Linux Audio

Check our new training course

Loading...
v5.4
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the AF_INET socket handler.
   8 *
   9 * Version:	@(#)sock.h	1.0.4	05/13/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *		Florian La Roche <flla@stud.uni-sb.de>
  15 *
  16 * Fixes:
  17 *		Alan Cox	:	Volatiles in skbuff pointers. See
  18 *					skbuff comments. May be overdone,
  19 *					better to prove they can be removed
  20 *					than the reverse.
  21 *		Alan Cox	:	Added a zapped field for tcp to note
  22 *					a socket is reset and must stay shut up
  23 *		Alan Cox	:	New fields for options
  24 *	Pauline Middelink	:	identd support
  25 *		Alan Cox	:	Eliminate low level recv/recvfrom
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *              Steve Whitehouse:       Default routines for sock_ops
  28 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
  29 *              			protinfo be just a void pointer, as the
  30 *              			protocol specific parts were moved to
  31 *              			respective headers and ipv4/v6, etc now
  32 *              			use private slabcaches for its socks
  33 *              Pedro Hortas	:	New flags field for socket options
  34 */
  35#ifndef _SOCK_H
  36#define _SOCK_H
  37
  38#include <linux/hardirq.h>
  39#include <linux/kernel.h>
  40#include <linux/list.h>
  41#include <linux/list_nulls.h>
  42#include <linux/timer.h>
  43#include <linux/cache.h>
  44#include <linux/bitops.h>
  45#include <linux/lockdep.h>
  46#include <linux/netdevice.h>
  47#include <linux/skbuff.h>	/* struct sk_buff */
  48#include <linux/mm.h>
  49#include <linux/security.h>
  50#include <linux/slab.h>
  51#include <linux/uaccess.h>
  52#include <linux/page_counter.h>
  53#include <linux/memcontrol.h>
  54#include <linux/static_key.h>
  55#include <linux/sched.h>
  56#include <linux/wait.h>
  57#include <linux/cgroup-defs.h>
  58#include <linux/rbtree.h>
  59#include <linux/filter.h>
  60#include <linux/rculist_nulls.h>
  61#include <linux/poll.h>
  62
 
  63#include <linux/atomic.h>
  64#include <linux/refcount.h>
 
  65#include <net/dst.h>
  66#include <net/checksum.h>
  67#include <net/tcp_states.h>
  68#include <linux/net_tstamp.h>
  69#include <net/smc.h>
  70#include <net/l3mdev.h>
 
  71
  72/*
  73 * This structure really needs to be cleaned up.
  74 * Most of it is for TCP, and not used by any of
  75 * the other protocols.
  76 */
  77
  78/* Define this to get the SOCK_DBG debugging facility. */
  79#define SOCK_DEBUGGING
  80#ifdef SOCK_DEBUGGING
  81#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  82					printk(KERN_DEBUG msg); } while (0)
  83#else
  84/* Validate arguments and do nothing */
  85static inline __printf(2, 3)
  86void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  87{
  88}
  89#endif
  90
  91/* This is the per-socket lock.  The spinlock provides a synchronization
  92 * between user contexts and software interrupt processing, whereas the
  93 * mini-semaphore synchronizes multiple users amongst themselves.
  94 */
  95typedef struct {
  96	spinlock_t		slock;
  97	int			owned;
  98	wait_queue_head_t	wq;
  99	/*
 100	 * We express the mutex-alike socket_lock semantics
 101	 * to the lock validator by explicitly managing
 102	 * the slock as a lock variant (in addition to
 103	 * the slock itself):
 104	 */
 105#ifdef CONFIG_DEBUG_LOCK_ALLOC
 106	struct lockdep_map dep_map;
 107#endif
 108} socket_lock_t;
 109
 110struct sock;
 111struct proto;
 112struct net;
 113
 114typedef __u32 __bitwise __portpair;
 115typedef __u64 __bitwise __addrpair;
 116
 117/**
 118 *	struct sock_common - minimal network layer representation of sockets
 119 *	@skc_daddr: Foreign IPv4 addr
 120 *	@skc_rcv_saddr: Bound local IPv4 addr
 
 121 *	@skc_hash: hash value used with various protocol lookup tables
 122 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 123 *	@skc_dport: placeholder for inet_dport/tw_dport
 124 *	@skc_num: placeholder for inet_num/tw_num
 
 125 *	@skc_family: network address family
 126 *	@skc_state: Connection state
 127 *	@skc_reuse: %SO_REUSEADDR setting
 128 *	@skc_reuseport: %SO_REUSEPORT setting
 
 
 129 *	@skc_bound_dev_if: bound device index if != 0
 130 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 131 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 132 *	@skc_prot: protocol handlers inside a network family
 133 *	@skc_net: reference to the network namespace of this socket
 
 
 
 134 *	@skc_node: main hash linkage for various protocol lookup tables
 135 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 136 *	@skc_tx_queue_mapping: tx queue number for this connection
 137 *	@skc_rx_queue_mapping: rx queue number for this connection
 138 *	@skc_flags: place holder for sk_flags
 139 *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 140 *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 
 
 
 
 141 *	@skc_incoming_cpu: record/match cpu processing incoming packets
 
 
 
 
 142 *	@skc_refcnt: reference count
 143 *
 144 *	This is the minimal network layer representation of sockets, the header
 145 *	for struct sock and struct inet_timewait_sock.
 146 */
 147struct sock_common {
 148	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 149	 * address on 64bit arches : cf INET_MATCH()
 150	 */
 151	union {
 152		__addrpair	skc_addrpair;
 153		struct {
 154			__be32	skc_daddr;
 155			__be32	skc_rcv_saddr;
 156		};
 157	};
 158	union  {
 159		unsigned int	skc_hash;
 160		__u16		skc_u16hashes[2];
 161	};
 162	/* skc_dport && skc_num must be grouped as well */
 163	union {
 164		__portpair	skc_portpair;
 165		struct {
 166			__be16	skc_dport;
 167			__u16	skc_num;
 168		};
 169	};
 170
 171	unsigned short		skc_family;
 172	volatile unsigned char	skc_state;
 173	unsigned char		skc_reuse:4;
 174	unsigned char		skc_reuseport:1;
 175	unsigned char		skc_ipv6only:1;
 176	unsigned char		skc_net_refcnt:1;
 177	int			skc_bound_dev_if;
 178	union {
 179		struct hlist_node	skc_bind_node;
 180		struct hlist_node	skc_portaddr_node;
 181	};
 182	struct proto		*skc_prot;
 183	possible_net_t		skc_net;
 184
 185#if IS_ENABLED(CONFIG_IPV6)
 186	struct in6_addr		skc_v6_daddr;
 187	struct in6_addr		skc_v6_rcv_saddr;
 188#endif
 189
 190	atomic64_t		skc_cookie;
 191
 192	/* following fields are padding to force
 193	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 194	 * assuming IPV6 is enabled. We use this padding differently
 195	 * for different kind of 'sockets'
 196	 */
 197	union {
 198		unsigned long	skc_flags;
 199		struct sock	*skc_listener; /* request_sock */
 200		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 201	};
 202	/*
 203	 * fields between dontcopy_begin/dontcopy_end
 204	 * are not copied in sock_copy()
 205	 */
 206	/* private: */
 207	int			skc_dontcopy_begin[0];
 208	/* public: */
 209	union {
 210		struct hlist_node	skc_node;
 211		struct hlist_nulls_node skc_nulls_node;
 212	};
 213	unsigned short		skc_tx_queue_mapping;
 214#ifdef CONFIG_XPS
 215	unsigned short		skc_rx_queue_mapping;
 216#endif
 217	union {
 218		int		skc_incoming_cpu;
 219		u32		skc_rcv_wnd;
 220		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 221	};
 222
 223	refcount_t		skc_refcnt;
 224	/* private: */
 225	int                     skc_dontcopy_end[0];
 226	union {
 227		u32		skc_rxhash;
 228		u32		skc_window_clamp;
 229		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 230	};
 231	/* public: */
 232};
 233
 234struct bpf_sk_storage;
 
 235
 236/**
 237  *	struct sock - network layer representation of sockets
 238  *	@__sk_common: shared layout with inet_timewait_sock
 239  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 240  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 241  *	@sk_lock:	synchronizer
 242  *	@sk_kern_sock: True if sock is using kernel lock classes
 243  *	@sk_rcvbuf: size of receive buffer in bytes
 244  *	@sk_wq: sock wait queue and async head
 245  *	@sk_rx_dst: receive input route used by early demux
 
 
 246  *	@sk_dst_cache: destination cache
 247  *	@sk_dst_pending_confirm: need to confirm neighbour
 248  *	@sk_policy: flow policy
 249  *	@sk_receive_queue: incoming packets
 250  *	@sk_wmem_alloc: transmit queue bytes committed
 251  *	@sk_tsq_flags: TCP Small Queues flags
 252  *	@sk_write_queue: Packet sending queue
 253  *	@sk_omem_alloc: "o" is "option" or "other"
 254  *	@sk_wmem_queued: persistent queue size
 255  *	@sk_forward_alloc: space allocated forward
 
 256  *	@sk_napi_id: id of the last napi context to receive data for sk
 257  *	@sk_ll_usec: usecs to busypoll when there is no data
 258  *	@sk_allocation: allocation mode
 259  *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 260  *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
 261  *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 262  *	@sk_sndbuf: size of send buffer in bytes
 263  *	@__sk_flags_offset: empty field used to determine location of bitfield
 264  *	@sk_padding: unused element for alignment
 265  *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 266  *	@sk_no_check_rx: allow zero checksum in RX packets
 267  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 268  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 269  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 270  *	@sk_gso_max_size: Maximum GSO segment size to build
 271  *	@sk_gso_max_segs: Maximum number of GSO segments
 272  *	@sk_pacing_shift: scaling factor for TCP Small Queues
 273  *	@sk_lingertime: %SO_LINGER l_linger setting
 274  *	@sk_backlog: always used with the per-socket spinlock held
 275  *	@sk_callback_lock: used with the callbacks in the end of this struct
 276  *	@sk_error_queue: rarely used
 277  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 278  *			  IPV6_ADDRFORM for instance)
 279  *	@sk_err: last error
 280  *	@sk_err_soft: errors that don't cause failure but are the cause of a
 281  *		      persistent failure not just 'timed out'
 282  *	@sk_drops: raw/udp drops counter
 283  *	@sk_ack_backlog: current listen backlog
 284  *	@sk_max_ack_backlog: listen backlog set in listen()
 285  *	@sk_uid: user id of owner
 
 
 286  *	@sk_priority: %SO_PRIORITY setting
 287  *	@sk_type: socket type (%SOCK_STREAM, etc)
 288  *	@sk_protocol: which protocol this socket belongs in this network family
 
 289  *	@sk_peer_pid: &struct pid for this socket's peer
 290  *	@sk_peer_cred: %SO_PEERCRED setting
 291  *	@sk_rcvlowat: %SO_RCVLOWAT setting
 292  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
 293  *	@sk_sndtimeo: %SO_SNDTIMEO setting
 294  *	@sk_txhash: computed flow hash for use on transmit
 
 295  *	@sk_filter: socket filtering instructions
 296  *	@sk_timer: sock cleanup timer
 297  *	@sk_stamp: time stamp of last packet received
 298  *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
 299  *	@sk_tsflags: SO_TIMESTAMPING socket options
 
 
 
 
 
 300  *	@sk_tskey: counter to disambiguate concurrent tstamp requests
 301  *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
 302  *	@sk_socket: Identd and reporting IO signals
 303  *	@sk_user_data: RPC layer private data
 304  *	@sk_frag: cached page frag
 305  *	@sk_peek_off: current peek_offset value
 306  *	@sk_send_head: front of stuff to transmit
 
 307  *	@sk_security: used by security modules
 308  *	@sk_mark: generic packet mark
 309  *	@sk_cgrp_data: cgroup data for this cgroup
 310  *	@sk_memcg: this socket's memory cgroup association
 311  *	@sk_write_pending: a write to stream socket waits to start
 
 312  *	@sk_state_change: callback to indicate change in the state of the sock
 313  *	@sk_data_ready: callback to indicate there is data to be processed
 314  *	@sk_write_space: callback to indicate there is bf sending space available
 315  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 316  *	@sk_backlog_rcv: callback to process the backlog
 
 317  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 318  *	@sk_reuseport_cb: reuseport group container
 
 319  *	@sk_rcu: used during RCU grace period
 320  *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
 321  *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
 
 322  *	@sk_txtime_unused: unused txtime flags
 
 323  */
 324struct sock {
 325	/*
 326	 * Now struct inet_timewait_sock also uses sock_common, so please just
 327	 * don't add nothing before this first member (__sk_common) --acme
 328	 */
 329	struct sock_common	__sk_common;
 330#define sk_node			__sk_common.skc_node
 331#define sk_nulls_node		__sk_common.skc_nulls_node
 332#define sk_refcnt		__sk_common.skc_refcnt
 333#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
 334#ifdef CONFIG_XPS
 335#define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
 336#endif
 337
 338#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
 339#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
 340#define sk_hash			__sk_common.skc_hash
 341#define sk_portpair		__sk_common.skc_portpair
 342#define sk_num			__sk_common.skc_num
 343#define sk_dport		__sk_common.skc_dport
 344#define sk_addrpair		__sk_common.skc_addrpair
 345#define sk_daddr		__sk_common.skc_daddr
 346#define sk_rcv_saddr		__sk_common.skc_rcv_saddr
 347#define sk_family		__sk_common.skc_family
 348#define sk_state		__sk_common.skc_state
 349#define sk_reuse		__sk_common.skc_reuse
 350#define sk_reuseport		__sk_common.skc_reuseport
 351#define sk_ipv6only		__sk_common.skc_ipv6only
 352#define sk_net_refcnt		__sk_common.skc_net_refcnt
 353#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
 354#define sk_bind_node		__sk_common.skc_bind_node
 355#define sk_prot			__sk_common.skc_prot
 356#define sk_net			__sk_common.skc_net
 357#define sk_v6_daddr		__sk_common.skc_v6_daddr
 358#define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
 359#define sk_cookie		__sk_common.skc_cookie
 360#define sk_incoming_cpu		__sk_common.skc_incoming_cpu
 361#define sk_flags		__sk_common.skc_flags
 362#define sk_rxhash		__sk_common.skc_rxhash
 363
 
 
 
 
 
 364	socket_lock_t		sk_lock;
 365	atomic_t		sk_drops;
 366	int			sk_rcvlowat;
 367	struct sk_buff_head	sk_error_queue;
 368	struct sk_buff		*sk_rx_skb_cache;
 369	struct sk_buff_head	sk_receive_queue;
 370	/*
 371	 * The backlog queue is special, it is always used with
 372	 * the per-socket spinlock held and requires low latency
 373	 * access. Therefore we special case it's implementation.
 374	 * Note : rmem_alloc is in this structure to fill a hole
 375	 * on 64bit arches, not because its logically part of
 376	 * backlog.
 377	 */
 378	struct {
 379		atomic_t	rmem_alloc;
 380		int		len;
 381		struct sk_buff	*head;
 382		struct sk_buff	*tail;
 383	} sk_backlog;
 
 384#define sk_rmem_alloc sk_backlog.rmem_alloc
 385
 386	int			sk_forward_alloc;
 
 387#ifdef CONFIG_NET_RX_BUSY_POLL
 388	unsigned int		sk_ll_usec;
 389	/* ===== mostly read cache line ===== */
 390	unsigned int		sk_napi_id;
 391#endif
 392	int			sk_rcvbuf;
 
 393
 394	struct sk_filter __rcu	*sk_filter;
 395	union {
 396		struct socket_wq __rcu	*sk_wq;
 
 397		struct socket_wq	*sk_wq_raw;
 
 398	};
 399#ifdef CONFIG_XFRM
 400	struct xfrm_policy __rcu *sk_policy[2];
 401#endif
 402	struct dst_entry	*sk_rx_dst;
 403	struct dst_entry __rcu	*sk_dst_cache;
 404	atomic_t		sk_omem_alloc;
 405	int			sk_sndbuf;
 406
 407	/* ===== cache line for TX ===== */
 408	int			sk_wmem_queued;
 409	refcount_t		sk_wmem_alloc;
 410	unsigned long		sk_tsq_flags;
 411	union {
 412		struct sk_buff	*sk_send_head;
 413		struct rb_root	tcp_rtx_queue;
 414	};
 415	struct sk_buff		*sk_tx_skb_cache;
 416	struct sk_buff_head	sk_write_queue;
 417	__s32			sk_peek_off;
 418	int			sk_write_pending;
 419	__u32			sk_dst_pending_confirm;
 420	u32			sk_pacing_status; /* see enum sk_pacing */
 421	long			sk_sndtimeo;
 422	struct timer_list	sk_timer;
 423	__u32			sk_priority;
 424	__u32			sk_mark;
 425	unsigned long		sk_pacing_rate; /* bytes per second */
 426	unsigned long		sk_max_pacing_rate;
 427	struct page_frag	sk_frag;
 428	netdev_features_t	sk_route_caps;
 429	netdev_features_t	sk_route_nocaps;
 430	netdev_features_t	sk_route_forced_caps;
 431	int			sk_gso_type;
 432	unsigned int		sk_gso_max_size;
 433	gfp_t			sk_allocation;
 434	__u32			sk_txhash;
 435
 436	/*
 437	 * Because of non atomicity rules, all
 438	 * changes are protected by socket lock.
 439	 */
 440	unsigned int		__sk_flags_offset[0];
 441#ifdef __BIG_ENDIAN_BITFIELD
 442#define SK_FL_PROTO_SHIFT  16
 443#define SK_FL_PROTO_MASK   0x00ff0000
 444
 445#define SK_FL_TYPE_SHIFT   0
 446#define SK_FL_TYPE_MASK    0x0000ffff
 447#else
 448#define SK_FL_PROTO_SHIFT  8
 449#define SK_FL_PROTO_MASK   0x0000ff00
 450
 451#define SK_FL_TYPE_SHIFT   16
 452#define SK_FL_TYPE_MASK    0xffff0000
 453#endif
 454
 455	unsigned int		sk_padding : 1,
 456				sk_kern_sock : 1,
 457				sk_no_check_tx : 1,
 458				sk_no_check_rx : 1,
 459				sk_userlocks : 4,
 460				sk_protocol  : 8,
 461				sk_type      : 16;
 462#define SK_PROTOCOL_MAX U8_MAX
 463	u16			sk_gso_max_segs;
 464	u8			sk_pacing_shift;
 
 
 
 465	unsigned long	        sk_lingertime;
 466	struct proto		*sk_prot_creator;
 467	rwlock_t		sk_callback_lock;
 468	int			sk_err,
 469				sk_err_soft;
 470	u32			sk_ack_backlog;
 471	u32			sk_max_ack_backlog;
 472	kuid_t			sk_uid;
 
 
 
 
 
 
 
 473	struct pid		*sk_peer_pid;
 474	const struct cred	*sk_peer_cred;
 
 475	long			sk_rcvtimeo;
 476	ktime_t			sk_stamp;
 477#if BITS_PER_LONG==32
 478	seqlock_t		sk_stamp_seq;
 479#endif
 480	u16			sk_tsflags;
 481	u8			sk_shutdown;
 482	u32			sk_tskey;
 483	atomic_t		sk_zckey;
 
 
 484
 485	u8			sk_clockid;
 486	u8			sk_txtime_deadline_mode : 1,
 487				sk_txtime_report_errors : 1,
 488				sk_txtime_unused : 6;
 
 489
 490	struct socket		*sk_socket;
 491	void			*sk_user_data;
 492#ifdef CONFIG_SECURITY
 493	void			*sk_security;
 494#endif
 495	struct sock_cgroup_data	sk_cgrp_data;
 496	struct mem_cgroup	*sk_memcg;
 497	void			(*sk_state_change)(struct sock *sk);
 498	void			(*sk_data_ready)(struct sock *sk);
 499	void			(*sk_write_space)(struct sock *sk);
 500	void			(*sk_error_report)(struct sock *sk);
 501	int			(*sk_backlog_rcv)(struct sock *sk,
 502						  struct sk_buff *skb);
 503#ifdef CONFIG_SOCK_VALIDATE_XMIT
 504	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
 505							struct net_device *dev,
 506							struct sk_buff *skb);
 507#endif
 508	void                    (*sk_destruct)(struct sock *sk);
 509	struct sock_reuseport __rcu	*sk_reuseport_cb;
 510#ifdef CONFIG_BPF_SYSCALL
 511	struct bpf_sk_storage __rcu	*sk_bpf_storage;
 512#endif
 513	struct rcu_head		sk_rcu;
 
 514};
 515
 516enum sk_pacing {
 517	SK_PACING_NONE		= 0,
 518	SK_PACING_NEEDED	= 1,
 519	SK_PACING_FQ		= 2,
 520};
 521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 523
 524#define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
 525#define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526
 527/*
 528 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 529 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 530 * on a socket means that the socket will reuse everybody else's port
 531 * without looking at the other's sk_reuse value.
 532 */
 533
 534#define SK_NO_REUSE	0
 535#define SK_CAN_REUSE	1
 536#define SK_FORCE_REUSE	2
 537
 538int sk_set_peek_off(struct sock *sk, int val);
 539
 540static inline int sk_peek_offset(struct sock *sk, int flags)
 541{
 542	if (unlikely(flags & MSG_PEEK)) {
 543		return READ_ONCE(sk->sk_peek_off);
 544	}
 545
 546	return 0;
 547}
 548
 549static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 550{
 551	s32 off = READ_ONCE(sk->sk_peek_off);
 552
 553	if (unlikely(off >= 0)) {
 554		off = max_t(s32, off - val, 0);
 555		WRITE_ONCE(sk->sk_peek_off, off);
 556	}
 557}
 558
 559static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 560{
 561	sk_peek_offset_bwd(sk, -val);
 562}
 563
 564/*
 565 * Hashed lists helper routines
 566 */
 567static inline struct sock *sk_entry(const struct hlist_node *node)
 568{
 569	return hlist_entry(node, struct sock, sk_node);
 570}
 571
 572static inline struct sock *__sk_head(const struct hlist_head *head)
 573{
 574	return hlist_entry(head->first, struct sock, sk_node);
 575}
 576
 577static inline struct sock *sk_head(const struct hlist_head *head)
 578{
 579	return hlist_empty(head) ? NULL : __sk_head(head);
 580}
 581
 582static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 583{
 584	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 585}
 586
 587static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 588{
 589	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 590}
 591
 592static inline struct sock *sk_next(const struct sock *sk)
 593{
 594	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 595}
 596
 597static inline struct sock *sk_nulls_next(const struct sock *sk)
 598{
 599	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 600		hlist_nulls_entry(sk->sk_nulls_node.next,
 601				  struct sock, sk_nulls_node) :
 602		NULL;
 603}
 604
 605static inline bool sk_unhashed(const struct sock *sk)
 606{
 607	return hlist_unhashed(&sk->sk_node);
 608}
 609
 610static inline bool sk_hashed(const struct sock *sk)
 611{
 612	return !sk_unhashed(sk);
 613}
 614
 615static inline void sk_node_init(struct hlist_node *node)
 616{
 617	node->pprev = NULL;
 618}
 619
 620static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 621{
 622	node->pprev = NULL;
 623}
 624
 625static inline void __sk_del_node(struct sock *sk)
 626{
 627	__hlist_del(&sk->sk_node);
 628}
 629
 630/* NB: equivalent to hlist_del_init_rcu */
 631static inline bool __sk_del_node_init(struct sock *sk)
 632{
 633	if (sk_hashed(sk)) {
 634		__sk_del_node(sk);
 635		sk_node_init(&sk->sk_node);
 636		return true;
 637	}
 638	return false;
 639}
 640
 641/* Grab socket reference count. This operation is valid only
 642   when sk is ALREADY grabbed f.e. it is found in hash table
 643   or a list and the lookup is made under lock preventing hash table
 644   modifications.
 645 */
 646
 647static __always_inline void sock_hold(struct sock *sk)
 648{
 649	refcount_inc(&sk->sk_refcnt);
 650}
 651
 652/* Ungrab socket in the context, which assumes that socket refcnt
 653   cannot hit zero, f.e. it is true in context of any socketcall.
 654 */
 655static __always_inline void __sock_put(struct sock *sk)
 656{
 657	refcount_dec(&sk->sk_refcnt);
 658}
 659
 660static inline bool sk_del_node_init(struct sock *sk)
 661{
 662	bool rc = __sk_del_node_init(sk);
 663
 664	if (rc) {
 665		/* paranoid for a while -acme */
 666		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 667		__sock_put(sk);
 668	}
 669	return rc;
 670}
 671#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
 672
 673static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 674{
 675	if (sk_hashed(sk)) {
 676		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 677		return true;
 678	}
 679	return false;
 680}
 681
 682static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 683{
 684	bool rc = __sk_nulls_del_node_init_rcu(sk);
 685
 686	if (rc) {
 687		/* paranoid for a while -acme */
 688		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 689		__sock_put(sk);
 690	}
 691	return rc;
 692}
 693
 694static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 695{
 696	hlist_add_head(&sk->sk_node, list);
 697}
 698
 699static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 700{
 701	sock_hold(sk);
 702	__sk_add_node(sk, list);
 703}
 704
 705static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 706{
 707	sock_hold(sk);
 708	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 709	    sk->sk_family == AF_INET6)
 710		hlist_add_tail_rcu(&sk->sk_node, list);
 711	else
 712		hlist_add_head_rcu(&sk->sk_node, list);
 713}
 714
 715static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
 716{
 717	sock_hold(sk);
 718	hlist_add_tail_rcu(&sk->sk_node, list);
 719}
 720
 721static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 722{
 723	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 724}
 725
 
 
 
 
 
 726static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 727{
 728	sock_hold(sk);
 729	__sk_nulls_add_node_rcu(sk, list);
 730}
 731
 732static inline void __sk_del_bind_node(struct sock *sk)
 733{
 734	__hlist_del(&sk->sk_bind_node);
 735}
 736
 737static inline void sk_add_bind_node(struct sock *sk,
 738					struct hlist_head *list)
 739{
 740	hlist_add_head(&sk->sk_bind_node, list);
 741}
 742
 743#define sk_for_each(__sk, list) \
 744	hlist_for_each_entry(__sk, list, sk_node)
 745#define sk_for_each_rcu(__sk, list) \
 746	hlist_for_each_entry_rcu(__sk, list, sk_node)
 747#define sk_nulls_for_each(__sk, node, list) \
 748	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 749#define sk_nulls_for_each_rcu(__sk, node, list) \
 750	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 751#define sk_for_each_from(__sk) \
 752	hlist_for_each_entry_from(__sk, sk_node)
 753#define sk_nulls_for_each_from(__sk, node) \
 754	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 755		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 756#define sk_for_each_safe(__sk, tmp, list) \
 757	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 758#define sk_for_each_bound(__sk, list) \
 759	hlist_for_each_entry(__sk, list, sk_bind_node)
 760
 761/**
 762 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 763 * @tpos:	the type * to use as a loop cursor.
 764 * @pos:	the &struct hlist_node to use as a loop cursor.
 765 * @head:	the head for your list.
 766 * @offset:	offset of hlist_node within the struct.
 767 *
 768 */
 769#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
 770	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
 771	     pos != NULL &&						       \
 772		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 773	     pos = rcu_dereference(hlist_next_rcu(pos)))
 774
 775static inline struct user_namespace *sk_user_ns(struct sock *sk)
 776{
 777	/* Careful only use this in a context where these parameters
 778	 * can not change and must all be valid, such as recvmsg from
 779	 * userspace.
 780	 */
 781	return sk->sk_socket->file->f_cred->user_ns;
 782}
 783
 784/* Sock flags */
 785enum sock_flags {
 786	SOCK_DEAD,
 787	SOCK_DONE,
 788	SOCK_URGINLINE,
 789	SOCK_KEEPOPEN,
 790	SOCK_LINGER,
 791	SOCK_DESTROY,
 792	SOCK_BROADCAST,
 793	SOCK_TIMESTAMP,
 794	SOCK_ZAPPED,
 795	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 796	SOCK_DBG, /* %SO_DEBUG setting */
 797	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 798	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 799	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 800	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 801	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 802	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 803	SOCK_FASYNC, /* fasync() active */
 804	SOCK_RXQ_OVFL,
 805	SOCK_ZEROCOPY, /* buffers from userspace */
 806	SOCK_WIFI_STATUS, /* push wifi status to userspace */
 807	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 808		     * Will use last 4 bytes of packet sent from
 809		     * user-space instead.
 810		     */
 811	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 812	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 813	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 814	SOCK_TXTIME,
 815	SOCK_XDP, /* XDP is attached */
 816	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
 
 817};
 818
 819#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 820
 821static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 822{
 823	nsk->sk_flags = osk->sk_flags;
 824}
 825
 826static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 827{
 828	__set_bit(flag, &sk->sk_flags);
 829}
 830
 831static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 832{
 833	__clear_bit(flag, &sk->sk_flags);
 834}
 835
 
 
 
 
 
 
 
 
 
 836static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 837{
 838	return test_bit(flag, &sk->sk_flags);
 839}
 840
 841#ifdef CONFIG_NET
 842DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
 843static inline int sk_memalloc_socks(void)
 844{
 845	return static_branch_unlikely(&memalloc_socks_key);
 846}
 
 
 847#else
 848
 849static inline int sk_memalloc_socks(void)
 850{
 851	return 0;
 852}
 853
 
 
 854#endif
 855
 856static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 857{
 858	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 859}
 860
 861static inline void sk_acceptq_removed(struct sock *sk)
 862{
 863	sk->sk_ack_backlog--;
 864}
 865
 866static inline void sk_acceptq_added(struct sock *sk)
 867{
 868	sk->sk_ack_backlog++;
 869}
 870
 
 
 
 
 871static inline bool sk_acceptq_is_full(const struct sock *sk)
 872{
 873	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 874}
 875
 876/*
 877 * Compute minimal free write space needed to queue new packets.
 878 */
 879static inline int sk_stream_min_wspace(const struct sock *sk)
 880{
 881	return READ_ONCE(sk->sk_wmem_queued) >> 1;
 882}
 883
 884static inline int sk_stream_wspace(const struct sock *sk)
 885{
 886	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
 887}
 888
 889static inline void sk_wmem_queued_add(struct sock *sk, int val)
 890{
 891	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
 892}
 893
 
 
 
 
 
 
 894void sk_stream_write_space(struct sock *sk);
 895
 896/* OOB backlog add */
 897static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 898{
 899	/* dont let skb dst not refcounted, we are going to leave rcu lock */
 900	skb_dst_force(skb);
 901
 902	if (!sk->sk_backlog.tail)
 903		sk->sk_backlog.head = skb;
 904	else
 905		sk->sk_backlog.tail->next = skb;
 906
 907	sk->sk_backlog.tail = skb;
 908	skb->next = NULL;
 909}
 910
 911/*
 912 * Take into account size of receive queue and backlog queue
 913 * Do not take into account this skb truesize,
 914 * to allow even a single big packet to come.
 915 */
 916static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 917{
 918	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 919
 920	return qsize > limit;
 921}
 922
 923/* The per-socket spinlock must be held here. */
 924static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 925					      unsigned int limit)
 926{
 927	if (sk_rcvqueues_full(sk, limit))
 928		return -ENOBUFS;
 929
 930	/*
 931	 * If the skb was allocated from pfmemalloc reserves, only
 932	 * allow SOCK_MEMALLOC sockets to use it as this socket is
 933	 * helping free memory
 934	 */
 935	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 936		return -ENOMEM;
 937
 938	__sk_add_backlog(sk, skb);
 939	sk->sk_backlog.len += skb->truesize;
 940	return 0;
 941}
 942
 943int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 944
 
 
 
 945static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 946{
 947	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 948		return __sk_backlog_rcv(sk, skb);
 949
 950	return sk->sk_backlog_rcv(sk, skb);
 
 
 
 951}
 952
 953static inline void sk_incoming_cpu_update(struct sock *sk)
 954{
 955	int cpu = raw_smp_processor_id();
 956
 957	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
 958		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
 959}
 960
 961static inline void sock_rps_record_flow_hash(__u32 hash)
 962{
 963#ifdef CONFIG_RPS
 964	struct rps_sock_flow_table *sock_flow_table;
 965
 966	rcu_read_lock();
 967	sock_flow_table = rcu_dereference(rps_sock_flow_table);
 968	rps_record_sock_flow(sock_flow_table, hash);
 969	rcu_read_unlock();
 970#endif
 971}
 972
 973static inline void sock_rps_record_flow(const struct sock *sk)
 974{
 975#ifdef CONFIG_RPS
 976	if (static_branch_unlikely(&rfs_needed)) {
 977		/* Reading sk->sk_rxhash might incur an expensive cache line
 978		 * miss.
 979		 *
 980		 * TCP_ESTABLISHED does cover almost all states where RFS
 981		 * might be useful, and is cheaper [1] than testing :
 982		 *	IPv4: inet_sk(sk)->inet_daddr
 983		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
 984		 * OR	an additional socket flag
 985		 * [1] : sk_state and sk_prot are in the same cache line.
 986		 */
 987		if (sk->sk_state == TCP_ESTABLISHED)
 988			sock_rps_record_flow_hash(sk->sk_rxhash);
 
 
 
 
 989	}
 990#endif
 991}
 992
 993static inline void sock_rps_save_rxhash(struct sock *sk,
 994					const struct sk_buff *skb)
 995{
 996#ifdef CONFIG_RPS
 997	if (unlikely(sk->sk_rxhash != skb->hash))
 998		sk->sk_rxhash = skb->hash;
 
 
 
 999#endif
1000}
1001
1002static inline void sock_rps_reset_rxhash(struct sock *sk)
1003{
1004#ifdef CONFIG_RPS
1005	sk->sk_rxhash = 0;
 
1006#endif
1007}
1008
1009#define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1010	({	int __rc;						\
1011		release_sock(__sk);					\
1012		__rc = __condition;					\
1013		if (!__rc) {						\
1014			*(__timeo) = wait_woken(__wait,			\
1015						TASK_INTERRUPTIBLE,	\
1016						*(__timeo));		\
1017		}							\
1018		sched_annotate_sleep();					\
1019		lock_sock(__sk);					\
1020		__rc = __condition;					\
1021		__rc;							\
1022	})
1023
1024int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1025int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1026void sk_stream_wait_close(struct sock *sk, long timeo_p);
1027int sk_stream_error(struct sock *sk, int flags, int err);
1028void sk_stream_kill_queues(struct sock *sk);
1029void sk_set_memalloc(struct sock *sk);
1030void sk_clear_memalloc(struct sock *sk);
1031
1032void __sk_flush_backlog(struct sock *sk);
1033
1034static inline bool sk_flush_backlog(struct sock *sk)
1035{
1036	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1037		__sk_flush_backlog(sk);
1038		return true;
1039	}
1040	return false;
1041}
1042
1043int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1044
1045struct request_sock_ops;
1046struct timewait_sock_ops;
1047struct inet_hashinfo;
1048struct raw_hashinfo;
1049struct smc_hashinfo;
1050struct module;
 
1051
1052/*
1053 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1054 * un-modified. Special care is taken when initializing object to zero.
1055 */
1056static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1057{
1058	if (offsetof(struct sock, sk_node.next) != 0)
1059		memset(sk, 0, offsetof(struct sock, sk_node.next));
1060	memset(&sk->sk_node.pprev, 0,
1061	       size - offsetof(struct sock, sk_node.pprev));
1062}
1063
1064/* Networking protocol blocks we attach to sockets.
1065 * socket layer -> transport layer interface
1066 */
1067struct proto {
1068	void			(*close)(struct sock *sk,
1069					long timeout);
1070	int			(*pre_connect)(struct sock *sk,
1071					struct sockaddr *uaddr,
1072					int addr_len);
1073	int			(*connect)(struct sock *sk,
1074					struct sockaddr *uaddr,
1075					int addr_len);
1076	int			(*disconnect)(struct sock *sk, int flags);
1077
1078	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1079					  bool kern);
1080
1081	int			(*ioctl)(struct sock *sk, int cmd,
1082					 unsigned long arg);
1083	int			(*init)(struct sock *sk);
1084	void			(*destroy)(struct sock *sk);
1085	void			(*shutdown)(struct sock *sk, int how);
1086	int			(*setsockopt)(struct sock *sk, int level,
1087					int optname, char __user *optval,
1088					unsigned int optlen);
1089	int			(*getsockopt)(struct sock *sk, int level,
1090					int optname, char __user *optval,
1091					int __user *option);
1092	void			(*keepalive)(struct sock *sk, int valbool);
1093#ifdef CONFIG_COMPAT
1094	int			(*compat_setsockopt)(struct sock *sk,
1095					int level,
1096					int optname, char __user *optval,
1097					unsigned int optlen);
1098	int			(*compat_getsockopt)(struct sock *sk,
1099					int level,
1100					int optname, char __user *optval,
1101					int __user *option);
1102	int			(*compat_ioctl)(struct sock *sk,
1103					unsigned int cmd, unsigned long arg);
1104#endif
1105	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1106					   size_t len);
1107	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1108					   size_t len, int noblock, int flags,
1109					   int *addr_len);
1110	int			(*sendpage)(struct sock *sk, struct page *page,
1111					int offset, size_t size, int flags);
1112	int			(*bind)(struct sock *sk,
1113					struct sockaddr *uaddr, int addr_len);
 
 
1114
1115	int			(*backlog_rcv) (struct sock *sk,
1116						struct sk_buff *skb);
 
 
1117
1118	void		(*release_cb)(struct sock *sk);
1119
1120	/* Keeping track of sk's, looking them up, and port selection methods. */
1121	int			(*hash)(struct sock *sk);
1122	void			(*unhash)(struct sock *sk);
1123	void			(*rehash)(struct sock *sk);
1124	int			(*get_port)(struct sock *sk, unsigned short snum);
 
 
 
 
 
 
1125
1126	/* Keeping track of sockets in use */
1127#ifdef CONFIG_PROC_FS
1128	unsigned int		inuse_idx;
1129#endif
1130
 
 
 
 
1131	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1132	bool			(*stream_memory_read)(const struct sock *sk);
1133	/* Memory pressure */
1134	void			(*enter_memory_pressure)(struct sock *sk);
1135	void			(*leave_memory_pressure)(struct sock *sk);
1136	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
 
1137	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
 
1138	/*
1139	 * Pressure flag: try to collapse.
1140	 * Technical note: it is used by multiple contexts non atomically.
 
1141	 * All the __sk_mem_schedule() is of this nature: accounting
1142	 * is strict, actions are advisory and have some latency.
1143	 */
1144	unsigned long		*memory_pressure;
1145	long			*sysctl_mem;
1146
1147	int			*sysctl_wmem;
1148	int			*sysctl_rmem;
1149	u32			sysctl_wmem_offset;
1150	u32			sysctl_rmem_offset;
1151
1152	int			max_header;
1153	bool			no_autobind;
1154
1155	struct kmem_cache	*slab;
1156	unsigned int		obj_size;
 
1157	slab_flags_t		slab_flags;
1158	unsigned int		useroffset;	/* Usercopy region offset */
1159	unsigned int		usersize;	/* Usercopy region size */
1160
1161	struct percpu_counter	*orphan_count;
1162
1163	struct request_sock_ops	*rsk_prot;
1164	struct timewait_sock_ops *twsk_prot;
1165
1166	union {
1167		struct inet_hashinfo	*hashinfo;
1168		struct udp_table	*udp_table;
1169		struct raw_hashinfo	*raw_hash;
1170		struct smc_hashinfo	*smc_hash;
1171	} h;
1172
1173	struct module		*owner;
1174
1175	char			name[32];
1176
1177	struct list_head	node;
1178#ifdef SOCK_REFCNT_DEBUG
1179	atomic_t		socks;
1180#endif
1181	int			(*diag_destroy)(struct sock *sk, int err);
1182} __randomize_layout;
1183
1184int proto_register(struct proto *prot, int alloc_slab);
1185void proto_unregister(struct proto *prot);
1186int sock_load_diag_module(int family, int protocol);
1187
1188#ifdef SOCK_REFCNT_DEBUG
1189static inline void sk_refcnt_debug_inc(struct sock *sk)
1190{
1191	atomic_inc(&sk->sk_prot->socks);
1192}
1193
1194static inline void sk_refcnt_debug_dec(struct sock *sk)
1195{
1196	atomic_dec(&sk->sk_prot->socks);
1197	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1198	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1199}
1200
1201static inline void sk_refcnt_debug_release(const struct sock *sk)
1202{
1203	if (refcount_read(&sk->sk_refcnt) != 1)
1204		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1205		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
 
 
1206}
1207#else /* SOCK_REFCNT_DEBUG */
1208#define sk_refcnt_debug_inc(sk) do { } while (0)
1209#define sk_refcnt_debug_dec(sk) do { } while (0)
1210#define sk_refcnt_debug_release(sk) do { } while (0)
1211#endif /* SOCK_REFCNT_DEBUG */
1212
1213static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1214{
1215	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1216		return false;
1217
1218	return sk->sk_prot->stream_memory_free ?
1219		sk->sk_prot->stream_memory_free(sk, wake) : true;
 
1220}
1221
1222static inline bool sk_stream_memory_free(const struct sock *sk)
1223{
1224	return __sk_stream_memory_free(sk, 0);
1225}
1226
1227static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1228{
1229	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1230	       __sk_stream_memory_free(sk, wake);
1231}
1232
1233static inline bool sk_stream_is_writeable(const struct sock *sk)
1234{
1235	return __sk_stream_is_writeable(sk, 0);
1236}
1237
1238static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1239					    struct cgroup *ancestor)
1240{
1241#ifdef CONFIG_SOCK_CGROUP_DATA
1242	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1243				    ancestor);
1244#else
1245	return -ENOTSUPP;
1246#endif
1247}
1248
1249static inline bool sk_has_memory_pressure(const struct sock *sk)
1250{
1251	return sk->sk_prot->memory_pressure != NULL;
1252}
1253
 
 
 
 
 
 
1254static inline bool sk_under_memory_pressure(const struct sock *sk)
1255{
1256	if (!sk->sk_prot->memory_pressure)
1257		return false;
1258
1259	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1260	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1261		return true;
1262
1263	return !!*sk->sk_prot->memory_pressure;
1264}
1265
1266static inline long
1267sk_memory_allocated(const struct sock *sk)
1268{
1269	return atomic_long_read(sk->sk_prot->memory_allocated);
1270}
1271
1272static inline long
 
 
 
 
 
 
 
 
 
1273sk_memory_allocated_add(struct sock *sk, int amt)
1274{
1275	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
 
 
 
 
 
 
 
 
1276}
1277
1278static inline void
1279sk_memory_allocated_sub(struct sock *sk, int amt)
1280{
1281	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
 
 
 
 
 
 
 
 
1282}
1283
 
 
1284static inline void sk_sockets_allocated_dec(struct sock *sk)
1285{
1286	percpu_counter_dec(sk->sk_prot->sockets_allocated);
 
1287}
1288
1289static inline void sk_sockets_allocated_inc(struct sock *sk)
1290{
1291	percpu_counter_inc(sk->sk_prot->sockets_allocated);
 
1292}
1293
1294static inline u64
1295sk_sockets_allocated_read_positive(struct sock *sk)
1296{
1297	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1298}
1299
1300static inline int
1301proto_sockets_allocated_sum_positive(struct proto *prot)
1302{
1303	return percpu_counter_sum_positive(prot->sockets_allocated);
1304}
1305
1306static inline long
1307proto_memory_allocated(struct proto *prot)
1308{
1309	return atomic_long_read(prot->memory_allocated);
1310}
1311
1312static inline bool
1313proto_memory_pressure(struct proto *prot)
1314{
1315	if (!prot->memory_pressure)
1316		return false;
1317	return !!*prot->memory_pressure;
1318}
1319
1320
1321#ifdef CONFIG_PROC_FS
1322/* Called with local bh disabled */
1323void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324int sock_prot_inuse_get(struct net *net, struct proto *proto);
1325int sock_inuse_get(struct net *net);
1326#else
1327static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1328		int inc)
 
 
 
 
1329{
1330}
1331#endif
1332
1333
1334/* With per-bucket locks this operation is not-atomic, so that
1335 * this version is not worse.
1336 */
1337static inline int __sk_prot_rehash(struct sock *sk)
1338{
1339	sk->sk_prot->unhash(sk);
1340	return sk->sk_prot->hash(sk);
1341}
1342
1343/* About 10 seconds */
1344#define SOCK_DESTROY_TIME (10*HZ)
1345
1346/* Sockets 0-1023 can't be bound to unless you are superuser */
1347#define PROT_SOCK	1024
1348
1349#define SHUTDOWN_MASK	3
1350#define RCV_SHUTDOWN	1
1351#define SEND_SHUTDOWN	2
1352
1353#define SOCK_SNDBUF_LOCK	1
1354#define SOCK_RCVBUF_LOCK	2
1355#define SOCK_BINDADDR_LOCK	4
1356#define SOCK_BINDPORT_LOCK	8
1357
1358struct socket_alloc {
1359	struct socket socket;
1360	struct inode vfs_inode;
1361};
1362
1363static inline struct socket *SOCKET_I(struct inode *inode)
1364{
1365	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1366}
1367
1368static inline struct inode *SOCK_INODE(struct socket *socket)
1369{
1370	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1371}
1372
1373/*
1374 * Functions for memory accounting
1375 */
1376int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1377int __sk_mem_schedule(struct sock *sk, int size, int kind);
1378void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1379void __sk_mem_reclaim(struct sock *sk, int amount);
1380
1381/* We used to have PAGE_SIZE here, but systems with 64KB pages
1382 * do not necessarily have 16x time more memory than 4KB ones.
1383 */
1384#define SK_MEM_QUANTUM 4096
1385#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1386#define SK_MEM_SEND	0
1387#define SK_MEM_RECV	1
1388
1389/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1390static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1391{
1392	long val = sk->sk_prot->sysctl_mem[index];
1393
1394#if PAGE_SIZE > SK_MEM_QUANTUM
1395	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1396#elif PAGE_SIZE < SK_MEM_QUANTUM
1397	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1398#endif
1399	return val;
1400}
1401
1402static inline int sk_mem_pages(int amt)
1403{
1404	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1405}
1406
1407static inline bool sk_has_account(struct sock *sk)
1408{
1409	/* return true if protocol supports memory accounting */
1410	return !!sk->sk_prot->memory_allocated;
1411}
1412
1413static inline bool sk_wmem_schedule(struct sock *sk, int size)
1414{
 
 
1415	if (!sk_has_account(sk))
1416		return true;
1417	return size <= sk->sk_forward_alloc ||
1418		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1419}
1420
1421static inline bool
1422sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1423{
 
 
1424	if (!sk_has_account(sk))
1425		return true;
1426	return size<= sk->sk_forward_alloc ||
1427		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1428		skb_pfmemalloc(skb);
1429}
1430
 
 
 
 
 
 
 
 
 
 
 
 
 
1431static inline void sk_mem_reclaim(struct sock *sk)
1432{
 
 
1433	if (!sk_has_account(sk))
1434		return;
1435	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1436		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
 
 
 
1437}
1438
1439static inline void sk_mem_reclaim_partial(struct sock *sk)
1440{
1441	if (!sk_has_account(sk))
1442		return;
1443	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1444		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1445}
1446
1447static inline void sk_mem_charge(struct sock *sk, int size)
1448{
1449	if (!sk_has_account(sk))
1450		return;
1451	sk->sk_forward_alloc -= size;
1452}
1453
1454static inline void sk_mem_uncharge(struct sock *sk, int size)
1455{
1456	if (!sk_has_account(sk))
1457		return;
1458	sk->sk_forward_alloc += size;
1459
1460	/* Avoid a possible overflow.
1461	 * TCP send queues can make this happen, if sk_mem_reclaim()
1462	 * is not called and more than 2 GBytes are released at once.
1463	 *
1464	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1465	 * no need to hold that much forward allocation anyway.
1466	 */
1467	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1468		__sk_mem_reclaim(sk, 1 << 20);
1469}
1470
1471DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1472static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1473{
1474	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1475	sk_wmem_queued_add(sk, -skb->truesize);
1476	sk_mem_uncharge(sk, skb->truesize);
1477	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1478	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1479		skb_zcopy_clear(skb, true);
1480		sk->sk_tx_skb_cache = skb;
1481		return;
1482	}
1483	__kfree_skb(skb);
1484}
1485
1486static inline void sock_release_ownership(struct sock *sk)
1487{
1488	if (sk->sk_lock.owned) {
1489		sk->sk_lock.owned = 0;
1490
1491		/* The sk_lock has mutex_unlock() semantics: */
1492		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1493	}
1494}
1495
1496/*
1497 * Macro so as to not evaluate some arguments when
1498 * lockdep is not enabled.
1499 *
1500 * Mark both the sk_lock and the sk_lock.slock as a
1501 * per-address-family lock class.
1502 */
1503#define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1504do {									\
1505	sk->sk_lock.owned = 0;						\
1506	init_waitqueue_head(&sk->sk_lock.wq);				\
1507	spin_lock_init(&(sk)->sk_lock.slock);				\
1508	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1509			sizeof((sk)->sk_lock));				\
1510	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1511				(skey), (sname));				\
1512	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1513} while (0)
1514
1515#ifdef CONFIG_LOCKDEP
1516static inline bool lockdep_sock_is_held(const struct sock *sk)
1517{
1518	return lockdep_is_held(&sk->sk_lock) ||
1519	       lockdep_is_held(&sk->sk_lock.slock);
1520}
1521#endif
1522
1523void lock_sock_nested(struct sock *sk, int subclass);
1524
1525static inline void lock_sock(struct sock *sk)
1526{
1527	lock_sock_nested(sk, 0);
1528}
1529
 
1530void __release_sock(struct sock *sk);
1531void release_sock(struct sock *sk);
1532
1533/* BH context may only use the following locking interface. */
1534#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1535#define bh_lock_sock_nested(__sk) \
1536				spin_lock_nested(&((__sk)->sk_lock.slock), \
1537				SINGLE_DEPTH_NESTING)
1538#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1539
1540bool lock_sock_fast(struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1541/**
1542 * unlock_sock_fast - complement of lock_sock_fast
1543 * @sk: socket
1544 * @slow: slow mode
1545 *
1546 * fast unlock socket for user context.
1547 * If slow mode is on, we call regular release_sock()
1548 */
1549static inline void unlock_sock_fast(struct sock *sk, bool slow)
 
1550{
1551	if (slow)
1552		release_sock(sk);
1553	else
 
 
1554		spin_unlock_bh(&sk->sk_lock.slock);
 
1555}
1556
 
 
 
 
 
1557/* Used by processes to "lock" a socket state, so that
1558 * interrupts and bottom half handlers won't change it
1559 * from under us. It essentially blocks any incoming
1560 * packets, so that we won't get any new data or any
1561 * packets that change the state of the socket.
1562 *
1563 * While locked, BH processing will add new packets to
1564 * the backlog queue.  This queue is processed by the
1565 * owner of the socket lock right before it is released.
1566 *
1567 * Since ~2.3.5 it is also exclusive sleep lock serializing
1568 * accesses from user process context.
1569 */
1570
1571static inline void sock_owned_by_me(const struct sock *sk)
1572{
1573#ifdef CONFIG_LOCKDEP
1574	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1575#endif
1576}
1577
1578static inline bool sock_owned_by_user(const struct sock *sk)
1579{
1580	sock_owned_by_me(sk);
1581	return sk->sk_lock.owned;
1582}
1583
1584static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1585{
1586	return sk->sk_lock.owned;
1587}
1588
 
 
 
 
 
 
 
 
 
1589/* no reclassification while locks are held */
1590static inline bool sock_allow_reclassification(const struct sock *csk)
1591{
1592	struct sock *sk = (struct sock *)csk;
1593
1594	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
 
1595}
1596
1597struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1598		      struct proto *prot, int kern);
1599void sk_free(struct sock *sk);
1600void sk_destruct(struct sock *sk);
1601struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1602void sk_free_unlock_clone(struct sock *sk);
1603
1604struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1605			     gfp_t priority);
1606void __sock_wfree(struct sk_buff *skb);
1607void sock_wfree(struct sk_buff *skb);
1608struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1609			     gfp_t priority);
1610void skb_orphan_partial(struct sk_buff *skb);
1611void sock_rfree(struct sk_buff *skb);
1612void sock_efree(struct sk_buff *skb);
1613#ifdef CONFIG_INET
1614void sock_edemux(struct sk_buff *skb);
 
1615#else
1616#define sock_edemux sock_efree
1617#endif
1618
 
 
1619int sock_setsockopt(struct socket *sock, int level, int op,
1620		    char __user *optval, unsigned int optlen);
 
 
 
 
1621
1622int sock_getsockopt(struct socket *sock, int level, int op,
1623		    char __user *optval, int __user *optlen);
1624int sock_gettstamp(struct socket *sock, void __user *userstamp,
1625		   bool timeval, bool time32);
1626struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1627				    int noblock, int *errcode);
1628struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1629				     unsigned long data_len, int noblock,
1630				     int *errcode, int max_page_order);
 
 
 
 
 
 
 
 
1631void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1632void sock_kfree_s(struct sock *sk, void *mem, int size);
1633void sock_kzfree_s(struct sock *sk, void *mem, int size);
1634void sk_send_sigurg(struct sock *sk);
1635
 
 
 
 
 
 
 
1636struct sockcm_cookie {
1637	u64 transmit_time;
1638	u32 mark;
1639	u16 tsflags;
1640};
1641
1642static inline void sockcm_init(struct sockcm_cookie *sockc,
1643			       const struct sock *sk)
1644{
1645	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
 
 
1646}
1647
1648int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1649		     struct sockcm_cookie *sockc);
1650int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1651		   struct sockcm_cookie *sockc);
1652
1653/*
1654 * Functions to fill in entries in struct proto_ops when a protocol
1655 * does not implement a particular function.
1656 */
1657int sock_no_bind(struct socket *, struct sockaddr *, int);
1658int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1659int sock_no_socketpair(struct socket *, struct socket *);
1660int sock_no_accept(struct socket *, struct socket *, int, bool);
1661int sock_no_getname(struct socket *, struct sockaddr *, int);
1662int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1663int sock_no_listen(struct socket *, int);
1664int sock_no_shutdown(struct socket *, int);
1665int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1666int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1667int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1668int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1669int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1670int sock_no_mmap(struct file *file, struct socket *sock,
1671		 struct vm_area_struct *vma);
1672ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1673			 size_t size, int flags);
1674ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1675				int offset, size_t size, int flags);
1676
1677/*
1678 * Functions to fill in entries in struct proto_ops when a protocol
1679 * uses the inet style.
1680 */
1681int sock_common_getsockopt(struct socket *sock, int level, int optname,
1682				  char __user *optval, int __user *optlen);
1683int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1684			int flags);
1685int sock_common_setsockopt(struct socket *sock, int level, int optname,
1686				  char __user *optval, unsigned int optlen);
1687int compat_sock_common_getsockopt(struct socket *sock, int level,
1688		int optname, char __user *optval, int __user *optlen);
1689int compat_sock_common_setsockopt(struct socket *sock, int level,
1690		int optname, char __user *optval, unsigned int optlen);
1691
1692void sk_common_release(struct sock *sk);
1693
1694/*
1695 *	Default socket callbacks and setup code
1696 */
1697
1698/* Initialise core socket variables */
 
 
 
 
 
1699void sock_init_data(struct socket *sock, struct sock *sk);
1700
1701/*
1702 * Socket reference counting postulates.
1703 *
1704 * * Each user of socket SHOULD hold a reference count.
1705 * * Each access point to socket (an hash table bucket, reference from a list,
1706 *   running timer, skb in flight MUST hold a reference count.
1707 * * When reference count hits 0, it means it will never increase back.
1708 * * When reference count hits 0, it means that no references from
1709 *   outside exist to this socket and current process on current CPU
1710 *   is last user and may/should destroy this socket.
1711 * * sk_free is called from any context: process, BH, IRQ. When
1712 *   it is called, socket has no references from outside -> sk_free
1713 *   may release descendant resources allocated by the socket, but
1714 *   to the time when it is called, socket is NOT referenced by any
1715 *   hash tables, lists etc.
1716 * * Packets, delivered from outside (from network or from another process)
1717 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1718 *   when they sit in queue. Otherwise, packets will leak to hole, when
1719 *   socket is looked up by one cpu and unhasing is made by another CPU.
1720 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1721 *   (leak to backlog). Packet socket does all the processing inside
1722 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1723 *   use separate SMP lock, so that they are prone too.
1724 */
1725
1726/* Ungrab socket and destroy it, if it was the last reference. */
1727static inline void sock_put(struct sock *sk)
1728{
1729	if (refcount_dec_and_test(&sk->sk_refcnt))
1730		sk_free(sk);
1731}
1732/* Generic version of sock_put(), dealing with all sockets
1733 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1734 */
1735void sock_gen_put(struct sock *sk);
1736
1737int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1738		     unsigned int trim_cap, bool refcounted);
1739static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1740				 const int nested)
1741{
1742	return __sk_receive_skb(sk, skb, nested, 1, true);
1743}
1744
1745static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1746{
1747	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1748	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1749		return;
1750	sk->sk_tx_queue_mapping = tx_queue;
 
 
 
1751}
1752
1753#define NO_QUEUE_MAPPING	USHRT_MAX
1754
1755static inline void sk_tx_queue_clear(struct sock *sk)
1756{
1757	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
 
 
 
1758}
1759
1760static inline int sk_tx_queue_get(const struct sock *sk)
1761{
1762	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1763		return sk->sk_tx_queue_mapping;
 
 
 
1764
 
 
 
1765	return -1;
1766}
1767
1768static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
 
 
1769{
1770#ifdef CONFIG_XPS
1771	if (skb_rx_queue_recorded(skb)) {
1772		u16 rx_queue = skb_get_rx_queue(skb);
1773
1774		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1775			return;
1776
1777		sk->sk_rx_queue_mapping = rx_queue;
1778	}
1779#endif
1780}
1781
 
 
 
 
 
 
 
 
 
 
1782static inline void sk_rx_queue_clear(struct sock *sk)
1783{
1784#ifdef CONFIG_XPS
1785	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1786#endif
1787}
1788
1789#ifdef CONFIG_XPS
1790static inline int sk_rx_queue_get(const struct sock *sk)
1791{
1792	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1793		return sk->sk_rx_queue_mapping;
 
 
 
 
 
 
1794
1795	return -1;
1796}
1797#endif
1798
1799static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1800{
1801	sk_tx_queue_clear(sk);
1802	sk->sk_socket = sock;
1803}
1804
1805static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1806{
1807	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1808	return &rcu_dereference_raw(sk->sk_wq)->wait;
1809}
1810/* Detach socket from process context.
1811 * Announce socket dead, detach it from wait queue and inode.
1812 * Note that parent inode held reference count on this struct sock,
1813 * we do not release it in this function, because protocol
1814 * probably wants some additional cleanups or even continuing
1815 * to work with this socket (TCP).
1816 */
1817static inline void sock_orphan(struct sock *sk)
1818{
1819	write_lock_bh(&sk->sk_callback_lock);
1820	sock_set_flag(sk, SOCK_DEAD);
1821	sk_set_socket(sk, NULL);
1822	sk->sk_wq  = NULL;
1823	write_unlock_bh(&sk->sk_callback_lock);
1824}
1825
1826static inline void sock_graft(struct sock *sk, struct socket *parent)
1827{
1828	WARN_ON(parent->sk);
1829	write_lock_bh(&sk->sk_callback_lock);
1830	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1831	parent->sk = sk;
1832	sk_set_socket(sk, parent);
1833	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1834	security_sock_graft(sk, parent);
1835	write_unlock_bh(&sk->sk_callback_lock);
1836}
1837
1838kuid_t sock_i_uid(struct sock *sk);
 
1839unsigned long sock_i_ino(struct sock *sk);
1840
1841static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1842{
1843	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1844}
1845
1846static inline u32 net_tx_rndhash(void)
1847{
1848	u32 v = prandom_u32();
1849
1850	return v ?: 1;
1851}
1852
1853static inline void sk_set_txhash(struct sock *sk)
1854{
1855	sk->sk_txhash = net_tx_rndhash();
 
1856}
1857
1858static inline void sk_rethink_txhash(struct sock *sk)
1859{
1860	if (sk->sk_txhash)
1861		sk_set_txhash(sk);
 
 
 
1862}
1863
1864static inline struct dst_entry *
1865__sk_dst_get(struct sock *sk)
1866{
1867	return rcu_dereference_check(sk->sk_dst_cache,
1868				     lockdep_sock_is_held(sk));
1869}
1870
1871static inline struct dst_entry *
1872sk_dst_get(struct sock *sk)
1873{
1874	struct dst_entry *dst;
1875
1876	rcu_read_lock();
1877	dst = rcu_dereference(sk->sk_dst_cache);
1878	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1879		dst = NULL;
1880	rcu_read_unlock();
1881	return dst;
1882}
1883
1884static inline void dst_negative_advice(struct sock *sk)
1885{
1886	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1887
1888	sk_rethink_txhash(sk);
1889
1890	if (dst && dst->ops->negative_advice) {
1891		ndst = dst->ops->negative_advice(dst);
1892
1893		if (ndst != dst) {
1894			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1895			sk_tx_queue_clear(sk);
1896			sk->sk_dst_pending_confirm = 0;
1897		}
1898	}
1899}
1900
 
 
 
 
 
 
1901static inline void
1902__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1903{
1904	struct dst_entry *old_dst;
1905
1906	sk_tx_queue_clear(sk);
1907	sk->sk_dst_pending_confirm = 0;
1908	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1909					    lockdep_sock_is_held(sk));
1910	rcu_assign_pointer(sk->sk_dst_cache, dst);
1911	dst_release(old_dst);
1912}
1913
1914static inline void
1915sk_dst_set(struct sock *sk, struct dst_entry *dst)
1916{
1917	struct dst_entry *old_dst;
1918
1919	sk_tx_queue_clear(sk);
1920	sk->sk_dst_pending_confirm = 0;
1921	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1922	dst_release(old_dst);
1923}
1924
1925static inline void
1926__sk_dst_reset(struct sock *sk)
1927{
1928	__sk_dst_set(sk, NULL);
1929}
1930
1931static inline void
1932sk_dst_reset(struct sock *sk)
1933{
1934	sk_dst_set(sk, NULL);
1935}
1936
1937struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1938
1939struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1940
1941static inline void sk_dst_confirm(struct sock *sk)
1942{
1943	if (!sk->sk_dst_pending_confirm)
1944		sk->sk_dst_pending_confirm = 1;
1945}
1946
1947static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1948{
1949	if (skb_get_dst_pending_confirm(skb)) {
1950		struct sock *sk = skb->sk;
1951		unsigned long now = jiffies;
1952
1953		/* avoid dirtying neighbour */
1954		if (n->confirmed != now)
1955			n->confirmed = now;
1956		if (sk && sk->sk_dst_pending_confirm)
1957			sk->sk_dst_pending_confirm = 0;
1958	}
1959}
1960
1961bool sk_mc_loop(struct sock *sk);
1962
1963static inline bool sk_can_gso(const struct sock *sk)
1964{
1965	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1966}
1967
1968void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1969
1970static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1971{
1972	sk->sk_route_nocaps |= flags;
1973	sk->sk_route_caps &= ~flags;
1974}
1975
1976static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1977					   struct iov_iter *from, char *to,
1978					   int copy, int offset)
1979{
1980	if (skb->ip_summed == CHECKSUM_NONE) {
1981		__wsum csum = 0;
1982		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1983			return -EFAULT;
1984		skb->csum = csum_block_add(skb->csum, csum, offset);
1985	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1986		if (!copy_from_iter_full_nocache(to, copy, from))
1987			return -EFAULT;
1988	} else if (!copy_from_iter_full(to, copy, from))
1989		return -EFAULT;
1990
1991	return 0;
1992}
1993
1994static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1995				       struct iov_iter *from, int copy)
1996{
1997	int err, offset = skb->len;
1998
1999	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2000				       copy, offset);
2001	if (err)
2002		__skb_trim(skb, offset);
2003
2004	return err;
2005}
2006
2007static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2008					   struct sk_buff *skb,
2009					   struct page *page,
2010					   int off, int copy)
2011{
2012	int err;
2013
2014	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2015				       copy, skb->len);
2016	if (err)
2017		return err;
2018
2019	skb->len	     += copy;
2020	skb->data_len	     += copy;
2021	skb->truesize	     += copy;
2022	sk_wmem_queued_add(sk, copy);
2023	sk_mem_charge(sk, copy);
2024	return 0;
2025}
2026
2027/**
2028 * sk_wmem_alloc_get - returns write allocations
2029 * @sk: socket
2030 *
2031 * Returns sk_wmem_alloc minus initial offset of one
2032 */
2033static inline int sk_wmem_alloc_get(const struct sock *sk)
2034{
2035	return refcount_read(&sk->sk_wmem_alloc) - 1;
2036}
2037
2038/**
2039 * sk_rmem_alloc_get - returns read allocations
2040 * @sk: socket
2041 *
2042 * Returns sk_rmem_alloc
2043 */
2044static inline int sk_rmem_alloc_get(const struct sock *sk)
2045{
2046	return atomic_read(&sk->sk_rmem_alloc);
2047}
2048
2049/**
2050 * sk_has_allocations - check if allocations are outstanding
2051 * @sk: socket
2052 *
2053 * Returns true if socket has write or read allocations
2054 */
2055static inline bool sk_has_allocations(const struct sock *sk)
2056{
2057	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2058}
2059
2060/**
2061 * skwq_has_sleeper - check if there are any waiting processes
2062 * @wq: struct socket_wq
2063 *
2064 * Returns true if socket_wq has waiting processes
2065 *
2066 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2067 * barrier call. They were added due to the race found within the tcp code.
2068 *
2069 * Consider following tcp code paths::
2070 *
2071 *   CPU1                CPU2
2072 *   sys_select          receive packet
2073 *   ...                 ...
2074 *   __add_wait_queue    update tp->rcv_nxt
2075 *   ...                 ...
2076 *   tp->rcv_nxt check   sock_def_readable
2077 *   ...                 {
2078 *   schedule               rcu_read_lock();
2079 *                          wq = rcu_dereference(sk->sk_wq);
2080 *                          if (wq && waitqueue_active(&wq->wait))
2081 *                              wake_up_interruptible(&wq->wait)
2082 *                          ...
2083 *                       }
2084 *
2085 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2086 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2087 * could then endup calling schedule and sleep forever if there are no more
2088 * data on the socket.
2089 *
2090 */
2091static inline bool skwq_has_sleeper(struct socket_wq *wq)
2092{
2093	return wq && wq_has_sleeper(&wq->wait);
2094}
2095
2096/**
2097 * sock_poll_wait - place memory barrier behind the poll_wait call.
2098 * @filp:           file
2099 * @sock:           socket to wait on
2100 * @p:              poll_table
2101 *
2102 * See the comments in the wq_has_sleeper function.
2103 */
2104static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2105				  poll_table *p)
2106{
2107	if (!poll_does_not_wait(p)) {
2108		poll_wait(filp, &sock->wq.wait, p);
2109		/* We need to be sure we are in sync with the
2110		 * socket flags modification.
2111		 *
2112		 * This memory barrier is paired in the wq_has_sleeper.
2113		 */
2114		smp_mb();
2115	}
2116}
2117
2118static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2119{
2120	if (sk->sk_txhash) {
 
 
 
2121		skb->l4_hash = 1;
2122		skb->hash = sk->sk_txhash;
2123	}
2124}
2125
2126void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2127
2128/*
2129 *	Queue a received datagram if it will fit. Stream and sequenced
2130 *	protocols can't normally use this as they need to fit buffers in
2131 *	and play with them.
2132 *
2133 *	Inlined as it's very short and called for pretty much every
2134 *	packet ever received.
2135 */
2136static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2137{
2138	skb_orphan(skb);
2139	skb->sk = sk;
2140	skb->destructor = sock_rfree;
2141	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2142	sk_mem_charge(sk, skb->truesize);
2143}
2144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2146		    unsigned long expires);
2147
2148void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2149
 
 
2150int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2151			struct sk_buff *skb, unsigned int flags,
2152			void (*destructor)(struct sock *sk,
2153					   struct sk_buff *skb));
2154int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2155int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
 
 
 
 
 
 
 
2156
2157int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2158struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2159
2160/*
2161 *	Recover an error report and clear atomically
2162 */
2163
2164static inline int sock_error(struct sock *sk)
2165{
2166	int err;
2167	if (likely(!sk->sk_err))
 
 
 
 
2168		return 0;
 
2169	err = xchg(&sk->sk_err, 0);
2170	return -err;
2171}
2172
 
 
2173static inline unsigned long sock_wspace(struct sock *sk)
2174{
2175	int amt = 0;
2176
2177	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2178		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2179		if (amt < 0)
2180			amt = 0;
2181	}
2182	return amt;
2183}
2184
2185/* Note:
2186 *  We use sk->sk_wq_raw, from contexts knowing this
2187 *  pointer is not NULL and cannot disappear/change.
2188 */
2189static inline void sk_set_bit(int nr, struct sock *sk)
2190{
2191	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2192	    !sock_flag(sk, SOCK_FASYNC))
2193		return;
2194
2195	set_bit(nr, &sk->sk_wq_raw->flags);
2196}
2197
2198static inline void sk_clear_bit(int nr, struct sock *sk)
2199{
2200	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2201	    !sock_flag(sk, SOCK_FASYNC))
2202		return;
2203
2204	clear_bit(nr, &sk->sk_wq_raw->flags);
2205}
2206
2207static inline void sk_wake_async(const struct sock *sk, int how, int band)
2208{
2209	if (sock_flag(sk, SOCK_FASYNC)) {
2210		rcu_read_lock();
2211		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2212		rcu_read_unlock();
2213	}
2214}
2215
2216/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2217 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2218 * Note: for send buffers, TCP works better if we can build two skbs at
2219 * minimum.
2220 */
2221#define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2222
2223#define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2224#define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2225
2226static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2227{
2228	u32 val;
2229
2230	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2231		return;
2232
2233	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
 
2234
2235	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2236}
2237
2238struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2239				    bool force_schedule);
2240
2241/**
2242 * sk_page_frag - return an appropriate page_frag
2243 * @sk: socket
2244 *
2245 * Use the per task page_frag instead of the per socket one for
2246 * optimization when we know that we're in the normal context and owns
2247 * everything that's associated with %current.
2248 *
2249 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2250 * inside other socket operations and end up recursing into sk_page_frag()
2251 * while it's already in use.
 
 
 
 
2252 */
2253static inline struct page_frag *sk_page_frag(struct sock *sk)
2254{
2255	if (gfpflags_normal_context(sk->sk_allocation))
2256		return &current->task_frag;
2257
2258	return &sk->sk_frag;
2259}
2260
2261bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2262
2263/*
2264 *	Default write policy as shown to user space via poll/select/SIGIO
2265 */
2266static inline bool sock_writeable(const struct sock *sk)
2267{
2268	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2269}
2270
2271static inline gfp_t gfp_any(void)
2272{
2273	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2274}
2275
 
 
 
 
 
2276static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2277{
2278	return noblock ? 0 : sk->sk_rcvtimeo;
2279}
2280
2281static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2282{
2283	return noblock ? 0 : sk->sk_sndtimeo;
2284}
2285
2286static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2287{
2288	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2289
2290	return v ?: 1;
2291}
2292
2293/* Alas, with timeout socket operations are not restartable.
2294 * Compare this to poll().
2295 */
2296static inline int sock_intr_errno(long timeo)
2297{
2298	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2299}
2300
2301struct sock_skb_cb {
2302	u32 dropcount;
2303};
2304
2305/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2306 * using skb->cb[] would keep using it directly and utilize its
2307 * alignement guarantee.
2308 */
2309#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2310			    sizeof(struct sock_skb_cb)))
2311
2312#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2313			    SOCK_SKB_CB_OFFSET))
2314
2315#define sock_skb_cb_check_size(size) \
2316	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2317
2318static inline void
2319sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2320{
2321	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2322						atomic_read(&sk->sk_drops) : 0;
2323}
2324
2325static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2326{
2327	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2328
2329	atomic_add(segs, &sk->sk_drops);
2330}
2331
2332static inline ktime_t sock_read_timestamp(struct sock *sk)
2333{
2334#if BITS_PER_LONG==32
2335	unsigned int seq;
2336	ktime_t kt;
2337
2338	do {
2339		seq = read_seqbegin(&sk->sk_stamp_seq);
2340		kt = sk->sk_stamp;
2341	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2342
2343	return kt;
2344#else
2345	return READ_ONCE(sk->sk_stamp);
2346#endif
2347}
2348
2349static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2350{
2351#if BITS_PER_LONG==32
2352	write_seqlock(&sk->sk_stamp_seq);
2353	sk->sk_stamp = kt;
2354	write_sequnlock(&sk->sk_stamp_seq);
2355#else
2356	WRITE_ONCE(sk->sk_stamp, kt);
2357#endif
2358}
2359
2360void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2361			   struct sk_buff *skb);
2362void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2363			     struct sk_buff *skb);
2364
2365static inline void
2366sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2367{
2368	ktime_t kt = skb->tstamp;
2369	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2370
 
2371	/*
2372	 * generate control messages if
2373	 * - receive time stamping in software requested
2374	 * - software time stamp available and wanted
2375	 * - hardware time stamps available and wanted
2376	 */
2377	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2378	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2379	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2380	    (hwtstamps->hwtstamp &&
2381	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2382		__sock_recv_timestamp(msg, sk, skb);
2383	else
2384		sock_write_timestamp(sk, kt);
2385
2386	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2387		__sock_recv_wifi_status(msg, sk, skb);
2388}
2389
2390void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2391			      struct sk_buff *skb);
2392
2393#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2394static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2395					  struct sk_buff *skb)
2396{
2397#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2398			   (1UL << SOCK_RCVTSTAMP))
 
2399#define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2400			   SOF_TIMESTAMPING_RAW_HARDWARE)
2401
2402	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2403		__sock_recv_ts_and_drops(msg, sk, skb);
 
2404	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2405		sock_write_timestamp(sk, skb->tstamp);
2406	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2407		sock_write_timestamp(sk, 0);
2408}
2409
2410void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2411
2412/**
2413 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2414 * @sk:		socket sending this packet
2415 * @tsflags:	timestamping flags to use
2416 * @tx_flags:	completed with instructions for time stamping
2417 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2418 *
2419 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2420 */
2421static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2422				      __u8 *tx_flags, __u32 *tskey)
2423{
2424	if (unlikely(tsflags)) {
2425		__sock_tx_timestamp(tsflags, tx_flags);
2426		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2427		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2428			*tskey = sk->sk_tskey++;
2429	}
2430	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2431		*tx_flags |= SKBTX_WIFI_STATUS;
2432}
2433
2434static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2435				     __u8 *tx_flags)
2436{
2437	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2438}
2439
2440static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2441{
2442	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2443			   &skb_shinfo(skb)->tskey);
2444}
2445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2446/**
2447 * sk_eat_skb - Release a skb if it is no longer needed
2448 * @sk: socket to eat this skb from
2449 * @skb: socket buffer to eat
2450 *
2451 * This routine must be called with interrupts disabled or with the socket
2452 * locked so that the sk_buff queue operation is ok.
2453*/
2454DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2455static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2456{
2457	__skb_unlink(skb, &sk->sk_receive_queue);
2458	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2459	    !sk->sk_rx_skb_cache) {
2460		sk->sk_rx_skb_cache = skb;
2461		skb_orphan(skb);
2462		return;
2463	}
2464	__kfree_skb(skb);
2465}
2466
2467static inline
2468struct net *sock_net(const struct sock *sk)
2469{
2470	return read_pnet(&sk->sk_net);
 
 
 
 
2471}
2472
2473static inline
2474void sock_net_set(struct sock *sk, struct net *net)
 
 
2475{
2476	write_pnet(&sk->sk_net, net);
 
 
 
 
 
 
 
2477}
2478
2479static inline struct sock *skb_steal_sock(struct sk_buff *skb)
 
 
 
 
 
 
 
2480{
2481	if (skb->sk) {
2482		struct sock *sk = skb->sk;
2483
 
 
 
 
2484		skb->destructor = NULL;
2485		skb->sk = NULL;
2486		return sk;
2487	}
 
 
2488	return NULL;
2489}
2490
2491/* This helper checks if a socket is a full socket,
2492 * ie _not_ a timewait or request socket.
2493 */
2494static inline bool sk_fullsock(const struct sock *sk)
2495{
2496	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2497}
2498
2499/* Checks if this SKB belongs to an HW offloaded socket
2500 * and whether any SW fallbacks are required based on dev.
2501 * Check decrypted mark in case skb_orphan() cleared socket.
2502 */
2503static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2504						   struct net_device *dev)
2505{
2506#ifdef CONFIG_SOCK_VALIDATE_XMIT
2507	struct sock *sk = skb->sk;
2508
2509	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2510		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2511#ifdef CONFIG_TLS_DEVICE
2512	} else if (unlikely(skb->decrypted)) {
2513		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2514		kfree_skb(skb);
2515		skb = NULL;
2516#endif
2517	}
2518#endif
2519
2520	return skb;
2521}
2522
2523/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2524 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2525 */
2526static inline bool sk_listener(const struct sock *sk)
2527{
2528	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2529}
2530
2531void sock_enable_timestamp(struct sock *sk, int flag);
2532int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2533		       int type);
2534
2535bool sk_ns_capable(const struct sock *sk,
2536		   struct user_namespace *user_ns, int cap);
2537bool sk_capable(const struct sock *sk, int cap);
2538bool sk_net_capable(const struct sock *sk, int cap);
2539
2540void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2541
2542/* Take into consideration the size of the struct sk_buff overhead in the
2543 * determination of these values, since that is non-constant across
2544 * platforms.  This makes socket queueing behavior and performance
2545 * not depend upon such differences.
2546 */
2547#define _SK_MEM_PACKETS		256
2548#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2549#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2550#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2551
2552extern __u32 sysctl_wmem_max;
2553extern __u32 sysctl_rmem_max;
2554
2555extern int sysctl_tstamp_allow_data;
2556extern int sysctl_optmem_max;
2557
2558extern __u32 sysctl_wmem_default;
2559extern __u32 sysctl_rmem_default;
2560
 
2561DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2562
2563static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2564{
2565	/* Does this proto have per netns sysctl_wmem ? */
2566	if (proto->sysctl_wmem_offset)
2567		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2568
2569	return *proto->sysctl_wmem;
2570}
2571
2572static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2573{
2574	/* Does this proto have per netns sysctl_rmem ? */
2575	if (proto->sysctl_rmem_offset)
2576		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2577
2578	return *proto->sysctl_rmem;
2579}
2580
2581/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2582 * Some wifi drivers need to tweak it to get more chunks.
2583 * They can use this helper from their ndo_start_xmit()
2584 */
2585static inline void sk_pacing_shift_update(struct sock *sk, int val)
2586{
2587	if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2588		return;
2589	sk->sk_pacing_shift = val;
2590}
2591
2592/* if a socket is bound to a device, check that the given device
2593 * index is either the same or that the socket is bound to an L3
2594 * master device and the given device index is also enslaved to
2595 * that L3 master
2596 */
2597static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2598{
 
2599	int mdif;
2600
2601	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2602		return true;
2603
2604	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2605	if (mdif && mdif == sk->sk_bound_dev_if)
2606		return true;
2607
2608	return false;
2609}
2610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2611#endif	/* _SOCK_H */
v6.8
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the AF_INET socket handler.
   8 *
   9 * Version:	@(#)sock.h	1.0.4	05/13/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *		Florian La Roche <flla@stud.uni-sb.de>
  15 *
  16 * Fixes:
  17 *		Alan Cox	:	Volatiles in skbuff pointers. See
  18 *					skbuff comments. May be overdone,
  19 *					better to prove they can be removed
  20 *					than the reverse.
  21 *		Alan Cox	:	Added a zapped field for tcp to note
  22 *					a socket is reset and must stay shut up
  23 *		Alan Cox	:	New fields for options
  24 *	Pauline Middelink	:	identd support
  25 *		Alan Cox	:	Eliminate low level recv/recvfrom
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *              Steve Whitehouse:       Default routines for sock_ops
  28 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
  29 *              			protinfo be just a void pointer, as the
  30 *              			protocol specific parts were moved to
  31 *              			respective headers and ipv4/v6, etc now
  32 *              			use private slabcaches for its socks
  33 *              Pedro Hortas	:	New flags field for socket options
  34 */
  35#ifndef _SOCK_H
  36#define _SOCK_H
  37
  38#include <linux/hardirq.h>
  39#include <linux/kernel.h>
  40#include <linux/list.h>
  41#include <linux/list_nulls.h>
  42#include <linux/timer.h>
  43#include <linux/cache.h>
  44#include <linux/bitops.h>
  45#include <linux/lockdep.h>
  46#include <linux/netdevice.h>
  47#include <linux/skbuff.h>	/* struct sk_buff */
  48#include <linux/mm.h>
  49#include <linux/security.h>
  50#include <linux/slab.h>
  51#include <linux/uaccess.h>
  52#include <linux/page_counter.h>
  53#include <linux/memcontrol.h>
  54#include <linux/static_key.h>
  55#include <linux/sched.h>
  56#include <linux/wait.h>
  57#include <linux/cgroup-defs.h>
  58#include <linux/rbtree.h>
 
  59#include <linux/rculist_nulls.h>
  60#include <linux/poll.h>
  61#include <linux/sockptr.h>
  62#include <linux/indirect_call_wrapper.h>
  63#include <linux/atomic.h>
  64#include <linux/refcount.h>
  65#include <linux/llist.h>
  66#include <net/dst.h>
  67#include <net/checksum.h>
  68#include <net/tcp_states.h>
  69#include <linux/net_tstamp.h>
 
  70#include <net/l3mdev.h>
  71#include <uapi/linux/socket.h>
  72
  73/*
  74 * This structure really needs to be cleaned up.
  75 * Most of it is for TCP, and not used by any of
  76 * the other protocols.
  77 */
  78
 
 
 
 
 
 
 
 
 
 
 
 
 
  79/* This is the per-socket lock.  The spinlock provides a synchronization
  80 * between user contexts and software interrupt processing, whereas the
  81 * mini-semaphore synchronizes multiple users amongst themselves.
  82 */
  83typedef struct {
  84	spinlock_t		slock;
  85	int			owned;
  86	wait_queue_head_t	wq;
  87	/*
  88	 * We express the mutex-alike socket_lock semantics
  89	 * to the lock validator by explicitly managing
  90	 * the slock as a lock variant (in addition to
  91	 * the slock itself):
  92	 */
  93#ifdef CONFIG_DEBUG_LOCK_ALLOC
  94	struct lockdep_map dep_map;
  95#endif
  96} socket_lock_t;
  97
  98struct sock;
  99struct proto;
 100struct net;
 101
 102typedef __u32 __bitwise __portpair;
 103typedef __u64 __bitwise __addrpair;
 104
 105/**
 106 *	struct sock_common - minimal network layer representation of sockets
 107 *	@skc_daddr: Foreign IPv4 addr
 108 *	@skc_rcv_saddr: Bound local IPv4 addr
 109 *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
 110 *	@skc_hash: hash value used with various protocol lookup tables
 111 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 112 *	@skc_dport: placeholder for inet_dport/tw_dport
 113 *	@skc_num: placeholder for inet_num/tw_num
 114 *	@skc_portpair: __u32 union of @skc_dport & @skc_num
 115 *	@skc_family: network address family
 116 *	@skc_state: Connection state
 117 *	@skc_reuse: %SO_REUSEADDR setting
 118 *	@skc_reuseport: %SO_REUSEPORT setting
 119 *	@skc_ipv6only: socket is IPV6 only
 120 *	@skc_net_refcnt: socket is using net ref counting
 121 *	@skc_bound_dev_if: bound device index if != 0
 122 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 123 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 124 *	@skc_prot: protocol handlers inside a network family
 125 *	@skc_net: reference to the network namespace of this socket
 126 *	@skc_v6_daddr: IPV6 destination address
 127 *	@skc_v6_rcv_saddr: IPV6 source address
 128 *	@skc_cookie: socket's cookie value
 129 *	@skc_node: main hash linkage for various protocol lookup tables
 130 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 131 *	@skc_tx_queue_mapping: tx queue number for this connection
 132 *	@skc_rx_queue_mapping: rx queue number for this connection
 133 *	@skc_flags: place holder for sk_flags
 134 *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 135 *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 136 *	@skc_listener: connection request listener socket (aka rsk_listener)
 137 *		[union with @skc_flags]
 138 *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
 139 *		[union with @skc_flags]
 140 *	@skc_incoming_cpu: record/match cpu processing incoming packets
 141 *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
 142 *		[union with @skc_incoming_cpu]
 143 *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
 144 *		[union with @skc_incoming_cpu]
 145 *	@skc_refcnt: reference count
 146 *
 147 *	This is the minimal network layer representation of sockets, the header
 148 *	for struct sock and struct inet_timewait_sock.
 149 */
 150struct sock_common {
 
 
 
 151	union {
 152		__addrpair	skc_addrpair;
 153		struct {
 154			__be32	skc_daddr;
 155			__be32	skc_rcv_saddr;
 156		};
 157	};
 158	union  {
 159		unsigned int	skc_hash;
 160		__u16		skc_u16hashes[2];
 161	};
 162	/* skc_dport && skc_num must be grouped as well */
 163	union {
 164		__portpair	skc_portpair;
 165		struct {
 166			__be16	skc_dport;
 167			__u16	skc_num;
 168		};
 169	};
 170
 171	unsigned short		skc_family;
 172	volatile unsigned char	skc_state;
 173	unsigned char		skc_reuse:4;
 174	unsigned char		skc_reuseport:1;
 175	unsigned char		skc_ipv6only:1;
 176	unsigned char		skc_net_refcnt:1;
 177	int			skc_bound_dev_if;
 178	union {
 179		struct hlist_node	skc_bind_node;
 180		struct hlist_node	skc_portaddr_node;
 181	};
 182	struct proto		*skc_prot;
 183	possible_net_t		skc_net;
 184
 185#if IS_ENABLED(CONFIG_IPV6)
 186	struct in6_addr		skc_v6_daddr;
 187	struct in6_addr		skc_v6_rcv_saddr;
 188#endif
 189
 190	atomic64_t		skc_cookie;
 191
 192	/* following fields are padding to force
 193	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 194	 * assuming IPV6 is enabled. We use this padding differently
 195	 * for different kind of 'sockets'
 196	 */
 197	union {
 198		unsigned long	skc_flags;
 199		struct sock	*skc_listener; /* request_sock */
 200		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 201	};
 202	/*
 203	 * fields between dontcopy_begin/dontcopy_end
 204	 * are not copied in sock_copy()
 205	 */
 206	/* private: */
 207	int			skc_dontcopy_begin[0];
 208	/* public: */
 209	union {
 210		struct hlist_node	skc_node;
 211		struct hlist_nulls_node skc_nulls_node;
 212	};
 213	unsigned short		skc_tx_queue_mapping;
 214#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
 215	unsigned short		skc_rx_queue_mapping;
 216#endif
 217	union {
 218		int		skc_incoming_cpu;
 219		u32		skc_rcv_wnd;
 220		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 221	};
 222
 223	refcount_t		skc_refcnt;
 224	/* private: */
 225	int                     skc_dontcopy_end[0];
 226	union {
 227		u32		skc_rxhash;
 228		u32		skc_window_clamp;
 229		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 230	};
 231	/* public: */
 232};
 233
 234struct bpf_local_storage;
 235struct sk_filter;
 236
 237/**
 238  *	struct sock - network layer representation of sockets
 239  *	@__sk_common: shared layout with inet_timewait_sock
 240  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 241  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 242  *	@sk_lock:	synchronizer
 243  *	@sk_kern_sock: True if sock is using kernel lock classes
 244  *	@sk_rcvbuf: size of receive buffer in bytes
 245  *	@sk_wq: sock wait queue and async head
 246  *	@sk_rx_dst: receive input route used by early demux
 247  *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
 248  *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
 249  *	@sk_dst_cache: destination cache
 250  *	@sk_dst_pending_confirm: need to confirm neighbour
 251  *	@sk_policy: flow policy
 252  *	@sk_receive_queue: incoming packets
 253  *	@sk_wmem_alloc: transmit queue bytes committed
 254  *	@sk_tsq_flags: TCP Small Queues flags
 255  *	@sk_write_queue: Packet sending queue
 256  *	@sk_omem_alloc: "o" is "option" or "other"
 257  *	@sk_wmem_queued: persistent queue size
 258  *	@sk_forward_alloc: space allocated forward
 259  *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
 260  *	@sk_napi_id: id of the last napi context to receive data for sk
 261  *	@sk_ll_usec: usecs to busypoll when there is no data
 262  *	@sk_allocation: allocation mode
 263  *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 264  *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
 265  *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 266  *	@sk_sndbuf: size of send buffer in bytes
 
 
 267  *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 268  *	@sk_no_check_rx: allow zero checksum in RX packets
 269  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 270  *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
 271  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 272  *	@sk_gso_max_size: Maximum GSO segment size to build
 273  *	@sk_gso_max_segs: Maximum number of GSO segments
 274  *	@sk_pacing_shift: scaling factor for TCP Small Queues
 275  *	@sk_lingertime: %SO_LINGER l_linger setting
 276  *	@sk_backlog: always used with the per-socket spinlock held
 277  *	@sk_callback_lock: used with the callbacks in the end of this struct
 278  *	@sk_error_queue: rarely used
 279  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 280  *			  IPV6_ADDRFORM for instance)
 281  *	@sk_err: last error
 282  *	@sk_err_soft: errors that don't cause failure but are the cause of a
 283  *		      persistent failure not just 'timed out'
 284  *	@sk_drops: raw/udp drops counter
 285  *	@sk_ack_backlog: current listen backlog
 286  *	@sk_max_ack_backlog: listen backlog set in listen()
 287  *	@sk_uid: user id of owner
 288  *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
 289  *	@sk_busy_poll_budget: napi processing budget when busypolling
 290  *	@sk_priority: %SO_PRIORITY setting
 291  *	@sk_type: socket type (%SOCK_STREAM, etc)
 292  *	@sk_protocol: which protocol this socket belongs in this network family
 293  *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
 294  *	@sk_peer_pid: &struct pid for this socket's peer
 295  *	@sk_peer_cred: %SO_PEERCRED setting
 296  *	@sk_rcvlowat: %SO_RCVLOWAT setting
 297  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
 298  *	@sk_sndtimeo: %SO_SNDTIMEO setting
 299  *	@sk_txhash: computed flow hash for use on transmit
 300  *	@sk_txrehash: enable TX hash rethink
 301  *	@sk_filter: socket filtering instructions
 302  *	@sk_timer: sock cleanup timer
 303  *	@sk_stamp: time stamp of last packet received
 304  *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
 305  *	@sk_tsflags: SO_TIMESTAMPING flags
 306  *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
 307  *			   Sockets that can be used under memory reclaim should
 308  *			   set this to false.
 309  *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
 310  *	              for timestamping
 311  *	@sk_tskey: counter to disambiguate concurrent tstamp requests
 312  *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
 313  *	@sk_socket: Identd and reporting IO signals
 314  *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
 315  *	@sk_frag: cached page frag
 316  *	@sk_peek_off: current peek_offset value
 317  *	@sk_send_head: front of stuff to transmit
 318  *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
 319  *	@sk_security: used by security modules
 320  *	@sk_mark: generic packet mark
 321  *	@sk_cgrp_data: cgroup data for this cgroup
 322  *	@sk_memcg: this socket's memory cgroup association
 323  *	@sk_write_pending: a write to stream socket waits to start
 324  *	@sk_disconnects: number of disconnect operations performed on this sock
 325  *	@sk_state_change: callback to indicate change in the state of the sock
 326  *	@sk_data_ready: callback to indicate there is data to be processed
 327  *	@sk_write_space: callback to indicate there is bf sending space available
 328  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 329  *	@sk_backlog_rcv: callback to process the backlog
 330  *	@sk_validate_xmit_skb: ptr to an optional validate function
 331  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 332  *	@sk_reuseport_cb: reuseport group container
 333  *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
 334  *	@sk_rcu: used during RCU grace period
 335  *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
 336  *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
 337  *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
 338  *	@sk_txtime_unused: unused txtime flags
 339  *	@ns_tracker: tracker for netns reference
 340  */
 341struct sock {
 342	/*
 343	 * Now struct inet_timewait_sock also uses sock_common, so please just
 344	 * don't add nothing before this first member (__sk_common) --acme
 345	 */
 346	struct sock_common	__sk_common;
 347#define sk_node			__sk_common.skc_node
 348#define sk_nulls_node		__sk_common.skc_nulls_node
 349#define sk_refcnt		__sk_common.skc_refcnt
 350#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
 351#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
 352#define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
 353#endif
 354
 355#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
 356#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
 357#define sk_hash			__sk_common.skc_hash
 358#define sk_portpair		__sk_common.skc_portpair
 359#define sk_num			__sk_common.skc_num
 360#define sk_dport		__sk_common.skc_dport
 361#define sk_addrpair		__sk_common.skc_addrpair
 362#define sk_daddr		__sk_common.skc_daddr
 363#define sk_rcv_saddr		__sk_common.skc_rcv_saddr
 364#define sk_family		__sk_common.skc_family
 365#define sk_state		__sk_common.skc_state
 366#define sk_reuse		__sk_common.skc_reuse
 367#define sk_reuseport		__sk_common.skc_reuseport
 368#define sk_ipv6only		__sk_common.skc_ipv6only
 369#define sk_net_refcnt		__sk_common.skc_net_refcnt
 370#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
 371#define sk_bind_node		__sk_common.skc_bind_node
 372#define sk_prot			__sk_common.skc_prot
 373#define sk_net			__sk_common.skc_net
 374#define sk_v6_daddr		__sk_common.skc_v6_daddr
 375#define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
 376#define sk_cookie		__sk_common.skc_cookie
 377#define sk_incoming_cpu		__sk_common.skc_incoming_cpu
 378#define sk_flags		__sk_common.skc_flags
 379#define sk_rxhash		__sk_common.skc_rxhash
 380
 381	/* early demux fields */
 382	struct dst_entry __rcu	*sk_rx_dst;
 383	int			sk_rx_dst_ifindex;
 384	u32			sk_rx_dst_cookie;
 385
 386	socket_lock_t		sk_lock;
 387	atomic_t		sk_drops;
 388	int			sk_rcvlowat;
 389	struct sk_buff_head	sk_error_queue;
 
 390	struct sk_buff_head	sk_receive_queue;
 391	/*
 392	 * The backlog queue is special, it is always used with
 393	 * the per-socket spinlock held and requires low latency
 394	 * access. Therefore we special case it's implementation.
 395	 * Note : rmem_alloc is in this structure to fill a hole
 396	 * on 64bit arches, not because its logically part of
 397	 * backlog.
 398	 */
 399	struct {
 400		atomic_t	rmem_alloc;
 401		int		len;
 402		struct sk_buff	*head;
 403		struct sk_buff	*tail;
 404	} sk_backlog;
 405
 406#define sk_rmem_alloc sk_backlog.rmem_alloc
 407
 408	int			sk_forward_alloc;
 409	u32			sk_reserved_mem;
 410#ifdef CONFIG_NET_RX_BUSY_POLL
 411	unsigned int		sk_ll_usec;
 412	/* ===== mostly read cache line ===== */
 413	unsigned int		sk_napi_id;
 414#endif
 415	int			sk_rcvbuf;
 416	int			sk_disconnects;
 417
 418	struct sk_filter __rcu	*sk_filter;
 419	union {
 420		struct socket_wq __rcu	*sk_wq;
 421		/* private: */
 422		struct socket_wq	*sk_wq_raw;
 423		/* public: */
 424	};
 425#ifdef CONFIG_XFRM
 426	struct xfrm_policy __rcu *sk_policy[2];
 427#endif
 428
 429	struct dst_entry __rcu	*sk_dst_cache;
 430	atomic_t		sk_omem_alloc;
 431	int			sk_sndbuf;
 432
 433	/* ===== cache line for TX ===== */
 434	int			sk_wmem_queued;
 435	refcount_t		sk_wmem_alloc;
 436	unsigned long		sk_tsq_flags;
 437	union {
 438		struct sk_buff	*sk_send_head;
 439		struct rb_root	tcp_rtx_queue;
 440	};
 
 441	struct sk_buff_head	sk_write_queue;
 442	__s32			sk_peek_off;
 443	int			sk_write_pending;
 444	__u32			sk_dst_pending_confirm;
 445	u32			sk_pacing_status; /* see enum sk_pacing */
 446	long			sk_sndtimeo;
 447	struct timer_list	sk_timer;
 448	__u32			sk_priority;
 449	__u32			sk_mark;
 450	unsigned long		sk_pacing_rate; /* bytes per second */
 451	unsigned long		sk_max_pacing_rate;
 452	struct page_frag	sk_frag;
 453	netdev_features_t	sk_route_caps;
 
 
 454	int			sk_gso_type;
 455	unsigned int		sk_gso_max_size;
 456	gfp_t			sk_allocation;
 457	__u32			sk_txhash;
 458
 459	/*
 460	 * Because of non atomicity rules, all
 461	 * changes are protected by socket lock.
 462	 */
 463	u8			sk_gso_disabled : 1,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464				sk_kern_sock : 1,
 465				sk_no_check_tx : 1,
 466				sk_no_check_rx : 1,
 467				sk_userlocks : 4;
 
 
 
 
 468	u8			sk_pacing_shift;
 469	u16			sk_type;
 470	u16			sk_protocol;
 471	u16			sk_gso_max_segs;
 472	unsigned long	        sk_lingertime;
 473	struct proto		*sk_prot_creator;
 474	rwlock_t		sk_callback_lock;
 475	int			sk_err,
 476				sk_err_soft;
 477	u32			sk_ack_backlog;
 478	u32			sk_max_ack_backlog;
 479	kuid_t			sk_uid;
 480	u8			sk_txrehash;
 481#ifdef CONFIG_NET_RX_BUSY_POLL
 482	u8			sk_prefer_busy_poll;
 483	u16			sk_busy_poll_budget;
 484#endif
 485	spinlock_t		sk_peer_lock;
 486	int			sk_bind_phc;
 487	struct pid		*sk_peer_pid;
 488	const struct cred	*sk_peer_cred;
 489
 490	long			sk_rcvtimeo;
 491	ktime_t			sk_stamp;
 492#if BITS_PER_LONG==32
 493	seqlock_t		sk_stamp_seq;
 494#endif
 495	atomic_t		sk_tskey;
 
 
 496	atomic_t		sk_zckey;
 497	u32			sk_tsflags;
 498	u8			sk_shutdown;
 499
 500	u8			sk_clockid;
 501	u8			sk_txtime_deadline_mode : 1,
 502				sk_txtime_report_errors : 1,
 503				sk_txtime_unused : 6;
 504	bool			sk_use_task_frag;
 505
 506	struct socket		*sk_socket;
 507	void			*sk_user_data;
 508#ifdef CONFIG_SECURITY
 509	void			*sk_security;
 510#endif
 511	struct sock_cgroup_data	sk_cgrp_data;
 512	struct mem_cgroup	*sk_memcg;
 513	void			(*sk_state_change)(struct sock *sk);
 514	void			(*sk_data_ready)(struct sock *sk);
 515	void			(*sk_write_space)(struct sock *sk);
 516	void			(*sk_error_report)(struct sock *sk);
 517	int			(*sk_backlog_rcv)(struct sock *sk,
 518						  struct sk_buff *skb);
 519#ifdef CONFIG_SOCK_VALIDATE_XMIT
 520	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
 521							struct net_device *dev,
 522							struct sk_buff *skb);
 523#endif
 524	void                    (*sk_destruct)(struct sock *sk);
 525	struct sock_reuseport __rcu	*sk_reuseport_cb;
 526#ifdef CONFIG_BPF_SYSCALL
 527	struct bpf_local_storage __rcu	*sk_bpf_storage;
 528#endif
 529	struct rcu_head		sk_rcu;
 530	netns_tracker		ns_tracker;
 531};
 532
 533enum sk_pacing {
 534	SK_PACING_NONE		= 0,
 535	SK_PACING_NEEDED	= 1,
 536	SK_PACING_FQ		= 2,
 537};
 538
 539/* flag bits in sk_user_data
 540 *
 541 * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
 542 *   not be suitable for copying when cloning the socket. For instance,
 543 *   it can point to a reference counted object. sk_user_data bottom
 544 *   bit is set if pointer must not be copied.
 545 *
 546 * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
 547 *   managed/owned by a BPF reuseport array. This bit should be set
 548 *   when sk_user_data's sk is added to the bpf's reuseport_array.
 549 *
 550 * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
 551 *   sk_user_data points to psock type. This bit should be set
 552 *   when sk_user_data is assigned to a psock object.
 553 */
 554#define SK_USER_DATA_NOCOPY	1UL
 555#define SK_USER_DATA_BPF	2UL
 556#define SK_USER_DATA_PSOCK	4UL
 557#define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
 558				  SK_USER_DATA_PSOCK)
 559
 560/**
 561 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
 562 * @sk: socket
 563 */
 564static inline bool sk_user_data_is_nocopy(const struct sock *sk)
 565{
 566	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
 567}
 568
 569#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 570
 571/**
 572 * __locked_read_sk_user_data_with_flags - return the pointer
 573 * only if argument flags all has been set in sk_user_data. Otherwise
 574 * return NULL
 575 *
 576 * @sk: socket
 577 * @flags: flag bits
 578 *
 579 * The caller must be holding sk->sk_callback_lock.
 580 */
 581static inline void *
 582__locked_read_sk_user_data_with_flags(const struct sock *sk,
 583				      uintptr_t flags)
 584{
 585	uintptr_t sk_user_data =
 586		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
 587						 lockdep_is_held(&sk->sk_callback_lock));
 588
 589	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
 590
 591	if ((sk_user_data & flags) == flags)
 592		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
 593	return NULL;
 594}
 595
 596/**
 597 * __rcu_dereference_sk_user_data_with_flags - return the pointer
 598 * only if argument flags all has been set in sk_user_data. Otherwise
 599 * return NULL
 600 *
 601 * @sk: socket
 602 * @flags: flag bits
 603 */
 604static inline void *
 605__rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
 606					  uintptr_t flags)
 607{
 608	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
 609
 610	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
 611
 612	if ((sk_user_data & flags) == flags)
 613		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
 614	return NULL;
 615}
 616
 617#define rcu_dereference_sk_user_data(sk)				\
 618	__rcu_dereference_sk_user_data_with_flags(sk, 0)
 619#define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
 620({									\
 621	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
 622		  __tmp2 = (uintptr_t)(flags);				\
 623	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
 624	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
 625	rcu_assign_pointer(__sk_user_data((sk)),			\
 626			   __tmp1 | __tmp2);				\
 627})
 628#define rcu_assign_sk_user_data(sk, ptr)				\
 629	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
 630
 631static inline
 632struct net *sock_net(const struct sock *sk)
 633{
 634	return read_pnet(&sk->sk_net);
 635}
 636
 637static inline
 638void sock_net_set(struct sock *sk, struct net *net)
 639{
 640	write_pnet(&sk->sk_net, net);
 641}
 642
 643/*
 644 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 645 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 646 * on a socket means that the socket will reuse everybody else's port
 647 * without looking at the other's sk_reuse value.
 648 */
 649
 650#define SK_NO_REUSE	0
 651#define SK_CAN_REUSE	1
 652#define SK_FORCE_REUSE	2
 653
 654int sk_set_peek_off(struct sock *sk, int val);
 655
 656static inline int sk_peek_offset(const struct sock *sk, int flags)
 657{
 658	if (unlikely(flags & MSG_PEEK)) {
 659		return READ_ONCE(sk->sk_peek_off);
 660	}
 661
 662	return 0;
 663}
 664
 665static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 666{
 667	s32 off = READ_ONCE(sk->sk_peek_off);
 668
 669	if (unlikely(off >= 0)) {
 670		off = max_t(s32, off - val, 0);
 671		WRITE_ONCE(sk->sk_peek_off, off);
 672	}
 673}
 674
 675static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 676{
 677	sk_peek_offset_bwd(sk, -val);
 678}
 679
 680/*
 681 * Hashed lists helper routines
 682 */
 683static inline struct sock *sk_entry(const struct hlist_node *node)
 684{
 685	return hlist_entry(node, struct sock, sk_node);
 686}
 687
 688static inline struct sock *__sk_head(const struct hlist_head *head)
 689{
 690	return hlist_entry(head->first, struct sock, sk_node);
 691}
 692
 693static inline struct sock *sk_head(const struct hlist_head *head)
 694{
 695	return hlist_empty(head) ? NULL : __sk_head(head);
 696}
 697
 698static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 699{
 700	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 701}
 702
 703static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 704{
 705	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 706}
 707
 708static inline struct sock *sk_next(const struct sock *sk)
 709{
 710	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 711}
 712
 713static inline struct sock *sk_nulls_next(const struct sock *sk)
 714{
 715	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 716		hlist_nulls_entry(sk->sk_nulls_node.next,
 717				  struct sock, sk_nulls_node) :
 718		NULL;
 719}
 720
 721static inline bool sk_unhashed(const struct sock *sk)
 722{
 723	return hlist_unhashed(&sk->sk_node);
 724}
 725
 726static inline bool sk_hashed(const struct sock *sk)
 727{
 728	return !sk_unhashed(sk);
 729}
 730
 731static inline void sk_node_init(struct hlist_node *node)
 732{
 733	node->pprev = NULL;
 734}
 735
 
 
 
 
 
 736static inline void __sk_del_node(struct sock *sk)
 737{
 738	__hlist_del(&sk->sk_node);
 739}
 740
 741/* NB: equivalent to hlist_del_init_rcu */
 742static inline bool __sk_del_node_init(struct sock *sk)
 743{
 744	if (sk_hashed(sk)) {
 745		__sk_del_node(sk);
 746		sk_node_init(&sk->sk_node);
 747		return true;
 748	}
 749	return false;
 750}
 751
 752/* Grab socket reference count. This operation is valid only
 753   when sk is ALREADY grabbed f.e. it is found in hash table
 754   or a list and the lookup is made under lock preventing hash table
 755   modifications.
 756 */
 757
 758static __always_inline void sock_hold(struct sock *sk)
 759{
 760	refcount_inc(&sk->sk_refcnt);
 761}
 762
 763/* Ungrab socket in the context, which assumes that socket refcnt
 764   cannot hit zero, f.e. it is true in context of any socketcall.
 765 */
 766static __always_inline void __sock_put(struct sock *sk)
 767{
 768	refcount_dec(&sk->sk_refcnt);
 769}
 770
 771static inline bool sk_del_node_init(struct sock *sk)
 772{
 773	bool rc = __sk_del_node_init(sk);
 774
 775	if (rc) {
 776		/* paranoid for a while -acme */
 777		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 778		__sock_put(sk);
 779	}
 780	return rc;
 781}
 782#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
 783
 784static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 785{
 786	if (sk_hashed(sk)) {
 787		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 788		return true;
 789	}
 790	return false;
 791}
 792
 793static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 794{
 795	bool rc = __sk_nulls_del_node_init_rcu(sk);
 796
 797	if (rc) {
 798		/* paranoid for a while -acme */
 799		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 800		__sock_put(sk);
 801	}
 802	return rc;
 803}
 804
 805static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 806{
 807	hlist_add_head(&sk->sk_node, list);
 808}
 809
 810static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 811{
 812	sock_hold(sk);
 813	__sk_add_node(sk, list);
 814}
 815
 816static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 817{
 818	sock_hold(sk);
 819	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 820	    sk->sk_family == AF_INET6)
 821		hlist_add_tail_rcu(&sk->sk_node, list);
 822	else
 823		hlist_add_head_rcu(&sk->sk_node, list);
 824}
 825
 826static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
 827{
 828	sock_hold(sk);
 829	hlist_add_tail_rcu(&sk->sk_node, list);
 830}
 831
 832static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 833{
 834	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 835}
 836
 837static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
 838{
 839	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 840}
 841
 842static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 843{
 844	sock_hold(sk);
 845	__sk_nulls_add_node_rcu(sk, list);
 846}
 847
 848static inline void __sk_del_bind_node(struct sock *sk)
 849{
 850	__hlist_del(&sk->sk_bind_node);
 851}
 852
 853static inline void sk_add_bind_node(struct sock *sk,
 854					struct hlist_head *list)
 855{
 856	hlist_add_head(&sk->sk_bind_node, list);
 857}
 858
 859#define sk_for_each(__sk, list) \
 860	hlist_for_each_entry(__sk, list, sk_node)
 861#define sk_for_each_rcu(__sk, list) \
 862	hlist_for_each_entry_rcu(__sk, list, sk_node)
 863#define sk_nulls_for_each(__sk, node, list) \
 864	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 865#define sk_nulls_for_each_rcu(__sk, node, list) \
 866	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 867#define sk_for_each_from(__sk) \
 868	hlist_for_each_entry_from(__sk, sk_node)
 869#define sk_nulls_for_each_from(__sk, node) \
 870	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 871		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 872#define sk_for_each_safe(__sk, tmp, list) \
 873	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 874#define sk_for_each_bound(__sk, list) \
 875	hlist_for_each_entry(__sk, list, sk_bind_node)
 876
 877/**
 878 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 879 * @tpos:	the type * to use as a loop cursor.
 880 * @pos:	the &struct hlist_node to use as a loop cursor.
 881 * @head:	the head for your list.
 882 * @offset:	offset of hlist_node within the struct.
 883 *
 884 */
 885#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
 886	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
 887	     pos != NULL &&						       \
 888		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 889	     pos = rcu_dereference(hlist_next_rcu(pos)))
 890
 891static inline struct user_namespace *sk_user_ns(const struct sock *sk)
 892{
 893	/* Careful only use this in a context where these parameters
 894	 * can not change and must all be valid, such as recvmsg from
 895	 * userspace.
 896	 */
 897	return sk->sk_socket->file->f_cred->user_ns;
 898}
 899
 900/* Sock flags */
 901enum sock_flags {
 902	SOCK_DEAD,
 903	SOCK_DONE,
 904	SOCK_URGINLINE,
 905	SOCK_KEEPOPEN,
 906	SOCK_LINGER,
 907	SOCK_DESTROY,
 908	SOCK_BROADCAST,
 909	SOCK_TIMESTAMP,
 910	SOCK_ZAPPED,
 911	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 912	SOCK_DBG, /* %SO_DEBUG setting */
 913	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 914	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 915	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 
 916	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 917	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 918	SOCK_FASYNC, /* fasync() active */
 919	SOCK_RXQ_OVFL,
 920	SOCK_ZEROCOPY, /* buffers from userspace */
 921	SOCK_WIFI_STATUS, /* push wifi status to userspace */
 922	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 923		     * Will use last 4 bytes of packet sent from
 924		     * user-space instead.
 925		     */
 926	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 927	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 928	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 929	SOCK_TXTIME,
 930	SOCK_XDP, /* XDP is attached */
 931	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
 932	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
 933};
 934
 935#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 936
 937static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
 938{
 939	nsk->sk_flags = osk->sk_flags;
 940}
 941
 942static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 943{
 944	__set_bit(flag, &sk->sk_flags);
 945}
 946
 947static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 948{
 949	__clear_bit(flag, &sk->sk_flags);
 950}
 951
 952static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
 953				     int valbool)
 954{
 955	if (valbool)
 956		sock_set_flag(sk, bit);
 957	else
 958		sock_reset_flag(sk, bit);
 959}
 960
 961static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 962{
 963	return test_bit(flag, &sk->sk_flags);
 964}
 965
 966#ifdef CONFIG_NET
 967DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
 968static inline int sk_memalloc_socks(void)
 969{
 970	return static_branch_unlikely(&memalloc_socks_key);
 971}
 972
 973void __receive_sock(struct file *file);
 974#else
 975
 976static inline int sk_memalloc_socks(void)
 977{
 978	return 0;
 979}
 980
 981static inline void __receive_sock(struct file *file)
 982{ }
 983#endif
 984
 985static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 986{
 987	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 988}
 989
 990static inline void sk_acceptq_removed(struct sock *sk)
 991{
 992	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
 993}
 994
 995static inline void sk_acceptq_added(struct sock *sk)
 996{
 997	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
 998}
 999
1000/* Note: If you think the test should be:
1001 *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1002 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1003 */
1004static inline bool sk_acceptq_is_full(const struct sock *sk)
1005{
1006	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1007}
1008
1009/*
1010 * Compute minimal free write space needed to queue new packets.
1011 */
1012static inline int sk_stream_min_wspace(const struct sock *sk)
1013{
1014	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1015}
1016
1017static inline int sk_stream_wspace(const struct sock *sk)
1018{
1019	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1020}
1021
1022static inline void sk_wmem_queued_add(struct sock *sk, int val)
1023{
1024	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1025}
1026
1027static inline void sk_forward_alloc_add(struct sock *sk, int val)
1028{
1029	/* Paired with lockless reads of sk->sk_forward_alloc */
1030	WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1031}
1032
1033void sk_stream_write_space(struct sock *sk);
1034
1035/* OOB backlog add */
1036static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1037{
1038	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1039	skb_dst_force(skb);
1040
1041	if (!sk->sk_backlog.tail)
1042		WRITE_ONCE(sk->sk_backlog.head, skb);
1043	else
1044		sk->sk_backlog.tail->next = skb;
1045
1046	WRITE_ONCE(sk->sk_backlog.tail, skb);
1047	skb->next = NULL;
1048}
1049
1050/*
1051 * Take into account size of receive queue and backlog queue
1052 * Do not take into account this skb truesize,
1053 * to allow even a single big packet to come.
1054 */
1055static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1056{
1057	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1058
1059	return qsize > limit;
1060}
1061
1062/* The per-socket spinlock must be held here. */
1063static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1064					      unsigned int limit)
1065{
1066	if (sk_rcvqueues_full(sk, limit))
1067		return -ENOBUFS;
1068
1069	/*
1070	 * If the skb was allocated from pfmemalloc reserves, only
1071	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1072	 * helping free memory
1073	 */
1074	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1075		return -ENOMEM;
1076
1077	__sk_add_backlog(sk, skb);
1078	sk->sk_backlog.len += skb->truesize;
1079	return 0;
1080}
1081
1082int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1083
1084INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1085INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1086
1087static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1088{
1089	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1090		return __sk_backlog_rcv(sk, skb);
1091
1092	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1093				  tcp_v6_do_rcv,
1094				  tcp_v4_do_rcv,
1095				  sk, skb);
1096}
1097
1098static inline void sk_incoming_cpu_update(struct sock *sk)
1099{
1100	int cpu = raw_smp_processor_id();
1101
1102	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1103		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1104}
1105
1106static inline void sock_rps_record_flow_hash(__u32 hash)
1107{
1108#ifdef CONFIG_RPS
1109	struct rps_sock_flow_table *sock_flow_table;
1110
1111	rcu_read_lock();
1112	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1113	rps_record_sock_flow(sock_flow_table, hash);
1114	rcu_read_unlock();
1115#endif
1116}
1117
1118static inline void sock_rps_record_flow(const struct sock *sk)
1119{
1120#ifdef CONFIG_RPS
1121	if (static_branch_unlikely(&rfs_needed)) {
1122		/* Reading sk->sk_rxhash might incur an expensive cache line
1123		 * miss.
1124		 *
1125		 * TCP_ESTABLISHED does cover almost all states where RFS
1126		 * might be useful, and is cheaper [1] than testing :
1127		 *	IPv4: inet_sk(sk)->inet_daddr
1128		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1129		 * OR	an additional socket flag
1130		 * [1] : sk_state and sk_prot are in the same cache line.
1131		 */
1132		if (sk->sk_state == TCP_ESTABLISHED) {
1133			/* This READ_ONCE() is paired with the WRITE_ONCE()
1134			 * from sock_rps_save_rxhash() and sock_rps_reset_rxhash().
1135			 */
1136			sock_rps_record_flow_hash(READ_ONCE(sk->sk_rxhash));
1137		}
1138	}
1139#endif
1140}
1141
1142static inline void sock_rps_save_rxhash(struct sock *sk,
1143					const struct sk_buff *skb)
1144{
1145#ifdef CONFIG_RPS
1146	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1147	 * here, and another one in sock_rps_record_flow().
1148	 */
1149	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1150		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1151#endif
1152}
1153
1154static inline void sock_rps_reset_rxhash(struct sock *sk)
1155{
1156#ifdef CONFIG_RPS
1157	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1158	WRITE_ONCE(sk->sk_rxhash, 0);
1159#endif
1160}
1161
1162#define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1163	({	int __rc, __dis = __sk->sk_disconnects;			\
1164		release_sock(__sk);					\
1165		__rc = __condition;					\
1166		if (!__rc) {						\
1167			*(__timeo) = wait_woken(__wait,			\
1168						TASK_INTERRUPTIBLE,	\
1169						*(__timeo));		\
1170		}							\
1171		sched_annotate_sleep();					\
1172		lock_sock(__sk);					\
1173		__rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1174		__rc;							\
1175	})
1176
1177int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1178int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1179void sk_stream_wait_close(struct sock *sk, long timeo_p);
1180int sk_stream_error(struct sock *sk, int flags, int err);
1181void sk_stream_kill_queues(struct sock *sk);
1182void sk_set_memalloc(struct sock *sk);
1183void sk_clear_memalloc(struct sock *sk);
1184
1185void __sk_flush_backlog(struct sock *sk);
1186
1187static inline bool sk_flush_backlog(struct sock *sk)
1188{
1189	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1190		__sk_flush_backlog(sk);
1191		return true;
1192	}
1193	return false;
1194}
1195
1196int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1197
1198struct request_sock_ops;
1199struct timewait_sock_ops;
1200struct inet_hashinfo;
1201struct raw_hashinfo;
1202struct smc_hashinfo;
1203struct module;
1204struct sk_psock;
1205
1206/*
1207 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1208 * un-modified. Special care is taken when initializing object to zero.
1209 */
1210static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1211{
1212	if (offsetof(struct sock, sk_node.next) != 0)
1213		memset(sk, 0, offsetof(struct sock, sk_node.next));
1214	memset(&sk->sk_node.pprev, 0,
1215	       size - offsetof(struct sock, sk_node.pprev));
1216}
1217
1218/* Networking protocol blocks we attach to sockets.
1219 * socket layer -> transport layer interface
1220 */
1221struct proto {
1222	void			(*close)(struct sock *sk,
1223					long timeout);
1224	int			(*pre_connect)(struct sock *sk,
1225					struct sockaddr *uaddr,
1226					int addr_len);
1227	int			(*connect)(struct sock *sk,
1228					struct sockaddr *uaddr,
1229					int addr_len);
1230	int			(*disconnect)(struct sock *sk, int flags);
1231
1232	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1233					  bool kern);
1234
1235	int			(*ioctl)(struct sock *sk, int cmd,
1236					 int *karg);
1237	int			(*init)(struct sock *sk);
1238	void			(*destroy)(struct sock *sk);
1239	void			(*shutdown)(struct sock *sk, int how);
1240	int			(*setsockopt)(struct sock *sk, int level,
1241					int optname, sockptr_t optval,
1242					unsigned int optlen);
1243	int			(*getsockopt)(struct sock *sk, int level,
1244					int optname, char __user *optval,
1245					int __user *option);
1246	void			(*keepalive)(struct sock *sk, int valbool);
1247#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
1248	int			(*compat_ioctl)(struct sock *sk,
1249					unsigned int cmd, unsigned long arg);
1250#endif
1251	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1252					   size_t len);
1253	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1254					   size_t len, int flags, int *addr_len);
1255	void			(*splice_eof)(struct socket *sock);
 
 
1256	int			(*bind)(struct sock *sk,
1257					struct sockaddr *addr, int addr_len);
1258	int			(*bind_add)(struct sock *sk,
1259					struct sockaddr *addr, int addr_len);
1260
1261	int			(*backlog_rcv) (struct sock *sk,
1262						struct sk_buff *skb);
1263	bool			(*bpf_bypass_getsockopt)(int level,
1264							 int optname);
1265
1266	void		(*release_cb)(struct sock *sk);
1267
1268	/* Keeping track of sk's, looking them up, and port selection methods. */
1269	int			(*hash)(struct sock *sk);
1270	void			(*unhash)(struct sock *sk);
1271	void			(*rehash)(struct sock *sk);
1272	int			(*get_port)(struct sock *sk, unsigned short snum);
1273	void			(*put_port)(struct sock *sk);
1274#ifdef CONFIG_BPF_SYSCALL
1275	int			(*psock_update_sk_prot)(struct sock *sk,
1276							struct sk_psock *psock,
1277							bool restore);
1278#endif
1279
1280	/* Keeping track of sockets in use */
1281#ifdef CONFIG_PROC_FS
1282	unsigned int		inuse_idx;
1283#endif
1284
1285#if IS_ENABLED(CONFIG_MPTCP)
1286	int			(*forward_alloc_get)(const struct sock *sk);
1287#endif
1288
1289	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1290	bool			(*sock_is_readable)(struct sock *sk);
1291	/* Memory pressure */
1292	void			(*enter_memory_pressure)(struct sock *sk);
1293	void			(*leave_memory_pressure)(struct sock *sk);
1294	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1295	int  __percpu		*per_cpu_fw_alloc;
1296	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1297
1298	/*
1299	 * Pressure flag: try to collapse.
1300	 * Technical note: it is used by multiple contexts non atomically.
1301	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1302	 * All the __sk_mem_schedule() is of this nature: accounting
1303	 * is strict, actions are advisory and have some latency.
1304	 */
1305	unsigned long		*memory_pressure;
1306	long			*sysctl_mem;
1307
1308	int			*sysctl_wmem;
1309	int			*sysctl_rmem;
1310	u32			sysctl_wmem_offset;
1311	u32			sysctl_rmem_offset;
1312
1313	int			max_header;
1314	bool			no_autobind;
1315
1316	struct kmem_cache	*slab;
1317	unsigned int		obj_size;
1318	unsigned int		ipv6_pinfo_offset;
1319	slab_flags_t		slab_flags;
1320	unsigned int		useroffset;	/* Usercopy region offset */
1321	unsigned int		usersize;	/* Usercopy region size */
1322
1323	unsigned int __percpu	*orphan_count;
1324
1325	struct request_sock_ops	*rsk_prot;
1326	struct timewait_sock_ops *twsk_prot;
1327
1328	union {
1329		struct inet_hashinfo	*hashinfo;
1330		struct udp_table	*udp_table;
1331		struct raw_hashinfo	*raw_hash;
1332		struct smc_hashinfo	*smc_hash;
1333	} h;
1334
1335	struct module		*owner;
1336
1337	char			name[32];
1338
1339	struct list_head	node;
 
 
 
1340	int			(*diag_destroy)(struct sock *sk, int err);
1341} __randomize_layout;
1342
1343int proto_register(struct proto *prot, int alloc_slab);
1344void proto_unregister(struct proto *prot);
1345int sock_load_diag_module(int family, int protocol);
1346
1347INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
 
 
 
 
 
 
 
 
 
 
 
1348
1349static inline int sk_forward_alloc_get(const struct sock *sk)
1350{
1351#if IS_ENABLED(CONFIG_MPTCP)
1352	if (sk->sk_prot->forward_alloc_get)
1353		return sk->sk_prot->forward_alloc_get(sk);
1354#endif
1355	return READ_ONCE(sk->sk_forward_alloc);
1356}
 
 
 
 
 
1357
1358static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1359{
1360	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1361		return false;
1362
1363	return sk->sk_prot->stream_memory_free ?
1364		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1365				     tcp_stream_memory_free, sk, wake) : true;
1366}
1367
1368static inline bool sk_stream_memory_free(const struct sock *sk)
1369{
1370	return __sk_stream_memory_free(sk, 0);
1371}
1372
1373static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1374{
1375	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1376	       __sk_stream_memory_free(sk, wake);
1377}
1378
1379static inline bool sk_stream_is_writeable(const struct sock *sk)
1380{
1381	return __sk_stream_is_writeable(sk, 0);
1382}
1383
1384static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1385					    struct cgroup *ancestor)
1386{
1387#ifdef CONFIG_SOCK_CGROUP_DATA
1388	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1389				    ancestor);
1390#else
1391	return -ENOTSUPP;
1392#endif
1393}
1394
1395static inline bool sk_has_memory_pressure(const struct sock *sk)
1396{
1397	return sk->sk_prot->memory_pressure != NULL;
1398}
1399
1400static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1401{
1402	return sk->sk_prot->memory_pressure &&
1403		!!READ_ONCE(*sk->sk_prot->memory_pressure);
1404}
1405
1406static inline bool sk_under_memory_pressure(const struct sock *sk)
1407{
1408	if (!sk->sk_prot->memory_pressure)
1409		return false;
1410
1411	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1412	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1413		return true;
1414
1415	return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1416}
1417
1418static inline long
1419proto_memory_allocated(const struct proto *prot)
1420{
1421	return max(0L, atomic_long_read(prot->memory_allocated));
1422}
1423
1424static inline long
1425sk_memory_allocated(const struct sock *sk)
1426{
1427	return proto_memory_allocated(sk->sk_prot);
1428}
1429
1430/* 1 MB per cpu, in page units */
1431#define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1432
1433static inline void
1434sk_memory_allocated_add(struct sock *sk, int amt)
1435{
1436	int local_reserve;
1437
1438	preempt_disable();
1439	local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1440	if (local_reserve >= SK_MEMORY_PCPU_RESERVE) {
1441		__this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1442		atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1443	}
1444	preempt_enable();
1445}
1446
1447static inline void
1448sk_memory_allocated_sub(struct sock *sk, int amt)
1449{
1450	int local_reserve;
1451
1452	preempt_disable();
1453	local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1454	if (local_reserve <= -SK_MEMORY_PCPU_RESERVE) {
1455		__this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1456		atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1457	}
1458	preempt_enable();
1459}
1460
1461#define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1462
1463static inline void sk_sockets_allocated_dec(struct sock *sk)
1464{
1465	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1466				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1467}
1468
1469static inline void sk_sockets_allocated_inc(struct sock *sk)
1470{
1471	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1472				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1473}
1474
1475static inline u64
1476sk_sockets_allocated_read_positive(struct sock *sk)
1477{
1478	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1479}
1480
1481static inline int
1482proto_sockets_allocated_sum_positive(struct proto *prot)
1483{
1484	return percpu_counter_sum_positive(prot->sockets_allocated);
1485}
1486
 
 
 
 
 
 
1487static inline bool
1488proto_memory_pressure(struct proto *prot)
1489{
1490	if (!prot->memory_pressure)
1491		return false;
1492	return !!READ_ONCE(*prot->memory_pressure);
1493}
1494
1495
1496#ifdef CONFIG_PROC_FS
1497#define PROTO_INUSE_NR	64	/* should be enough for the first time */
1498struct prot_inuse {
1499	int all;
1500	int val[PROTO_INUSE_NR];
1501};
1502
1503static inline void sock_prot_inuse_add(const struct net *net,
1504				       const struct proto *prot, int val)
1505{
1506	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1507}
1508
1509static inline void sock_inuse_add(const struct net *net, int val)
1510{
1511	this_cpu_add(net->core.prot_inuse->all, val);
1512}
1513
1514int sock_prot_inuse_get(struct net *net, struct proto *proto);
1515int sock_inuse_get(struct net *net);
1516#else
1517static inline void sock_prot_inuse_add(const struct net *net,
1518				       const struct proto *prot, int val)
1519{
1520}
1521
1522static inline void sock_inuse_add(const struct net *net, int val)
1523{
1524}
1525#endif
1526
1527
1528/* With per-bucket locks this operation is not-atomic, so that
1529 * this version is not worse.
1530 */
1531static inline int __sk_prot_rehash(struct sock *sk)
1532{
1533	sk->sk_prot->unhash(sk);
1534	return sk->sk_prot->hash(sk);
1535}
1536
1537/* About 10 seconds */
1538#define SOCK_DESTROY_TIME (10*HZ)
1539
1540/* Sockets 0-1023 can't be bound to unless you are superuser */
1541#define PROT_SOCK	1024
1542
1543#define SHUTDOWN_MASK	3
1544#define RCV_SHUTDOWN	1
1545#define SEND_SHUTDOWN	2
1546
 
 
1547#define SOCK_BINDADDR_LOCK	4
1548#define SOCK_BINDPORT_LOCK	8
1549
1550struct socket_alloc {
1551	struct socket socket;
1552	struct inode vfs_inode;
1553};
1554
1555static inline struct socket *SOCKET_I(struct inode *inode)
1556{
1557	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1558}
1559
1560static inline struct inode *SOCK_INODE(struct socket *socket)
1561{
1562	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1563}
1564
1565/*
1566 * Functions for memory accounting
1567 */
1568int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1569int __sk_mem_schedule(struct sock *sk, int size, int kind);
1570void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1571void __sk_mem_reclaim(struct sock *sk, int amount);
1572
 
 
 
 
 
1573#define SK_MEM_SEND	0
1574#define SK_MEM_RECV	1
1575
1576/* sysctl_mem values are in pages */
1577static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1578{
1579	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
 
 
 
 
 
 
 
1580}
1581
1582static inline int sk_mem_pages(int amt)
1583{
1584	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1585}
1586
1587static inline bool sk_has_account(struct sock *sk)
1588{
1589	/* return true if protocol supports memory accounting */
1590	return !!sk->sk_prot->memory_allocated;
1591}
1592
1593static inline bool sk_wmem_schedule(struct sock *sk, int size)
1594{
1595	int delta;
1596
1597	if (!sk_has_account(sk))
1598		return true;
1599	delta = size - sk->sk_forward_alloc;
1600	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1601}
1602
1603static inline bool
1604sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1605{
1606	int delta;
1607
1608	if (!sk_has_account(sk))
1609		return true;
1610	delta = size - sk->sk_forward_alloc;
1611	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1612		skb_pfmemalloc(skb);
1613}
1614
1615static inline int sk_unused_reserved_mem(const struct sock *sk)
1616{
1617	int unused_mem;
1618
1619	if (likely(!sk->sk_reserved_mem))
1620		return 0;
1621
1622	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1623			atomic_read(&sk->sk_rmem_alloc);
1624
1625	return unused_mem > 0 ? unused_mem : 0;
1626}
1627
1628static inline void sk_mem_reclaim(struct sock *sk)
1629{
1630	int reclaimable;
1631
1632	if (!sk_has_account(sk))
1633		return;
1634
1635	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1636
1637	if (reclaimable >= (int)PAGE_SIZE)
1638		__sk_mem_reclaim(sk, reclaimable);
1639}
1640
1641static inline void sk_mem_reclaim_final(struct sock *sk)
1642{
1643	sk->sk_reserved_mem = 0;
1644	sk_mem_reclaim(sk);
 
 
1645}
1646
1647static inline void sk_mem_charge(struct sock *sk, int size)
1648{
1649	if (!sk_has_account(sk))
1650		return;
1651	sk_forward_alloc_add(sk, -size);
1652}
1653
1654static inline void sk_mem_uncharge(struct sock *sk, int size)
1655{
1656	if (!sk_has_account(sk))
1657		return;
1658	sk_forward_alloc_add(sk, size);
1659	sk_mem_reclaim(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660}
1661
1662/*
1663 * Macro so as to not evaluate some arguments when
1664 * lockdep is not enabled.
1665 *
1666 * Mark both the sk_lock and the sk_lock.slock as a
1667 * per-address-family lock class.
1668 */
1669#define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1670do {									\
1671	sk->sk_lock.owned = 0;						\
1672	init_waitqueue_head(&sk->sk_lock.wq);				\
1673	spin_lock_init(&(sk)->sk_lock.slock);				\
1674	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1675			sizeof((sk)->sk_lock));				\
1676	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1677				(skey), (sname));				\
1678	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1679} while (0)
1680
 
1681static inline bool lockdep_sock_is_held(const struct sock *sk)
1682{
1683	return lockdep_is_held(&sk->sk_lock) ||
1684	       lockdep_is_held(&sk->sk_lock.slock);
1685}
 
1686
1687void lock_sock_nested(struct sock *sk, int subclass);
1688
1689static inline void lock_sock(struct sock *sk)
1690{
1691	lock_sock_nested(sk, 0);
1692}
1693
1694void __lock_sock(struct sock *sk);
1695void __release_sock(struct sock *sk);
1696void release_sock(struct sock *sk);
1697
1698/* BH context may only use the following locking interface. */
1699#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1700#define bh_lock_sock_nested(__sk) \
1701				spin_lock_nested(&((__sk)->sk_lock.slock), \
1702				SINGLE_DEPTH_NESTING)
1703#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1704
1705bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1706
1707/**
1708 * lock_sock_fast - fast version of lock_sock
1709 * @sk: socket
1710 *
1711 * This version should be used for very small section, where process wont block
1712 * return false if fast path is taken:
1713 *
1714 *   sk_lock.slock locked, owned = 0, BH disabled
1715 *
1716 * return true if slow path is taken:
1717 *
1718 *   sk_lock.slock unlocked, owned = 1, BH enabled
1719 */
1720static inline bool lock_sock_fast(struct sock *sk)
1721{
1722	/* The sk_lock has mutex_lock() semantics here. */
1723	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1724
1725	return __lock_sock_fast(sk);
1726}
1727
1728/* fast socket lock variant for caller already holding a [different] socket lock */
1729static inline bool lock_sock_fast_nested(struct sock *sk)
1730{
1731	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1732
1733	return __lock_sock_fast(sk);
1734}
1735
1736/**
1737 * unlock_sock_fast - complement of lock_sock_fast
1738 * @sk: socket
1739 * @slow: slow mode
1740 *
1741 * fast unlock socket for user context.
1742 * If slow mode is on, we call regular release_sock()
1743 */
1744static inline void unlock_sock_fast(struct sock *sk, bool slow)
1745	__releases(&sk->sk_lock.slock)
1746{
1747	if (slow) {
1748		release_sock(sk);
1749		__release(&sk->sk_lock.slock);
1750	} else {
1751		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1752		spin_unlock_bh(&sk->sk_lock.slock);
1753	}
1754}
1755
1756void sockopt_lock_sock(struct sock *sk);
1757void sockopt_release_sock(struct sock *sk);
1758bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1759bool sockopt_capable(int cap);
1760
1761/* Used by processes to "lock" a socket state, so that
1762 * interrupts and bottom half handlers won't change it
1763 * from under us. It essentially blocks any incoming
1764 * packets, so that we won't get any new data or any
1765 * packets that change the state of the socket.
1766 *
1767 * While locked, BH processing will add new packets to
1768 * the backlog queue.  This queue is processed by the
1769 * owner of the socket lock right before it is released.
1770 *
1771 * Since ~2.3.5 it is also exclusive sleep lock serializing
1772 * accesses from user process context.
1773 */
1774
1775static inline void sock_owned_by_me(const struct sock *sk)
1776{
1777#ifdef CONFIG_LOCKDEP
1778	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1779#endif
1780}
1781
1782static inline bool sock_owned_by_user(const struct sock *sk)
1783{
1784	sock_owned_by_me(sk);
1785	return sk->sk_lock.owned;
1786}
1787
1788static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1789{
1790	return sk->sk_lock.owned;
1791}
1792
1793static inline void sock_release_ownership(struct sock *sk)
1794{
1795	DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1796	sk->sk_lock.owned = 0;
1797
1798	/* The sk_lock has mutex_unlock() semantics: */
1799	mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1800}
1801
1802/* no reclassification while locks are held */
1803static inline bool sock_allow_reclassification(const struct sock *csk)
1804{
1805	struct sock *sk = (struct sock *)csk;
1806
1807	return !sock_owned_by_user_nocheck(sk) &&
1808		!spin_is_locked(&sk->sk_lock.slock);
1809}
1810
1811struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1812		      struct proto *prot, int kern);
1813void sk_free(struct sock *sk);
1814void sk_destruct(struct sock *sk);
1815struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1816void sk_free_unlock_clone(struct sock *sk);
1817
1818struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1819			     gfp_t priority);
1820void __sock_wfree(struct sk_buff *skb);
1821void sock_wfree(struct sk_buff *skb);
1822struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1823			     gfp_t priority);
1824void skb_orphan_partial(struct sk_buff *skb);
1825void sock_rfree(struct sk_buff *skb);
1826void sock_efree(struct sk_buff *skb);
1827#ifdef CONFIG_INET
1828void sock_edemux(struct sk_buff *skb);
1829void sock_pfree(struct sk_buff *skb);
1830#else
1831#define sock_edemux sock_efree
1832#endif
1833
1834int sk_setsockopt(struct sock *sk, int level, int optname,
1835		  sockptr_t optval, unsigned int optlen);
1836int sock_setsockopt(struct socket *sock, int level, int op,
1837		    sockptr_t optval, unsigned int optlen);
1838int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1839		       int optname, sockptr_t optval, int optlen);
1840int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1841		       int optname, sockptr_t optval, sockptr_t optlen);
1842
1843int sk_getsockopt(struct sock *sk, int level, int optname,
1844		  sockptr_t optval, sockptr_t optlen);
1845int sock_gettstamp(struct socket *sock, void __user *userstamp,
1846		   bool timeval, bool time32);
 
 
1847struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1848				     unsigned long data_len, int noblock,
1849				     int *errcode, int max_page_order);
1850
1851static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1852						  unsigned long size,
1853						  int noblock, int *errcode)
1854{
1855	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1856}
1857
1858void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1859void sock_kfree_s(struct sock *sk, void *mem, int size);
1860void sock_kzfree_s(struct sock *sk, void *mem, int size);
1861void sk_send_sigurg(struct sock *sk);
1862
1863static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1864{
1865	if (sk->sk_socket)
1866		clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1867	WRITE_ONCE(sk->sk_prot, proto);
1868}
1869
1870struct sockcm_cookie {
1871	u64 transmit_time;
1872	u32 mark;
1873	u32 tsflags;
1874};
1875
1876static inline void sockcm_init(struct sockcm_cookie *sockc,
1877			       const struct sock *sk)
1878{
1879	*sockc = (struct sockcm_cookie) {
1880		.tsflags = READ_ONCE(sk->sk_tsflags)
1881	};
1882}
1883
1884int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1885		     struct sockcm_cookie *sockc);
1886int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1887		   struct sockcm_cookie *sockc);
1888
1889/*
1890 * Functions to fill in entries in struct proto_ops when a protocol
1891 * does not implement a particular function.
1892 */
1893int sock_no_bind(struct socket *, struct sockaddr *, int);
1894int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1895int sock_no_socketpair(struct socket *, struct socket *);
1896int sock_no_accept(struct socket *, struct socket *, int, bool);
1897int sock_no_getname(struct socket *, struct sockaddr *, int);
1898int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1899int sock_no_listen(struct socket *, int);
1900int sock_no_shutdown(struct socket *, int);
 
 
1901int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1902int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1903int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1904int sock_no_mmap(struct file *file, struct socket *sock,
1905		 struct vm_area_struct *vma);
 
 
 
 
1906
1907/*
1908 * Functions to fill in entries in struct proto_ops when a protocol
1909 * uses the inet style.
1910 */
1911int sock_common_getsockopt(struct socket *sock, int level, int optname,
1912				  char __user *optval, int __user *optlen);
1913int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1914			int flags);
1915int sock_common_setsockopt(struct socket *sock, int level, int optname,
1916			   sockptr_t optval, unsigned int optlen);
 
 
 
 
1917
1918void sk_common_release(struct sock *sk);
1919
1920/*
1921 *	Default socket callbacks and setup code
1922 */
1923
1924/* Initialise core socket variables using an explicit uid. */
1925void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1926
1927/* Initialise core socket variables.
1928 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1929 */
1930void sock_init_data(struct socket *sock, struct sock *sk);
1931
1932/*
1933 * Socket reference counting postulates.
1934 *
1935 * * Each user of socket SHOULD hold a reference count.
1936 * * Each access point to socket (an hash table bucket, reference from a list,
1937 *   running timer, skb in flight MUST hold a reference count.
1938 * * When reference count hits 0, it means it will never increase back.
1939 * * When reference count hits 0, it means that no references from
1940 *   outside exist to this socket and current process on current CPU
1941 *   is last user and may/should destroy this socket.
1942 * * sk_free is called from any context: process, BH, IRQ. When
1943 *   it is called, socket has no references from outside -> sk_free
1944 *   may release descendant resources allocated by the socket, but
1945 *   to the time when it is called, socket is NOT referenced by any
1946 *   hash tables, lists etc.
1947 * * Packets, delivered from outside (from network or from another process)
1948 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1949 *   when they sit in queue. Otherwise, packets will leak to hole, when
1950 *   socket is looked up by one cpu and unhasing is made by another CPU.
1951 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1952 *   (leak to backlog). Packet socket does all the processing inside
1953 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1954 *   use separate SMP lock, so that they are prone too.
1955 */
1956
1957/* Ungrab socket and destroy it, if it was the last reference. */
1958static inline void sock_put(struct sock *sk)
1959{
1960	if (refcount_dec_and_test(&sk->sk_refcnt))
1961		sk_free(sk);
1962}
1963/* Generic version of sock_put(), dealing with all sockets
1964 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1965 */
1966void sock_gen_put(struct sock *sk);
1967
1968int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1969		     unsigned int trim_cap, bool refcounted);
1970static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1971				 const int nested)
1972{
1973	return __sk_receive_skb(sk, skb, nested, 1, true);
1974}
1975
1976static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1977{
1978	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1979	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1980		return;
1981	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1982	 * other WRITE_ONCE() because socket lock might be not held.
1983	 */
1984	WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1985}
1986
1987#define NO_QUEUE_MAPPING	USHRT_MAX
1988
1989static inline void sk_tx_queue_clear(struct sock *sk)
1990{
1991	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1992	 * other WRITE_ONCE() because socket lock might be not held.
1993	 */
1994	WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1995}
1996
1997static inline int sk_tx_queue_get(const struct sock *sk)
1998{
1999	if (sk) {
2000		/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
2001		 * and sk_tx_queue_set().
2002		 */
2003		int val = READ_ONCE(sk->sk_tx_queue_mapping);
2004
2005		if (val != NO_QUEUE_MAPPING)
2006			return val;
2007	}
2008	return -1;
2009}
2010
2011static inline void __sk_rx_queue_set(struct sock *sk,
2012				     const struct sk_buff *skb,
2013				     bool force_set)
2014{
2015#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2016	if (skb_rx_queue_recorded(skb)) {
2017		u16 rx_queue = skb_get_rx_queue(skb);
2018
2019		if (force_set ||
2020		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2021			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
 
2022	}
2023#endif
2024}
2025
2026static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2027{
2028	__sk_rx_queue_set(sk, skb, true);
2029}
2030
2031static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2032{
2033	__sk_rx_queue_set(sk, skb, false);
2034}
2035
2036static inline void sk_rx_queue_clear(struct sock *sk)
2037{
2038#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2039	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2040#endif
2041}
2042
 
2043static inline int sk_rx_queue_get(const struct sock *sk)
2044{
2045#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2046	if (sk) {
2047		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2048
2049		if (res != NO_QUEUE_MAPPING)
2050			return res;
2051	}
2052#endif
2053
2054	return -1;
2055}
 
2056
2057static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2058{
 
2059	sk->sk_socket = sock;
2060}
2061
2062static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2063{
2064	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2065	return &rcu_dereference_raw(sk->sk_wq)->wait;
2066}
2067/* Detach socket from process context.
2068 * Announce socket dead, detach it from wait queue and inode.
2069 * Note that parent inode held reference count on this struct sock,
2070 * we do not release it in this function, because protocol
2071 * probably wants some additional cleanups or even continuing
2072 * to work with this socket (TCP).
2073 */
2074static inline void sock_orphan(struct sock *sk)
2075{
2076	write_lock_bh(&sk->sk_callback_lock);
2077	sock_set_flag(sk, SOCK_DEAD);
2078	sk_set_socket(sk, NULL);
2079	sk->sk_wq  = NULL;
2080	write_unlock_bh(&sk->sk_callback_lock);
2081}
2082
2083static inline void sock_graft(struct sock *sk, struct socket *parent)
2084{
2085	WARN_ON(parent->sk);
2086	write_lock_bh(&sk->sk_callback_lock);
2087	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2088	parent->sk = sk;
2089	sk_set_socket(sk, parent);
2090	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2091	security_sock_graft(sk, parent);
2092	write_unlock_bh(&sk->sk_callback_lock);
2093}
2094
2095kuid_t sock_i_uid(struct sock *sk);
2096unsigned long __sock_i_ino(struct sock *sk);
2097unsigned long sock_i_ino(struct sock *sk);
2098
2099static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2100{
2101	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2102}
2103
2104static inline u32 net_tx_rndhash(void)
2105{
2106	u32 v = get_random_u32();
2107
2108	return v ?: 1;
2109}
2110
2111static inline void sk_set_txhash(struct sock *sk)
2112{
2113	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2114	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2115}
2116
2117static inline bool sk_rethink_txhash(struct sock *sk)
2118{
2119	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2120		sk_set_txhash(sk);
2121		return true;
2122	}
2123	return false;
2124}
2125
2126static inline struct dst_entry *
2127__sk_dst_get(const struct sock *sk)
2128{
2129	return rcu_dereference_check(sk->sk_dst_cache,
2130				     lockdep_sock_is_held(sk));
2131}
2132
2133static inline struct dst_entry *
2134sk_dst_get(const struct sock *sk)
2135{
2136	struct dst_entry *dst;
2137
2138	rcu_read_lock();
2139	dst = rcu_dereference(sk->sk_dst_cache);
2140	if (dst && !rcuref_get(&dst->__rcuref))
2141		dst = NULL;
2142	rcu_read_unlock();
2143	return dst;
2144}
2145
2146static inline void __dst_negative_advice(struct sock *sk)
2147{
2148	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2149
 
 
2150	if (dst && dst->ops->negative_advice) {
2151		ndst = dst->ops->negative_advice(dst);
2152
2153		if (ndst != dst) {
2154			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2155			sk_tx_queue_clear(sk);
2156			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2157		}
2158	}
2159}
2160
2161static inline void dst_negative_advice(struct sock *sk)
2162{
2163	sk_rethink_txhash(sk);
2164	__dst_negative_advice(sk);
2165}
2166
2167static inline void
2168__sk_dst_set(struct sock *sk, struct dst_entry *dst)
2169{
2170	struct dst_entry *old_dst;
2171
2172	sk_tx_queue_clear(sk);
2173	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2174	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2175					    lockdep_sock_is_held(sk));
2176	rcu_assign_pointer(sk->sk_dst_cache, dst);
2177	dst_release(old_dst);
2178}
2179
2180static inline void
2181sk_dst_set(struct sock *sk, struct dst_entry *dst)
2182{
2183	struct dst_entry *old_dst;
2184
2185	sk_tx_queue_clear(sk);
2186	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2187	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2188	dst_release(old_dst);
2189}
2190
2191static inline void
2192__sk_dst_reset(struct sock *sk)
2193{
2194	__sk_dst_set(sk, NULL);
2195}
2196
2197static inline void
2198sk_dst_reset(struct sock *sk)
2199{
2200	sk_dst_set(sk, NULL);
2201}
2202
2203struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2204
2205struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2206
2207static inline void sk_dst_confirm(struct sock *sk)
2208{
2209	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2210		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2211}
2212
2213static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2214{
2215	if (skb_get_dst_pending_confirm(skb)) {
2216		struct sock *sk = skb->sk;
 
2217
2218		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2219			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2220		neigh_confirm(n);
 
 
2221	}
2222}
2223
2224bool sk_mc_loop(const struct sock *sk);
2225
2226static inline bool sk_can_gso(const struct sock *sk)
2227{
2228	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2229}
2230
2231void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2232
2233static inline void sk_gso_disable(struct sock *sk)
2234{
2235	sk->sk_gso_disabled = 1;
2236	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2237}
2238
2239static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2240					   struct iov_iter *from, char *to,
2241					   int copy, int offset)
2242{
2243	if (skb->ip_summed == CHECKSUM_NONE) {
2244		__wsum csum = 0;
2245		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2246			return -EFAULT;
2247		skb->csum = csum_block_add(skb->csum, csum, offset);
2248	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2249		if (!copy_from_iter_full_nocache(to, copy, from))
2250			return -EFAULT;
2251	} else if (!copy_from_iter_full(to, copy, from))
2252		return -EFAULT;
2253
2254	return 0;
2255}
2256
2257static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2258				       struct iov_iter *from, int copy)
2259{
2260	int err, offset = skb->len;
2261
2262	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2263				       copy, offset);
2264	if (err)
2265		__skb_trim(skb, offset);
2266
2267	return err;
2268}
2269
2270static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2271					   struct sk_buff *skb,
2272					   struct page *page,
2273					   int off, int copy)
2274{
2275	int err;
2276
2277	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2278				       copy, skb->len);
2279	if (err)
2280		return err;
2281
2282	skb_len_add(skb, copy);
 
 
2283	sk_wmem_queued_add(sk, copy);
2284	sk_mem_charge(sk, copy);
2285	return 0;
2286}
2287
2288/**
2289 * sk_wmem_alloc_get - returns write allocations
2290 * @sk: socket
2291 *
2292 * Return: sk_wmem_alloc minus initial offset of one
2293 */
2294static inline int sk_wmem_alloc_get(const struct sock *sk)
2295{
2296	return refcount_read(&sk->sk_wmem_alloc) - 1;
2297}
2298
2299/**
2300 * sk_rmem_alloc_get - returns read allocations
2301 * @sk: socket
2302 *
2303 * Return: sk_rmem_alloc
2304 */
2305static inline int sk_rmem_alloc_get(const struct sock *sk)
2306{
2307	return atomic_read(&sk->sk_rmem_alloc);
2308}
2309
2310/**
2311 * sk_has_allocations - check if allocations are outstanding
2312 * @sk: socket
2313 *
2314 * Return: true if socket has write or read allocations
2315 */
2316static inline bool sk_has_allocations(const struct sock *sk)
2317{
2318	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2319}
2320
2321/**
2322 * skwq_has_sleeper - check if there are any waiting processes
2323 * @wq: struct socket_wq
2324 *
2325 * Return: true if socket_wq has waiting processes
2326 *
2327 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2328 * barrier call. They were added due to the race found within the tcp code.
2329 *
2330 * Consider following tcp code paths::
2331 *
2332 *   CPU1                CPU2
2333 *   sys_select          receive packet
2334 *   ...                 ...
2335 *   __add_wait_queue    update tp->rcv_nxt
2336 *   ...                 ...
2337 *   tp->rcv_nxt check   sock_def_readable
2338 *   ...                 {
2339 *   schedule               rcu_read_lock();
2340 *                          wq = rcu_dereference(sk->sk_wq);
2341 *                          if (wq && waitqueue_active(&wq->wait))
2342 *                              wake_up_interruptible(&wq->wait)
2343 *                          ...
2344 *                       }
2345 *
2346 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2347 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2348 * could then endup calling schedule and sleep forever if there are no more
2349 * data on the socket.
2350 *
2351 */
2352static inline bool skwq_has_sleeper(struct socket_wq *wq)
2353{
2354	return wq && wq_has_sleeper(&wq->wait);
2355}
2356
2357/**
2358 * sock_poll_wait - place memory barrier behind the poll_wait call.
2359 * @filp:           file
2360 * @sock:           socket to wait on
2361 * @p:              poll_table
2362 *
2363 * See the comments in the wq_has_sleeper function.
2364 */
2365static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2366				  poll_table *p)
2367{
2368	if (!poll_does_not_wait(p)) {
2369		poll_wait(filp, &sock->wq.wait, p);
2370		/* We need to be sure we are in sync with the
2371		 * socket flags modification.
2372		 *
2373		 * This memory barrier is paired in the wq_has_sleeper.
2374		 */
2375		smp_mb();
2376	}
2377}
2378
2379static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2380{
2381	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2382	u32 txhash = READ_ONCE(sk->sk_txhash);
2383
2384	if (txhash) {
2385		skb->l4_hash = 1;
2386		skb->hash = txhash;
2387	}
2388}
2389
2390void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2391
2392/*
2393 *	Queue a received datagram if it will fit. Stream and sequenced
2394 *	protocols can't normally use this as they need to fit buffers in
2395 *	and play with them.
2396 *
2397 *	Inlined as it's very short and called for pretty much every
2398 *	packet ever received.
2399 */
2400static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2401{
2402	skb_orphan(skb);
2403	skb->sk = sk;
2404	skb->destructor = sock_rfree;
2405	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2406	sk_mem_charge(sk, skb->truesize);
2407}
2408
2409static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2410{
2411	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2412		skb_orphan(skb);
2413		skb->destructor = sock_efree;
2414		skb->sk = sk;
2415		return true;
2416	}
2417	return false;
2418}
2419
2420static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2421{
2422	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2423	if (skb) {
2424		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2425			skb_set_owner_r(skb, sk);
2426			return skb;
2427		}
2428		__kfree_skb(skb);
2429	}
2430	return NULL;
2431}
2432
2433static inline void skb_prepare_for_gro(struct sk_buff *skb)
2434{
2435	if (skb->destructor != sock_wfree) {
2436		skb_orphan(skb);
2437		return;
2438	}
2439	skb->slow_gro = 1;
2440}
2441
2442void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2443		    unsigned long expires);
2444
2445void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2446
2447void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2448
2449int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2450			struct sk_buff *skb, unsigned int flags,
2451			void (*destructor)(struct sock *sk,
2452					   struct sk_buff *skb));
2453int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2454
2455int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2456			      enum skb_drop_reason *reason);
2457
2458static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2459{
2460	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2461}
2462
2463int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2464struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2465
2466/*
2467 *	Recover an error report and clear atomically
2468 */
2469
2470static inline int sock_error(struct sock *sk)
2471{
2472	int err;
2473
2474	/* Avoid an atomic operation for the common case.
2475	 * This is racy since another cpu/thread can change sk_err under us.
2476	 */
2477	if (likely(data_race(!sk->sk_err)))
2478		return 0;
2479
2480	err = xchg(&sk->sk_err, 0);
2481	return -err;
2482}
2483
2484void sk_error_report(struct sock *sk);
2485
2486static inline unsigned long sock_wspace(struct sock *sk)
2487{
2488	int amt = 0;
2489
2490	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2491		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2492		if (amt < 0)
2493			amt = 0;
2494	}
2495	return amt;
2496}
2497
2498/* Note:
2499 *  We use sk->sk_wq_raw, from contexts knowing this
2500 *  pointer is not NULL and cannot disappear/change.
2501 */
2502static inline void sk_set_bit(int nr, struct sock *sk)
2503{
2504	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2505	    !sock_flag(sk, SOCK_FASYNC))
2506		return;
2507
2508	set_bit(nr, &sk->sk_wq_raw->flags);
2509}
2510
2511static inline void sk_clear_bit(int nr, struct sock *sk)
2512{
2513	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2514	    !sock_flag(sk, SOCK_FASYNC))
2515		return;
2516
2517	clear_bit(nr, &sk->sk_wq_raw->flags);
2518}
2519
2520static inline void sk_wake_async(const struct sock *sk, int how, int band)
2521{
2522	if (sock_flag(sk, SOCK_FASYNC)) {
2523		rcu_read_lock();
2524		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2525		rcu_read_unlock();
2526	}
2527}
2528
2529/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2530 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2531 * Note: for send buffers, TCP works better if we can build two skbs at
2532 * minimum.
2533 */
2534#define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2535
2536#define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2537#define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2538
2539static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2540{
2541	u32 val;
2542
2543	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2544		return;
2545
2546	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2547	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2548
2549	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2550}
2551
 
 
 
2552/**
2553 * sk_page_frag - return an appropriate page_frag
2554 * @sk: socket
2555 *
2556 * Use the per task page_frag instead of the per socket one for
2557 * optimization when we know that we're in process context and own
2558 * everything that's associated with %current.
2559 *
2560 * Both direct reclaim and page faults can nest inside other
2561 * socket operations and end up recursing into sk_page_frag()
2562 * while it's already in use: explicitly avoid task page_frag
2563 * when users disable sk_use_task_frag.
2564 *
2565 * Return: a per task page_frag if context allows that,
2566 * otherwise a per socket one.
2567 */
2568static inline struct page_frag *sk_page_frag(struct sock *sk)
2569{
2570	if (sk->sk_use_task_frag)
2571		return &current->task_frag;
2572
2573	return &sk->sk_frag;
2574}
2575
2576bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2577
2578/*
2579 *	Default write policy as shown to user space via poll/select/SIGIO
2580 */
2581static inline bool sock_writeable(const struct sock *sk)
2582{
2583	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2584}
2585
2586static inline gfp_t gfp_any(void)
2587{
2588	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2589}
2590
2591static inline gfp_t gfp_memcg_charge(void)
2592{
2593	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2594}
2595
2596static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2597{
2598	return noblock ? 0 : sk->sk_rcvtimeo;
2599}
2600
2601static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2602{
2603	return noblock ? 0 : sk->sk_sndtimeo;
2604}
2605
2606static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2607{
2608	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2609
2610	return v ?: 1;
2611}
2612
2613/* Alas, with timeout socket operations are not restartable.
2614 * Compare this to poll().
2615 */
2616static inline int sock_intr_errno(long timeo)
2617{
2618	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2619}
2620
2621struct sock_skb_cb {
2622	u32 dropcount;
2623};
2624
2625/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2626 * using skb->cb[] would keep using it directly and utilize its
2627 * alignement guarantee.
2628 */
2629#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2630			    sizeof(struct sock_skb_cb)))
2631
2632#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2633			    SOCK_SKB_CB_OFFSET))
2634
2635#define sock_skb_cb_check_size(size) \
2636	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2637
2638static inline void
2639sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2640{
2641	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2642						atomic_read(&sk->sk_drops) : 0;
2643}
2644
2645static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2646{
2647	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2648
2649	atomic_add(segs, &sk->sk_drops);
2650}
2651
2652static inline ktime_t sock_read_timestamp(struct sock *sk)
2653{
2654#if BITS_PER_LONG==32
2655	unsigned int seq;
2656	ktime_t kt;
2657
2658	do {
2659		seq = read_seqbegin(&sk->sk_stamp_seq);
2660		kt = sk->sk_stamp;
2661	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2662
2663	return kt;
2664#else
2665	return READ_ONCE(sk->sk_stamp);
2666#endif
2667}
2668
2669static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2670{
2671#if BITS_PER_LONG==32
2672	write_seqlock(&sk->sk_stamp_seq);
2673	sk->sk_stamp = kt;
2674	write_sequnlock(&sk->sk_stamp_seq);
2675#else
2676	WRITE_ONCE(sk->sk_stamp, kt);
2677#endif
2678}
2679
2680void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2681			   struct sk_buff *skb);
2682void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2683			     struct sk_buff *skb);
2684
2685static inline void
2686sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2687{
 
2688	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2689	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2690	ktime_t kt = skb->tstamp;
2691	/*
2692	 * generate control messages if
2693	 * - receive time stamping in software requested
2694	 * - software time stamp available and wanted
2695	 * - hardware time stamps available and wanted
2696	 */
2697	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2698	    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2699	    (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2700	    (hwtstamps->hwtstamp &&
2701	     (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2702		__sock_recv_timestamp(msg, sk, skb);
2703	else
2704		sock_write_timestamp(sk, kt);
2705
2706	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2707		__sock_recv_wifi_status(msg, sk, skb);
2708}
2709
2710void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2711		       struct sk_buff *skb);
2712
2713#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2714static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2715				   struct sk_buff *skb)
2716{
2717#define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2718			   (1UL << SOCK_RCVTSTAMP)			| \
2719			   (1UL << SOCK_RCVMARK))
2720#define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2721			   SOF_TIMESTAMPING_RAW_HARDWARE)
2722
2723	if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2724	    READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2725		__sock_recv_cmsgs(msg, sk, skb);
2726	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2727		sock_write_timestamp(sk, skb->tstamp);
2728	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2729		sock_write_timestamp(sk, 0);
2730}
2731
2732void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2733
2734/**
2735 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2736 * @sk:		socket sending this packet
2737 * @tsflags:	timestamping flags to use
2738 * @tx_flags:	completed with instructions for time stamping
2739 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2740 *
2741 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2742 */
2743static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2744				      __u8 *tx_flags, __u32 *tskey)
2745{
2746	if (unlikely(tsflags)) {
2747		__sock_tx_timestamp(tsflags, tx_flags);
2748		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2749		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2750			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2751	}
2752	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2753		*tx_flags |= SKBTX_WIFI_STATUS;
2754}
2755
2756static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2757				     __u8 *tx_flags)
2758{
2759	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2760}
2761
2762static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2763{
2764	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2765			   &skb_shinfo(skb)->tskey);
2766}
2767
2768static inline bool sk_is_inet(const struct sock *sk)
2769{
2770	int family = READ_ONCE(sk->sk_family);
2771
2772	return family == AF_INET || family == AF_INET6;
2773}
2774
2775static inline bool sk_is_tcp(const struct sock *sk)
2776{
2777	return sk_is_inet(sk) &&
2778	       sk->sk_type == SOCK_STREAM &&
2779	       sk->sk_protocol == IPPROTO_TCP;
2780}
2781
2782static inline bool sk_is_udp(const struct sock *sk)
2783{
2784	return sk_is_inet(sk) &&
2785	       sk->sk_type == SOCK_DGRAM &&
2786	       sk->sk_protocol == IPPROTO_UDP;
2787}
2788
2789static inline bool sk_is_stream_unix(const struct sock *sk)
2790{
2791	return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2792}
2793
2794/**
2795 * sk_eat_skb - Release a skb if it is no longer needed
2796 * @sk: socket to eat this skb from
2797 * @skb: socket buffer to eat
2798 *
2799 * This routine must be called with interrupts disabled or with the socket
2800 * locked so that the sk_buff queue operation is ok.
2801*/
 
2802static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2803{
2804	__skb_unlink(skb, &sk->sk_receive_queue);
 
 
 
 
 
 
2805	__kfree_skb(skb);
2806}
2807
2808static inline bool
2809skb_sk_is_prefetched(struct sk_buff *skb)
2810{
2811#ifdef CONFIG_INET
2812	return skb->destructor == sock_pfree;
2813#else
2814	return false;
2815#endif /* CONFIG_INET */
2816}
2817
2818/* This helper checks if a socket is a full socket,
2819 * ie _not_ a timewait or request socket.
2820 */
2821static inline bool sk_fullsock(const struct sock *sk)
2822{
2823	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2824}
2825
2826static inline bool
2827sk_is_refcounted(struct sock *sk)
2828{
2829	/* Only full sockets have sk->sk_flags. */
2830	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2831}
2832
2833/**
2834 * skb_steal_sock - steal a socket from an sk_buff
2835 * @skb: sk_buff to steal the socket from
2836 * @refcounted: is set to true if the socket is reference-counted
2837 * @prefetched: is set to true if the socket was assigned from bpf
2838 */
2839static inline struct sock *
2840skb_steal_sock(struct sk_buff *skb, bool *refcounted, bool *prefetched)
2841{
2842	if (skb->sk) {
2843		struct sock *sk = skb->sk;
2844
2845		*refcounted = true;
2846		*prefetched = skb_sk_is_prefetched(skb);
2847		if (*prefetched)
2848			*refcounted = sk_is_refcounted(sk);
2849		skb->destructor = NULL;
2850		skb->sk = NULL;
2851		return sk;
2852	}
2853	*prefetched = false;
2854	*refcounted = false;
2855	return NULL;
2856}
2857
 
 
 
 
 
 
 
 
2858/* Checks if this SKB belongs to an HW offloaded socket
2859 * and whether any SW fallbacks are required based on dev.
2860 * Check decrypted mark in case skb_orphan() cleared socket.
2861 */
2862static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2863						   struct net_device *dev)
2864{
2865#ifdef CONFIG_SOCK_VALIDATE_XMIT
2866	struct sock *sk = skb->sk;
2867
2868	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2869		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2870#ifdef CONFIG_TLS_DEVICE
2871	} else if (unlikely(skb->decrypted)) {
2872		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2873		kfree_skb(skb);
2874		skb = NULL;
2875#endif
2876	}
2877#endif
2878
2879	return skb;
2880}
2881
2882/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2883 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2884 */
2885static inline bool sk_listener(const struct sock *sk)
2886{
2887	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2888}
2889
2890void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2891int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2892		       int type);
2893
2894bool sk_ns_capable(const struct sock *sk,
2895		   struct user_namespace *user_ns, int cap);
2896bool sk_capable(const struct sock *sk, int cap);
2897bool sk_net_capable(const struct sock *sk, int cap);
2898
2899void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2900
2901/* Take into consideration the size of the struct sk_buff overhead in the
2902 * determination of these values, since that is non-constant across
2903 * platforms.  This makes socket queueing behavior and performance
2904 * not depend upon such differences.
2905 */
2906#define _SK_MEM_PACKETS		256
2907#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2908#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2909#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2910
2911extern __u32 sysctl_wmem_max;
2912extern __u32 sysctl_rmem_max;
2913
2914extern int sysctl_tstamp_allow_data;
 
2915
2916extern __u32 sysctl_wmem_default;
2917extern __u32 sysctl_rmem_default;
2918
2919#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2920DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2921
2922static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2923{
2924	/* Does this proto have per netns sysctl_wmem ? */
2925	if (proto->sysctl_wmem_offset)
2926		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2927
2928	return READ_ONCE(*proto->sysctl_wmem);
2929}
2930
2931static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2932{
2933	/* Does this proto have per netns sysctl_rmem ? */
2934	if (proto->sysctl_rmem_offset)
2935		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2936
2937	return READ_ONCE(*proto->sysctl_rmem);
2938}
2939
2940/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2941 * Some wifi drivers need to tweak it to get more chunks.
2942 * They can use this helper from their ndo_start_xmit()
2943 */
2944static inline void sk_pacing_shift_update(struct sock *sk, int val)
2945{
2946	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2947		return;
2948	WRITE_ONCE(sk->sk_pacing_shift, val);
2949}
2950
2951/* if a socket is bound to a device, check that the given device
2952 * index is either the same or that the socket is bound to an L3
2953 * master device and the given device index is also enslaved to
2954 * that L3 master
2955 */
2956static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2957{
2958	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2959	int mdif;
2960
2961	if (!bound_dev_if || bound_dev_if == dif)
2962		return true;
2963
2964	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2965	if (mdif && mdif == bound_dev_if)
2966		return true;
2967
2968	return false;
2969}
2970
2971void sock_def_readable(struct sock *sk);
2972
2973int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2974void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2975int sock_set_timestamping(struct sock *sk, int optname,
2976			  struct so_timestamping timestamping);
2977
2978void sock_enable_timestamps(struct sock *sk);
2979void sock_no_linger(struct sock *sk);
2980void sock_set_keepalive(struct sock *sk);
2981void sock_set_priority(struct sock *sk, u32 priority);
2982void sock_set_rcvbuf(struct sock *sk, int val);
2983void sock_set_mark(struct sock *sk, u32 val);
2984void sock_set_reuseaddr(struct sock *sk);
2985void sock_set_reuseport(struct sock *sk);
2986void sock_set_sndtimeo(struct sock *sk, s64 secs);
2987
2988int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2989
2990int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2991int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2992			   sockptr_t optval, int optlen, bool old_timeval);
2993
2994int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2995		     void __user *arg, void *karg, size_t size);
2996int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
2997static inline bool sk_is_readable(struct sock *sk)
2998{
2999	if (sk->sk_prot->sock_is_readable)
3000		return sk->sk_prot->sock_is_readable(sk);
3001	return false;
3002}
3003#endif	/* _SOCK_H */