Linux Audio

Check our new training course

Loading...
   1/*
   2 * User-space Probes (UProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2008-2012
  19 * Authors:
  20 *	Srikar Dronamraju
  21 *	Jim Keniston
  22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/highmem.h>
  27#include <linux/pagemap.h>	/* read_mapping_page */
  28#include <linux/slab.h>
  29#include <linux/sched.h>
  30#include <linux/rmap.h>		/* anon_vma_prepare */
  31#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
  32#include <linux/swap.h>		/* try_to_free_swap */
  33#include <linux/ptrace.h>	/* user_enable_single_step */
  34#include <linux/kdebug.h>	/* notifier mechanism */
  35
  36#include <linux/uprobes.h>
  37
  38#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
  39#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
  40
  41static struct srcu_struct uprobes_srcu;
  42static struct rb_root uprobes_tree = RB_ROOT;
  43
  44static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
  45
  46#define UPROBES_HASH_SZ	13
  47
  48/* serialize (un)register */
  49static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
  50
  51#define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  52
  53/* serialize uprobe->pending_list */
  54static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
  55#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  56
  57/*
  58 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
  59 * events active at this time.  Probably a fine grained per inode count is
  60 * better?
  61 */
  62static atomic_t uprobe_events = ATOMIC_INIT(0);
  63
  64/*
  65 * Maintain a temporary per vma info that can be used to search if a vma
  66 * has already been handled. This structure is introduced since extending
  67 * vm_area_struct wasnt recommended.
  68 */
  69struct vma_info {
  70	struct list_head	probe_list;
  71	struct mm_struct	*mm;
  72	loff_t			vaddr;
  73};
  74
  75struct uprobe {
  76	struct rb_node		rb_node;	/* node in the rb tree */
  77	atomic_t		ref;
  78	struct rw_semaphore	consumer_rwsem;
  79	struct list_head	pending_list;
  80	struct uprobe_consumer	*consumers;
  81	struct inode		*inode;		/* Also hold a ref to inode */
  82	loff_t			offset;
  83	int			flags;
  84	struct arch_uprobe	arch;
  85};
  86
  87/*
  88 * valid_vma: Verify if the specified vma is an executable vma
  89 * Relax restrictions while unregistering: vm_flags might have
  90 * changed after breakpoint was inserted.
  91 *	- is_register: indicates if we are in register context.
  92 *	- Return 1 if the specified virtual address is in an
  93 *	  executable vma.
  94 */
  95static bool valid_vma(struct vm_area_struct *vma, bool is_register)
  96{
  97	if (!vma->vm_file)
  98		return false;
  99
 100	if (!is_register)
 101		return true;
 102
 103	if ((vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) == (VM_READ|VM_EXEC))
 104		return true;
 105
 106	return false;
 107}
 108
 109static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
 110{
 111	loff_t vaddr;
 112
 113	vaddr = vma->vm_start + offset;
 114	vaddr -= vma->vm_pgoff << PAGE_SHIFT;
 115
 116	return vaddr;
 117}
 118
 119/**
 120 * __replace_page - replace page in vma by new page.
 121 * based on replace_page in mm/ksm.c
 122 *
 123 * @vma:      vma that holds the pte pointing to page
 124 * @page:     the cowed page we are replacing by kpage
 125 * @kpage:    the modified page we replace page by
 126 *
 127 * Returns 0 on success, -EFAULT on failure.
 128 */
 129static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
 130{
 131	struct mm_struct *mm = vma->vm_mm;
 132	pgd_t *pgd;
 133	pud_t *pud;
 134	pmd_t *pmd;
 135	pte_t *ptep;
 136	spinlock_t *ptl;
 137	unsigned long addr;
 138	int err = -EFAULT;
 139
 140	addr = page_address_in_vma(page, vma);
 141	if (addr == -EFAULT)
 142		goto out;
 143
 144	pgd = pgd_offset(mm, addr);
 145	if (!pgd_present(*pgd))
 146		goto out;
 147
 148	pud = pud_offset(pgd, addr);
 149	if (!pud_present(*pud))
 150		goto out;
 151
 152	pmd = pmd_offset(pud, addr);
 153	if (!pmd_present(*pmd))
 154		goto out;
 155
 156	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
 157	if (!ptep)
 158		goto out;
 159
 160	get_page(kpage);
 161	page_add_new_anon_rmap(kpage, vma, addr);
 162
 163	if (!PageAnon(page)) {
 164		dec_mm_counter(mm, MM_FILEPAGES);
 165		inc_mm_counter(mm, MM_ANONPAGES);
 166	}
 167
 168	flush_cache_page(vma, addr, pte_pfn(*ptep));
 169	ptep_clear_flush(vma, addr, ptep);
 170	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
 171
 172	page_remove_rmap(page);
 173	if (!page_mapped(page))
 174		try_to_free_swap(page);
 175	put_page(page);
 176	pte_unmap_unlock(ptep, ptl);
 177	err = 0;
 178
 179out:
 180	return err;
 181}
 182
 183/**
 184 * is_swbp_insn - check if instruction is breakpoint instruction.
 185 * @insn: instruction to be checked.
 186 * Default implementation of is_swbp_insn
 187 * Returns true if @insn is a breakpoint instruction.
 188 */
 189bool __weak is_swbp_insn(uprobe_opcode_t *insn)
 190{
 191	return *insn == UPROBE_SWBP_INSN;
 192}
 193
 194/*
 195 * NOTE:
 196 * Expect the breakpoint instruction to be the smallest size instruction for
 197 * the architecture. If an arch has variable length instruction and the
 198 * breakpoint instruction is not of the smallest length instruction
 199 * supported by that architecture then we need to modify read_opcode /
 200 * write_opcode accordingly. This would never be a problem for archs that
 201 * have fixed length instructions.
 202 */
 203
 204/*
 205 * write_opcode - write the opcode at a given virtual address.
 206 * @auprobe: arch breakpointing information.
 207 * @mm: the probed process address space.
 208 * @vaddr: the virtual address to store the opcode.
 209 * @opcode: opcode to be written at @vaddr.
 210 *
 211 * Called with mm->mmap_sem held (for read and with a reference to
 212 * mm).
 213 *
 214 * For mm @mm, write the opcode at @vaddr.
 215 * Return 0 (success) or a negative errno.
 216 */
 217static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
 218			unsigned long vaddr, uprobe_opcode_t opcode)
 219{
 220	struct page *old_page, *new_page;
 221	struct address_space *mapping;
 222	void *vaddr_old, *vaddr_new;
 223	struct vm_area_struct *vma;
 224	struct uprobe *uprobe;
 225	loff_t addr;
 226	int ret;
 227
 228	/* Read the page with vaddr into memory */
 229	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
 230	if (ret <= 0)
 231		return ret;
 232
 233	ret = -EINVAL;
 234
 235	/*
 236	 * We are interested in text pages only. Our pages of interest
 237	 * should be mapped for read and execute only. We desist from
 238	 * adding probes in write mapped pages since the breakpoints
 239	 * might end up in the file copy.
 240	 */
 241	if (!valid_vma(vma, is_swbp_insn(&opcode)))
 242		goto put_out;
 243
 244	uprobe = container_of(auprobe, struct uprobe, arch);
 245	mapping = uprobe->inode->i_mapping;
 246	if (mapping != vma->vm_file->f_mapping)
 247		goto put_out;
 248
 249	addr = vma_address(vma, uprobe->offset);
 250	if (vaddr != (unsigned long)addr)
 251		goto put_out;
 252
 253	ret = -ENOMEM;
 254	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
 255	if (!new_page)
 256		goto put_out;
 257
 258	__SetPageUptodate(new_page);
 259
 260	/*
 261	 * lock page will serialize against do_wp_page()'s
 262	 * PageAnon() handling
 263	 */
 264	lock_page(old_page);
 265	/* copy the page now that we've got it stable */
 266	vaddr_old = kmap_atomic(old_page);
 267	vaddr_new = kmap_atomic(new_page);
 268
 269	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
 270
 271	/* poke the new insn in, ASSUMES we don't cross page boundary */
 272	vaddr &= ~PAGE_MASK;
 273	BUG_ON(vaddr + UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
 274	memcpy(vaddr_new + vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
 275
 276	kunmap_atomic(vaddr_new);
 277	kunmap_atomic(vaddr_old);
 278
 279	ret = anon_vma_prepare(vma);
 280	if (ret)
 281		goto unlock_out;
 282
 283	lock_page(new_page);
 284	ret = __replace_page(vma, old_page, new_page);
 285	unlock_page(new_page);
 286
 287unlock_out:
 288	unlock_page(old_page);
 289	page_cache_release(new_page);
 290
 291put_out:
 292	put_page(old_page);
 293
 294	return ret;
 295}
 296
 297/**
 298 * read_opcode - read the opcode at a given virtual address.
 299 * @mm: the probed process address space.
 300 * @vaddr: the virtual address to read the opcode.
 301 * @opcode: location to store the read opcode.
 302 *
 303 * Called with mm->mmap_sem held (for read and with a reference to
 304 * mm.
 305 *
 306 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
 307 * Return 0 (success) or a negative errno.
 308 */
 309static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
 310{
 311	struct page *page;
 312	void *vaddr_new;
 313	int ret;
 314
 315	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &page, NULL);
 316	if (ret <= 0)
 317		return ret;
 318
 319	lock_page(page);
 320	vaddr_new = kmap_atomic(page);
 321	vaddr &= ~PAGE_MASK;
 322	memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
 323	kunmap_atomic(vaddr_new);
 324	unlock_page(page);
 325
 326	put_page(page);
 327
 328	return 0;
 329}
 330
 331static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
 332{
 333	uprobe_opcode_t opcode;
 334	int result;
 335
 336	result = read_opcode(mm, vaddr, &opcode);
 337	if (result)
 338		return result;
 339
 340	if (is_swbp_insn(&opcode))
 341		return 1;
 342
 343	return 0;
 344}
 345
 346/**
 347 * set_swbp - store breakpoint at a given address.
 348 * @auprobe: arch specific probepoint information.
 349 * @mm: the probed process address space.
 350 * @vaddr: the virtual address to insert the opcode.
 351 *
 352 * For mm @mm, store the breakpoint instruction at @vaddr.
 353 * Return 0 (success) or a negative errno.
 354 */
 355int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 356{
 357	int result;
 358
 359	result = is_swbp_at_addr(mm, vaddr);
 360	if (result == 1)
 361		return -EEXIST;
 362
 363	if (result)
 364		return result;
 365
 366	return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
 367}
 368
 369/**
 370 * set_orig_insn - Restore the original instruction.
 371 * @mm: the probed process address space.
 372 * @auprobe: arch specific probepoint information.
 373 * @vaddr: the virtual address to insert the opcode.
 374 * @verify: if true, verify existance of breakpoint instruction.
 375 *
 376 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 377 * Return 0 (success) or a negative errno.
 378 */
 379int __weak
 380set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
 381{
 382	if (verify) {
 383		int result;
 384
 385		result = is_swbp_at_addr(mm, vaddr);
 386		if (!result)
 387			return -EINVAL;
 388
 389		if (result != 1)
 390			return result;
 391	}
 392	return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
 393}
 394
 395static int match_uprobe(struct uprobe *l, struct uprobe *r)
 396{
 397	if (l->inode < r->inode)
 398		return -1;
 399
 400	if (l->inode > r->inode)
 401		return 1;
 402
 403	if (l->offset < r->offset)
 404		return -1;
 405
 406	if (l->offset > r->offset)
 407		return 1;
 408
 409	return 0;
 410}
 411
 412static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
 413{
 414	struct uprobe u = { .inode = inode, .offset = offset };
 415	struct rb_node *n = uprobes_tree.rb_node;
 416	struct uprobe *uprobe;
 417	int match;
 418
 419	while (n) {
 420		uprobe = rb_entry(n, struct uprobe, rb_node);
 421		match = match_uprobe(&u, uprobe);
 422		if (!match) {
 423			atomic_inc(&uprobe->ref);
 424			return uprobe;
 425		}
 426
 427		if (match < 0)
 428			n = n->rb_left;
 429		else
 430			n = n->rb_right;
 431	}
 432	return NULL;
 433}
 434
 435/*
 436 * Find a uprobe corresponding to a given inode:offset
 437 * Acquires uprobes_treelock
 438 */
 439static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
 440{
 441	struct uprobe *uprobe;
 442	unsigned long flags;
 443
 444	spin_lock_irqsave(&uprobes_treelock, flags);
 445	uprobe = __find_uprobe(inode, offset);
 446	spin_unlock_irqrestore(&uprobes_treelock, flags);
 447
 448	return uprobe;
 449}
 450
 451static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
 452{
 453	struct rb_node **p = &uprobes_tree.rb_node;
 454	struct rb_node *parent = NULL;
 455	struct uprobe *u;
 456	int match;
 457
 458	while (*p) {
 459		parent = *p;
 460		u = rb_entry(parent, struct uprobe, rb_node);
 461		match = match_uprobe(uprobe, u);
 462		if (!match) {
 463			atomic_inc(&u->ref);
 464			return u;
 465		}
 466
 467		if (match < 0)
 468			p = &parent->rb_left;
 469		else
 470			p = &parent->rb_right;
 471
 472	}
 473
 474	u = NULL;
 475	rb_link_node(&uprobe->rb_node, parent, p);
 476	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
 477	/* get access + creation ref */
 478	atomic_set(&uprobe->ref, 2);
 479
 480	return u;
 481}
 482
 483/*
 484 * Acquire uprobes_treelock.
 485 * Matching uprobe already exists in rbtree;
 486 *	increment (access refcount) and return the matching uprobe.
 487 *
 488 * No matching uprobe; insert the uprobe in rb_tree;
 489 *	get a double refcount (access + creation) and return NULL.
 490 */
 491static struct uprobe *insert_uprobe(struct uprobe *uprobe)
 492{
 493	unsigned long flags;
 494	struct uprobe *u;
 495
 496	spin_lock_irqsave(&uprobes_treelock, flags);
 497	u = __insert_uprobe(uprobe);
 498	spin_unlock_irqrestore(&uprobes_treelock, flags);
 499
 500	/* For now assume that the instruction need not be single-stepped */
 501	uprobe->flags |= UPROBE_SKIP_SSTEP;
 502
 503	return u;
 504}
 505
 506static void put_uprobe(struct uprobe *uprobe)
 507{
 508	if (atomic_dec_and_test(&uprobe->ref))
 509		kfree(uprobe);
 510}
 511
 512static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
 513{
 514	struct uprobe *uprobe, *cur_uprobe;
 515
 516	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
 517	if (!uprobe)
 518		return NULL;
 519
 520	uprobe->inode = igrab(inode);
 521	uprobe->offset = offset;
 522	init_rwsem(&uprobe->consumer_rwsem);
 523	INIT_LIST_HEAD(&uprobe->pending_list);
 524
 525	/* add to uprobes_tree, sorted on inode:offset */
 526	cur_uprobe = insert_uprobe(uprobe);
 527
 528	/* a uprobe exists for this inode:offset combination */
 529	if (cur_uprobe) {
 530		kfree(uprobe);
 531		uprobe = cur_uprobe;
 532		iput(inode);
 533	} else {
 534		atomic_inc(&uprobe_events);
 535	}
 536
 537	return uprobe;
 538}
 539
 540static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
 541{
 542	struct uprobe_consumer *uc;
 543
 544	if (!(uprobe->flags & UPROBE_RUN_HANDLER))
 545		return;
 546
 547	down_read(&uprobe->consumer_rwsem);
 548	for (uc = uprobe->consumers; uc; uc = uc->next) {
 549		if (!uc->filter || uc->filter(uc, current))
 550			uc->handler(uc, regs);
 551	}
 552	up_read(&uprobe->consumer_rwsem);
 553}
 554
 555/* Returns the previous consumer */
 556static struct uprobe_consumer *
 557consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
 558{
 559	down_write(&uprobe->consumer_rwsem);
 560	uc->next = uprobe->consumers;
 561	uprobe->consumers = uc;
 562	up_write(&uprobe->consumer_rwsem);
 563
 564	return uc->next;
 565}
 566
 567/*
 568 * For uprobe @uprobe, delete the consumer @uc.
 569 * Return true if the @uc is deleted successfully
 570 * or return false.
 571 */
 572static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
 573{
 574	struct uprobe_consumer **con;
 575	bool ret = false;
 576
 577	down_write(&uprobe->consumer_rwsem);
 578	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
 579		if (*con == uc) {
 580			*con = uc->next;
 581			ret = true;
 582			break;
 583		}
 584	}
 585	up_write(&uprobe->consumer_rwsem);
 586
 587	return ret;
 588}
 589
 590static int
 591__copy_insn(struct address_space *mapping, struct vm_area_struct *vma, char *insn,
 592			unsigned long nbytes, unsigned long offset)
 593{
 594	struct file *filp = vma->vm_file;
 595	struct page *page;
 596	void *vaddr;
 597	unsigned long off1;
 598	unsigned long idx;
 599
 600	if (!filp)
 601		return -EINVAL;
 602
 603	idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
 604	off1 = offset &= ~PAGE_MASK;
 605
 606	/*
 607	 * Ensure that the page that has the original instruction is
 608	 * populated and in page-cache.
 609	 */
 610	page = read_mapping_page(mapping, idx, filp);
 611	if (IS_ERR(page))
 612		return PTR_ERR(page);
 613
 614	vaddr = kmap_atomic(page);
 615	memcpy(insn, vaddr + off1, nbytes);
 616	kunmap_atomic(vaddr);
 617	page_cache_release(page);
 618
 619	return 0;
 620}
 621
 622static int
 623copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, unsigned long addr)
 624{
 625	struct address_space *mapping;
 626	unsigned long nbytes;
 627	int bytes;
 628
 629	addr &= ~PAGE_MASK;
 630	nbytes = PAGE_SIZE - addr;
 631	mapping = uprobe->inode->i_mapping;
 632
 633	/* Instruction at end of binary; copy only available bytes */
 634	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
 635		bytes = uprobe->inode->i_size - uprobe->offset;
 636	else
 637		bytes = MAX_UINSN_BYTES;
 638
 639	/* Instruction at the page-boundary; copy bytes in second page */
 640	if (nbytes < bytes) {
 641		if (__copy_insn(mapping, vma, uprobe->arch.insn + nbytes,
 642				bytes - nbytes, uprobe->offset + nbytes))
 643			return -ENOMEM;
 644
 645		bytes = nbytes;
 646	}
 647	return __copy_insn(mapping, vma, uprobe->arch.insn, bytes, uprobe->offset);
 648}
 649
 650/*
 651 * How mm->uprobes_state.count gets updated
 652 * uprobe_mmap() increments the count if
 653 * 	- it successfully adds a breakpoint.
 654 * 	- it cannot add a breakpoint, but sees that there is a underlying
 655 * 	  breakpoint (via a is_swbp_at_addr()).
 656 *
 657 * uprobe_munmap() decrements the count if
 658 * 	- it sees a underlying breakpoint, (via is_swbp_at_addr)
 659 * 	  (Subsequent uprobe_unregister wouldnt find the breakpoint
 660 * 	  unless a uprobe_mmap kicks in, since the old vma would be
 661 * 	  dropped just after uprobe_munmap.)
 662 *
 663 * uprobe_register increments the count if:
 664 * 	- it successfully adds a breakpoint.
 665 *
 666 * uprobe_unregister decrements the count if:
 667 * 	- it sees a underlying breakpoint and removes successfully.
 668 * 	  (via is_swbp_at_addr)
 669 * 	  (Subsequent uprobe_munmap wouldnt find the breakpoint
 670 * 	  since there is no underlying breakpoint after the
 671 * 	  breakpoint removal.)
 672 */
 673static int
 674install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
 675			struct vm_area_struct *vma, loff_t vaddr)
 676{
 677	unsigned long addr;
 678	int ret;
 679
 680	/*
 681	 * If probe is being deleted, unregister thread could be done with
 682	 * the vma-rmap-walk through. Adding a probe now can be fatal since
 683	 * nobody will be able to cleanup. Also we could be from fork or
 684	 * mremap path, where the probe might have already been inserted.
 685	 * Hence behave as if probe already existed.
 686	 */
 687	if (!uprobe->consumers)
 688		return -EEXIST;
 689
 690	addr = (unsigned long)vaddr;
 691
 692	if (!(uprobe->flags & UPROBE_COPY_INSN)) {
 693		ret = copy_insn(uprobe, vma, addr);
 694		if (ret)
 695			return ret;
 696
 697		if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
 698			return -EEXIST;
 699
 700		ret = arch_uprobe_analyze_insn(&uprobe->arch, mm);
 701		if (ret)
 702			return ret;
 703
 704		uprobe->flags |= UPROBE_COPY_INSN;
 705	}
 706
 707	/*
 708	 * Ideally, should be updating the probe count after the breakpoint
 709	 * has been successfully inserted. However a thread could hit the
 710	 * breakpoint we just inserted even before the probe count is
 711	 * incremented. If this is the first breakpoint placed, breakpoint
 712	 * notifier might ignore uprobes and pass the trap to the thread.
 713	 * Hence increment before and decrement on failure.
 714	 */
 715	atomic_inc(&mm->uprobes_state.count);
 716	ret = set_swbp(&uprobe->arch, mm, addr);
 717	if (ret)
 718		atomic_dec(&mm->uprobes_state.count);
 719
 720	return ret;
 721}
 722
 723static void
 724remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
 725{
 726	if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true))
 727		atomic_dec(&mm->uprobes_state.count);
 728}
 729
 730/*
 731 * There could be threads that have hit the breakpoint and are entering the
 732 * notifier code and trying to acquire the uprobes_treelock. The thread
 733 * calling delete_uprobe() that is removing the uprobe from the rb_tree can
 734 * race with these threads and might acquire the uprobes_treelock compared
 735 * to some of the breakpoint hit threads. In such a case, the breakpoint
 736 * hit threads will not find the uprobe. The current unregistering thread
 737 * waits till all other threads have hit a breakpoint, to acquire the
 738 * uprobes_treelock before the uprobe is removed from the rbtree.
 739 */
 740static void delete_uprobe(struct uprobe *uprobe)
 741{
 742	unsigned long flags;
 743
 744	synchronize_srcu(&uprobes_srcu);
 745	spin_lock_irqsave(&uprobes_treelock, flags);
 746	rb_erase(&uprobe->rb_node, &uprobes_tree);
 747	spin_unlock_irqrestore(&uprobes_treelock, flags);
 748	iput(uprobe->inode);
 749	put_uprobe(uprobe);
 750	atomic_dec(&uprobe_events);
 751}
 752
 753static struct vma_info *
 754__find_next_vma_info(struct address_space *mapping, struct list_head *head,
 755			struct vma_info *vi, loff_t offset, bool is_register)
 756{
 757	struct prio_tree_iter iter;
 758	struct vm_area_struct *vma;
 759	struct vma_info *tmpvi;
 760	unsigned long pgoff;
 761	int existing_vma;
 762	loff_t vaddr;
 763
 764	pgoff = offset >> PAGE_SHIFT;
 765
 766	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
 767		if (!valid_vma(vma, is_register))
 768			continue;
 769
 770		existing_vma = 0;
 771		vaddr = vma_address(vma, offset);
 772
 773		list_for_each_entry(tmpvi, head, probe_list) {
 774			if (tmpvi->mm == vma->vm_mm && tmpvi->vaddr == vaddr) {
 775				existing_vma = 1;
 776				break;
 777			}
 778		}
 779
 780		/*
 781		 * Another vma needs a probe to be installed. However skip
 782		 * installing the probe if the vma is about to be unlinked.
 783		 */
 784		if (!existing_vma && atomic_inc_not_zero(&vma->vm_mm->mm_users)) {
 785			vi->mm = vma->vm_mm;
 786			vi->vaddr = vaddr;
 787			list_add(&vi->probe_list, head);
 788
 789			return vi;
 790		}
 791	}
 792
 793	return NULL;
 794}
 795
 796/*
 797 * Iterate in the rmap prio tree  and find a vma where a probe has not
 798 * yet been inserted.
 799 */
 800static struct vma_info *
 801find_next_vma_info(struct address_space *mapping, struct list_head *head,
 802		loff_t offset, bool is_register)
 803{
 804	struct vma_info *vi, *retvi;
 805
 806	vi = kzalloc(sizeof(struct vma_info), GFP_KERNEL);
 807	if (!vi)
 808		return ERR_PTR(-ENOMEM);
 809
 810	mutex_lock(&mapping->i_mmap_mutex);
 811	retvi = __find_next_vma_info(mapping, head, vi, offset, is_register);
 812	mutex_unlock(&mapping->i_mmap_mutex);
 813
 814	if (!retvi)
 815		kfree(vi);
 816
 817	return retvi;
 818}
 819
 820static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
 821{
 822	struct list_head try_list;
 823	struct vm_area_struct *vma;
 824	struct address_space *mapping;
 825	struct vma_info *vi, *tmpvi;
 826	struct mm_struct *mm;
 827	loff_t vaddr;
 828	int ret;
 829
 830	mapping = uprobe->inode->i_mapping;
 831	INIT_LIST_HEAD(&try_list);
 832
 833	ret = 0;
 834
 835	for (;;) {
 836		vi = find_next_vma_info(mapping, &try_list, uprobe->offset, is_register);
 837		if (!vi)
 838			break;
 839
 840		if (IS_ERR(vi)) {
 841			ret = PTR_ERR(vi);
 842			break;
 843		}
 844
 845		mm = vi->mm;
 846		down_read(&mm->mmap_sem);
 847		vma = find_vma(mm, (unsigned long)vi->vaddr);
 848		if (!vma || !valid_vma(vma, is_register)) {
 849			list_del(&vi->probe_list);
 850			kfree(vi);
 851			up_read(&mm->mmap_sem);
 852			mmput(mm);
 853			continue;
 854		}
 855		vaddr = vma_address(vma, uprobe->offset);
 856		if (vma->vm_file->f_mapping->host != uprobe->inode ||
 857						vaddr != vi->vaddr) {
 858			list_del(&vi->probe_list);
 859			kfree(vi);
 860			up_read(&mm->mmap_sem);
 861			mmput(mm);
 862			continue;
 863		}
 864
 865		if (is_register)
 866			ret = install_breakpoint(uprobe, mm, vma, vi->vaddr);
 867		else
 868			remove_breakpoint(uprobe, mm, vi->vaddr);
 869
 870		up_read(&mm->mmap_sem);
 871		mmput(mm);
 872		if (is_register) {
 873			if (ret && ret == -EEXIST)
 874				ret = 0;
 875			if (ret)
 876				break;
 877		}
 878	}
 879
 880	list_for_each_entry_safe(vi, tmpvi, &try_list, probe_list) {
 881		list_del(&vi->probe_list);
 882		kfree(vi);
 883	}
 884
 885	return ret;
 886}
 887
 888static int __uprobe_register(struct uprobe *uprobe)
 889{
 890	return register_for_each_vma(uprobe, true);
 891}
 892
 893static void __uprobe_unregister(struct uprobe *uprobe)
 894{
 895	if (!register_for_each_vma(uprobe, false))
 896		delete_uprobe(uprobe);
 897
 898	/* TODO : cant unregister? schedule a worker thread */
 899}
 900
 901/*
 902 * uprobe_register - register a probe
 903 * @inode: the file in which the probe has to be placed.
 904 * @offset: offset from the start of the file.
 905 * @uc: information on howto handle the probe..
 906 *
 907 * Apart from the access refcount, uprobe_register() takes a creation
 908 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 909 * inserted into the rbtree (i.e first consumer for a @inode:@offset
 910 * tuple).  Creation refcount stops uprobe_unregister from freeing the
 911 * @uprobe even before the register operation is complete. Creation
 912 * refcount is released when the last @uc for the @uprobe
 913 * unregisters.
 914 *
 915 * Return errno if it cannot successully install probes
 916 * else return 0 (success)
 917 */
 918int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
 919{
 920	struct uprobe *uprobe;
 921	int ret;
 922
 923	if (!inode || !uc || uc->next)
 924		return -EINVAL;
 925
 926	if (offset > i_size_read(inode))
 927		return -EINVAL;
 928
 929	ret = 0;
 930	mutex_lock(uprobes_hash(inode));
 931	uprobe = alloc_uprobe(inode, offset);
 932
 933	if (uprobe && !consumer_add(uprobe, uc)) {
 934		ret = __uprobe_register(uprobe);
 935		if (ret) {
 936			uprobe->consumers = NULL;
 937			__uprobe_unregister(uprobe);
 938		} else {
 939			uprobe->flags |= UPROBE_RUN_HANDLER;
 940		}
 941	}
 942
 943	mutex_unlock(uprobes_hash(inode));
 944	put_uprobe(uprobe);
 945
 946	return ret;
 947}
 948
 949/*
 950 * uprobe_unregister - unregister a already registered probe.
 951 * @inode: the file in which the probe has to be removed.
 952 * @offset: offset from the start of the file.
 953 * @uc: identify which probe if multiple probes are colocated.
 954 */
 955void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
 956{
 957	struct uprobe *uprobe;
 958
 959	if (!inode || !uc)
 960		return;
 961
 962	uprobe = find_uprobe(inode, offset);
 963	if (!uprobe)
 964		return;
 965
 966	mutex_lock(uprobes_hash(inode));
 967
 968	if (consumer_del(uprobe, uc)) {
 969		if (!uprobe->consumers) {
 970			__uprobe_unregister(uprobe);
 971			uprobe->flags &= ~UPROBE_RUN_HANDLER;
 972		}
 973	}
 974
 975	mutex_unlock(uprobes_hash(inode));
 976	if (uprobe)
 977		put_uprobe(uprobe);
 978}
 979
 980/*
 981 * Of all the nodes that correspond to the given inode, return the node
 982 * with the least offset.
 983 */
 984static struct rb_node *find_least_offset_node(struct inode *inode)
 985{
 986	struct uprobe u = { .inode = inode, .offset = 0};
 987	struct rb_node *n = uprobes_tree.rb_node;
 988	struct rb_node *close_node = NULL;
 989	struct uprobe *uprobe;
 990	int match;
 991
 992	while (n) {
 993		uprobe = rb_entry(n, struct uprobe, rb_node);
 994		match = match_uprobe(&u, uprobe);
 995
 996		if (uprobe->inode == inode)
 997			close_node = n;
 998
 999		if (!match)
1000			return close_node;
1001
1002		if (match < 0)
1003			n = n->rb_left;
1004		else
1005			n = n->rb_right;
1006	}
1007
1008	return close_node;
1009}
1010
1011/*
1012 * For a given inode, build a list of probes that need to be inserted.
1013 */
1014static void build_probe_list(struct inode *inode, struct list_head *head)
1015{
1016	struct uprobe *uprobe;
1017	unsigned long flags;
1018	struct rb_node *n;
1019
1020	spin_lock_irqsave(&uprobes_treelock, flags);
1021
1022	n = find_least_offset_node(inode);
1023
1024	for (; n; n = rb_next(n)) {
1025		uprobe = rb_entry(n, struct uprobe, rb_node);
1026		if (uprobe->inode != inode)
1027			break;
1028
1029		list_add(&uprobe->pending_list, head);
1030		atomic_inc(&uprobe->ref);
1031	}
1032
1033	spin_unlock_irqrestore(&uprobes_treelock, flags);
1034}
1035
1036/*
1037 * Called from mmap_region.
1038 * called with mm->mmap_sem acquired.
1039 *
1040 * Return -ve no if we fail to insert probes and we cannot
1041 * bail-out.
1042 * Return 0 otherwise. i.e:
1043 *
1044 *	- successful insertion of probes
1045 *	- (or) no possible probes to be inserted.
1046 *	- (or) insertion of probes failed but we can bail-out.
1047 */
1048int uprobe_mmap(struct vm_area_struct *vma)
1049{
1050	struct list_head tmp_list;
1051	struct uprobe *uprobe, *u;
1052	struct inode *inode;
1053	int ret, count;
1054
1055	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1056		return 0;
1057
1058	inode = vma->vm_file->f_mapping->host;
1059	if (!inode)
1060		return 0;
1061
1062	INIT_LIST_HEAD(&tmp_list);
1063	mutex_lock(uprobes_mmap_hash(inode));
1064	build_probe_list(inode, &tmp_list);
1065
1066	ret = 0;
1067	count = 0;
1068
1069	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1070		loff_t vaddr;
1071
1072		list_del(&uprobe->pending_list);
1073		if (!ret) {
1074			vaddr = vma_address(vma, uprobe->offset);
1075
1076			if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1077				put_uprobe(uprobe);
1078				continue;
1079			}
1080
1081			ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1082
1083			/* Ignore double add: */
1084			if (ret == -EEXIST) {
1085				ret = 0;
1086
1087				if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1088					continue;
1089
1090				/*
1091				 * Unable to insert a breakpoint, but
1092				 * breakpoint lies underneath. Increment the
1093				 * probe count.
1094				 */
1095				atomic_inc(&vma->vm_mm->uprobes_state.count);
1096			}
1097
1098			if (!ret)
1099				count++;
1100		}
1101		put_uprobe(uprobe);
1102	}
1103
1104	mutex_unlock(uprobes_mmap_hash(inode));
1105
1106	if (ret)
1107		atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1108
1109	return ret;
1110}
1111
1112/*
1113 * Called in context of a munmap of a vma.
1114 */
1115void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1116{
1117	struct list_head tmp_list;
1118	struct uprobe *uprobe, *u;
1119	struct inode *inode;
1120
1121	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1122		return;
1123
1124	if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1125		return;
1126
1127	inode = vma->vm_file->f_mapping->host;
1128	if (!inode)
1129		return;
1130
1131	INIT_LIST_HEAD(&tmp_list);
1132	mutex_lock(uprobes_mmap_hash(inode));
1133	build_probe_list(inode, &tmp_list);
1134
1135	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1136		loff_t vaddr;
1137
1138		list_del(&uprobe->pending_list);
1139		vaddr = vma_address(vma, uprobe->offset);
1140
1141		if (vaddr >= start && vaddr < end) {
1142			/*
1143			 * An unregister could have removed the probe before
1144			 * unmap. So check before we decrement the count.
1145			 */
1146			if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1147				atomic_dec(&vma->vm_mm->uprobes_state.count);
1148		}
1149		put_uprobe(uprobe);
1150	}
1151	mutex_unlock(uprobes_mmap_hash(inode));
1152}
1153
1154/* Slot allocation for XOL */
1155static int xol_add_vma(struct xol_area *area)
1156{
1157	struct mm_struct *mm;
1158	int ret;
1159
1160	area->page = alloc_page(GFP_HIGHUSER);
1161	if (!area->page)
1162		return -ENOMEM;
1163
1164	ret = -EALREADY;
1165	mm = current->mm;
1166
1167	down_write(&mm->mmap_sem);
1168	if (mm->uprobes_state.xol_area)
1169		goto fail;
1170
1171	ret = -ENOMEM;
1172
1173	/* Try to map as high as possible, this is only a hint. */
1174	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1175	if (area->vaddr & ~PAGE_MASK) {
1176		ret = area->vaddr;
1177		goto fail;
1178	}
1179
1180	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1181				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1182	if (ret)
1183		goto fail;
1184
1185	smp_wmb();	/* pairs with get_xol_area() */
1186	mm->uprobes_state.xol_area = area;
1187	ret = 0;
1188
1189fail:
1190	up_write(&mm->mmap_sem);
1191	if (ret)
1192		__free_page(area->page);
1193
1194	return ret;
1195}
1196
1197static struct xol_area *get_xol_area(struct mm_struct *mm)
1198{
1199	struct xol_area *area;
1200
1201	area = mm->uprobes_state.xol_area;
1202	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1203
1204	return area;
1205}
1206
1207/*
1208 * xol_alloc_area - Allocate process's xol_area.
1209 * This area will be used for storing instructions for execution out of
1210 * line.
1211 *
1212 * Returns the allocated area or NULL.
1213 */
1214static struct xol_area *xol_alloc_area(void)
1215{
1216	struct xol_area *area;
1217
1218	area = kzalloc(sizeof(*area), GFP_KERNEL);
1219	if (unlikely(!area))
1220		return NULL;
1221
1222	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1223
1224	if (!area->bitmap)
1225		goto fail;
1226
1227	init_waitqueue_head(&area->wq);
1228	if (!xol_add_vma(area))
1229		return area;
1230
1231fail:
1232	kfree(area->bitmap);
1233	kfree(area);
1234
1235	return get_xol_area(current->mm);
1236}
1237
1238/*
1239 * uprobe_clear_state - Free the area allocated for slots.
1240 */
1241void uprobe_clear_state(struct mm_struct *mm)
1242{
1243	struct xol_area *area = mm->uprobes_state.xol_area;
1244
1245	if (!area)
1246		return;
1247
1248	put_page(area->page);
1249	kfree(area->bitmap);
1250	kfree(area);
1251}
1252
1253/*
1254 * uprobe_reset_state - Free the area allocated for slots.
1255 */
1256void uprobe_reset_state(struct mm_struct *mm)
1257{
1258	mm->uprobes_state.xol_area = NULL;
1259	atomic_set(&mm->uprobes_state.count, 0);
1260}
1261
1262/*
1263 *  - search for a free slot.
1264 */
1265static unsigned long xol_take_insn_slot(struct xol_area *area)
1266{
1267	unsigned long slot_addr;
1268	int slot_nr;
1269
1270	do {
1271		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1272		if (slot_nr < UINSNS_PER_PAGE) {
1273			if (!test_and_set_bit(slot_nr, area->bitmap))
1274				break;
1275
1276			slot_nr = UINSNS_PER_PAGE;
1277			continue;
1278		}
1279		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1280	} while (slot_nr >= UINSNS_PER_PAGE);
1281
1282	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1283	atomic_inc(&area->slot_count);
1284
1285	return slot_addr;
1286}
1287
1288/*
1289 * xol_get_insn_slot - If was not allocated a slot, then
1290 * allocate a slot.
1291 * Returns the allocated slot address or 0.
1292 */
1293static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1294{
1295	struct xol_area *area;
1296	unsigned long offset;
1297	void *vaddr;
1298
1299	area = get_xol_area(current->mm);
1300	if (!area) {
1301		area = xol_alloc_area();
1302		if (!area)
1303			return 0;
1304	}
1305	current->utask->xol_vaddr = xol_take_insn_slot(area);
1306
1307	/*
1308	 * Initialize the slot if xol_vaddr points to valid
1309	 * instruction slot.
1310	 */
1311	if (unlikely(!current->utask->xol_vaddr))
1312		return 0;
1313
1314	current->utask->vaddr = slot_addr;
1315	offset = current->utask->xol_vaddr & ~PAGE_MASK;
1316	vaddr = kmap_atomic(area->page);
1317	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1318	kunmap_atomic(vaddr);
1319
1320	return current->utask->xol_vaddr;
1321}
1322
1323/*
1324 * xol_free_insn_slot - If slot was earlier allocated by
1325 * @xol_get_insn_slot(), make the slot available for
1326 * subsequent requests.
1327 */
1328static void xol_free_insn_slot(struct task_struct *tsk)
1329{
1330	struct xol_area *area;
1331	unsigned long vma_end;
1332	unsigned long slot_addr;
1333
1334	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1335		return;
1336
1337	slot_addr = tsk->utask->xol_vaddr;
1338
1339	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1340		return;
1341
1342	area = tsk->mm->uprobes_state.xol_area;
1343	vma_end = area->vaddr + PAGE_SIZE;
1344	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1345		unsigned long offset;
1346		int slot_nr;
1347
1348		offset = slot_addr - area->vaddr;
1349		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1350		if (slot_nr >= UINSNS_PER_PAGE)
1351			return;
1352
1353		clear_bit(slot_nr, area->bitmap);
1354		atomic_dec(&area->slot_count);
1355		if (waitqueue_active(&area->wq))
1356			wake_up(&area->wq);
1357
1358		tsk->utask->xol_vaddr = 0;
1359	}
1360}
1361
1362/**
1363 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1364 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1365 * instruction.
1366 * Return the address of the breakpoint instruction.
1367 */
1368unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1369{
1370	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1371}
1372
1373/*
1374 * Called with no locks held.
1375 * Called in context of a exiting or a exec-ing thread.
1376 */
1377void uprobe_free_utask(struct task_struct *t)
1378{
1379	struct uprobe_task *utask = t->utask;
1380
1381	if (t->uprobe_srcu_id != -1)
1382		srcu_read_unlock_raw(&uprobes_srcu, t->uprobe_srcu_id);
1383
1384	if (!utask)
1385		return;
1386
1387	if (utask->active_uprobe)
1388		put_uprobe(utask->active_uprobe);
1389
1390	xol_free_insn_slot(t);
1391	kfree(utask);
1392	t->utask = NULL;
1393}
1394
1395/*
1396 * Called in context of a new clone/fork from copy_process.
1397 */
1398void uprobe_copy_process(struct task_struct *t)
1399{
1400	t->utask = NULL;
1401	t->uprobe_srcu_id = -1;
1402}
1403
1404/*
1405 * Allocate a uprobe_task object for the task.
1406 * Called when the thread hits a breakpoint for the first time.
1407 *
1408 * Returns:
1409 * - pointer to new uprobe_task on success
1410 * - NULL otherwise
1411 */
1412static struct uprobe_task *add_utask(void)
1413{
1414	struct uprobe_task *utask;
1415
1416	utask = kzalloc(sizeof *utask, GFP_KERNEL);
1417	if (unlikely(!utask))
1418		return NULL;
1419
1420	utask->active_uprobe = NULL;
1421	current->utask = utask;
1422	return utask;
1423}
1424
1425/* Prepare to single-step probed instruction out of line. */
1426static int
1427pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1428{
1429	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1430		return 0;
1431
1432	return -EFAULT;
1433}
1434
1435/*
1436 * If we are singlestepping, then ensure this thread is not connected to
1437 * non-fatal signals until completion of singlestep.  When xol insn itself
1438 * triggers the signal,  restart the original insn even if the task is
1439 * already SIGKILL'ed (since coredump should report the correct ip).  This
1440 * is even more important if the task has a handler for SIGSEGV/etc, The
1441 * _same_ instruction should be repeated again after return from the signal
1442 * handler, and SSTEP can never finish in this case.
1443 */
1444bool uprobe_deny_signal(void)
1445{
1446	struct task_struct *t = current;
1447	struct uprobe_task *utask = t->utask;
1448
1449	if (likely(!utask || !utask->active_uprobe))
1450		return false;
1451
1452	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1453
1454	if (signal_pending(t)) {
1455		spin_lock_irq(&t->sighand->siglock);
1456		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1457		spin_unlock_irq(&t->sighand->siglock);
1458
1459		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1460			utask->state = UTASK_SSTEP_TRAPPED;
1461			set_tsk_thread_flag(t, TIF_UPROBE);
1462			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1463		}
1464	}
1465
1466	return true;
1467}
1468
1469/*
1470 * Avoid singlestepping the original instruction if the original instruction
1471 * is a NOP or can be emulated.
1472 */
1473static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1474{
1475	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1476		return true;
1477
1478	uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1479	return false;
1480}
1481
1482/*
1483 * Run handler and ask thread to singlestep.
1484 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1485 */
1486static void handle_swbp(struct pt_regs *regs)
1487{
1488	struct vm_area_struct *vma;
1489	struct uprobe_task *utask;
1490	struct uprobe *uprobe;
1491	struct mm_struct *mm;
1492	unsigned long bp_vaddr;
1493
1494	uprobe = NULL;
1495	bp_vaddr = uprobe_get_swbp_addr(regs);
1496	mm = current->mm;
1497	down_read(&mm->mmap_sem);
1498	vma = find_vma(mm, bp_vaddr);
1499
1500	if (vma && vma->vm_start <= bp_vaddr && valid_vma(vma, false)) {
1501		struct inode *inode;
1502		loff_t offset;
1503
1504		inode = vma->vm_file->f_mapping->host;
1505		offset = bp_vaddr - vma->vm_start;
1506		offset += (vma->vm_pgoff << PAGE_SHIFT);
1507		uprobe = find_uprobe(inode, offset);
1508	}
1509
1510	srcu_read_unlock_raw(&uprobes_srcu, current->uprobe_srcu_id);
1511	current->uprobe_srcu_id = -1;
1512	up_read(&mm->mmap_sem);
1513
1514	if (!uprobe) {
1515		/* No matching uprobe; signal SIGTRAP. */
1516		send_sig(SIGTRAP, current, 0);
1517		return;
1518	}
1519
1520	utask = current->utask;
1521	if (!utask) {
1522		utask = add_utask();
1523		/* Cannot allocate; re-execute the instruction. */
1524		if (!utask)
1525			goto cleanup_ret;
1526	}
1527	utask->active_uprobe = uprobe;
1528	handler_chain(uprobe, regs);
1529	if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1530		goto cleanup_ret;
1531
1532	utask->state = UTASK_SSTEP;
1533	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1534		user_enable_single_step(current);
1535		return;
1536	}
1537
1538cleanup_ret:
1539	if (utask) {
1540		utask->active_uprobe = NULL;
1541		utask->state = UTASK_RUNNING;
1542	}
1543	if (uprobe) {
1544		if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1545
1546			/*
1547			 * cannot singlestep; cannot skip instruction;
1548			 * re-execute the instruction.
1549			 */
1550			instruction_pointer_set(regs, bp_vaddr);
1551
1552		put_uprobe(uprobe);
1553	}
1554}
1555
1556/*
1557 * Perform required fix-ups and disable singlestep.
1558 * Allow pending signals to take effect.
1559 */
1560static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1561{
1562	struct uprobe *uprobe;
1563
1564	uprobe = utask->active_uprobe;
1565	if (utask->state == UTASK_SSTEP_ACK)
1566		arch_uprobe_post_xol(&uprobe->arch, regs);
1567	else if (utask->state == UTASK_SSTEP_TRAPPED)
1568		arch_uprobe_abort_xol(&uprobe->arch, regs);
1569	else
1570		WARN_ON_ONCE(1);
1571
1572	put_uprobe(uprobe);
1573	utask->active_uprobe = NULL;
1574	utask->state = UTASK_RUNNING;
1575	user_disable_single_step(current);
1576	xol_free_insn_slot(current);
1577
1578	spin_lock_irq(&current->sighand->siglock);
1579	recalc_sigpending(); /* see uprobe_deny_signal() */
1580	spin_unlock_irq(&current->sighand->siglock);
1581}
1582
1583/*
1584 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
1585 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1586 * allows the thread to return from interrupt.
1587 *
1588 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1589 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1590 * interrupt.
1591 *
1592 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1593 * uprobe_notify_resume().
1594 */
1595void uprobe_notify_resume(struct pt_regs *regs)
1596{
1597	struct uprobe_task *utask;
1598
1599	utask = current->utask;
1600	if (!utask || utask->state == UTASK_BP_HIT)
1601		handle_swbp(regs);
1602	else
1603		handle_singlestep(utask, regs);
1604}
1605
1606/*
1607 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1608 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1609 */
1610int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1611{
1612	struct uprobe_task *utask;
1613
1614	if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1615		/* task is currently not uprobed */
1616		return 0;
1617
1618	utask = current->utask;
1619	if (utask)
1620		utask->state = UTASK_BP_HIT;
1621
1622	set_thread_flag(TIF_UPROBE);
1623	current->uprobe_srcu_id = srcu_read_lock_raw(&uprobes_srcu);
1624
1625	return 1;
1626}
1627
1628/*
1629 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1630 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1631 */
1632int uprobe_post_sstep_notifier(struct pt_regs *regs)
1633{
1634	struct uprobe_task *utask = current->utask;
1635
1636	if (!current->mm || !utask || !utask->active_uprobe)
1637		/* task is currently not uprobed */
1638		return 0;
1639
1640	utask->state = UTASK_SSTEP_ACK;
1641	set_thread_flag(TIF_UPROBE);
1642	return 1;
1643}
1644
1645static struct notifier_block uprobe_exception_nb = {
1646	.notifier_call		= arch_uprobe_exception_notify,
1647	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
1648};
1649
1650static int __init init_uprobes(void)
1651{
1652	int i;
1653
1654	for (i = 0; i < UPROBES_HASH_SZ; i++) {
1655		mutex_init(&uprobes_mutex[i]);
1656		mutex_init(&uprobes_mmap_mutex[i]);
1657	}
1658	init_srcu_struct(&uprobes_srcu);
1659
1660	return register_die_notifier(&uprobe_exception_nb);
1661}
1662module_init(init_uprobes);
1663
1664static void __exit exit_uprobes(void)
1665{
1666}
1667module_exit(exit_uprobes);