{
624 if (l->inode < r->inode)
625 return -1;
626
627 if (l->inode > r->inode)
628 return 1;
629
630 if (l->offset < r->offset)
631 return -1;
632
633 if (l->offset > r->offset)
634 return 1;
635
636 return 0;
637}
638
639static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
640{
641 struct uprobe u = { .inode = inode, .offset = offset };
642 struct rb_node *n = uprobes_tree.rb_node;
643 struct uprobe *uprobe;
644 int match;
645
646 while (n) {
647 uprobe = rb_entry(n, struct uprobe, rb_node);
648 match = match_uprobe(&u, uprobe);
649 if (!match)
650 return get_uprobe(uprobe);
651
652 if (match < 0)
653 n = n->rb_left;
654 else
655 n = n->rb_right;
656 }
657 return NULL;
658}
659
660/*
661 * Find a uprobe corresponding to a given inode:offset
662 * Acquires uprobes_treelock
663 */
664static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
665{
666 struct uprobe *uprobe;
667
668 spin_lock(&uprobes_treelock);
669 uprobe = __find_uprobe(inode, offset);
670 spin_unlock(&uprobes_treelock);
671
672 return uprobe;
673}
674
675static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
676{
677 struct rb_node **p = &uprobes_tree.rb_node;
678 struct rb_node *parent = NULL;
679 struct uprobe *u;
680 int match;
681
682 while (*p) {
683 parent = *p;
684 u = rb_entry(parent, struct uprobe, rb_node);
685 match = match_uprobe(uprobe, u);
686 if (!match)
687 return get_uprobe(u);
688
689 if (match < 0)
690 p = &parent->rb_left;
691 else
692 p = &parent->rb_right;
693
694 }
695
696 u = NULL;
697 rb_link_node(&uprobe->rb_node, parent, p);
698 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
699 /* get access + creation ref */
700 refcount_set(&uprobe->ref, 2);
701
702 return u;
703}
704
705/*
706 * Acquire uprobes_treelock.
707 * Matching uprobe already exists in rbtree;
708 * increment (access refcount) and return the matching uprobe.
709 *
710 * No matching uprobe; insert the uprobe in rb_tree;
711 * get a double refcount (access + creation) and return NULL.
712 */
713static struct uprobe *insert_uprobe(struct uprobe *uprobe)
714{
715 struct uprobe *u;
716
717 spin_lock(&uprobes_treelock);
718 u = __insert_uprobe(uprobe);
719 spin_unlock(&uprobes_treelock);
720
721 return u;
722}
723
724static void
725ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
726{
727 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
728 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
729 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
730 (unsigned long long) cur_uprobe->ref_ctr_offset,
731 (unsigned long long) uprobe->ref_ctr_offset);
732}
733
734static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
735 loff_t ref_ctr_offset)
736{
737 struct uprobe *uprobe, *cur_uprobe;
738
739 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
740 if (!uprobe)
741 return NULL;
742
743 uprobe->inode = inode;
744 uprobe->offset = offset;
745 uprobe->ref_ctr_offset = ref_ctr_offset;
746 init_rwsem(&uprobe->register_rwsem);
747 init_rwsem(&uprobe->consumer_rwsem);
748
749 /* add to uprobes_tree, sorted on inode:offset */
750 cur_uprobe = insert_uprobe(uprobe);
751 /* a uprobe exists for this inode:offset combination */
752 if (cur_uprobe) {
753 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
754 ref_ctr_mismatch_warn(cur_uprobe, uprobe);
755 put_uprobe(cur_uprobe);
756 kfree(uprobe);
757 return ERR_PTR(-EINVAL);
758 }
759 kfree(uprobe);
760 uprobe = cur_uprobe;
761 }
762
763 return uprobe;
764}
765
766static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
767{
768 down_write(&uprobe->consumer_rwsem);
769 uc->next = uprobe->consumers;
770 uprobe->consumers = uc;
771 up_write(&uprobe->consumer_rwsem);
772}
773
774/*
775 * For uprobe @uprobe, delete the consumer @uc.
776 * Return true if the @uc is deleted successfully
777 * or return false.
778 */
779static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
780{
781 struct uprobe_consumer **con;
782 bool ret = false;
783
784 down_write(&uprobe->consumer_rwsem);
785 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
786 if (*con == uc) {
787 *con = uc->next;
788 ret = true;
789 break;
790 }
791 }
792 up_write(&uprobe->consumer_rwsem);
793
794 return ret;
795}
796
797static int __copy_insn(struct address_space *mapping, struct file *filp,
798 void *insn, int nbytes, loff_t offset)
799{
800 struct page *page;
801 /*
802 * Ensure that the page that has the original instruction is populated
803 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
804 * see uprobe_register().
805 */
806 if (mapping->a_ops->readpage)
807 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
808 else
809 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
810 if (IS_ERR(page))
811 return PTR_ERR(page);
812
813 copy_from_page(page, offset, insn, nbytes);
814 put_page(page);
815
816 return 0;
817}
818
819static int copy_insn(struct uprobe *uprobe, struct file *filp)
820{
821 struct address_space *mapping = uprobe->inode->i_mapping;
822 loff_t offs = uprobe->offset;
823 void *insn = &uprobe->arch.insn;
824 int size = sizeof(uprobe->arch.insn);
825 int len, err = -EIO;
826
827 /* Copy only available bytes, -EIO if nothing was read */
828 do {
829 if (offs >= i_size_read(uprobe->inode))
830 break;
831
832 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
833 err = __copy_insn(mapping, filp, insn, len, offs);
834 if (err)
835 break;
836
837 insn += len;
838 offs += len;
839 size -= len;
840 } while (size);
841
842 return err;
843}
844
845static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
846 struct mm_struct *mm, unsigned long vaddr)
847{
848 int ret = 0;
849
850 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
851 return ret;
852
853 /* TODO: move this into _register, until then we abuse this sem. */
854 down_write(&uprobe->consumer_rwsem);
855 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
856 goto out;
857
858 ret = copy_insn(uprobe, file);
859 if (ret)
860 goto out;
861
862 ret = -ENOTSUPP;
863 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
864 goto out;
865
866 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
867 if (ret)
868 goto out;
869
870 /* uprobe_write_opcode() assumes we don't cross page boundary */
871 BUG_ON((uprobe->offset & ~PAGE_MASK) +
872 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
873
874 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
875 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
876
877 out:
878 up_write(&uprobe->consumer_rwsem);
879
880 return ret;
881}
882
883static inline bool consumer_filter(struct uprobe_consumer *uc,
884 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
885{
886 return !uc->filter || uc->filter(uc, ctx, mm);
887}
888
889static bool filter_chain(struct uprobe *uprobe,
890 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
891{
892 struct uprobe_consumer *uc;
893 bool ret = false;
894
895 down_read(&uprobe->consumer_rwsem);
896 for (uc = uprobe->consumers; uc; uc = uc->next) {
897 ret = consumer_filter(uc, ctx, mm);
898 if (ret)
899 break;
900 }
901 up_read(&uprobe->consumer_rwsem);
902
903 return ret;
904}
905
906static int
907install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
908 struct vm_area_struct *vma, unsigned long vaddr)
909{
910 bool first_uprobe;
911 int ret;
912
913 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
914 if (ret)
915 return ret;
916
917 /*
918 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
919 * the task can hit this breakpoint right after __replace_page().
920 */
921 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
922 if (first_uprobe)
923 set_bit(MMF_HAS_UPROBES, &mm->flags);
924
925 ret = set_swbp(&uprobe->arch, mm, vaddr);
926 if (!ret)
927 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
928 else if (first_uprobe)
929 clear_bit(MMF_HAS_UPROBES, &mm->flags);
930
931 return ret;
932}
933
934static int
935remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
936{
937 set_bit(MMF_RECALC_UPROBES, &mm->flags);
938 return set_orig_insn(&uprobe->arch, mm, vaddr);
939}
940
941static inline bool uprobe_is_active(struct uprobe *uprobe)
942{
943 return !RB_EMPTY_NODE(&uprobe->rb_node);
944}
945/*
946 * There could be threads that have already hit the breakpoint. They
947 * will recheck the current insn and restart if find_uprobe() fails.
948 * See find_active_uprobe().
949 */
950static void delete_uprobe(struct uprobe *uprobe)
951{
952 if (WARN_ON(!uprobe_is_active(uprobe)))
953 return;
954
955 spin_lock(&uprobes_treelock);
956 rb_erase(&uprobe->rb_node, &uprobes_tree);
957 spin_unlock(&uprobes_treelock);
958 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
959 put_uprobe(uprobe);
960}
961
962struct map_info {
963 struct map_info *next;
964 struct mm_struct *mm;
965 unsigned long vaddr;
966};
967
968static inline struct map_info *free_map_info(struct map_info *info)
969{
970 struct map_info *next = info->next;
971 kfree(info);
972 return next;
973}
974
975static struct map_info *
976build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
977{
978 unsigned long pgoff = offset >> PAGE_SHIFT;
979 struct vm_area_struct *vma;
980 struct map_info *curr = NULL;
981 struct map_info *prev = NULL;
982 struct map_info *info;
983 int more = 0;
984
985 again:
986 i_mmap_lock_read(mapping);
987 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
988 if (!valid_vma(vma, is_register))
989 continue;
990
991 if (!prev && !more) {
992 /*
993 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
994 * reclaim. This is optimistic, no harm done if it fails.
995 */
996 prev = kmalloc(sizeof(struct map_info),
997 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
998 if (prev)
999 prev->next = NULL;
1000 }
1001 if (!prev) {
1002 more++;
1003 continue;
1004 }
1005
1006 if (!mmget_not_zero(vma->vm_mm))
1007 continue;
1008
1009 info = prev;
1010 prev = prev->next;
1011 info->next = curr;
1012 curr = info;
1013
1014 info->mm = vma->vm_mm;
1015 info->vaddr = offset_to_vaddr(vma, offset);
1016 }
1017 i_mmap_unlock_read(mapping);
1018
1019 if (!more)
1020 goto out;
1021
1022 prev = curr;
1023 while (curr) {
1024 mmput(curr->mm);
1025 curr = curr->next;
1026 }
1027
1028 do {
1029 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1030 if (!info) {
1031 curr = ERR_PTR(-ENOMEM);
1032 goto out;
1033 }
1034 info->next = prev;
1035 prev = info;
1036 } while (--more);
1037
1038 goto again;
1039 out:
1040 while (prev)
1041 prev = free_map_info(prev);
1042 return curr;
1043}
1044
1045static int
1046register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1047{
1048 bool is_register = !!new;
1049 struct map_info *info;
1050 int err = 0;
1051
1052 percpu_down_write(&dup_mmap_sem);
1053 info = build_map_info(uprobe->inode->i_mapping,
1054 uprobe->offset, is_register);
1055 if (IS_ERR(info)) {
1056 err = PTR_ERR(info);
1057 goto out;
1058 }
1059
1060 while (info) {
1061 struct mm_struct *mm = info->mm;
1062 struct vm_area_struct *vma;
1063
1064 if (err && is_register)
1065 goto free;
1066
1067 down_write(&mm->mmap_sem);
1068 vma = find_vma(mm, info->vaddr);
1069 if (!vma || !valid_vma(vma, is_register) ||
1070 file_inode(vma->vm_file) != uprobe->inode)
1071 goto unlock;
1072
1073 if (vma->vm_start > info->vaddr ||
1074 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1075 goto unlock;
1076
1077 if (is_register) {
1078 /* consult only the "caller", new consumer. */
1079 if (consumer_filter(new,
1080 UPROBE_FILTER_REGISTER, mm))
1081 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1082 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1083 if (!filter_chain(uprobe,
1084 UPROBE_FILTER_UNREGISTER, mm))
1085 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1086 }
1087
1088 unlock:
1089 up_write(&mm->mmap_sem);
1090 free:
1091 mmput(mm);
1092 info = free_map_info(info);
1093 }
1094 out:
1095 percpu_up_write(&dup_mmap_sem);
1096 return err;
1097}
1098
1099static void
1100__uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1101{
1102 int err;
1103
1104 if (WARN_ON(!consumer_del(uprobe, uc)))
1105 return;
1106
1107 err = register_for_each_vma(uprobe, NULL);
1108 /* TODO : cant unregister? schedule a worker thread */
1109 if (!uprobe->consumers && !err)
1110 delete_uprobe(uprobe);
1111}
1112
1113/*
1114 * uprobe_unregister - unregister an already registered probe.
1115 * @inode: the file in which the probe has to be removed.
1116 * @offset: offset from the start of the file.
1117 * @uc: identify which probe if multiple probes are colocated.
1118 */
1119void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1120{
1121 struct uprobe *uprobe;
1122
1123 uprobe = find_uprobe(inode, offset);
1124 if (WARN_ON(!uprobe))
1125 return;
1126
1127 down_write(&uprobe->register_rwsem);
1128 __uprobe_unregister(uprobe, uc);
1129 up_write(&uprobe->register_rwsem);
1130 put_uprobe(uprobe);
1131}
1132EXPORT_SYMBOL_GPL(uprobe_unregister);
1133
1134/*
1135 * __uprobe_register - register a probe
1136 * @inode: the file in which the probe has to be placed.
1137 * @offset: offset from the start of the file.
1138 * @uc: information on howto handle the probe..
1139 *
1140 * Apart from the access refcount, __uprobe_register() takes a creation
1141 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1142 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1143 * tuple). Creation refcount stops uprobe_unregister from freeing the
1144 * @uprobe even before the register operation is complete. Creation
1145 * refcount is released when the last @uc for the @uprobe
1146 * unregisters. Caller of __uprobe_register() is required to keep @inode
1147 * (and the containing mount) referenced.
1148 *
1149 * Return errno if it cannot successully install probes
1150 * else return 0 (success)
1151 */
1152static int __uprobe_register(struct inode *inode, loff_t offset,
1153 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1154{
1155 struct uprobe *uprobe;
1156 int ret;
1157
1158 /* Uprobe must have at least one set consumer */
1159 if (!uc->handler && !uc->ret_handler)
1160 return -EINVAL;
1161
1162 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1163 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1164 return -EIO;
1165 /* Racy, just to catch the obvious mistakes */
1166 if (offset > i_size_read(inode))
1167 return -EINVAL;
1168
1169 retry:
1170 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1171 if (!uprobe)
1172 return -ENOMEM;
1173 if (IS_ERR(uprobe))
1174 return PTR_ERR(uprobe);
1175
1176 /*
1177 * We can race with uprobe_unregister()->delete_uprobe().
1178 * Check uprobe_is_active() and retry if it is false.
1179 */
1180 down_write(&uprobe->register_rwsem);
1181 ret = -EAGAIN;
1182 if (likely(uprobe_is_active(uprobe))) {
1183 consumer_add(uprobe, uc);
1184 ret = register_for_each_vma(uprobe, uc);
1185 if (ret)
1186 __uprobe_unregister(uprobe, uc);
1187 }
1188 up_write(&uprobe->register_rwsem);
1189 put_uprobe(uprobe);
1190
1191 if (unlikely(ret == -EAGAIN))
1192 goto retry;
1193 return ret;
1194}
1195
1196int uprobe_register(struct inode *inode, loff_t offset,
1197 struct uprobe_consumer *uc)
1198{
1199 return __uprobe_register(inode, offset, 0, uc);
1200}
1201EXPORT_SYMBOL_GPL(uprobe_register);
1202
1203int uprobe_register_refctr(struct inode *inode, loff_t offset,
1204 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1205{
1206 return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1207}
1208EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1209
1210/*
1211 * uprobe_apply - unregister an already registered probe.
1212 * @inode: the file in which the probe has to be removed.
1213 * @offset: offset from the start of the file.
1214 * @uc: consumer which wants to add more or remove some breakpoints
1215 * @add: add or remove the breakpoints
1216 */
1217int uprobe_apply(struct inode *inode, loff_t offset,
1218 struct uprobe_consumer *uc, bool add)
1219{
1220 struct uprobe *uprobe;
1221 struct uprobe_consumer *con;
1222 int ret = -ENOENT;
1223
1224 uprobe = find_uprobe(inode, offset);
1225 if (WARN_ON(!uprobe))
1226 return ret;
1227
1228 down_write(&uprobe->register_rwsem);
1229 for (con = uprobe->consumers; con && con != uc ; con = con->next)
1230 ;
1231 if (con)
1232 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1233 up_write(&uprobe->register_rwsem);
1234 put_uprobe(uprobe);
1235
1236 return ret;
1237}
1238
1239static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1240{
1241 struct vm_area_struct *vma;
1242 int err = 0;
1243
1244 down_read(&mm->mmap_sem);
1245 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1246 unsigned long vaddr;
1247 loff_t offset;
1248
1249 if (!valid_vma(vma, false) ||
1250 file_inode(vma->vm_file) != uprobe->inode)
1251 continue;
1252
1253 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1254 if (uprobe->offset < offset ||
1255 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1256 continue;
1257
1258 vaddr = offset_to_vaddr(vma, uprobe->offset);
1259 err |= remove_breakpoint(uprobe, mm, vaddr);
1260 }
1261 up_read(&mm->mmap_sem);
1262
1263 return err;
1264}
1265
1266static struct rb_node *
1267find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1268{
1269 struct rb_node *n = uprobes_tree.rb_node;
1270
1271 while (n) {
1272 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1273
1274 if (inode < u->inode) {
1275 n = n->rb_left;
1276 } else if (inode > u->inode) {
1277 n = n->rb_right;
1278 } else {
1279 if (max < u->offset)
1280 n = n->rb_left;
1281 else if (min > u->offset)
1282 n = n->rb_right;
1283 else
1284 break;
1285 }
1286 }
1287
1288 return n;
1289}
1290
1291/*
1292 * For a given range in vma, build a list of probes that need to be inserted.
1293 */
1294static void build_probe_list(struct inode *inode,
1295 struct vm_area_struct *vma,
1296 unsigned long start, unsigned long end,
1297 struct list_head *head)
1298{
1299 loff_t min, max;
1300 struct rb_node *n, *t;
1301 struct uprobe *u;
1302
1303 INIT_LIST_HEAD(head);
1304 min = vaddr_to_offset(vma, start);
1305 max = min + (end - start) - 1;
1306
1307 spin_lock(&uprobes_treelock);
1308 n = find_node_in_range(inode, min, max);
1309 if (n) {
1310 for (t = n; t; t = rb_prev(t)) {
1311 u = rb_entry(t, struct uprobe, rb_node);
1312 if (u->inode != inode || u->offset < min)
1313 break;
1314 list_add(&u->pending_list, head);
1315 get_uprobe(u);
1316 }
1317 for (t = n; (t = rb_next(t)); ) {
1318 u = rb_entry(t, struct uprobe, rb_node);
1319 if (u->inode != inode || u->offset > max)
1320 break;
1321 list_add(&u->pending_list, head);
1322 get_uprobe(u);
1323 }
1324 }
1325 spin_unlock(&uprobes_treelock);
1326}
1327
1328/* @vma contains reference counter, not the probed instruction. */
1329static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1330{
1331 struct list_head *pos, *q;
1332 struct delayed_uprobe *du;
1333 unsigned long vaddr;
1334 int ret = 0, err = 0;
1335
1336 mutex_lock(&delayed_uprobe_lock);
1337 list_for_each_safe(pos, q, &delayed_uprobe_list) {
1338 du = list_entry(pos, struct delayed_uprobe, list);
1339
1340 if (du->mm != vma->vm_mm ||
1341 !valid_ref_ctr_vma(du->uprobe, vma))
1342 continue;
1343
1344 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1345 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1346 if (ret) {
1347 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1348 if (!err)
1349 err = ret;
1350 }
1351 delayed_uprobe_delete(du);
1352 }
1353 mutex_unlock(&delayed_uprobe_lock);
1354 return err;
1355}
1356
1357/*
1358 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1359 *
1360 * Currently we ignore all errors and always return 0, the callers
1361 * can't handle the failure anyway.
1362 */
1363int uprobe_mmap(struct vm_area_struct *vma)
1364{
1365 struct list_head tmp_list;
1366 struct uprobe *uprobe, *u;
1367 struct inode *inode;
1368
1369 if (no_uprobe_events())
1370 return 0;
1371
1372 if (vma->vm_file &&
1373 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1374 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1375 delayed_ref_ctr_inc(vma);
1376
1377 if (!valid_vma(vma, true))
1378 return 0;
1379
1380 inode = file_inode(vma->vm_file);
1381 if (!inode)
1382 return 0;
1383
1384 mutex_lock(uprobes_mmap_hash(inode));
1385 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1386 /*
1387 * We can race with uprobe_unregister(), this uprobe can be already
1388 * removed. But in this case filter_chain() must return false, all
1389 * consumers have gone away.
1390 */
1391 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1392 if (!fatal_signal_pending(current) &&
1393 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1394 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1395 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1396 }
1397 put_uprobe(uprobe);
1398 }
1399 mutex_unlock(uprobes_mmap_hash(inode));
1400
1401 return 0;
1402}
1403
1404static bool
1405vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1406{
1407 loff_t min, max;
1408 struct inode *inode;
1409 struct rb_node *n;
1410
1411 inode = file_inode(vma->vm_file);
1412
1413 min = vaddr_to_offset(vma, start);
1414 max = min + (end - start) - 1;
1415
1416 spin_lock(&uprobes_treelock);
1417 n = find_node_in_range(inode, min, max);
1418 spin_unlock(&uprobes_treelock);
1419
1420 return !!n;
1421}
1422
1423/*
1424 * Called in context of a munmap of a vma.
1425 */
1426void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1427{
1428 if (no_uprobe_events() || !valid_vma(vma, false))
1429 return;
1430
1431 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1432 return;
1433
1434 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1435 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1436 return;
1437
1438 if (vma_has_uprobes(vma, start, end))
1439 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1440}
1441
1442/* Slot allocation for XOL */
1443static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1444{
1445 struct vm_area_struct *vma;
1446 int ret;
1447
1448 if (down_write_killable(&mm->mmap_sem))
1449 return -EINTR;
1450
1451 if (mm->uprobes_state.xol_area) {
1452 ret = -EALREADY;
1453 goto fail;
1454 }
1455
1456 if (!area->vaddr) {
1457 /* Try to map as high as possible, this is only a hint. */
1458 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1459 PAGE_SIZE, 0, 0);
1460 if (area->vaddr & ~PAGE_MASK) {
1461 ret = area->vaddr;
1462 goto fail;
1463 }
1464 }
1465
1466 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1467 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1468 &area->xol_mapping);
1469 if (IS_ERR(vma)) {
1470 ret = PTR_ERR(vma);
1471 goto fail;
1472 }
1473
1474 ret = 0;
1475 /* pairs with get_xol_area() */
1476 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1477 fail:
1478 up_write(&mm->mmap_sem);
1479
1480 return ret;
1481}
1482
1483static struct xol_area *__create_xol_area(unsigned long vaddr)
1484{
1485 struct mm_struct *mm = current->mm;
1486 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1487 struct xol_area *area;
1488
1489 area = kmalloc(sizeof(*area), GFP_KERNEL);
1490 if (unlikely(!area))
1491 goto out;
1492
1493 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1494 GFP_KERNEL);
1495 if (!area->bitmap)
1496 goto free_area;
1497
1498 area->xol_mapping.name = "[uprobes]";
1499 area->xol_mapping.fault = NULL;
1500 area->xol_mapping.pages = area->pages;
1501 area->pages[0] = alloc_page(GFP_HIGHUSER);
1502 if (!area->pages[0])
1503 goto free_bitmap;
1504 area->pages[1] = NULL;
1505
1506 area->vaddr = vaddr;
1507 init_waitqueue_head(&area->wq);
1508 /* Reserve the 1st slot for get_trampoline_vaddr() */
1509 set_bit(0, area->bitmap);
1510 atomic_set(&area->slot_count, 1);
1511 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1512
1513 if (!xol_add_vma(mm, area))
1514 return area;
1515
1516 __free_page(area->pages[0]);
1517 free_bitmap:
1518 kfree(area->bitmap);
1519 free_area:
1520 kfree(area);
1521 out:
1522 return NULL;
1523}
1524
1525/*
1526 * get_xol_area - Allocate process's xol_area if necessary.
1527 * This area will be used for storing instructions for execution out of line.
1528 *
1529 * Returns the allocated area or NULL.
1530 */
1531static struct xol_area *get_xol_area(void)
1532{
1533 struct mm_struct *mm = current->mm;
1534 struct xol_area *area;
1535
1536 if (!mm->uprobes_state.xol_area)
1537 __create_xol_area(0);
1538
1539 /* Pairs with xol_add_vma() smp_store_release() */
1540 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1541 return area;
1542}
1543
1544/*
1545 * uprobe_clear_state - Free the area allocated for slots.
1546 */
1547void uprobe_clear_state(struct mm_struct *mm)
1548{
1549 struct xol_area *area = mm->uprobes_state.xol_area;
1550
1551 mutex_lock(&delayed_uprobe_lock);
1552 delayed_uprobe_remove(NULL, mm);
1553 mutex_unlock(&delayed_uprobe_lock);
1554
1555 if (!area)
1556 return;
1557
1558 put_page(area->pages[0]);
1559 kfree(area->bitmap);
1560 kfree(area);
1561}
1562
1563void uprobe_start_dup_mmap(void)
1564{
1565 percpu_down_read(&dup_mmap_sem);
1566}
1567
1568void uprobe_end_dup_mmap(void)
1569{
1570 percpu_up_read(&dup_mmap_sem);
1571}
1572
1573void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1574{
1575 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1576 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1577 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1578 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1579 }
1580}
1581
1582/*
1583 * - search for a free slot.
1584 */
1585static unsigned long xol_take_insn_slot(struct xol_area *area)
1586{
1587 unsigned long slot_addr;
1588 int slot_nr;
1589
1590 do {
1591 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1592 if (slot_nr < UINSNS_PER_PAGE) {
1593 if (!test_and_set_bit(slot_nr, area->bitmap))
1594 break;
1595
1596 slot_nr = UINSNS_PER_PAGE;
1597 continue;
1598 }
1599 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1600 } while (slot_nr >= UINSNS_PER_PAGE);
1601
1602 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1603 atomic_inc(&area->slot_count);
1604
1605 return slot_addr;
1606}
1607
1608/*
1609 * xol_get_insn_slot - allocate a slot for xol.
1610 * Returns the allocated slot address or 0.
1611 */
1612static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1613{
1614 struct xol_area *area;
1615 unsigned long xol_vaddr;
1616
1617 area = get_xol_area();
1618 if (!area)
1619 return 0;
1620
1621 xol_vaddr = xol_take_insn_slot(area);
1622 if (unlikely(!xol_vaddr))
1623 return 0;
1624
1625 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1626 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1627
1628 return xol_vaddr;
1629}
1630
1631/*
1632 * xol_free_insn_slot - If slot was earlier allocated by
1633 * @xol_get_insn_slot(), make the slot available for
1634 * subsequent requests.
1635 */
1636static void xol_free_insn_slot(struct task_struct *tsk)
1637{
1638 struct xol_area *area;
1639 unsigned long vma_end;
1640 unsigned long slot_addr;
1641
1642 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1643 return;
1644
1645 slot_addr = tsk->utask->xol_vaddr;
1646 if (unlikely(!slot_addr))
1647 return;
1648
1649 area = tsk->mm->uprobes_state.xol_area;
1650 vma_end = area->vaddr + PAGE_SIZE;
1651 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1652 unsigned long offset;
1653 int slot_nr;
1654
1655 offset = slot_addr - area->vaddr;
1656 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1657 if (slot_nr >= UINSNS_PER_PAGE)
1658 return;
1659
1660 clear_bit(slot_nr, area->bitmap);
1661 atomic_dec(&area->slot_count);
1662 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1663 if (waitqueue_active(&area->wq))
1664 wake_up(&area->wq);
1665
1666 tsk->utask->xol_vaddr = 0;
1667 }
1668}
1669
1670void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1671 void *src, unsigned long len)
1672{
1673 /* Initialize the slot */
1674 copy_to_page(page, vaddr, src, len);
1675
1676 /*
1677 * We probably need flush_icache_user_range() but it needs vma.
1678 * This should work on most of architectures by default. If
1679 * architecture needs to do something different it can define
1680 * its own version of the function.
1681 */
1682 flush_dcache_page(page);
1683}
1684
1685/**
1686 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1687 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1688 * instruction.
1689 * Return the address of the breakpoint instruction.
1690 */
1691unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1692{
1693 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1694}
1695
1696unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1697{
1698 struct uprobe_task *utask = current->utask;
1699
1700 if (unlikely(utask && utask->active_uprobe))
1701 return utask->vaddr;
1702
1703 return instruction_pointer(regs);
1704}
1705
1706static struct return_instance *free_ret_instance(struct return_instance *ri)
1707{
1708 struct return_instance *next = ri->next;
1709 put_uprobe(ri->uprobe);
1710 kfree(ri);
1711 return next;
1712}
1713
1714/*
1715 * Called with no locks held.
1716 * Called in context of an exiting or an exec-ing thread.
1717 */
1718void uprobe_free_utask(struct task_struct *t)
1719{
1720 struct uprobe_task *utask = t->utask;
1721 struct return_instance *ri;
1722
1723 if (!utask)
1724 return;
1725
1726 if (utask->active_uprobe)
1727 put_uprobe(utask->active_uprobe);
1728
1729 ri = utask->return_instances;
1730 while (ri)
1731 ri = free_ret_instance(ri);
1732
1733 xol_free_insn_slot(t);
1734 kfree(utask);
1735 t->utask = NULL;
1736}
1737
1738/*
1739 * Allocate a uprobe_task object for the task if if necessary.
1740 * Called when the thread hits a breakpoint.
1741 *
1742 * Returns:
1743 * - pointer to new uprobe_task on success
1744 * - NULL otherwise
1745 */
1746static struct uprobe_task *get_utask(void)
1747{
1748 if (!current->utask)
1749 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1750 return current->utask;
1751}
1752
1753static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1754{
1755 struct uprobe_task *n_utask;
1756 struct return_instance **p, *o, *n;
1757
1758 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1759 if (!n_utask)
1760 return -ENOMEM;
1761 t->utask = n_utask;
1762
1763 p = &n_utask->return_instances;
1764 for (o = o_utask->return_instances; o; o = o->next) {
1765 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1766 if (!n)
1767 return -ENOMEM;
1768
1769 *n = *o;
1770 get_uprobe(n->uprobe);
1771 n->next = NULL;
1772
1773 *p = n;
1774 p = &n->next;
1775 n_utask->depth++;
1776 }
1777
1778 return 0;
1779}
1780
1781static void uprobe_warn(struct task_struct *t, const char *msg)
1782{
1783 pr_warn("uprobe: %s:%d failed to %s\n",
1784 current->comm, current->pid, msg);
1785}
1786
1787static void dup_xol_work(struct callback_head *work)
1788{
1789 if (current->flags & PF_EXITING)
1790 return;
1791
1792 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1793 !fatal_signal_pending(current))
1794 uprobe_warn(current, "dup xol area");
1795}
1796
1797/*
1798 * Called in context of a new clone/fork from copy_process.
1799 */
1800void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1801{
1802 struct uprobe_task *utask = current->utask;
1803 struct mm_struct *mm = current->mm;
1804 struct xol_area *area;
1805
1806 t->utask = NULL;
1807
1808 if (!utask || !utask->return_instances)
1809 return;
1810
1811 if (mm == t->mm && !(flags & CLONE_VFORK))
1812 return;
1813
1814 if (dup_utask(t, utask))
1815 return uprobe_warn(t, "dup ret instances");
1816
1817 /* The task can fork() after dup_xol_work() fails */
1818 area = mm->uprobes_state.xol_area;
1819 if (!area)
1820 return uprobe_warn(t, "dup xol area");
1821
1822 if (mm == t->mm)
1823 return;
1824
1825 t->utask->dup_xol_addr = area->vaddr;
1826 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1827 task_work_add(t, &t->utask->dup_xol_work, true);
1828}
1829
1830/*
1831 * Current area->vaddr notion assume the trampoline address is always
1832 * equal area->vaddr.
1833 *
1834 * Returns -1 in case the xol_area is not allocated.
1835 */
1836static unsigned long get_trampoline_vaddr(void)
1837{
1838 struct xol_area *area;
1839 unsigned long trampoline_vaddr = -1;
1840
1841 /* Pairs with xol_add_vma() smp_store_release() */
1842 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1843 if (area)
1844 trampoline_vaddr = area->vaddr;
1845
1846 return trampoline_vaddr;
1847}
1848
1849static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1850 struct pt_regs *regs)
1851{
1852 struct return_instance *ri = utask->return_instances;
1853 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1854
1855 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1856 ri = free_ret_instance(ri);
1857 utask->depth--;
1858 }
1859 utask->return_instances = ri;
1860}
1861
1862static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1863{
1864 struct return_instance *ri;
1865 struct uprobe_task *utask;
1866 unsigned long orig_ret_vaddr, trampoline_vaddr;
1867 bool chained;
1868
1869 if (!get_xol_area())
1870 return;
1871
1872 utask = get_utask();
1873 if (!utask)
1874 return;
1875
1876 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1877 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1878 " nestedness limit pid/tgid=%d/%d\n",
1879 current->pid, current->tgid);
1880 return;
1881 }
1882
1883 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1884 if (!ri)
1885 return;
1886
1887 trampoline_vaddr = get_trampoline_vaddr();
1888 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1889 if (orig_ret_vaddr == -1)
1890 goto fail;
1891
1892 /* drop the entries invalidated by longjmp() */
1893 chained = (orig_ret_vaddr == trampoline_vaddr);
1894 cleanup_return_instances(utask, chained, regs);
1895
1896 /*
1897 * We don't want to keep trampoline address in stack, rather keep the
1898 * original return address of first caller thru all the consequent
1899 * instances. This also makes breakpoint unwrapping easier.
1900 */
1901 if (chained) {
1902 if (!utask->return_instances) {
1903 /*
1904 * This situation is not possible. Likely we have an
1905 * attack from user-space.
1906 */
1907 uprobe_warn(current, "handle tail call");
1908 goto fail;
1909 }
1910 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1911 }
1912
1913 ri->uprobe = get_uprobe(uprobe);
1914 ri->func = instruction_pointer(regs);
1915 ri->stack = user_stack_pointer(regs);
1916 ri->orig_ret_vaddr = orig_ret_vaddr;
1917 ri->chained = chained;
1918
1919 utask->depth++;
1920 ri->next = utask->return_instances;
1921 utask->return_instances = ri;
1922
1923 return;
1924 fail:
1925 kfree(ri);
1926}
1927
1928/* Prepare to single-step probed instruction out of line. */
1929static int
1930pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1931{
1932 struct uprobe_task *utask;
1933 unsigned long xol_vaddr;
1934 int err;
1935
1936 utask = get_utask();
1937 if (!utask)
1938 return -ENOMEM;
1939
1940 xol_vaddr = xol_get_insn_slot(uprobe);
1941 if (!xol_vaddr)
1942 return -ENOMEM;
1943
1944 utask->xol_vaddr = xol_vaddr;
1945 utask->vaddr = bp_vaddr;
1946
1947 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1948 if (unlikely(err)) {
1949 xol_free_insn_slot(current);
1950 return err;
1951 }
1952
1953 utask->active_uprobe = uprobe;
1954 utask->state = UTASK_SSTEP;
1955 return 0;
1956}
1957
1958/*
1959 * If we are singlestepping, then ensure this thread is not connected to
1960 * non-fatal signals until completion of singlestep. When xol insn itself
1961 * triggers the signal, restart the original insn even if the task is
1962 * already SIGKILL'ed (since coredump should report the correct ip). This
1963 * is even more important if the task has a handler for SIGSEGV/etc, The
1964 * _same_ instruction should be repeated again after return from the signal
1965 * handler, and SSTEP can never finish in this case.
1966 */
1967bool uprobe_deny_signal(void)
1968{
1969 struct task_struct *t = current;
1970 struct uprobe_task *utask = t->utask;
1971
1972 if (likely(!utask || !utask->active_uprobe))
1973 return false;
1974
1975 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1976
1977 if (signal_pending(t)) {
1978 spin_lock_irq(&t->sighand->siglock);
1979 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1980 spin_unlock_irq(&t->sighand->siglock);
1981
1982 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1983 utask->state = UTASK_SSTEP_TRAPPED;
1984 set_tsk_thread_flag(t, TIF_UPROBE);
1985 }
1986 }
1987
1988 return true;
1989}
1990
1991static void mmf_recalc_uprobes(struct mm_struct *mm)
1992{
1993 struct vm_area_struct *vma;
1994
1995 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1996 if (!valid_vma(vma, false))
1997 continue;
1998 /*
1999 * This is not strictly accurate, we can race with
2000 * uprobe_unregister() and see the already removed
2001 * uprobe if delete_uprobe() was not yet called.
2002 * Or this uprobe can be filtered out.
2003 */
2004 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2005 return;
2006 }
2007
2008 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2009}
2010
2011static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2012{
2013 struct page *page;
2014 uprobe_opcode_t opcode;
2015 int result;
2016
2017 pagefault_disable();
2018 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2019 pagefault_enable();
2020
2021 if (likely(result == 0))
2022 goto out;
2023
2024 /*
2025 * The NULL 'tsk' here ensures that any faults that occur here
2026 * will not be accounted to the task. 'mm' *is* current->mm,
2027 * but we treat this as a 'remote' access since it is
2028 * essentially a kernel access to the memory.
2029 */
2030 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
2031 NULL, NULL);
2032 if (result < 0)
2033 return result;
2034
2035 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2036 put_page(page);
2037 out:
2038 /* This needs to return true for any variant of the trap insn */
2039 return is_trap_insn(&opcode);
2040}
2041
2042static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2043{
2044 struct mm_struct *mm = current->mm;
2045 struct uprobe *uprobe = NULL;
2046 struct vm_area_struct *vma;
2047
2048 down_read(&mm->mmap_sem);
2049 vma = find_vma(mm, bp_vaddr);
2050 if (vma && vma->vm_start <= bp_vaddr) {
2051 if (valid_vma(vma, false)) {
2052 struct inode *inode = file_inode(vma->vm_file);
2053 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2054
2055 uprobe = find_uprobe(inode, offset);
2056 }
2057
2058 if (!uprobe)
2059 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2060 } else {
2061 *is_swbp = -EFAULT;
2062 }
2063
2064 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2065 mmf_recalc_uprobes(mm);
2066 up_read(&mm->mmap_sem);
2067
2068 return uprobe;
2069}
2070
2071static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2072{
2073 struct uprobe_consumer *uc;
2074 int remove = UPROBE_HANDLER_REMOVE;
2075 bool need_prep = false; /* prepare return uprobe, when needed */
2076
2077 down_read(&uprobe->register_rwsem);
2078 for (uc = uprobe->consumers; uc; uc = uc->next) {
2079 int rc = 0;
2080
2081 if (uc->handler) {
2082 rc = uc->handler(uc, regs);
2083 WARN(rc & ~UPROBE_HANDLER_MASK,
2084 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2085 }
2086
2087 if (uc->ret_handler)
2088 need_prep = true;
2089
2090 remove &= rc;
2091 }
2092
2093 if (need_prep && !remove)
2094 prepare_uretprobe(uprobe, regs); /* put bp at return */
2095
2096 if (remove && uprobe->consumers) {
2097 WARN_ON(!uprobe_is_active(uprobe));
2098 unapply_uprobe(uprobe, current->mm);
2099 }
2100 up_read(&uprobe->register_rwsem);
2101}
2102
2103static void
2104handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2105{
2106 struct uprobe *uprobe = ri->uprobe;
2107 struct uprobe_consumer *uc;
2108
2109 down_read(&uprobe->register_rwsem);
2110 for (uc = uprobe->consumers; uc; uc = uc->next) {
2111 if (uc->ret_handler)
2112 uc->ret_handler(uc, ri->func, regs);
2113 }
2114 up_read(&uprobe->register_rwsem);
2115}
2116
2117static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2118{
2119 bool chained;
2120
2121 do {
2122 chained = ri->chained;
2123 ri = ri->next; /* can't be NULL if chained */
2124 } while (chained);
2125
2126 return ri;
2127}
2128
2129static void handle_trampoline(struct pt_regs *regs)
2130{
2131 struct uprobe_task *utask;
2132 struct return_instance *ri, *next;
2133 bool valid;
2134
2135 utask = current->utask;
2136 if (!utask)
2137 goto sigill;
2138
2139 ri = utask->return_instances;
2140 if (!ri)
2141 goto sigill;
2142
2143 do {
2144 /*
2145 * We should throw out the frames invalidated by longjmp().
2146 * If this chain is valid, then the next one should be alive
2147 * or NULL; the latter case means that nobody but ri->func
2148 * could hit this trampoline on return. TODO: sigaltstack().
2149 */
2150 next = find_next_ret_chain(ri);
2151 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2152
2153 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2154 do {
2155 if (valid)
2156 handle_uretprobe_chain(ri, regs);
2157 ri = free_ret_instance(ri);
2158 utask->depth--;
2159 } while (ri != next);
2160 } while (!valid);
2161
2162 utask->return_instances = ri;
2163 return;
2164
2165 sigill:
2166 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2167 force_sig(SIGILL);
2168
2169}
2170
2171bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2172{
2173 return false;
2174}
2175
2176bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2177 struct pt_regs *regs)
2178{
2179 return true;
2180}
2181
2182/*
2183 * Run handler and ask thread to singlestep.
2184 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2185 */
2186static void handle_swbp(struct pt_regs *regs)
2187{
2188 struct uprobe *uprobe;
2189 unsigned long bp_vaddr;
2190 int uninitialized_var(is_swbp);
2191
2192 bp_vaddr = uprobe_get_swbp_addr(regs);
2193 if (bp_vaddr == get_trampoline_vaddr())
2194 return handle_trampoline(regs);
2195
2196 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2197 if (!uprobe) {
2198 if (is_swbp > 0) {
2199 /* No matching uprobe; signal SIGTRAP. */
2200 send_sig(SIGTRAP, current, 0);
2201 } else {
2202 /*
2203 * Either we raced with uprobe_unregister() or we can't
2204 * access this memory. The latter is only possible if
2205 * another thread plays with our ->mm. In both cases
2206 * we can simply restart. If this vma was unmapped we
2207 * can pretend this insn was not executed yet and get
2208 * the (correct) SIGSEGV after restart.
2209 */
2210 instruction_pointer_set(regs, bp_vaddr);
2211 }
2212 return;
2213 }
2214
2215 /* change it in advance for ->handler() and restart */
2216 instruction_pointer_set(regs, bp_vaddr);
2217
2218 /*
2219 * TODO: move copy_insn/etc into _register and remove this hack.
2220 * After we hit the bp, _unregister + _register can install the
2221 * new and not-yet-analyzed uprobe at the same address, restart.
2222 */
2223 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2224 goto out;
2225
2226 /*
2227 * Pairs with the smp_wmb() in prepare_uprobe().
2228 *
2229 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2230 * we must also see the stores to &uprobe->arch performed by the
2231 * prepare_uprobe() call.
2232 */
2233 smp_rmb();
2234
2235 /* Tracing handlers use ->utask to communicate with fetch methods */
2236 if (!get_utask())
2237 goto out;
2238
2239 if (arch_uprobe_ignore(&uprobe->arch, regs))
2240 goto out;
2241
2242 handler_chain(uprobe, regs);
2243
2244 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2245 goto out;
2246
2247 if (!pre_ssout(uprobe, regs, bp_vaddr))
2248 return;
2249
2250 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2251out:
2252 put_uprobe(uprobe);
2253}
2254
2255/*
2256 * Perform required fix-ups and disable singlestep.
2257 * Allow pending signals to take effect.
2258 */
2259static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2260{
2261 struct uprobe *uprobe;
2262 int err = 0;
2263
2264 uprobe = utask->active_uprobe;
2265 if (utask->state == UTASK_SSTEP_ACK)
2266 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2267 else if (utask->state == UTASK_SSTEP_TRAPPED)
2268 arch_uprobe_abort_xol(&uprobe->arch, regs);
2269 else
2270 WARN_ON_ONCE(1);
2271
2272 put_uprobe(uprobe);
2273 utask->active_uprobe = NULL;
2274 utask->state = UTASK_RUNNING;
2275 xol_free_insn_slot(current);
2276
2277 spin_lock_irq(¤t->sighand->siglock);
2278 recalc_sigpending(); /* see uprobe_deny_signal() */
2279 spin_unlock_irq(¤t->sighand->siglock);
2280
2281 if (unlikely(err)) {
2282 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2283 force_sig(SIGILL);
2284 }
2285}
2286
2287/*
2288 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2289 * allows the thread to return from interrupt. After that handle_swbp()
2290 * sets utask->active_uprobe.
2291 *
2292 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2293 * and allows the thread to return from interrupt.
2294 *
2295 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2296 * uprobe_notify_resume().
2297 */
2298void uprobe_notify_resume(struct pt_regs *regs)
2299{
2300 struct uprobe_task *utask;
2301
2302 clear_thread_flag(TIF_UPROBE);
2303
2304 utask = current->utask;
2305 if (utask && utask->active_uprobe)
2306 handle_singlestep(utask, regs);
2307 else
2308 handle_swbp(regs);
2309}
2310
2311/*
2312 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2313 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2314 */
2315int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2316{
2317 if (!current->mm)
2318 return 0;
2319
2320 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) &&
2321 (!current->utask || !current->utask->return_instances))
2322 return 0;
2323
2324 set_thread_flag(TIF_UPROBE);
2325 return 1;
2326}
2327
2328/*
2329 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2330 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2331 */
2332int uprobe_post_sstep_notifier(struct pt_regs *regs)
2333{
2334 struct uprobe_task *utask = current->utask;
2335
2336 if (!current->mm || !utask || !utask->active_uprobe)
2337 /* task is currently not uprobed */
2338 return 0;
2339
2340 utask->state = UTASK_SSTEP_ACK;
2341 set_thread_flag(TIF_UPROBE);
2342 return 1;
2343}
2344
2345static struct notifier_block uprobe_exception_nb = {
2346 .notifier_call = arch_uprobe_exception_notify,
2347 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2348};
2349
2350void __init uprobes_init(void)
2351{
2352 int i;
2353
2354 for (i = 0; i < UPROBES_HASH_SZ; i++)
2355 mutex_init(&uprobes_mmap_mutex[i]);
2356
2357 BUG_ON(register_die_notifier(&uprobe_exception_nb));
2358}
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * User-space Probes (UProbes)
4 *
5 * Copyright (C) IBM Corporation, 2008-2012
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10 */
11
12#include <linux/kernel.h>
13#include <linux/highmem.h>
14#include <linux/pagemap.h> /* read_mapping_page */
15#include <linux/slab.h>
16#include <linux/sched.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/coredump.h>
19#include <linux/export.h>
20#include <linux/rmap.h> /* anon_vma_prepare */
21#include <linux/mmu_notifier.h> /* set_pte_at_notify */
22#include <linux/swap.h> /* folio_free_swap */
23#include <linux/ptrace.h> /* user_enable_single_step */
24#include <linux/kdebug.h> /* notifier mechanism */
25#include <linux/percpu-rwsem.h>
26#include <linux/task_work.h>
27#include <linux/shmem_fs.h>
28#include <linux/khugepaged.h>
29
30#include <linux/uprobes.h>
31
32#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
34
35static struct rb_root uprobes_tree = RB_ROOT;
36/*
37 * allows us to skip the uprobe_mmap if there are no uprobe events active
38 * at this time. Probably a fine grained per inode count is better?
39 */
40#define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
41
42static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
43
44#define UPROBES_HASH_SZ 13
45/* serialize uprobe->pending_list */
46static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
47#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
48
49DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
50
51/* Have a copy of original instruction */
52#define UPROBE_COPY_INSN 0
53
54struct uprobe {
55 struct rb_node rb_node; /* node in the rb tree */
56 refcount_t ref;
57 struct rw_semaphore register_rwsem;
58 struct rw_semaphore consumer_rwsem;
59 struct list_head pending_list;
60 struct uprobe_consumer *consumers;
61 struct inode *inode; /* Also hold a ref to inode */
62 loff_t offset;
63 loff_t ref_ctr_offset;
64 unsigned long flags;
65
66 /*
67 * The generic code assumes that it has two members of unknown type
68 * owned by the arch-specific code:
69 *
70 * insn - copy_insn() saves the original instruction here for
71 * arch_uprobe_analyze_insn().
72 *
73 * ixol - potentially modified instruction to execute out of
74 * line, copied to xol_area by xol_get_insn_slot().
75 */
76 struct arch_uprobe arch;
77};
78
79struct delayed_uprobe {
80 struct list_head list;
81 struct uprobe *uprobe;
82 struct mm_struct *mm;
83};
84
85static DEFINE_MUTEX(delayed_uprobe_lock);
86static LIST_HEAD(delayed_uprobe_list);
87
88/*
89 * Execute out of line area: anonymous executable mapping installed
90 * by the probed task to execute the copy of the original instruction
91 * mangled by set_swbp().
92 *
93 * On a breakpoint hit, thread contests for a slot. It frees the
94 * slot after singlestep. Currently a fixed number of slots are
95 * allocated.
96 */
97struct xol_area {
98 wait_queue_head_t wq; /* if all slots are busy */
99 atomic_t slot_count; /* number of in-use slots */
100 unsigned long *bitmap; /* 0 = free slot */
101
102 struct vm_special_mapping xol_mapping;
103 struct page *pages[2];
104 /*
105 * We keep the vma's vm_start rather than a pointer to the vma
106 * itself. The probed process or a naughty kernel module could make
107 * the vma go away, and we must handle that reasonably gracefully.
108 */
109 unsigned long vaddr; /* Page(s) of instruction slots */
110};
111
112/*
113 * valid_vma: Verify if the specified vma is an executable vma
114 * Relax restrictions while unregistering: vm_flags might have
115 * changed after breakpoint was inserted.
116 * - is_register: indicates if we are in register context.
117 * - Return 1 if the specified virtual address is in an
118 * executable vma.
119 */
120static bool valid_vma(struct vm_area_struct *vma, bool is_register)
121{
122 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
123
124 if (is_register)
125 flags |= VM_WRITE;
126
127 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
128}
129
130static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
131{
132 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
133}
134
135static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
136{
137 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
138}
139
140/**
141 * __replace_page - replace page in vma by new page.
142 * based on replace_page in mm/ksm.c
143 *
144 * @vma: vma that holds the pte pointing to page
145 * @addr: address the old @page is mapped at
146 * @old_page: the page we are replacing by new_page
147 * @new_page: the modified page we replace page by
148 *
149 * If @new_page is NULL, only unmap @old_page.
150 *
151 * Returns 0 on success, negative error code otherwise.
152 */
153static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
154 struct page *old_page, struct page *new_page)
155{
156 struct folio *old_folio = page_folio(old_page);
157 struct folio *new_folio;
158 struct mm_struct *mm = vma->vm_mm;
159 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
160 int err;
161 struct mmu_notifier_range range;
162
163 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
164 addr + PAGE_SIZE);
165
166 if (new_page) {
167 new_folio = page_folio(new_page);
168 err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
169 if (err)
170 return err;
171 }
172
173 /* For folio_free_swap() below */
174 folio_lock(old_folio);
175
176 mmu_notifier_invalidate_range_start(&range);
177 err = -EAGAIN;
178 if (!page_vma_mapped_walk(&pvmw))
179 goto unlock;
180 VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
181
182 if (new_page) {
183 folio_get(new_folio);
184 folio_add_new_anon_rmap(new_folio, vma, addr);
185 folio_add_lru_vma(new_folio, vma);
186 } else
187 /* no new page, just dec_mm_counter for old_page */
188 dec_mm_counter(mm, MM_ANONPAGES);
189
190 if (!folio_test_anon(old_folio)) {
191 dec_mm_counter(mm, mm_counter_file(old_page));
192 inc_mm_counter(mm, MM_ANONPAGES);
193 }
194
195 flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte)));
196 ptep_clear_flush(vma, addr, pvmw.pte);
197 if (new_page)
198 set_pte_at_notify(mm, addr, pvmw.pte,
199 mk_pte(new_page, vma->vm_page_prot));
200
201 folio_remove_rmap_pte(old_folio, old_page, vma);
202 if (!folio_mapped(old_folio))
203 folio_free_swap(old_folio);
204 page_vma_mapped_walk_done(&pvmw);
205 folio_put(old_folio);
206
207 err = 0;
208 unlock:
209 mmu_notifier_invalidate_range_end(&range);
210 folio_unlock(old_folio);
211 return err;
212}
213
214/**
215 * is_swbp_insn - check if instruction is breakpoint instruction.
216 * @insn: instruction to be checked.
217 * Default implementation of is_swbp_insn
218 * Returns true if @insn is a breakpoint instruction.
219 */
220bool __weak is_swbp_insn(uprobe_opcode_t *insn)
221{
222 return *insn == UPROBE_SWBP_INSN;
223}
224
225/**
226 * is_trap_insn - check if instruction is breakpoint instruction.
227 * @insn: instruction to be checked.
228 * Default implementation of is_trap_insn
229 * Returns true if @insn is a breakpoint instruction.
230 *
231 * This function is needed for the case where an architecture has multiple
232 * trap instructions (like powerpc).
233 */
234bool __weak is_trap_insn(uprobe_opcode_t *insn)
235{
236 return is_swbp_insn(insn);
237}
238
239static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
240{
241 void *kaddr = kmap_atomic(page);
242 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
243 kunmap_atomic(kaddr);
244}
245
246static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
247{
248 void *kaddr = kmap_atomic(page);
249 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
250 kunmap_atomic(kaddr);
251}
252
253static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
254{
255 uprobe_opcode_t old_opcode;
256 bool is_swbp;
257
258 /*
259 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
260 * We do not check if it is any other 'trap variant' which could
261 * be conditional trap instruction such as the one powerpc supports.
262 *
263 * The logic is that we do not care if the underlying instruction
264 * is a trap variant; uprobes always wins over any other (gdb)
265 * breakpoint.
266 */
267 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
268 is_swbp = is_swbp_insn(&old_opcode);
269
270 if (is_swbp_insn(new_opcode)) {
271 if (is_swbp) /* register: already installed? */
272 return 0;
273 } else {
274 if (!is_swbp) /* unregister: was it changed by us? */
275 return 0;
276 }
277
278 return 1;
279}
280
281static struct delayed_uprobe *
282delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
283{
284 struct delayed_uprobe *du;
285
286 list_for_each_entry(du, &delayed_uprobe_list, list)
287 if (du->uprobe == uprobe && du->mm == mm)
288 return du;
289 return NULL;
290}
291
292static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
293{
294 struct delayed_uprobe *du;
295
296 if (delayed_uprobe_check(uprobe, mm))
297 return 0;
298
299 du = kzalloc(sizeof(*du), GFP_KERNEL);
300 if (!du)
301 return -ENOMEM;
302
303 du->uprobe = uprobe;
304 du->mm = mm;
305 list_add(&du->list, &delayed_uprobe_list);
306 return 0;
307}
308
309static void delayed_uprobe_delete(struct delayed_uprobe *du)
310{
311 if (WARN_ON(!du))
312 return;
313 list_del(&du->list);
314 kfree(du);
315}
316
317static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
318{
319 struct list_head *pos, *q;
320 struct delayed_uprobe *du;
321
322 if (!uprobe && !mm)
323 return;
324
325 list_for_each_safe(pos, q, &delayed_uprobe_list) {
326 du = list_entry(pos, struct delayed_uprobe, list);
327
328 if (uprobe && du->uprobe != uprobe)
329 continue;
330 if (mm && du->mm != mm)
331 continue;
332
333 delayed_uprobe_delete(du);
334 }
335}
336
337static bool valid_ref_ctr_vma(struct uprobe *uprobe,
338 struct vm_area_struct *vma)
339{
340 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
341
342 return uprobe->ref_ctr_offset &&
343 vma->vm_file &&
344 file_inode(vma->vm_file) == uprobe->inode &&
345 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
346 vma->vm_start <= vaddr &&
347 vma->vm_end > vaddr;
348}
349
350static struct vm_area_struct *
351find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
352{
353 VMA_ITERATOR(vmi, mm, 0);
354 struct vm_area_struct *tmp;
355
356 for_each_vma(vmi, tmp)
357 if (valid_ref_ctr_vma(uprobe, tmp))
358 return tmp;
359
360 return NULL;
361}
362
363static int
364__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
365{
366 void *kaddr;
367 struct page *page;
368 int ret;
369 short *ptr;
370
371 if (!vaddr || !d)
372 return -EINVAL;
373
374 ret = get_user_pages_remote(mm, vaddr, 1,
375 FOLL_WRITE, &page, NULL);
376 if (unlikely(ret <= 0)) {
377 /*
378 * We are asking for 1 page. If get_user_pages_remote() fails,
379 * it may return 0, in that case we have to return error.
380 */
381 return ret == 0 ? -EBUSY : ret;
382 }
383
384 kaddr = kmap_atomic(page);
385 ptr = kaddr + (vaddr & ~PAGE_MASK);
386
387 if (unlikely(*ptr + d < 0)) {
388 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
389 "curr val: %d, delta: %d\n", vaddr, *ptr, d);
390 ret = -EINVAL;
391 goto out;
392 }
393
394 *ptr += d;
395 ret = 0;
396out:
397 kunmap_atomic(kaddr);
398 put_page(page);
399 return ret;
400}
401
402static void update_ref_ctr_warn(struct uprobe *uprobe,
403 struct mm_struct *mm, short d)
404{
405 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
406 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
407 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
408 (unsigned long long) uprobe->offset,
409 (unsigned long long) uprobe->ref_ctr_offset, mm);
410}
411
412static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
413 short d)
414{
415 struct vm_area_struct *rc_vma;
416 unsigned long rc_vaddr;
417 int ret = 0;
418
419 rc_vma = find_ref_ctr_vma(uprobe, mm);
420
421 if (rc_vma) {
422 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
423 ret = __update_ref_ctr(mm, rc_vaddr, d);
424 if (ret)
425 update_ref_ctr_warn(uprobe, mm, d);
426
427 if (d > 0)
428 return ret;
429 }
430
431 mutex_lock(&delayed_uprobe_lock);
432 if (d > 0)
433 ret = delayed_uprobe_add(uprobe, mm);
434 else
435 delayed_uprobe_remove(uprobe, mm);
436 mutex_unlock(&delayed_uprobe_lock);
437
438 return ret;
439}
440
441/*
442 * NOTE:
443 * Expect the breakpoint instruction to be the smallest size instruction for
444 * the architecture. If an arch has variable length instruction and the
445 * breakpoint instruction is not of the smallest length instruction
446 * supported by that architecture then we need to modify is_trap_at_addr and
447 * uprobe_write_opcode accordingly. This would never be a problem for archs
448 * that have fixed length instructions.
449 *
450 * uprobe_write_opcode - write the opcode at a given virtual address.
451 * @auprobe: arch specific probepoint information.
452 * @mm: the probed process address space.
453 * @vaddr: the virtual address to store the opcode.
454 * @opcode: opcode to be written at @vaddr.
455 *
456 * Called with mm->mmap_lock held for write.
457 * Return 0 (success) or a negative errno.
458 */
459int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
460 unsigned long vaddr, uprobe_opcode_t opcode)
461{
462 struct uprobe *uprobe;
463 struct page *old_page, *new_page;
464 struct vm_area_struct *vma;
465 int ret, is_register, ref_ctr_updated = 0;
466 bool orig_page_huge = false;
467 unsigned int gup_flags = FOLL_FORCE;
468
469 is_register = is_swbp_insn(&opcode);
470 uprobe = container_of(auprobe, struct uprobe, arch);
471
472retry:
473 if (is_register)
474 gup_flags |= FOLL_SPLIT_PMD;
475 /* Read the page with vaddr into memory */
476 old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
477 if (IS_ERR(old_page))
478 return PTR_ERR(old_page);
479
480 ret = verify_opcode(old_page, vaddr, &opcode);
481 if (ret <= 0)
482 goto put_old;
483
484 if (WARN(!is_register && PageCompound(old_page),
485 "uprobe unregister should never work on compound page\n")) {
486 ret = -EINVAL;
487 goto put_old;
488 }
489
490 /* We are going to replace instruction, update ref_ctr. */
491 if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
492 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
493 if (ret)
494 goto put_old;
495
496 ref_ctr_updated = 1;
497 }
498
499 ret = 0;
500 if (!is_register && !PageAnon(old_page))
501 goto put_old;
502
503 ret = anon_vma_prepare(vma);
504 if (ret)
505 goto put_old;
506
507 ret = -ENOMEM;
508 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
509 if (!new_page)
510 goto put_old;
511
512 __SetPageUptodate(new_page);
513 copy_highpage(new_page, old_page);
514 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
515
516 if (!is_register) {
517 struct page *orig_page;
518 pgoff_t index;
519
520 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
521
522 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
523 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
524 index);
525
526 if (orig_page) {
527 if (PageUptodate(orig_page) &&
528 pages_identical(new_page, orig_page)) {
529 /* let go new_page */
530 put_page(new_page);
531 new_page = NULL;
532
533 if (PageCompound(orig_page))
534 orig_page_huge = true;
535 }
536 put_page(orig_page);
537 }
538 }
539
540 ret = __replace_page(vma, vaddr & PAGE_MASK, old_page, new_page);
541 if (new_page)
542 put_page(new_page);
543put_old:
544 put_page(old_page);
545
546 if (unlikely(ret == -EAGAIN))
547 goto retry;
548
549 /* Revert back reference counter if instruction update failed. */
550 if (ret && is_register && ref_ctr_updated)
551 update_ref_ctr(uprobe, mm, -1);
552
553 /* try collapse pmd for compound page */
554 if (!ret && orig_page_huge)
555 collapse_pte_mapped_thp(mm, vaddr, false);
556
557 return ret;
558}
559
560/**
561 * set_swbp - store breakpoint at a given address.
562 * @auprobe: arch specific probepoint information.
563 * @mm: the probed process address space.
564 * @vaddr: the virtual address to insert the opcode.
565 *
566 * For mm @mm, store the breakpoint instruction at @vaddr.
567 * Return 0 (success) or a negative errno.
568 */
569int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
570{
571 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
572}
573
574/**
575 * set_orig_insn - Restore the original instruction.
576 * @mm: the probed process address space.
577 * @auprobe: arch specific probepoint information.
578 * @vaddr: the virtual address to insert the opcode.
579 *
580 * For mm @mm, restore the original opcode (opcode) at @vaddr.
581 * Return 0 (success) or a negative errno.
582 */
583int __weak
584set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
585{
586 return uprobe_write_opcode(auprobe, mm, vaddr,
587 *(uprobe_opcode_t *)&auprobe->insn);
588}
589
590static struct uprobe *get_uprobe(struct uprobe *uprobe)
591{
592 refcount_inc(&uprobe->ref);
593 return uprobe;
594}
595
596static void put_uprobe(struct uprobe *uprobe)
597{
598 if (refcount_dec_and_test(&uprobe->ref)) {
599 /*
600 * If application munmap(exec_vma) before uprobe_unregister()
601 * gets called, we don't get a chance to remove uprobe from
602 * delayed_uprobe_list from remove_breakpoint(). Do it here.
603 */
604 mutex_lock(&delayed_uprobe_lock);
605 delayed_uprobe_remove(uprobe, NULL);
606 mutex_unlock(&delayed_uprobe_lock);
607 kfree(uprobe);
608 }
609}
610
611static __always_inline
612int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
613 const struct uprobe *r)
614{
615 if (l_inode < r->inode)
616 return -1;
617
618 if (l_inode > r->inode)
619 return 1;
620
621 if (l_offset < r->offset)
622 return -1;
623
624 if (l_offset > r->offset)
625 return 1;
626
627 return 0;
628}
629
630#define __node_2_uprobe(node) \
631 rb_entry((node), struct uprobe, rb_node)
632
633struct __uprobe_key {
634 struct inode *inode;
635 loff_t offset;
636};
637
638static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
639{
640 const struct __uprobe_key *a = key;
641 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
642}
643
644static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
645{
646 struct uprobe *u = __node_2_uprobe(a);
647 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
648}
649
650static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
651{
652 struct __uprobe_key key = {
653 .inode = inode,
654 .offset = offset,
655 };
656 struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
657
658 if (node)
659 return get_uprobe(__node_2_uprobe(node));
660
661 return NULL;
662}
663
664/*
665 * Find a uprobe corresponding to a given inode:offset
666 * Acquires uprobes_treelock
667 */
668static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
669{
670 struct uprobe *uprobe;
671
672 spin_lock(&uprobes_treelock);
673 uprobe = __find_uprobe(inode, offset);
674 spin_unlock(&uprobes_treelock);
675
676 return uprobe;
677}
678
679static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
680{
681 struct rb_node *node;
682
683 node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
684 if (node)
685 return get_uprobe(__node_2_uprobe(node));
686
687 /* get access + creation ref */
688 refcount_set(&uprobe->ref, 2);
689 return NULL;
690}
691
692/*
693 * Acquire uprobes_treelock.
694 * Matching uprobe already exists in rbtree;
695 * increment (access refcount) and return the matching uprobe.
696 *
697 * No matching uprobe; insert the uprobe in rb_tree;
698 * get a double refcount (access + creation) and return NULL.
699 */
700static struct uprobe *insert_uprobe(struct uprobe *uprobe)
701{
702 struct uprobe *u;
703
704 spin_lock(&uprobes_treelock);
705 u = __insert_uprobe(uprobe);
706 spin_unlock(&uprobes_treelock);
707
708 return u;
709}
710
711static void
712ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
713{
714 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
715 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
716 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
717 (unsigned long long) cur_uprobe->ref_ctr_offset,
718 (unsigned long long) uprobe->ref_ctr_offset);
719}
720
721static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
722 loff_t ref_ctr_offset)
723{
724 struct uprobe *uprobe, *cur_uprobe;
725
726 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
727 if (!uprobe)
728 return NULL;
729
730 uprobe->inode = inode;
731 uprobe->offset = offset;
732 uprobe->ref_ctr_offset = ref_ctr_offset;
733 init_rwsem(&uprobe->register_rwsem);
734 init_rwsem(&uprobe->consumer_rwsem);
735
736 /* add to uprobes_tree, sorted on inode:offset */
737 cur_uprobe = insert_uprobe(uprobe);
738 /* a uprobe exists for this inode:offset combination */
739 if (cur_uprobe) {
740 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
741 ref_ctr_mismatch_warn(cur_uprobe, uprobe);
742 put_uprobe(cur_uprobe);
743 kfree(uprobe);
744 return ERR_PTR(-EINVAL);
745 }
746 kfree(uprobe);
747 uprobe = cur_uprobe;
748 }
749
750 return uprobe;
751}
752
753static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
754{
755 down_write(&uprobe->consumer_rwsem);
756 uc->next = uprobe->consumers;
757 uprobe->consumers = uc;
758 up_write(&uprobe->consumer_rwsem);
759}
760
761/*
762 * For uprobe @uprobe, delete the consumer @uc.
763 * Return true if the @uc is deleted successfully
764 * or return false.
765 */
766static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
767{
768 struct uprobe_consumer **con;
769 bool ret = false;
770
771 down_write(&uprobe->consumer_rwsem);
772 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
773 if (*con == uc) {
774 *con = uc->next;
775 ret = true;
776 break;
777 }
778 }
779 up_write(&uprobe->consumer_rwsem);
780
781 return ret;
782}
783
784static int __copy_insn(struct address_space *mapping, struct file *filp,
785 void *insn, int nbytes, loff_t offset)
786{
787 struct page *page;
788 /*
789 * Ensure that the page that has the original instruction is populated
790 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
791 * see uprobe_register().
792 */
793 if (mapping->a_ops->read_folio)
794 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
795 else
796 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
797 if (IS_ERR(page))
798 return PTR_ERR(page);
799
800 copy_from_page(page, offset, insn, nbytes);
801 put_page(page);
802
803 return 0;
804}
805
806static int copy_insn(struct uprobe *uprobe, struct file *filp)
807{
808 struct address_space *mapping = uprobe->inode->i_mapping;
809 loff_t offs = uprobe->offset;
810 void *insn = &uprobe->arch.insn;
811 int size = sizeof(uprobe->arch.insn);
812 int len, err = -EIO;
813
814 /* Copy only available bytes, -EIO if nothing was read */
815 do {
816 if (offs >= i_size_read(uprobe->inode))
817 break;
818
819 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
820 err = __copy_insn(mapping, filp, insn, len, offs);
821 if (err)
822 break;
823
824 insn += len;
825 offs += len;
826 size -= len;
827 } while (size);
828
829 return err;
830}
831
832static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
833 struct mm_struct *mm, unsigned long vaddr)
834{
835 int ret = 0;
836
837 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
838 return ret;
839
840 /* TODO: move this into _register, until then we abuse this sem. */
841 down_write(&uprobe->consumer_rwsem);
842 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
843 goto out;
844
845 ret = copy_insn(uprobe, file);
846 if (ret)
847 goto out;
848
849 ret = -ENOTSUPP;
850 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
851 goto out;
852
853 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
854 if (ret)
855 goto out;
856
857 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
858 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
859
860 out:
861 up_write(&uprobe->consumer_rwsem);
862
863 return ret;
864}
865
866static inline bool consumer_filter(struct uprobe_consumer *uc,
867 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
868{
869 return !uc->filter || uc->filter(uc, ctx, mm);
870}
871
872static bool filter_chain(struct uprobe *uprobe,
873 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
874{
875 struct uprobe_consumer *uc;
876 bool ret = false;
877
878 down_read(&uprobe->consumer_rwsem);
879 for (uc = uprobe->consumers; uc; uc = uc->next) {
880 ret = consumer_filter(uc, ctx, mm);
881 if (ret)
882 break;
883 }
884 up_read(&uprobe->consumer_rwsem);
885
886 return ret;
887}
888
889static int
890install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
891 struct vm_area_struct *vma, unsigned long vaddr)
892{
893 bool first_uprobe;
894 int ret;
895
896 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
897 if (ret)
898 return ret;
899
900 /*
901 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
902 * the task can hit this breakpoint right after __replace_page().
903 */
904 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
905 if (first_uprobe)
906 set_bit(MMF_HAS_UPROBES, &mm->flags);
907
908 ret = set_swbp(&uprobe->arch, mm, vaddr);
909 if (!ret)
910 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
911 else if (first_uprobe)
912 clear_bit(MMF_HAS_UPROBES, &mm->flags);
913
914 return ret;
915}
916
917static int
918remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
919{
920 set_bit(MMF_RECALC_UPROBES, &mm->flags);
921 return set_orig_insn(&uprobe->arch, mm, vaddr);
922}
923
924static inline bool uprobe_is_active(struct uprobe *uprobe)
925{
926 return !RB_EMPTY_NODE(&uprobe->rb_node);
927}
928/*
929 * There could be threads that have already hit the breakpoint. They
930 * will recheck the current insn and restart if find_uprobe() fails.
931 * See find_active_uprobe().
932 */
933static void delete_uprobe(struct uprobe *uprobe)
934{
935 if (WARN_ON(!uprobe_is_active(uprobe)))
936 return;
937
938 spin_lock(&uprobes_treelock);
939 rb_erase(&uprobe->rb_node, &uprobes_tree);
940 spin_unlock(&uprobes_treelock);
941 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
942 put_uprobe(uprobe);
943}
944
945struct map_info {
946 struct map_info *next;
947 struct mm_struct *mm;
948 unsigned long vaddr;
949};
950
951static inline struct map_info *free_map_info(struct map_info *info)
952{
953 struct map_info *next = info->next;
954 kfree(info);
955 return next;
956}
957
958static struct map_info *
959build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
960{
961 unsigned long pgoff = offset >> PAGE_SHIFT;
962 struct vm_area_struct *vma;
963 struct map_info *curr = NULL;
964 struct map_info *prev = NULL;
965 struct map_info *info;
966 int more = 0;
967
968 again:
969 i_mmap_lock_read(mapping);
970 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
971 if (!valid_vma(vma, is_register))
972 continue;
973
974 if (!prev && !more) {
975 /*
976 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
977 * reclaim. This is optimistic, no harm done if it fails.
978 */
979 prev = kmalloc(sizeof(struct map_info),
980 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
981 if (prev)
982 prev->next = NULL;
983 }
984 if (!prev) {
985 more++;
986 continue;
987 }
988
989 if (!mmget_not_zero(vma->vm_mm))
990 continue;
991
992 info = prev;
993 prev = prev->next;
994 info->next = curr;
995 curr = info;
996
997 info->mm = vma->vm_mm;
998 info->vaddr = offset_to_vaddr(vma, offset);
999 }
1000 i_mmap_unlock_read(mapping);
1001
1002 if (!more)
1003 goto out;
1004
1005 prev = curr;
1006 while (curr) {
1007 mmput(curr->mm);
1008 curr = curr->next;
1009 }
1010
1011 do {
1012 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1013 if (!info) {
1014 curr = ERR_PTR(-ENOMEM);
1015 goto out;
1016 }
1017 info->next = prev;
1018 prev = info;
1019 } while (--more);
1020
1021 goto again;
1022 out:
1023 while (prev)
1024 prev = free_map_info(prev);
1025 return curr;
1026}
1027
1028static int
1029register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1030{
1031 bool is_register = !!new;
1032 struct map_info *info;
1033 int err = 0;
1034
1035 percpu_down_write(&dup_mmap_sem);
1036 info = build_map_info(uprobe->inode->i_mapping,
1037 uprobe->offset, is_register);
1038 if (IS_ERR(info)) {
1039 err = PTR_ERR(info);
1040 goto out;
1041 }
1042
1043 while (info) {
1044 struct mm_struct *mm = info->mm;
1045 struct vm_area_struct *vma;
1046
1047 if (err && is_register)
1048 goto free;
1049
1050 mmap_write_lock(mm);
1051 vma = find_vma(mm, info->vaddr);
1052 if (!vma || !valid_vma(vma, is_register) ||
1053 file_inode(vma->vm_file) != uprobe->inode)
1054 goto unlock;
1055
1056 if (vma->vm_start > info->vaddr ||
1057 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1058 goto unlock;
1059
1060 if (is_register) {
1061 /* consult only the "caller", new consumer. */
1062 if (consumer_filter(new,
1063 UPROBE_FILTER_REGISTER, mm))
1064 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1065 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1066 if (!filter_chain(uprobe,
1067 UPROBE_FILTER_UNREGISTER, mm))
1068 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1069 }
1070
1071 unlock:
1072 mmap_write_unlock(mm);
1073 free:
1074 mmput(mm);
1075 info = free_map_info(info);
1076 }
1077 out:
1078 percpu_up_write(&dup_mmap_sem);
1079 return err;
1080}
1081
1082static void
1083__uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1084{
1085 int err;
1086
1087 if (WARN_ON(!consumer_del(uprobe, uc)))
1088 return;
1089
1090 err = register_for_each_vma(uprobe, NULL);
1091 /* TODO : cant unregister? schedule a worker thread */
1092 if (!uprobe->consumers && !err)
1093 delete_uprobe(uprobe);
1094}
1095
1096/*
1097 * uprobe_unregister - unregister an already registered probe.
1098 * @inode: the file in which the probe has to be removed.
1099 * @offset: offset from the start of the file.
1100 * @uc: identify which probe if multiple probes are colocated.
1101 */
1102void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1103{
1104 struct uprobe *uprobe;
1105
1106 uprobe = find_uprobe(inode, offset);
1107 if (WARN_ON(!uprobe))
1108 return;
1109
1110 down_write(&uprobe->register_rwsem);
1111 __uprobe_unregister(uprobe, uc);
1112 up_write(&uprobe->register_rwsem);
1113 put_uprobe(uprobe);
1114}
1115EXPORT_SYMBOL_GPL(uprobe_unregister);
1116
1117/*
1118 * __uprobe_register - register a probe
1119 * @inode: the file in which the probe has to be placed.
1120 * @offset: offset from the start of the file.
1121 * @uc: information on howto handle the probe..
1122 *
1123 * Apart from the access refcount, __uprobe_register() takes a creation
1124 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1125 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1126 * tuple). Creation refcount stops uprobe_unregister from freeing the
1127 * @uprobe even before the register operation is complete. Creation
1128 * refcount is released when the last @uc for the @uprobe
1129 * unregisters. Caller of __uprobe_register() is required to keep @inode
1130 * (and the containing mount) referenced.
1131 *
1132 * Return errno if it cannot successully install probes
1133 * else return 0 (success)
1134 */
1135static int __uprobe_register(struct inode *inode, loff_t offset,
1136 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1137{
1138 struct uprobe *uprobe;
1139 int ret;
1140
1141 /* Uprobe must have at least one set consumer */
1142 if (!uc->handler && !uc->ret_handler)
1143 return -EINVAL;
1144
1145 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1146 if (!inode->i_mapping->a_ops->read_folio &&
1147 !shmem_mapping(inode->i_mapping))
1148 return -EIO;
1149 /* Racy, just to catch the obvious mistakes */
1150 if (offset > i_size_read(inode))
1151 return -EINVAL;
1152
1153 /*
1154 * This ensures that copy_from_page(), copy_to_page() and
1155 * __update_ref_ctr() can't cross page boundary.
1156 */
1157 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1158 return -EINVAL;
1159 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1160 return -EINVAL;
1161
1162 retry:
1163 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1164 if (!uprobe)
1165 return -ENOMEM;
1166 if (IS_ERR(uprobe))
1167 return PTR_ERR(uprobe);
1168
1169 /*
1170 * We can race with uprobe_unregister()->delete_uprobe().
1171 * Check uprobe_is_active() and retry if it is false.
1172 */
1173 down_write(&uprobe->register_rwsem);
1174 ret = -EAGAIN;
1175 if (likely(uprobe_is_active(uprobe))) {
1176 consumer_add(uprobe, uc);
1177 ret = register_for_each_vma(uprobe, uc);
1178 if (ret)
1179 __uprobe_unregister(uprobe, uc);
1180 }
1181 up_write(&uprobe->register_rwsem);
1182 put_uprobe(uprobe);
1183
1184 if (unlikely(ret == -EAGAIN))
1185 goto retry;
1186 return ret;
1187}
1188
1189int uprobe_register(struct inode *inode, loff_t offset,
1190 struct uprobe_consumer *uc)
1191{
1192 return __uprobe_register(inode, offset, 0, uc);
1193}
1194EXPORT_SYMBOL_GPL(uprobe_register);
1195
1196int uprobe_register_refctr(struct inode *inode, loff_t offset,
1197 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1198{
1199 return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1200}
1201EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1202
1203/*
1204 * uprobe_apply - unregister an already registered probe.
1205 * @inode: the file in which the probe has to be removed.
1206 * @offset: offset from the start of the file.
1207 * @uc: consumer which wants to add more or remove some breakpoints
1208 * @add: add or remove the breakpoints
1209 */
1210int uprobe_apply(struct inode *inode, loff_t offset,
1211 struct uprobe_consumer *uc, bool add)
1212{
1213 struct uprobe *uprobe;
1214 struct uprobe_consumer *con;
1215 int ret = -ENOENT;
1216
1217 uprobe = find_uprobe(inode, offset);
1218 if (WARN_ON(!uprobe))
1219 return ret;
1220
1221 down_write(&uprobe->register_rwsem);
1222 for (con = uprobe->consumers; con && con != uc ; con = con->next)
1223 ;
1224 if (con)
1225 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1226 up_write(&uprobe->register_rwsem);
1227 put_uprobe(uprobe);
1228
1229 return ret;
1230}
1231
1232static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1233{
1234 VMA_ITERATOR(vmi, mm, 0);
1235 struct vm_area_struct *vma;
1236 int err = 0;
1237
1238 mmap_read_lock(mm);
1239 for_each_vma(vmi, vma) {
1240 unsigned long vaddr;
1241 loff_t offset;
1242
1243 if (!valid_vma(vma, false) ||
1244 file_inode(vma->vm_file) != uprobe->inode)
1245 continue;
1246
1247 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1248 if (uprobe->offset < offset ||
1249 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1250 continue;
1251
1252 vaddr = offset_to_vaddr(vma, uprobe->offset);
1253 err |= remove_breakpoint(uprobe, mm, vaddr);
1254 }
1255 mmap_read_unlock(mm);
1256
1257 return err;
1258}
1259
1260static struct rb_node *
1261find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1262{
1263 struct rb_node *n = uprobes_tree.rb_node;
1264
1265 while (n) {
1266 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1267
1268 if (inode < u->inode) {
1269 n = n->rb_left;
1270 } else if (inode > u->inode) {
1271 n = n->rb_right;
1272 } else {
1273 if (max < u->offset)
1274 n = n->rb_left;
1275 else if (min > u->offset)
1276 n = n->rb_right;
1277 else
1278 break;
1279 }
1280 }
1281
1282 return n;
1283}
1284
1285/*
1286 * For a given range in vma, build a list of probes that need to be inserted.
1287 */
1288static void build_probe_list(struct inode *inode,
1289 struct vm_area_struct *vma,
1290 unsigned long start, unsigned long end,
1291 struct list_head *head)
1292{
1293 loff_t min, max;
1294 struct rb_node *n, *t;
1295 struct uprobe *u;
1296
1297 INIT_LIST_HEAD(head);
1298 min = vaddr_to_offset(vma, start);
1299 max = min + (end - start) - 1;
1300
1301 spin_lock(&uprobes_treelock);
1302 n = find_node_in_range(inode, min, max);
1303 if (n) {
1304 for (t = n; t; t = rb_prev(t)) {
1305 u = rb_entry(t, struct uprobe, rb_node);
1306 if (u->inode != inode || u->offset < min)
1307 break;
1308 list_add(&u->pending_list, head);
1309 get_uprobe(u);
1310 }
1311 for (t = n; (t = rb_next(t)); ) {
1312 u = rb_entry(t, struct uprobe, rb_node);
1313 if (u->inode != inode || u->offset > max)
1314 break;
1315 list_add(&u->pending_list, head);
1316 get_uprobe(u);
1317 }
1318 }
1319 spin_unlock(&uprobes_treelock);
1320}
1321
1322/* @vma contains reference counter, not the probed instruction. */
1323static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1324{
1325 struct list_head *pos, *q;
1326 struct delayed_uprobe *du;
1327 unsigned long vaddr;
1328 int ret = 0, err = 0;
1329
1330 mutex_lock(&delayed_uprobe_lock);
1331 list_for_each_safe(pos, q, &delayed_uprobe_list) {
1332 du = list_entry(pos, struct delayed_uprobe, list);
1333
1334 if (du->mm != vma->vm_mm ||
1335 !valid_ref_ctr_vma(du->uprobe, vma))
1336 continue;
1337
1338 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1339 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1340 if (ret) {
1341 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1342 if (!err)
1343 err = ret;
1344 }
1345 delayed_uprobe_delete(du);
1346 }
1347 mutex_unlock(&delayed_uprobe_lock);
1348 return err;
1349}
1350
1351/*
1352 * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1353 *
1354 * Currently we ignore all errors and always return 0, the callers
1355 * can't handle the failure anyway.
1356 */
1357int uprobe_mmap(struct vm_area_struct *vma)
1358{
1359 struct list_head tmp_list;
1360 struct uprobe *uprobe, *u;
1361 struct inode *inode;
1362
1363 if (no_uprobe_events())
1364 return 0;
1365
1366 if (vma->vm_file &&
1367 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1368 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1369 delayed_ref_ctr_inc(vma);
1370
1371 if (!valid_vma(vma, true))
1372 return 0;
1373
1374 inode = file_inode(vma->vm_file);
1375 if (!inode)
1376 return 0;
1377
1378 mutex_lock(uprobes_mmap_hash(inode));
1379 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1380 /*
1381 * We can race with uprobe_unregister(), this uprobe can be already
1382 * removed. But in this case filter_chain() must return false, all
1383 * consumers have gone away.
1384 */
1385 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1386 if (!fatal_signal_pending(current) &&
1387 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1388 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1389 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1390 }
1391 put_uprobe(uprobe);
1392 }
1393 mutex_unlock(uprobes_mmap_hash(inode));
1394
1395 return 0;
1396}
1397
1398static bool
1399vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1400{
1401 loff_t min, max;
1402 struct inode *inode;
1403 struct rb_node *n;
1404
1405 inode = file_inode(vma->vm_file);
1406
1407 min = vaddr_to_offset(vma, start);
1408 max = min + (end - start) - 1;
1409
1410 spin_lock(&uprobes_treelock);
1411 n = find_node_in_range(inode, min, max);
1412 spin_unlock(&uprobes_treelock);
1413
1414 return !!n;
1415}
1416
1417/*
1418 * Called in context of a munmap of a vma.
1419 */
1420void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1421{
1422 if (no_uprobe_events() || !valid_vma(vma, false))
1423 return;
1424
1425 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1426 return;
1427
1428 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1429 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1430 return;
1431
1432 if (vma_has_uprobes(vma, start, end))
1433 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1434}
1435
1436/* Slot allocation for XOL */
1437static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1438{
1439 struct vm_area_struct *vma;
1440 int ret;
1441
1442 if (mmap_write_lock_killable(mm))
1443 return -EINTR;
1444
1445 if (mm->uprobes_state.xol_area) {
1446 ret = -EALREADY;
1447 goto fail;
1448 }
1449
1450 if (!area->vaddr) {
1451 /* Try to map as high as possible, this is only a hint. */
1452 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1453 PAGE_SIZE, 0, 0);
1454 if (IS_ERR_VALUE(area->vaddr)) {
1455 ret = area->vaddr;
1456 goto fail;
1457 }
1458 }
1459
1460 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1461 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1462 &area->xol_mapping);
1463 if (IS_ERR(vma)) {
1464 ret = PTR_ERR(vma);
1465 goto fail;
1466 }
1467
1468 ret = 0;
1469 /* pairs with get_xol_area() */
1470 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1471 fail:
1472 mmap_write_unlock(mm);
1473
1474 return ret;
1475}
1476
1477static struct xol_area *__create_xol_area(unsigned long vaddr)
1478{
1479 struct mm_struct *mm = current->mm;
1480 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1481 struct xol_area *area;
1482
1483 area = kmalloc(sizeof(*area), GFP_KERNEL);
1484 if (unlikely(!area))
1485 goto out;
1486
1487 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1488 GFP_KERNEL);
1489 if (!area->bitmap)
1490 goto free_area;
1491
1492 area->xol_mapping.name = "[uprobes]";
1493 area->xol_mapping.fault = NULL;
1494 area->xol_mapping.pages = area->pages;
1495 area->pages[0] = alloc_page(GFP_HIGHUSER);
1496 if (!area->pages[0])
1497 goto free_bitmap;
1498 area->pages[1] = NULL;
1499
1500 area->vaddr = vaddr;
1501 init_waitqueue_head(&area->wq);
1502 /* Reserve the 1st slot for get_trampoline_vaddr() */
1503 set_bit(0, area->bitmap);
1504 atomic_set(&area->slot_count, 1);
1505 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1506
1507 if (!xol_add_vma(mm, area))
1508 return area;
1509
1510 __free_page(area->pages[0]);
1511 free_bitmap:
1512 kfree(area->bitmap);
1513 free_area:
1514 kfree(area);
1515 out:
1516 return NULL;
1517}
1518
1519/*
1520 * get_xol_area - Allocate process's xol_area if necessary.
1521 * This area will be used for storing instructions for execution out of line.
1522 *
1523 * Returns the allocated area or NULL.
1524 */
1525static struct xol_area *get_xol_area(void)
1526{
1527 struct mm_struct *mm = current->mm;
1528 struct xol_area *area;
1529
1530 if (!mm->uprobes_state.xol_area)
1531 __create_xol_area(0);
1532
1533 /* Pairs with xol_add_vma() smp_store_release() */
1534 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1535 return area;
1536}
1537
1538/*
1539 * uprobe_clear_state - Free the area allocated for slots.
1540 */
1541void uprobe_clear_state(struct mm_struct *mm)
1542{
1543 struct xol_area *area = mm->uprobes_state.xol_area;
1544
1545 mutex_lock(&delayed_uprobe_lock);
1546 delayed_uprobe_remove(NULL, mm);
1547 mutex_unlock(&delayed_uprobe_lock);
1548
1549 if (!area)
1550 return;
1551
1552 put_page(area->pages[0]);
1553 kfree(area->bitmap);
1554 kfree(area);
1555}
1556
1557void uprobe_start_dup_mmap(void)
1558{
1559 percpu_down_read(&dup_mmap_sem);
1560}
1561
1562void uprobe_end_dup_mmap(void)
1563{
1564 percpu_up_read(&dup_mmap_sem);
1565}
1566
1567void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1568{
1569 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1570 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1571 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1572 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1573 }
1574}
1575
1576/*
1577 * - search for a free slot.
1578 */
1579static unsigned long xol_take_insn_slot(struct xol_area *area)
1580{
1581 unsigned long slot_addr;
1582 int slot_nr;
1583
1584 do {
1585 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1586 if (slot_nr < UINSNS_PER_PAGE) {
1587 if (!test_and_set_bit(slot_nr, area->bitmap))
1588 break;
1589
1590 slot_nr = UINSNS_PER_PAGE;
1591 continue;
1592 }
1593 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1594 } while (slot_nr >= UINSNS_PER_PAGE);
1595
1596 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1597 atomic_inc(&area->slot_count);
1598
1599 return slot_addr;
1600}
1601
1602/*
1603 * xol_get_insn_slot - allocate a slot for xol.
1604 * Returns the allocated slot address or 0.
1605 */
1606static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1607{
1608 struct xol_area *area;
1609 unsigned long xol_vaddr;
1610
1611 area = get_xol_area();
1612 if (!area)
1613 return 0;
1614
1615 xol_vaddr = xol_take_insn_slot(area);
1616 if (unlikely(!xol_vaddr))
1617 return 0;
1618
1619 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1620 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1621
1622 return xol_vaddr;
1623}
1624
1625/*
1626 * xol_free_insn_slot - If slot was earlier allocated by
1627 * @xol_get_insn_slot(), make the slot available for
1628 * subsequent requests.
1629 */
1630static void xol_free_insn_slot(struct task_struct *tsk)
1631{
1632 struct xol_area *area;
1633 unsigned long vma_end;
1634 unsigned long slot_addr;
1635
1636 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1637 return;
1638
1639 slot_addr = tsk->utask->xol_vaddr;
1640 if (unlikely(!slot_addr))
1641 return;
1642
1643 area = tsk->mm->uprobes_state.xol_area;
1644 vma_end = area->vaddr + PAGE_SIZE;
1645 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1646 unsigned long offset;
1647 int slot_nr;
1648
1649 offset = slot_addr - area->vaddr;
1650 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1651 if (slot_nr >= UINSNS_PER_PAGE)
1652 return;
1653
1654 clear_bit(slot_nr, area->bitmap);
1655 atomic_dec(&area->slot_count);
1656 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1657 if (waitqueue_active(&area->wq))
1658 wake_up(&area->wq);
1659
1660 tsk->utask->xol_vaddr = 0;
1661 }
1662}
1663
1664void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1665 void *src, unsigned long len)
1666{
1667 /* Initialize the slot */
1668 copy_to_page(page, vaddr, src, len);
1669
1670 /*
1671 * We probably need flush_icache_user_page() but it needs vma.
1672 * This should work on most of architectures by default. If
1673 * architecture needs to do something different it can define
1674 * its own version of the function.
1675 */
1676 flush_dcache_page(page);
1677}
1678
1679/**
1680 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1681 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1682 * instruction.
1683 * Return the address of the breakpoint instruction.
1684 */
1685unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1686{
1687 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1688}
1689
1690unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1691{
1692 struct uprobe_task *utask = current->utask;
1693
1694 if (unlikely(utask && utask->active_uprobe))
1695 return utask->vaddr;
1696
1697 return instruction_pointer(regs);
1698}
1699
1700static struct return_instance *free_ret_instance(struct return_instance *ri)
1701{
1702 struct return_instance *next = ri->next;
1703 put_uprobe(ri->uprobe);
1704 kfree(ri);
1705 return next;
1706}
1707
1708/*
1709 * Called with no locks held.
1710 * Called in context of an exiting or an exec-ing thread.
1711 */
1712void uprobe_free_utask(struct task_struct *t)
1713{
1714 struct uprobe_task *utask = t->utask;
1715 struct return_instance *ri;
1716
1717 if (!utask)
1718 return;
1719
1720 if (utask->active_uprobe)
1721 put_uprobe(utask->active_uprobe);
1722
1723 ri = utask->return_instances;
1724 while (ri)
1725 ri = free_ret_instance(ri);
1726
1727 xol_free_insn_slot(t);
1728 kfree(utask);
1729 t->utask = NULL;
1730}
1731
1732/*
1733 * Allocate a uprobe_task object for the task if necessary.
1734 * Called when the thread hits a breakpoint.
1735 *
1736 * Returns:
1737 * - pointer to new uprobe_task on success
1738 * - NULL otherwise
1739 */
1740static struct uprobe_task *get_utask(void)
1741{
1742 if (!current->utask)
1743 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1744 return current->utask;
1745}
1746
1747static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1748{
1749 struct uprobe_task *n_utask;
1750 struct return_instance **p, *o, *n;
1751
1752 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1753 if (!n_utask)
1754 return -ENOMEM;
1755 t->utask = n_utask;
1756
1757 p = &n_utask->return_instances;
1758 for (o = o_utask->return_instances; o; o = o->next) {
1759 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1760 if (!n)
1761 return -ENOMEM;
1762
1763 *n = *o;
1764 get_uprobe(n->uprobe);
1765 n->next = NULL;
1766
1767 *p = n;
1768 p = &n->next;
1769 n_utask->depth++;
1770 }
1771
1772 return 0;
1773}
1774
1775static void uprobe_warn(struct task_struct *t, const char *msg)
1776{
1777 pr_warn("uprobe: %s:%d failed to %s\n",
1778 current->comm, current->pid, msg);
1779}
1780
1781static void dup_xol_work(struct callback_head *work)
1782{
1783 if (current->flags & PF_EXITING)
1784 return;
1785
1786 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1787 !fatal_signal_pending(current))
1788 uprobe_warn(current, "dup xol area");
1789}
1790
1791/*
1792 * Called in context of a new clone/fork from copy_process.
1793 */
1794void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1795{
1796 struct uprobe_task *utask = current->utask;
1797 struct mm_struct *mm = current->mm;
1798 struct xol_area *area;
1799
1800 t->utask = NULL;
1801
1802 if (!utask || !utask->return_instances)
1803 return;
1804
1805 if (mm == t->mm && !(flags & CLONE_VFORK))
1806 return;
1807
1808 if (dup_utask(t, utask))
1809 return uprobe_warn(t, "dup ret instances");
1810
1811 /* The task can fork() after dup_xol_work() fails */
1812 area = mm->uprobes_state.xol_area;
1813 if (!area)
1814 return uprobe_warn(t, "dup xol area");
1815
1816 if (mm == t->mm)
1817 return;
1818
1819 t->utask->dup_xol_addr = area->vaddr;
1820 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1821 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1822}
1823
1824/*
1825 * Current area->vaddr notion assume the trampoline address is always
1826 * equal area->vaddr.
1827 *
1828 * Returns -1 in case the xol_area is not allocated.
1829 */
1830static unsigned long get_trampoline_vaddr(void)
1831{
1832 struct xol_area *area;
1833 unsigned long trampoline_vaddr = -1;
1834
1835 /* Pairs with xol_add_vma() smp_store_release() */
1836 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1837 if (area)
1838 trampoline_vaddr = area->vaddr;
1839
1840 return trampoline_vaddr;
1841}
1842
1843static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1844 struct pt_regs *regs)
1845{
1846 struct return_instance *ri = utask->return_instances;
1847 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1848
1849 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1850 ri = free_ret_instance(ri);
1851 utask->depth--;
1852 }
1853 utask->return_instances = ri;
1854}
1855
1856static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1857{
1858 struct return_instance *ri;
1859 struct uprobe_task *utask;
1860 unsigned long orig_ret_vaddr, trampoline_vaddr;
1861 bool chained;
1862
1863 if (!get_xol_area())
1864 return;
1865
1866 utask = get_utask();
1867 if (!utask)
1868 return;
1869
1870 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1871 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1872 " nestedness limit pid/tgid=%d/%d\n",
1873 current->pid, current->tgid);
1874 return;
1875 }
1876
1877 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1878 if (!ri)
1879 return;
1880
1881 trampoline_vaddr = get_trampoline_vaddr();
1882 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1883 if (orig_ret_vaddr == -1)
1884 goto fail;
1885
1886 /* drop the entries invalidated by longjmp() */
1887 chained = (orig_ret_vaddr == trampoline_vaddr);
1888 cleanup_return_instances(utask, chained, regs);
1889
1890 /*
1891 * We don't want to keep trampoline address in stack, rather keep the
1892 * original return address of first caller thru all the consequent
1893 * instances. This also makes breakpoint unwrapping easier.
1894 */
1895 if (chained) {
1896 if (!utask->return_instances) {
1897 /*
1898 * This situation is not possible. Likely we have an
1899 * attack from user-space.
1900 */
1901 uprobe_warn(current, "handle tail call");
1902 goto fail;
1903 }
1904 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1905 }
1906
1907 ri->uprobe = get_uprobe(uprobe);
1908 ri->func = instruction_pointer(regs);
1909 ri->stack = user_stack_pointer(regs);
1910 ri->orig_ret_vaddr = orig_ret_vaddr;
1911 ri->chained = chained;
1912
1913 utask->depth++;
1914 ri->next = utask->return_instances;
1915 utask->return_instances = ri;
1916
1917 return;
1918 fail:
1919 kfree(ri);
1920}
1921
1922/* Prepare to single-step probed instruction out of line. */
1923static int
1924pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1925{
1926 struct uprobe_task *utask;
1927 unsigned long xol_vaddr;
1928 int err;
1929
1930 utask = get_utask();
1931 if (!utask)
1932 return -ENOMEM;
1933
1934 xol_vaddr = xol_get_insn_slot(uprobe);
1935 if (!xol_vaddr)
1936 return -ENOMEM;
1937
1938 utask->xol_vaddr = xol_vaddr;
1939 utask->vaddr = bp_vaddr;
1940
1941 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1942 if (unlikely(err)) {
1943 xol_free_insn_slot(current);
1944 return err;
1945 }
1946
1947 utask->active_uprobe = uprobe;
1948 utask->state = UTASK_SSTEP;
1949 return 0;
1950}
1951
1952/*
1953 * If we are singlestepping, then ensure this thread is not connected to
1954 * non-fatal signals until completion of singlestep. When xol insn itself
1955 * triggers the signal, restart the original insn even if the task is
1956 * already SIGKILL'ed (since coredump should report the correct ip). This
1957 * is even more important if the task has a handler for SIGSEGV/etc, The
1958 * _same_ instruction should be repeated again after return from the signal
1959 * handler, and SSTEP can never finish in this case.
1960 */
1961bool uprobe_deny_signal(void)
1962{
1963 struct task_struct *t = current;
1964 struct uprobe_task *utask = t->utask;
1965
1966 if (likely(!utask || !utask->active_uprobe))
1967 return false;
1968
1969 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1970
1971 if (task_sigpending(t)) {
1972 spin_lock_irq(&t->sighand->siglock);
1973 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1974 spin_unlock_irq(&t->sighand->siglock);
1975
1976 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1977 utask->state = UTASK_SSTEP_TRAPPED;
1978 set_tsk_thread_flag(t, TIF_UPROBE);
1979 }
1980 }
1981
1982 return true;
1983}
1984
1985static void mmf_recalc_uprobes(struct mm_struct *mm)
1986{
1987 VMA_ITERATOR(vmi, mm, 0);
1988 struct vm_area_struct *vma;
1989
1990 for_each_vma(vmi, vma) {
1991 if (!valid_vma(vma, false))
1992 continue;
1993 /*
1994 * This is not strictly accurate, we can race with
1995 * uprobe_unregister() and see the already removed
1996 * uprobe if delete_uprobe() was not yet called.
1997 * Or this uprobe can be filtered out.
1998 */
1999 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2000 return;
2001 }
2002
2003 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2004}
2005
2006static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2007{
2008 struct page *page;
2009 uprobe_opcode_t opcode;
2010 int result;
2011
2012 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2013 return -EINVAL;
2014
2015 pagefault_disable();
2016 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2017 pagefault_enable();
2018
2019 if (likely(result == 0))
2020 goto out;
2021
2022 /*
2023 * The NULL 'tsk' here ensures that any faults that occur here
2024 * will not be accounted to the task. 'mm' *is* current->mm,
2025 * but we treat this as a 'remote' access since it is
2026 * essentially a kernel access to the memory.
2027 */
2028 result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, NULL);
2029 if (result < 0)
2030 return result;
2031
2032 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2033 put_page(page);
2034 out:
2035 /* This needs to return true for any variant of the trap insn */
2036 return is_trap_insn(&opcode);
2037}
2038
2039static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2040{
2041 struct mm_struct *mm = current->mm;
2042 struct uprobe *uprobe = NULL;
2043 struct vm_area_struct *vma;
2044
2045 mmap_read_lock(mm);
2046 vma = vma_lookup(mm, bp_vaddr);
2047 if (vma) {
2048 if (valid_vma(vma, false)) {
2049 struct inode *inode = file_inode(vma->vm_file);
2050 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2051
2052 uprobe = find_uprobe(inode, offset);
2053 }
2054
2055 if (!uprobe)
2056 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2057 } else {
2058 *is_swbp = -EFAULT;
2059 }
2060
2061 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2062 mmf_recalc_uprobes(mm);
2063 mmap_read_unlock(mm);
2064
2065 return uprobe;
2066}
2067
2068static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2069{
2070 struct uprobe_consumer *uc;
2071 int remove = UPROBE_HANDLER_REMOVE;
2072 bool need_prep = false; /* prepare return uprobe, when needed */
2073
2074 down_read(&uprobe->register_rwsem);
2075 for (uc = uprobe->consumers; uc; uc = uc->next) {
2076 int rc = 0;
2077
2078 if (uc->handler) {
2079 rc = uc->handler(uc, regs);
2080 WARN(rc & ~UPROBE_HANDLER_MASK,
2081 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2082 }
2083
2084 if (uc->ret_handler)
2085 need_prep = true;
2086
2087 remove &= rc;
2088 }
2089
2090 if (need_prep && !remove)
2091 prepare_uretprobe(uprobe, regs); /* put bp at return */
2092
2093 if (remove && uprobe->consumers) {
2094 WARN_ON(!uprobe_is_active(uprobe));
2095 unapply_uprobe(uprobe, current->mm);
2096 }
2097 up_read(&uprobe->register_rwsem);
2098}
2099
2100static void
2101handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2102{
2103 struct uprobe *uprobe = ri->uprobe;
2104 struct uprobe_consumer *uc;
2105
2106 down_read(&uprobe->register_rwsem);
2107 for (uc = uprobe->consumers; uc; uc = uc->next) {
2108 if (uc->ret_handler)
2109 uc->ret_handler(uc, ri->func, regs);
2110 }
2111 up_read(&uprobe->register_rwsem);
2112}
2113
2114static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2115{
2116 bool chained;
2117
2118 do {
2119 chained = ri->chained;
2120 ri = ri->next; /* can't be NULL if chained */
2121 } while (chained);
2122
2123 return ri;
2124}
2125
2126static void handle_trampoline(struct pt_regs *regs)
2127{
2128 struct uprobe_task *utask;
2129 struct return_instance *ri, *next;
2130 bool valid;
2131
2132 utask = current->utask;
2133 if (!utask)
2134 goto sigill;
2135
2136 ri = utask->return_instances;
2137 if (!ri)
2138 goto sigill;
2139
2140 do {
2141 /*
2142 * We should throw out the frames invalidated by longjmp().
2143 * If this chain is valid, then the next one should be alive
2144 * or NULL; the latter case means that nobody but ri->func
2145 * could hit this trampoline on return. TODO: sigaltstack().
2146 */
2147 next = find_next_ret_chain(ri);
2148 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2149
2150 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2151 do {
2152 if (valid)
2153 handle_uretprobe_chain(ri, regs);
2154 ri = free_ret_instance(ri);
2155 utask->depth--;
2156 } while (ri != next);
2157 } while (!valid);
2158
2159 utask->return_instances = ri;
2160 return;
2161
2162 sigill:
2163 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2164 force_sig(SIGILL);
2165
2166}
2167
2168bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2169{
2170 return false;
2171}
2172
2173bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2174 struct pt_regs *regs)
2175{
2176 return true;
2177}
2178
2179/*
2180 * Run handler and ask thread to singlestep.
2181 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2182 */
2183static void handle_swbp(struct pt_regs *regs)
2184{
2185 struct uprobe *uprobe;
2186 unsigned long bp_vaddr;
2187 int is_swbp;
2188
2189 bp_vaddr = uprobe_get_swbp_addr(regs);
2190 if (bp_vaddr == get_trampoline_vaddr())
2191 return handle_trampoline(regs);
2192
2193 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2194 if (!uprobe) {
2195 if (is_swbp > 0) {
2196 /* No matching uprobe; signal SIGTRAP. */
2197 force_sig(SIGTRAP);
2198 } else {
2199 /*
2200 * Either we raced with uprobe_unregister() or we can't
2201 * access this memory. The latter is only possible if
2202 * another thread plays with our ->mm. In both cases
2203 * we can simply restart. If this vma was unmapped we
2204 * can pretend this insn was not executed yet and get
2205 * the (correct) SIGSEGV after restart.
2206 */
2207 instruction_pointer_set(regs, bp_vaddr);
2208 }
2209 return;
2210 }
2211
2212 /* change it in advance for ->handler() and restart */
2213 instruction_pointer_set(regs, bp_vaddr);
2214
2215 /*
2216 * TODO: move copy_insn/etc into _register and remove this hack.
2217 * After we hit the bp, _unregister + _register can install the
2218 * new and not-yet-analyzed uprobe at the same address, restart.
2219 */
2220 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2221 goto out;
2222
2223 /*
2224 * Pairs with the smp_wmb() in prepare_uprobe().
2225 *
2226 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2227 * we must also see the stores to &uprobe->arch performed by the
2228 * prepare_uprobe() call.
2229 */
2230 smp_rmb();
2231
2232 /* Tracing handlers use ->utask to communicate with fetch methods */
2233 if (!get_utask())
2234 goto out;
2235
2236 if (arch_uprobe_ignore(&uprobe->arch, regs))
2237 goto out;
2238
2239 handler_chain(uprobe, regs);
2240
2241 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2242 goto out;
2243
2244 if (!pre_ssout(uprobe, regs, bp_vaddr))
2245 return;
2246
2247 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2248out:
2249 put_uprobe(uprobe);
2250}
2251
2252/*
2253 * Perform required fix-ups and disable singlestep.
2254 * Allow pending signals to take effect.
2255 */
2256static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2257{
2258 struct uprobe *uprobe;
2259 int err = 0;
2260
2261 uprobe = utask->active_uprobe;
2262 if (utask->state == UTASK_SSTEP_ACK)
2263 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2264 else if (utask->state == UTASK_SSTEP_TRAPPED)
2265 arch_uprobe_abort_xol(&uprobe->arch, regs);
2266 else
2267 WARN_ON_ONCE(1);
2268
2269 put_uprobe(uprobe);
2270 utask->active_uprobe = NULL;
2271 utask->state = UTASK_RUNNING;
2272 xol_free_insn_slot(current);
2273
2274 spin_lock_irq(¤t->sighand->siglock);
2275 recalc_sigpending(); /* see uprobe_deny_signal() */
2276 spin_unlock_irq(¤t->sighand->siglock);
2277
2278 if (unlikely(err)) {
2279 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2280 force_sig(SIGILL);
2281 }
2282}
2283
2284/*
2285 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2286 * allows the thread to return from interrupt. After that handle_swbp()
2287 * sets utask->active_uprobe.
2288 *
2289 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2290 * and allows the thread to return from interrupt.
2291 *
2292 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2293 * uprobe_notify_resume().
2294 */
2295void uprobe_notify_resume(struct pt_regs *regs)
2296{
2297 struct uprobe_task *utask;
2298
2299 clear_thread_flag(TIF_UPROBE);
2300
2301 utask = current->utask;
2302 if (utask && utask->active_uprobe)
2303 handle_singlestep(utask, regs);
2304 else
2305 handle_swbp(regs);
2306}
2307
2308/*
2309 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2310 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2311 */
2312int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2313{
2314 if (!current->mm)
2315 return 0;
2316
2317 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) &&
2318 (!current->utask || !current->utask->return_instances))
2319 return 0;
2320
2321 set_thread_flag(TIF_UPROBE);
2322 return 1;
2323}
2324
2325/*
2326 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2327 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2328 */
2329int uprobe_post_sstep_notifier(struct pt_regs *regs)
2330{
2331 struct uprobe_task *utask = current->utask;
2332
2333 if (!current->mm || !utask || !utask->active_uprobe)
2334 /* task is currently not uprobed */
2335 return 0;
2336
2337 utask->state = UTASK_SSTEP_ACK;
2338 set_thread_flag(TIF_UPROBE);
2339 return 1;
2340}
2341
2342static struct notifier_block uprobe_exception_nb = {
2343 .notifier_call = arch_uprobe_exception_notify,
2344 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2345};
2346
2347void __init uprobes_init(void)
2348{
2349 int i;
2350
2351 for (i = 0; i < UPROBES_HASH_SZ; i++)
2352 mutex_init(&uprobes_mmap_mutex[i]);
2353
2354 BUG_ON(register_die_notifier(&uprobe_exception_nb));
2355}