Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
   6#include "sched.h"
   7
   8#include "pelt.h"
   9
  10int sched_rr_timeslice = RR_TIMESLICE;
  11int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
 
  12
  13static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  14
  15struct rt_bandwidth def_rt_bandwidth;
  16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  17static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  18{
  19	struct rt_bandwidth *rt_b =
  20		container_of(timer, struct rt_bandwidth, rt_period_timer);
  21	int idle = 0;
  22	int overrun;
  23
  24	raw_spin_lock(&rt_b->rt_runtime_lock);
  25	for (;;) {
  26		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  27		if (!overrun)
  28			break;
  29
  30		raw_spin_unlock(&rt_b->rt_runtime_lock);
  31		idle = do_sched_rt_period_timer(rt_b, overrun);
  32		raw_spin_lock(&rt_b->rt_runtime_lock);
  33	}
  34	if (idle)
  35		rt_b->rt_period_active = 0;
  36	raw_spin_unlock(&rt_b->rt_runtime_lock);
  37
  38	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  39}
  40
  41void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  42{
  43	rt_b->rt_period = ns_to_ktime(period);
  44	rt_b->rt_runtime = runtime;
  45
  46	raw_spin_lock_init(&rt_b->rt_runtime_lock);
  47
  48	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
  49		     HRTIMER_MODE_REL_HARD);
  50	rt_b->rt_period_timer.function = sched_rt_period_timer;
  51}
  52
  53static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  54{
  55	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  56		return;
  57
  58	raw_spin_lock(&rt_b->rt_runtime_lock);
  59	if (!rt_b->rt_period_active) {
  60		rt_b->rt_period_active = 1;
  61		/*
  62		 * SCHED_DEADLINE updates the bandwidth, as a run away
  63		 * RT task with a DL task could hog a CPU. But DL does
  64		 * not reset the period. If a deadline task was running
  65		 * without an RT task running, it can cause RT tasks to
  66		 * throttle when they start up. Kick the timer right away
  67		 * to update the period.
  68		 */
  69		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
  70		hrtimer_start_expires(&rt_b->rt_period_timer,
  71				      HRTIMER_MODE_ABS_PINNED_HARD);
  72	}
  73	raw_spin_unlock(&rt_b->rt_runtime_lock);
  74}
  75
 
 
 
 
 
 
 
 
  76void init_rt_rq(struct rt_rq *rt_rq)
  77{
  78	struct rt_prio_array *array;
  79	int i;
  80
  81	array = &rt_rq->active;
  82	for (i = 0; i < MAX_RT_PRIO; i++) {
  83		INIT_LIST_HEAD(array->queue + i);
  84		__clear_bit(i, array->bitmap);
  85	}
  86	/* delimiter for bitsearch: */
  87	__set_bit(MAX_RT_PRIO, array->bitmap);
  88
  89#if defined CONFIG_SMP
  90	rt_rq->highest_prio.curr = MAX_RT_PRIO;
  91	rt_rq->highest_prio.next = MAX_RT_PRIO;
  92	rt_rq->rt_nr_migratory = 0;
  93	rt_rq->overloaded = 0;
  94	plist_head_init(&rt_rq->pushable_tasks);
  95#endif /* CONFIG_SMP */
  96	/* We start is dequeued state, because no RT tasks are queued */
  97	rt_rq->rt_queued = 0;
  98
  99	rt_rq->rt_time = 0;
 100	rt_rq->rt_throttled = 0;
 101	rt_rq->rt_runtime = 0;
 102	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 103}
 104
 105#ifdef CONFIG_RT_GROUP_SCHED
 106static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 107{
 108	hrtimer_cancel(&rt_b->rt_period_timer);
 109}
 110
 111#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 112
 113static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 114{
 115#ifdef CONFIG_SCHED_DEBUG
 116	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 117#endif
 118	return container_of(rt_se, struct task_struct, rt);
 119}
 120
 121static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 122{
 123	return rt_rq->rq;
 124}
 125
 126static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 127{
 128	return rt_se->rt_rq;
 129}
 130
 131static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 132{
 133	struct rt_rq *rt_rq = rt_se->rt_rq;
 134
 135	return rt_rq->rq;
 136}
 137
 138void free_rt_sched_group(struct task_group *tg)
 139{
 140	int i;
 141
 142	if (tg->rt_se)
 143		destroy_rt_bandwidth(&tg->rt_bandwidth);
 144
 
 
 
 
 
 
 145	for_each_possible_cpu(i) {
 146		if (tg->rt_rq)
 147			kfree(tg->rt_rq[i]);
 148		if (tg->rt_se)
 149			kfree(tg->rt_se[i]);
 150	}
 151
 152	kfree(tg->rt_rq);
 153	kfree(tg->rt_se);
 154}
 155
 156void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 157		struct sched_rt_entity *rt_se, int cpu,
 158		struct sched_rt_entity *parent)
 159{
 160	struct rq *rq = cpu_rq(cpu);
 161
 162	rt_rq->highest_prio.curr = MAX_RT_PRIO;
 163	rt_rq->rt_nr_boosted = 0;
 164	rt_rq->rq = rq;
 165	rt_rq->tg = tg;
 166
 167	tg->rt_rq[cpu] = rt_rq;
 168	tg->rt_se[cpu] = rt_se;
 169
 170	if (!rt_se)
 171		return;
 172
 173	if (!parent)
 174		rt_se->rt_rq = &rq->rt;
 175	else
 176		rt_se->rt_rq = parent->my_q;
 177
 178	rt_se->my_q = rt_rq;
 179	rt_se->parent = parent;
 180	INIT_LIST_HEAD(&rt_se->run_list);
 181}
 182
 183int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 184{
 185	struct rt_rq *rt_rq;
 186	struct sched_rt_entity *rt_se;
 187	int i;
 188
 189	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
 190	if (!tg->rt_rq)
 191		goto err;
 192	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
 193	if (!tg->rt_se)
 194		goto err;
 195
 196	init_rt_bandwidth(&tg->rt_bandwidth,
 197			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 198
 199	for_each_possible_cpu(i) {
 200		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 201				     GFP_KERNEL, cpu_to_node(i));
 202		if (!rt_rq)
 203			goto err;
 204
 205		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 206				     GFP_KERNEL, cpu_to_node(i));
 207		if (!rt_se)
 208			goto err_free_rq;
 209
 210		init_rt_rq(rt_rq);
 211		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 212		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 213	}
 214
 215	return 1;
 216
 217err_free_rq:
 218	kfree(rt_rq);
 219err:
 220	return 0;
 221}
 222
 223#else /* CONFIG_RT_GROUP_SCHED */
 224
 225#define rt_entity_is_task(rt_se) (1)
 226
 227static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 228{
 229	return container_of(rt_se, struct task_struct, rt);
 230}
 231
 232static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 233{
 234	return container_of(rt_rq, struct rq, rt);
 235}
 236
 237static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 238{
 239	struct task_struct *p = rt_task_of(rt_se);
 240
 241	return task_rq(p);
 242}
 243
 244static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 245{
 246	struct rq *rq = rq_of_rt_se(rt_se);
 247
 248	return &rq->rt;
 249}
 250
 
 
 251void free_rt_sched_group(struct task_group *tg) { }
 252
 253int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 254{
 255	return 1;
 256}
 257#endif /* CONFIG_RT_GROUP_SCHED */
 258
 259#ifdef CONFIG_SMP
 260
 261static void pull_rt_task(struct rq *this_rq);
 262
 263static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 264{
 265	/* Try to pull RT tasks here if we lower this rq's prio */
 266	return rq->rt.highest_prio.curr > prev->prio;
 267}
 268
 269static inline int rt_overloaded(struct rq *rq)
 270{
 271	return atomic_read(&rq->rd->rto_count);
 272}
 273
 274static inline void rt_set_overload(struct rq *rq)
 275{
 276	if (!rq->online)
 277		return;
 278
 279	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 280	/*
 281	 * Make sure the mask is visible before we set
 282	 * the overload count. That is checked to determine
 283	 * if we should look at the mask. It would be a shame
 284	 * if we looked at the mask, but the mask was not
 285	 * updated yet.
 286	 *
 287	 * Matched by the barrier in pull_rt_task().
 288	 */
 289	smp_wmb();
 290	atomic_inc(&rq->rd->rto_count);
 291}
 292
 293static inline void rt_clear_overload(struct rq *rq)
 294{
 295	if (!rq->online)
 296		return;
 297
 298	/* the order here really doesn't matter */
 299	atomic_dec(&rq->rd->rto_count);
 300	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 301}
 302
 303static void update_rt_migration(struct rt_rq *rt_rq)
 304{
 305	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 306		if (!rt_rq->overloaded) {
 307			rt_set_overload(rq_of_rt_rq(rt_rq));
 308			rt_rq->overloaded = 1;
 309		}
 310	} else if (rt_rq->overloaded) {
 311		rt_clear_overload(rq_of_rt_rq(rt_rq));
 312		rt_rq->overloaded = 0;
 313	}
 314}
 315
 316static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 317{
 318	struct task_struct *p;
 319
 320	if (!rt_entity_is_task(rt_se))
 321		return;
 322
 323	p = rt_task_of(rt_se);
 324	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 325
 326	rt_rq->rt_nr_total++;
 327	if (p->nr_cpus_allowed > 1)
 328		rt_rq->rt_nr_migratory++;
 329
 330	update_rt_migration(rt_rq);
 331}
 332
 333static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 334{
 335	struct task_struct *p;
 336
 337	if (!rt_entity_is_task(rt_se))
 338		return;
 339
 340	p = rt_task_of(rt_se);
 341	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 342
 343	rt_rq->rt_nr_total--;
 344	if (p->nr_cpus_allowed > 1)
 345		rt_rq->rt_nr_migratory--;
 346
 347	update_rt_migration(rt_rq);
 348}
 349
 350static inline int has_pushable_tasks(struct rq *rq)
 351{
 352	return !plist_head_empty(&rq->rt.pushable_tasks);
 353}
 354
 355static DEFINE_PER_CPU(struct callback_head, rt_push_head);
 356static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
 357
 358static void push_rt_tasks(struct rq *);
 359static void pull_rt_task(struct rq *);
 360
 361static inline void rt_queue_push_tasks(struct rq *rq)
 362{
 363	if (!has_pushable_tasks(rq))
 364		return;
 365
 366	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 367}
 368
 369static inline void rt_queue_pull_task(struct rq *rq)
 370{
 371	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 372}
 373
 374static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 375{
 376	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 377	plist_node_init(&p->pushable_tasks, p->prio);
 378	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 379
 380	/* Update the highest prio pushable task */
 381	if (p->prio < rq->rt.highest_prio.next)
 382		rq->rt.highest_prio.next = p->prio;
 
 
 
 
 
 383}
 384
 385static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 386{
 387	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 388
 389	/* Update the new highest prio pushable task */
 390	if (has_pushable_tasks(rq)) {
 391		p = plist_first_entry(&rq->rt.pushable_tasks,
 392				      struct task_struct, pushable_tasks);
 393		rq->rt.highest_prio.next = p->prio;
 394	} else
 395		rq->rt.highest_prio.next = MAX_RT_PRIO;
 
 
 
 
 
 
 396}
 397
 398#else
 399
 400static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 401{
 402}
 403
 404static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 405{
 406}
 407
 408static inline
 409void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 410{
 411}
 
 412
 413static inline
 414void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 415{
 416}
 417
 418static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 419{
 420	return false;
 421}
 422
 423static inline void pull_rt_task(struct rq *this_rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424{
 425}
 
 
 426
 427static inline void rt_queue_push_tasks(struct rq *rq)
 428{
 429}
 430#endif /* CONFIG_SMP */
 431
 432static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 433static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
 434
 435static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 
 
 
 
 
 436{
 437	return rt_se->on_rq;
 438}
 
 439
 440#ifdef CONFIG_RT_GROUP_SCHED
 441
 442static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 443{
 444	if (!rt_rq->tg)
 445		return RUNTIME_INF;
 446
 447	return rt_rq->rt_runtime;
 448}
 449
 450static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 451{
 452	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 453}
 454
 455typedef struct task_group *rt_rq_iter_t;
 456
 457static inline struct task_group *next_task_group(struct task_group *tg)
 458{
 459	do {
 460		tg = list_entry_rcu(tg->list.next,
 461			typeof(struct task_group), list);
 462	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 463
 464	if (&tg->list == &task_groups)
 465		tg = NULL;
 466
 467	return tg;
 468}
 469
 470#define for_each_rt_rq(rt_rq, iter, rq)					\
 471	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 472		(iter = next_task_group(iter)) &&			\
 473		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 474
 475#define for_each_sched_rt_entity(rt_se) \
 476	for (; rt_se; rt_se = rt_se->parent)
 477
 478static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 479{
 480	return rt_se->my_q;
 481}
 482
 483static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 484static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 485
 486static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 487{
 488	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 489	struct rq *rq = rq_of_rt_rq(rt_rq);
 490	struct sched_rt_entity *rt_se;
 491
 492	int cpu = cpu_of(rq);
 493
 494	rt_se = rt_rq->tg->rt_se[cpu];
 495
 496	if (rt_rq->rt_nr_running) {
 497		if (!rt_se)
 498			enqueue_top_rt_rq(rt_rq);
 499		else if (!on_rt_rq(rt_se))
 500			enqueue_rt_entity(rt_se, 0);
 501
 502		if (rt_rq->highest_prio.curr < curr->prio)
 503			resched_curr(rq);
 504	}
 505}
 506
 507static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 508{
 509	struct sched_rt_entity *rt_se;
 510	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 511
 512	rt_se = rt_rq->tg->rt_se[cpu];
 513
 514	if (!rt_se) {
 515		dequeue_top_rt_rq(rt_rq);
 516		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 517		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
 518	}
 519	else if (on_rt_rq(rt_se))
 520		dequeue_rt_entity(rt_se, 0);
 521}
 522
 523static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 524{
 525	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 526}
 527
 528static int rt_se_boosted(struct sched_rt_entity *rt_se)
 529{
 530	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 531	struct task_struct *p;
 532
 533	if (rt_rq)
 534		return !!rt_rq->rt_nr_boosted;
 535
 536	p = rt_task_of(rt_se);
 537	return p->prio != p->normal_prio;
 538}
 539
 540#ifdef CONFIG_SMP
 541static inline const struct cpumask *sched_rt_period_mask(void)
 542{
 543	return this_rq()->rd->span;
 544}
 545#else
 546static inline const struct cpumask *sched_rt_period_mask(void)
 547{
 548	return cpu_online_mask;
 549}
 550#endif
 551
 552static inline
 553struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 554{
 555	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 556}
 557
 558static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 559{
 560	return &rt_rq->tg->rt_bandwidth;
 561}
 562
 563#else /* !CONFIG_RT_GROUP_SCHED */
 564
 565static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 566{
 567	return rt_rq->rt_runtime;
 568}
 569
 570static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 571{
 572	return ktime_to_ns(def_rt_bandwidth.rt_period);
 573}
 574
 575typedef struct rt_rq *rt_rq_iter_t;
 576
 577#define for_each_rt_rq(rt_rq, iter, rq) \
 578	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 579
 580#define for_each_sched_rt_entity(rt_se) \
 581	for (; rt_se; rt_se = NULL)
 582
 583static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 584{
 585	return NULL;
 586}
 587
 588static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 589{
 590	struct rq *rq = rq_of_rt_rq(rt_rq);
 591
 592	if (!rt_rq->rt_nr_running)
 593		return;
 594
 595	enqueue_top_rt_rq(rt_rq);
 596	resched_curr(rq);
 597}
 598
 599static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 600{
 601	dequeue_top_rt_rq(rt_rq);
 602}
 603
 604static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 605{
 606	return rt_rq->rt_throttled;
 607}
 608
 609static inline const struct cpumask *sched_rt_period_mask(void)
 610{
 611	return cpu_online_mask;
 612}
 613
 614static inline
 615struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 616{
 617	return &cpu_rq(cpu)->rt;
 618}
 619
 620static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 621{
 622	return &def_rt_bandwidth;
 623}
 624
 625#endif /* CONFIG_RT_GROUP_SCHED */
 626
 627bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 628{
 629	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 630
 631	return (hrtimer_active(&rt_b->rt_period_timer) ||
 632		rt_rq->rt_time < rt_b->rt_runtime);
 633}
 634
 635#ifdef CONFIG_SMP
 636/*
 637 * We ran out of runtime, see if we can borrow some from our neighbours.
 638 */
 639static void do_balance_runtime(struct rt_rq *rt_rq)
 640{
 641	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 642	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 643	int i, weight;
 644	u64 rt_period;
 645
 646	weight = cpumask_weight(rd->span);
 647
 648	raw_spin_lock(&rt_b->rt_runtime_lock);
 649	rt_period = ktime_to_ns(rt_b->rt_period);
 650	for_each_cpu(i, rd->span) {
 651		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 652		s64 diff;
 653
 654		if (iter == rt_rq)
 655			continue;
 656
 657		raw_spin_lock(&iter->rt_runtime_lock);
 658		/*
 659		 * Either all rqs have inf runtime and there's nothing to steal
 660		 * or __disable_runtime() below sets a specific rq to inf to
 661		 * indicate its been disabled and disalow stealing.
 662		 */
 663		if (iter->rt_runtime == RUNTIME_INF)
 664			goto next;
 665
 666		/*
 667		 * From runqueues with spare time, take 1/n part of their
 668		 * spare time, but no more than our period.
 669		 */
 670		diff = iter->rt_runtime - iter->rt_time;
 671		if (diff > 0) {
 672			diff = div_u64((u64)diff, weight);
 673			if (rt_rq->rt_runtime + diff > rt_period)
 674				diff = rt_period - rt_rq->rt_runtime;
 675			iter->rt_runtime -= diff;
 676			rt_rq->rt_runtime += diff;
 677			if (rt_rq->rt_runtime == rt_period) {
 678				raw_spin_unlock(&iter->rt_runtime_lock);
 679				break;
 680			}
 681		}
 682next:
 683		raw_spin_unlock(&iter->rt_runtime_lock);
 684	}
 685	raw_spin_unlock(&rt_b->rt_runtime_lock);
 686}
 687
 688/*
 689 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 690 */
 691static void __disable_runtime(struct rq *rq)
 692{
 693	struct root_domain *rd = rq->rd;
 694	rt_rq_iter_t iter;
 695	struct rt_rq *rt_rq;
 696
 697	if (unlikely(!scheduler_running))
 698		return;
 699
 700	for_each_rt_rq(rt_rq, iter, rq) {
 701		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 702		s64 want;
 703		int i;
 704
 705		raw_spin_lock(&rt_b->rt_runtime_lock);
 706		raw_spin_lock(&rt_rq->rt_runtime_lock);
 707		/*
 708		 * Either we're all inf and nobody needs to borrow, or we're
 709		 * already disabled and thus have nothing to do, or we have
 710		 * exactly the right amount of runtime to take out.
 711		 */
 712		if (rt_rq->rt_runtime == RUNTIME_INF ||
 713				rt_rq->rt_runtime == rt_b->rt_runtime)
 714			goto balanced;
 715		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 716
 717		/*
 718		 * Calculate the difference between what we started out with
 719		 * and what we current have, that's the amount of runtime
 720		 * we lend and now have to reclaim.
 721		 */
 722		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 723
 724		/*
 725		 * Greedy reclaim, take back as much as we can.
 726		 */
 727		for_each_cpu(i, rd->span) {
 728			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 729			s64 diff;
 730
 731			/*
 732			 * Can't reclaim from ourselves or disabled runqueues.
 733			 */
 734			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 735				continue;
 736
 737			raw_spin_lock(&iter->rt_runtime_lock);
 738			if (want > 0) {
 739				diff = min_t(s64, iter->rt_runtime, want);
 740				iter->rt_runtime -= diff;
 741				want -= diff;
 742			} else {
 743				iter->rt_runtime -= want;
 744				want -= want;
 745			}
 746			raw_spin_unlock(&iter->rt_runtime_lock);
 747
 748			if (!want)
 749				break;
 750		}
 751
 752		raw_spin_lock(&rt_rq->rt_runtime_lock);
 753		/*
 754		 * We cannot be left wanting - that would mean some runtime
 755		 * leaked out of the system.
 756		 */
 757		BUG_ON(want);
 758balanced:
 759		/*
 760		 * Disable all the borrow logic by pretending we have inf
 761		 * runtime - in which case borrowing doesn't make sense.
 762		 */
 763		rt_rq->rt_runtime = RUNTIME_INF;
 764		rt_rq->rt_throttled = 0;
 765		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 766		raw_spin_unlock(&rt_b->rt_runtime_lock);
 767
 768		/* Make rt_rq available for pick_next_task() */
 769		sched_rt_rq_enqueue(rt_rq);
 770	}
 771}
 772
 773static void __enable_runtime(struct rq *rq)
 774{
 775	rt_rq_iter_t iter;
 776	struct rt_rq *rt_rq;
 777
 778	if (unlikely(!scheduler_running))
 779		return;
 780
 781	/*
 782	 * Reset each runqueue's bandwidth settings
 783	 */
 784	for_each_rt_rq(rt_rq, iter, rq) {
 785		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 786
 787		raw_spin_lock(&rt_b->rt_runtime_lock);
 788		raw_spin_lock(&rt_rq->rt_runtime_lock);
 789		rt_rq->rt_runtime = rt_b->rt_runtime;
 790		rt_rq->rt_time = 0;
 791		rt_rq->rt_throttled = 0;
 792		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 793		raw_spin_unlock(&rt_b->rt_runtime_lock);
 794	}
 795}
 796
 797static void balance_runtime(struct rt_rq *rt_rq)
 798{
 799	if (!sched_feat(RT_RUNTIME_SHARE))
 800		return;
 801
 802	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 803		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 804		do_balance_runtime(rt_rq);
 805		raw_spin_lock(&rt_rq->rt_runtime_lock);
 806	}
 807}
 808#else /* !CONFIG_SMP */
 809static inline void balance_runtime(struct rt_rq *rt_rq) {}
 810#endif /* CONFIG_SMP */
 811
 812static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 813{
 814	int i, idle = 1, throttled = 0;
 815	const struct cpumask *span;
 816
 817	span = sched_rt_period_mask();
 818#ifdef CONFIG_RT_GROUP_SCHED
 819	/*
 820	 * FIXME: isolated CPUs should really leave the root task group,
 821	 * whether they are isolcpus or were isolated via cpusets, lest
 822	 * the timer run on a CPU which does not service all runqueues,
 823	 * potentially leaving other CPUs indefinitely throttled.  If
 824	 * isolation is really required, the user will turn the throttle
 825	 * off to kill the perturbations it causes anyway.  Meanwhile,
 826	 * this maintains functionality for boot and/or troubleshooting.
 827	 */
 828	if (rt_b == &root_task_group.rt_bandwidth)
 829		span = cpu_online_mask;
 830#endif
 831	for_each_cpu(i, span) {
 832		int enqueue = 0;
 833		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 834		struct rq *rq = rq_of_rt_rq(rt_rq);
 
 835		int skip;
 836
 837		/*
 838		 * When span == cpu_online_mask, taking each rq->lock
 839		 * can be time-consuming. Try to avoid it when possible.
 840		 */
 841		raw_spin_lock(&rt_rq->rt_runtime_lock);
 842		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
 843			rt_rq->rt_runtime = rt_b->rt_runtime;
 844		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 845		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 846		if (skip)
 847			continue;
 848
 849		raw_spin_lock(&rq->lock);
 850		update_rq_clock(rq);
 851
 852		if (rt_rq->rt_time) {
 853			u64 runtime;
 854
 855			raw_spin_lock(&rt_rq->rt_runtime_lock);
 856			if (rt_rq->rt_throttled)
 857				balance_runtime(rt_rq);
 858			runtime = rt_rq->rt_runtime;
 859			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 860			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 861				rt_rq->rt_throttled = 0;
 862				enqueue = 1;
 863
 864				/*
 865				 * When we're idle and a woken (rt) task is
 866				 * throttled check_preempt_curr() will set
 867				 * skip_update and the time between the wakeup
 868				 * and this unthrottle will get accounted as
 869				 * 'runtime'.
 870				 */
 871				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 872					rq_clock_cancel_skipupdate(rq);
 873			}
 874			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 875				idle = 0;
 876			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 877		} else if (rt_rq->rt_nr_running) {
 878			idle = 0;
 879			if (!rt_rq_throttled(rt_rq))
 880				enqueue = 1;
 881		}
 882		if (rt_rq->rt_throttled)
 883			throttled = 1;
 884
 885		if (enqueue)
 886			sched_rt_rq_enqueue(rt_rq);
 887		raw_spin_unlock(&rq->lock);
 888	}
 889
 890	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 891		return 1;
 892
 893	return idle;
 894}
 895
 896static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 897{
 898#ifdef CONFIG_RT_GROUP_SCHED
 899	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 900
 901	if (rt_rq)
 902		return rt_rq->highest_prio.curr;
 903#endif
 904
 905	return rt_task_of(rt_se)->prio;
 906}
 907
 908static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 909{
 910	u64 runtime = sched_rt_runtime(rt_rq);
 911
 912	if (rt_rq->rt_throttled)
 913		return rt_rq_throttled(rt_rq);
 914
 915	if (runtime >= sched_rt_period(rt_rq))
 916		return 0;
 917
 918	balance_runtime(rt_rq);
 919	runtime = sched_rt_runtime(rt_rq);
 920	if (runtime == RUNTIME_INF)
 921		return 0;
 922
 923	if (rt_rq->rt_time > runtime) {
 924		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 925
 926		/*
 927		 * Don't actually throttle groups that have no runtime assigned
 928		 * but accrue some time due to boosting.
 929		 */
 930		if (likely(rt_b->rt_runtime)) {
 931			rt_rq->rt_throttled = 1;
 932			printk_deferred_once("sched: RT throttling activated\n");
 933		} else {
 934			/*
 935			 * In case we did anyway, make it go away,
 936			 * replenishment is a joke, since it will replenish us
 937			 * with exactly 0 ns.
 938			 */
 939			rt_rq->rt_time = 0;
 940		}
 941
 942		if (rt_rq_throttled(rt_rq)) {
 943			sched_rt_rq_dequeue(rt_rq);
 944			return 1;
 945		}
 946	}
 947
 948	return 0;
 949}
 950
 951/*
 952 * Update the current task's runtime statistics. Skip current tasks that
 953 * are not in our scheduling class.
 954 */
 955static void update_curr_rt(struct rq *rq)
 956{
 957	struct task_struct *curr = rq->curr;
 958	struct sched_rt_entity *rt_se = &curr->rt;
 959	u64 delta_exec;
 960	u64 now;
 961
 962	if (curr->sched_class != &rt_sched_class)
 963		return;
 964
 965	now = rq_clock_task(rq);
 966	delta_exec = now - curr->se.exec_start;
 967	if (unlikely((s64)delta_exec <= 0))
 968		return;
 969
 970	schedstat_set(curr->se.statistics.exec_max,
 971		      max(curr->se.statistics.exec_max, delta_exec));
 972
 973	curr->se.sum_exec_runtime += delta_exec;
 974	account_group_exec_runtime(curr, delta_exec);
 975
 976	curr->se.exec_start = now;
 977	cgroup_account_cputime(curr, delta_exec);
 978
 979	if (!rt_bandwidth_enabled())
 980		return;
 981
 982	for_each_sched_rt_entity(rt_se) {
 983		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 
 984
 985		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
 986			raw_spin_lock(&rt_rq->rt_runtime_lock);
 987			rt_rq->rt_time += delta_exec;
 988			if (sched_rt_runtime_exceeded(rt_rq))
 
 989				resched_curr(rq);
 990			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 
 
 991		}
 992	}
 993}
 994
 995static void
 996dequeue_top_rt_rq(struct rt_rq *rt_rq)
 997{
 998	struct rq *rq = rq_of_rt_rq(rt_rq);
 999
1000	BUG_ON(&rq->rt != rt_rq);
1001
1002	if (!rt_rq->rt_queued)
1003		return;
1004
1005	BUG_ON(!rq->nr_running);
1006
1007	sub_nr_running(rq, rt_rq->rt_nr_running);
1008	rt_rq->rt_queued = 0;
1009
1010}
1011
1012static void
1013enqueue_top_rt_rq(struct rt_rq *rt_rq)
1014{
1015	struct rq *rq = rq_of_rt_rq(rt_rq);
1016
1017	BUG_ON(&rq->rt != rt_rq);
1018
1019	if (rt_rq->rt_queued)
1020		return;
1021
1022	if (rt_rq_throttled(rt_rq))
1023		return;
1024
1025	if (rt_rq->rt_nr_running) {
1026		add_nr_running(rq, rt_rq->rt_nr_running);
1027		rt_rq->rt_queued = 1;
1028	}
1029
1030	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1031	cpufreq_update_util(rq, 0);
1032}
1033
1034#if defined CONFIG_SMP
1035
1036static void
1037inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1038{
1039	struct rq *rq = rq_of_rt_rq(rt_rq);
1040
1041#ifdef CONFIG_RT_GROUP_SCHED
1042	/*
1043	 * Change rq's cpupri only if rt_rq is the top queue.
1044	 */
1045	if (&rq->rt != rt_rq)
1046		return;
1047#endif
1048	if (rq->online && prio < prev_prio)
1049		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1050}
1051
1052static void
1053dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1054{
1055	struct rq *rq = rq_of_rt_rq(rt_rq);
1056
1057#ifdef CONFIG_RT_GROUP_SCHED
1058	/*
1059	 * Change rq's cpupri only if rt_rq is the top queue.
1060	 */
1061	if (&rq->rt != rt_rq)
1062		return;
1063#endif
1064	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1065		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1066}
1067
1068#else /* CONFIG_SMP */
1069
1070static inline
1071void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1072static inline
1073void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1074
1075#endif /* CONFIG_SMP */
1076
1077#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1078static void
1079inc_rt_prio(struct rt_rq *rt_rq, int prio)
1080{
1081	int prev_prio = rt_rq->highest_prio.curr;
1082
1083	if (prio < prev_prio)
1084		rt_rq->highest_prio.curr = prio;
1085
1086	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1087}
1088
1089static void
1090dec_rt_prio(struct rt_rq *rt_rq, int prio)
1091{
1092	int prev_prio = rt_rq->highest_prio.curr;
1093
1094	if (rt_rq->rt_nr_running) {
1095
1096		WARN_ON(prio < prev_prio);
1097
1098		/*
1099		 * This may have been our highest task, and therefore
1100		 * we may have some recomputation to do
1101		 */
1102		if (prio == prev_prio) {
1103			struct rt_prio_array *array = &rt_rq->active;
1104
1105			rt_rq->highest_prio.curr =
1106				sched_find_first_bit(array->bitmap);
1107		}
1108
1109	} else
1110		rt_rq->highest_prio.curr = MAX_RT_PRIO;
 
1111
1112	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1113}
1114
1115#else
1116
1117static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1118static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1119
1120#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1121
1122#ifdef CONFIG_RT_GROUP_SCHED
1123
1124static void
1125inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1126{
1127	if (rt_se_boosted(rt_se))
1128		rt_rq->rt_nr_boosted++;
1129
1130	if (rt_rq->tg)
1131		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1132}
1133
1134static void
1135dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1136{
1137	if (rt_se_boosted(rt_se))
1138		rt_rq->rt_nr_boosted--;
1139
1140	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1141}
1142
1143#else /* CONFIG_RT_GROUP_SCHED */
1144
1145static void
1146inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1147{
1148	start_rt_bandwidth(&def_rt_bandwidth);
1149}
1150
1151static inline
1152void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1153
1154#endif /* CONFIG_RT_GROUP_SCHED */
1155
1156static inline
1157unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1158{
1159	struct rt_rq *group_rq = group_rt_rq(rt_se);
1160
1161	if (group_rq)
1162		return group_rq->rt_nr_running;
1163	else
1164		return 1;
1165}
1166
1167static inline
1168unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1169{
1170	struct rt_rq *group_rq = group_rt_rq(rt_se);
1171	struct task_struct *tsk;
1172
1173	if (group_rq)
1174		return group_rq->rr_nr_running;
1175
1176	tsk = rt_task_of(rt_se);
1177
1178	return (tsk->policy == SCHED_RR) ? 1 : 0;
1179}
1180
1181static inline
1182void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1183{
1184	int prio = rt_se_prio(rt_se);
1185
1186	WARN_ON(!rt_prio(prio));
1187	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1188	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1189
1190	inc_rt_prio(rt_rq, prio);
1191	inc_rt_migration(rt_se, rt_rq);
1192	inc_rt_group(rt_se, rt_rq);
1193}
1194
1195static inline
1196void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1197{
1198	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1199	WARN_ON(!rt_rq->rt_nr_running);
1200	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1201	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1202
1203	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1204	dec_rt_migration(rt_se, rt_rq);
1205	dec_rt_group(rt_se, rt_rq);
1206}
1207
1208/*
1209 * Change rt_se->run_list location unless SAVE && !MOVE
1210 *
1211 * assumes ENQUEUE/DEQUEUE flags match
1212 */
1213static inline bool move_entity(unsigned int flags)
1214{
1215	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1216		return false;
1217
1218	return true;
1219}
1220
1221static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1222{
1223	list_del_init(&rt_se->run_list);
1224
1225	if (list_empty(array->queue + rt_se_prio(rt_se)))
1226		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1227
1228	rt_se->on_list = 0;
1229}
1230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1231static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1232{
1233	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1234	struct rt_prio_array *array = &rt_rq->active;
1235	struct rt_rq *group_rq = group_rt_rq(rt_se);
1236	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1237
1238	/*
1239	 * Don't enqueue the group if its throttled, or when empty.
1240	 * The latter is a consequence of the former when a child group
1241	 * get throttled and the current group doesn't have any other
1242	 * active members.
1243	 */
1244	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1245		if (rt_se->on_list)
1246			__delist_rt_entity(rt_se, array);
1247		return;
1248	}
1249
1250	if (move_entity(flags)) {
1251		WARN_ON_ONCE(rt_se->on_list);
1252		if (flags & ENQUEUE_HEAD)
1253			list_add(&rt_se->run_list, queue);
1254		else
1255			list_add_tail(&rt_se->run_list, queue);
1256
1257		__set_bit(rt_se_prio(rt_se), array->bitmap);
1258		rt_se->on_list = 1;
1259	}
1260	rt_se->on_rq = 1;
1261
1262	inc_rt_tasks(rt_se, rt_rq);
1263}
1264
1265static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1266{
1267	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1268	struct rt_prio_array *array = &rt_rq->active;
1269
1270	if (move_entity(flags)) {
1271		WARN_ON_ONCE(!rt_se->on_list);
1272		__delist_rt_entity(rt_se, array);
1273	}
1274	rt_se->on_rq = 0;
1275
1276	dec_rt_tasks(rt_se, rt_rq);
1277}
1278
1279/*
1280 * Because the prio of an upper entry depends on the lower
1281 * entries, we must remove entries top - down.
1282 */
1283static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1284{
1285	struct sched_rt_entity *back = NULL;
 
1286
1287	for_each_sched_rt_entity(rt_se) {
1288		rt_se->back = back;
1289		back = rt_se;
1290	}
1291
1292	dequeue_top_rt_rq(rt_rq_of_se(back));
1293
1294	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1295		if (on_rt_rq(rt_se))
1296			__dequeue_rt_entity(rt_se, flags);
1297	}
 
 
1298}
1299
1300static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1301{
1302	struct rq *rq = rq_of_rt_se(rt_se);
1303
 
 
1304	dequeue_rt_stack(rt_se, flags);
1305	for_each_sched_rt_entity(rt_se)
1306		__enqueue_rt_entity(rt_se, flags);
1307	enqueue_top_rt_rq(&rq->rt);
1308}
1309
1310static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1311{
1312	struct rq *rq = rq_of_rt_se(rt_se);
1313
 
 
1314	dequeue_rt_stack(rt_se, flags);
1315
1316	for_each_sched_rt_entity(rt_se) {
1317		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1318
1319		if (rt_rq && rt_rq->rt_nr_running)
1320			__enqueue_rt_entity(rt_se, flags);
1321	}
1322	enqueue_top_rt_rq(&rq->rt);
1323}
1324
1325/*
1326 * Adding/removing a task to/from a priority array:
1327 */
1328static void
1329enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1330{
1331	struct sched_rt_entity *rt_se = &p->rt;
1332
1333	if (flags & ENQUEUE_WAKEUP)
1334		rt_se->timeout = 0;
1335
 
 
 
1336	enqueue_rt_entity(rt_se, flags);
1337
1338	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1339		enqueue_pushable_task(rq, p);
1340}
1341
1342static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1343{
1344	struct sched_rt_entity *rt_se = &p->rt;
1345
1346	update_curr_rt(rq);
1347	dequeue_rt_entity(rt_se, flags);
1348
1349	dequeue_pushable_task(rq, p);
1350}
1351
1352/*
1353 * Put task to the head or the end of the run list without the overhead of
1354 * dequeue followed by enqueue.
1355 */
1356static void
1357requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1358{
1359	if (on_rt_rq(rt_se)) {
1360		struct rt_prio_array *array = &rt_rq->active;
1361		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1362
1363		if (head)
1364			list_move(&rt_se->run_list, queue);
1365		else
1366			list_move_tail(&rt_se->run_list, queue);
1367	}
1368}
1369
1370static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1371{
1372	struct sched_rt_entity *rt_se = &p->rt;
1373	struct rt_rq *rt_rq;
1374
1375	for_each_sched_rt_entity(rt_se) {
1376		rt_rq = rt_rq_of_se(rt_se);
1377		requeue_rt_entity(rt_rq, rt_se, head);
1378	}
1379}
1380
1381static void yield_task_rt(struct rq *rq)
1382{
1383	requeue_task_rt(rq, rq->curr, 0);
1384}
1385
1386#ifdef CONFIG_SMP
1387static int find_lowest_rq(struct task_struct *task);
1388
1389static int
1390select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1391{
1392	struct task_struct *curr;
1393	struct rq *rq;
 
1394
1395	/* For anything but wake ups, just return the task_cpu */
1396	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1397		goto out;
1398
1399	rq = cpu_rq(cpu);
1400
1401	rcu_read_lock();
1402	curr = READ_ONCE(rq->curr); /* unlocked access */
1403
1404	/*
1405	 * If the current task on @p's runqueue is an RT task, then
1406	 * try to see if we can wake this RT task up on another
1407	 * runqueue. Otherwise simply start this RT task
1408	 * on its current runqueue.
1409	 *
1410	 * We want to avoid overloading runqueues. If the woken
1411	 * task is a higher priority, then it will stay on this CPU
1412	 * and the lower prio task should be moved to another CPU.
1413	 * Even though this will probably make the lower prio task
1414	 * lose its cache, we do not want to bounce a higher task
1415	 * around just because it gave up its CPU, perhaps for a
1416	 * lock?
1417	 *
1418	 * For equal prio tasks, we just let the scheduler sort it out.
1419	 *
1420	 * Otherwise, just let it ride on the affined RQ and the
1421	 * post-schedule router will push the preempted task away
1422	 *
1423	 * This test is optimistic, if we get it wrong the load-balancer
1424	 * will have to sort it out.
1425	 */
1426	if (curr && unlikely(rt_task(curr)) &&
1427	    (curr->nr_cpus_allowed < 2 ||
1428	     curr->prio <= p->prio)) {
 
 
 
 
 
 
1429		int target = find_lowest_rq(p);
1430
1431		/*
 
 
 
 
 
 
 
1432		 * Don't bother moving it if the destination CPU is
1433		 * not running a lower priority task.
1434		 */
1435		if (target != -1 &&
1436		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1437			cpu = target;
1438	}
 
 
1439	rcu_read_unlock();
1440
1441out:
1442	return cpu;
1443}
1444
1445static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1446{
1447	/*
1448	 * Current can't be migrated, useless to reschedule,
1449	 * let's hope p can move out.
1450	 */
1451	if (rq->curr->nr_cpus_allowed == 1 ||
1452	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1453		return;
1454
1455	/*
1456	 * p is migratable, so let's not schedule it and
1457	 * see if it is pushed or pulled somewhere else.
1458	 */
1459	if (p->nr_cpus_allowed != 1
1460	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1461		return;
1462
1463	/*
1464	 * There appear to be other CPUs that can accept
1465	 * the current task but none can run 'p', so lets reschedule
1466	 * to try and push the current task away:
1467	 */
1468	requeue_task_rt(rq, p, 1);
1469	resched_curr(rq);
1470}
1471
1472static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1473{
1474	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1475		/*
1476		 * This is OK, because current is on_cpu, which avoids it being
1477		 * picked for load-balance and preemption/IRQs are still
1478		 * disabled avoiding further scheduler activity on it and we've
1479		 * not yet started the picking loop.
1480		 */
1481		rq_unpin_lock(rq, rf);
1482		pull_rt_task(rq);
1483		rq_repin_lock(rq, rf);
1484	}
1485
1486	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1487}
1488#endif /* CONFIG_SMP */
1489
1490/*
1491 * Preempt the current task with a newly woken task if needed:
1492 */
1493static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1494{
1495	if (p->prio < rq->curr->prio) {
1496		resched_curr(rq);
1497		return;
1498	}
1499
1500#ifdef CONFIG_SMP
1501	/*
1502	 * If:
1503	 *
1504	 * - the newly woken task is of equal priority to the current task
1505	 * - the newly woken task is non-migratable while current is migratable
1506	 * - current will be preempted on the next reschedule
1507	 *
1508	 * we should check to see if current can readily move to a different
1509	 * cpu.  If so, we will reschedule to allow the push logic to try
1510	 * to move current somewhere else, making room for our non-migratable
1511	 * task.
1512	 */
1513	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1514		check_preempt_equal_prio(rq, p);
1515#endif
1516}
1517
1518static inline void set_next_task_rt(struct rq *rq, struct task_struct *p)
1519{
 
 
 
1520	p->se.exec_start = rq_clock_task(rq);
 
 
1521
1522	/* The running task is never eligible for pushing */
1523	dequeue_pushable_task(rq, p);
1524
 
 
 
1525	/*
1526	 * If prev task was rt, put_prev_task() has already updated the
1527	 * utilization. We only care of the case where we start to schedule a
1528	 * rt task
1529	 */
1530	if (rq->curr->sched_class != &rt_sched_class)
1531		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1532
1533	rt_queue_push_tasks(rq);
1534}
1535
1536static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1537						   struct rt_rq *rt_rq)
1538{
1539	struct rt_prio_array *array = &rt_rq->active;
1540	struct sched_rt_entity *next = NULL;
1541	struct list_head *queue;
1542	int idx;
1543
1544	idx = sched_find_first_bit(array->bitmap);
1545	BUG_ON(idx >= MAX_RT_PRIO);
1546
1547	queue = array->queue + idx;
 
 
1548	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1549
1550	return next;
1551}
1552
1553static struct task_struct *_pick_next_task_rt(struct rq *rq)
1554{
1555	struct sched_rt_entity *rt_se;
1556	struct rt_rq *rt_rq  = &rq->rt;
1557
1558	do {
1559		rt_se = pick_next_rt_entity(rq, rt_rq);
1560		BUG_ON(!rt_se);
 
1561		rt_rq = group_rt_rq(rt_se);
1562	} while (rt_rq);
1563
1564	return rt_task_of(rt_se);
1565}
1566
1567static struct task_struct *
1568pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1569{
1570	struct task_struct *p;
1571
1572	WARN_ON_ONCE(prev || rf);
1573
1574	if (!sched_rt_runnable(rq))
1575		return NULL;
1576
1577	p = _pick_next_task_rt(rq);
1578	set_next_task_rt(rq, p);
 
 
 
 
 
 
 
 
 
 
1579	return p;
1580}
1581
1582static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1583{
 
 
 
 
 
 
1584	update_curr_rt(rq);
1585
1586	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1587
1588	/*
1589	 * The previous task needs to be made eligible for pushing
1590	 * if it is still active
1591	 */
1592	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1593		enqueue_pushable_task(rq, p);
1594}
1595
1596#ifdef CONFIG_SMP
1597
1598/* Only try algorithms three times */
1599#define RT_MAX_TRIES 3
1600
1601static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1602{
1603	if (!task_running(rq, p) &&
1604	    cpumask_test_cpu(cpu, p->cpus_ptr))
1605		return 1;
1606
1607	return 0;
1608}
1609
1610/*
1611 * Return the highest pushable rq's task, which is suitable to be executed
1612 * on the CPU, NULL otherwise
1613 */
1614static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1615{
1616	struct plist_head *head = &rq->rt.pushable_tasks;
1617	struct task_struct *p;
1618
1619	if (!has_pushable_tasks(rq))
1620		return NULL;
1621
1622	plist_for_each_entry(p, head, pushable_tasks) {
1623		if (pick_rt_task(rq, p, cpu))
1624			return p;
1625	}
1626
1627	return NULL;
1628}
1629
1630static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1631
1632static int find_lowest_rq(struct task_struct *task)
1633{
1634	struct sched_domain *sd;
1635	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1636	int this_cpu = smp_processor_id();
1637	int cpu      = task_cpu(task);
 
1638
1639	/* Make sure the mask is initialized first */
1640	if (unlikely(!lowest_mask))
1641		return -1;
1642
1643	if (task->nr_cpus_allowed == 1)
1644		return -1; /* No other targets possible */
1645
1646	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1647		return -1; /* No targets found */
1648
1649	/*
1650	 * At this point we have built a mask of CPUs representing the
1651	 * lowest priority tasks in the system.  Now we want to elect
1652	 * the best one based on our affinity and topology.
1653	 *
1654	 * We prioritize the last CPU that the task executed on since
1655	 * it is most likely cache-hot in that location.
1656	 */
1657	if (cpumask_test_cpu(cpu, lowest_mask))
1658		return cpu;
1659
1660	/*
1661	 * Otherwise, we consult the sched_domains span maps to figure
1662	 * out which CPU is logically closest to our hot cache data.
1663	 */
1664	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1665		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1666
1667	rcu_read_lock();
1668	for_each_domain(cpu, sd) {
1669		if (sd->flags & SD_WAKE_AFFINE) {
1670			int best_cpu;
1671
1672			/*
1673			 * "this_cpu" is cheaper to preempt than a
1674			 * remote processor.
1675			 */
1676			if (this_cpu != -1 &&
1677			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1678				rcu_read_unlock();
1679				return this_cpu;
1680			}
1681
1682			best_cpu = cpumask_first_and(lowest_mask,
1683						     sched_domain_span(sd));
1684			if (best_cpu < nr_cpu_ids) {
1685				rcu_read_unlock();
1686				return best_cpu;
1687			}
1688		}
1689	}
1690	rcu_read_unlock();
1691
1692	/*
1693	 * And finally, if there were no matches within the domains
1694	 * just give the caller *something* to work with from the compatible
1695	 * locations.
1696	 */
1697	if (this_cpu != -1)
1698		return this_cpu;
1699
1700	cpu = cpumask_any(lowest_mask);
1701	if (cpu < nr_cpu_ids)
1702		return cpu;
1703
1704	return -1;
1705}
1706
1707/* Will lock the rq it finds */
1708static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1709{
1710	struct rq *lowest_rq = NULL;
1711	int tries;
1712	int cpu;
1713
1714	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1715		cpu = find_lowest_rq(task);
1716
1717		if ((cpu == -1) || (cpu == rq->cpu))
1718			break;
1719
1720		lowest_rq = cpu_rq(cpu);
1721
1722		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1723			/*
1724			 * Target rq has tasks of equal or higher priority,
1725			 * retrying does not release any lock and is unlikely
1726			 * to yield a different result.
1727			 */
1728			lowest_rq = NULL;
1729			break;
1730		}
1731
1732		/* if the prio of this runqueue changed, try again */
1733		if (double_lock_balance(rq, lowest_rq)) {
1734			/*
1735			 * We had to unlock the run queue. In
1736			 * the mean time, task could have
1737			 * migrated already or had its affinity changed.
1738			 * Also make sure that it wasn't scheduled on its rq.
 
 
 
1739			 */
1740			if (unlikely(task_rq(task) != rq ||
1741				     !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1742				     task_running(rq, task) ||
1743				     !rt_task(task) ||
 
1744				     !task_on_rq_queued(task))) {
1745
1746				double_unlock_balance(rq, lowest_rq);
1747				lowest_rq = NULL;
1748				break;
1749			}
1750		}
1751
1752		/* If this rq is still suitable use it. */
1753		if (lowest_rq->rt.highest_prio.curr > task->prio)
1754			break;
1755
1756		/* try again */
1757		double_unlock_balance(rq, lowest_rq);
1758		lowest_rq = NULL;
1759	}
1760
1761	return lowest_rq;
1762}
1763
1764static struct task_struct *pick_next_pushable_task(struct rq *rq)
1765{
1766	struct task_struct *p;
1767
1768	if (!has_pushable_tasks(rq))
1769		return NULL;
1770
1771	p = plist_first_entry(&rq->rt.pushable_tasks,
1772			      struct task_struct, pushable_tasks);
1773
1774	BUG_ON(rq->cpu != task_cpu(p));
1775	BUG_ON(task_current(rq, p));
1776	BUG_ON(p->nr_cpus_allowed <= 1);
1777
1778	BUG_ON(!task_on_rq_queued(p));
1779	BUG_ON(!rt_task(p));
1780
1781	return p;
1782}
1783
1784/*
1785 * If the current CPU has more than one RT task, see if the non
1786 * running task can migrate over to a CPU that is running a task
1787 * of lesser priority.
1788 */
1789static int push_rt_task(struct rq *rq)
1790{
1791	struct task_struct *next_task;
1792	struct rq *lowest_rq;
1793	int ret = 0;
1794
1795	if (!rq->rt.overloaded)
1796		return 0;
1797
1798	next_task = pick_next_pushable_task(rq);
1799	if (!next_task)
1800		return 0;
1801
1802retry:
1803	if (WARN_ON(next_task == rq->curr))
1804		return 0;
1805
1806	/*
1807	 * It's possible that the next_task slipped in of
1808	 * higher priority than current. If that's the case
1809	 * just reschedule current.
1810	 */
1811	if (unlikely(next_task->prio < rq->curr->prio)) {
1812		resched_curr(rq);
1813		return 0;
1814	}
1815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1816	/* We might release rq lock */
1817	get_task_struct(next_task);
1818
1819	/* find_lock_lowest_rq locks the rq if found */
1820	lowest_rq = find_lock_lowest_rq(next_task, rq);
1821	if (!lowest_rq) {
1822		struct task_struct *task;
1823		/*
1824		 * find_lock_lowest_rq releases rq->lock
1825		 * so it is possible that next_task has migrated.
1826		 *
1827		 * We need to make sure that the task is still on the same
1828		 * run-queue and is also still the next task eligible for
1829		 * pushing.
1830		 */
1831		task = pick_next_pushable_task(rq);
1832		if (task == next_task) {
1833			/*
1834			 * The task hasn't migrated, and is still the next
1835			 * eligible task, but we failed to find a run-queue
1836			 * to push it to.  Do not retry in this case, since
1837			 * other CPUs will pull from us when ready.
1838			 */
1839			goto out;
1840		}
1841
1842		if (!task)
1843			/* No more tasks, just exit */
1844			goto out;
1845
1846		/*
1847		 * Something has shifted, try again.
1848		 */
1849		put_task_struct(next_task);
1850		next_task = task;
1851		goto retry;
1852	}
1853
1854	deactivate_task(rq, next_task, 0);
1855	set_task_cpu(next_task, lowest_rq->cpu);
1856	activate_task(lowest_rq, next_task, 0);
1857	ret = 1;
1858
1859	resched_curr(lowest_rq);
 
1860
1861	double_unlock_balance(rq, lowest_rq);
1862
1863out:
1864	put_task_struct(next_task);
1865
1866	return ret;
1867}
1868
1869static void push_rt_tasks(struct rq *rq)
1870{
1871	/* push_rt_task will return true if it moved an RT */
1872	while (push_rt_task(rq))
1873		;
1874}
1875
1876#ifdef HAVE_RT_PUSH_IPI
1877
1878/*
1879 * When a high priority task schedules out from a CPU and a lower priority
1880 * task is scheduled in, a check is made to see if there's any RT tasks
1881 * on other CPUs that are waiting to run because a higher priority RT task
1882 * is currently running on its CPU. In this case, the CPU with multiple RT
1883 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1884 * up that may be able to run one of its non-running queued RT tasks.
1885 *
1886 * All CPUs with overloaded RT tasks need to be notified as there is currently
1887 * no way to know which of these CPUs have the highest priority task waiting
1888 * to run. Instead of trying to take a spinlock on each of these CPUs,
1889 * which has shown to cause large latency when done on machines with many
1890 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1891 * RT tasks waiting to run.
1892 *
1893 * Just sending an IPI to each of the CPUs is also an issue, as on large
1894 * count CPU machines, this can cause an IPI storm on a CPU, especially
1895 * if its the only CPU with multiple RT tasks queued, and a large number
1896 * of CPUs scheduling a lower priority task at the same time.
1897 *
1898 * Each root domain has its own irq work function that can iterate over
1899 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1900 * tassk must be checked if there's one or many CPUs that are lowering
1901 * their priority, there's a single irq work iterator that will try to
1902 * push off RT tasks that are waiting to run.
1903 *
1904 * When a CPU schedules a lower priority task, it will kick off the
1905 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1906 * As it only takes the first CPU that schedules a lower priority task
1907 * to start the process, the rto_start variable is incremented and if
1908 * the atomic result is one, then that CPU will try to take the rto_lock.
1909 * This prevents high contention on the lock as the process handles all
1910 * CPUs scheduling lower priority tasks.
1911 *
1912 * All CPUs that are scheduling a lower priority task will increment the
1913 * rt_loop_next variable. This will make sure that the irq work iterator
1914 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1915 * priority task, even if the iterator is in the middle of a scan. Incrementing
1916 * the rt_loop_next will cause the iterator to perform another scan.
1917 *
1918 */
1919static int rto_next_cpu(struct root_domain *rd)
1920{
1921	int next;
1922	int cpu;
1923
1924	/*
1925	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1926	 * rt_next_cpu() will simply return the first CPU found in
1927	 * the rto_mask.
1928	 *
1929	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1930	 * will return the next CPU found in the rto_mask.
1931	 *
1932	 * If there are no more CPUs left in the rto_mask, then a check is made
1933	 * against rto_loop and rto_loop_next. rto_loop is only updated with
1934	 * the rto_lock held, but any CPU may increment the rto_loop_next
1935	 * without any locking.
1936	 */
1937	for (;;) {
1938
1939		/* When rto_cpu is -1 this acts like cpumask_first() */
1940		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1941
1942		rd->rto_cpu = cpu;
1943
1944		if (cpu < nr_cpu_ids)
1945			return cpu;
1946
1947		rd->rto_cpu = -1;
1948
1949		/*
1950		 * ACQUIRE ensures we see the @rto_mask changes
1951		 * made prior to the @next value observed.
1952		 *
1953		 * Matches WMB in rt_set_overload().
1954		 */
1955		next = atomic_read_acquire(&rd->rto_loop_next);
1956
1957		if (rd->rto_loop == next)
1958			break;
1959
1960		rd->rto_loop = next;
1961	}
1962
1963	return -1;
1964}
1965
1966static inline bool rto_start_trylock(atomic_t *v)
1967{
1968	return !atomic_cmpxchg_acquire(v, 0, 1);
1969}
1970
1971static inline void rto_start_unlock(atomic_t *v)
1972{
1973	atomic_set_release(v, 0);
1974}
1975
1976static void tell_cpu_to_push(struct rq *rq)
1977{
1978	int cpu = -1;
1979
1980	/* Keep the loop going if the IPI is currently active */
1981	atomic_inc(&rq->rd->rto_loop_next);
1982
1983	/* Only one CPU can initiate a loop at a time */
1984	if (!rto_start_trylock(&rq->rd->rto_loop_start))
1985		return;
1986
1987	raw_spin_lock(&rq->rd->rto_lock);
1988
1989	/*
1990	 * The rto_cpu is updated under the lock, if it has a valid CPU
1991	 * then the IPI is still running and will continue due to the
1992	 * update to loop_next, and nothing needs to be done here.
1993	 * Otherwise it is finishing up and an ipi needs to be sent.
1994	 */
1995	if (rq->rd->rto_cpu < 0)
1996		cpu = rto_next_cpu(rq->rd);
1997
1998	raw_spin_unlock(&rq->rd->rto_lock);
1999
2000	rto_start_unlock(&rq->rd->rto_loop_start);
2001
2002	if (cpu >= 0) {
2003		/* Make sure the rd does not get freed while pushing */
2004		sched_get_rd(rq->rd);
2005		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2006	}
2007}
2008
2009/* Called from hardirq context */
2010void rto_push_irq_work_func(struct irq_work *work)
2011{
2012	struct root_domain *rd =
2013		container_of(work, struct root_domain, rto_push_work);
2014	struct rq *rq;
2015	int cpu;
2016
2017	rq = this_rq();
2018
2019	/*
2020	 * We do not need to grab the lock to check for has_pushable_tasks.
2021	 * When it gets updated, a check is made if a push is possible.
2022	 */
2023	if (has_pushable_tasks(rq)) {
2024		raw_spin_lock(&rq->lock);
2025		push_rt_tasks(rq);
2026		raw_spin_unlock(&rq->lock);
 
2027	}
2028
2029	raw_spin_lock(&rd->rto_lock);
2030
2031	/* Pass the IPI to the next rt overloaded queue */
2032	cpu = rto_next_cpu(rd);
2033
2034	raw_spin_unlock(&rd->rto_lock);
2035
2036	if (cpu < 0) {
2037		sched_put_rd(rd);
2038		return;
2039	}
2040
2041	/* Try the next RT overloaded CPU */
2042	irq_work_queue_on(&rd->rto_push_work, cpu);
2043}
2044#endif /* HAVE_RT_PUSH_IPI */
2045
2046static void pull_rt_task(struct rq *this_rq)
2047{
2048	int this_cpu = this_rq->cpu, cpu;
2049	bool resched = false;
2050	struct task_struct *p;
2051	struct rq *src_rq;
2052	int rt_overload_count = rt_overloaded(this_rq);
2053
2054	if (likely(!rt_overload_count))
2055		return;
2056
2057	/*
2058	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2059	 * see overloaded we must also see the rto_mask bit.
2060	 */
2061	smp_rmb();
2062
2063	/* If we are the only overloaded CPU do nothing */
2064	if (rt_overload_count == 1 &&
2065	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2066		return;
2067
2068#ifdef HAVE_RT_PUSH_IPI
2069	if (sched_feat(RT_PUSH_IPI)) {
2070		tell_cpu_to_push(this_rq);
2071		return;
2072	}
2073#endif
2074
2075	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2076		if (this_cpu == cpu)
2077			continue;
2078
2079		src_rq = cpu_rq(cpu);
2080
2081		/*
2082		 * Don't bother taking the src_rq->lock if the next highest
2083		 * task is known to be lower-priority than our current task.
2084		 * This may look racy, but if this value is about to go
2085		 * logically higher, the src_rq will push this task away.
2086		 * And if its going logically lower, we do not care
2087		 */
2088		if (src_rq->rt.highest_prio.next >=
2089		    this_rq->rt.highest_prio.curr)
2090			continue;
2091
2092		/*
2093		 * We can potentially drop this_rq's lock in
2094		 * double_lock_balance, and another CPU could
2095		 * alter this_rq
2096		 */
 
2097		double_lock_balance(this_rq, src_rq);
2098
2099		/*
2100		 * We can pull only a task, which is pushable
2101		 * on its rq, and no others.
2102		 */
2103		p = pick_highest_pushable_task(src_rq, this_cpu);
2104
2105		/*
2106		 * Do we have an RT task that preempts
2107		 * the to-be-scheduled task?
2108		 */
2109		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2110			WARN_ON(p == src_rq->curr);
2111			WARN_ON(!task_on_rq_queued(p));
2112
2113			/*
2114			 * There's a chance that p is higher in priority
2115			 * than what's currently running on its CPU.
2116			 * This is just that p is wakeing up and hasn't
2117			 * had a chance to schedule. We only pull
2118			 * p if it is lower in priority than the
2119			 * current task on the run queue
2120			 */
2121			if (p->prio < src_rq->curr->prio)
2122				goto skip;
2123
2124			resched = true;
2125
2126			deactivate_task(src_rq, p, 0);
2127			set_task_cpu(p, this_cpu);
2128			activate_task(this_rq, p, 0);
 
 
 
2129			/*
2130			 * We continue with the search, just in
2131			 * case there's an even higher prio task
2132			 * in another runqueue. (low likelihood
2133			 * but possible)
2134			 */
2135		}
2136skip:
2137		double_unlock_balance(this_rq, src_rq);
 
 
 
 
 
 
 
 
 
2138	}
2139
2140	if (resched)
2141		resched_curr(this_rq);
2142}
2143
2144/*
2145 * If we are not running and we are not going to reschedule soon, we should
2146 * try to push tasks away now
2147 */
2148static void task_woken_rt(struct rq *rq, struct task_struct *p)
2149{
2150	if (!task_running(rq, p) &&
2151	    !test_tsk_need_resched(rq->curr) &&
2152	    p->nr_cpus_allowed > 1 &&
2153	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2154	    (rq->curr->nr_cpus_allowed < 2 ||
2155	     rq->curr->prio <= p->prio))
 
 
2156		push_rt_tasks(rq);
2157}
2158
2159/* Assumes rq->lock is held */
2160static void rq_online_rt(struct rq *rq)
2161{
2162	if (rq->rt.overloaded)
2163		rt_set_overload(rq);
2164
2165	__enable_runtime(rq);
2166
2167	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2168}
2169
2170/* Assumes rq->lock is held */
2171static void rq_offline_rt(struct rq *rq)
2172{
2173	if (rq->rt.overloaded)
2174		rt_clear_overload(rq);
2175
2176	__disable_runtime(rq);
2177
2178	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2179}
2180
2181/*
2182 * When switch from the rt queue, we bring ourselves to a position
2183 * that we might want to pull RT tasks from other runqueues.
2184 */
2185static void switched_from_rt(struct rq *rq, struct task_struct *p)
2186{
2187	/*
2188	 * If there are other RT tasks then we will reschedule
2189	 * and the scheduling of the other RT tasks will handle
2190	 * the balancing. But if we are the last RT task
2191	 * we may need to handle the pulling of RT tasks
2192	 * now.
2193	 */
2194	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2195		return;
2196
2197	rt_queue_pull_task(rq);
2198}
2199
2200void __init init_sched_rt_class(void)
2201{
2202	unsigned int i;
2203
2204	for_each_possible_cpu(i) {
2205		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2206					GFP_KERNEL, cpu_to_node(i));
2207	}
2208}
2209#endif /* CONFIG_SMP */
2210
2211/*
2212 * When switching a task to RT, we may overload the runqueue
2213 * with RT tasks. In this case we try to push them off to
2214 * other runqueues.
2215 */
2216static void switched_to_rt(struct rq *rq, struct task_struct *p)
2217{
2218	/*
2219	 * If we are already running, then there's nothing
2220	 * that needs to be done. But if we are not running
2221	 * we may need to preempt the current running task.
2222	 * If that current running task is also an RT task
 
 
 
 
 
 
 
2223	 * then see if we can move to another run queue.
2224	 */
2225	if (task_on_rq_queued(p) && rq->curr != p) {
2226#ifdef CONFIG_SMP
2227		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2228			rt_queue_push_tasks(rq);
2229#endif /* CONFIG_SMP */
2230		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2231			resched_curr(rq);
2232	}
2233}
2234
2235/*
2236 * Priority of the task has changed. This may cause
2237 * us to initiate a push or pull.
2238 */
2239static void
2240prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2241{
2242	if (!task_on_rq_queued(p))
2243		return;
2244
2245	if (rq->curr == p) {
2246#ifdef CONFIG_SMP
2247		/*
2248		 * If our priority decreases while running, we
2249		 * may need to pull tasks to this runqueue.
2250		 */
2251		if (oldprio < p->prio)
2252			rt_queue_pull_task(rq);
2253
2254		/*
2255		 * If there's a higher priority task waiting to run
2256		 * then reschedule.
2257		 */
2258		if (p->prio > rq->rt.highest_prio.curr)
2259			resched_curr(rq);
2260#else
2261		/* For UP simply resched on drop of prio */
2262		if (oldprio < p->prio)
2263			resched_curr(rq);
2264#endif /* CONFIG_SMP */
2265	} else {
2266		/*
2267		 * This task is not running, but if it is
2268		 * greater than the current running task
2269		 * then reschedule.
2270		 */
2271		if (p->prio < rq->curr->prio)
2272			resched_curr(rq);
2273	}
2274}
2275
2276#ifdef CONFIG_POSIX_TIMERS
2277static void watchdog(struct rq *rq, struct task_struct *p)
2278{
2279	unsigned long soft, hard;
2280
2281	/* max may change after cur was read, this will be fixed next tick */
2282	soft = task_rlimit(p, RLIMIT_RTTIME);
2283	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2284
2285	if (soft != RLIM_INFINITY) {
2286		unsigned long next;
2287
2288		if (p->rt.watchdog_stamp != jiffies) {
2289			p->rt.timeout++;
2290			p->rt.watchdog_stamp = jiffies;
2291		}
2292
2293		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2294		if (p->rt.timeout > next) {
2295			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2296						    p->se.sum_exec_runtime);
2297		}
2298	}
2299}
2300#else
2301static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2302#endif
2303
2304/*
2305 * scheduler tick hitting a task of our scheduling class.
2306 *
2307 * NOTE: This function can be called remotely by the tick offload that
2308 * goes along full dynticks. Therefore no local assumption can be made
2309 * and everything must be accessed through the @rq and @curr passed in
2310 * parameters.
2311 */
2312static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2313{
2314	struct sched_rt_entity *rt_se = &p->rt;
2315
2316	update_curr_rt(rq);
2317	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2318
2319	watchdog(rq, p);
2320
2321	/*
2322	 * RR tasks need a special form of timeslice management.
2323	 * FIFO tasks have no timeslices.
2324	 */
2325	if (p->policy != SCHED_RR)
2326		return;
2327
2328	if (--p->rt.time_slice)
2329		return;
2330
2331	p->rt.time_slice = sched_rr_timeslice;
2332
2333	/*
2334	 * Requeue to the end of queue if we (and all of our ancestors) are not
2335	 * the only element on the queue
2336	 */
2337	for_each_sched_rt_entity(rt_se) {
2338		if (rt_se->run_list.prev != rt_se->run_list.next) {
2339			requeue_task_rt(rq, p, 0);
2340			resched_curr(rq);
2341			return;
2342		}
2343	}
2344}
2345
2346static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2347{
2348	/*
2349	 * Time slice is 0 for SCHED_FIFO tasks
2350	 */
2351	if (task->policy == SCHED_RR)
2352		return sched_rr_timeslice;
2353	else
2354		return 0;
2355}
2356
2357const struct sched_class rt_sched_class = {
2358	.next			= &fair_sched_class,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2359	.enqueue_task		= enqueue_task_rt,
2360	.dequeue_task		= dequeue_task_rt,
2361	.yield_task		= yield_task_rt,
2362
2363	.check_preempt_curr	= check_preempt_curr_rt,
2364
2365	.pick_next_task		= pick_next_task_rt,
2366	.put_prev_task		= put_prev_task_rt,
2367	.set_next_task          = set_next_task_rt,
2368
2369#ifdef CONFIG_SMP
2370	.balance		= balance_rt,
 
2371	.select_task_rq		= select_task_rq_rt,
2372	.set_cpus_allowed       = set_cpus_allowed_common,
2373	.rq_online              = rq_online_rt,
2374	.rq_offline             = rq_offline_rt,
2375	.task_woken		= task_woken_rt,
2376	.switched_from		= switched_from_rt,
 
2377#endif
2378
2379	.task_tick		= task_tick_rt,
2380
2381	.get_rr_interval	= get_rr_interval_rt,
2382
2383	.prio_changed		= prio_changed_rt,
2384	.switched_to		= switched_to_rt,
2385
2386	.update_curr		= update_curr_rt,
2387
 
 
 
 
2388#ifdef CONFIG_UCLAMP_TASK
2389	.uclamp_enabled		= 1,
2390#endif
2391};
2392
2393#ifdef CONFIG_RT_GROUP_SCHED
2394/*
2395 * Ensure that the real time constraints are schedulable.
2396 */
2397static DEFINE_MUTEX(rt_constraints_mutex);
2398
2399/* Must be called with tasklist_lock held */
2400static inline int tg_has_rt_tasks(struct task_group *tg)
2401{
2402	struct task_struct *g, *p;
 
 
2403
2404	/*
2405	 * Autogroups do not have RT tasks; see autogroup_create().
2406	 */
2407	if (task_group_is_autogroup(tg))
2408		return 0;
2409
2410	for_each_process_thread(g, p) {
2411		if (rt_task(p) && task_group(p) == tg)
2412			return 1;
2413	}
2414
2415	return 0;
2416}
2417
2418struct rt_schedulable_data {
2419	struct task_group *tg;
2420	u64 rt_period;
2421	u64 rt_runtime;
2422};
2423
2424static int tg_rt_schedulable(struct task_group *tg, void *data)
2425{
2426	struct rt_schedulable_data *d = data;
2427	struct task_group *child;
2428	unsigned long total, sum = 0;
2429	u64 period, runtime;
2430
2431	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2432	runtime = tg->rt_bandwidth.rt_runtime;
2433
2434	if (tg == d->tg) {
2435		period = d->rt_period;
2436		runtime = d->rt_runtime;
2437	}
2438
2439	/*
2440	 * Cannot have more runtime than the period.
2441	 */
2442	if (runtime > period && runtime != RUNTIME_INF)
2443		return -EINVAL;
2444
2445	/*
2446	 * Ensure we don't starve existing RT tasks.
2447	 */
2448	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
 
2449		return -EBUSY;
2450
2451	total = to_ratio(period, runtime);
2452
2453	/*
2454	 * Nobody can have more than the global setting allows.
2455	 */
2456	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2457		return -EINVAL;
2458
2459	/*
2460	 * The sum of our children's runtime should not exceed our own.
2461	 */
2462	list_for_each_entry_rcu(child, &tg->children, siblings) {
2463		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2464		runtime = child->rt_bandwidth.rt_runtime;
2465
2466		if (child == d->tg) {
2467			period = d->rt_period;
2468			runtime = d->rt_runtime;
2469		}
2470
2471		sum += to_ratio(period, runtime);
2472	}
2473
2474	if (sum > total)
2475		return -EINVAL;
2476
2477	return 0;
2478}
2479
2480static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2481{
2482	int ret;
2483
2484	struct rt_schedulable_data data = {
2485		.tg = tg,
2486		.rt_period = period,
2487		.rt_runtime = runtime,
2488	};
2489
2490	rcu_read_lock();
2491	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2492	rcu_read_unlock();
2493
2494	return ret;
2495}
2496
2497static int tg_set_rt_bandwidth(struct task_group *tg,
2498		u64 rt_period, u64 rt_runtime)
2499{
2500	int i, err = 0;
2501
2502	/*
2503	 * Disallowing the root group RT runtime is BAD, it would disallow the
2504	 * kernel creating (and or operating) RT threads.
2505	 */
2506	if (tg == &root_task_group && rt_runtime == 0)
2507		return -EINVAL;
2508
2509	/* No period doesn't make any sense. */
2510	if (rt_period == 0)
2511		return -EINVAL;
2512
 
 
 
 
 
 
2513	mutex_lock(&rt_constraints_mutex);
2514	read_lock(&tasklist_lock);
2515	err = __rt_schedulable(tg, rt_period, rt_runtime);
2516	if (err)
2517		goto unlock;
2518
2519	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2520	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2521	tg->rt_bandwidth.rt_runtime = rt_runtime;
2522
2523	for_each_possible_cpu(i) {
2524		struct rt_rq *rt_rq = tg->rt_rq[i];
2525
2526		raw_spin_lock(&rt_rq->rt_runtime_lock);
2527		rt_rq->rt_runtime = rt_runtime;
2528		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2529	}
2530	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2531unlock:
2532	read_unlock(&tasklist_lock);
2533	mutex_unlock(&rt_constraints_mutex);
2534
2535	return err;
2536}
2537
2538int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2539{
2540	u64 rt_runtime, rt_period;
2541
2542	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2543	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2544	if (rt_runtime_us < 0)
2545		rt_runtime = RUNTIME_INF;
2546	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2547		return -EINVAL;
2548
2549	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2550}
2551
2552long sched_group_rt_runtime(struct task_group *tg)
2553{
2554	u64 rt_runtime_us;
2555
2556	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2557		return -1;
2558
2559	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2560	do_div(rt_runtime_us, NSEC_PER_USEC);
2561	return rt_runtime_us;
2562}
2563
2564int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2565{
2566	u64 rt_runtime, rt_period;
2567
2568	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2569		return -EINVAL;
2570
2571	rt_period = rt_period_us * NSEC_PER_USEC;
2572	rt_runtime = tg->rt_bandwidth.rt_runtime;
2573
2574	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2575}
2576
2577long sched_group_rt_period(struct task_group *tg)
2578{
2579	u64 rt_period_us;
2580
2581	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2582	do_div(rt_period_us, NSEC_PER_USEC);
2583	return rt_period_us;
2584}
2585
 
2586static int sched_rt_global_constraints(void)
2587{
2588	int ret = 0;
2589
2590	mutex_lock(&rt_constraints_mutex);
2591	read_lock(&tasklist_lock);
2592	ret = __rt_schedulable(NULL, 0, 0);
2593	read_unlock(&tasklist_lock);
2594	mutex_unlock(&rt_constraints_mutex);
2595
2596	return ret;
2597}
 
2598
2599int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2600{
2601	/* Don't accept realtime tasks when there is no way for them to run */
2602	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2603		return 0;
2604
2605	return 1;
2606}
2607
2608#else /* !CONFIG_RT_GROUP_SCHED */
 
 
2609static int sched_rt_global_constraints(void)
2610{
2611	unsigned long flags;
2612	int i;
2613
2614	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2615	for_each_possible_cpu(i) {
2616		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2617
2618		raw_spin_lock(&rt_rq->rt_runtime_lock);
2619		rt_rq->rt_runtime = global_rt_runtime();
2620		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2621	}
2622	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2623
2624	return 0;
2625}
 
2626#endif /* CONFIG_RT_GROUP_SCHED */
2627
 
2628static int sched_rt_global_validate(void)
2629{
2630	if (sysctl_sched_rt_period <= 0)
2631		return -EINVAL;
2632
2633	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2634		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
 
 
2635		return -EINVAL;
2636
2637	return 0;
2638}
2639
2640static void sched_rt_do_global(void)
2641{
 
 
 
2642	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2643	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
 
2644}
2645
2646int sched_rt_handler(struct ctl_table *table, int write,
2647		void __user *buffer, size_t *lenp,
2648		loff_t *ppos)
2649{
2650	int old_period, old_runtime;
2651	static DEFINE_MUTEX(mutex);
2652	int ret;
2653
2654	mutex_lock(&mutex);
2655	old_period = sysctl_sched_rt_period;
2656	old_runtime = sysctl_sched_rt_runtime;
2657
2658	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2659
2660	if (!ret && write) {
2661		ret = sched_rt_global_validate();
2662		if (ret)
2663			goto undo;
2664
2665		ret = sched_dl_global_validate();
2666		if (ret)
2667			goto undo;
2668
2669		ret = sched_rt_global_constraints();
2670		if (ret)
2671			goto undo;
2672
2673		sched_rt_do_global();
2674		sched_dl_do_global();
2675	}
2676	if (0) {
2677undo:
2678		sysctl_sched_rt_period = old_period;
2679		sysctl_sched_rt_runtime = old_runtime;
2680	}
2681	mutex_unlock(&mutex);
2682
2683	return ret;
2684}
2685
2686int sched_rr_handler(struct ctl_table *table, int write,
2687		void __user *buffer, size_t *lenp,
2688		loff_t *ppos)
2689{
2690	int ret;
2691	static DEFINE_MUTEX(mutex);
2692
2693	mutex_lock(&mutex);
2694	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2695	/*
2696	 * Make sure that internally we keep jiffies.
2697	 * Also, writing zero resets the timeslice to default:
2698	 */
2699	if (!ret && write) {
2700		sched_rr_timeslice =
2701			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2702			msecs_to_jiffies(sysctl_sched_rr_timeslice);
 
 
 
2703	}
2704	mutex_unlock(&mutex);
2705
2706	return ret;
2707}
 
2708
2709#ifdef CONFIG_SCHED_DEBUG
2710void print_rt_stats(struct seq_file *m, int cpu)
2711{
2712	rt_rq_iter_t iter;
2713	struct rt_rq *rt_rq;
2714
2715	rcu_read_lock();
2716	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2717		print_rt_rq(m, cpu, rt_rq);
2718	rcu_read_unlock();
2719}
2720#endif /* CONFIG_SCHED_DEBUG */
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
 
 
 
   6
   7int sched_rr_timeslice = RR_TIMESLICE;
   8/* More than 4 hours if BW_SHIFT equals 20. */
   9static const u64 max_rt_runtime = MAX_BW;
  10
  11static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  12
  13struct rt_bandwidth def_rt_bandwidth;
  14
  15/*
  16 * period over which we measure -rt task CPU usage in us.
  17 * default: 1s
  18 */
  19int sysctl_sched_rt_period = 1000000;
  20
  21/*
  22 * part of the period that we allow rt tasks to run in us.
  23 * default: 0.95s
  24 */
  25int sysctl_sched_rt_runtime = 950000;
  26
  27#ifdef CONFIG_SYSCTL
  28static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
  29static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
  30		size_t *lenp, loff_t *ppos);
  31static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
  32		size_t *lenp, loff_t *ppos);
  33static struct ctl_table sched_rt_sysctls[] = {
  34	{
  35		.procname       = "sched_rt_period_us",
  36		.data           = &sysctl_sched_rt_period,
  37		.maxlen         = sizeof(int),
  38		.mode           = 0644,
  39		.proc_handler   = sched_rt_handler,
  40		.extra1         = SYSCTL_ONE,
  41		.extra2         = SYSCTL_INT_MAX,
  42	},
  43	{
  44		.procname       = "sched_rt_runtime_us",
  45		.data           = &sysctl_sched_rt_runtime,
  46		.maxlen         = sizeof(int),
  47		.mode           = 0644,
  48		.proc_handler   = sched_rt_handler,
  49		.extra1         = SYSCTL_NEG_ONE,
  50		.extra2         = (void *)&sysctl_sched_rt_period,
  51	},
  52	{
  53		.procname       = "sched_rr_timeslice_ms",
  54		.data           = &sysctl_sched_rr_timeslice,
  55		.maxlen         = sizeof(int),
  56		.mode           = 0644,
  57		.proc_handler   = sched_rr_handler,
  58	},
  59	{}
  60};
  61
  62static int __init sched_rt_sysctl_init(void)
  63{
  64	register_sysctl_init("kernel", sched_rt_sysctls);
  65	return 0;
  66}
  67late_initcall(sched_rt_sysctl_init);
  68#endif
  69
  70static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  71{
  72	struct rt_bandwidth *rt_b =
  73		container_of(timer, struct rt_bandwidth, rt_period_timer);
  74	int idle = 0;
  75	int overrun;
  76
  77	raw_spin_lock(&rt_b->rt_runtime_lock);
  78	for (;;) {
  79		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  80		if (!overrun)
  81			break;
  82
  83		raw_spin_unlock(&rt_b->rt_runtime_lock);
  84		idle = do_sched_rt_period_timer(rt_b, overrun);
  85		raw_spin_lock(&rt_b->rt_runtime_lock);
  86	}
  87	if (idle)
  88		rt_b->rt_period_active = 0;
  89	raw_spin_unlock(&rt_b->rt_runtime_lock);
  90
  91	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  92}
  93
  94void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  95{
  96	rt_b->rt_period = ns_to_ktime(period);
  97	rt_b->rt_runtime = runtime;
  98
  99	raw_spin_lock_init(&rt_b->rt_runtime_lock);
 100
 101	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
 102		     HRTIMER_MODE_REL_HARD);
 103	rt_b->rt_period_timer.function = sched_rt_period_timer;
 104}
 105
 106static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
 107{
 
 
 
 108	raw_spin_lock(&rt_b->rt_runtime_lock);
 109	if (!rt_b->rt_period_active) {
 110		rt_b->rt_period_active = 1;
 111		/*
 112		 * SCHED_DEADLINE updates the bandwidth, as a run away
 113		 * RT task with a DL task could hog a CPU. But DL does
 114		 * not reset the period. If a deadline task was running
 115		 * without an RT task running, it can cause RT tasks to
 116		 * throttle when they start up. Kick the timer right away
 117		 * to update the period.
 118		 */
 119		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
 120		hrtimer_start_expires(&rt_b->rt_period_timer,
 121				      HRTIMER_MODE_ABS_PINNED_HARD);
 122	}
 123	raw_spin_unlock(&rt_b->rt_runtime_lock);
 124}
 125
 126static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
 127{
 128	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
 129		return;
 130
 131	do_start_rt_bandwidth(rt_b);
 132}
 133
 134void init_rt_rq(struct rt_rq *rt_rq)
 135{
 136	struct rt_prio_array *array;
 137	int i;
 138
 139	array = &rt_rq->active;
 140	for (i = 0; i < MAX_RT_PRIO; i++) {
 141		INIT_LIST_HEAD(array->queue + i);
 142		__clear_bit(i, array->bitmap);
 143	}
 144	/* delimiter for bitsearch: */
 145	__set_bit(MAX_RT_PRIO, array->bitmap);
 146
 147#if defined CONFIG_SMP
 148	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 149	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
 
 150	rt_rq->overloaded = 0;
 151	plist_head_init(&rt_rq->pushable_tasks);
 152#endif /* CONFIG_SMP */
 153	/* We start is dequeued state, because no RT tasks are queued */
 154	rt_rq->rt_queued = 0;
 155
 156	rt_rq->rt_time = 0;
 157	rt_rq->rt_throttled = 0;
 158	rt_rq->rt_runtime = 0;
 159	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 160}
 161
 162#ifdef CONFIG_RT_GROUP_SCHED
 163static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 164{
 165	hrtimer_cancel(&rt_b->rt_period_timer);
 166}
 167
 168#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 169
 170static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 171{
 172#ifdef CONFIG_SCHED_DEBUG
 173	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 174#endif
 175	return container_of(rt_se, struct task_struct, rt);
 176}
 177
 178static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 179{
 180	return rt_rq->rq;
 181}
 182
 183static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 184{
 185	return rt_se->rt_rq;
 186}
 187
 188static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 189{
 190	struct rt_rq *rt_rq = rt_se->rt_rq;
 191
 192	return rt_rq->rq;
 193}
 194
 195void unregister_rt_sched_group(struct task_group *tg)
 196{
 
 
 197	if (tg->rt_se)
 198		destroy_rt_bandwidth(&tg->rt_bandwidth);
 199
 200}
 201
 202void free_rt_sched_group(struct task_group *tg)
 203{
 204	int i;
 205
 206	for_each_possible_cpu(i) {
 207		if (tg->rt_rq)
 208			kfree(tg->rt_rq[i]);
 209		if (tg->rt_se)
 210			kfree(tg->rt_se[i]);
 211	}
 212
 213	kfree(tg->rt_rq);
 214	kfree(tg->rt_se);
 215}
 216
 217void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 218		struct sched_rt_entity *rt_se, int cpu,
 219		struct sched_rt_entity *parent)
 220{
 221	struct rq *rq = cpu_rq(cpu);
 222
 223	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 224	rt_rq->rt_nr_boosted = 0;
 225	rt_rq->rq = rq;
 226	rt_rq->tg = tg;
 227
 228	tg->rt_rq[cpu] = rt_rq;
 229	tg->rt_se[cpu] = rt_se;
 230
 231	if (!rt_se)
 232		return;
 233
 234	if (!parent)
 235		rt_se->rt_rq = &rq->rt;
 236	else
 237		rt_se->rt_rq = parent->my_q;
 238
 239	rt_se->my_q = rt_rq;
 240	rt_se->parent = parent;
 241	INIT_LIST_HEAD(&rt_se->run_list);
 242}
 243
 244int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 245{
 246	struct rt_rq *rt_rq;
 247	struct sched_rt_entity *rt_se;
 248	int i;
 249
 250	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
 251	if (!tg->rt_rq)
 252		goto err;
 253	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
 254	if (!tg->rt_se)
 255		goto err;
 256
 257	init_rt_bandwidth(&tg->rt_bandwidth,
 258			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 259
 260	for_each_possible_cpu(i) {
 261		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 262				     GFP_KERNEL, cpu_to_node(i));
 263		if (!rt_rq)
 264			goto err;
 265
 266		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 267				     GFP_KERNEL, cpu_to_node(i));
 268		if (!rt_se)
 269			goto err_free_rq;
 270
 271		init_rt_rq(rt_rq);
 272		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 273		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 274	}
 275
 276	return 1;
 277
 278err_free_rq:
 279	kfree(rt_rq);
 280err:
 281	return 0;
 282}
 283
 284#else /* CONFIG_RT_GROUP_SCHED */
 285
 286#define rt_entity_is_task(rt_se) (1)
 287
 288static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 289{
 290	return container_of(rt_se, struct task_struct, rt);
 291}
 292
 293static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 294{
 295	return container_of(rt_rq, struct rq, rt);
 296}
 297
 298static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 299{
 300	struct task_struct *p = rt_task_of(rt_se);
 301
 302	return task_rq(p);
 303}
 304
 305static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 306{
 307	struct rq *rq = rq_of_rt_se(rt_se);
 308
 309	return &rq->rt;
 310}
 311
 312void unregister_rt_sched_group(struct task_group *tg) { }
 313
 314void free_rt_sched_group(struct task_group *tg) { }
 315
 316int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 317{
 318	return 1;
 319}
 320#endif /* CONFIG_RT_GROUP_SCHED */
 321
 322#ifdef CONFIG_SMP
 323
 
 
 324static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 325{
 326	/* Try to pull RT tasks here if we lower this rq's prio */
 327	return rq->online && rq->rt.highest_prio.curr > prev->prio;
 328}
 329
 330static inline int rt_overloaded(struct rq *rq)
 331{
 332	return atomic_read(&rq->rd->rto_count);
 333}
 334
 335static inline void rt_set_overload(struct rq *rq)
 336{
 337	if (!rq->online)
 338		return;
 339
 340	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 341	/*
 342	 * Make sure the mask is visible before we set
 343	 * the overload count. That is checked to determine
 344	 * if we should look at the mask. It would be a shame
 345	 * if we looked at the mask, but the mask was not
 346	 * updated yet.
 347	 *
 348	 * Matched by the barrier in pull_rt_task().
 349	 */
 350	smp_wmb();
 351	atomic_inc(&rq->rd->rto_count);
 352}
 353
 354static inline void rt_clear_overload(struct rq *rq)
 355{
 356	if (!rq->online)
 357		return;
 358
 359	/* the order here really doesn't matter */
 360	atomic_dec(&rq->rd->rto_count);
 361	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 362}
 363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364static inline int has_pushable_tasks(struct rq *rq)
 365{
 366	return !plist_head_empty(&rq->rt.pushable_tasks);
 367}
 368
 369static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
 370static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
 371
 372static void push_rt_tasks(struct rq *);
 373static void pull_rt_task(struct rq *);
 374
 375static inline void rt_queue_push_tasks(struct rq *rq)
 376{
 377	if (!has_pushable_tasks(rq))
 378		return;
 379
 380	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 381}
 382
 383static inline void rt_queue_pull_task(struct rq *rq)
 384{
 385	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 386}
 387
 388static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 389{
 390	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 391	plist_node_init(&p->pushable_tasks, p->prio);
 392	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 393
 394	/* Update the highest prio pushable task */
 395	if (p->prio < rq->rt.highest_prio.next)
 396		rq->rt.highest_prio.next = p->prio;
 397
 398	if (!rq->rt.overloaded) {
 399		rt_set_overload(rq);
 400		rq->rt.overloaded = 1;
 401	}
 402}
 403
 404static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 405{
 406	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 407
 408	/* Update the new highest prio pushable task */
 409	if (has_pushable_tasks(rq)) {
 410		p = plist_first_entry(&rq->rt.pushable_tasks,
 411				      struct task_struct, pushable_tasks);
 412		rq->rt.highest_prio.next = p->prio;
 413	} else {
 414		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
 415
 416		if (rq->rt.overloaded) {
 417			rt_clear_overload(rq);
 418			rq->rt.overloaded = 0;
 419		}
 420	}
 421}
 422
 423#else
 424
 425static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 426{
 427}
 428
 429static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 430{
 431}
 432
 433static inline void rt_queue_push_tasks(struct rq *rq)
 
 434{
 435}
 436#endif /* CONFIG_SMP */
 437
 438static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 439static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
 
 
 440
 441static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 442{
 443	return rt_se->on_rq;
 444}
 445
 446#ifdef CONFIG_UCLAMP_TASK
 447/*
 448 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
 449 * settings.
 450 *
 451 * This check is only important for heterogeneous systems where uclamp_min value
 452 * is higher than the capacity of a @cpu. For non-heterogeneous system this
 453 * function will always return true.
 454 *
 455 * The function will return true if the capacity of the @cpu is >= the
 456 * uclamp_min and false otherwise.
 457 *
 458 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
 459 * > uclamp_max.
 460 */
 461static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 462{
 463	unsigned int min_cap;
 464	unsigned int max_cap;
 465	unsigned int cpu_cap;
 466
 467	/* Only heterogeneous systems can benefit from this check */
 468	if (!sched_asym_cpucap_active())
 469		return true;
 
 470
 471	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
 472	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
 473
 474	cpu_cap = arch_scale_cpu_capacity(cpu);
 475
 476	return cpu_cap >= min(min_cap, max_cap);
 477}
 478#else
 479static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 480{
 481	return true;
 482}
 483#endif
 484
 485#ifdef CONFIG_RT_GROUP_SCHED
 486
 487static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 488{
 489	if (!rt_rq->tg)
 490		return RUNTIME_INF;
 491
 492	return rt_rq->rt_runtime;
 493}
 494
 495static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 496{
 497	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 498}
 499
 500typedef struct task_group *rt_rq_iter_t;
 501
 502static inline struct task_group *next_task_group(struct task_group *tg)
 503{
 504	do {
 505		tg = list_entry_rcu(tg->list.next,
 506			typeof(struct task_group), list);
 507	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 508
 509	if (&tg->list == &task_groups)
 510		tg = NULL;
 511
 512	return tg;
 513}
 514
 515#define for_each_rt_rq(rt_rq, iter, rq)					\
 516	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 517		(iter = next_task_group(iter)) &&			\
 518		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 519
 520#define for_each_sched_rt_entity(rt_se) \
 521	for (; rt_se; rt_se = rt_se->parent)
 522
 523static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 524{
 525	return rt_se->my_q;
 526}
 527
 528static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 529static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 530
 531static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 532{
 533	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 534	struct rq *rq = rq_of_rt_rq(rt_rq);
 535	struct sched_rt_entity *rt_se;
 536
 537	int cpu = cpu_of(rq);
 538
 539	rt_se = rt_rq->tg->rt_se[cpu];
 540
 541	if (rt_rq->rt_nr_running) {
 542		if (!rt_se)
 543			enqueue_top_rt_rq(rt_rq);
 544		else if (!on_rt_rq(rt_se))
 545			enqueue_rt_entity(rt_se, 0);
 546
 547		if (rt_rq->highest_prio.curr < curr->prio)
 548			resched_curr(rq);
 549	}
 550}
 551
 552static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 553{
 554	struct sched_rt_entity *rt_se;
 555	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 556
 557	rt_se = rt_rq->tg->rt_se[cpu];
 558
 559	if (!rt_se) {
 560		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 561		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 562		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
 563	}
 564	else if (on_rt_rq(rt_se))
 565		dequeue_rt_entity(rt_se, 0);
 566}
 567
 568static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 569{
 570	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 571}
 572
 573static int rt_se_boosted(struct sched_rt_entity *rt_se)
 574{
 575	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 576	struct task_struct *p;
 577
 578	if (rt_rq)
 579		return !!rt_rq->rt_nr_boosted;
 580
 581	p = rt_task_of(rt_se);
 582	return p->prio != p->normal_prio;
 583}
 584
 585#ifdef CONFIG_SMP
 586static inline const struct cpumask *sched_rt_period_mask(void)
 587{
 588	return this_rq()->rd->span;
 589}
 590#else
 591static inline const struct cpumask *sched_rt_period_mask(void)
 592{
 593	return cpu_online_mask;
 594}
 595#endif
 596
 597static inline
 598struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 599{
 600	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 601}
 602
 603static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 604{
 605	return &rt_rq->tg->rt_bandwidth;
 606}
 607
 608#else /* !CONFIG_RT_GROUP_SCHED */
 609
 610static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 611{
 612	return rt_rq->rt_runtime;
 613}
 614
 615static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 616{
 617	return ktime_to_ns(def_rt_bandwidth.rt_period);
 618}
 619
 620typedef struct rt_rq *rt_rq_iter_t;
 621
 622#define for_each_rt_rq(rt_rq, iter, rq) \
 623	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 624
 625#define for_each_sched_rt_entity(rt_se) \
 626	for (; rt_se; rt_se = NULL)
 627
 628static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 629{
 630	return NULL;
 631}
 632
 633static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 634{
 635	struct rq *rq = rq_of_rt_rq(rt_rq);
 636
 637	if (!rt_rq->rt_nr_running)
 638		return;
 639
 640	enqueue_top_rt_rq(rt_rq);
 641	resched_curr(rq);
 642}
 643
 644static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 645{
 646	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 647}
 648
 649static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 650{
 651	return rt_rq->rt_throttled;
 652}
 653
 654static inline const struct cpumask *sched_rt_period_mask(void)
 655{
 656	return cpu_online_mask;
 657}
 658
 659static inline
 660struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 661{
 662	return &cpu_rq(cpu)->rt;
 663}
 664
 665static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 666{
 667	return &def_rt_bandwidth;
 668}
 669
 670#endif /* CONFIG_RT_GROUP_SCHED */
 671
 672bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 673{
 674	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 675
 676	return (hrtimer_active(&rt_b->rt_period_timer) ||
 677		rt_rq->rt_time < rt_b->rt_runtime);
 678}
 679
 680#ifdef CONFIG_SMP
 681/*
 682 * We ran out of runtime, see if we can borrow some from our neighbours.
 683 */
 684static void do_balance_runtime(struct rt_rq *rt_rq)
 685{
 686	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 687	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 688	int i, weight;
 689	u64 rt_period;
 690
 691	weight = cpumask_weight(rd->span);
 692
 693	raw_spin_lock(&rt_b->rt_runtime_lock);
 694	rt_period = ktime_to_ns(rt_b->rt_period);
 695	for_each_cpu(i, rd->span) {
 696		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 697		s64 diff;
 698
 699		if (iter == rt_rq)
 700			continue;
 701
 702		raw_spin_lock(&iter->rt_runtime_lock);
 703		/*
 704		 * Either all rqs have inf runtime and there's nothing to steal
 705		 * or __disable_runtime() below sets a specific rq to inf to
 706		 * indicate its been disabled and disallow stealing.
 707		 */
 708		if (iter->rt_runtime == RUNTIME_INF)
 709			goto next;
 710
 711		/*
 712		 * From runqueues with spare time, take 1/n part of their
 713		 * spare time, but no more than our period.
 714		 */
 715		diff = iter->rt_runtime - iter->rt_time;
 716		if (diff > 0) {
 717			diff = div_u64((u64)diff, weight);
 718			if (rt_rq->rt_runtime + diff > rt_period)
 719				diff = rt_period - rt_rq->rt_runtime;
 720			iter->rt_runtime -= diff;
 721			rt_rq->rt_runtime += diff;
 722			if (rt_rq->rt_runtime == rt_period) {
 723				raw_spin_unlock(&iter->rt_runtime_lock);
 724				break;
 725			}
 726		}
 727next:
 728		raw_spin_unlock(&iter->rt_runtime_lock);
 729	}
 730	raw_spin_unlock(&rt_b->rt_runtime_lock);
 731}
 732
 733/*
 734 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 735 */
 736static void __disable_runtime(struct rq *rq)
 737{
 738	struct root_domain *rd = rq->rd;
 739	rt_rq_iter_t iter;
 740	struct rt_rq *rt_rq;
 741
 742	if (unlikely(!scheduler_running))
 743		return;
 744
 745	for_each_rt_rq(rt_rq, iter, rq) {
 746		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 747		s64 want;
 748		int i;
 749
 750		raw_spin_lock(&rt_b->rt_runtime_lock);
 751		raw_spin_lock(&rt_rq->rt_runtime_lock);
 752		/*
 753		 * Either we're all inf and nobody needs to borrow, or we're
 754		 * already disabled and thus have nothing to do, or we have
 755		 * exactly the right amount of runtime to take out.
 756		 */
 757		if (rt_rq->rt_runtime == RUNTIME_INF ||
 758				rt_rq->rt_runtime == rt_b->rt_runtime)
 759			goto balanced;
 760		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 761
 762		/*
 763		 * Calculate the difference between what we started out with
 764		 * and what we current have, that's the amount of runtime
 765		 * we lend and now have to reclaim.
 766		 */
 767		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 768
 769		/*
 770		 * Greedy reclaim, take back as much as we can.
 771		 */
 772		for_each_cpu(i, rd->span) {
 773			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 774			s64 diff;
 775
 776			/*
 777			 * Can't reclaim from ourselves or disabled runqueues.
 778			 */
 779			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 780				continue;
 781
 782			raw_spin_lock(&iter->rt_runtime_lock);
 783			if (want > 0) {
 784				diff = min_t(s64, iter->rt_runtime, want);
 785				iter->rt_runtime -= diff;
 786				want -= diff;
 787			} else {
 788				iter->rt_runtime -= want;
 789				want -= want;
 790			}
 791			raw_spin_unlock(&iter->rt_runtime_lock);
 792
 793			if (!want)
 794				break;
 795		}
 796
 797		raw_spin_lock(&rt_rq->rt_runtime_lock);
 798		/*
 799		 * We cannot be left wanting - that would mean some runtime
 800		 * leaked out of the system.
 801		 */
 802		WARN_ON_ONCE(want);
 803balanced:
 804		/*
 805		 * Disable all the borrow logic by pretending we have inf
 806		 * runtime - in which case borrowing doesn't make sense.
 807		 */
 808		rt_rq->rt_runtime = RUNTIME_INF;
 809		rt_rq->rt_throttled = 0;
 810		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 811		raw_spin_unlock(&rt_b->rt_runtime_lock);
 812
 813		/* Make rt_rq available for pick_next_task() */
 814		sched_rt_rq_enqueue(rt_rq);
 815	}
 816}
 817
 818static void __enable_runtime(struct rq *rq)
 819{
 820	rt_rq_iter_t iter;
 821	struct rt_rq *rt_rq;
 822
 823	if (unlikely(!scheduler_running))
 824		return;
 825
 826	/*
 827	 * Reset each runqueue's bandwidth settings
 828	 */
 829	for_each_rt_rq(rt_rq, iter, rq) {
 830		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 831
 832		raw_spin_lock(&rt_b->rt_runtime_lock);
 833		raw_spin_lock(&rt_rq->rt_runtime_lock);
 834		rt_rq->rt_runtime = rt_b->rt_runtime;
 835		rt_rq->rt_time = 0;
 836		rt_rq->rt_throttled = 0;
 837		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 838		raw_spin_unlock(&rt_b->rt_runtime_lock);
 839	}
 840}
 841
 842static void balance_runtime(struct rt_rq *rt_rq)
 843{
 844	if (!sched_feat(RT_RUNTIME_SHARE))
 845		return;
 846
 847	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 848		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 849		do_balance_runtime(rt_rq);
 850		raw_spin_lock(&rt_rq->rt_runtime_lock);
 851	}
 852}
 853#else /* !CONFIG_SMP */
 854static inline void balance_runtime(struct rt_rq *rt_rq) {}
 855#endif /* CONFIG_SMP */
 856
 857static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 858{
 859	int i, idle = 1, throttled = 0;
 860	const struct cpumask *span;
 861
 862	span = sched_rt_period_mask();
 863#ifdef CONFIG_RT_GROUP_SCHED
 864	/*
 865	 * FIXME: isolated CPUs should really leave the root task group,
 866	 * whether they are isolcpus or were isolated via cpusets, lest
 867	 * the timer run on a CPU which does not service all runqueues,
 868	 * potentially leaving other CPUs indefinitely throttled.  If
 869	 * isolation is really required, the user will turn the throttle
 870	 * off to kill the perturbations it causes anyway.  Meanwhile,
 871	 * this maintains functionality for boot and/or troubleshooting.
 872	 */
 873	if (rt_b == &root_task_group.rt_bandwidth)
 874		span = cpu_online_mask;
 875#endif
 876	for_each_cpu(i, span) {
 877		int enqueue = 0;
 878		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 879		struct rq *rq = rq_of_rt_rq(rt_rq);
 880		struct rq_flags rf;
 881		int skip;
 882
 883		/*
 884		 * When span == cpu_online_mask, taking each rq->lock
 885		 * can be time-consuming. Try to avoid it when possible.
 886		 */
 887		raw_spin_lock(&rt_rq->rt_runtime_lock);
 888		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
 889			rt_rq->rt_runtime = rt_b->rt_runtime;
 890		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 891		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 892		if (skip)
 893			continue;
 894
 895		rq_lock(rq, &rf);
 896		update_rq_clock(rq);
 897
 898		if (rt_rq->rt_time) {
 899			u64 runtime;
 900
 901			raw_spin_lock(&rt_rq->rt_runtime_lock);
 902			if (rt_rq->rt_throttled)
 903				balance_runtime(rt_rq);
 904			runtime = rt_rq->rt_runtime;
 905			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 906			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 907				rt_rq->rt_throttled = 0;
 908				enqueue = 1;
 909
 910				/*
 911				 * When we're idle and a woken (rt) task is
 912				 * throttled wakeup_preempt() will set
 913				 * skip_update and the time between the wakeup
 914				 * and this unthrottle will get accounted as
 915				 * 'runtime'.
 916				 */
 917				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 918					rq_clock_cancel_skipupdate(rq);
 919			}
 920			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 921				idle = 0;
 922			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 923		} else if (rt_rq->rt_nr_running) {
 924			idle = 0;
 925			if (!rt_rq_throttled(rt_rq))
 926				enqueue = 1;
 927		}
 928		if (rt_rq->rt_throttled)
 929			throttled = 1;
 930
 931		if (enqueue)
 932			sched_rt_rq_enqueue(rt_rq);
 933		rq_unlock(rq, &rf);
 934	}
 935
 936	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 937		return 1;
 938
 939	return idle;
 940}
 941
 942static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 943{
 944#ifdef CONFIG_RT_GROUP_SCHED
 945	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 946
 947	if (rt_rq)
 948		return rt_rq->highest_prio.curr;
 949#endif
 950
 951	return rt_task_of(rt_se)->prio;
 952}
 953
 954static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 955{
 956	u64 runtime = sched_rt_runtime(rt_rq);
 957
 958	if (rt_rq->rt_throttled)
 959		return rt_rq_throttled(rt_rq);
 960
 961	if (runtime >= sched_rt_period(rt_rq))
 962		return 0;
 963
 964	balance_runtime(rt_rq);
 965	runtime = sched_rt_runtime(rt_rq);
 966	if (runtime == RUNTIME_INF)
 967		return 0;
 968
 969	if (rt_rq->rt_time > runtime) {
 970		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 971
 972		/*
 973		 * Don't actually throttle groups that have no runtime assigned
 974		 * but accrue some time due to boosting.
 975		 */
 976		if (likely(rt_b->rt_runtime)) {
 977			rt_rq->rt_throttled = 1;
 978			printk_deferred_once("sched: RT throttling activated\n");
 979		} else {
 980			/*
 981			 * In case we did anyway, make it go away,
 982			 * replenishment is a joke, since it will replenish us
 983			 * with exactly 0 ns.
 984			 */
 985			rt_rq->rt_time = 0;
 986		}
 987
 988		if (rt_rq_throttled(rt_rq)) {
 989			sched_rt_rq_dequeue(rt_rq);
 990			return 1;
 991		}
 992	}
 993
 994	return 0;
 995}
 996
 997/*
 998 * Update the current task's runtime statistics. Skip current tasks that
 999 * are not in our scheduling class.
1000 */
1001static void update_curr_rt(struct rq *rq)
1002{
1003	struct task_struct *curr = rq->curr;
1004	struct sched_rt_entity *rt_se = &curr->rt;
1005	s64 delta_exec;
 
1006
1007	if (curr->sched_class != &rt_sched_class)
1008		return;
1009
1010	delta_exec = update_curr_common(rq);
1011	if (unlikely(delta_exec <= 0))
 
1012		return;
1013
 
 
 
 
 
 
 
 
 
1014	if (!rt_bandwidth_enabled())
1015		return;
1016
1017	for_each_sched_rt_entity(rt_se) {
1018		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1019		int exceeded;
1020
1021		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1022			raw_spin_lock(&rt_rq->rt_runtime_lock);
1023			rt_rq->rt_time += delta_exec;
1024			exceeded = sched_rt_runtime_exceeded(rt_rq);
1025			if (exceeded)
1026				resched_curr(rq);
1027			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1028			if (exceeded)
1029				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1030		}
1031	}
1032}
1033
1034static void
1035dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1036{
1037	struct rq *rq = rq_of_rt_rq(rt_rq);
1038
1039	BUG_ON(&rq->rt != rt_rq);
1040
1041	if (!rt_rq->rt_queued)
1042		return;
1043
1044	BUG_ON(!rq->nr_running);
1045
1046	sub_nr_running(rq, count);
1047	rt_rq->rt_queued = 0;
1048
1049}
1050
1051static void
1052enqueue_top_rt_rq(struct rt_rq *rt_rq)
1053{
1054	struct rq *rq = rq_of_rt_rq(rt_rq);
1055
1056	BUG_ON(&rq->rt != rt_rq);
1057
1058	if (rt_rq->rt_queued)
1059		return;
1060
1061	if (rt_rq_throttled(rt_rq))
1062		return;
1063
1064	if (rt_rq->rt_nr_running) {
1065		add_nr_running(rq, rt_rq->rt_nr_running);
1066		rt_rq->rt_queued = 1;
1067	}
1068
1069	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1070	cpufreq_update_util(rq, 0);
1071}
1072
1073#if defined CONFIG_SMP
1074
1075static void
1076inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1077{
1078	struct rq *rq = rq_of_rt_rq(rt_rq);
1079
1080#ifdef CONFIG_RT_GROUP_SCHED
1081	/*
1082	 * Change rq's cpupri only if rt_rq is the top queue.
1083	 */
1084	if (&rq->rt != rt_rq)
1085		return;
1086#endif
1087	if (rq->online && prio < prev_prio)
1088		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1089}
1090
1091static void
1092dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1093{
1094	struct rq *rq = rq_of_rt_rq(rt_rq);
1095
1096#ifdef CONFIG_RT_GROUP_SCHED
1097	/*
1098	 * Change rq's cpupri only if rt_rq is the top queue.
1099	 */
1100	if (&rq->rt != rt_rq)
1101		return;
1102#endif
1103	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1104		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1105}
1106
1107#else /* CONFIG_SMP */
1108
1109static inline
1110void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1111static inline
1112void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113
1114#endif /* CONFIG_SMP */
1115
1116#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1117static void
1118inc_rt_prio(struct rt_rq *rt_rq, int prio)
1119{
1120	int prev_prio = rt_rq->highest_prio.curr;
1121
1122	if (prio < prev_prio)
1123		rt_rq->highest_prio.curr = prio;
1124
1125	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1126}
1127
1128static void
1129dec_rt_prio(struct rt_rq *rt_rq, int prio)
1130{
1131	int prev_prio = rt_rq->highest_prio.curr;
1132
1133	if (rt_rq->rt_nr_running) {
1134
1135		WARN_ON(prio < prev_prio);
1136
1137		/*
1138		 * This may have been our highest task, and therefore
1139		 * we may have some recomputation to do
1140		 */
1141		if (prio == prev_prio) {
1142			struct rt_prio_array *array = &rt_rq->active;
1143
1144			rt_rq->highest_prio.curr =
1145				sched_find_first_bit(array->bitmap);
1146		}
1147
1148	} else {
1149		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1150	}
1151
1152	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1153}
1154
1155#else
1156
1157static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1158static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1159
1160#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1161
1162#ifdef CONFIG_RT_GROUP_SCHED
1163
1164static void
1165inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1166{
1167	if (rt_se_boosted(rt_se))
1168		rt_rq->rt_nr_boosted++;
1169
1170	if (rt_rq->tg)
1171		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1172}
1173
1174static void
1175dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1176{
1177	if (rt_se_boosted(rt_se))
1178		rt_rq->rt_nr_boosted--;
1179
1180	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1181}
1182
1183#else /* CONFIG_RT_GROUP_SCHED */
1184
1185static void
1186inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1187{
1188	start_rt_bandwidth(&def_rt_bandwidth);
1189}
1190
1191static inline
1192void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1193
1194#endif /* CONFIG_RT_GROUP_SCHED */
1195
1196static inline
1197unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1198{
1199	struct rt_rq *group_rq = group_rt_rq(rt_se);
1200
1201	if (group_rq)
1202		return group_rq->rt_nr_running;
1203	else
1204		return 1;
1205}
1206
1207static inline
1208unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1209{
1210	struct rt_rq *group_rq = group_rt_rq(rt_se);
1211	struct task_struct *tsk;
1212
1213	if (group_rq)
1214		return group_rq->rr_nr_running;
1215
1216	tsk = rt_task_of(rt_se);
1217
1218	return (tsk->policy == SCHED_RR) ? 1 : 0;
1219}
1220
1221static inline
1222void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1223{
1224	int prio = rt_se_prio(rt_se);
1225
1226	WARN_ON(!rt_prio(prio));
1227	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1228	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1229
1230	inc_rt_prio(rt_rq, prio);
 
1231	inc_rt_group(rt_se, rt_rq);
1232}
1233
1234static inline
1235void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1236{
1237	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1238	WARN_ON(!rt_rq->rt_nr_running);
1239	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1240	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1241
1242	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
 
1243	dec_rt_group(rt_se, rt_rq);
1244}
1245
1246/*
1247 * Change rt_se->run_list location unless SAVE && !MOVE
1248 *
1249 * assumes ENQUEUE/DEQUEUE flags match
1250 */
1251static inline bool move_entity(unsigned int flags)
1252{
1253	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1254		return false;
1255
1256	return true;
1257}
1258
1259static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1260{
1261	list_del_init(&rt_se->run_list);
1262
1263	if (list_empty(array->queue + rt_se_prio(rt_se)))
1264		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1265
1266	rt_se->on_list = 0;
1267}
1268
1269static inline struct sched_statistics *
1270__schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1271{
1272#ifdef CONFIG_RT_GROUP_SCHED
1273	/* schedstats is not supported for rt group. */
1274	if (!rt_entity_is_task(rt_se))
1275		return NULL;
1276#endif
1277
1278	return &rt_task_of(rt_se)->stats;
1279}
1280
1281static inline void
1282update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1283{
1284	struct sched_statistics *stats;
1285	struct task_struct *p = NULL;
1286
1287	if (!schedstat_enabled())
1288		return;
1289
1290	if (rt_entity_is_task(rt_se))
1291		p = rt_task_of(rt_se);
1292
1293	stats = __schedstats_from_rt_se(rt_se);
1294	if (!stats)
1295		return;
1296
1297	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1298}
1299
1300static inline void
1301update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1302{
1303	struct sched_statistics *stats;
1304	struct task_struct *p = NULL;
1305
1306	if (!schedstat_enabled())
1307		return;
1308
1309	if (rt_entity_is_task(rt_se))
1310		p = rt_task_of(rt_se);
1311
1312	stats = __schedstats_from_rt_se(rt_se);
1313	if (!stats)
1314		return;
1315
1316	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1317}
1318
1319static inline void
1320update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1321			int flags)
1322{
1323	if (!schedstat_enabled())
1324		return;
1325
1326	if (flags & ENQUEUE_WAKEUP)
1327		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1328}
1329
1330static inline void
1331update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1332{
1333	struct sched_statistics *stats;
1334	struct task_struct *p = NULL;
1335
1336	if (!schedstat_enabled())
1337		return;
1338
1339	if (rt_entity_is_task(rt_se))
1340		p = rt_task_of(rt_se);
1341
1342	stats = __schedstats_from_rt_se(rt_se);
1343	if (!stats)
1344		return;
1345
1346	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1347}
1348
1349static inline void
1350update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1351			int flags)
1352{
1353	struct task_struct *p = NULL;
1354
1355	if (!schedstat_enabled())
1356		return;
1357
1358	if (rt_entity_is_task(rt_se))
1359		p = rt_task_of(rt_se);
1360
1361	if ((flags & DEQUEUE_SLEEP) && p) {
1362		unsigned int state;
1363
1364		state = READ_ONCE(p->__state);
1365		if (state & TASK_INTERRUPTIBLE)
1366			__schedstat_set(p->stats.sleep_start,
1367					rq_clock(rq_of_rt_rq(rt_rq)));
1368
1369		if (state & TASK_UNINTERRUPTIBLE)
1370			__schedstat_set(p->stats.block_start,
1371					rq_clock(rq_of_rt_rq(rt_rq)));
1372	}
1373}
1374
1375static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1376{
1377	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1378	struct rt_prio_array *array = &rt_rq->active;
1379	struct rt_rq *group_rq = group_rt_rq(rt_se);
1380	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1381
1382	/*
1383	 * Don't enqueue the group if its throttled, or when empty.
1384	 * The latter is a consequence of the former when a child group
1385	 * get throttled and the current group doesn't have any other
1386	 * active members.
1387	 */
1388	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1389		if (rt_se->on_list)
1390			__delist_rt_entity(rt_se, array);
1391		return;
1392	}
1393
1394	if (move_entity(flags)) {
1395		WARN_ON_ONCE(rt_se->on_list);
1396		if (flags & ENQUEUE_HEAD)
1397			list_add(&rt_se->run_list, queue);
1398		else
1399			list_add_tail(&rt_se->run_list, queue);
1400
1401		__set_bit(rt_se_prio(rt_se), array->bitmap);
1402		rt_se->on_list = 1;
1403	}
1404	rt_se->on_rq = 1;
1405
1406	inc_rt_tasks(rt_se, rt_rq);
1407}
1408
1409static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1410{
1411	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1412	struct rt_prio_array *array = &rt_rq->active;
1413
1414	if (move_entity(flags)) {
1415		WARN_ON_ONCE(!rt_se->on_list);
1416		__delist_rt_entity(rt_se, array);
1417	}
1418	rt_se->on_rq = 0;
1419
1420	dec_rt_tasks(rt_se, rt_rq);
1421}
1422
1423/*
1424 * Because the prio of an upper entry depends on the lower
1425 * entries, we must remove entries top - down.
1426 */
1427static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1428{
1429	struct sched_rt_entity *back = NULL;
1430	unsigned int rt_nr_running;
1431
1432	for_each_sched_rt_entity(rt_se) {
1433		rt_se->back = back;
1434		back = rt_se;
1435	}
1436
1437	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1438
1439	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1440		if (on_rt_rq(rt_se))
1441			__dequeue_rt_entity(rt_se, flags);
1442	}
1443
1444	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1445}
1446
1447static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1448{
1449	struct rq *rq = rq_of_rt_se(rt_se);
1450
1451	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1452
1453	dequeue_rt_stack(rt_se, flags);
1454	for_each_sched_rt_entity(rt_se)
1455		__enqueue_rt_entity(rt_se, flags);
1456	enqueue_top_rt_rq(&rq->rt);
1457}
1458
1459static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1460{
1461	struct rq *rq = rq_of_rt_se(rt_se);
1462
1463	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1464
1465	dequeue_rt_stack(rt_se, flags);
1466
1467	for_each_sched_rt_entity(rt_se) {
1468		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1469
1470		if (rt_rq && rt_rq->rt_nr_running)
1471			__enqueue_rt_entity(rt_se, flags);
1472	}
1473	enqueue_top_rt_rq(&rq->rt);
1474}
1475
1476/*
1477 * Adding/removing a task to/from a priority array:
1478 */
1479static void
1480enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1481{
1482	struct sched_rt_entity *rt_se = &p->rt;
1483
1484	if (flags & ENQUEUE_WAKEUP)
1485		rt_se->timeout = 0;
1486
1487	check_schedstat_required();
1488	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1489
1490	enqueue_rt_entity(rt_se, flags);
1491
1492	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1493		enqueue_pushable_task(rq, p);
1494}
1495
1496static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1497{
1498	struct sched_rt_entity *rt_se = &p->rt;
1499
1500	update_curr_rt(rq);
1501	dequeue_rt_entity(rt_se, flags);
1502
1503	dequeue_pushable_task(rq, p);
1504}
1505
1506/*
1507 * Put task to the head or the end of the run list without the overhead of
1508 * dequeue followed by enqueue.
1509 */
1510static void
1511requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1512{
1513	if (on_rt_rq(rt_se)) {
1514		struct rt_prio_array *array = &rt_rq->active;
1515		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1516
1517		if (head)
1518			list_move(&rt_se->run_list, queue);
1519		else
1520			list_move_tail(&rt_se->run_list, queue);
1521	}
1522}
1523
1524static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1525{
1526	struct sched_rt_entity *rt_se = &p->rt;
1527	struct rt_rq *rt_rq;
1528
1529	for_each_sched_rt_entity(rt_se) {
1530		rt_rq = rt_rq_of_se(rt_se);
1531		requeue_rt_entity(rt_rq, rt_se, head);
1532	}
1533}
1534
1535static void yield_task_rt(struct rq *rq)
1536{
1537	requeue_task_rt(rq, rq->curr, 0);
1538}
1539
1540#ifdef CONFIG_SMP
1541static int find_lowest_rq(struct task_struct *task);
1542
1543static int
1544select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1545{
1546	struct task_struct *curr;
1547	struct rq *rq;
1548	bool test;
1549
1550	/* For anything but wake ups, just return the task_cpu */
1551	if (!(flags & (WF_TTWU | WF_FORK)))
1552		goto out;
1553
1554	rq = cpu_rq(cpu);
1555
1556	rcu_read_lock();
1557	curr = READ_ONCE(rq->curr); /* unlocked access */
1558
1559	/*
1560	 * If the current task on @p's runqueue is an RT task, then
1561	 * try to see if we can wake this RT task up on another
1562	 * runqueue. Otherwise simply start this RT task
1563	 * on its current runqueue.
1564	 *
1565	 * We want to avoid overloading runqueues. If the woken
1566	 * task is a higher priority, then it will stay on this CPU
1567	 * and the lower prio task should be moved to another CPU.
1568	 * Even though this will probably make the lower prio task
1569	 * lose its cache, we do not want to bounce a higher task
1570	 * around just because it gave up its CPU, perhaps for a
1571	 * lock?
1572	 *
1573	 * For equal prio tasks, we just let the scheduler sort it out.
1574	 *
1575	 * Otherwise, just let it ride on the affined RQ and the
1576	 * post-schedule router will push the preempted task away
1577	 *
1578	 * This test is optimistic, if we get it wrong the load-balancer
1579	 * will have to sort it out.
1580	 *
1581	 * We take into account the capacity of the CPU to ensure it fits the
1582	 * requirement of the task - which is only important on heterogeneous
1583	 * systems like big.LITTLE.
1584	 */
1585	test = curr &&
1586	       unlikely(rt_task(curr)) &&
1587	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1588
1589	if (test || !rt_task_fits_capacity(p, cpu)) {
1590		int target = find_lowest_rq(p);
1591
1592		/*
1593		 * Bail out if we were forcing a migration to find a better
1594		 * fitting CPU but our search failed.
1595		 */
1596		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1597			goto out_unlock;
1598
1599		/*
1600		 * Don't bother moving it if the destination CPU is
1601		 * not running a lower priority task.
1602		 */
1603		if (target != -1 &&
1604		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1605			cpu = target;
1606	}
1607
1608out_unlock:
1609	rcu_read_unlock();
1610
1611out:
1612	return cpu;
1613}
1614
1615static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1616{
1617	/*
1618	 * Current can't be migrated, useless to reschedule,
1619	 * let's hope p can move out.
1620	 */
1621	if (rq->curr->nr_cpus_allowed == 1 ||
1622	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1623		return;
1624
1625	/*
1626	 * p is migratable, so let's not schedule it and
1627	 * see if it is pushed or pulled somewhere else.
1628	 */
1629	if (p->nr_cpus_allowed != 1 &&
1630	    cpupri_find(&rq->rd->cpupri, p, NULL))
1631		return;
1632
1633	/*
1634	 * There appear to be other CPUs that can accept
1635	 * the current task but none can run 'p', so lets reschedule
1636	 * to try and push the current task away:
1637	 */
1638	requeue_task_rt(rq, p, 1);
1639	resched_curr(rq);
1640}
1641
1642static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1643{
1644	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1645		/*
1646		 * This is OK, because current is on_cpu, which avoids it being
1647		 * picked for load-balance and preemption/IRQs are still
1648		 * disabled avoiding further scheduler activity on it and we've
1649		 * not yet started the picking loop.
1650		 */
1651		rq_unpin_lock(rq, rf);
1652		pull_rt_task(rq);
1653		rq_repin_lock(rq, rf);
1654	}
1655
1656	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1657}
1658#endif /* CONFIG_SMP */
1659
1660/*
1661 * Preempt the current task with a newly woken task if needed:
1662 */
1663static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1664{
1665	if (p->prio < rq->curr->prio) {
1666		resched_curr(rq);
1667		return;
1668	}
1669
1670#ifdef CONFIG_SMP
1671	/*
1672	 * If:
1673	 *
1674	 * - the newly woken task is of equal priority to the current task
1675	 * - the newly woken task is non-migratable while current is migratable
1676	 * - current will be preempted on the next reschedule
1677	 *
1678	 * we should check to see if current can readily move to a different
1679	 * cpu.  If so, we will reschedule to allow the push logic to try
1680	 * to move current somewhere else, making room for our non-migratable
1681	 * task.
1682	 */
1683	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1684		check_preempt_equal_prio(rq, p);
1685#endif
1686}
1687
1688static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1689{
1690	struct sched_rt_entity *rt_se = &p->rt;
1691	struct rt_rq *rt_rq = &rq->rt;
1692
1693	p->se.exec_start = rq_clock_task(rq);
1694	if (on_rt_rq(&p->rt))
1695		update_stats_wait_end_rt(rt_rq, rt_se);
1696
1697	/* The running task is never eligible for pushing */
1698	dequeue_pushable_task(rq, p);
1699
1700	if (!first)
1701		return;
1702
1703	/*
1704	 * If prev task was rt, put_prev_task() has already updated the
1705	 * utilization. We only care of the case where we start to schedule a
1706	 * rt task
1707	 */
1708	if (rq->curr->sched_class != &rt_sched_class)
1709		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1710
1711	rt_queue_push_tasks(rq);
1712}
1713
1714static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
 
1715{
1716	struct rt_prio_array *array = &rt_rq->active;
1717	struct sched_rt_entity *next = NULL;
1718	struct list_head *queue;
1719	int idx;
1720
1721	idx = sched_find_first_bit(array->bitmap);
1722	BUG_ON(idx >= MAX_RT_PRIO);
1723
1724	queue = array->queue + idx;
1725	if (SCHED_WARN_ON(list_empty(queue)))
1726		return NULL;
1727	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1728
1729	return next;
1730}
1731
1732static struct task_struct *_pick_next_task_rt(struct rq *rq)
1733{
1734	struct sched_rt_entity *rt_se;
1735	struct rt_rq *rt_rq  = &rq->rt;
1736
1737	do {
1738		rt_se = pick_next_rt_entity(rt_rq);
1739		if (unlikely(!rt_se))
1740			return NULL;
1741		rt_rq = group_rt_rq(rt_se);
1742	} while (rt_rq);
1743
1744	return rt_task_of(rt_se);
1745}
1746
1747static struct task_struct *pick_task_rt(struct rq *rq)
 
1748{
1749	struct task_struct *p;
1750
 
 
1751	if (!sched_rt_runnable(rq))
1752		return NULL;
1753
1754	p = _pick_next_task_rt(rq);
1755
1756	return p;
1757}
1758
1759static struct task_struct *pick_next_task_rt(struct rq *rq)
1760{
1761	struct task_struct *p = pick_task_rt(rq);
1762
1763	if (p)
1764		set_next_task_rt(rq, p, true);
1765
1766	return p;
1767}
1768
1769static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1770{
1771	struct sched_rt_entity *rt_se = &p->rt;
1772	struct rt_rq *rt_rq = &rq->rt;
1773
1774	if (on_rt_rq(&p->rt))
1775		update_stats_wait_start_rt(rt_rq, rt_se);
1776
1777	update_curr_rt(rq);
1778
1779	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1780
1781	/*
1782	 * The previous task needs to be made eligible for pushing
1783	 * if it is still active
1784	 */
1785	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1786		enqueue_pushable_task(rq, p);
1787}
1788
1789#ifdef CONFIG_SMP
1790
1791/* Only try algorithms three times */
1792#define RT_MAX_TRIES 3
1793
1794static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1795{
1796	if (!task_on_cpu(rq, p) &&
1797	    cpumask_test_cpu(cpu, &p->cpus_mask))
1798		return 1;
1799
1800	return 0;
1801}
1802
1803/*
1804 * Return the highest pushable rq's task, which is suitable to be executed
1805 * on the CPU, NULL otherwise
1806 */
1807static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1808{
1809	struct plist_head *head = &rq->rt.pushable_tasks;
1810	struct task_struct *p;
1811
1812	if (!has_pushable_tasks(rq))
1813		return NULL;
1814
1815	plist_for_each_entry(p, head, pushable_tasks) {
1816		if (pick_rt_task(rq, p, cpu))
1817			return p;
1818	}
1819
1820	return NULL;
1821}
1822
1823static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1824
1825static int find_lowest_rq(struct task_struct *task)
1826{
1827	struct sched_domain *sd;
1828	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1829	int this_cpu = smp_processor_id();
1830	int cpu      = task_cpu(task);
1831	int ret;
1832
1833	/* Make sure the mask is initialized first */
1834	if (unlikely(!lowest_mask))
1835		return -1;
1836
1837	if (task->nr_cpus_allowed == 1)
1838		return -1; /* No other targets possible */
1839
1840	/*
1841	 * If we're on asym system ensure we consider the different capacities
1842	 * of the CPUs when searching for the lowest_mask.
1843	 */
1844	if (sched_asym_cpucap_active()) {
1845
1846		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1847					  task, lowest_mask,
1848					  rt_task_fits_capacity);
1849	} else {
1850
1851		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1852				  task, lowest_mask);
1853	}
1854
1855	if (!ret)
1856		return -1; /* No targets found */
1857
1858	/*
1859	 * At this point we have built a mask of CPUs representing the
1860	 * lowest priority tasks in the system.  Now we want to elect
1861	 * the best one based on our affinity and topology.
1862	 *
1863	 * We prioritize the last CPU that the task executed on since
1864	 * it is most likely cache-hot in that location.
1865	 */
1866	if (cpumask_test_cpu(cpu, lowest_mask))
1867		return cpu;
1868
1869	/*
1870	 * Otherwise, we consult the sched_domains span maps to figure
1871	 * out which CPU is logically closest to our hot cache data.
1872	 */
1873	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1874		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1875
1876	rcu_read_lock();
1877	for_each_domain(cpu, sd) {
1878		if (sd->flags & SD_WAKE_AFFINE) {
1879			int best_cpu;
1880
1881			/*
1882			 * "this_cpu" is cheaper to preempt than a
1883			 * remote processor.
1884			 */
1885			if (this_cpu != -1 &&
1886			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1887				rcu_read_unlock();
1888				return this_cpu;
1889			}
1890
1891			best_cpu = cpumask_any_and_distribute(lowest_mask,
1892							      sched_domain_span(sd));
1893			if (best_cpu < nr_cpu_ids) {
1894				rcu_read_unlock();
1895				return best_cpu;
1896			}
1897		}
1898	}
1899	rcu_read_unlock();
1900
1901	/*
1902	 * And finally, if there were no matches within the domains
1903	 * just give the caller *something* to work with from the compatible
1904	 * locations.
1905	 */
1906	if (this_cpu != -1)
1907		return this_cpu;
1908
1909	cpu = cpumask_any_distribute(lowest_mask);
1910	if (cpu < nr_cpu_ids)
1911		return cpu;
1912
1913	return -1;
1914}
1915
1916/* Will lock the rq it finds */
1917static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1918{
1919	struct rq *lowest_rq = NULL;
1920	int tries;
1921	int cpu;
1922
1923	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1924		cpu = find_lowest_rq(task);
1925
1926		if ((cpu == -1) || (cpu == rq->cpu))
1927			break;
1928
1929		lowest_rq = cpu_rq(cpu);
1930
1931		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1932			/*
1933			 * Target rq has tasks of equal or higher priority,
1934			 * retrying does not release any lock and is unlikely
1935			 * to yield a different result.
1936			 */
1937			lowest_rq = NULL;
1938			break;
1939		}
1940
1941		/* if the prio of this runqueue changed, try again */
1942		if (double_lock_balance(rq, lowest_rq)) {
1943			/*
1944			 * We had to unlock the run queue. In
1945			 * the mean time, task could have
1946			 * migrated already or had its affinity changed.
1947			 * Also make sure that it wasn't scheduled on its rq.
1948			 * It is possible the task was scheduled, set
1949			 * "migrate_disabled" and then got preempted, so we must
1950			 * check the task migration disable flag here too.
1951			 */
1952			if (unlikely(task_rq(task) != rq ||
1953				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1954				     task_on_cpu(rq, task) ||
1955				     !rt_task(task) ||
1956				     is_migration_disabled(task) ||
1957				     !task_on_rq_queued(task))) {
1958
1959				double_unlock_balance(rq, lowest_rq);
1960				lowest_rq = NULL;
1961				break;
1962			}
1963		}
1964
1965		/* If this rq is still suitable use it. */
1966		if (lowest_rq->rt.highest_prio.curr > task->prio)
1967			break;
1968
1969		/* try again */
1970		double_unlock_balance(rq, lowest_rq);
1971		lowest_rq = NULL;
1972	}
1973
1974	return lowest_rq;
1975}
1976
1977static struct task_struct *pick_next_pushable_task(struct rq *rq)
1978{
1979	struct task_struct *p;
1980
1981	if (!has_pushable_tasks(rq))
1982		return NULL;
1983
1984	p = plist_first_entry(&rq->rt.pushable_tasks,
1985			      struct task_struct, pushable_tasks);
1986
1987	BUG_ON(rq->cpu != task_cpu(p));
1988	BUG_ON(task_current(rq, p));
1989	BUG_ON(p->nr_cpus_allowed <= 1);
1990
1991	BUG_ON(!task_on_rq_queued(p));
1992	BUG_ON(!rt_task(p));
1993
1994	return p;
1995}
1996
1997/*
1998 * If the current CPU has more than one RT task, see if the non
1999 * running task can migrate over to a CPU that is running a task
2000 * of lesser priority.
2001 */
2002static int push_rt_task(struct rq *rq, bool pull)
2003{
2004	struct task_struct *next_task;
2005	struct rq *lowest_rq;
2006	int ret = 0;
2007
2008	if (!rq->rt.overloaded)
2009		return 0;
2010
2011	next_task = pick_next_pushable_task(rq);
2012	if (!next_task)
2013		return 0;
2014
2015retry:
 
 
 
2016	/*
2017	 * It's possible that the next_task slipped in of
2018	 * higher priority than current. If that's the case
2019	 * just reschedule current.
2020	 */
2021	if (unlikely(next_task->prio < rq->curr->prio)) {
2022		resched_curr(rq);
2023		return 0;
2024	}
2025
2026	if (is_migration_disabled(next_task)) {
2027		struct task_struct *push_task = NULL;
2028		int cpu;
2029
2030		if (!pull || rq->push_busy)
2031			return 0;
2032
2033		/*
2034		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2035		 * make sense. Per the above priority check, curr has to
2036		 * be of higher priority than next_task, so no need to
2037		 * reschedule when bailing out.
2038		 *
2039		 * Note that the stoppers are masqueraded as SCHED_FIFO
2040		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2041		 */
2042		if (rq->curr->sched_class != &rt_sched_class)
2043			return 0;
2044
2045		cpu = find_lowest_rq(rq->curr);
2046		if (cpu == -1 || cpu == rq->cpu)
2047			return 0;
2048
2049		/*
2050		 * Given we found a CPU with lower priority than @next_task,
2051		 * therefore it should be running. However we cannot migrate it
2052		 * to this other CPU, instead attempt to push the current
2053		 * running task on this CPU away.
2054		 */
2055		push_task = get_push_task(rq);
2056		if (push_task) {
2057			preempt_disable();
2058			raw_spin_rq_unlock(rq);
2059			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2060					    push_task, &rq->push_work);
2061			preempt_enable();
2062			raw_spin_rq_lock(rq);
2063		}
2064
2065		return 0;
2066	}
2067
2068	if (WARN_ON(next_task == rq->curr))
2069		return 0;
2070
2071	/* We might release rq lock */
2072	get_task_struct(next_task);
2073
2074	/* find_lock_lowest_rq locks the rq if found */
2075	lowest_rq = find_lock_lowest_rq(next_task, rq);
2076	if (!lowest_rq) {
2077		struct task_struct *task;
2078		/*
2079		 * find_lock_lowest_rq releases rq->lock
2080		 * so it is possible that next_task has migrated.
2081		 *
2082		 * We need to make sure that the task is still on the same
2083		 * run-queue and is also still the next task eligible for
2084		 * pushing.
2085		 */
2086		task = pick_next_pushable_task(rq);
2087		if (task == next_task) {
2088			/*
2089			 * The task hasn't migrated, and is still the next
2090			 * eligible task, but we failed to find a run-queue
2091			 * to push it to.  Do not retry in this case, since
2092			 * other CPUs will pull from us when ready.
2093			 */
2094			goto out;
2095		}
2096
2097		if (!task)
2098			/* No more tasks, just exit */
2099			goto out;
2100
2101		/*
2102		 * Something has shifted, try again.
2103		 */
2104		put_task_struct(next_task);
2105		next_task = task;
2106		goto retry;
2107	}
2108
2109	deactivate_task(rq, next_task, 0);
2110	set_task_cpu(next_task, lowest_rq->cpu);
2111	activate_task(lowest_rq, next_task, 0);
 
 
2112	resched_curr(lowest_rq);
2113	ret = 1;
2114
2115	double_unlock_balance(rq, lowest_rq);
 
2116out:
2117	put_task_struct(next_task);
2118
2119	return ret;
2120}
2121
2122static void push_rt_tasks(struct rq *rq)
2123{
2124	/* push_rt_task will return true if it moved an RT */
2125	while (push_rt_task(rq, false))
2126		;
2127}
2128
2129#ifdef HAVE_RT_PUSH_IPI
2130
2131/*
2132 * When a high priority task schedules out from a CPU and a lower priority
2133 * task is scheduled in, a check is made to see if there's any RT tasks
2134 * on other CPUs that are waiting to run because a higher priority RT task
2135 * is currently running on its CPU. In this case, the CPU with multiple RT
2136 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2137 * up that may be able to run one of its non-running queued RT tasks.
2138 *
2139 * All CPUs with overloaded RT tasks need to be notified as there is currently
2140 * no way to know which of these CPUs have the highest priority task waiting
2141 * to run. Instead of trying to take a spinlock on each of these CPUs,
2142 * which has shown to cause large latency when done on machines with many
2143 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2144 * RT tasks waiting to run.
2145 *
2146 * Just sending an IPI to each of the CPUs is also an issue, as on large
2147 * count CPU machines, this can cause an IPI storm on a CPU, especially
2148 * if its the only CPU with multiple RT tasks queued, and a large number
2149 * of CPUs scheduling a lower priority task at the same time.
2150 *
2151 * Each root domain has its own irq work function that can iterate over
2152 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2153 * task must be checked if there's one or many CPUs that are lowering
2154 * their priority, there's a single irq work iterator that will try to
2155 * push off RT tasks that are waiting to run.
2156 *
2157 * When a CPU schedules a lower priority task, it will kick off the
2158 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2159 * As it only takes the first CPU that schedules a lower priority task
2160 * to start the process, the rto_start variable is incremented and if
2161 * the atomic result is one, then that CPU will try to take the rto_lock.
2162 * This prevents high contention on the lock as the process handles all
2163 * CPUs scheduling lower priority tasks.
2164 *
2165 * All CPUs that are scheduling a lower priority task will increment the
2166 * rt_loop_next variable. This will make sure that the irq work iterator
2167 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2168 * priority task, even if the iterator is in the middle of a scan. Incrementing
2169 * the rt_loop_next will cause the iterator to perform another scan.
2170 *
2171 */
2172static int rto_next_cpu(struct root_domain *rd)
2173{
2174	int next;
2175	int cpu;
2176
2177	/*
2178	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2179	 * rt_next_cpu() will simply return the first CPU found in
2180	 * the rto_mask.
2181	 *
2182	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2183	 * will return the next CPU found in the rto_mask.
2184	 *
2185	 * If there are no more CPUs left in the rto_mask, then a check is made
2186	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2187	 * the rto_lock held, but any CPU may increment the rto_loop_next
2188	 * without any locking.
2189	 */
2190	for (;;) {
2191
2192		/* When rto_cpu is -1 this acts like cpumask_first() */
2193		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2194
2195		rd->rto_cpu = cpu;
2196
2197		if (cpu < nr_cpu_ids)
2198			return cpu;
2199
2200		rd->rto_cpu = -1;
2201
2202		/*
2203		 * ACQUIRE ensures we see the @rto_mask changes
2204		 * made prior to the @next value observed.
2205		 *
2206		 * Matches WMB in rt_set_overload().
2207		 */
2208		next = atomic_read_acquire(&rd->rto_loop_next);
2209
2210		if (rd->rto_loop == next)
2211			break;
2212
2213		rd->rto_loop = next;
2214	}
2215
2216	return -1;
2217}
2218
2219static inline bool rto_start_trylock(atomic_t *v)
2220{
2221	return !atomic_cmpxchg_acquire(v, 0, 1);
2222}
2223
2224static inline void rto_start_unlock(atomic_t *v)
2225{
2226	atomic_set_release(v, 0);
2227}
2228
2229static void tell_cpu_to_push(struct rq *rq)
2230{
2231	int cpu = -1;
2232
2233	/* Keep the loop going if the IPI is currently active */
2234	atomic_inc(&rq->rd->rto_loop_next);
2235
2236	/* Only one CPU can initiate a loop at a time */
2237	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2238		return;
2239
2240	raw_spin_lock(&rq->rd->rto_lock);
2241
2242	/*
2243	 * The rto_cpu is updated under the lock, if it has a valid CPU
2244	 * then the IPI is still running and will continue due to the
2245	 * update to loop_next, and nothing needs to be done here.
2246	 * Otherwise it is finishing up and an ipi needs to be sent.
2247	 */
2248	if (rq->rd->rto_cpu < 0)
2249		cpu = rto_next_cpu(rq->rd);
2250
2251	raw_spin_unlock(&rq->rd->rto_lock);
2252
2253	rto_start_unlock(&rq->rd->rto_loop_start);
2254
2255	if (cpu >= 0) {
2256		/* Make sure the rd does not get freed while pushing */
2257		sched_get_rd(rq->rd);
2258		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2259	}
2260}
2261
2262/* Called from hardirq context */
2263void rto_push_irq_work_func(struct irq_work *work)
2264{
2265	struct root_domain *rd =
2266		container_of(work, struct root_domain, rto_push_work);
2267	struct rq *rq;
2268	int cpu;
2269
2270	rq = this_rq();
2271
2272	/*
2273	 * We do not need to grab the lock to check for has_pushable_tasks.
2274	 * When it gets updated, a check is made if a push is possible.
2275	 */
2276	if (has_pushable_tasks(rq)) {
2277		raw_spin_rq_lock(rq);
2278		while (push_rt_task(rq, true))
2279			;
2280		raw_spin_rq_unlock(rq);
2281	}
2282
2283	raw_spin_lock(&rd->rto_lock);
2284
2285	/* Pass the IPI to the next rt overloaded queue */
2286	cpu = rto_next_cpu(rd);
2287
2288	raw_spin_unlock(&rd->rto_lock);
2289
2290	if (cpu < 0) {
2291		sched_put_rd(rd);
2292		return;
2293	}
2294
2295	/* Try the next RT overloaded CPU */
2296	irq_work_queue_on(&rd->rto_push_work, cpu);
2297}
2298#endif /* HAVE_RT_PUSH_IPI */
2299
2300static void pull_rt_task(struct rq *this_rq)
2301{
2302	int this_cpu = this_rq->cpu, cpu;
2303	bool resched = false;
2304	struct task_struct *p, *push_task;
2305	struct rq *src_rq;
2306	int rt_overload_count = rt_overloaded(this_rq);
2307
2308	if (likely(!rt_overload_count))
2309		return;
2310
2311	/*
2312	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2313	 * see overloaded we must also see the rto_mask bit.
2314	 */
2315	smp_rmb();
2316
2317	/* If we are the only overloaded CPU do nothing */
2318	if (rt_overload_count == 1 &&
2319	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2320		return;
2321
2322#ifdef HAVE_RT_PUSH_IPI
2323	if (sched_feat(RT_PUSH_IPI)) {
2324		tell_cpu_to_push(this_rq);
2325		return;
2326	}
2327#endif
2328
2329	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2330		if (this_cpu == cpu)
2331			continue;
2332
2333		src_rq = cpu_rq(cpu);
2334
2335		/*
2336		 * Don't bother taking the src_rq->lock if the next highest
2337		 * task is known to be lower-priority than our current task.
2338		 * This may look racy, but if this value is about to go
2339		 * logically higher, the src_rq will push this task away.
2340		 * And if its going logically lower, we do not care
2341		 */
2342		if (src_rq->rt.highest_prio.next >=
2343		    this_rq->rt.highest_prio.curr)
2344			continue;
2345
2346		/*
2347		 * We can potentially drop this_rq's lock in
2348		 * double_lock_balance, and another CPU could
2349		 * alter this_rq
2350		 */
2351		push_task = NULL;
2352		double_lock_balance(this_rq, src_rq);
2353
2354		/*
2355		 * We can pull only a task, which is pushable
2356		 * on its rq, and no others.
2357		 */
2358		p = pick_highest_pushable_task(src_rq, this_cpu);
2359
2360		/*
2361		 * Do we have an RT task that preempts
2362		 * the to-be-scheduled task?
2363		 */
2364		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2365			WARN_ON(p == src_rq->curr);
2366			WARN_ON(!task_on_rq_queued(p));
2367
2368			/*
2369			 * There's a chance that p is higher in priority
2370			 * than what's currently running on its CPU.
2371			 * This is just that p is waking up and hasn't
2372			 * had a chance to schedule. We only pull
2373			 * p if it is lower in priority than the
2374			 * current task on the run queue
2375			 */
2376			if (p->prio < src_rq->curr->prio)
2377				goto skip;
2378
2379			if (is_migration_disabled(p)) {
2380				push_task = get_push_task(src_rq);
2381			} else {
2382				deactivate_task(src_rq, p, 0);
2383				set_task_cpu(p, this_cpu);
2384				activate_task(this_rq, p, 0);
2385				resched = true;
2386			}
2387			/*
2388			 * We continue with the search, just in
2389			 * case there's an even higher prio task
2390			 * in another runqueue. (low likelihood
2391			 * but possible)
2392			 */
2393		}
2394skip:
2395		double_unlock_balance(this_rq, src_rq);
2396
2397		if (push_task) {
2398			preempt_disable();
2399			raw_spin_rq_unlock(this_rq);
2400			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2401					    push_task, &src_rq->push_work);
2402			preempt_enable();
2403			raw_spin_rq_lock(this_rq);
2404		}
2405	}
2406
2407	if (resched)
2408		resched_curr(this_rq);
2409}
2410
2411/*
2412 * If we are not running and we are not going to reschedule soon, we should
2413 * try to push tasks away now
2414 */
2415static void task_woken_rt(struct rq *rq, struct task_struct *p)
2416{
2417	bool need_to_push = !task_on_cpu(rq, p) &&
2418			    !test_tsk_need_resched(rq->curr) &&
2419			    p->nr_cpus_allowed > 1 &&
2420			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2421			    (rq->curr->nr_cpus_allowed < 2 ||
2422			     rq->curr->prio <= p->prio);
2423
2424	if (need_to_push)
2425		push_rt_tasks(rq);
2426}
2427
2428/* Assumes rq->lock is held */
2429static void rq_online_rt(struct rq *rq)
2430{
2431	if (rq->rt.overloaded)
2432		rt_set_overload(rq);
2433
2434	__enable_runtime(rq);
2435
2436	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2437}
2438
2439/* Assumes rq->lock is held */
2440static void rq_offline_rt(struct rq *rq)
2441{
2442	if (rq->rt.overloaded)
2443		rt_clear_overload(rq);
2444
2445	__disable_runtime(rq);
2446
2447	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2448}
2449
2450/*
2451 * When switch from the rt queue, we bring ourselves to a position
2452 * that we might want to pull RT tasks from other runqueues.
2453 */
2454static void switched_from_rt(struct rq *rq, struct task_struct *p)
2455{
2456	/*
2457	 * If there are other RT tasks then we will reschedule
2458	 * and the scheduling of the other RT tasks will handle
2459	 * the balancing. But if we are the last RT task
2460	 * we may need to handle the pulling of RT tasks
2461	 * now.
2462	 */
2463	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2464		return;
2465
2466	rt_queue_pull_task(rq);
2467}
2468
2469void __init init_sched_rt_class(void)
2470{
2471	unsigned int i;
2472
2473	for_each_possible_cpu(i) {
2474		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2475					GFP_KERNEL, cpu_to_node(i));
2476	}
2477}
2478#endif /* CONFIG_SMP */
2479
2480/*
2481 * When switching a task to RT, we may overload the runqueue
2482 * with RT tasks. In this case we try to push them off to
2483 * other runqueues.
2484 */
2485static void switched_to_rt(struct rq *rq, struct task_struct *p)
2486{
2487	/*
2488	 * If we are running, update the avg_rt tracking, as the running time
2489	 * will now on be accounted into the latter.
2490	 */
2491	if (task_current(rq, p)) {
2492		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2493		return;
2494	}
2495
2496	/*
2497	 * If we are not running we may need to preempt the current
2498	 * running task. If that current running task is also an RT task
2499	 * then see if we can move to another run queue.
2500	 */
2501	if (task_on_rq_queued(p)) {
2502#ifdef CONFIG_SMP
2503		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2504			rt_queue_push_tasks(rq);
2505#endif /* CONFIG_SMP */
2506		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2507			resched_curr(rq);
2508	}
2509}
2510
2511/*
2512 * Priority of the task has changed. This may cause
2513 * us to initiate a push or pull.
2514 */
2515static void
2516prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2517{
2518	if (!task_on_rq_queued(p))
2519		return;
2520
2521	if (task_current(rq, p)) {
2522#ifdef CONFIG_SMP
2523		/*
2524		 * If our priority decreases while running, we
2525		 * may need to pull tasks to this runqueue.
2526		 */
2527		if (oldprio < p->prio)
2528			rt_queue_pull_task(rq);
2529
2530		/*
2531		 * If there's a higher priority task waiting to run
2532		 * then reschedule.
2533		 */
2534		if (p->prio > rq->rt.highest_prio.curr)
2535			resched_curr(rq);
2536#else
2537		/* For UP simply resched on drop of prio */
2538		if (oldprio < p->prio)
2539			resched_curr(rq);
2540#endif /* CONFIG_SMP */
2541	} else {
2542		/*
2543		 * This task is not running, but if it is
2544		 * greater than the current running task
2545		 * then reschedule.
2546		 */
2547		if (p->prio < rq->curr->prio)
2548			resched_curr(rq);
2549	}
2550}
2551
2552#ifdef CONFIG_POSIX_TIMERS
2553static void watchdog(struct rq *rq, struct task_struct *p)
2554{
2555	unsigned long soft, hard;
2556
2557	/* max may change after cur was read, this will be fixed next tick */
2558	soft = task_rlimit(p, RLIMIT_RTTIME);
2559	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2560
2561	if (soft != RLIM_INFINITY) {
2562		unsigned long next;
2563
2564		if (p->rt.watchdog_stamp != jiffies) {
2565			p->rt.timeout++;
2566			p->rt.watchdog_stamp = jiffies;
2567		}
2568
2569		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2570		if (p->rt.timeout > next) {
2571			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2572						    p->se.sum_exec_runtime);
2573		}
2574	}
2575}
2576#else
2577static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2578#endif
2579
2580/*
2581 * scheduler tick hitting a task of our scheduling class.
2582 *
2583 * NOTE: This function can be called remotely by the tick offload that
2584 * goes along full dynticks. Therefore no local assumption can be made
2585 * and everything must be accessed through the @rq and @curr passed in
2586 * parameters.
2587 */
2588static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2589{
2590	struct sched_rt_entity *rt_se = &p->rt;
2591
2592	update_curr_rt(rq);
2593	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2594
2595	watchdog(rq, p);
2596
2597	/*
2598	 * RR tasks need a special form of timeslice management.
2599	 * FIFO tasks have no timeslices.
2600	 */
2601	if (p->policy != SCHED_RR)
2602		return;
2603
2604	if (--p->rt.time_slice)
2605		return;
2606
2607	p->rt.time_slice = sched_rr_timeslice;
2608
2609	/*
2610	 * Requeue to the end of queue if we (and all of our ancestors) are not
2611	 * the only element on the queue
2612	 */
2613	for_each_sched_rt_entity(rt_se) {
2614		if (rt_se->run_list.prev != rt_se->run_list.next) {
2615			requeue_task_rt(rq, p, 0);
2616			resched_curr(rq);
2617			return;
2618		}
2619	}
2620}
2621
2622static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2623{
2624	/*
2625	 * Time slice is 0 for SCHED_FIFO tasks
2626	 */
2627	if (task->policy == SCHED_RR)
2628		return sched_rr_timeslice;
2629	else
2630		return 0;
2631}
2632
2633#ifdef CONFIG_SCHED_CORE
2634static int task_is_throttled_rt(struct task_struct *p, int cpu)
2635{
2636	struct rt_rq *rt_rq;
2637
2638#ifdef CONFIG_RT_GROUP_SCHED
2639	rt_rq = task_group(p)->rt_rq[cpu];
2640#else
2641	rt_rq = &cpu_rq(cpu)->rt;
2642#endif
2643
2644	return rt_rq_throttled(rt_rq);
2645}
2646#endif
2647
2648DEFINE_SCHED_CLASS(rt) = {
2649
2650	.enqueue_task		= enqueue_task_rt,
2651	.dequeue_task		= dequeue_task_rt,
2652	.yield_task		= yield_task_rt,
2653
2654	.wakeup_preempt		= wakeup_preempt_rt,
2655
2656	.pick_next_task		= pick_next_task_rt,
2657	.put_prev_task		= put_prev_task_rt,
2658	.set_next_task          = set_next_task_rt,
2659
2660#ifdef CONFIG_SMP
2661	.balance		= balance_rt,
2662	.pick_task		= pick_task_rt,
2663	.select_task_rq		= select_task_rq_rt,
2664	.set_cpus_allowed       = set_cpus_allowed_common,
2665	.rq_online              = rq_online_rt,
2666	.rq_offline             = rq_offline_rt,
2667	.task_woken		= task_woken_rt,
2668	.switched_from		= switched_from_rt,
2669	.find_lock_rq		= find_lock_lowest_rq,
2670#endif
2671
2672	.task_tick		= task_tick_rt,
2673
2674	.get_rr_interval	= get_rr_interval_rt,
2675
2676	.prio_changed		= prio_changed_rt,
2677	.switched_to		= switched_to_rt,
2678
2679	.update_curr		= update_curr_rt,
2680
2681#ifdef CONFIG_SCHED_CORE
2682	.task_is_throttled	= task_is_throttled_rt,
2683#endif
2684
2685#ifdef CONFIG_UCLAMP_TASK
2686	.uclamp_enabled		= 1,
2687#endif
2688};
2689
2690#ifdef CONFIG_RT_GROUP_SCHED
2691/*
2692 * Ensure that the real time constraints are schedulable.
2693 */
2694static DEFINE_MUTEX(rt_constraints_mutex);
2695
 
2696static inline int tg_has_rt_tasks(struct task_group *tg)
2697{
2698	struct task_struct *task;
2699	struct css_task_iter it;
2700	int ret = 0;
2701
2702	/*
2703	 * Autogroups do not have RT tasks; see autogroup_create().
2704	 */
2705	if (task_group_is_autogroup(tg))
2706		return 0;
2707
2708	css_task_iter_start(&tg->css, 0, &it);
2709	while (!ret && (task = css_task_iter_next(&it)))
2710		ret |= rt_task(task);
2711	css_task_iter_end(&it);
2712
2713	return ret;
2714}
2715
2716struct rt_schedulable_data {
2717	struct task_group *tg;
2718	u64 rt_period;
2719	u64 rt_runtime;
2720};
2721
2722static int tg_rt_schedulable(struct task_group *tg, void *data)
2723{
2724	struct rt_schedulable_data *d = data;
2725	struct task_group *child;
2726	unsigned long total, sum = 0;
2727	u64 period, runtime;
2728
2729	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2730	runtime = tg->rt_bandwidth.rt_runtime;
2731
2732	if (tg == d->tg) {
2733		period = d->rt_period;
2734		runtime = d->rt_runtime;
2735	}
2736
2737	/*
2738	 * Cannot have more runtime than the period.
2739	 */
2740	if (runtime > period && runtime != RUNTIME_INF)
2741		return -EINVAL;
2742
2743	/*
2744	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2745	 */
2746	if (rt_bandwidth_enabled() && !runtime &&
2747	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2748		return -EBUSY;
2749
2750	total = to_ratio(period, runtime);
2751
2752	/*
2753	 * Nobody can have more than the global setting allows.
2754	 */
2755	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2756		return -EINVAL;
2757
2758	/*
2759	 * The sum of our children's runtime should not exceed our own.
2760	 */
2761	list_for_each_entry_rcu(child, &tg->children, siblings) {
2762		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2763		runtime = child->rt_bandwidth.rt_runtime;
2764
2765		if (child == d->tg) {
2766			period = d->rt_period;
2767			runtime = d->rt_runtime;
2768		}
2769
2770		sum += to_ratio(period, runtime);
2771	}
2772
2773	if (sum > total)
2774		return -EINVAL;
2775
2776	return 0;
2777}
2778
2779static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2780{
2781	int ret;
2782
2783	struct rt_schedulable_data data = {
2784		.tg = tg,
2785		.rt_period = period,
2786		.rt_runtime = runtime,
2787	};
2788
2789	rcu_read_lock();
2790	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2791	rcu_read_unlock();
2792
2793	return ret;
2794}
2795
2796static int tg_set_rt_bandwidth(struct task_group *tg,
2797		u64 rt_period, u64 rt_runtime)
2798{
2799	int i, err = 0;
2800
2801	/*
2802	 * Disallowing the root group RT runtime is BAD, it would disallow the
2803	 * kernel creating (and or operating) RT threads.
2804	 */
2805	if (tg == &root_task_group && rt_runtime == 0)
2806		return -EINVAL;
2807
2808	/* No period doesn't make any sense. */
2809	if (rt_period == 0)
2810		return -EINVAL;
2811
2812	/*
2813	 * Bound quota to defend quota against overflow during bandwidth shift.
2814	 */
2815	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2816		return -EINVAL;
2817
2818	mutex_lock(&rt_constraints_mutex);
 
2819	err = __rt_schedulable(tg, rt_period, rt_runtime);
2820	if (err)
2821		goto unlock;
2822
2823	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2824	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2825	tg->rt_bandwidth.rt_runtime = rt_runtime;
2826
2827	for_each_possible_cpu(i) {
2828		struct rt_rq *rt_rq = tg->rt_rq[i];
2829
2830		raw_spin_lock(&rt_rq->rt_runtime_lock);
2831		rt_rq->rt_runtime = rt_runtime;
2832		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2833	}
2834	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2835unlock:
 
2836	mutex_unlock(&rt_constraints_mutex);
2837
2838	return err;
2839}
2840
2841int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2842{
2843	u64 rt_runtime, rt_period;
2844
2845	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2846	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2847	if (rt_runtime_us < 0)
2848		rt_runtime = RUNTIME_INF;
2849	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2850		return -EINVAL;
2851
2852	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2853}
2854
2855long sched_group_rt_runtime(struct task_group *tg)
2856{
2857	u64 rt_runtime_us;
2858
2859	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2860		return -1;
2861
2862	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2863	do_div(rt_runtime_us, NSEC_PER_USEC);
2864	return rt_runtime_us;
2865}
2866
2867int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2868{
2869	u64 rt_runtime, rt_period;
2870
2871	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2872		return -EINVAL;
2873
2874	rt_period = rt_period_us * NSEC_PER_USEC;
2875	rt_runtime = tg->rt_bandwidth.rt_runtime;
2876
2877	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2878}
2879
2880long sched_group_rt_period(struct task_group *tg)
2881{
2882	u64 rt_period_us;
2883
2884	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2885	do_div(rt_period_us, NSEC_PER_USEC);
2886	return rt_period_us;
2887}
2888
2889#ifdef CONFIG_SYSCTL
2890static int sched_rt_global_constraints(void)
2891{
2892	int ret = 0;
2893
2894	mutex_lock(&rt_constraints_mutex);
 
2895	ret = __rt_schedulable(NULL, 0, 0);
 
2896	mutex_unlock(&rt_constraints_mutex);
2897
2898	return ret;
2899}
2900#endif /* CONFIG_SYSCTL */
2901
2902int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2903{
2904	/* Don't accept realtime tasks when there is no way for them to run */
2905	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2906		return 0;
2907
2908	return 1;
2909}
2910
2911#else /* !CONFIG_RT_GROUP_SCHED */
2912
2913#ifdef CONFIG_SYSCTL
2914static int sched_rt_global_constraints(void)
2915{
2916	unsigned long flags;
2917	int i;
2918
2919	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2920	for_each_possible_cpu(i) {
2921		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2922
2923		raw_spin_lock(&rt_rq->rt_runtime_lock);
2924		rt_rq->rt_runtime = global_rt_runtime();
2925		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2926	}
2927	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2928
2929	return 0;
2930}
2931#endif /* CONFIG_SYSCTL */
2932#endif /* CONFIG_RT_GROUP_SCHED */
2933
2934#ifdef CONFIG_SYSCTL
2935static int sched_rt_global_validate(void)
2936{
 
 
 
2937	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2938		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2939		 ((u64)sysctl_sched_rt_runtime *
2940			NSEC_PER_USEC > max_rt_runtime)))
2941		return -EINVAL;
2942
2943	return 0;
2944}
2945
2946static void sched_rt_do_global(void)
2947{
2948	unsigned long flags;
2949
2950	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2951	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2952	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2953	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2954}
2955
2956static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2957		size_t *lenp, loff_t *ppos)
 
2958{
2959	int old_period, old_runtime;
2960	static DEFINE_MUTEX(mutex);
2961	int ret;
2962
2963	mutex_lock(&mutex);
2964	old_period = sysctl_sched_rt_period;
2965	old_runtime = sysctl_sched_rt_runtime;
2966
2967	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2968
2969	if (!ret && write) {
2970		ret = sched_rt_global_validate();
2971		if (ret)
2972			goto undo;
2973
2974		ret = sched_dl_global_validate();
2975		if (ret)
2976			goto undo;
2977
2978		ret = sched_rt_global_constraints();
2979		if (ret)
2980			goto undo;
2981
2982		sched_rt_do_global();
2983		sched_dl_do_global();
2984	}
2985	if (0) {
2986undo:
2987		sysctl_sched_rt_period = old_period;
2988		sysctl_sched_rt_runtime = old_runtime;
2989	}
2990	mutex_unlock(&mutex);
2991
2992	return ret;
2993}
2994
2995static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2996		size_t *lenp, loff_t *ppos)
 
2997{
2998	int ret;
2999	static DEFINE_MUTEX(mutex);
3000
3001	mutex_lock(&mutex);
3002	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3003	/*
3004	 * Make sure that internally we keep jiffies.
3005	 * Also, writing zero resets the timeslice to default:
3006	 */
3007	if (!ret && write) {
3008		sched_rr_timeslice =
3009			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3010			msecs_to_jiffies(sysctl_sched_rr_timeslice);
3011
3012		if (sysctl_sched_rr_timeslice <= 0)
3013			sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3014	}
3015	mutex_unlock(&mutex);
3016
3017	return ret;
3018}
3019#endif /* CONFIG_SYSCTL */
3020
3021#ifdef CONFIG_SCHED_DEBUG
3022void print_rt_stats(struct seq_file *m, int cpu)
3023{
3024	rt_rq_iter_t iter;
3025	struct rt_rq *rt_rq;
3026
3027	rcu_read_lock();
3028	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3029		print_rt_rq(m, cpu, rt_rq);
3030	rcu_read_unlock();
3031}
3032#endif /* CONFIG_SCHED_DEBUG */