Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
 
   6#include "sched.h"
   7
   8#include "pelt.h"
   9
  10int sched_rr_timeslice = RR_TIMESLICE;
  11int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
  12
  13static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  14
  15struct rt_bandwidth def_rt_bandwidth;
  16
  17static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  18{
  19	struct rt_bandwidth *rt_b =
  20		container_of(timer, struct rt_bandwidth, rt_period_timer);
  21	int idle = 0;
  22	int overrun;
 
  23
  24	raw_spin_lock(&rt_b->rt_runtime_lock);
  25	for (;;) {
  26		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
 
 
  27		if (!overrun)
  28			break;
  29
  30		raw_spin_unlock(&rt_b->rt_runtime_lock);
  31		idle = do_sched_rt_period_timer(rt_b, overrun);
  32		raw_spin_lock(&rt_b->rt_runtime_lock);
  33	}
  34	if (idle)
  35		rt_b->rt_period_active = 0;
  36	raw_spin_unlock(&rt_b->rt_runtime_lock);
  37
  38	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  39}
  40
  41void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  42{
  43	rt_b->rt_period = ns_to_ktime(period);
  44	rt_b->rt_runtime = runtime;
  45
  46	raw_spin_lock_init(&rt_b->rt_runtime_lock);
  47
  48	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
  49		     HRTIMER_MODE_REL_HARD);
  50	rt_b->rt_period_timer.function = sched_rt_period_timer;
  51}
  52
  53static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  54{
  55	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  56		return;
  57
 
 
 
  58	raw_spin_lock(&rt_b->rt_runtime_lock);
  59	if (!rt_b->rt_period_active) {
  60		rt_b->rt_period_active = 1;
  61		/*
  62		 * SCHED_DEADLINE updates the bandwidth, as a run away
  63		 * RT task with a DL task could hog a CPU. But DL does
  64		 * not reset the period. If a deadline task was running
  65		 * without an RT task running, it can cause RT tasks to
  66		 * throttle when they start up. Kick the timer right away
  67		 * to update the period.
  68		 */
  69		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
  70		hrtimer_start_expires(&rt_b->rt_period_timer,
  71				      HRTIMER_MODE_ABS_PINNED_HARD);
  72	}
  73	raw_spin_unlock(&rt_b->rt_runtime_lock);
  74}
  75
  76void init_rt_rq(struct rt_rq *rt_rq)
  77{
  78	struct rt_prio_array *array;
  79	int i;
  80
  81	array = &rt_rq->active;
  82	for (i = 0; i < MAX_RT_PRIO; i++) {
  83		INIT_LIST_HEAD(array->queue + i);
  84		__clear_bit(i, array->bitmap);
  85	}
  86	/* delimiter for bitsearch: */
  87	__set_bit(MAX_RT_PRIO, array->bitmap);
  88
  89#if defined CONFIG_SMP
  90	rt_rq->highest_prio.curr = MAX_RT_PRIO;
  91	rt_rq->highest_prio.next = MAX_RT_PRIO;
  92	rt_rq->rt_nr_migratory = 0;
  93	rt_rq->overloaded = 0;
  94	plist_head_init(&rt_rq->pushable_tasks);
  95#endif /* CONFIG_SMP */
  96	/* We start is dequeued state, because no RT tasks are queued */
  97	rt_rq->rt_queued = 0;
  98
  99	rt_rq->rt_time = 0;
 100	rt_rq->rt_throttled = 0;
 101	rt_rq->rt_runtime = 0;
 102	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 103}
 104
 105#ifdef CONFIG_RT_GROUP_SCHED
 106static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 107{
 108	hrtimer_cancel(&rt_b->rt_period_timer);
 109}
 110
 111#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 112
 113static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 114{
 115#ifdef CONFIG_SCHED_DEBUG
 116	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 117#endif
 118	return container_of(rt_se, struct task_struct, rt);
 119}
 120
 121static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 122{
 123	return rt_rq->rq;
 124}
 125
 126static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 127{
 128	return rt_se->rt_rq;
 129}
 130
 131static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 132{
 133	struct rt_rq *rt_rq = rt_se->rt_rq;
 134
 135	return rt_rq->rq;
 136}
 137
 138void free_rt_sched_group(struct task_group *tg)
 139{
 140	int i;
 141
 142	if (tg->rt_se)
 143		destroy_rt_bandwidth(&tg->rt_bandwidth);
 144
 145	for_each_possible_cpu(i) {
 146		if (tg->rt_rq)
 147			kfree(tg->rt_rq[i]);
 148		if (tg->rt_se)
 149			kfree(tg->rt_se[i]);
 150	}
 151
 152	kfree(tg->rt_rq);
 153	kfree(tg->rt_se);
 154}
 155
 156void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 157		struct sched_rt_entity *rt_se, int cpu,
 158		struct sched_rt_entity *parent)
 159{
 160	struct rq *rq = cpu_rq(cpu);
 161
 162	rt_rq->highest_prio.curr = MAX_RT_PRIO;
 163	rt_rq->rt_nr_boosted = 0;
 164	rt_rq->rq = rq;
 165	rt_rq->tg = tg;
 166
 167	tg->rt_rq[cpu] = rt_rq;
 168	tg->rt_se[cpu] = rt_se;
 169
 170	if (!rt_se)
 171		return;
 172
 173	if (!parent)
 174		rt_se->rt_rq = &rq->rt;
 175	else
 176		rt_se->rt_rq = parent->my_q;
 177
 178	rt_se->my_q = rt_rq;
 179	rt_se->parent = parent;
 180	INIT_LIST_HEAD(&rt_se->run_list);
 181}
 182
 183int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 184{
 185	struct rt_rq *rt_rq;
 186	struct sched_rt_entity *rt_se;
 187	int i;
 188
 189	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
 190	if (!tg->rt_rq)
 191		goto err;
 192	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
 193	if (!tg->rt_se)
 194		goto err;
 195
 196	init_rt_bandwidth(&tg->rt_bandwidth,
 197			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 198
 199	for_each_possible_cpu(i) {
 200		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 201				     GFP_KERNEL, cpu_to_node(i));
 202		if (!rt_rq)
 203			goto err;
 204
 205		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 206				     GFP_KERNEL, cpu_to_node(i));
 207		if (!rt_se)
 208			goto err_free_rq;
 209
 210		init_rt_rq(rt_rq);
 211		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 212		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 213	}
 214
 215	return 1;
 216
 217err_free_rq:
 218	kfree(rt_rq);
 219err:
 220	return 0;
 221}
 222
 223#else /* CONFIG_RT_GROUP_SCHED */
 224
 225#define rt_entity_is_task(rt_se) (1)
 226
 227static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 228{
 229	return container_of(rt_se, struct task_struct, rt);
 230}
 231
 232static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 233{
 234	return container_of(rt_rq, struct rq, rt);
 235}
 236
 237static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 238{
 239	struct task_struct *p = rt_task_of(rt_se);
 240
 241	return task_rq(p);
 242}
 243
 244static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 245{
 246	struct rq *rq = rq_of_rt_se(rt_se);
 
 247
 248	return &rq->rt;
 249}
 250
 251void free_rt_sched_group(struct task_group *tg) { }
 252
 253int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 254{
 255	return 1;
 256}
 257#endif /* CONFIG_RT_GROUP_SCHED */
 258
 259#ifdef CONFIG_SMP
 260
 261static void pull_rt_task(struct rq *this_rq);
 262
 263static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 264{
 265	/* Try to pull RT tasks here if we lower this rq's prio */
 266	return rq->rt.highest_prio.curr > prev->prio;
 267}
 268
 269static inline int rt_overloaded(struct rq *rq)
 270{
 271	return atomic_read(&rq->rd->rto_count);
 272}
 273
 274static inline void rt_set_overload(struct rq *rq)
 275{
 276	if (!rq->online)
 277		return;
 278
 279	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 280	/*
 281	 * Make sure the mask is visible before we set
 282	 * the overload count. That is checked to determine
 283	 * if we should look at the mask. It would be a shame
 284	 * if we looked at the mask, but the mask was not
 285	 * updated yet.
 286	 *
 287	 * Matched by the barrier in pull_rt_task().
 288	 */
 289	smp_wmb();
 290	atomic_inc(&rq->rd->rto_count);
 291}
 292
 293static inline void rt_clear_overload(struct rq *rq)
 294{
 295	if (!rq->online)
 296		return;
 297
 298	/* the order here really doesn't matter */
 299	atomic_dec(&rq->rd->rto_count);
 300	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 301}
 302
 303static void update_rt_migration(struct rt_rq *rt_rq)
 304{
 305	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 306		if (!rt_rq->overloaded) {
 307			rt_set_overload(rq_of_rt_rq(rt_rq));
 308			rt_rq->overloaded = 1;
 309		}
 310	} else if (rt_rq->overloaded) {
 311		rt_clear_overload(rq_of_rt_rq(rt_rq));
 312		rt_rq->overloaded = 0;
 313	}
 314}
 315
 316static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 317{
 318	struct task_struct *p;
 319
 320	if (!rt_entity_is_task(rt_se))
 321		return;
 322
 323	p = rt_task_of(rt_se);
 324	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 325
 326	rt_rq->rt_nr_total++;
 327	if (p->nr_cpus_allowed > 1)
 328		rt_rq->rt_nr_migratory++;
 329
 330	update_rt_migration(rt_rq);
 331}
 332
 333static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 334{
 335	struct task_struct *p;
 336
 337	if (!rt_entity_is_task(rt_se))
 338		return;
 339
 340	p = rt_task_of(rt_se);
 341	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 342
 343	rt_rq->rt_nr_total--;
 344	if (p->nr_cpus_allowed > 1)
 345		rt_rq->rt_nr_migratory--;
 346
 347	update_rt_migration(rt_rq);
 348}
 349
 350static inline int has_pushable_tasks(struct rq *rq)
 351{
 352	return !plist_head_empty(&rq->rt.pushable_tasks);
 353}
 354
 355static DEFINE_PER_CPU(struct callback_head, rt_push_head);
 356static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
 357
 358static void push_rt_tasks(struct rq *);
 359static void pull_rt_task(struct rq *);
 360
 361static inline void rt_queue_push_tasks(struct rq *rq)
 362{
 363	if (!has_pushable_tasks(rq))
 364		return;
 365
 366	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 367}
 368
 369static inline void rt_queue_pull_task(struct rq *rq)
 370{
 371	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 
 
 
 
 372}
 373
 374static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 375{
 376	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 377	plist_node_init(&p->pushable_tasks, p->prio);
 378	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 379
 380	/* Update the highest prio pushable task */
 381	if (p->prio < rq->rt.highest_prio.next)
 382		rq->rt.highest_prio.next = p->prio;
 383}
 384
 385static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 386{
 387	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 388
 389	/* Update the new highest prio pushable task */
 390	if (has_pushable_tasks(rq)) {
 391		p = plist_first_entry(&rq->rt.pushable_tasks,
 392				      struct task_struct, pushable_tasks);
 393		rq->rt.highest_prio.next = p->prio;
 394	} else
 395		rq->rt.highest_prio.next = MAX_RT_PRIO;
 396}
 397
 398#else
 399
 400static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 401{
 402}
 403
 404static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 405{
 406}
 407
 408static inline
 409void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 410{
 411}
 412
 413static inline
 414void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 415{
 416}
 417
 418static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 419{
 420	return false;
 421}
 422
 423static inline void pull_rt_task(struct rq *this_rq)
 424{
 
 425}
 426
 427static inline void rt_queue_push_tasks(struct rq *rq)
 428{
 429}
 430#endif /* CONFIG_SMP */
 431
 432static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 433static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
 434
 435static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 436{
 437	return rt_se->on_rq;
 438}
 439
 440#ifdef CONFIG_RT_GROUP_SCHED
 441
 442static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 443{
 444	if (!rt_rq->tg)
 445		return RUNTIME_INF;
 446
 447	return rt_rq->rt_runtime;
 448}
 449
 450static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 451{
 452	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 453}
 454
 455typedef struct task_group *rt_rq_iter_t;
 456
 457static inline struct task_group *next_task_group(struct task_group *tg)
 458{
 459	do {
 460		tg = list_entry_rcu(tg->list.next,
 461			typeof(struct task_group), list);
 462	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 463
 464	if (&tg->list == &task_groups)
 465		tg = NULL;
 466
 467	return tg;
 468}
 469
 470#define for_each_rt_rq(rt_rq, iter, rq)					\
 471	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 472		(iter = next_task_group(iter)) &&			\
 473		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 474
 475#define for_each_sched_rt_entity(rt_se) \
 476	for (; rt_se; rt_se = rt_se->parent)
 477
 478static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 479{
 480	return rt_se->my_q;
 481}
 482
 483static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 484static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 485
 486static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 487{
 488	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 489	struct rq *rq = rq_of_rt_rq(rt_rq);
 490	struct sched_rt_entity *rt_se;
 491
 492	int cpu = cpu_of(rq);
 493
 494	rt_se = rt_rq->tg->rt_se[cpu];
 495
 496	if (rt_rq->rt_nr_running) {
 497		if (!rt_se)
 498			enqueue_top_rt_rq(rt_rq);
 499		else if (!on_rt_rq(rt_se))
 500			enqueue_rt_entity(rt_se, 0);
 501
 502		if (rt_rq->highest_prio.curr < curr->prio)
 503			resched_curr(rq);
 504	}
 505}
 506
 507static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 508{
 509	struct sched_rt_entity *rt_se;
 510	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 511
 512	rt_se = rt_rq->tg->rt_se[cpu];
 513
 514	if (!rt_se) {
 515		dequeue_top_rt_rq(rt_rq);
 516		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 517		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
 518	}
 519	else if (on_rt_rq(rt_se))
 520		dequeue_rt_entity(rt_se, 0);
 521}
 522
 523static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 524{
 525	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 526}
 527
 528static int rt_se_boosted(struct sched_rt_entity *rt_se)
 529{
 530	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 531	struct task_struct *p;
 532
 533	if (rt_rq)
 534		return !!rt_rq->rt_nr_boosted;
 535
 536	p = rt_task_of(rt_se);
 537	return p->prio != p->normal_prio;
 538}
 539
 540#ifdef CONFIG_SMP
 541static inline const struct cpumask *sched_rt_period_mask(void)
 542{
 543	return this_rq()->rd->span;
 544}
 545#else
 546static inline const struct cpumask *sched_rt_period_mask(void)
 547{
 548	return cpu_online_mask;
 549}
 550#endif
 551
 552static inline
 553struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 554{
 555	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 556}
 557
 558static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 559{
 560	return &rt_rq->tg->rt_bandwidth;
 561}
 562
 563#else /* !CONFIG_RT_GROUP_SCHED */
 564
 565static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 566{
 567	return rt_rq->rt_runtime;
 568}
 569
 570static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 571{
 572	return ktime_to_ns(def_rt_bandwidth.rt_period);
 573}
 574
 575typedef struct rt_rq *rt_rq_iter_t;
 576
 577#define for_each_rt_rq(rt_rq, iter, rq) \
 578	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 579
 580#define for_each_sched_rt_entity(rt_se) \
 581	for (; rt_se; rt_se = NULL)
 582
 583static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 584{
 585	return NULL;
 586}
 587
 588static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 589{
 590	struct rq *rq = rq_of_rt_rq(rt_rq);
 591
 592	if (!rt_rq->rt_nr_running)
 593		return;
 594
 595	enqueue_top_rt_rq(rt_rq);
 596	resched_curr(rq);
 597}
 598
 599static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 600{
 601	dequeue_top_rt_rq(rt_rq);
 602}
 603
 604static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 605{
 606	return rt_rq->rt_throttled;
 607}
 608
 609static inline const struct cpumask *sched_rt_period_mask(void)
 610{
 611	return cpu_online_mask;
 612}
 613
 614static inline
 615struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 616{
 617	return &cpu_rq(cpu)->rt;
 618}
 619
 620static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 621{
 622	return &def_rt_bandwidth;
 623}
 624
 625#endif /* CONFIG_RT_GROUP_SCHED */
 626
 627bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 628{
 629	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 630
 631	return (hrtimer_active(&rt_b->rt_period_timer) ||
 632		rt_rq->rt_time < rt_b->rt_runtime);
 633}
 634
 635#ifdef CONFIG_SMP
 636/*
 637 * We ran out of runtime, see if we can borrow some from our neighbours.
 638 */
 639static void do_balance_runtime(struct rt_rq *rt_rq)
 640{
 641	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 642	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 643	int i, weight;
 644	u64 rt_period;
 645
 646	weight = cpumask_weight(rd->span);
 647
 648	raw_spin_lock(&rt_b->rt_runtime_lock);
 649	rt_period = ktime_to_ns(rt_b->rt_period);
 650	for_each_cpu(i, rd->span) {
 651		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 652		s64 diff;
 653
 654		if (iter == rt_rq)
 655			continue;
 656
 657		raw_spin_lock(&iter->rt_runtime_lock);
 658		/*
 659		 * Either all rqs have inf runtime and there's nothing to steal
 660		 * or __disable_runtime() below sets a specific rq to inf to
 661		 * indicate its been disabled and disalow stealing.
 662		 */
 663		if (iter->rt_runtime == RUNTIME_INF)
 664			goto next;
 665
 666		/*
 667		 * From runqueues with spare time, take 1/n part of their
 668		 * spare time, but no more than our period.
 669		 */
 670		diff = iter->rt_runtime - iter->rt_time;
 671		if (diff > 0) {
 672			diff = div_u64((u64)diff, weight);
 673			if (rt_rq->rt_runtime + diff > rt_period)
 674				diff = rt_period - rt_rq->rt_runtime;
 675			iter->rt_runtime -= diff;
 676			rt_rq->rt_runtime += diff;
 
 677			if (rt_rq->rt_runtime == rt_period) {
 678				raw_spin_unlock(&iter->rt_runtime_lock);
 679				break;
 680			}
 681		}
 682next:
 683		raw_spin_unlock(&iter->rt_runtime_lock);
 684	}
 685	raw_spin_unlock(&rt_b->rt_runtime_lock);
 
 
 686}
 687
 688/*
 689 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 690 */
 691static void __disable_runtime(struct rq *rq)
 692{
 693	struct root_domain *rd = rq->rd;
 694	rt_rq_iter_t iter;
 695	struct rt_rq *rt_rq;
 696
 697	if (unlikely(!scheduler_running))
 698		return;
 699
 700	for_each_rt_rq(rt_rq, iter, rq) {
 701		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 702		s64 want;
 703		int i;
 704
 705		raw_spin_lock(&rt_b->rt_runtime_lock);
 706		raw_spin_lock(&rt_rq->rt_runtime_lock);
 707		/*
 708		 * Either we're all inf and nobody needs to borrow, or we're
 709		 * already disabled and thus have nothing to do, or we have
 710		 * exactly the right amount of runtime to take out.
 711		 */
 712		if (rt_rq->rt_runtime == RUNTIME_INF ||
 713				rt_rq->rt_runtime == rt_b->rt_runtime)
 714			goto balanced;
 715		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 716
 717		/*
 718		 * Calculate the difference between what we started out with
 719		 * and what we current have, that's the amount of runtime
 720		 * we lend and now have to reclaim.
 721		 */
 722		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 723
 724		/*
 725		 * Greedy reclaim, take back as much as we can.
 726		 */
 727		for_each_cpu(i, rd->span) {
 728			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 729			s64 diff;
 730
 731			/*
 732			 * Can't reclaim from ourselves or disabled runqueues.
 733			 */
 734			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 735				continue;
 736
 737			raw_spin_lock(&iter->rt_runtime_lock);
 738			if (want > 0) {
 739				diff = min_t(s64, iter->rt_runtime, want);
 740				iter->rt_runtime -= diff;
 741				want -= diff;
 742			} else {
 743				iter->rt_runtime -= want;
 744				want -= want;
 745			}
 746			raw_spin_unlock(&iter->rt_runtime_lock);
 747
 748			if (!want)
 749				break;
 750		}
 751
 752		raw_spin_lock(&rt_rq->rt_runtime_lock);
 753		/*
 754		 * We cannot be left wanting - that would mean some runtime
 755		 * leaked out of the system.
 756		 */
 757		BUG_ON(want);
 758balanced:
 759		/*
 760		 * Disable all the borrow logic by pretending we have inf
 761		 * runtime - in which case borrowing doesn't make sense.
 762		 */
 763		rt_rq->rt_runtime = RUNTIME_INF;
 764		rt_rq->rt_throttled = 0;
 765		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 766		raw_spin_unlock(&rt_b->rt_runtime_lock);
 767
 768		/* Make rt_rq available for pick_next_task() */
 769		sched_rt_rq_enqueue(rt_rq);
 770	}
 771}
 772
 773static void __enable_runtime(struct rq *rq)
 774{
 775	rt_rq_iter_t iter;
 776	struct rt_rq *rt_rq;
 777
 778	if (unlikely(!scheduler_running))
 779		return;
 780
 781	/*
 782	 * Reset each runqueue's bandwidth settings
 783	 */
 784	for_each_rt_rq(rt_rq, iter, rq) {
 785		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 786
 787		raw_spin_lock(&rt_b->rt_runtime_lock);
 788		raw_spin_lock(&rt_rq->rt_runtime_lock);
 789		rt_rq->rt_runtime = rt_b->rt_runtime;
 790		rt_rq->rt_time = 0;
 791		rt_rq->rt_throttled = 0;
 792		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 793		raw_spin_unlock(&rt_b->rt_runtime_lock);
 794	}
 795}
 796
 797static void balance_runtime(struct rt_rq *rt_rq)
 798{
 
 
 799	if (!sched_feat(RT_RUNTIME_SHARE))
 800		return;
 801
 802	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 803		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 804		do_balance_runtime(rt_rq);
 805		raw_spin_lock(&rt_rq->rt_runtime_lock);
 806	}
 
 
 807}
 808#else /* !CONFIG_SMP */
 809static inline void balance_runtime(struct rt_rq *rt_rq) {}
 
 
 
 810#endif /* CONFIG_SMP */
 811
 812static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 813{
 814	int i, idle = 1, throttled = 0;
 815	const struct cpumask *span;
 816
 817	span = sched_rt_period_mask();
 818#ifdef CONFIG_RT_GROUP_SCHED
 819	/*
 820	 * FIXME: isolated CPUs should really leave the root task group,
 821	 * whether they are isolcpus or were isolated via cpusets, lest
 822	 * the timer run on a CPU which does not service all runqueues,
 823	 * potentially leaving other CPUs indefinitely throttled.  If
 824	 * isolation is really required, the user will turn the throttle
 825	 * off to kill the perturbations it causes anyway.  Meanwhile,
 826	 * this maintains functionality for boot and/or troubleshooting.
 827	 */
 828	if (rt_b == &root_task_group.rt_bandwidth)
 829		span = cpu_online_mask;
 830#endif
 831	for_each_cpu(i, span) {
 832		int enqueue = 0;
 833		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 834		struct rq *rq = rq_of_rt_rq(rt_rq);
 835		int skip;
 836
 837		/*
 838		 * When span == cpu_online_mask, taking each rq->lock
 839		 * can be time-consuming. Try to avoid it when possible.
 840		 */
 841		raw_spin_lock(&rt_rq->rt_runtime_lock);
 842		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
 843			rt_rq->rt_runtime = rt_b->rt_runtime;
 844		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 845		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 846		if (skip)
 847			continue;
 848
 849		raw_spin_lock(&rq->lock);
 850		update_rq_clock(rq);
 851
 852		if (rt_rq->rt_time) {
 853			u64 runtime;
 854
 855			raw_spin_lock(&rt_rq->rt_runtime_lock);
 856			if (rt_rq->rt_throttled)
 857				balance_runtime(rt_rq);
 858			runtime = rt_rq->rt_runtime;
 859			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 860			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 861				rt_rq->rt_throttled = 0;
 862				enqueue = 1;
 863
 864				/*
 865				 * When we're idle and a woken (rt) task is
 866				 * throttled check_preempt_curr() will set
 867				 * skip_update and the time between the wakeup
 868				 * and this unthrottle will get accounted as
 869				 * 'runtime'.
 870				 */
 871				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 872					rq_clock_cancel_skipupdate(rq);
 873			}
 874			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 875				idle = 0;
 876			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 877		} else if (rt_rq->rt_nr_running) {
 878			idle = 0;
 879			if (!rt_rq_throttled(rt_rq))
 880				enqueue = 1;
 881		}
 882		if (rt_rq->rt_throttled)
 883			throttled = 1;
 884
 885		if (enqueue)
 886			sched_rt_rq_enqueue(rt_rq);
 887		raw_spin_unlock(&rq->lock);
 888	}
 889
 890	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 891		return 1;
 892
 893	return idle;
 894}
 895
 896static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 897{
 898#ifdef CONFIG_RT_GROUP_SCHED
 899	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 900
 901	if (rt_rq)
 902		return rt_rq->highest_prio.curr;
 903#endif
 904
 905	return rt_task_of(rt_se)->prio;
 906}
 907
 908static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 909{
 910	u64 runtime = sched_rt_runtime(rt_rq);
 911
 912	if (rt_rq->rt_throttled)
 913		return rt_rq_throttled(rt_rq);
 914
 915	if (runtime >= sched_rt_period(rt_rq))
 916		return 0;
 917
 918	balance_runtime(rt_rq);
 919	runtime = sched_rt_runtime(rt_rq);
 920	if (runtime == RUNTIME_INF)
 921		return 0;
 922
 923	if (rt_rq->rt_time > runtime) {
 924		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 925
 926		/*
 927		 * Don't actually throttle groups that have no runtime assigned
 928		 * but accrue some time due to boosting.
 929		 */
 930		if (likely(rt_b->rt_runtime)) {
 
 
 931			rt_rq->rt_throttled = 1;
 932			printk_deferred_once("sched: RT throttling activated\n");
 
 
 
 
 933		} else {
 934			/*
 935			 * In case we did anyway, make it go away,
 936			 * replenishment is a joke, since it will replenish us
 937			 * with exactly 0 ns.
 938			 */
 939			rt_rq->rt_time = 0;
 940		}
 941
 942		if (rt_rq_throttled(rt_rq)) {
 943			sched_rt_rq_dequeue(rt_rq);
 944			return 1;
 945		}
 946	}
 947
 948	return 0;
 949}
 950
 951/*
 952 * Update the current task's runtime statistics. Skip current tasks that
 953 * are not in our scheduling class.
 954 */
 955static void update_curr_rt(struct rq *rq)
 956{
 957	struct task_struct *curr = rq->curr;
 958	struct sched_rt_entity *rt_se = &curr->rt;
 
 959	u64 delta_exec;
 960	u64 now;
 961
 962	if (curr->sched_class != &rt_sched_class)
 963		return;
 964
 965	now = rq_clock_task(rq);
 966	delta_exec = now - curr->se.exec_start;
 967	if (unlikely((s64)delta_exec <= 0))
 968		return;
 969
 970	schedstat_set(curr->se.statistics.exec_max,
 971		      max(curr->se.statistics.exec_max, delta_exec));
 972
 973	curr->se.sum_exec_runtime += delta_exec;
 974	account_group_exec_runtime(curr, delta_exec);
 975
 976	curr->se.exec_start = now;
 977	cgroup_account_cputime(curr, delta_exec);
 
 
 978
 979	if (!rt_bandwidth_enabled())
 980		return;
 981
 982	for_each_sched_rt_entity(rt_se) {
 983		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 984
 985		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
 986			raw_spin_lock(&rt_rq->rt_runtime_lock);
 987			rt_rq->rt_time += delta_exec;
 988			if (sched_rt_runtime_exceeded(rt_rq))
 989				resched_curr(rq);
 990			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 991		}
 992	}
 993}
 994
 995static void
 996dequeue_top_rt_rq(struct rt_rq *rt_rq)
 997{
 998	struct rq *rq = rq_of_rt_rq(rt_rq);
 999
1000	BUG_ON(&rq->rt != rt_rq);
1001
1002	if (!rt_rq->rt_queued)
1003		return;
1004
1005	BUG_ON(!rq->nr_running);
1006
1007	sub_nr_running(rq, rt_rq->rt_nr_running);
1008	rt_rq->rt_queued = 0;
1009
1010}
1011
1012static void
1013enqueue_top_rt_rq(struct rt_rq *rt_rq)
1014{
1015	struct rq *rq = rq_of_rt_rq(rt_rq);
1016
1017	BUG_ON(&rq->rt != rt_rq);
1018
1019	if (rt_rq->rt_queued)
1020		return;
1021
1022	if (rt_rq_throttled(rt_rq))
1023		return;
1024
1025	if (rt_rq->rt_nr_running) {
1026		add_nr_running(rq, rt_rq->rt_nr_running);
1027		rt_rq->rt_queued = 1;
1028	}
1029
1030	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1031	cpufreq_update_util(rq, 0);
1032}
1033
1034#if defined CONFIG_SMP
1035
1036static void
1037inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1038{
1039	struct rq *rq = rq_of_rt_rq(rt_rq);
1040
1041#ifdef CONFIG_RT_GROUP_SCHED
1042	/*
1043	 * Change rq's cpupri only if rt_rq is the top queue.
1044	 */
1045	if (&rq->rt != rt_rq)
1046		return;
1047#endif
1048	if (rq->online && prio < prev_prio)
1049		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1050}
1051
1052static void
1053dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1054{
1055	struct rq *rq = rq_of_rt_rq(rt_rq);
1056
1057#ifdef CONFIG_RT_GROUP_SCHED
1058	/*
1059	 * Change rq's cpupri only if rt_rq is the top queue.
1060	 */
1061	if (&rq->rt != rt_rq)
1062		return;
1063#endif
1064	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1065		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1066}
1067
1068#else /* CONFIG_SMP */
1069
1070static inline
1071void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1072static inline
1073void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1074
1075#endif /* CONFIG_SMP */
1076
1077#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1078static void
1079inc_rt_prio(struct rt_rq *rt_rq, int prio)
1080{
1081	int prev_prio = rt_rq->highest_prio.curr;
1082
1083	if (prio < prev_prio)
1084		rt_rq->highest_prio.curr = prio;
1085
1086	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1087}
1088
1089static void
1090dec_rt_prio(struct rt_rq *rt_rq, int prio)
1091{
1092	int prev_prio = rt_rq->highest_prio.curr;
1093
1094	if (rt_rq->rt_nr_running) {
1095
1096		WARN_ON(prio < prev_prio);
1097
1098		/*
1099		 * This may have been our highest task, and therefore
1100		 * we may have some recomputation to do
1101		 */
1102		if (prio == prev_prio) {
1103			struct rt_prio_array *array = &rt_rq->active;
1104
1105			rt_rq->highest_prio.curr =
1106				sched_find_first_bit(array->bitmap);
1107		}
1108
1109	} else
1110		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1111
1112	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1113}
1114
1115#else
1116
1117static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1118static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1119
1120#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1121
1122#ifdef CONFIG_RT_GROUP_SCHED
1123
1124static void
1125inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1126{
1127	if (rt_se_boosted(rt_se))
1128		rt_rq->rt_nr_boosted++;
1129
1130	if (rt_rq->tg)
1131		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1132}
1133
1134static void
1135dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1136{
1137	if (rt_se_boosted(rt_se))
1138		rt_rq->rt_nr_boosted--;
1139
1140	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1141}
1142
1143#else /* CONFIG_RT_GROUP_SCHED */
1144
1145static void
1146inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1147{
1148	start_rt_bandwidth(&def_rt_bandwidth);
1149}
1150
1151static inline
1152void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1153
1154#endif /* CONFIG_RT_GROUP_SCHED */
1155
1156static inline
1157unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1158{
1159	struct rt_rq *group_rq = group_rt_rq(rt_se);
1160
1161	if (group_rq)
1162		return group_rq->rt_nr_running;
1163	else
1164		return 1;
1165}
1166
1167static inline
1168unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1169{
1170	struct rt_rq *group_rq = group_rt_rq(rt_se);
1171	struct task_struct *tsk;
1172
1173	if (group_rq)
1174		return group_rq->rr_nr_running;
1175
1176	tsk = rt_task_of(rt_se);
1177
1178	return (tsk->policy == SCHED_RR) ? 1 : 0;
1179}
1180
1181static inline
1182void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1183{
1184	int prio = rt_se_prio(rt_se);
1185
1186	WARN_ON(!rt_prio(prio));
1187	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1188	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1189
1190	inc_rt_prio(rt_rq, prio);
1191	inc_rt_migration(rt_se, rt_rq);
1192	inc_rt_group(rt_se, rt_rq);
1193}
1194
1195static inline
1196void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1197{
1198	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1199	WARN_ON(!rt_rq->rt_nr_running);
1200	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1201	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1202
1203	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1204	dec_rt_migration(rt_se, rt_rq);
1205	dec_rt_group(rt_se, rt_rq);
1206}
1207
1208/*
1209 * Change rt_se->run_list location unless SAVE && !MOVE
1210 *
1211 * assumes ENQUEUE/DEQUEUE flags match
1212 */
1213static inline bool move_entity(unsigned int flags)
1214{
1215	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1216		return false;
1217
1218	return true;
1219}
1220
1221static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1222{
1223	list_del_init(&rt_se->run_list);
1224
1225	if (list_empty(array->queue + rt_se_prio(rt_se)))
1226		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1227
1228	rt_se->on_list = 0;
1229}
1230
1231static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1232{
1233	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1234	struct rt_prio_array *array = &rt_rq->active;
1235	struct rt_rq *group_rq = group_rt_rq(rt_se);
1236	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1237
1238	/*
1239	 * Don't enqueue the group if its throttled, or when empty.
1240	 * The latter is a consequence of the former when a child group
1241	 * get throttled and the current group doesn't have any other
1242	 * active members.
1243	 */
1244	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1245		if (rt_se->on_list)
1246			__delist_rt_entity(rt_se, array);
1247		return;
1248	}
1249
1250	if (move_entity(flags)) {
1251		WARN_ON_ONCE(rt_se->on_list);
1252		if (flags & ENQUEUE_HEAD)
1253			list_add(&rt_se->run_list, queue);
1254		else
1255			list_add_tail(&rt_se->run_list, queue);
1256
1257		__set_bit(rt_se_prio(rt_se), array->bitmap);
1258		rt_se->on_list = 1;
1259	}
1260	rt_se->on_rq = 1;
 
1261
1262	inc_rt_tasks(rt_se, rt_rq);
1263}
1264
1265static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1266{
1267	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1268	struct rt_prio_array *array = &rt_rq->active;
1269
1270	if (move_entity(flags)) {
1271		WARN_ON_ONCE(!rt_se->on_list);
1272		__delist_rt_entity(rt_se, array);
1273	}
1274	rt_se->on_rq = 0;
1275
1276	dec_rt_tasks(rt_se, rt_rq);
1277}
1278
1279/*
1280 * Because the prio of an upper entry depends on the lower
1281 * entries, we must remove entries top - down.
1282 */
1283static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1284{
1285	struct sched_rt_entity *back = NULL;
1286
1287	for_each_sched_rt_entity(rt_se) {
1288		rt_se->back = back;
1289		back = rt_se;
1290	}
1291
1292	dequeue_top_rt_rq(rt_rq_of_se(back));
1293
1294	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1295		if (on_rt_rq(rt_se))
1296			__dequeue_rt_entity(rt_se, flags);
1297	}
1298}
1299
1300static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1301{
1302	struct rq *rq = rq_of_rt_se(rt_se);
1303
1304	dequeue_rt_stack(rt_se, flags);
1305	for_each_sched_rt_entity(rt_se)
1306		__enqueue_rt_entity(rt_se, flags);
1307	enqueue_top_rt_rq(&rq->rt);
1308}
1309
1310static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1311{
1312	struct rq *rq = rq_of_rt_se(rt_se);
1313
1314	dequeue_rt_stack(rt_se, flags);
1315
1316	for_each_sched_rt_entity(rt_se) {
1317		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1318
1319		if (rt_rq && rt_rq->rt_nr_running)
1320			__enqueue_rt_entity(rt_se, flags);
1321	}
1322	enqueue_top_rt_rq(&rq->rt);
1323}
1324
1325/*
1326 * Adding/removing a task to/from a priority array:
1327 */
1328static void
1329enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1330{
1331	struct sched_rt_entity *rt_se = &p->rt;
1332
1333	if (flags & ENQUEUE_WAKEUP)
1334		rt_se->timeout = 0;
1335
1336	enqueue_rt_entity(rt_se, flags);
1337
1338	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1339		enqueue_pushable_task(rq, p);
 
 
1340}
1341
1342static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1343{
1344	struct sched_rt_entity *rt_se = &p->rt;
1345
1346	update_curr_rt(rq);
1347	dequeue_rt_entity(rt_se, flags);
1348
1349	dequeue_pushable_task(rq, p);
 
 
1350}
1351
1352/*
1353 * Put task to the head or the end of the run list without the overhead of
1354 * dequeue followed by enqueue.
1355 */
1356static void
1357requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1358{
1359	if (on_rt_rq(rt_se)) {
1360		struct rt_prio_array *array = &rt_rq->active;
1361		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1362
1363		if (head)
1364			list_move(&rt_se->run_list, queue);
1365		else
1366			list_move_tail(&rt_se->run_list, queue);
1367	}
1368}
1369
1370static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1371{
1372	struct sched_rt_entity *rt_se = &p->rt;
1373	struct rt_rq *rt_rq;
1374
1375	for_each_sched_rt_entity(rt_se) {
1376		rt_rq = rt_rq_of_se(rt_se);
1377		requeue_rt_entity(rt_rq, rt_se, head);
1378	}
1379}
1380
1381static void yield_task_rt(struct rq *rq)
1382{
1383	requeue_task_rt(rq, rq->curr, 0);
1384}
1385
1386#ifdef CONFIG_SMP
1387static int find_lowest_rq(struct task_struct *task);
1388
1389static int
1390select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1391{
1392	struct task_struct *curr;
1393	struct rq *rq;
1394
 
 
 
1395	/* For anything but wake ups, just return the task_cpu */
1396	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1397		goto out;
1398
1399	rq = cpu_rq(cpu);
1400
1401	rcu_read_lock();
1402	curr = READ_ONCE(rq->curr); /* unlocked access */
1403
1404	/*
1405	 * If the current task on @p's runqueue is an RT task, then
1406	 * try to see if we can wake this RT task up on another
1407	 * runqueue. Otherwise simply start this RT task
1408	 * on its current runqueue.
1409	 *
1410	 * We want to avoid overloading runqueues. If the woken
1411	 * task is a higher priority, then it will stay on this CPU
1412	 * and the lower prio task should be moved to another CPU.
1413	 * Even though this will probably make the lower prio task
1414	 * lose its cache, we do not want to bounce a higher task
1415	 * around just because it gave up its CPU, perhaps for a
1416	 * lock?
1417	 *
1418	 * For equal prio tasks, we just let the scheduler sort it out.
1419	 *
1420	 * Otherwise, just let it ride on the affined RQ and the
1421	 * post-schedule router will push the preempted task away
1422	 *
1423	 * This test is optimistic, if we get it wrong the load-balancer
1424	 * will have to sort it out.
1425	 */
1426	if (curr && unlikely(rt_task(curr)) &&
1427	    (curr->nr_cpus_allowed < 2 ||
1428	     curr->prio <= p->prio)) {
1429		int target = find_lowest_rq(p);
1430
1431		/*
1432		 * Don't bother moving it if the destination CPU is
1433		 * not running a lower priority task.
1434		 */
1435		if (target != -1 &&
1436		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1437			cpu = target;
1438	}
1439	rcu_read_unlock();
1440
1441out:
1442	return cpu;
1443}
1444
1445static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1446{
1447	/*
1448	 * Current can't be migrated, useless to reschedule,
1449	 * let's hope p can move out.
1450	 */
1451	if (rq->curr->nr_cpus_allowed == 1 ||
1452	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1453		return;
1454
1455	/*
1456	 * p is migratable, so let's not schedule it and
1457	 * see if it is pushed or pulled somewhere else.
1458	 */
1459	if (p->nr_cpus_allowed != 1
1460	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1461		return;
1462
 
 
 
1463	/*
1464	 * There appear to be other CPUs that can accept
1465	 * the current task but none can run 'p', so lets reschedule
1466	 * to try and push the current task away:
1467	 */
1468	requeue_task_rt(rq, p, 1);
1469	resched_curr(rq);
1470}
1471
1472static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1473{
1474	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1475		/*
1476		 * This is OK, because current is on_cpu, which avoids it being
1477		 * picked for load-balance and preemption/IRQs are still
1478		 * disabled avoiding further scheduler activity on it and we've
1479		 * not yet started the picking loop.
1480		 */
1481		rq_unpin_lock(rq, rf);
1482		pull_rt_task(rq);
1483		rq_repin_lock(rq, rf);
1484	}
1485
1486	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1487}
1488#endif /* CONFIG_SMP */
1489
1490/*
1491 * Preempt the current task with a newly woken task if needed:
1492 */
1493static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1494{
1495	if (p->prio < rq->curr->prio) {
1496		resched_curr(rq);
1497		return;
1498	}
1499
1500#ifdef CONFIG_SMP
1501	/*
1502	 * If:
1503	 *
1504	 * - the newly woken task is of equal priority to the current task
1505	 * - the newly woken task is non-migratable while current is migratable
1506	 * - current will be preempted on the next reschedule
1507	 *
1508	 * we should check to see if current can readily move to a different
1509	 * cpu.  If so, we will reschedule to allow the push logic to try
1510	 * to move current somewhere else, making room for our non-migratable
1511	 * task.
1512	 */
1513	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1514		check_preempt_equal_prio(rq, p);
1515#endif
1516}
1517
1518static inline void set_next_task_rt(struct rq *rq, struct task_struct *p)
1519{
1520	p->se.exec_start = rq_clock_task(rq);
1521
1522	/* The running task is never eligible for pushing */
1523	dequeue_pushable_task(rq, p);
1524
1525	/*
1526	 * If prev task was rt, put_prev_task() has already updated the
1527	 * utilization. We only care of the case where we start to schedule a
1528	 * rt task
1529	 */
1530	if (rq->curr->sched_class != &rt_sched_class)
1531		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1532
1533	rt_queue_push_tasks(rq);
1534}
1535
1536static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1537						   struct rt_rq *rt_rq)
1538{
1539	struct rt_prio_array *array = &rt_rq->active;
1540	struct sched_rt_entity *next = NULL;
1541	struct list_head *queue;
1542	int idx;
1543
1544	idx = sched_find_first_bit(array->bitmap);
1545	BUG_ON(idx >= MAX_RT_PRIO);
1546
1547	queue = array->queue + idx;
1548	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1549
1550	return next;
1551}
1552
1553static struct task_struct *_pick_next_task_rt(struct rq *rq)
1554{
1555	struct sched_rt_entity *rt_se;
 
1556	struct rt_rq *rt_rq  = &rq->rt;
1557
1558	do {
1559		rt_se = pick_next_rt_entity(rq, rt_rq);
1560		BUG_ON(!rt_se);
1561		rt_rq = group_rt_rq(rt_se);
1562	} while (rt_rq);
1563
1564	return rt_task_of(rt_se);
 
 
 
1565}
1566
1567static struct task_struct *
1568pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1569{
1570	struct task_struct *p;
 
1571
1572	WARN_ON_ONCE(prev || rf);
 
 
 
 
 
 
 
 
 
 
1573
1574	if (!sched_rt_runnable(rq))
 
 
 
 
 
 
 
1575		return NULL;
1576
 
 
 
 
 
1577	p = _pick_next_task_rt(rq);
1578	set_next_task_rt(rq, p);
 
 
 
 
 
 
1579	return p;
1580}
1581
1582static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1583{
1584	update_curr_rt(rq);
1585
1586	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1587
1588	/*
1589	 * The previous task needs to be made eligible for pushing
1590	 * if it is still active
1591	 */
1592	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1593		enqueue_pushable_task(rq, p);
1594}
1595
1596#ifdef CONFIG_SMP
1597
1598/* Only try algorithms three times */
1599#define RT_MAX_TRIES 3
1600
1601static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1602{
1603	if (!task_running(rq, p) &&
1604	    cpumask_test_cpu(cpu, p->cpus_ptr))
1605		return 1;
1606
1607	return 0;
1608}
1609
1610/*
1611 * Return the highest pushable rq's task, which is suitable to be executed
1612 * on the CPU, NULL otherwise
1613 */
1614static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1615{
1616	struct plist_head *head = &rq->rt.pushable_tasks;
1617	struct task_struct *p;
1618
1619	if (!has_pushable_tasks(rq))
1620		return NULL;
1621
1622	plist_for_each_entry(p, head, pushable_tasks) {
1623		if (pick_rt_task(rq, p, cpu))
1624			return p;
1625	}
1626
1627	return NULL;
1628}
1629
1630static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1631
1632static int find_lowest_rq(struct task_struct *task)
1633{
1634	struct sched_domain *sd;
1635	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1636	int this_cpu = smp_processor_id();
1637	int cpu      = task_cpu(task);
1638
1639	/* Make sure the mask is initialized first */
1640	if (unlikely(!lowest_mask))
1641		return -1;
1642
1643	if (task->nr_cpus_allowed == 1)
1644		return -1; /* No other targets possible */
1645
1646	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1647		return -1; /* No targets found */
1648
1649	/*
1650	 * At this point we have built a mask of CPUs representing the
1651	 * lowest priority tasks in the system.  Now we want to elect
1652	 * the best one based on our affinity and topology.
1653	 *
1654	 * We prioritize the last CPU that the task executed on since
1655	 * it is most likely cache-hot in that location.
1656	 */
1657	if (cpumask_test_cpu(cpu, lowest_mask))
1658		return cpu;
1659
1660	/*
1661	 * Otherwise, we consult the sched_domains span maps to figure
1662	 * out which CPU is logically closest to our hot cache data.
1663	 */
1664	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1665		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1666
1667	rcu_read_lock();
1668	for_each_domain(cpu, sd) {
1669		if (sd->flags & SD_WAKE_AFFINE) {
1670			int best_cpu;
1671
1672			/*
1673			 * "this_cpu" is cheaper to preempt than a
1674			 * remote processor.
1675			 */
1676			if (this_cpu != -1 &&
1677			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1678				rcu_read_unlock();
1679				return this_cpu;
1680			}
1681
1682			best_cpu = cpumask_first_and(lowest_mask,
1683						     sched_domain_span(sd));
1684			if (best_cpu < nr_cpu_ids) {
1685				rcu_read_unlock();
1686				return best_cpu;
1687			}
1688		}
1689	}
1690	rcu_read_unlock();
1691
1692	/*
1693	 * And finally, if there were no matches within the domains
1694	 * just give the caller *something* to work with from the compatible
1695	 * locations.
1696	 */
1697	if (this_cpu != -1)
1698		return this_cpu;
1699
1700	cpu = cpumask_any(lowest_mask);
1701	if (cpu < nr_cpu_ids)
1702		return cpu;
1703
1704	return -1;
1705}
1706
1707/* Will lock the rq it finds */
1708static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1709{
1710	struct rq *lowest_rq = NULL;
1711	int tries;
1712	int cpu;
1713
1714	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1715		cpu = find_lowest_rq(task);
1716
1717		if ((cpu == -1) || (cpu == rq->cpu))
1718			break;
1719
1720		lowest_rq = cpu_rq(cpu);
1721
1722		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1723			/*
1724			 * Target rq has tasks of equal or higher priority,
1725			 * retrying does not release any lock and is unlikely
1726			 * to yield a different result.
1727			 */
1728			lowest_rq = NULL;
1729			break;
1730		}
1731
1732		/* if the prio of this runqueue changed, try again */
1733		if (double_lock_balance(rq, lowest_rq)) {
1734			/*
1735			 * We had to unlock the run queue. In
1736			 * the mean time, task could have
1737			 * migrated already or had its affinity changed.
1738			 * Also make sure that it wasn't scheduled on its rq.
1739			 */
1740			if (unlikely(task_rq(task) != rq ||
1741				     !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
 
1742				     task_running(rq, task) ||
1743				     !rt_task(task) ||
1744				     !task_on_rq_queued(task))) {
1745
1746				double_unlock_balance(rq, lowest_rq);
1747				lowest_rq = NULL;
1748				break;
1749			}
1750		}
1751
1752		/* If this rq is still suitable use it. */
1753		if (lowest_rq->rt.highest_prio.curr > task->prio)
1754			break;
1755
1756		/* try again */
1757		double_unlock_balance(rq, lowest_rq);
1758		lowest_rq = NULL;
1759	}
1760
1761	return lowest_rq;
1762}
1763
1764static struct task_struct *pick_next_pushable_task(struct rq *rq)
1765{
1766	struct task_struct *p;
1767
1768	if (!has_pushable_tasks(rq))
1769		return NULL;
1770
1771	p = plist_first_entry(&rq->rt.pushable_tasks,
1772			      struct task_struct, pushable_tasks);
1773
1774	BUG_ON(rq->cpu != task_cpu(p));
1775	BUG_ON(task_current(rq, p));
1776	BUG_ON(p->nr_cpus_allowed <= 1);
1777
1778	BUG_ON(!task_on_rq_queued(p));
1779	BUG_ON(!rt_task(p));
1780
1781	return p;
1782}
1783
1784/*
1785 * If the current CPU has more than one RT task, see if the non
1786 * running task can migrate over to a CPU that is running a task
1787 * of lesser priority.
1788 */
1789static int push_rt_task(struct rq *rq)
1790{
1791	struct task_struct *next_task;
1792	struct rq *lowest_rq;
1793	int ret = 0;
1794
1795	if (!rq->rt.overloaded)
1796		return 0;
1797
1798	next_task = pick_next_pushable_task(rq);
1799	if (!next_task)
1800		return 0;
1801
1802retry:
1803	if (WARN_ON(next_task == rq->curr))
 
1804		return 0;
 
1805
1806	/*
1807	 * It's possible that the next_task slipped in of
1808	 * higher priority than current. If that's the case
1809	 * just reschedule current.
1810	 */
1811	if (unlikely(next_task->prio < rq->curr->prio)) {
1812		resched_curr(rq);
1813		return 0;
1814	}
1815
1816	/* We might release rq lock */
1817	get_task_struct(next_task);
1818
1819	/* find_lock_lowest_rq locks the rq if found */
1820	lowest_rq = find_lock_lowest_rq(next_task, rq);
1821	if (!lowest_rq) {
1822		struct task_struct *task;
1823		/*
1824		 * find_lock_lowest_rq releases rq->lock
1825		 * so it is possible that next_task has migrated.
1826		 *
1827		 * We need to make sure that the task is still on the same
1828		 * run-queue and is also still the next task eligible for
1829		 * pushing.
1830		 */
1831		task = pick_next_pushable_task(rq);
1832		if (task == next_task) {
1833			/*
1834			 * The task hasn't migrated, and is still the next
1835			 * eligible task, but we failed to find a run-queue
1836			 * to push it to.  Do not retry in this case, since
1837			 * other CPUs will pull from us when ready.
1838			 */
1839			goto out;
1840		}
1841
1842		if (!task)
1843			/* No more tasks, just exit */
1844			goto out;
1845
1846		/*
1847		 * Something has shifted, try again.
1848		 */
1849		put_task_struct(next_task);
1850		next_task = task;
1851		goto retry;
1852	}
1853
1854	deactivate_task(rq, next_task, 0);
1855	set_task_cpu(next_task, lowest_rq->cpu);
1856	activate_task(lowest_rq, next_task, 0);
1857	ret = 1;
1858
1859	resched_curr(lowest_rq);
1860
1861	double_unlock_balance(rq, lowest_rq);
1862
1863out:
1864	put_task_struct(next_task);
1865
1866	return ret;
1867}
1868
1869static void push_rt_tasks(struct rq *rq)
1870{
1871	/* push_rt_task will return true if it moved an RT */
1872	while (push_rt_task(rq))
1873		;
1874}
1875
1876#ifdef HAVE_RT_PUSH_IPI
1877
1878/*
1879 * When a high priority task schedules out from a CPU and a lower priority
1880 * task is scheduled in, a check is made to see if there's any RT tasks
1881 * on other CPUs that are waiting to run because a higher priority RT task
1882 * is currently running on its CPU. In this case, the CPU with multiple RT
1883 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1884 * up that may be able to run one of its non-running queued RT tasks.
1885 *
1886 * All CPUs with overloaded RT tasks need to be notified as there is currently
1887 * no way to know which of these CPUs have the highest priority task waiting
1888 * to run. Instead of trying to take a spinlock on each of these CPUs,
1889 * which has shown to cause large latency when done on machines with many
1890 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1891 * RT tasks waiting to run.
1892 *
1893 * Just sending an IPI to each of the CPUs is also an issue, as on large
1894 * count CPU machines, this can cause an IPI storm on a CPU, especially
1895 * if its the only CPU with multiple RT tasks queued, and a large number
1896 * of CPUs scheduling a lower priority task at the same time.
1897 *
1898 * Each root domain has its own irq work function that can iterate over
1899 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1900 * tassk must be checked if there's one or many CPUs that are lowering
1901 * their priority, there's a single irq work iterator that will try to
1902 * push off RT tasks that are waiting to run.
1903 *
1904 * When a CPU schedules a lower priority task, it will kick off the
1905 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1906 * As it only takes the first CPU that schedules a lower priority task
1907 * to start the process, the rto_start variable is incremented and if
1908 * the atomic result is one, then that CPU will try to take the rto_lock.
1909 * This prevents high contention on the lock as the process handles all
1910 * CPUs scheduling lower priority tasks.
1911 *
1912 * All CPUs that are scheduling a lower priority task will increment the
1913 * rt_loop_next variable. This will make sure that the irq work iterator
1914 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1915 * priority task, even if the iterator is in the middle of a scan. Incrementing
1916 * the rt_loop_next will cause the iterator to perform another scan.
1917 *
1918 */
1919static int rto_next_cpu(struct root_domain *rd)
1920{
1921	int next;
1922	int cpu;
1923
1924	/*
1925	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1926	 * rt_next_cpu() will simply return the first CPU found in
1927	 * the rto_mask.
1928	 *
1929	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1930	 * will return the next CPU found in the rto_mask.
1931	 *
1932	 * If there are no more CPUs left in the rto_mask, then a check is made
1933	 * against rto_loop and rto_loop_next. rto_loop is only updated with
1934	 * the rto_lock held, but any CPU may increment the rto_loop_next
1935	 * without any locking.
1936	 */
1937	for (;;) {
1938
1939		/* When rto_cpu is -1 this acts like cpumask_first() */
1940		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1941
1942		rd->rto_cpu = cpu;
1943
1944		if (cpu < nr_cpu_ids)
1945			return cpu;
1946
1947		rd->rto_cpu = -1;
1948
1949		/*
1950		 * ACQUIRE ensures we see the @rto_mask changes
1951		 * made prior to the @next value observed.
1952		 *
1953		 * Matches WMB in rt_set_overload().
1954		 */
1955		next = atomic_read_acquire(&rd->rto_loop_next);
1956
1957		if (rd->rto_loop == next)
1958			break;
1959
1960		rd->rto_loop = next;
1961	}
1962
1963	return -1;
1964}
1965
1966static inline bool rto_start_trylock(atomic_t *v)
1967{
1968	return !atomic_cmpxchg_acquire(v, 0, 1);
1969}
1970
1971static inline void rto_start_unlock(atomic_t *v)
1972{
1973	atomic_set_release(v, 0);
1974}
1975
1976static void tell_cpu_to_push(struct rq *rq)
1977{
1978	int cpu = -1;
1979
1980	/* Keep the loop going if the IPI is currently active */
1981	atomic_inc(&rq->rd->rto_loop_next);
1982
1983	/* Only one CPU can initiate a loop at a time */
1984	if (!rto_start_trylock(&rq->rd->rto_loop_start))
1985		return;
1986
1987	raw_spin_lock(&rq->rd->rto_lock);
1988
1989	/*
1990	 * The rto_cpu is updated under the lock, if it has a valid CPU
1991	 * then the IPI is still running and will continue due to the
1992	 * update to loop_next, and nothing needs to be done here.
1993	 * Otherwise it is finishing up and an ipi needs to be sent.
1994	 */
1995	if (rq->rd->rto_cpu < 0)
1996		cpu = rto_next_cpu(rq->rd);
1997
1998	raw_spin_unlock(&rq->rd->rto_lock);
1999
2000	rto_start_unlock(&rq->rd->rto_loop_start);
2001
2002	if (cpu >= 0) {
2003		/* Make sure the rd does not get freed while pushing */
2004		sched_get_rd(rq->rd);
2005		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2006	}
2007}
2008
2009/* Called from hardirq context */
2010void rto_push_irq_work_func(struct irq_work *work)
2011{
2012	struct root_domain *rd =
2013		container_of(work, struct root_domain, rto_push_work);
2014	struct rq *rq;
2015	int cpu;
2016
2017	rq = this_rq();
2018
2019	/*
2020	 * We do not need to grab the lock to check for has_pushable_tasks.
2021	 * When it gets updated, a check is made if a push is possible.
2022	 */
2023	if (has_pushable_tasks(rq)) {
2024		raw_spin_lock(&rq->lock);
2025		push_rt_tasks(rq);
2026		raw_spin_unlock(&rq->lock);
2027	}
2028
2029	raw_spin_lock(&rd->rto_lock);
2030
2031	/* Pass the IPI to the next rt overloaded queue */
2032	cpu = rto_next_cpu(rd);
2033
2034	raw_spin_unlock(&rd->rto_lock);
2035
2036	if (cpu < 0) {
2037		sched_put_rd(rd);
2038		return;
2039	}
2040
2041	/* Try the next RT overloaded CPU */
2042	irq_work_queue_on(&rd->rto_push_work, cpu);
2043}
2044#endif /* HAVE_RT_PUSH_IPI */
2045
2046static void pull_rt_task(struct rq *this_rq)
2047{
2048	int this_cpu = this_rq->cpu, cpu;
2049	bool resched = false;
2050	struct task_struct *p;
2051	struct rq *src_rq;
2052	int rt_overload_count = rt_overloaded(this_rq);
2053
2054	if (likely(!rt_overload_count))
2055		return;
2056
2057	/*
2058	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2059	 * see overloaded we must also see the rto_mask bit.
2060	 */
2061	smp_rmb();
2062
2063	/* If we are the only overloaded CPU do nothing */
2064	if (rt_overload_count == 1 &&
2065	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2066		return;
2067
2068#ifdef HAVE_RT_PUSH_IPI
2069	if (sched_feat(RT_PUSH_IPI)) {
2070		tell_cpu_to_push(this_rq);
2071		return;
2072	}
2073#endif
2074
2075	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2076		if (this_cpu == cpu)
2077			continue;
2078
2079		src_rq = cpu_rq(cpu);
2080
2081		/*
2082		 * Don't bother taking the src_rq->lock if the next highest
2083		 * task is known to be lower-priority than our current task.
2084		 * This may look racy, but if this value is about to go
2085		 * logically higher, the src_rq will push this task away.
2086		 * And if its going logically lower, we do not care
2087		 */
2088		if (src_rq->rt.highest_prio.next >=
2089		    this_rq->rt.highest_prio.curr)
2090			continue;
2091
2092		/*
2093		 * We can potentially drop this_rq's lock in
2094		 * double_lock_balance, and another CPU could
2095		 * alter this_rq
2096		 */
2097		double_lock_balance(this_rq, src_rq);
2098
2099		/*
2100		 * We can pull only a task, which is pushable
2101		 * on its rq, and no others.
2102		 */
2103		p = pick_highest_pushable_task(src_rq, this_cpu);
2104
2105		/*
2106		 * Do we have an RT task that preempts
2107		 * the to-be-scheduled task?
2108		 */
2109		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2110			WARN_ON(p == src_rq->curr);
2111			WARN_ON(!task_on_rq_queued(p));
2112
2113			/*
2114			 * There's a chance that p is higher in priority
2115			 * than what's currently running on its CPU.
2116			 * This is just that p is wakeing up and hasn't
2117			 * had a chance to schedule. We only pull
2118			 * p if it is lower in priority than the
2119			 * current task on the run queue
2120			 */
2121			if (p->prio < src_rq->curr->prio)
2122				goto skip;
2123
2124			resched = true;
2125
2126			deactivate_task(src_rq, p, 0);
2127			set_task_cpu(p, this_cpu);
2128			activate_task(this_rq, p, 0);
2129			/*
2130			 * We continue with the search, just in
2131			 * case there's an even higher prio task
2132			 * in another runqueue. (low likelihood
2133			 * but possible)
2134			 */
2135		}
2136skip:
2137		double_unlock_balance(this_rq, src_rq);
2138	}
2139
2140	if (resched)
2141		resched_curr(this_rq);
 
 
 
 
2142}
2143
2144/*
2145 * If we are not running and we are not going to reschedule soon, we should
2146 * try to push tasks away now
2147 */
2148static void task_woken_rt(struct rq *rq, struct task_struct *p)
2149{
2150	if (!task_running(rq, p) &&
2151	    !test_tsk_need_resched(rq->curr) &&
 
2152	    p->nr_cpus_allowed > 1 &&
2153	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2154	    (rq->curr->nr_cpus_allowed < 2 ||
2155	     rq->curr->prio <= p->prio))
2156		push_rt_tasks(rq);
2157}
2158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2159/* Assumes rq->lock is held */
2160static void rq_online_rt(struct rq *rq)
2161{
2162	if (rq->rt.overloaded)
2163		rt_set_overload(rq);
2164
2165	__enable_runtime(rq);
2166
2167	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2168}
2169
2170/* Assumes rq->lock is held */
2171static void rq_offline_rt(struct rq *rq)
2172{
2173	if (rq->rt.overloaded)
2174		rt_clear_overload(rq);
2175
2176	__disable_runtime(rq);
2177
2178	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2179}
2180
2181/*
2182 * When switch from the rt queue, we bring ourselves to a position
2183 * that we might want to pull RT tasks from other runqueues.
2184 */
2185static void switched_from_rt(struct rq *rq, struct task_struct *p)
2186{
2187	/*
2188	 * If there are other RT tasks then we will reschedule
2189	 * and the scheduling of the other RT tasks will handle
2190	 * the balancing. But if we are the last RT task
2191	 * we may need to handle the pulling of RT tasks
2192	 * now.
2193	 */
2194	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2195		return;
2196
2197	rt_queue_pull_task(rq);
 
2198}
2199
2200void __init init_sched_rt_class(void)
2201{
2202	unsigned int i;
2203
2204	for_each_possible_cpu(i) {
2205		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2206					GFP_KERNEL, cpu_to_node(i));
2207	}
2208}
2209#endif /* CONFIG_SMP */
2210
2211/*
2212 * When switching a task to RT, we may overload the runqueue
2213 * with RT tasks. In this case we try to push them off to
2214 * other runqueues.
2215 */
2216static void switched_to_rt(struct rq *rq, struct task_struct *p)
2217{
 
 
2218	/*
2219	 * If we are already running, then there's nothing
2220	 * that needs to be done. But if we are not running
2221	 * we may need to preempt the current running task.
2222	 * If that current running task is also an RT task
2223	 * then see if we can move to another run queue.
2224	 */
2225	if (task_on_rq_queued(p) && rq->curr != p) {
2226#ifdef CONFIG_SMP
2227		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2228			rt_queue_push_tasks(rq);
 
 
2229#endif /* CONFIG_SMP */
2230		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2231			resched_curr(rq);
2232	}
2233}
2234
2235/*
2236 * Priority of the task has changed. This may cause
2237 * us to initiate a push or pull.
2238 */
2239static void
2240prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2241{
2242	if (!task_on_rq_queued(p))
2243		return;
2244
2245	if (rq->curr == p) {
2246#ifdef CONFIG_SMP
2247		/*
2248		 * If our priority decreases while running, we
2249		 * may need to pull tasks to this runqueue.
2250		 */
2251		if (oldprio < p->prio)
2252			rt_queue_pull_task(rq);
2253
2254		/*
2255		 * If there's a higher priority task waiting to run
2256		 * then reschedule.
 
 
2257		 */
2258		if (p->prio > rq->rt.highest_prio.curr)
2259			resched_curr(rq);
2260#else
2261		/* For UP simply resched on drop of prio */
2262		if (oldprio < p->prio)
2263			resched_curr(rq);
2264#endif /* CONFIG_SMP */
2265	} else {
2266		/*
2267		 * This task is not running, but if it is
2268		 * greater than the current running task
2269		 * then reschedule.
2270		 */
2271		if (p->prio < rq->curr->prio)
2272			resched_curr(rq);
2273	}
2274}
2275
2276#ifdef CONFIG_POSIX_TIMERS
2277static void watchdog(struct rq *rq, struct task_struct *p)
2278{
2279	unsigned long soft, hard;
2280
2281	/* max may change after cur was read, this will be fixed next tick */
2282	soft = task_rlimit(p, RLIMIT_RTTIME);
2283	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2284
2285	if (soft != RLIM_INFINITY) {
2286		unsigned long next;
2287
2288		if (p->rt.watchdog_stamp != jiffies) {
2289			p->rt.timeout++;
2290			p->rt.watchdog_stamp = jiffies;
2291		}
2292
2293		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2294		if (p->rt.timeout > next) {
2295			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2296						    p->se.sum_exec_runtime);
2297		}
2298	}
2299}
2300#else
2301static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2302#endif
2303
2304/*
2305 * scheduler tick hitting a task of our scheduling class.
2306 *
2307 * NOTE: This function can be called remotely by the tick offload that
2308 * goes along full dynticks. Therefore no local assumption can be made
2309 * and everything must be accessed through the @rq and @curr passed in
2310 * parameters.
2311 */
2312static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2313{
2314	struct sched_rt_entity *rt_se = &p->rt;
2315
2316	update_curr_rt(rq);
2317	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2318
2319	watchdog(rq, p);
2320
2321	/*
2322	 * RR tasks need a special form of timeslice management.
2323	 * FIFO tasks have no timeslices.
2324	 */
2325	if (p->policy != SCHED_RR)
2326		return;
2327
2328	if (--p->rt.time_slice)
2329		return;
2330
2331	p->rt.time_slice = sched_rr_timeslice;
2332
2333	/*
2334	 * Requeue to the end of queue if we (and all of our ancestors) are not
2335	 * the only element on the queue
2336	 */
2337	for_each_sched_rt_entity(rt_se) {
2338		if (rt_se->run_list.prev != rt_se->run_list.next) {
2339			requeue_task_rt(rq, p, 0);
2340			resched_curr(rq);
2341			return;
2342		}
2343	}
2344}
2345
 
 
 
 
 
 
 
 
 
 
2346static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2347{
2348	/*
2349	 * Time slice is 0 for SCHED_FIFO tasks
2350	 */
2351	if (task->policy == SCHED_RR)
2352		return sched_rr_timeslice;
2353	else
2354		return 0;
2355}
2356
2357const struct sched_class rt_sched_class = {
2358	.next			= &fair_sched_class,
2359	.enqueue_task		= enqueue_task_rt,
2360	.dequeue_task		= dequeue_task_rt,
2361	.yield_task		= yield_task_rt,
2362
2363	.check_preempt_curr	= check_preempt_curr_rt,
2364
2365	.pick_next_task		= pick_next_task_rt,
2366	.put_prev_task		= put_prev_task_rt,
2367	.set_next_task          = set_next_task_rt,
2368
2369#ifdef CONFIG_SMP
2370	.balance		= balance_rt,
2371	.select_task_rq		= select_task_rq_rt,
2372	.set_cpus_allowed       = set_cpus_allowed_common,
 
2373	.rq_online              = rq_online_rt,
2374	.rq_offline             = rq_offline_rt,
 
2375	.task_woken		= task_woken_rt,
2376	.switched_from		= switched_from_rt,
2377#endif
2378
 
2379	.task_tick		= task_tick_rt,
2380
2381	.get_rr_interval	= get_rr_interval_rt,
2382
2383	.prio_changed		= prio_changed_rt,
2384	.switched_to		= switched_to_rt,
2385
2386	.update_curr		= update_curr_rt,
2387
2388#ifdef CONFIG_UCLAMP_TASK
2389	.uclamp_enabled		= 1,
2390#endif
2391};
2392
2393#ifdef CONFIG_RT_GROUP_SCHED
2394/*
2395 * Ensure that the real time constraints are schedulable.
2396 */
2397static DEFINE_MUTEX(rt_constraints_mutex);
2398
2399/* Must be called with tasklist_lock held */
2400static inline int tg_has_rt_tasks(struct task_group *tg)
2401{
2402	struct task_struct *g, *p;
2403
2404	/*
2405	 * Autogroups do not have RT tasks; see autogroup_create().
2406	 */
2407	if (task_group_is_autogroup(tg))
2408		return 0;
2409
2410	for_each_process_thread(g, p) {
2411		if (rt_task(p) && task_group(p) == tg)
2412			return 1;
2413	}
2414
2415	return 0;
2416}
2417
2418struct rt_schedulable_data {
2419	struct task_group *tg;
2420	u64 rt_period;
2421	u64 rt_runtime;
2422};
2423
2424static int tg_rt_schedulable(struct task_group *tg, void *data)
2425{
2426	struct rt_schedulable_data *d = data;
2427	struct task_group *child;
2428	unsigned long total, sum = 0;
2429	u64 period, runtime;
2430
2431	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2432	runtime = tg->rt_bandwidth.rt_runtime;
2433
2434	if (tg == d->tg) {
2435		period = d->rt_period;
2436		runtime = d->rt_runtime;
2437	}
2438
2439	/*
2440	 * Cannot have more runtime than the period.
2441	 */
2442	if (runtime > period && runtime != RUNTIME_INF)
2443		return -EINVAL;
2444
2445	/*
2446	 * Ensure we don't starve existing RT tasks.
2447	 */
2448	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2449		return -EBUSY;
2450
2451	total = to_ratio(period, runtime);
2452
2453	/*
2454	 * Nobody can have more than the global setting allows.
2455	 */
2456	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2457		return -EINVAL;
2458
2459	/*
2460	 * The sum of our children's runtime should not exceed our own.
2461	 */
2462	list_for_each_entry_rcu(child, &tg->children, siblings) {
2463		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2464		runtime = child->rt_bandwidth.rt_runtime;
2465
2466		if (child == d->tg) {
2467			period = d->rt_period;
2468			runtime = d->rt_runtime;
2469		}
2470
2471		sum += to_ratio(period, runtime);
2472	}
2473
2474	if (sum > total)
2475		return -EINVAL;
2476
2477	return 0;
2478}
2479
2480static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2481{
2482	int ret;
2483
2484	struct rt_schedulable_data data = {
2485		.tg = tg,
2486		.rt_period = period,
2487		.rt_runtime = runtime,
2488	};
2489
2490	rcu_read_lock();
2491	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2492	rcu_read_unlock();
2493
2494	return ret;
2495}
2496
2497static int tg_set_rt_bandwidth(struct task_group *tg,
2498		u64 rt_period, u64 rt_runtime)
2499{
2500	int i, err = 0;
2501
2502	/*
2503	 * Disallowing the root group RT runtime is BAD, it would disallow the
2504	 * kernel creating (and or operating) RT threads.
2505	 */
2506	if (tg == &root_task_group && rt_runtime == 0)
2507		return -EINVAL;
2508
2509	/* No period doesn't make any sense. */
2510	if (rt_period == 0)
2511		return -EINVAL;
2512
2513	mutex_lock(&rt_constraints_mutex);
2514	read_lock(&tasklist_lock);
2515	err = __rt_schedulable(tg, rt_period, rt_runtime);
2516	if (err)
2517		goto unlock;
2518
2519	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2520	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2521	tg->rt_bandwidth.rt_runtime = rt_runtime;
2522
2523	for_each_possible_cpu(i) {
2524		struct rt_rq *rt_rq = tg->rt_rq[i];
2525
2526		raw_spin_lock(&rt_rq->rt_runtime_lock);
2527		rt_rq->rt_runtime = rt_runtime;
2528		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2529	}
2530	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2531unlock:
2532	read_unlock(&tasklist_lock);
2533	mutex_unlock(&rt_constraints_mutex);
2534
2535	return err;
2536}
2537
2538int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2539{
2540	u64 rt_runtime, rt_period;
2541
2542	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2543	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2544	if (rt_runtime_us < 0)
2545		rt_runtime = RUNTIME_INF;
2546	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2547		return -EINVAL;
2548
2549	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2550}
2551
2552long sched_group_rt_runtime(struct task_group *tg)
2553{
2554	u64 rt_runtime_us;
2555
2556	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2557		return -1;
2558
2559	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2560	do_div(rt_runtime_us, NSEC_PER_USEC);
2561	return rt_runtime_us;
2562}
2563
2564int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2565{
2566	u64 rt_runtime, rt_period;
2567
2568	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2569		return -EINVAL;
2570
2571	rt_period = rt_period_us * NSEC_PER_USEC;
2572	rt_runtime = tg->rt_bandwidth.rt_runtime;
2573
2574	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2575}
2576
2577long sched_group_rt_period(struct task_group *tg)
2578{
2579	u64 rt_period_us;
2580
2581	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2582	do_div(rt_period_us, NSEC_PER_USEC);
2583	return rt_period_us;
2584}
2585
2586static int sched_rt_global_constraints(void)
2587{
2588	int ret = 0;
2589
2590	mutex_lock(&rt_constraints_mutex);
2591	read_lock(&tasklist_lock);
2592	ret = __rt_schedulable(NULL, 0, 0);
2593	read_unlock(&tasklist_lock);
2594	mutex_unlock(&rt_constraints_mutex);
2595
2596	return ret;
2597}
2598
2599int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2600{
2601	/* Don't accept realtime tasks when there is no way for them to run */
2602	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2603		return 0;
2604
2605	return 1;
2606}
2607
2608#else /* !CONFIG_RT_GROUP_SCHED */
2609static int sched_rt_global_constraints(void)
2610{
2611	unsigned long flags;
2612	int i;
2613
2614	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2615	for_each_possible_cpu(i) {
2616		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2617
2618		raw_spin_lock(&rt_rq->rt_runtime_lock);
2619		rt_rq->rt_runtime = global_rt_runtime();
2620		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2621	}
2622	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2623
2624	return 0;
2625}
2626#endif /* CONFIG_RT_GROUP_SCHED */
2627
2628static int sched_rt_global_validate(void)
2629{
2630	if (sysctl_sched_rt_period <= 0)
2631		return -EINVAL;
2632
2633	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2634		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2635		return -EINVAL;
2636
2637	return 0;
2638}
2639
2640static void sched_rt_do_global(void)
2641{
2642	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2643	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2644}
2645
2646int sched_rt_handler(struct ctl_table *table, int write,
2647		void __user *buffer, size_t *lenp,
2648		loff_t *ppos)
2649{
2650	int old_period, old_runtime;
2651	static DEFINE_MUTEX(mutex);
2652	int ret;
2653
2654	mutex_lock(&mutex);
2655	old_period = sysctl_sched_rt_period;
2656	old_runtime = sysctl_sched_rt_runtime;
2657
2658	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2659
2660	if (!ret && write) {
2661		ret = sched_rt_global_validate();
2662		if (ret)
2663			goto undo;
2664
2665		ret = sched_dl_global_validate();
2666		if (ret)
2667			goto undo;
2668
2669		ret = sched_rt_global_constraints();
2670		if (ret)
2671			goto undo;
2672
2673		sched_rt_do_global();
2674		sched_dl_do_global();
2675	}
2676	if (0) {
2677undo:
2678		sysctl_sched_rt_period = old_period;
2679		sysctl_sched_rt_runtime = old_runtime;
2680	}
2681	mutex_unlock(&mutex);
2682
2683	return ret;
2684}
2685
2686int sched_rr_handler(struct ctl_table *table, int write,
2687		void __user *buffer, size_t *lenp,
2688		loff_t *ppos)
2689{
2690	int ret;
2691	static DEFINE_MUTEX(mutex);
2692
2693	mutex_lock(&mutex);
2694	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2695	/*
2696	 * Make sure that internally we keep jiffies.
2697	 * Also, writing zero resets the timeslice to default:
2698	 */
2699	if (!ret && write) {
2700		sched_rr_timeslice =
2701			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2702			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2703	}
2704	mutex_unlock(&mutex);
2705
2706	return ret;
2707}
2708
2709#ifdef CONFIG_SCHED_DEBUG
 
 
2710void print_rt_stats(struct seq_file *m, int cpu)
2711{
2712	rt_rq_iter_t iter;
2713	struct rt_rq *rt_rq;
2714
2715	rcu_read_lock();
2716	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2717		print_rt_rq(m, cpu, rt_rq);
2718	rcu_read_unlock();
2719}
2720#endif /* CONFIG_SCHED_DEBUG */
v3.15
 
   1/*
   2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   3 * policies)
   4 */
   5
   6#include "sched.h"
   7
   8#include <linux/slab.h>
   9
  10int sched_rr_timeslice = RR_TIMESLICE;
 
  11
  12static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  13
  14struct rt_bandwidth def_rt_bandwidth;
  15
  16static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  17{
  18	struct rt_bandwidth *rt_b =
  19		container_of(timer, struct rt_bandwidth, rt_period_timer);
  20	ktime_t now;
  21	int overrun;
  22	int idle = 0;
  23
 
  24	for (;;) {
  25		now = hrtimer_cb_get_time(timer);
  26		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  27
  28		if (!overrun)
  29			break;
  30
 
  31		idle = do_sched_rt_period_timer(rt_b, overrun);
 
  32	}
 
 
 
  33
  34	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  35}
  36
  37void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  38{
  39	rt_b->rt_period = ns_to_ktime(period);
  40	rt_b->rt_runtime = runtime;
  41
  42	raw_spin_lock_init(&rt_b->rt_runtime_lock);
  43
  44	hrtimer_init(&rt_b->rt_period_timer,
  45			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  46	rt_b->rt_period_timer.function = sched_rt_period_timer;
  47}
  48
  49static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  50{
  51	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  52		return;
  53
  54	if (hrtimer_active(&rt_b->rt_period_timer))
  55		return;
  56
  57	raw_spin_lock(&rt_b->rt_runtime_lock);
  58	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
 
 
 
 
 
 
 
 
 
 
 
 
 
  59	raw_spin_unlock(&rt_b->rt_runtime_lock);
  60}
  61
  62void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  63{
  64	struct rt_prio_array *array;
  65	int i;
  66
  67	array = &rt_rq->active;
  68	for (i = 0; i < MAX_RT_PRIO; i++) {
  69		INIT_LIST_HEAD(array->queue + i);
  70		__clear_bit(i, array->bitmap);
  71	}
  72	/* delimiter for bitsearch: */
  73	__set_bit(MAX_RT_PRIO, array->bitmap);
  74
  75#if defined CONFIG_SMP
  76	rt_rq->highest_prio.curr = MAX_RT_PRIO;
  77	rt_rq->highest_prio.next = MAX_RT_PRIO;
  78	rt_rq->rt_nr_migratory = 0;
  79	rt_rq->overloaded = 0;
  80	plist_head_init(&rt_rq->pushable_tasks);
  81#endif
 
 
  82
  83	rt_rq->rt_time = 0;
  84	rt_rq->rt_throttled = 0;
  85	rt_rq->rt_runtime = 0;
  86	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  87}
  88
  89#ifdef CONFIG_RT_GROUP_SCHED
  90static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  91{
  92	hrtimer_cancel(&rt_b->rt_period_timer);
  93}
  94
  95#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
  96
  97static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  98{
  99#ifdef CONFIG_SCHED_DEBUG
 100	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 101#endif
 102	return container_of(rt_se, struct task_struct, rt);
 103}
 104
 105static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 106{
 107	return rt_rq->rq;
 108}
 109
 110static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 111{
 112	return rt_se->rt_rq;
 113}
 114
 
 
 
 
 
 
 
 115void free_rt_sched_group(struct task_group *tg)
 116{
 117	int i;
 118
 119	if (tg->rt_se)
 120		destroy_rt_bandwidth(&tg->rt_bandwidth);
 121
 122	for_each_possible_cpu(i) {
 123		if (tg->rt_rq)
 124			kfree(tg->rt_rq[i]);
 125		if (tg->rt_se)
 126			kfree(tg->rt_se[i]);
 127	}
 128
 129	kfree(tg->rt_rq);
 130	kfree(tg->rt_se);
 131}
 132
 133void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 134		struct sched_rt_entity *rt_se, int cpu,
 135		struct sched_rt_entity *parent)
 136{
 137	struct rq *rq = cpu_rq(cpu);
 138
 139	rt_rq->highest_prio.curr = MAX_RT_PRIO;
 140	rt_rq->rt_nr_boosted = 0;
 141	rt_rq->rq = rq;
 142	rt_rq->tg = tg;
 143
 144	tg->rt_rq[cpu] = rt_rq;
 145	tg->rt_se[cpu] = rt_se;
 146
 147	if (!rt_se)
 148		return;
 149
 150	if (!parent)
 151		rt_se->rt_rq = &rq->rt;
 152	else
 153		rt_se->rt_rq = parent->my_q;
 154
 155	rt_se->my_q = rt_rq;
 156	rt_se->parent = parent;
 157	INIT_LIST_HEAD(&rt_se->run_list);
 158}
 159
 160int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 161{
 162	struct rt_rq *rt_rq;
 163	struct sched_rt_entity *rt_se;
 164	int i;
 165
 166	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
 167	if (!tg->rt_rq)
 168		goto err;
 169	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
 170	if (!tg->rt_se)
 171		goto err;
 172
 173	init_rt_bandwidth(&tg->rt_bandwidth,
 174			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 175
 176	for_each_possible_cpu(i) {
 177		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 178				     GFP_KERNEL, cpu_to_node(i));
 179		if (!rt_rq)
 180			goto err;
 181
 182		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 183				     GFP_KERNEL, cpu_to_node(i));
 184		if (!rt_se)
 185			goto err_free_rq;
 186
 187		init_rt_rq(rt_rq, cpu_rq(i));
 188		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 189		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 190	}
 191
 192	return 1;
 193
 194err_free_rq:
 195	kfree(rt_rq);
 196err:
 197	return 0;
 198}
 199
 200#else /* CONFIG_RT_GROUP_SCHED */
 201
 202#define rt_entity_is_task(rt_se) (1)
 203
 204static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 205{
 206	return container_of(rt_se, struct task_struct, rt);
 207}
 208
 209static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 210{
 211	return container_of(rt_rq, struct rq, rt);
 212}
 213
 
 
 
 
 
 
 
 214static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 215{
 216	struct task_struct *p = rt_task_of(rt_se);
 217	struct rq *rq = task_rq(p);
 218
 219	return &rq->rt;
 220}
 221
 222void free_rt_sched_group(struct task_group *tg) { }
 223
 224int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 225{
 226	return 1;
 227}
 228#endif /* CONFIG_RT_GROUP_SCHED */
 229
 230#ifdef CONFIG_SMP
 231
 232static int pull_rt_task(struct rq *this_rq);
 233
 234static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 235{
 236	/* Try to pull RT tasks here if we lower this rq's prio */
 237	return rq->rt.highest_prio.curr > prev->prio;
 238}
 239
 240static inline int rt_overloaded(struct rq *rq)
 241{
 242	return atomic_read(&rq->rd->rto_count);
 243}
 244
 245static inline void rt_set_overload(struct rq *rq)
 246{
 247	if (!rq->online)
 248		return;
 249
 250	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 251	/*
 252	 * Make sure the mask is visible before we set
 253	 * the overload count. That is checked to determine
 254	 * if we should look at the mask. It would be a shame
 255	 * if we looked at the mask, but the mask was not
 256	 * updated yet.
 257	 *
 258	 * Matched by the barrier in pull_rt_task().
 259	 */
 260	smp_wmb();
 261	atomic_inc(&rq->rd->rto_count);
 262}
 263
 264static inline void rt_clear_overload(struct rq *rq)
 265{
 266	if (!rq->online)
 267		return;
 268
 269	/* the order here really doesn't matter */
 270	atomic_dec(&rq->rd->rto_count);
 271	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 272}
 273
 274static void update_rt_migration(struct rt_rq *rt_rq)
 275{
 276	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 277		if (!rt_rq->overloaded) {
 278			rt_set_overload(rq_of_rt_rq(rt_rq));
 279			rt_rq->overloaded = 1;
 280		}
 281	} else if (rt_rq->overloaded) {
 282		rt_clear_overload(rq_of_rt_rq(rt_rq));
 283		rt_rq->overloaded = 0;
 284	}
 285}
 286
 287static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 288{
 289	struct task_struct *p;
 290
 291	if (!rt_entity_is_task(rt_se))
 292		return;
 293
 294	p = rt_task_of(rt_se);
 295	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 296
 297	rt_rq->rt_nr_total++;
 298	if (p->nr_cpus_allowed > 1)
 299		rt_rq->rt_nr_migratory++;
 300
 301	update_rt_migration(rt_rq);
 302}
 303
 304static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 305{
 306	struct task_struct *p;
 307
 308	if (!rt_entity_is_task(rt_se))
 309		return;
 310
 311	p = rt_task_of(rt_se);
 312	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 313
 314	rt_rq->rt_nr_total--;
 315	if (p->nr_cpus_allowed > 1)
 316		rt_rq->rt_nr_migratory--;
 317
 318	update_rt_migration(rt_rq);
 319}
 320
 321static inline int has_pushable_tasks(struct rq *rq)
 322{
 323	return !plist_head_empty(&rq->rt.pushable_tasks);
 324}
 325
 326static inline void set_post_schedule(struct rq *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327{
 328	/*
 329	 * We detect this state here so that we can avoid taking the RQ
 330	 * lock again later if there is no need to push
 331	 */
 332	rq->post_schedule = has_pushable_tasks(rq);
 333}
 334
 335static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 336{
 337	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 338	plist_node_init(&p->pushable_tasks, p->prio);
 339	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 340
 341	/* Update the highest prio pushable task */
 342	if (p->prio < rq->rt.highest_prio.next)
 343		rq->rt.highest_prio.next = p->prio;
 344}
 345
 346static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 347{
 348	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 349
 350	/* Update the new highest prio pushable task */
 351	if (has_pushable_tasks(rq)) {
 352		p = plist_first_entry(&rq->rt.pushable_tasks,
 353				      struct task_struct, pushable_tasks);
 354		rq->rt.highest_prio.next = p->prio;
 355	} else
 356		rq->rt.highest_prio.next = MAX_RT_PRIO;
 357}
 358
 359#else
 360
 361static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 362{
 363}
 364
 365static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 366{
 367}
 368
 369static inline
 370void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 371{
 372}
 373
 374static inline
 375void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 376{
 377}
 378
 379static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 380{
 381	return false;
 382}
 383
 384static inline int pull_rt_task(struct rq *this_rq)
 385{
 386	return 0;
 387}
 388
 389static inline void set_post_schedule(struct rq *rq)
 390{
 391}
 392#endif /* CONFIG_SMP */
 393
 
 
 
 394static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 395{
 396	return !list_empty(&rt_se->run_list);
 397}
 398
 399#ifdef CONFIG_RT_GROUP_SCHED
 400
 401static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 402{
 403	if (!rt_rq->tg)
 404		return RUNTIME_INF;
 405
 406	return rt_rq->rt_runtime;
 407}
 408
 409static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 410{
 411	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 412}
 413
 414typedef struct task_group *rt_rq_iter_t;
 415
 416static inline struct task_group *next_task_group(struct task_group *tg)
 417{
 418	do {
 419		tg = list_entry_rcu(tg->list.next,
 420			typeof(struct task_group), list);
 421	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 422
 423	if (&tg->list == &task_groups)
 424		tg = NULL;
 425
 426	return tg;
 427}
 428
 429#define for_each_rt_rq(rt_rq, iter, rq)					\
 430	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 431		(iter = next_task_group(iter)) &&			\
 432		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 433
 434#define for_each_sched_rt_entity(rt_se) \
 435	for (; rt_se; rt_se = rt_se->parent)
 436
 437static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 438{
 439	return rt_se->my_q;
 440}
 441
 442static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
 443static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
 444
 445static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 446{
 447	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 
 448	struct sched_rt_entity *rt_se;
 449
 450	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 451
 452	rt_se = rt_rq->tg->rt_se[cpu];
 453
 454	if (rt_rq->rt_nr_running) {
 455		if (rt_se && !on_rt_rq(rt_se))
 456			enqueue_rt_entity(rt_se, false);
 
 
 
 457		if (rt_rq->highest_prio.curr < curr->prio)
 458			resched_task(curr);
 459	}
 460}
 461
 462static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 463{
 464	struct sched_rt_entity *rt_se;
 465	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 466
 467	rt_se = rt_rq->tg->rt_se[cpu];
 468
 469	if (rt_se && on_rt_rq(rt_se))
 470		dequeue_rt_entity(rt_se);
 
 
 
 
 
 
 
 
 
 
 471}
 472
 473static int rt_se_boosted(struct sched_rt_entity *rt_se)
 474{
 475	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 476	struct task_struct *p;
 477
 478	if (rt_rq)
 479		return !!rt_rq->rt_nr_boosted;
 480
 481	p = rt_task_of(rt_se);
 482	return p->prio != p->normal_prio;
 483}
 484
 485#ifdef CONFIG_SMP
 486static inline const struct cpumask *sched_rt_period_mask(void)
 487{
 488	return this_rq()->rd->span;
 489}
 490#else
 491static inline const struct cpumask *sched_rt_period_mask(void)
 492{
 493	return cpu_online_mask;
 494}
 495#endif
 496
 497static inline
 498struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 499{
 500	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 501}
 502
 503static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 504{
 505	return &rt_rq->tg->rt_bandwidth;
 506}
 507
 508#else /* !CONFIG_RT_GROUP_SCHED */
 509
 510static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 511{
 512	return rt_rq->rt_runtime;
 513}
 514
 515static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 516{
 517	return ktime_to_ns(def_rt_bandwidth.rt_period);
 518}
 519
 520typedef struct rt_rq *rt_rq_iter_t;
 521
 522#define for_each_rt_rq(rt_rq, iter, rq) \
 523	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 524
 525#define for_each_sched_rt_entity(rt_se) \
 526	for (; rt_se; rt_se = NULL)
 527
 528static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 529{
 530	return NULL;
 531}
 532
 533static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 534{
 535	if (rt_rq->rt_nr_running)
 536		resched_task(rq_of_rt_rq(rt_rq)->curr);
 
 
 
 
 
 537}
 538
 539static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 540{
 
 
 
 
 
 
 541}
 542
 543static inline const struct cpumask *sched_rt_period_mask(void)
 544{
 545	return cpu_online_mask;
 546}
 547
 548static inline
 549struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 550{
 551	return &cpu_rq(cpu)->rt;
 552}
 553
 554static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 555{
 556	return &def_rt_bandwidth;
 557}
 558
 559#endif /* CONFIG_RT_GROUP_SCHED */
 560
 561bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 562{
 563	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 564
 565	return (hrtimer_active(&rt_b->rt_period_timer) ||
 566		rt_rq->rt_time < rt_b->rt_runtime);
 567}
 568
 569#ifdef CONFIG_SMP
 570/*
 571 * We ran out of runtime, see if we can borrow some from our neighbours.
 572 */
 573static int do_balance_runtime(struct rt_rq *rt_rq)
 574{
 575	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 576	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 577	int i, weight, more = 0;
 578	u64 rt_period;
 579
 580	weight = cpumask_weight(rd->span);
 581
 582	raw_spin_lock(&rt_b->rt_runtime_lock);
 583	rt_period = ktime_to_ns(rt_b->rt_period);
 584	for_each_cpu(i, rd->span) {
 585		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 586		s64 diff;
 587
 588		if (iter == rt_rq)
 589			continue;
 590
 591		raw_spin_lock(&iter->rt_runtime_lock);
 592		/*
 593		 * Either all rqs have inf runtime and there's nothing to steal
 594		 * or __disable_runtime() below sets a specific rq to inf to
 595		 * indicate its been disabled and disalow stealing.
 596		 */
 597		if (iter->rt_runtime == RUNTIME_INF)
 598			goto next;
 599
 600		/*
 601		 * From runqueues with spare time, take 1/n part of their
 602		 * spare time, but no more than our period.
 603		 */
 604		diff = iter->rt_runtime - iter->rt_time;
 605		if (diff > 0) {
 606			diff = div_u64((u64)diff, weight);
 607			if (rt_rq->rt_runtime + diff > rt_period)
 608				diff = rt_period - rt_rq->rt_runtime;
 609			iter->rt_runtime -= diff;
 610			rt_rq->rt_runtime += diff;
 611			more = 1;
 612			if (rt_rq->rt_runtime == rt_period) {
 613				raw_spin_unlock(&iter->rt_runtime_lock);
 614				break;
 615			}
 616		}
 617next:
 618		raw_spin_unlock(&iter->rt_runtime_lock);
 619	}
 620	raw_spin_unlock(&rt_b->rt_runtime_lock);
 621
 622	return more;
 623}
 624
 625/*
 626 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 627 */
 628static void __disable_runtime(struct rq *rq)
 629{
 630	struct root_domain *rd = rq->rd;
 631	rt_rq_iter_t iter;
 632	struct rt_rq *rt_rq;
 633
 634	if (unlikely(!scheduler_running))
 635		return;
 636
 637	for_each_rt_rq(rt_rq, iter, rq) {
 638		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 639		s64 want;
 640		int i;
 641
 642		raw_spin_lock(&rt_b->rt_runtime_lock);
 643		raw_spin_lock(&rt_rq->rt_runtime_lock);
 644		/*
 645		 * Either we're all inf and nobody needs to borrow, or we're
 646		 * already disabled and thus have nothing to do, or we have
 647		 * exactly the right amount of runtime to take out.
 648		 */
 649		if (rt_rq->rt_runtime == RUNTIME_INF ||
 650				rt_rq->rt_runtime == rt_b->rt_runtime)
 651			goto balanced;
 652		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 653
 654		/*
 655		 * Calculate the difference between what we started out with
 656		 * and what we current have, that's the amount of runtime
 657		 * we lend and now have to reclaim.
 658		 */
 659		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 660
 661		/*
 662		 * Greedy reclaim, take back as much as we can.
 663		 */
 664		for_each_cpu(i, rd->span) {
 665			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 666			s64 diff;
 667
 668			/*
 669			 * Can't reclaim from ourselves or disabled runqueues.
 670			 */
 671			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 672				continue;
 673
 674			raw_spin_lock(&iter->rt_runtime_lock);
 675			if (want > 0) {
 676				diff = min_t(s64, iter->rt_runtime, want);
 677				iter->rt_runtime -= diff;
 678				want -= diff;
 679			} else {
 680				iter->rt_runtime -= want;
 681				want -= want;
 682			}
 683			raw_spin_unlock(&iter->rt_runtime_lock);
 684
 685			if (!want)
 686				break;
 687		}
 688
 689		raw_spin_lock(&rt_rq->rt_runtime_lock);
 690		/*
 691		 * We cannot be left wanting - that would mean some runtime
 692		 * leaked out of the system.
 693		 */
 694		BUG_ON(want);
 695balanced:
 696		/*
 697		 * Disable all the borrow logic by pretending we have inf
 698		 * runtime - in which case borrowing doesn't make sense.
 699		 */
 700		rt_rq->rt_runtime = RUNTIME_INF;
 701		rt_rq->rt_throttled = 0;
 702		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 703		raw_spin_unlock(&rt_b->rt_runtime_lock);
 
 
 
 704	}
 705}
 706
 707static void __enable_runtime(struct rq *rq)
 708{
 709	rt_rq_iter_t iter;
 710	struct rt_rq *rt_rq;
 711
 712	if (unlikely(!scheduler_running))
 713		return;
 714
 715	/*
 716	 * Reset each runqueue's bandwidth settings
 717	 */
 718	for_each_rt_rq(rt_rq, iter, rq) {
 719		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 720
 721		raw_spin_lock(&rt_b->rt_runtime_lock);
 722		raw_spin_lock(&rt_rq->rt_runtime_lock);
 723		rt_rq->rt_runtime = rt_b->rt_runtime;
 724		rt_rq->rt_time = 0;
 725		rt_rq->rt_throttled = 0;
 726		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 727		raw_spin_unlock(&rt_b->rt_runtime_lock);
 728	}
 729}
 730
 731static int balance_runtime(struct rt_rq *rt_rq)
 732{
 733	int more = 0;
 734
 735	if (!sched_feat(RT_RUNTIME_SHARE))
 736		return more;
 737
 738	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 739		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 740		more = do_balance_runtime(rt_rq);
 741		raw_spin_lock(&rt_rq->rt_runtime_lock);
 742	}
 743
 744	return more;
 745}
 746#else /* !CONFIG_SMP */
 747static inline int balance_runtime(struct rt_rq *rt_rq)
 748{
 749	return 0;
 750}
 751#endif /* CONFIG_SMP */
 752
 753static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 754{
 755	int i, idle = 1, throttled = 0;
 756	const struct cpumask *span;
 757
 758	span = sched_rt_period_mask();
 759#ifdef CONFIG_RT_GROUP_SCHED
 760	/*
 761	 * FIXME: isolated CPUs should really leave the root task group,
 762	 * whether they are isolcpus or were isolated via cpusets, lest
 763	 * the timer run on a CPU which does not service all runqueues,
 764	 * potentially leaving other CPUs indefinitely throttled.  If
 765	 * isolation is really required, the user will turn the throttle
 766	 * off to kill the perturbations it causes anyway.  Meanwhile,
 767	 * this maintains functionality for boot and/or troubleshooting.
 768	 */
 769	if (rt_b == &root_task_group.rt_bandwidth)
 770		span = cpu_online_mask;
 771#endif
 772	for_each_cpu(i, span) {
 773		int enqueue = 0;
 774		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 775		struct rq *rq = rq_of_rt_rq(rt_rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 776
 777		raw_spin_lock(&rq->lock);
 
 
 778		if (rt_rq->rt_time) {
 779			u64 runtime;
 780
 781			raw_spin_lock(&rt_rq->rt_runtime_lock);
 782			if (rt_rq->rt_throttled)
 783				balance_runtime(rt_rq);
 784			runtime = rt_rq->rt_runtime;
 785			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 786			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 787				rt_rq->rt_throttled = 0;
 788				enqueue = 1;
 789
 790				/*
 791				 * Force a clock update if the CPU was idle,
 792				 * lest wakeup -> unthrottle time accumulate.
 
 
 
 793				 */
 794				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 795					rq->skip_clock_update = -1;
 796			}
 797			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 798				idle = 0;
 799			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 800		} else if (rt_rq->rt_nr_running) {
 801			idle = 0;
 802			if (!rt_rq_throttled(rt_rq))
 803				enqueue = 1;
 804		}
 805		if (rt_rq->rt_throttled)
 806			throttled = 1;
 807
 808		if (enqueue)
 809			sched_rt_rq_enqueue(rt_rq);
 810		raw_spin_unlock(&rq->lock);
 811	}
 812
 813	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 814		return 1;
 815
 816	return idle;
 817}
 818
 819static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 820{
 821#ifdef CONFIG_RT_GROUP_SCHED
 822	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 823
 824	if (rt_rq)
 825		return rt_rq->highest_prio.curr;
 826#endif
 827
 828	return rt_task_of(rt_se)->prio;
 829}
 830
 831static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 832{
 833	u64 runtime = sched_rt_runtime(rt_rq);
 834
 835	if (rt_rq->rt_throttled)
 836		return rt_rq_throttled(rt_rq);
 837
 838	if (runtime >= sched_rt_period(rt_rq))
 839		return 0;
 840
 841	balance_runtime(rt_rq);
 842	runtime = sched_rt_runtime(rt_rq);
 843	if (runtime == RUNTIME_INF)
 844		return 0;
 845
 846	if (rt_rq->rt_time > runtime) {
 847		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 848
 849		/*
 850		 * Don't actually throttle groups that have no runtime assigned
 851		 * but accrue some time due to boosting.
 852		 */
 853		if (likely(rt_b->rt_runtime)) {
 854			static bool once = false;
 855
 856			rt_rq->rt_throttled = 1;
 857
 858			if (!once) {
 859				once = true;
 860				printk_sched("sched: RT throttling activated\n");
 861			}
 862		} else {
 863			/*
 864			 * In case we did anyway, make it go away,
 865			 * replenishment is a joke, since it will replenish us
 866			 * with exactly 0 ns.
 867			 */
 868			rt_rq->rt_time = 0;
 869		}
 870
 871		if (rt_rq_throttled(rt_rq)) {
 872			sched_rt_rq_dequeue(rt_rq);
 873			return 1;
 874		}
 875	}
 876
 877	return 0;
 878}
 879
 880/*
 881 * Update the current task's runtime statistics. Skip current tasks that
 882 * are not in our scheduling class.
 883 */
 884static void update_curr_rt(struct rq *rq)
 885{
 886	struct task_struct *curr = rq->curr;
 887	struct sched_rt_entity *rt_se = &curr->rt;
 888	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 889	u64 delta_exec;
 
 890
 891	if (curr->sched_class != &rt_sched_class)
 892		return;
 893
 894	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
 
 895	if (unlikely((s64)delta_exec <= 0))
 896		return;
 897
 898	schedstat_set(curr->se.statistics.exec_max,
 899		      max(curr->se.statistics.exec_max, delta_exec));
 900
 901	curr->se.sum_exec_runtime += delta_exec;
 902	account_group_exec_runtime(curr, delta_exec);
 903
 904	curr->se.exec_start = rq_clock_task(rq);
 905	cpuacct_charge(curr, delta_exec);
 906
 907	sched_rt_avg_update(rq, delta_exec);
 908
 909	if (!rt_bandwidth_enabled())
 910		return;
 911
 912	for_each_sched_rt_entity(rt_se) {
 913		rt_rq = rt_rq_of_se(rt_se);
 914
 915		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
 916			raw_spin_lock(&rt_rq->rt_runtime_lock);
 917			rt_rq->rt_time += delta_exec;
 918			if (sched_rt_runtime_exceeded(rt_rq))
 919				resched_task(curr);
 920			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 921		}
 922	}
 923}
 924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925#if defined CONFIG_SMP
 926
 927static void
 928inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
 929{
 930	struct rq *rq = rq_of_rt_rq(rt_rq);
 931
 932#ifdef CONFIG_RT_GROUP_SCHED
 933	/*
 934	 * Change rq's cpupri only if rt_rq is the top queue.
 935	 */
 936	if (&rq->rt != rt_rq)
 937		return;
 938#endif
 939	if (rq->online && prio < prev_prio)
 940		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
 941}
 942
 943static void
 944dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
 945{
 946	struct rq *rq = rq_of_rt_rq(rt_rq);
 947
 948#ifdef CONFIG_RT_GROUP_SCHED
 949	/*
 950	 * Change rq's cpupri only if rt_rq is the top queue.
 951	 */
 952	if (&rq->rt != rt_rq)
 953		return;
 954#endif
 955	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
 956		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
 957}
 958
 959#else /* CONFIG_SMP */
 960
 961static inline
 962void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
 963static inline
 964void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
 965
 966#endif /* CONFIG_SMP */
 967
 968#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 969static void
 970inc_rt_prio(struct rt_rq *rt_rq, int prio)
 971{
 972	int prev_prio = rt_rq->highest_prio.curr;
 973
 974	if (prio < prev_prio)
 975		rt_rq->highest_prio.curr = prio;
 976
 977	inc_rt_prio_smp(rt_rq, prio, prev_prio);
 978}
 979
 980static void
 981dec_rt_prio(struct rt_rq *rt_rq, int prio)
 982{
 983	int prev_prio = rt_rq->highest_prio.curr;
 984
 985	if (rt_rq->rt_nr_running) {
 986
 987		WARN_ON(prio < prev_prio);
 988
 989		/*
 990		 * This may have been our highest task, and therefore
 991		 * we may have some recomputation to do
 992		 */
 993		if (prio == prev_prio) {
 994			struct rt_prio_array *array = &rt_rq->active;
 995
 996			rt_rq->highest_prio.curr =
 997				sched_find_first_bit(array->bitmap);
 998		}
 999
1000	} else
1001		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1002
1003	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1004}
1005
1006#else
1007
1008static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1009static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1010
1011#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1012
1013#ifdef CONFIG_RT_GROUP_SCHED
1014
1015static void
1016inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1017{
1018	if (rt_se_boosted(rt_se))
1019		rt_rq->rt_nr_boosted++;
1020
1021	if (rt_rq->tg)
1022		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1023}
1024
1025static void
1026dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1027{
1028	if (rt_se_boosted(rt_se))
1029		rt_rq->rt_nr_boosted--;
1030
1031	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1032}
1033
1034#else /* CONFIG_RT_GROUP_SCHED */
1035
1036static void
1037inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1038{
1039	start_rt_bandwidth(&def_rt_bandwidth);
1040}
1041
1042static inline
1043void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1044
1045#endif /* CONFIG_RT_GROUP_SCHED */
1046
1047static inline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1049{
1050	int prio = rt_se_prio(rt_se);
1051
1052	WARN_ON(!rt_prio(prio));
1053	rt_rq->rt_nr_running++;
 
1054
1055	inc_rt_prio(rt_rq, prio);
1056	inc_rt_migration(rt_se, rt_rq);
1057	inc_rt_group(rt_se, rt_rq);
1058}
1059
1060static inline
1061void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1062{
1063	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1064	WARN_ON(!rt_rq->rt_nr_running);
1065	rt_rq->rt_nr_running--;
 
1066
1067	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1068	dec_rt_migration(rt_se, rt_rq);
1069	dec_rt_group(rt_se, rt_rq);
1070}
1071
1072static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073{
1074	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1075	struct rt_prio_array *array = &rt_rq->active;
1076	struct rt_rq *group_rq = group_rt_rq(rt_se);
1077	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1078
1079	/*
1080	 * Don't enqueue the group if its throttled, or when empty.
1081	 * The latter is a consequence of the former when a child group
1082	 * get throttled and the current group doesn't have any other
1083	 * active members.
1084	 */
1085	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
 
 
1086		return;
 
 
 
 
 
 
 
 
1087
1088	if (head)
1089		list_add(&rt_se->run_list, queue);
1090	else
1091		list_add_tail(&rt_se->run_list, queue);
1092	__set_bit(rt_se_prio(rt_se), array->bitmap);
1093
1094	inc_rt_tasks(rt_se, rt_rq);
1095}
1096
1097static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1098{
1099	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1100	struct rt_prio_array *array = &rt_rq->active;
1101
1102	list_del_init(&rt_se->run_list);
1103	if (list_empty(array->queue + rt_se_prio(rt_se)))
1104		__clear_bit(rt_se_prio(rt_se), array->bitmap);
 
 
1105
1106	dec_rt_tasks(rt_se, rt_rq);
1107}
1108
1109/*
1110 * Because the prio of an upper entry depends on the lower
1111 * entries, we must remove entries top - down.
1112 */
1113static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1114{
1115	struct sched_rt_entity *back = NULL;
1116
1117	for_each_sched_rt_entity(rt_se) {
1118		rt_se->back = back;
1119		back = rt_se;
1120	}
1121
 
 
1122	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1123		if (on_rt_rq(rt_se))
1124			__dequeue_rt_entity(rt_se);
1125	}
1126}
1127
1128static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1129{
1130	dequeue_rt_stack(rt_se);
 
 
1131	for_each_sched_rt_entity(rt_se)
1132		__enqueue_rt_entity(rt_se, head);
 
1133}
1134
1135static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1136{
1137	dequeue_rt_stack(rt_se);
 
 
1138
1139	for_each_sched_rt_entity(rt_se) {
1140		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1141
1142		if (rt_rq && rt_rq->rt_nr_running)
1143			__enqueue_rt_entity(rt_se, false);
1144	}
 
1145}
1146
1147/*
1148 * Adding/removing a task to/from a priority array:
1149 */
1150static void
1151enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1152{
1153	struct sched_rt_entity *rt_se = &p->rt;
1154
1155	if (flags & ENQUEUE_WAKEUP)
1156		rt_se->timeout = 0;
1157
1158	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1159
1160	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1161		enqueue_pushable_task(rq, p);
1162
1163	inc_nr_running(rq);
1164}
1165
1166static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1167{
1168	struct sched_rt_entity *rt_se = &p->rt;
1169
1170	update_curr_rt(rq);
1171	dequeue_rt_entity(rt_se);
1172
1173	dequeue_pushable_task(rq, p);
1174
1175	dec_nr_running(rq);
1176}
1177
1178/*
1179 * Put task to the head or the end of the run list without the overhead of
1180 * dequeue followed by enqueue.
1181 */
1182static void
1183requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1184{
1185	if (on_rt_rq(rt_se)) {
1186		struct rt_prio_array *array = &rt_rq->active;
1187		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1188
1189		if (head)
1190			list_move(&rt_se->run_list, queue);
1191		else
1192			list_move_tail(&rt_se->run_list, queue);
1193	}
1194}
1195
1196static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1197{
1198	struct sched_rt_entity *rt_se = &p->rt;
1199	struct rt_rq *rt_rq;
1200
1201	for_each_sched_rt_entity(rt_se) {
1202		rt_rq = rt_rq_of_se(rt_se);
1203		requeue_rt_entity(rt_rq, rt_se, head);
1204	}
1205}
1206
1207static void yield_task_rt(struct rq *rq)
1208{
1209	requeue_task_rt(rq, rq->curr, 0);
1210}
1211
1212#ifdef CONFIG_SMP
1213static int find_lowest_rq(struct task_struct *task);
1214
1215static int
1216select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1217{
1218	struct task_struct *curr;
1219	struct rq *rq;
1220
1221	if (p->nr_cpus_allowed == 1)
1222		goto out;
1223
1224	/* For anything but wake ups, just return the task_cpu */
1225	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1226		goto out;
1227
1228	rq = cpu_rq(cpu);
1229
1230	rcu_read_lock();
1231	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1232
1233	/*
1234	 * If the current task on @p's runqueue is an RT task, then
1235	 * try to see if we can wake this RT task up on another
1236	 * runqueue. Otherwise simply start this RT task
1237	 * on its current runqueue.
1238	 *
1239	 * We want to avoid overloading runqueues. If the woken
1240	 * task is a higher priority, then it will stay on this CPU
1241	 * and the lower prio task should be moved to another CPU.
1242	 * Even though this will probably make the lower prio task
1243	 * lose its cache, we do not want to bounce a higher task
1244	 * around just because it gave up its CPU, perhaps for a
1245	 * lock?
1246	 *
1247	 * For equal prio tasks, we just let the scheduler sort it out.
1248	 *
1249	 * Otherwise, just let it ride on the affined RQ and the
1250	 * post-schedule router will push the preempted task away
1251	 *
1252	 * This test is optimistic, if we get it wrong the load-balancer
1253	 * will have to sort it out.
1254	 */
1255	if (curr && unlikely(rt_task(curr)) &&
1256	    (curr->nr_cpus_allowed < 2 ||
1257	     curr->prio <= p->prio)) {
1258		int target = find_lowest_rq(p);
1259
1260		if (target != -1)
 
 
 
 
 
1261			cpu = target;
1262	}
1263	rcu_read_unlock();
1264
1265out:
1266	return cpu;
1267}
1268
1269static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1270{
1271	if (rq->curr->nr_cpus_allowed == 1)
 
 
 
 
 
1272		return;
1273
 
 
 
 
1274	if (p->nr_cpus_allowed != 1
1275	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1276		return;
1277
1278	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1279		return;
1280
1281	/*
1282	 * There appears to be other cpus that can accept
1283	 * current and none to run 'p', so lets reschedule
1284	 * to try and push current away:
1285	 */
1286	requeue_task_rt(rq, p, 1);
1287	resched_task(rq->curr);
1288}
1289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1290#endif /* CONFIG_SMP */
1291
1292/*
1293 * Preempt the current task with a newly woken task if needed:
1294 */
1295static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1296{
1297	if (p->prio < rq->curr->prio) {
1298		resched_task(rq->curr);
1299		return;
1300	}
1301
1302#ifdef CONFIG_SMP
1303	/*
1304	 * If:
1305	 *
1306	 * - the newly woken task is of equal priority to the current task
1307	 * - the newly woken task is non-migratable while current is migratable
1308	 * - current will be preempted on the next reschedule
1309	 *
1310	 * we should check to see if current can readily move to a different
1311	 * cpu.  If so, we will reschedule to allow the push logic to try
1312	 * to move current somewhere else, making room for our non-migratable
1313	 * task.
1314	 */
1315	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1316		check_preempt_equal_prio(rq, p);
1317#endif
1318}
1319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1320static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1321						   struct rt_rq *rt_rq)
1322{
1323	struct rt_prio_array *array = &rt_rq->active;
1324	struct sched_rt_entity *next = NULL;
1325	struct list_head *queue;
1326	int idx;
1327
1328	idx = sched_find_first_bit(array->bitmap);
1329	BUG_ON(idx >= MAX_RT_PRIO);
1330
1331	queue = array->queue + idx;
1332	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1333
1334	return next;
1335}
1336
1337static struct task_struct *_pick_next_task_rt(struct rq *rq)
1338{
1339	struct sched_rt_entity *rt_se;
1340	struct task_struct *p;
1341	struct rt_rq *rt_rq  = &rq->rt;
1342
1343	do {
1344		rt_se = pick_next_rt_entity(rq, rt_rq);
1345		BUG_ON(!rt_se);
1346		rt_rq = group_rt_rq(rt_se);
1347	} while (rt_rq);
1348
1349	p = rt_task_of(rt_se);
1350	p->se.exec_start = rq_clock_task(rq);
1351
1352	return p;
1353}
1354
1355static struct task_struct *
1356pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1357{
1358	struct task_struct *p;
1359	struct rt_rq *rt_rq = &rq->rt;
1360
1361	if (need_pull_rt_task(rq, prev)) {
1362		pull_rt_task(rq);
1363		/*
1364		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1365		 * means a dl or stop task can slip in, in which case we need
1366		 * to re-start task selection.
1367		 */
1368		if (unlikely((rq->stop && rq->stop->on_rq) ||
1369			     rq->dl.dl_nr_running))
1370			return RETRY_TASK;
1371	}
1372
1373	/*
1374	 * We may dequeue prev's rt_rq in put_prev_task().
1375	 * So, we update time before rt_nr_running check.
1376	 */
1377	if (prev->sched_class == &rt_sched_class)
1378		update_curr_rt(rq);
1379
1380	if (!rt_rq->rt_nr_running)
1381		return NULL;
1382
1383	if (rt_rq_throttled(rt_rq))
1384		return NULL;
1385
1386	put_prev_task(rq, prev);
1387
1388	p = _pick_next_task_rt(rq);
1389
1390	/* The running task is never eligible for pushing */
1391	if (p)
1392		dequeue_pushable_task(rq, p);
1393
1394	set_post_schedule(rq);
1395
1396	return p;
1397}
1398
1399static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1400{
1401	update_curr_rt(rq);
1402
 
 
1403	/*
1404	 * The previous task needs to be made eligible for pushing
1405	 * if it is still active
1406	 */
1407	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1408		enqueue_pushable_task(rq, p);
1409}
1410
1411#ifdef CONFIG_SMP
1412
1413/* Only try algorithms three times */
1414#define RT_MAX_TRIES 3
1415
1416static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1417{
1418	if (!task_running(rq, p) &&
1419	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1420		return 1;
 
1421	return 0;
1422}
1423
1424/*
1425 * Return the highest pushable rq's task, which is suitable to be executed
1426 * on the cpu, NULL otherwise
1427 */
1428static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1429{
1430	struct plist_head *head = &rq->rt.pushable_tasks;
1431	struct task_struct *p;
1432
1433	if (!has_pushable_tasks(rq))
1434		return NULL;
1435
1436	plist_for_each_entry(p, head, pushable_tasks) {
1437		if (pick_rt_task(rq, p, cpu))
1438			return p;
1439	}
1440
1441	return NULL;
1442}
1443
1444static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1445
1446static int find_lowest_rq(struct task_struct *task)
1447{
1448	struct sched_domain *sd;
1449	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1450	int this_cpu = smp_processor_id();
1451	int cpu      = task_cpu(task);
1452
1453	/* Make sure the mask is initialized first */
1454	if (unlikely(!lowest_mask))
1455		return -1;
1456
1457	if (task->nr_cpus_allowed == 1)
1458		return -1; /* No other targets possible */
1459
1460	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1461		return -1; /* No targets found */
1462
1463	/*
1464	 * At this point we have built a mask of cpus representing the
1465	 * lowest priority tasks in the system.  Now we want to elect
1466	 * the best one based on our affinity and topology.
1467	 *
1468	 * We prioritize the last cpu that the task executed on since
1469	 * it is most likely cache-hot in that location.
1470	 */
1471	if (cpumask_test_cpu(cpu, lowest_mask))
1472		return cpu;
1473
1474	/*
1475	 * Otherwise, we consult the sched_domains span maps to figure
1476	 * out which cpu is logically closest to our hot cache data.
1477	 */
1478	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1479		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1480
1481	rcu_read_lock();
1482	for_each_domain(cpu, sd) {
1483		if (sd->flags & SD_WAKE_AFFINE) {
1484			int best_cpu;
1485
1486			/*
1487			 * "this_cpu" is cheaper to preempt than a
1488			 * remote processor.
1489			 */
1490			if (this_cpu != -1 &&
1491			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1492				rcu_read_unlock();
1493				return this_cpu;
1494			}
1495
1496			best_cpu = cpumask_first_and(lowest_mask,
1497						     sched_domain_span(sd));
1498			if (best_cpu < nr_cpu_ids) {
1499				rcu_read_unlock();
1500				return best_cpu;
1501			}
1502		}
1503	}
1504	rcu_read_unlock();
1505
1506	/*
1507	 * And finally, if there were no matches within the domains
1508	 * just give the caller *something* to work with from the compatible
1509	 * locations.
1510	 */
1511	if (this_cpu != -1)
1512		return this_cpu;
1513
1514	cpu = cpumask_any(lowest_mask);
1515	if (cpu < nr_cpu_ids)
1516		return cpu;
 
1517	return -1;
1518}
1519
1520/* Will lock the rq it finds */
1521static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1522{
1523	struct rq *lowest_rq = NULL;
1524	int tries;
1525	int cpu;
1526
1527	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1528		cpu = find_lowest_rq(task);
1529
1530		if ((cpu == -1) || (cpu == rq->cpu))
1531			break;
1532
1533		lowest_rq = cpu_rq(cpu);
1534
 
 
 
 
 
 
 
 
 
 
1535		/* if the prio of this runqueue changed, try again */
1536		if (double_lock_balance(rq, lowest_rq)) {
1537			/*
1538			 * We had to unlock the run queue. In
1539			 * the mean time, task could have
1540			 * migrated already or had its affinity changed.
1541			 * Also make sure that it wasn't scheduled on its rq.
1542			 */
1543			if (unlikely(task_rq(task) != rq ||
1544				     !cpumask_test_cpu(lowest_rq->cpu,
1545						       tsk_cpus_allowed(task)) ||
1546				     task_running(rq, task) ||
1547				     !task->on_rq)) {
 
1548
1549				double_unlock_balance(rq, lowest_rq);
1550				lowest_rq = NULL;
1551				break;
1552			}
1553		}
1554
1555		/* If this rq is still suitable use it. */
1556		if (lowest_rq->rt.highest_prio.curr > task->prio)
1557			break;
1558
1559		/* try again */
1560		double_unlock_balance(rq, lowest_rq);
1561		lowest_rq = NULL;
1562	}
1563
1564	return lowest_rq;
1565}
1566
1567static struct task_struct *pick_next_pushable_task(struct rq *rq)
1568{
1569	struct task_struct *p;
1570
1571	if (!has_pushable_tasks(rq))
1572		return NULL;
1573
1574	p = plist_first_entry(&rq->rt.pushable_tasks,
1575			      struct task_struct, pushable_tasks);
1576
1577	BUG_ON(rq->cpu != task_cpu(p));
1578	BUG_ON(task_current(rq, p));
1579	BUG_ON(p->nr_cpus_allowed <= 1);
1580
1581	BUG_ON(!p->on_rq);
1582	BUG_ON(!rt_task(p));
1583
1584	return p;
1585}
1586
1587/*
1588 * If the current CPU has more than one RT task, see if the non
1589 * running task can migrate over to a CPU that is running a task
1590 * of lesser priority.
1591 */
1592static int push_rt_task(struct rq *rq)
1593{
1594	struct task_struct *next_task;
1595	struct rq *lowest_rq;
1596	int ret = 0;
1597
1598	if (!rq->rt.overloaded)
1599		return 0;
1600
1601	next_task = pick_next_pushable_task(rq);
1602	if (!next_task)
1603		return 0;
1604
1605retry:
1606	if (unlikely(next_task == rq->curr)) {
1607		WARN_ON(1);
1608		return 0;
1609	}
1610
1611	/*
1612	 * It's possible that the next_task slipped in of
1613	 * higher priority than current. If that's the case
1614	 * just reschedule current.
1615	 */
1616	if (unlikely(next_task->prio < rq->curr->prio)) {
1617		resched_task(rq->curr);
1618		return 0;
1619	}
1620
1621	/* We might release rq lock */
1622	get_task_struct(next_task);
1623
1624	/* find_lock_lowest_rq locks the rq if found */
1625	lowest_rq = find_lock_lowest_rq(next_task, rq);
1626	if (!lowest_rq) {
1627		struct task_struct *task;
1628		/*
1629		 * find_lock_lowest_rq releases rq->lock
1630		 * so it is possible that next_task has migrated.
1631		 *
1632		 * We need to make sure that the task is still on the same
1633		 * run-queue and is also still the next task eligible for
1634		 * pushing.
1635		 */
1636		task = pick_next_pushable_task(rq);
1637		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1638			/*
1639			 * The task hasn't migrated, and is still the next
1640			 * eligible task, but we failed to find a run-queue
1641			 * to push it to.  Do not retry in this case, since
1642			 * other cpus will pull from us when ready.
1643			 */
1644			goto out;
1645		}
1646
1647		if (!task)
1648			/* No more tasks, just exit */
1649			goto out;
1650
1651		/*
1652		 * Something has shifted, try again.
1653		 */
1654		put_task_struct(next_task);
1655		next_task = task;
1656		goto retry;
1657	}
1658
1659	deactivate_task(rq, next_task, 0);
1660	set_task_cpu(next_task, lowest_rq->cpu);
1661	activate_task(lowest_rq, next_task, 0);
1662	ret = 1;
1663
1664	resched_task(lowest_rq->curr);
1665
1666	double_unlock_balance(rq, lowest_rq);
1667
1668out:
1669	put_task_struct(next_task);
1670
1671	return ret;
1672}
1673
1674static void push_rt_tasks(struct rq *rq)
1675{
1676	/* push_rt_task will return true if it moved an RT */
1677	while (push_rt_task(rq))
1678		;
1679}
1680
1681static int pull_rt_task(struct rq *this_rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1682{
1683	int this_cpu = this_rq->cpu, ret = 0, cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684	struct task_struct *p;
1685	struct rq *src_rq;
 
1686
1687	if (likely(!rt_overloaded(this_rq)))
1688		return 0;
1689
1690	/*
1691	 * Match the barrier from rt_set_overloaded; this guarantees that if we
1692	 * see overloaded we must also see the rto_mask bit.
1693	 */
1694	smp_rmb();
1695
 
 
 
 
 
 
 
 
 
 
 
 
1696	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1697		if (this_cpu == cpu)
1698			continue;
1699
1700		src_rq = cpu_rq(cpu);
1701
1702		/*
1703		 * Don't bother taking the src_rq->lock if the next highest
1704		 * task is known to be lower-priority than our current task.
1705		 * This may look racy, but if this value is about to go
1706		 * logically higher, the src_rq will push this task away.
1707		 * And if its going logically lower, we do not care
1708		 */
1709		if (src_rq->rt.highest_prio.next >=
1710		    this_rq->rt.highest_prio.curr)
1711			continue;
1712
1713		/*
1714		 * We can potentially drop this_rq's lock in
1715		 * double_lock_balance, and another CPU could
1716		 * alter this_rq
1717		 */
1718		double_lock_balance(this_rq, src_rq);
1719
1720		/*
1721		 * We can pull only a task, which is pushable
1722		 * on its rq, and no others.
1723		 */
1724		p = pick_highest_pushable_task(src_rq, this_cpu);
1725
1726		/*
1727		 * Do we have an RT task that preempts
1728		 * the to-be-scheduled task?
1729		 */
1730		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1731			WARN_ON(p == src_rq->curr);
1732			WARN_ON(!p->on_rq);
1733
1734			/*
1735			 * There's a chance that p is higher in priority
1736			 * than what's currently running on its cpu.
1737			 * This is just that p is wakeing up and hasn't
1738			 * had a chance to schedule. We only pull
1739			 * p if it is lower in priority than the
1740			 * current task on the run queue
1741			 */
1742			if (p->prio < src_rq->curr->prio)
1743				goto skip;
1744
1745			ret = 1;
1746
1747			deactivate_task(src_rq, p, 0);
1748			set_task_cpu(p, this_cpu);
1749			activate_task(this_rq, p, 0);
1750			/*
1751			 * We continue with the search, just in
1752			 * case there's an even higher prio task
1753			 * in another runqueue. (low likelihood
1754			 * but possible)
1755			 */
1756		}
1757skip:
1758		double_unlock_balance(this_rq, src_rq);
1759	}
1760
1761	return ret;
1762}
1763
1764static void post_schedule_rt(struct rq *rq)
1765{
1766	push_rt_tasks(rq);
1767}
1768
1769/*
1770 * If we are not running and we are not going to reschedule soon, we should
1771 * try to push tasks away now
1772 */
1773static void task_woken_rt(struct rq *rq, struct task_struct *p)
1774{
1775	if (!task_running(rq, p) &&
1776	    !test_tsk_need_resched(rq->curr) &&
1777	    has_pushable_tasks(rq) &&
1778	    p->nr_cpus_allowed > 1 &&
1779	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
1780	    (rq->curr->nr_cpus_allowed < 2 ||
1781	     rq->curr->prio <= p->prio))
1782		push_rt_tasks(rq);
1783}
1784
1785static void set_cpus_allowed_rt(struct task_struct *p,
1786				const struct cpumask *new_mask)
1787{
1788	struct rq *rq;
1789	int weight;
1790
1791	BUG_ON(!rt_task(p));
1792
1793	if (!p->on_rq)
1794		return;
1795
1796	weight = cpumask_weight(new_mask);
1797
1798	/*
1799	 * Only update if the process changes its state from whether it
1800	 * can migrate or not.
1801	 */
1802	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1803		return;
1804
1805	rq = task_rq(p);
1806
1807	/*
1808	 * The process used to be able to migrate OR it can now migrate
1809	 */
1810	if (weight <= 1) {
1811		if (!task_current(rq, p))
1812			dequeue_pushable_task(rq, p);
1813		BUG_ON(!rq->rt.rt_nr_migratory);
1814		rq->rt.rt_nr_migratory--;
1815	} else {
1816		if (!task_current(rq, p))
1817			enqueue_pushable_task(rq, p);
1818		rq->rt.rt_nr_migratory++;
1819	}
1820
1821	update_rt_migration(&rq->rt);
1822}
1823
1824/* Assumes rq->lock is held */
1825static void rq_online_rt(struct rq *rq)
1826{
1827	if (rq->rt.overloaded)
1828		rt_set_overload(rq);
1829
1830	__enable_runtime(rq);
1831
1832	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1833}
1834
1835/* Assumes rq->lock is held */
1836static void rq_offline_rt(struct rq *rq)
1837{
1838	if (rq->rt.overloaded)
1839		rt_clear_overload(rq);
1840
1841	__disable_runtime(rq);
1842
1843	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1844}
1845
1846/*
1847 * When switch from the rt queue, we bring ourselves to a position
1848 * that we might want to pull RT tasks from other runqueues.
1849 */
1850static void switched_from_rt(struct rq *rq, struct task_struct *p)
1851{
1852	/*
1853	 * If there are other RT tasks then we will reschedule
1854	 * and the scheduling of the other RT tasks will handle
1855	 * the balancing. But if we are the last RT task
1856	 * we may need to handle the pulling of RT tasks
1857	 * now.
1858	 */
1859	if (!p->on_rq || rq->rt.rt_nr_running)
1860		return;
1861
1862	if (pull_rt_task(rq))
1863		resched_task(rq->curr);
1864}
1865
1866void __init init_sched_rt_class(void)
1867{
1868	unsigned int i;
1869
1870	for_each_possible_cpu(i) {
1871		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1872					GFP_KERNEL, cpu_to_node(i));
1873	}
1874}
1875#endif /* CONFIG_SMP */
1876
1877/*
1878 * When switching a task to RT, we may overload the runqueue
1879 * with RT tasks. In this case we try to push them off to
1880 * other runqueues.
1881 */
1882static void switched_to_rt(struct rq *rq, struct task_struct *p)
1883{
1884	int check_resched = 1;
1885
1886	/*
1887	 * If we are already running, then there's nothing
1888	 * that needs to be done. But if we are not running
1889	 * we may need to preempt the current running task.
1890	 * If that current running task is also an RT task
1891	 * then see if we can move to another run queue.
1892	 */
1893	if (p->on_rq && rq->curr != p) {
1894#ifdef CONFIG_SMP
1895		if (rq->rt.overloaded && push_rt_task(rq) &&
1896		    /* Don't resched if we changed runqueues */
1897		    rq != task_rq(p))
1898			check_resched = 0;
1899#endif /* CONFIG_SMP */
1900		if (check_resched && p->prio < rq->curr->prio)
1901			resched_task(rq->curr);
1902	}
1903}
1904
1905/*
1906 * Priority of the task has changed. This may cause
1907 * us to initiate a push or pull.
1908 */
1909static void
1910prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1911{
1912	if (!p->on_rq)
1913		return;
1914
1915	if (rq->curr == p) {
1916#ifdef CONFIG_SMP
1917		/*
1918		 * If our priority decreases while running, we
1919		 * may need to pull tasks to this runqueue.
1920		 */
1921		if (oldprio < p->prio)
1922			pull_rt_task(rq);
 
1923		/*
1924		 * If there's a higher priority task waiting to run
1925		 * then reschedule. Note, the above pull_rt_task
1926		 * can release the rq lock and p could migrate.
1927		 * Only reschedule if p is still on the same runqueue.
1928		 */
1929		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1930			resched_task(p);
1931#else
1932		/* For UP simply resched on drop of prio */
1933		if (oldprio < p->prio)
1934			resched_task(p);
1935#endif /* CONFIG_SMP */
1936	} else {
1937		/*
1938		 * This task is not running, but if it is
1939		 * greater than the current running task
1940		 * then reschedule.
1941		 */
1942		if (p->prio < rq->curr->prio)
1943			resched_task(rq->curr);
1944	}
1945}
1946
 
1947static void watchdog(struct rq *rq, struct task_struct *p)
1948{
1949	unsigned long soft, hard;
1950
1951	/* max may change after cur was read, this will be fixed next tick */
1952	soft = task_rlimit(p, RLIMIT_RTTIME);
1953	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1954
1955	if (soft != RLIM_INFINITY) {
1956		unsigned long next;
1957
1958		if (p->rt.watchdog_stamp != jiffies) {
1959			p->rt.timeout++;
1960			p->rt.watchdog_stamp = jiffies;
1961		}
1962
1963		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1964		if (p->rt.timeout > next)
1965			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
 
 
1966	}
1967}
 
 
 
1968
 
 
 
 
 
 
 
 
1969static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1970{
1971	struct sched_rt_entity *rt_se = &p->rt;
1972
1973	update_curr_rt(rq);
 
1974
1975	watchdog(rq, p);
1976
1977	/*
1978	 * RR tasks need a special form of timeslice management.
1979	 * FIFO tasks have no timeslices.
1980	 */
1981	if (p->policy != SCHED_RR)
1982		return;
1983
1984	if (--p->rt.time_slice)
1985		return;
1986
1987	p->rt.time_slice = sched_rr_timeslice;
1988
1989	/*
1990	 * Requeue to the end of queue if we (and all of our ancestors) are not
1991	 * the only element on the queue
1992	 */
1993	for_each_sched_rt_entity(rt_se) {
1994		if (rt_se->run_list.prev != rt_se->run_list.next) {
1995			requeue_task_rt(rq, p, 0);
1996			set_tsk_need_resched(p);
1997			return;
1998		}
1999	}
2000}
2001
2002static void set_curr_task_rt(struct rq *rq)
2003{
2004	struct task_struct *p = rq->curr;
2005
2006	p->se.exec_start = rq_clock_task(rq);
2007
2008	/* The running task is never eligible for pushing */
2009	dequeue_pushable_task(rq, p);
2010}
2011
2012static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2013{
2014	/*
2015	 * Time slice is 0 for SCHED_FIFO tasks
2016	 */
2017	if (task->policy == SCHED_RR)
2018		return sched_rr_timeslice;
2019	else
2020		return 0;
2021}
2022
2023const struct sched_class rt_sched_class = {
2024	.next			= &fair_sched_class,
2025	.enqueue_task		= enqueue_task_rt,
2026	.dequeue_task		= dequeue_task_rt,
2027	.yield_task		= yield_task_rt,
2028
2029	.check_preempt_curr	= check_preempt_curr_rt,
2030
2031	.pick_next_task		= pick_next_task_rt,
2032	.put_prev_task		= put_prev_task_rt,
 
2033
2034#ifdef CONFIG_SMP
 
2035	.select_task_rq		= select_task_rq_rt,
2036
2037	.set_cpus_allowed       = set_cpus_allowed_rt,
2038	.rq_online              = rq_online_rt,
2039	.rq_offline             = rq_offline_rt,
2040	.post_schedule		= post_schedule_rt,
2041	.task_woken		= task_woken_rt,
2042	.switched_from		= switched_from_rt,
2043#endif
2044
2045	.set_curr_task          = set_curr_task_rt,
2046	.task_tick		= task_tick_rt,
2047
2048	.get_rr_interval	= get_rr_interval_rt,
2049
2050	.prio_changed		= prio_changed_rt,
2051	.switched_to		= switched_to_rt,
 
 
 
 
 
 
2052};
2053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2054#ifdef CONFIG_SCHED_DEBUG
2055extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2056
2057void print_rt_stats(struct seq_file *m, int cpu)
2058{
2059	rt_rq_iter_t iter;
2060	struct rt_rq *rt_rq;
2061
2062	rcu_read_lock();
2063	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2064		print_rt_rq(m, cpu, rt_rq);
2065	rcu_read_unlock();
2066}
2067#endif /* CONFIG_SCHED_DEBUG */