Linux Audio

Check our new training course

Loading...
v5.4
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the AF_INET socket handler.
   8 *
   9 * Version:	@(#)sock.h	1.0.4	05/13/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *		Florian La Roche <flla@stud.uni-sb.de>
  15 *
  16 * Fixes:
  17 *		Alan Cox	:	Volatiles in skbuff pointers. See
  18 *					skbuff comments. May be overdone,
  19 *					better to prove they can be removed
  20 *					than the reverse.
  21 *		Alan Cox	:	Added a zapped field for tcp to note
  22 *					a socket is reset and must stay shut up
  23 *		Alan Cox	:	New fields for options
  24 *	Pauline Middelink	:	identd support
  25 *		Alan Cox	:	Eliminate low level recv/recvfrom
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *              Steve Whitehouse:       Default routines for sock_ops
  28 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
  29 *              			protinfo be just a void pointer, as the
  30 *              			protocol specific parts were moved to
  31 *              			respective headers and ipv4/v6, etc now
  32 *              			use private slabcaches for its socks
  33 *              Pedro Hortas	:	New flags field for socket options
  34 */
  35#ifndef _SOCK_H
  36#define _SOCK_H
  37
  38#include <linux/hardirq.h>
  39#include <linux/kernel.h>
  40#include <linux/list.h>
  41#include <linux/list_nulls.h>
  42#include <linux/timer.h>
  43#include <linux/cache.h>
  44#include <linux/bitops.h>
  45#include <linux/lockdep.h>
  46#include <linux/netdevice.h>
  47#include <linux/skbuff.h>	/* struct sk_buff */
  48#include <linux/mm.h>
  49#include <linux/security.h>
  50#include <linux/slab.h>
  51#include <linux/uaccess.h>
  52#include <linux/page_counter.h>
  53#include <linux/memcontrol.h>
  54#include <linux/static_key.h>
  55#include <linux/sched.h>
  56#include <linux/wait.h>
  57#include <linux/cgroup-defs.h>
  58#include <linux/rbtree.h>
  59#include <linux/filter.h>
  60#include <linux/rculist_nulls.h>
  61#include <linux/poll.h>
  62
 
  63#include <linux/atomic.h>
  64#include <linux/refcount.h>
  65#include <net/dst.h>
  66#include <net/checksum.h>
  67#include <net/tcp_states.h>
  68#include <linux/net_tstamp.h>
  69#include <net/smc.h>
  70#include <net/l3mdev.h>
  71
  72/*
  73 * This structure really needs to be cleaned up.
  74 * Most of it is for TCP, and not used by any of
  75 * the other protocols.
  76 */
  77
  78/* Define this to get the SOCK_DBG debugging facility. */
  79#define SOCK_DEBUGGING
  80#ifdef SOCK_DEBUGGING
  81#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  82					printk(KERN_DEBUG msg); } while (0)
  83#else
  84/* Validate arguments and do nothing */
  85static inline __printf(2, 3)
  86void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  87{
  88}
  89#endif
  90
  91/* This is the per-socket lock.  The spinlock provides a synchronization
  92 * between user contexts and software interrupt processing, whereas the
  93 * mini-semaphore synchronizes multiple users amongst themselves.
  94 */
  95typedef struct {
  96	spinlock_t		slock;
  97	int			owned;
  98	wait_queue_head_t	wq;
  99	/*
 100	 * We express the mutex-alike socket_lock semantics
 101	 * to the lock validator by explicitly managing
 102	 * the slock as a lock variant (in addition to
 103	 * the slock itself):
 104	 */
 105#ifdef CONFIG_DEBUG_LOCK_ALLOC
 106	struct lockdep_map dep_map;
 107#endif
 108} socket_lock_t;
 109
 110struct sock;
 111struct proto;
 112struct net;
 113
 114typedef __u32 __bitwise __portpair;
 115typedef __u64 __bitwise __addrpair;
 116
 117/**
 118 *	struct sock_common - minimal network layer representation of sockets
 119 *	@skc_daddr: Foreign IPv4 addr
 120 *	@skc_rcv_saddr: Bound local IPv4 addr
 
 121 *	@skc_hash: hash value used with various protocol lookup tables
 122 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 123 *	@skc_dport: placeholder for inet_dport/tw_dport
 124 *	@skc_num: placeholder for inet_num/tw_num
 
 125 *	@skc_family: network address family
 126 *	@skc_state: Connection state
 127 *	@skc_reuse: %SO_REUSEADDR setting
 128 *	@skc_reuseport: %SO_REUSEPORT setting
 
 
 129 *	@skc_bound_dev_if: bound device index if != 0
 130 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 131 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 132 *	@skc_prot: protocol handlers inside a network family
 133 *	@skc_net: reference to the network namespace of this socket
 
 
 
 134 *	@skc_node: main hash linkage for various protocol lookup tables
 135 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 136 *	@skc_tx_queue_mapping: tx queue number for this connection
 137 *	@skc_rx_queue_mapping: rx queue number for this connection
 138 *	@skc_flags: place holder for sk_flags
 139 *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 140 *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 
 
 
 
 141 *	@skc_incoming_cpu: record/match cpu processing incoming packets
 
 
 
 
 142 *	@skc_refcnt: reference count
 143 *
 144 *	This is the minimal network layer representation of sockets, the header
 145 *	for struct sock and struct inet_timewait_sock.
 146 */
 147struct sock_common {
 148	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 149	 * address on 64bit arches : cf INET_MATCH()
 150	 */
 151	union {
 152		__addrpair	skc_addrpair;
 153		struct {
 154			__be32	skc_daddr;
 155			__be32	skc_rcv_saddr;
 156		};
 157	};
 158	union  {
 159		unsigned int	skc_hash;
 160		__u16		skc_u16hashes[2];
 161	};
 162	/* skc_dport && skc_num must be grouped as well */
 163	union {
 164		__portpair	skc_portpair;
 165		struct {
 166			__be16	skc_dport;
 167			__u16	skc_num;
 168		};
 169	};
 170
 171	unsigned short		skc_family;
 172	volatile unsigned char	skc_state;
 173	unsigned char		skc_reuse:4;
 174	unsigned char		skc_reuseport:1;
 175	unsigned char		skc_ipv6only:1;
 176	unsigned char		skc_net_refcnt:1;
 177	int			skc_bound_dev_if;
 178	union {
 179		struct hlist_node	skc_bind_node;
 180		struct hlist_node	skc_portaddr_node;
 181	};
 182	struct proto		*skc_prot;
 183	possible_net_t		skc_net;
 184
 185#if IS_ENABLED(CONFIG_IPV6)
 186	struct in6_addr		skc_v6_daddr;
 187	struct in6_addr		skc_v6_rcv_saddr;
 188#endif
 189
 190	atomic64_t		skc_cookie;
 191
 192	/* following fields are padding to force
 193	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 194	 * assuming IPV6 is enabled. We use this padding differently
 195	 * for different kind of 'sockets'
 196	 */
 197	union {
 198		unsigned long	skc_flags;
 199		struct sock	*skc_listener; /* request_sock */
 200		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 201	};
 202	/*
 203	 * fields between dontcopy_begin/dontcopy_end
 204	 * are not copied in sock_copy()
 205	 */
 206	/* private: */
 207	int			skc_dontcopy_begin[0];
 208	/* public: */
 209	union {
 210		struct hlist_node	skc_node;
 211		struct hlist_nulls_node skc_nulls_node;
 212	};
 213	unsigned short		skc_tx_queue_mapping;
 214#ifdef CONFIG_XPS
 215	unsigned short		skc_rx_queue_mapping;
 216#endif
 217	union {
 218		int		skc_incoming_cpu;
 219		u32		skc_rcv_wnd;
 220		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 221	};
 222
 223	refcount_t		skc_refcnt;
 224	/* private: */
 225	int                     skc_dontcopy_end[0];
 226	union {
 227		u32		skc_rxhash;
 228		u32		skc_window_clamp;
 229		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 230	};
 231	/* public: */
 232};
 233
 234struct bpf_sk_storage;
 235
 236/**
 237  *	struct sock - network layer representation of sockets
 238  *	@__sk_common: shared layout with inet_timewait_sock
 239  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 240  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 241  *	@sk_lock:	synchronizer
 242  *	@sk_kern_sock: True if sock is using kernel lock classes
 243  *	@sk_rcvbuf: size of receive buffer in bytes
 244  *	@sk_wq: sock wait queue and async head
 245  *	@sk_rx_dst: receive input route used by early demux
 246  *	@sk_dst_cache: destination cache
 247  *	@sk_dst_pending_confirm: need to confirm neighbour
 248  *	@sk_policy: flow policy
 
 249  *	@sk_receive_queue: incoming packets
 250  *	@sk_wmem_alloc: transmit queue bytes committed
 251  *	@sk_tsq_flags: TCP Small Queues flags
 252  *	@sk_write_queue: Packet sending queue
 253  *	@sk_omem_alloc: "o" is "option" or "other"
 254  *	@sk_wmem_queued: persistent queue size
 255  *	@sk_forward_alloc: space allocated forward
 256  *	@sk_napi_id: id of the last napi context to receive data for sk
 257  *	@sk_ll_usec: usecs to busypoll when there is no data
 258  *	@sk_allocation: allocation mode
 259  *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 260  *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
 261  *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 262  *	@sk_sndbuf: size of send buffer in bytes
 263  *	@__sk_flags_offset: empty field used to determine location of bitfield
 264  *	@sk_padding: unused element for alignment
 265  *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 266  *	@sk_no_check_rx: allow zero checksum in RX packets
 267  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 268  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 
 
 269  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 270  *	@sk_gso_max_size: Maximum GSO segment size to build
 271  *	@sk_gso_max_segs: Maximum number of GSO segments
 272  *	@sk_pacing_shift: scaling factor for TCP Small Queues
 273  *	@sk_lingertime: %SO_LINGER l_linger setting
 274  *	@sk_backlog: always used with the per-socket spinlock held
 275  *	@sk_callback_lock: used with the callbacks in the end of this struct
 276  *	@sk_error_queue: rarely used
 277  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 278  *			  IPV6_ADDRFORM for instance)
 279  *	@sk_err: last error
 280  *	@sk_err_soft: errors that don't cause failure but are the cause of a
 281  *		      persistent failure not just 'timed out'
 282  *	@sk_drops: raw/udp drops counter
 283  *	@sk_ack_backlog: current listen backlog
 284  *	@sk_max_ack_backlog: listen backlog set in listen()
 285  *	@sk_uid: user id of owner
 
 
 286  *	@sk_priority: %SO_PRIORITY setting
 287  *	@sk_type: socket type (%SOCK_STREAM, etc)
 288  *	@sk_protocol: which protocol this socket belongs in this network family
 289  *	@sk_peer_pid: &struct pid for this socket's peer
 290  *	@sk_peer_cred: %SO_PEERCRED setting
 291  *	@sk_rcvlowat: %SO_RCVLOWAT setting
 292  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
 293  *	@sk_sndtimeo: %SO_SNDTIMEO setting
 294  *	@sk_txhash: computed flow hash for use on transmit
 295  *	@sk_filter: socket filtering instructions
 296  *	@sk_timer: sock cleanup timer
 297  *	@sk_stamp: time stamp of last packet received
 298  *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
 299  *	@sk_tsflags: SO_TIMESTAMPING socket options
 
 
 300  *	@sk_tskey: counter to disambiguate concurrent tstamp requests
 301  *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
 302  *	@sk_socket: Identd and reporting IO signals
 303  *	@sk_user_data: RPC layer private data
 304  *	@sk_frag: cached page frag
 305  *	@sk_peek_off: current peek_offset value
 306  *	@sk_send_head: front of stuff to transmit
 
 
 307  *	@sk_security: used by security modules
 308  *	@sk_mark: generic packet mark
 309  *	@sk_cgrp_data: cgroup data for this cgroup
 310  *	@sk_memcg: this socket's memory cgroup association
 311  *	@sk_write_pending: a write to stream socket waits to start
 312  *	@sk_state_change: callback to indicate change in the state of the sock
 313  *	@sk_data_ready: callback to indicate there is data to be processed
 314  *	@sk_write_space: callback to indicate there is bf sending space available
 315  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 316  *	@sk_backlog_rcv: callback to process the backlog
 
 317  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 318  *	@sk_reuseport_cb: reuseport group container
 
 319  *	@sk_rcu: used during RCU grace period
 320  *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
 321  *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
 
 322  *	@sk_txtime_unused: unused txtime flags
 323  */
 324struct sock {
 325	/*
 326	 * Now struct inet_timewait_sock also uses sock_common, so please just
 327	 * don't add nothing before this first member (__sk_common) --acme
 328	 */
 329	struct sock_common	__sk_common;
 330#define sk_node			__sk_common.skc_node
 331#define sk_nulls_node		__sk_common.skc_nulls_node
 332#define sk_refcnt		__sk_common.skc_refcnt
 333#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
 334#ifdef CONFIG_XPS
 335#define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
 336#endif
 337
 338#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
 339#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
 340#define sk_hash			__sk_common.skc_hash
 341#define sk_portpair		__sk_common.skc_portpair
 342#define sk_num			__sk_common.skc_num
 343#define sk_dport		__sk_common.skc_dport
 344#define sk_addrpair		__sk_common.skc_addrpair
 345#define sk_daddr		__sk_common.skc_daddr
 346#define sk_rcv_saddr		__sk_common.skc_rcv_saddr
 347#define sk_family		__sk_common.skc_family
 348#define sk_state		__sk_common.skc_state
 349#define sk_reuse		__sk_common.skc_reuse
 350#define sk_reuseport		__sk_common.skc_reuseport
 351#define sk_ipv6only		__sk_common.skc_ipv6only
 352#define sk_net_refcnt		__sk_common.skc_net_refcnt
 353#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
 354#define sk_bind_node		__sk_common.skc_bind_node
 355#define sk_prot			__sk_common.skc_prot
 356#define sk_net			__sk_common.skc_net
 357#define sk_v6_daddr		__sk_common.skc_v6_daddr
 358#define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
 359#define sk_cookie		__sk_common.skc_cookie
 360#define sk_incoming_cpu		__sk_common.skc_incoming_cpu
 361#define sk_flags		__sk_common.skc_flags
 362#define sk_rxhash		__sk_common.skc_rxhash
 363
 364	socket_lock_t		sk_lock;
 365	atomic_t		sk_drops;
 366	int			sk_rcvlowat;
 367	struct sk_buff_head	sk_error_queue;
 368	struct sk_buff		*sk_rx_skb_cache;
 369	struct sk_buff_head	sk_receive_queue;
 370	/*
 371	 * The backlog queue is special, it is always used with
 372	 * the per-socket spinlock held and requires low latency
 373	 * access. Therefore we special case it's implementation.
 374	 * Note : rmem_alloc is in this structure to fill a hole
 375	 * on 64bit arches, not because its logically part of
 376	 * backlog.
 377	 */
 378	struct {
 379		atomic_t	rmem_alloc;
 380		int		len;
 381		struct sk_buff	*head;
 382		struct sk_buff	*tail;
 383	} sk_backlog;
 384#define sk_rmem_alloc sk_backlog.rmem_alloc
 385
 386	int			sk_forward_alloc;
 387#ifdef CONFIG_NET_RX_BUSY_POLL
 388	unsigned int		sk_ll_usec;
 389	/* ===== mostly read cache line ===== */
 390	unsigned int		sk_napi_id;
 391#endif
 392	int			sk_rcvbuf;
 393
 394	struct sk_filter __rcu	*sk_filter;
 395	union {
 396		struct socket_wq __rcu	*sk_wq;
 
 397		struct socket_wq	*sk_wq_raw;
 
 398	};
 399#ifdef CONFIG_XFRM
 400	struct xfrm_policy __rcu *sk_policy[2];
 401#endif
 402	struct dst_entry	*sk_rx_dst;
 403	struct dst_entry __rcu	*sk_dst_cache;
 404	atomic_t		sk_omem_alloc;
 405	int			sk_sndbuf;
 406
 407	/* ===== cache line for TX ===== */
 408	int			sk_wmem_queued;
 409	refcount_t		sk_wmem_alloc;
 410	unsigned long		sk_tsq_flags;
 411	union {
 412		struct sk_buff	*sk_send_head;
 413		struct rb_root	tcp_rtx_queue;
 414	};
 415	struct sk_buff		*sk_tx_skb_cache;
 416	struct sk_buff_head	sk_write_queue;
 417	__s32			sk_peek_off;
 418	int			sk_write_pending;
 419	__u32			sk_dst_pending_confirm;
 420	u32			sk_pacing_status; /* see enum sk_pacing */
 421	long			sk_sndtimeo;
 422	struct timer_list	sk_timer;
 423	__u32			sk_priority;
 424	__u32			sk_mark;
 425	unsigned long		sk_pacing_rate; /* bytes per second */
 426	unsigned long		sk_max_pacing_rate;
 427	struct page_frag	sk_frag;
 428	netdev_features_t	sk_route_caps;
 429	netdev_features_t	sk_route_nocaps;
 430	netdev_features_t	sk_route_forced_caps;
 431	int			sk_gso_type;
 432	unsigned int		sk_gso_max_size;
 433	gfp_t			sk_allocation;
 434	__u32			sk_txhash;
 435
 436	/*
 437	 * Because of non atomicity rules, all
 438	 * changes are protected by socket lock.
 439	 */
 440	unsigned int		__sk_flags_offset[0];
 441#ifdef __BIG_ENDIAN_BITFIELD
 442#define SK_FL_PROTO_SHIFT  16
 443#define SK_FL_PROTO_MASK   0x00ff0000
 444
 445#define SK_FL_TYPE_SHIFT   0
 446#define SK_FL_TYPE_MASK    0x0000ffff
 447#else
 448#define SK_FL_PROTO_SHIFT  8
 449#define SK_FL_PROTO_MASK   0x0000ff00
 450
 451#define SK_FL_TYPE_SHIFT   16
 452#define SK_FL_TYPE_MASK    0xffff0000
 453#endif
 454
 455	unsigned int		sk_padding : 1,
 456				sk_kern_sock : 1,
 457				sk_no_check_tx : 1,
 458				sk_no_check_rx : 1,
 459				sk_userlocks : 4,
 460				sk_protocol  : 8,
 461				sk_type      : 16;
 462#define SK_PROTOCOL_MAX U8_MAX
 463	u16			sk_gso_max_segs;
 464	u8			sk_pacing_shift;
 
 
 
 465	unsigned long	        sk_lingertime;
 466	struct proto		*sk_prot_creator;
 467	rwlock_t		sk_callback_lock;
 468	int			sk_err,
 469				sk_err_soft;
 470	u32			sk_ack_backlog;
 471	u32			sk_max_ack_backlog;
 472	kuid_t			sk_uid;
 
 
 
 
 
 473	struct pid		*sk_peer_pid;
 474	const struct cred	*sk_peer_cred;
 
 475	long			sk_rcvtimeo;
 476	ktime_t			sk_stamp;
 477#if BITS_PER_LONG==32
 478	seqlock_t		sk_stamp_seq;
 479#endif
 480	u16			sk_tsflags;
 
 481	u8			sk_shutdown;
 482	u32			sk_tskey;
 483	atomic_t		sk_zckey;
 484
 485	u8			sk_clockid;
 486	u8			sk_txtime_deadline_mode : 1,
 487				sk_txtime_report_errors : 1,
 488				sk_txtime_unused : 6;
 489
 490	struct socket		*sk_socket;
 491	void			*sk_user_data;
 492#ifdef CONFIG_SECURITY
 493	void			*sk_security;
 494#endif
 495	struct sock_cgroup_data	sk_cgrp_data;
 496	struct mem_cgroup	*sk_memcg;
 497	void			(*sk_state_change)(struct sock *sk);
 498	void			(*sk_data_ready)(struct sock *sk);
 499	void			(*sk_write_space)(struct sock *sk);
 500	void			(*sk_error_report)(struct sock *sk);
 501	int			(*sk_backlog_rcv)(struct sock *sk,
 502						  struct sk_buff *skb);
 503#ifdef CONFIG_SOCK_VALIDATE_XMIT
 504	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
 505							struct net_device *dev,
 506							struct sk_buff *skb);
 507#endif
 508	void                    (*sk_destruct)(struct sock *sk);
 509	struct sock_reuseport __rcu	*sk_reuseport_cb;
 510#ifdef CONFIG_BPF_SYSCALL
 511	struct bpf_sk_storage __rcu	*sk_bpf_storage;
 512#endif
 513	struct rcu_head		sk_rcu;
 514};
 515
 516enum sk_pacing {
 517	SK_PACING_NONE		= 0,
 518	SK_PACING_NEEDED	= 1,
 519	SK_PACING_FQ		= 2,
 520};
 521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 523
 524#define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
 525#define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526
 527/*
 528 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 529 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 530 * on a socket means that the socket will reuse everybody else's port
 531 * without looking at the other's sk_reuse value.
 532 */
 533
 534#define SK_NO_REUSE	0
 535#define SK_CAN_REUSE	1
 536#define SK_FORCE_REUSE	2
 537
 538int sk_set_peek_off(struct sock *sk, int val);
 539
 540static inline int sk_peek_offset(struct sock *sk, int flags)
 541{
 542	if (unlikely(flags & MSG_PEEK)) {
 543		return READ_ONCE(sk->sk_peek_off);
 544	}
 545
 546	return 0;
 547}
 548
 549static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 550{
 551	s32 off = READ_ONCE(sk->sk_peek_off);
 552
 553	if (unlikely(off >= 0)) {
 554		off = max_t(s32, off - val, 0);
 555		WRITE_ONCE(sk->sk_peek_off, off);
 556	}
 557}
 558
 559static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 560{
 561	sk_peek_offset_bwd(sk, -val);
 562}
 563
 564/*
 565 * Hashed lists helper routines
 566 */
 567static inline struct sock *sk_entry(const struct hlist_node *node)
 568{
 569	return hlist_entry(node, struct sock, sk_node);
 570}
 571
 572static inline struct sock *__sk_head(const struct hlist_head *head)
 573{
 574	return hlist_entry(head->first, struct sock, sk_node);
 575}
 576
 577static inline struct sock *sk_head(const struct hlist_head *head)
 578{
 579	return hlist_empty(head) ? NULL : __sk_head(head);
 580}
 581
 582static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 583{
 584	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 585}
 586
 587static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 588{
 589	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 590}
 591
 592static inline struct sock *sk_next(const struct sock *sk)
 593{
 594	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 595}
 596
 597static inline struct sock *sk_nulls_next(const struct sock *sk)
 598{
 599	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 600		hlist_nulls_entry(sk->sk_nulls_node.next,
 601				  struct sock, sk_nulls_node) :
 602		NULL;
 603}
 604
 605static inline bool sk_unhashed(const struct sock *sk)
 606{
 607	return hlist_unhashed(&sk->sk_node);
 608}
 609
 610static inline bool sk_hashed(const struct sock *sk)
 611{
 612	return !sk_unhashed(sk);
 613}
 614
 615static inline void sk_node_init(struct hlist_node *node)
 616{
 617	node->pprev = NULL;
 618}
 619
 620static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 621{
 622	node->pprev = NULL;
 623}
 624
 625static inline void __sk_del_node(struct sock *sk)
 626{
 627	__hlist_del(&sk->sk_node);
 628}
 629
 630/* NB: equivalent to hlist_del_init_rcu */
 631static inline bool __sk_del_node_init(struct sock *sk)
 632{
 633	if (sk_hashed(sk)) {
 634		__sk_del_node(sk);
 635		sk_node_init(&sk->sk_node);
 636		return true;
 637	}
 638	return false;
 639}
 640
 641/* Grab socket reference count. This operation is valid only
 642   when sk is ALREADY grabbed f.e. it is found in hash table
 643   or a list and the lookup is made under lock preventing hash table
 644   modifications.
 645 */
 646
 647static __always_inline void sock_hold(struct sock *sk)
 648{
 649	refcount_inc(&sk->sk_refcnt);
 650}
 651
 652/* Ungrab socket in the context, which assumes that socket refcnt
 653   cannot hit zero, f.e. it is true in context of any socketcall.
 654 */
 655static __always_inline void __sock_put(struct sock *sk)
 656{
 657	refcount_dec(&sk->sk_refcnt);
 658}
 659
 660static inline bool sk_del_node_init(struct sock *sk)
 661{
 662	bool rc = __sk_del_node_init(sk);
 663
 664	if (rc) {
 665		/* paranoid for a while -acme */
 666		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 667		__sock_put(sk);
 668	}
 669	return rc;
 670}
 671#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
 672
 673static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 674{
 675	if (sk_hashed(sk)) {
 676		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 677		return true;
 678	}
 679	return false;
 680}
 681
 682static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 683{
 684	bool rc = __sk_nulls_del_node_init_rcu(sk);
 685
 686	if (rc) {
 687		/* paranoid for a while -acme */
 688		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 689		__sock_put(sk);
 690	}
 691	return rc;
 692}
 693
 694static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 695{
 696	hlist_add_head(&sk->sk_node, list);
 697}
 698
 699static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 700{
 701	sock_hold(sk);
 702	__sk_add_node(sk, list);
 703}
 704
 705static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 706{
 707	sock_hold(sk);
 708	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 709	    sk->sk_family == AF_INET6)
 710		hlist_add_tail_rcu(&sk->sk_node, list);
 711	else
 712		hlist_add_head_rcu(&sk->sk_node, list);
 713}
 714
 715static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
 716{
 717	sock_hold(sk);
 718	hlist_add_tail_rcu(&sk->sk_node, list);
 719}
 720
 721static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 722{
 723	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 724}
 725
 
 
 
 
 
 726static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 727{
 728	sock_hold(sk);
 729	__sk_nulls_add_node_rcu(sk, list);
 730}
 731
 732static inline void __sk_del_bind_node(struct sock *sk)
 733{
 734	__hlist_del(&sk->sk_bind_node);
 735}
 736
 737static inline void sk_add_bind_node(struct sock *sk,
 738					struct hlist_head *list)
 739{
 740	hlist_add_head(&sk->sk_bind_node, list);
 741}
 742
 743#define sk_for_each(__sk, list) \
 744	hlist_for_each_entry(__sk, list, sk_node)
 745#define sk_for_each_rcu(__sk, list) \
 746	hlist_for_each_entry_rcu(__sk, list, sk_node)
 747#define sk_nulls_for_each(__sk, node, list) \
 748	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 749#define sk_nulls_for_each_rcu(__sk, node, list) \
 750	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 751#define sk_for_each_from(__sk) \
 752	hlist_for_each_entry_from(__sk, sk_node)
 753#define sk_nulls_for_each_from(__sk, node) \
 754	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 755		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 756#define sk_for_each_safe(__sk, tmp, list) \
 757	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 758#define sk_for_each_bound(__sk, list) \
 759	hlist_for_each_entry(__sk, list, sk_bind_node)
 760
 761/**
 762 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 763 * @tpos:	the type * to use as a loop cursor.
 764 * @pos:	the &struct hlist_node to use as a loop cursor.
 765 * @head:	the head for your list.
 766 * @offset:	offset of hlist_node within the struct.
 767 *
 768 */
 769#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
 770	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
 771	     pos != NULL &&						       \
 772		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 773	     pos = rcu_dereference(hlist_next_rcu(pos)))
 774
 775static inline struct user_namespace *sk_user_ns(struct sock *sk)
 776{
 777	/* Careful only use this in a context where these parameters
 778	 * can not change and must all be valid, such as recvmsg from
 779	 * userspace.
 780	 */
 781	return sk->sk_socket->file->f_cred->user_ns;
 782}
 783
 784/* Sock flags */
 785enum sock_flags {
 786	SOCK_DEAD,
 787	SOCK_DONE,
 788	SOCK_URGINLINE,
 789	SOCK_KEEPOPEN,
 790	SOCK_LINGER,
 791	SOCK_DESTROY,
 792	SOCK_BROADCAST,
 793	SOCK_TIMESTAMP,
 794	SOCK_ZAPPED,
 795	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 796	SOCK_DBG, /* %SO_DEBUG setting */
 797	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 798	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 799	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 800	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 801	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 802	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 803	SOCK_FASYNC, /* fasync() active */
 804	SOCK_RXQ_OVFL,
 805	SOCK_ZEROCOPY, /* buffers from userspace */
 806	SOCK_WIFI_STATUS, /* push wifi status to userspace */
 807	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 808		     * Will use last 4 bytes of packet sent from
 809		     * user-space instead.
 810		     */
 811	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 812	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 813	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 814	SOCK_TXTIME,
 815	SOCK_XDP, /* XDP is attached */
 816	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
 817};
 818
 819#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 820
 821static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 822{
 823	nsk->sk_flags = osk->sk_flags;
 824}
 825
 826static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 827{
 828	__set_bit(flag, &sk->sk_flags);
 829}
 830
 831static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 832{
 833	__clear_bit(flag, &sk->sk_flags);
 834}
 835
 
 
 
 
 
 
 
 
 
 836static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 837{
 838	return test_bit(flag, &sk->sk_flags);
 839}
 840
 841#ifdef CONFIG_NET
 842DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
 843static inline int sk_memalloc_socks(void)
 844{
 845	return static_branch_unlikely(&memalloc_socks_key);
 846}
 
 
 847#else
 848
 849static inline int sk_memalloc_socks(void)
 850{
 851	return 0;
 852}
 853
 
 
 854#endif
 855
 856static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 857{
 858	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 859}
 860
 861static inline void sk_acceptq_removed(struct sock *sk)
 862{
 863	sk->sk_ack_backlog--;
 864}
 865
 866static inline void sk_acceptq_added(struct sock *sk)
 867{
 868	sk->sk_ack_backlog++;
 869}
 870
 
 
 
 
 871static inline bool sk_acceptq_is_full(const struct sock *sk)
 872{
 873	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 874}
 875
 876/*
 877 * Compute minimal free write space needed to queue new packets.
 878 */
 879static inline int sk_stream_min_wspace(const struct sock *sk)
 880{
 881	return READ_ONCE(sk->sk_wmem_queued) >> 1;
 882}
 883
 884static inline int sk_stream_wspace(const struct sock *sk)
 885{
 886	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
 887}
 888
 889static inline void sk_wmem_queued_add(struct sock *sk, int val)
 890{
 891	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
 892}
 893
 894void sk_stream_write_space(struct sock *sk);
 895
 896/* OOB backlog add */
 897static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 898{
 899	/* dont let skb dst not refcounted, we are going to leave rcu lock */
 900	skb_dst_force(skb);
 901
 902	if (!sk->sk_backlog.tail)
 903		sk->sk_backlog.head = skb;
 904	else
 905		sk->sk_backlog.tail->next = skb;
 906
 907	sk->sk_backlog.tail = skb;
 908	skb->next = NULL;
 909}
 910
 911/*
 912 * Take into account size of receive queue and backlog queue
 913 * Do not take into account this skb truesize,
 914 * to allow even a single big packet to come.
 915 */
 916static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 917{
 918	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 919
 920	return qsize > limit;
 921}
 922
 923/* The per-socket spinlock must be held here. */
 924static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 925					      unsigned int limit)
 926{
 927	if (sk_rcvqueues_full(sk, limit))
 928		return -ENOBUFS;
 929
 930	/*
 931	 * If the skb was allocated from pfmemalloc reserves, only
 932	 * allow SOCK_MEMALLOC sockets to use it as this socket is
 933	 * helping free memory
 934	 */
 935	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 936		return -ENOMEM;
 937
 938	__sk_add_backlog(sk, skb);
 939	sk->sk_backlog.len += skb->truesize;
 940	return 0;
 941}
 942
 943int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 944
 945static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 946{
 947	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 948		return __sk_backlog_rcv(sk, skb);
 949
 950	return sk->sk_backlog_rcv(sk, skb);
 951}
 952
 953static inline void sk_incoming_cpu_update(struct sock *sk)
 954{
 955	int cpu = raw_smp_processor_id();
 956
 957	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
 958		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
 959}
 960
 961static inline void sock_rps_record_flow_hash(__u32 hash)
 962{
 963#ifdef CONFIG_RPS
 964	struct rps_sock_flow_table *sock_flow_table;
 965
 966	rcu_read_lock();
 967	sock_flow_table = rcu_dereference(rps_sock_flow_table);
 968	rps_record_sock_flow(sock_flow_table, hash);
 969	rcu_read_unlock();
 970#endif
 971}
 972
 973static inline void sock_rps_record_flow(const struct sock *sk)
 974{
 975#ifdef CONFIG_RPS
 976	if (static_branch_unlikely(&rfs_needed)) {
 977		/* Reading sk->sk_rxhash might incur an expensive cache line
 978		 * miss.
 979		 *
 980		 * TCP_ESTABLISHED does cover almost all states where RFS
 981		 * might be useful, and is cheaper [1] than testing :
 982		 *	IPv4: inet_sk(sk)->inet_daddr
 983		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
 984		 * OR	an additional socket flag
 985		 * [1] : sk_state and sk_prot are in the same cache line.
 986		 */
 987		if (sk->sk_state == TCP_ESTABLISHED)
 988			sock_rps_record_flow_hash(sk->sk_rxhash);
 989	}
 990#endif
 991}
 992
 993static inline void sock_rps_save_rxhash(struct sock *sk,
 994					const struct sk_buff *skb)
 995{
 996#ifdef CONFIG_RPS
 997	if (unlikely(sk->sk_rxhash != skb->hash))
 998		sk->sk_rxhash = skb->hash;
 999#endif
1000}
1001
1002static inline void sock_rps_reset_rxhash(struct sock *sk)
1003{
1004#ifdef CONFIG_RPS
1005	sk->sk_rxhash = 0;
1006#endif
1007}
1008
1009#define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1010	({	int __rc;						\
1011		release_sock(__sk);					\
1012		__rc = __condition;					\
1013		if (!__rc) {						\
1014			*(__timeo) = wait_woken(__wait,			\
1015						TASK_INTERRUPTIBLE,	\
1016						*(__timeo));		\
1017		}							\
1018		sched_annotate_sleep();					\
1019		lock_sock(__sk);					\
1020		__rc = __condition;					\
1021		__rc;							\
1022	})
1023
1024int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1025int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1026void sk_stream_wait_close(struct sock *sk, long timeo_p);
1027int sk_stream_error(struct sock *sk, int flags, int err);
1028void sk_stream_kill_queues(struct sock *sk);
1029void sk_set_memalloc(struct sock *sk);
1030void sk_clear_memalloc(struct sock *sk);
1031
1032void __sk_flush_backlog(struct sock *sk);
1033
1034static inline bool sk_flush_backlog(struct sock *sk)
1035{
1036	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1037		__sk_flush_backlog(sk);
1038		return true;
1039	}
1040	return false;
1041}
1042
1043int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1044
1045struct request_sock_ops;
1046struct timewait_sock_ops;
1047struct inet_hashinfo;
1048struct raw_hashinfo;
1049struct smc_hashinfo;
1050struct module;
 
1051
1052/*
1053 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1054 * un-modified. Special care is taken when initializing object to zero.
1055 */
1056static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1057{
1058	if (offsetof(struct sock, sk_node.next) != 0)
1059		memset(sk, 0, offsetof(struct sock, sk_node.next));
1060	memset(&sk->sk_node.pprev, 0,
1061	       size - offsetof(struct sock, sk_node.pprev));
1062}
1063
1064/* Networking protocol blocks we attach to sockets.
1065 * socket layer -> transport layer interface
1066 */
1067struct proto {
1068	void			(*close)(struct sock *sk,
1069					long timeout);
1070	int			(*pre_connect)(struct sock *sk,
1071					struct sockaddr *uaddr,
1072					int addr_len);
1073	int			(*connect)(struct sock *sk,
1074					struct sockaddr *uaddr,
1075					int addr_len);
1076	int			(*disconnect)(struct sock *sk, int flags);
1077
1078	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1079					  bool kern);
1080
1081	int			(*ioctl)(struct sock *sk, int cmd,
1082					 unsigned long arg);
1083	int			(*init)(struct sock *sk);
1084	void			(*destroy)(struct sock *sk);
1085	void			(*shutdown)(struct sock *sk, int how);
1086	int			(*setsockopt)(struct sock *sk, int level,
1087					int optname, char __user *optval,
1088					unsigned int optlen);
1089	int			(*getsockopt)(struct sock *sk, int level,
1090					int optname, char __user *optval,
1091					int __user *option);
1092	void			(*keepalive)(struct sock *sk, int valbool);
1093#ifdef CONFIG_COMPAT
1094	int			(*compat_setsockopt)(struct sock *sk,
1095					int level,
1096					int optname, char __user *optval,
1097					unsigned int optlen);
1098	int			(*compat_getsockopt)(struct sock *sk,
1099					int level,
1100					int optname, char __user *optval,
1101					int __user *option);
1102	int			(*compat_ioctl)(struct sock *sk,
1103					unsigned int cmd, unsigned long arg);
1104#endif
1105	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1106					   size_t len);
1107	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1108					   size_t len, int noblock, int flags,
1109					   int *addr_len);
1110	int			(*sendpage)(struct sock *sk, struct page *page,
1111					int offset, size_t size, int flags);
1112	int			(*bind)(struct sock *sk,
1113					struct sockaddr *uaddr, int addr_len);
 
 
1114
1115	int			(*backlog_rcv) (struct sock *sk,
1116						struct sk_buff *skb);
 
 
1117
1118	void		(*release_cb)(struct sock *sk);
1119
1120	/* Keeping track of sk's, looking them up, and port selection methods. */
1121	int			(*hash)(struct sock *sk);
1122	void			(*unhash)(struct sock *sk);
1123	void			(*rehash)(struct sock *sk);
1124	int			(*get_port)(struct sock *sk, unsigned short snum);
 
 
 
 
 
1125
1126	/* Keeping track of sockets in use */
1127#ifdef CONFIG_PROC_FS
1128	unsigned int		inuse_idx;
1129#endif
1130
1131	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1132	bool			(*stream_memory_read)(const struct sock *sk);
1133	/* Memory pressure */
1134	void			(*enter_memory_pressure)(struct sock *sk);
1135	void			(*leave_memory_pressure)(struct sock *sk);
1136	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1137	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1138	/*
1139	 * Pressure flag: try to collapse.
1140	 * Technical note: it is used by multiple contexts non atomically.
1141	 * All the __sk_mem_schedule() is of this nature: accounting
1142	 * is strict, actions are advisory and have some latency.
1143	 */
1144	unsigned long		*memory_pressure;
1145	long			*sysctl_mem;
1146
1147	int			*sysctl_wmem;
1148	int			*sysctl_rmem;
1149	u32			sysctl_wmem_offset;
1150	u32			sysctl_rmem_offset;
1151
1152	int			max_header;
1153	bool			no_autobind;
1154
1155	struct kmem_cache	*slab;
1156	unsigned int		obj_size;
1157	slab_flags_t		slab_flags;
1158	unsigned int		useroffset;	/* Usercopy region offset */
1159	unsigned int		usersize;	/* Usercopy region size */
1160
1161	struct percpu_counter	*orphan_count;
1162
1163	struct request_sock_ops	*rsk_prot;
1164	struct timewait_sock_ops *twsk_prot;
1165
1166	union {
1167		struct inet_hashinfo	*hashinfo;
1168		struct udp_table	*udp_table;
1169		struct raw_hashinfo	*raw_hash;
1170		struct smc_hashinfo	*smc_hash;
1171	} h;
1172
1173	struct module		*owner;
1174
1175	char			name[32];
1176
1177	struct list_head	node;
1178#ifdef SOCK_REFCNT_DEBUG
1179	atomic_t		socks;
1180#endif
1181	int			(*diag_destroy)(struct sock *sk, int err);
1182} __randomize_layout;
1183
1184int proto_register(struct proto *prot, int alloc_slab);
1185void proto_unregister(struct proto *prot);
1186int sock_load_diag_module(int family, int protocol);
1187
1188#ifdef SOCK_REFCNT_DEBUG
1189static inline void sk_refcnt_debug_inc(struct sock *sk)
1190{
1191	atomic_inc(&sk->sk_prot->socks);
1192}
1193
1194static inline void sk_refcnt_debug_dec(struct sock *sk)
1195{
1196	atomic_dec(&sk->sk_prot->socks);
1197	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1198	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1199}
1200
1201static inline void sk_refcnt_debug_release(const struct sock *sk)
1202{
1203	if (refcount_read(&sk->sk_refcnt) != 1)
1204		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1205		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1206}
1207#else /* SOCK_REFCNT_DEBUG */
1208#define sk_refcnt_debug_inc(sk) do { } while (0)
1209#define sk_refcnt_debug_dec(sk) do { } while (0)
1210#define sk_refcnt_debug_release(sk) do { } while (0)
1211#endif /* SOCK_REFCNT_DEBUG */
1212
 
 
1213static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1214{
1215	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1216		return false;
1217
 
 
 
 
 
 
1218	return sk->sk_prot->stream_memory_free ?
1219		sk->sk_prot->stream_memory_free(sk, wake) : true;
 
1220}
1221
1222static inline bool sk_stream_memory_free(const struct sock *sk)
1223{
1224	return __sk_stream_memory_free(sk, 0);
1225}
1226
1227static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1228{
1229	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1230	       __sk_stream_memory_free(sk, wake);
1231}
1232
1233static inline bool sk_stream_is_writeable(const struct sock *sk)
1234{
1235	return __sk_stream_is_writeable(sk, 0);
1236}
1237
1238static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1239					    struct cgroup *ancestor)
1240{
1241#ifdef CONFIG_SOCK_CGROUP_DATA
1242	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1243				    ancestor);
1244#else
1245	return -ENOTSUPP;
1246#endif
1247}
1248
1249static inline bool sk_has_memory_pressure(const struct sock *sk)
1250{
1251	return sk->sk_prot->memory_pressure != NULL;
1252}
1253
1254static inline bool sk_under_memory_pressure(const struct sock *sk)
1255{
1256	if (!sk->sk_prot->memory_pressure)
1257		return false;
1258
1259	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1260	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1261		return true;
1262
1263	return !!*sk->sk_prot->memory_pressure;
1264}
1265
1266static inline long
1267sk_memory_allocated(const struct sock *sk)
1268{
1269	return atomic_long_read(sk->sk_prot->memory_allocated);
1270}
1271
1272static inline long
1273sk_memory_allocated_add(struct sock *sk, int amt)
1274{
1275	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1276}
1277
1278static inline void
1279sk_memory_allocated_sub(struct sock *sk, int amt)
1280{
1281	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1282}
1283
 
 
1284static inline void sk_sockets_allocated_dec(struct sock *sk)
1285{
1286	percpu_counter_dec(sk->sk_prot->sockets_allocated);
 
1287}
1288
1289static inline void sk_sockets_allocated_inc(struct sock *sk)
1290{
1291	percpu_counter_inc(sk->sk_prot->sockets_allocated);
 
1292}
1293
1294static inline u64
1295sk_sockets_allocated_read_positive(struct sock *sk)
1296{
1297	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1298}
1299
1300static inline int
1301proto_sockets_allocated_sum_positive(struct proto *prot)
1302{
1303	return percpu_counter_sum_positive(prot->sockets_allocated);
1304}
1305
1306static inline long
1307proto_memory_allocated(struct proto *prot)
1308{
1309	return atomic_long_read(prot->memory_allocated);
1310}
1311
1312static inline bool
1313proto_memory_pressure(struct proto *prot)
1314{
1315	if (!prot->memory_pressure)
1316		return false;
1317	return !!*prot->memory_pressure;
1318}
1319
1320
1321#ifdef CONFIG_PROC_FS
1322/* Called with local bh disabled */
1323void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1324int sock_prot_inuse_get(struct net *net, struct proto *proto);
1325int sock_inuse_get(struct net *net);
1326#else
1327static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1328		int inc)
1329{
1330}
1331#endif
1332
1333
1334/* With per-bucket locks this operation is not-atomic, so that
1335 * this version is not worse.
1336 */
1337static inline int __sk_prot_rehash(struct sock *sk)
1338{
1339	sk->sk_prot->unhash(sk);
1340	return sk->sk_prot->hash(sk);
1341}
1342
1343/* About 10 seconds */
1344#define SOCK_DESTROY_TIME (10*HZ)
1345
1346/* Sockets 0-1023 can't be bound to unless you are superuser */
1347#define PROT_SOCK	1024
1348
1349#define SHUTDOWN_MASK	3
1350#define RCV_SHUTDOWN	1
1351#define SEND_SHUTDOWN	2
1352
1353#define SOCK_SNDBUF_LOCK	1
1354#define SOCK_RCVBUF_LOCK	2
1355#define SOCK_BINDADDR_LOCK	4
1356#define SOCK_BINDPORT_LOCK	8
1357
1358struct socket_alloc {
1359	struct socket socket;
1360	struct inode vfs_inode;
1361};
1362
1363static inline struct socket *SOCKET_I(struct inode *inode)
1364{
1365	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1366}
1367
1368static inline struct inode *SOCK_INODE(struct socket *socket)
1369{
1370	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1371}
1372
1373/*
1374 * Functions for memory accounting
1375 */
1376int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1377int __sk_mem_schedule(struct sock *sk, int size, int kind);
1378void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1379void __sk_mem_reclaim(struct sock *sk, int amount);
1380
1381/* We used to have PAGE_SIZE here, but systems with 64KB pages
1382 * do not necessarily have 16x time more memory than 4KB ones.
1383 */
1384#define SK_MEM_QUANTUM 4096
1385#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1386#define SK_MEM_SEND	0
1387#define SK_MEM_RECV	1
1388
1389/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1390static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1391{
1392	long val = sk->sk_prot->sysctl_mem[index];
1393
1394#if PAGE_SIZE > SK_MEM_QUANTUM
1395	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1396#elif PAGE_SIZE < SK_MEM_QUANTUM
1397	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1398#endif
1399	return val;
1400}
1401
1402static inline int sk_mem_pages(int amt)
1403{
1404	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1405}
1406
1407static inline bool sk_has_account(struct sock *sk)
1408{
1409	/* return true if protocol supports memory accounting */
1410	return !!sk->sk_prot->memory_allocated;
1411}
1412
1413static inline bool sk_wmem_schedule(struct sock *sk, int size)
1414{
1415	if (!sk_has_account(sk))
1416		return true;
1417	return size <= sk->sk_forward_alloc ||
1418		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1419}
1420
1421static inline bool
1422sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1423{
1424	if (!sk_has_account(sk))
1425		return true;
1426	return size<= sk->sk_forward_alloc ||
1427		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1428		skb_pfmemalloc(skb);
1429}
1430
1431static inline void sk_mem_reclaim(struct sock *sk)
1432{
1433	if (!sk_has_account(sk))
1434		return;
1435	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1436		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1437}
1438
1439static inline void sk_mem_reclaim_partial(struct sock *sk)
1440{
1441	if (!sk_has_account(sk))
1442		return;
1443	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1444		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1445}
1446
1447static inline void sk_mem_charge(struct sock *sk, int size)
1448{
1449	if (!sk_has_account(sk))
1450		return;
1451	sk->sk_forward_alloc -= size;
1452}
1453
1454static inline void sk_mem_uncharge(struct sock *sk, int size)
1455{
1456	if (!sk_has_account(sk))
1457		return;
1458	sk->sk_forward_alloc += size;
1459
1460	/* Avoid a possible overflow.
1461	 * TCP send queues can make this happen, if sk_mem_reclaim()
1462	 * is not called and more than 2 GBytes are released at once.
1463	 *
1464	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1465	 * no need to hold that much forward allocation anyway.
1466	 */
1467	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1468		__sk_mem_reclaim(sk, 1 << 20);
1469}
1470
1471DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1472static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1473{
1474	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1475	sk_wmem_queued_add(sk, -skb->truesize);
1476	sk_mem_uncharge(sk, skb->truesize);
1477	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1478	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
 
1479		skb_zcopy_clear(skb, true);
1480		sk->sk_tx_skb_cache = skb;
1481		return;
1482	}
1483	__kfree_skb(skb);
1484}
1485
1486static inline void sock_release_ownership(struct sock *sk)
1487{
1488	if (sk->sk_lock.owned) {
1489		sk->sk_lock.owned = 0;
1490
1491		/* The sk_lock has mutex_unlock() semantics: */
1492		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1493	}
1494}
1495
1496/*
1497 * Macro so as to not evaluate some arguments when
1498 * lockdep is not enabled.
1499 *
1500 * Mark both the sk_lock and the sk_lock.slock as a
1501 * per-address-family lock class.
1502 */
1503#define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1504do {									\
1505	sk->sk_lock.owned = 0;						\
1506	init_waitqueue_head(&sk->sk_lock.wq);				\
1507	spin_lock_init(&(sk)->sk_lock.slock);				\
1508	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1509			sizeof((sk)->sk_lock));				\
1510	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1511				(skey), (sname));				\
1512	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1513} while (0)
1514
1515#ifdef CONFIG_LOCKDEP
1516static inline bool lockdep_sock_is_held(const struct sock *sk)
1517{
1518	return lockdep_is_held(&sk->sk_lock) ||
1519	       lockdep_is_held(&sk->sk_lock.slock);
1520}
1521#endif
1522
1523void lock_sock_nested(struct sock *sk, int subclass);
1524
1525static inline void lock_sock(struct sock *sk)
1526{
1527	lock_sock_nested(sk, 0);
1528}
1529
 
1530void __release_sock(struct sock *sk);
1531void release_sock(struct sock *sk);
1532
1533/* BH context may only use the following locking interface. */
1534#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1535#define bh_lock_sock_nested(__sk) \
1536				spin_lock_nested(&((__sk)->sk_lock.slock), \
1537				SINGLE_DEPTH_NESTING)
1538#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1539
1540bool lock_sock_fast(struct sock *sk);
 
1541/**
1542 * unlock_sock_fast - complement of lock_sock_fast
1543 * @sk: socket
1544 * @slow: slow mode
1545 *
1546 * fast unlock socket for user context.
1547 * If slow mode is on, we call regular release_sock()
1548 */
1549static inline void unlock_sock_fast(struct sock *sk, bool slow)
 
1550{
1551	if (slow)
1552		release_sock(sk);
1553	else
 
1554		spin_unlock_bh(&sk->sk_lock.slock);
 
1555}
1556
1557/* Used by processes to "lock" a socket state, so that
1558 * interrupts and bottom half handlers won't change it
1559 * from under us. It essentially blocks any incoming
1560 * packets, so that we won't get any new data or any
1561 * packets that change the state of the socket.
1562 *
1563 * While locked, BH processing will add new packets to
1564 * the backlog queue.  This queue is processed by the
1565 * owner of the socket lock right before it is released.
1566 *
1567 * Since ~2.3.5 it is also exclusive sleep lock serializing
1568 * accesses from user process context.
1569 */
1570
1571static inline void sock_owned_by_me(const struct sock *sk)
1572{
1573#ifdef CONFIG_LOCKDEP
1574	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1575#endif
1576}
1577
1578static inline bool sock_owned_by_user(const struct sock *sk)
1579{
1580	sock_owned_by_me(sk);
1581	return sk->sk_lock.owned;
1582}
1583
1584static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1585{
1586	return sk->sk_lock.owned;
1587}
1588
1589/* no reclassification while locks are held */
1590static inline bool sock_allow_reclassification(const struct sock *csk)
1591{
1592	struct sock *sk = (struct sock *)csk;
1593
1594	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1595}
1596
1597struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1598		      struct proto *prot, int kern);
1599void sk_free(struct sock *sk);
1600void sk_destruct(struct sock *sk);
1601struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1602void sk_free_unlock_clone(struct sock *sk);
1603
1604struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1605			     gfp_t priority);
1606void __sock_wfree(struct sk_buff *skb);
1607void sock_wfree(struct sk_buff *skb);
1608struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1609			     gfp_t priority);
1610void skb_orphan_partial(struct sk_buff *skb);
1611void sock_rfree(struct sk_buff *skb);
1612void sock_efree(struct sk_buff *skb);
1613#ifdef CONFIG_INET
1614void sock_edemux(struct sk_buff *skb);
 
1615#else
1616#define sock_edemux sock_efree
1617#endif
1618
1619int sock_setsockopt(struct socket *sock, int level, int op,
1620		    char __user *optval, unsigned int optlen);
1621
1622int sock_getsockopt(struct socket *sock, int level, int op,
1623		    char __user *optval, int __user *optlen);
1624int sock_gettstamp(struct socket *sock, void __user *userstamp,
1625		   bool timeval, bool time32);
1626struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1627				    int noblock, int *errcode);
1628struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1629				     unsigned long data_len, int noblock,
1630				     int *errcode, int max_page_order);
1631void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1632void sock_kfree_s(struct sock *sk, void *mem, int size);
1633void sock_kzfree_s(struct sock *sk, void *mem, int size);
1634void sk_send_sigurg(struct sock *sk);
1635
1636struct sockcm_cookie {
1637	u64 transmit_time;
1638	u32 mark;
1639	u16 tsflags;
1640};
1641
1642static inline void sockcm_init(struct sockcm_cookie *sockc,
1643			       const struct sock *sk)
1644{
1645	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1646}
1647
1648int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1649		     struct sockcm_cookie *sockc);
1650int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1651		   struct sockcm_cookie *sockc);
1652
1653/*
1654 * Functions to fill in entries in struct proto_ops when a protocol
1655 * does not implement a particular function.
1656 */
1657int sock_no_bind(struct socket *, struct sockaddr *, int);
1658int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1659int sock_no_socketpair(struct socket *, struct socket *);
1660int sock_no_accept(struct socket *, struct socket *, int, bool);
1661int sock_no_getname(struct socket *, struct sockaddr *, int);
1662int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1663int sock_no_listen(struct socket *, int);
1664int sock_no_shutdown(struct socket *, int);
1665int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1666int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1667int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1668int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1669int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1670int sock_no_mmap(struct file *file, struct socket *sock,
1671		 struct vm_area_struct *vma);
1672ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1673			 size_t size, int flags);
1674ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1675				int offset, size_t size, int flags);
1676
1677/*
1678 * Functions to fill in entries in struct proto_ops when a protocol
1679 * uses the inet style.
1680 */
1681int sock_common_getsockopt(struct socket *sock, int level, int optname,
1682				  char __user *optval, int __user *optlen);
1683int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1684			int flags);
1685int sock_common_setsockopt(struct socket *sock, int level, int optname,
1686				  char __user *optval, unsigned int optlen);
1687int compat_sock_common_getsockopt(struct socket *sock, int level,
1688		int optname, char __user *optval, int __user *optlen);
1689int compat_sock_common_setsockopt(struct socket *sock, int level,
1690		int optname, char __user *optval, unsigned int optlen);
1691
1692void sk_common_release(struct sock *sk);
1693
1694/*
1695 *	Default socket callbacks and setup code
1696 */
1697
1698/* Initialise core socket variables */
1699void sock_init_data(struct socket *sock, struct sock *sk);
1700
1701/*
1702 * Socket reference counting postulates.
1703 *
1704 * * Each user of socket SHOULD hold a reference count.
1705 * * Each access point to socket (an hash table bucket, reference from a list,
1706 *   running timer, skb in flight MUST hold a reference count.
1707 * * When reference count hits 0, it means it will never increase back.
1708 * * When reference count hits 0, it means that no references from
1709 *   outside exist to this socket and current process on current CPU
1710 *   is last user and may/should destroy this socket.
1711 * * sk_free is called from any context: process, BH, IRQ. When
1712 *   it is called, socket has no references from outside -> sk_free
1713 *   may release descendant resources allocated by the socket, but
1714 *   to the time when it is called, socket is NOT referenced by any
1715 *   hash tables, lists etc.
1716 * * Packets, delivered from outside (from network or from another process)
1717 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1718 *   when they sit in queue. Otherwise, packets will leak to hole, when
1719 *   socket is looked up by one cpu and unhasing is made by another CPU.
1720 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1721 *   (leak to backlog). Packet socket does all the processing inside
1722 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1723 *   use separate SMP lock, so that they are prone too.
1724 */
1725
1726/* Ungrab socket and destroy it, if it was the last reference. */
1727static inline void sock_put(struct sock *sk)
1728{
1729	if (refcount_dec_and_test(&sk->sk_refcnt))
1730		sk_free(sk);
1731}
1732/* Generic version of sock_put(), dealing with all sockets
1733 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1734 */
1735void sock_gen_put(struct sock *sk);
1736
1737int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1738		     unsigned int trim_cap, bool refcounted);
1739static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1740				 const int nested)
1741{
1742	return __sk_receive_skb(sk, skb, nested, 1, true);
1743}
1744
1745static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1746{
1747	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1748	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1749		return;
1750	sk->sk_tx_queue_mapping = tx_queue;
1751}
1752
1753#define NO_QUEUE_MAPPING	USHRT_MAX
1754
1755static inline void sk_tx_queue_clear(struct sock *sk)
1756{
1757	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1758}
1759
1760static inline int sk_tx_queue_get(const struct sock *sk)
1761{
1762	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1763		return sk->sk_tx_queue_mapping;
1764
1765	return -1;
1766}
1767
1768static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1769{
1770#ifdef CONFIG_XPS
1771	if (skb_rx_queue_recorded(skb)) {
1772		u16 rx_queue = skb_get_rx_queue(skb);
1773
1774		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1775			return;
1776
1777		sk->sk_rx_queue_mapping = rx_queue;
1778	}
1779#endif
1780}
1781
1782static inline void sk_rx_queue_clear(struct sock *sk)
1783{
1784#ifdef CONFIG_XPS
1785	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1786#endif
1787}
1788
1789#ifdef CONFIG_XPS
1790static inline int sk_rx_queue_get(const struct sock *sk)
1791{
 
1792	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1793		return sk->sk_rx_queue_mapping;
 
1794
1795	return -1;
1796}
1797#endif
1798
1799static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1800{
1801	sk_tx_queue_clear(sk);
1802	sk->sk_socket = sock;
1803}
1804
1805static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1806{
1807	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1808	return &rcu_dereference_raw(sk->sk_wq)->wait;
1809}
1810/* Detach socket from process context.
1811 * Announce socket dead, detach it from wait queue and inode.
1812 * Note that parent inode held reference count on this struct sock,
1813 * we do not release it in this function, because protocol
1814 * probably wants some additional cleanups or even continuing
1815 * to work with this socket (TCP).
1816 */
1817static inline void sock_orphan(struct sock *sk)
1818{
1819	write_lock_bh(&sk->sk_callback_lock);
1820	sock_set_flag(sk, SOCK_DEAD);
1821	sk_set_socket(sk, NULL);
1822	sk->sk_wq  = NULL;
1823	write_unlock_bh(&sk->sk_callback_lock);
1824}
1825
1826static inline void sock_graft(struct sock *sk, struct socket *parent)
1827{
1828	WARN_ON(parent->sk);
1829	write_lock_bh(&sk->sk_callback_lock);
1830	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1831	parent->sk = sk;
1832	sk_set_socket(sk, parent);
1833	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1834	security_sock_graft(sk, parent);
1835	write_unlock_bh(&sk->sk_callback_lock);
1836}
1837
1838kuid_t sock_i_uid(struct sock *sk);
1839unsigned long sock_i_ino(struct sock *sk);
1840
1841static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1842{
1843	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1844}
1845
1846static inline u32 net_tx_rndhash(void)
1847{
1848	u32 v = prandom_u32();
1849
1850	return v ?: 1;
1851}
1852
1853static inline void sk_set_txhash(struct sock *sk)
1854{
1855	sk->sk_txhash = net_tx_rndhash();
 
1856}
1857
1858static inline void sk_rethink_txhash(struct sock *sk)
1859{
1860	if (sk->sk_txhash)
1861		sk_set_txhash(sk);
 
 
 
1862}
1863
1864static inline struct dst_entry *
1865__sk_dst_get(struct sock *sk)
1866{
1867	return rcu_dereference_check(sk->sk_dst_cache,
1868				     lockdep_sock_is_held(sk));
1869}
1870
1871static inline struct dst_entry *
1872sk_dst_get(struct sock *sk)
1873{
1874	struct dst_entry *dst;
1875
1876	rcu_read_lock();
1877	dst = rcu_dereference(sk->sk_dst_cache);
1878	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1879		dst = NULL;
1880	rcu_read_unlock();
1881	return dst;
1882}
1883
1884static inline void dst_negative_advice(struct sock *sk)
1885{
1886	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1887
1888	sk_rethink_txhash(sk);
1889
1890	if (dst && dst->ops->negative_advice) {
1891		ndst = dst->ops->negative_advice(dst);
1892
1893		if (ndst != dst) {
1894			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1895			sk_tx_queue_clear(sk);
1896			sk->sk_dst_pending_confirm = 0;
1897		}
1898	}
1899}
1900
 
 
 
 
 
 
1901static inline void
1902__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1903{
1904	struct dst_entry *old_dst;
1905
1906	sk_tx_queue_clear(sk);
1907	sk->sk_dst_pending_confirm = 0;
1908	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1909					    lockdep_sock_is_held(sk));
1910	rcu_assign_pointer(sk->sk_dst_cache, dst);
1911	dst_release(old_dst);
1912}
1913
1914static inline void
1915sk_dst_set(struct sock *sk, struct dst_entry *dst)
1916{
1917	struct dst_entry *old_dst;
1918
1919	sk_tx_queue_clear(sk);
1920	sk->sk_dst_pending_confirm = 0;
1921	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1922	dst_release(old_dst);
1923}
1924
1925static inline void
1926__sk_dst_reset(struct sock *sk)
1927{
1928	__sk_dst_set(sk, NULL);
1929}
1930
1931static inline void
1932sk_dst_reset(struct sock *sk)
1933{
1934	sk_dst_set(sk, NULL);
1935}
1936
1937struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1938
1939struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1940
1941static inline void sk_dst_confirm(struct sock *sk)
1942{
1943	if (!sk->sk_dst_pending_confirm)
1944		sk->sk_dst_pending_confirm = 1;
1945}
1946
1947static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1948{
1949	if (skb_get_dst_pending_confirm(skb)) {
1950		struct sock *sk = skb->sk;
1951		unsigned long now = jiffies;
1952
1953		/* avoid dirtying neighbour */
1954		if (n->confirmed != now)
1955			n->confirmed = now;
1956		if (sk && sk->sk_dst_pending_confirm)
1957			sk->sk_dst_pending_confirm = 0;
1958	}
1959}
1960
1961bool sk_mc_loop(struct sock *sk);
1962
1963static inline bool sk_can_gso(const struct sock *sk)
1964{
1965	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1966}
1967
1968void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1969
1970static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1971{
1972	sk->sk_route_nocaps |= flags;
1973	sk->sk_route_caps &= ~flags;
1974}
1975
1976static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1977					   struct iov_iter *from, char *to,
1978					   int copy, int offset)
1979{
1980	if (skb->ip_summed == CHECKSUM_NONE) {
1981		__wsum csum = 0;
1982		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1983			return -EFAULT;
1984		skb->csum = csum_block_add(skb->csum, csum, offset);
1985	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1986		if (!copy_from_iter_full_nocache(to, copy, from))
1987			return -EFAULT;
1988	} else if (!copy_from_iter_full(to, copy, from))
1989		return -EFAULT;
1990
1991	return 0;
1992}
1993
1994static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1995				       struct iov_iter *from, int copy)
1996{
1997	int err, offset = skb->len;
1998
1999	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2000				       copy, offset);
2001	if (err)
2002		__skb_trim(skb, offset);
2003
2004	return err;
2005}
2006
2007static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2008					   struct sk_buff *skb,
2009					   struct page *page,
2010					   int off, int copy)
2011{
2012	int err;
2013
2014	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2015				       copy, skb->len);
2016	if (err)
2017		return err;
2018
2019	skb->len	     += copy;
2020	skb->data_len	     += copy;
2021	skb->truesize	     += copy;
2022	sk_wmem_queued_add(sk, copy);
2023	sk_mem_charge(sk, copy);
2024	return 0;
2025}
2026
2027/**
2028 * sk_wmem_alloc_get - returns write allocations
2029 * @sk: socket
2030 *
2031 * Returns sk_wmem_alloc minus initial offset of one
2032 */
2033static inline int sk_wmem_alloc_get(const struct sock *sk)
2034{
2035	return refcount_read(&sk->sk_wmem_alloc) - 1;
2036}
2037
2038/**
2039 * sk_rmem_alloc_get - returns read allocations
2040 * @sk: socket
2041 *
2042 * Returns sk_rmem_alloc
2043 */
2044static inline int sk_rmem_alloc_get(const struct sock *sk)
2045{
2046	return atomic_read(&sk->sk_rmem_alloc);
2047}
2048
2049/**
2050 * sk_has_allocations - check if allocations are outstanding
2051 * @sk: socket
2052 *
2053 * Returns true if socket has write or read allocations
2054 */
2055static inline bool sk_has_allocations(const struct sock *sk)
2056{
2057	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2058}
2059
2060/**
2061 * skwq_has_sleeper - check if there are any waiting processes
2062 * @wq: struct socket_wq
2063 *
2064 * Returns true if socket_wq has waiting processes
2065 *
2066 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2067 * barrier call. They were added due to the race found within the tcp code.
2068 *
2069 * Consider following tcp code paths::
2070 *
2071 *   CPU1                CPU2
2072 *   sys_select          receive packet
2073 *   ...                 ...
2074 *   __add_wait_queue    update tp->rcv_nxt
2075 *   ...                 ...
2076 *   tp->rcv_nxt check   sock_def_readable
2077 *   ...                 {
2078 *   schedule               rcu_read_lock();
2079 *                          wq = rcu_dereference(sk->sk_wq);
2080 *                          if (wq && waitqueue_active(&wq->wait))
2081 *                              wake_up_interruptible(&wq->wait)
2082 *                          ...
2083 *                       }
2084 *
2085 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2086 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2087 * could then endup calling schedule and sleep forever if there are no more
2088 * data on the socket.
2089 *
2090 */
2091static inline bool skwq_has_sleeper(struct socket_wq *wq)
2092{
2093	return wq && wq_has_sleeper(&wq->wait);
2094}
2095
2096/**
2097 * sock_poll_wait - place memory barrier behind the poll_wait call.
2098 * @filp:           file
2099 * @sock:           socket to wait on
2100 * @p:              poll_table
2101 *
2102 * See the comments in the wq_has_sleeper function.
2103 */
2104static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2105				  poll_table *p)
2106{
2107	if (!poll_does_not_wait(p)) {
2108		poll_wait(filp, &sock->wq.wait, p);
2109		/* We need to be sure we are in sync with the
2110		 * socket flags modification.
2111		 *
2112		 * This memory barrier is paired in the wq_has_sleeper.
2113		 */
2114		smp_mb();
2115	}
2116}
2117
2118static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2119{
2120	if (sk->sk_txhash) {
 
 
 
2121		skb->l4_hash = 1;
2122		skb->hash = sk->sk_txhash;
2123	}
2124}
2125
2126void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2127
2128/*
2129 *	Queue a received datagram if it will fit. Stream and sequenced
2130 *	protocols can't normally use this as they need to fit buffers in
2131 *	and play with them.
2132 *
2133 *	Inlined as it's very short and called for pretty much every
2134 *	packet ever received.
2135 */
2136static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2137{
2138	skb_orphan(skb);
2139	skb->sk = sk;
2140	skb->destructor = sock_rfree;
2141	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2142	sk_mem_charge(sk, skb->truesize);
2143}
2144
 
 
 
 
 
 
 
 
 
 
 
2145void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2146		    unsigned long expires);
2147
2148void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2149
 
 
2150int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2151			struct sk_buff *skb, unsigned int flags,
2152			void (*destructor)(struct sock *sk,
2153					   struct sk_buff *skb));
2154int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2155int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2156
2157int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2158struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2159
2160/*
2161 *	Recover an error report and clear atomically
2162 */
2163
2164static inline int sock_error(struct sock *sk)
2165{
2166	int err;
2167	if (likely(!sk->sk_err))
 
 
 
 
2168		return 0;
 
2169	err = xchg(&sk->sk_err, 0);
2170	return -err;
2171}
2172
 
 
2173static inline unsigned long sock_wspace(struct sock *sk)
2174{
2175	int amt = 0;
2176
2177	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2178		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2179		if (amt < 0)
2180			amt = 0;
2181	}
2182	return amt;
2183}
2184
2185/* Note:
2186 *  We use sk->sk_wq_raw, from contexts knowing this
2187 *  pointer is not NULL and cannot disappear/change.
2188 */
2189static inline void sk_set_bit(int nr, struct sock *sk)
2190{
2191	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2192	    !sock_flag(sk, SOCK_FASYNC))
2193		return;
2194
2195	set_bit(nr, &sk->sk_wq_raw->flags);
2196}
2197
2198static inline void sk_clear_bit(int nr, struct sock *sk)
2199{
2200	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2201	    !sock_flag(sk, SOCK_FASYNC))
2202		return;
2203
2204	clear_bit(nr, &sk->sk_wq_raw->flags);
2205}
2206
2207static inline void sk_wake_async(const struct sock *sk, int how, int band)
2208{
2209	if (sock_flag(sk, SOCK_FASYNC)) {
2210		rcu_read_lock();
2211		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2212		rcu_read_unlock();
2213	}
2214}
2215
2216/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2217 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2218 * Note: for send buffers, TCP works better if we can build two skbs at
2219 * minimum.
2220 */
2221#define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2222
2223#define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2224#define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2225
2226static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2227{
2228	u32 val;
2229
2230	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2231		return;
2232
2233	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2234
2235	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2236}
2237
2238struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2239				    bool force_schedule);
2240
2241/**
2242 * sk_page_frag - return an appropriate page_frag
2243 * @sk: socket
2244 *
2245 * Use the per task page_frag instead of the per socket one for
2246 * optimization when we know that we're in the normal context and owns
2247 * everything that's associated with %current.
2248 *
2249 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2250 * inside other socket operations and end up recursing into sk_page_frag()
2251 * while it's already in use.
 
 
 
2252 */
2253static inline struct page_frag *sk_page_frag(struct sock *sk)
2254{
2255	if (gfpflags_normal_context(sk->sk_allocation))
2256		return &current->task_frag;
2257
2258	return &sk->sk_frag;
2259}
2260
2261bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2262
2263/*
2264 *	Default write policy as shown to user space via poll/select/SIGIO
2265 */
2266static inline bool sock_writeable(const struct sock *sk)
2267{
2268	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2269}
2270
2271static inline gfp_t gfp_any(void)
2272{
2273	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2274}
2275
2276static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2277{
2278	return noblock ? 0 : sk->sk_rcvtimeo;
2279}
2280
2281static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2282{
2283	return noblock ? 0 : sk->sk_sndtimeo;
2284}
2285
2286static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2287{
2288	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2289
2290	return v ?: 1;
2291}
2292
2293/* Alas, with timeout socket operations are not restartable.
2294 * Compare this to poll().
2295 */
2296static inline int sock_intr_errno(long timeo)
2297{
2298	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2299}
2300
2301struct sock_skb_cb {
2302	u32 dropcount;
2303};
2304
2305/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2306 * using skb->cb[] would keep using it directly and utilize its
2307 * alignement guarantee.
2308 */
2309#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2310			    sizeof(struct sock_skb_cb)))
2311
2312#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2313			    SOCK_SKB_CB_OFFSET))
2314
2315#define sock_skb_cb_check_size(size) \
2316	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2317
2318static inline void
2319sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2320{
2321	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2322						atomic_read(&sk->sk_drops) : 0;
2323}
2324
2325static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2326{
2327	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2328
2329	atomic_add(segs, &sk->sk_drops);
2330}
2331
2332static inline ktime_t sock_read_timestamp(struct sock *sk)
2333{
2334#if BITS_PER_LONG==32
2335	unsigned int seq;
2336	ktime_t kt;
2337
2338	do {
2339		seq = read_seqbegin(&sk->sk_stamp_seq);
2340		kt = sk->sk_stamp;
2341	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2342
2343	return kt;
2344#else
2345	return READ_ONCE(sk->sk_stamp);
2346#endif
2347}
2348
2349static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2350{
2351#if BITS_PER_LONG==32
2352	write_seqlock(&sk->sk_stamp_seq);
2353	sk->sk_stamp = kt;
2354	write_sequnlock(&sk->sk_stamp_seq);
2355#else
2356	WRITE_ONCE(sk->sk_stamp, kt);
2357#endif
2358}
2359
2360void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2361			   struct sk_buff *skb);
2362void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2363			     struct sk_buff *skb);
2364
2365static inline void
2366sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2367{
2368	ktime_t kt = skb->tstamp;
2369	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2370
2371	/*
2372	 * generate control messages if
2373	 * - receive time stamping in software requested
2374	 * - software time stamp available and wanted
2375	 * - hardware time stamps available and wanted
2376	 */
2377	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2378	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2379	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2380	    (hwtstamps->hwtstamp &&
2381	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2382		__sock_recv_timestamp(msg, sk, skb);
2383	else
2384		sock_write_timestamp(sk, kt);
2385
2386	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2387		__sock_recv_wifi_status(msg, sk, skb);
2388}
2389
2390void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2391			      struct sk_buff *skb);
2392
2393#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2394static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2395					  struct sk_buff *skb)
2396{
2397#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2398			   (1UL << SOCK_RCVTSTAMP))
2399#define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2400			   SOF_TIMESTAMPING_RAW_HARDWARE)
2401
2402	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2403		__sock_recv_ts_and_drops(msg, sk, skb);
2404	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2405		sock_write_timestamp(sk, skb->tstamp);
2406	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2407		sock_write_timestamp(sk, 0);
2408}
2409
2410void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2411
2412/**
2413 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2414 * @sk:		socket sending this packet
2415 * @tsflags:	timestamping flags to use
2416 * @tx_flags:	completed with instructions for time stamping
2417 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2418 *
2419 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2420 */
2421static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2422				      __u8 *tx_flags, __u32 *tskey)
2423{
2424	if (unlikely(tsflags)) {
2425		__sock_tx_timestamp(tsflags, tx_flags);
2426		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2427		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2428			*tskey = sk->sk_tskey++;
2429	}
2430	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2431		*tx_flags |= SKBTX_WIFI_STATUS;
2432}
2433
2434static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2435				     __u8 *tx_flags)
2436{
2437	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2438}
2439
2440static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2441{
2442	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2443			   &skb_shinfo(skb)->tskey);
2444}
2445
 
2446/**
2447 * sk_eat_skb - Release a skb if it is no longer needed
2448 * @sk: socket to eat this skb from
2449 * @skb: socket buffer to eat
2450 *
2451 * This routine must be called with interrupts disabled or with the socket
2452 * locked so that the sk_buff queue operation is ok.
2453*/
2454DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2455static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2456{
2457	__skb_unlink(skb, &sk->sk_receive_queue);
2458	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2459	    !sk->sk_rx_skb_cache) {
2460		sk->sk_rx_skb_cache = skb;
2461		skb_orphan(skb);
2462		return;
2463	}
2464	__kfree_skb(skb);
2465}
2466
2467static inline
2468struct net *sock_net(const struct sock *sk)
2469{
2470	return read_pnet(&sk->sk_net);
2471}
2472
2473static inline
2474void sock_net_set(struct sock *sk, struct net *net)
2475{
2476	write_pnet(&sk->sk_net, net);
2477}
2478
2479static inline struct sock *skb_steal_sock(struct sk_buff *skb)
 
2480{
2481	if (skb->sk) {
2482		struct sock *sk = skb->sk;
2483
2484		skb->destructor = NULL;
2485		skb->sk = NULL;
2486		return sk;
2487	}
2488	return NULL;
2489}
2490
2491/* This helper checks if a socket is a full socket,
2492 * ie _not_ a timewait or request socket.
2493 */
2494static inline bool sk_fullsock(const struct sock *sk)
2495{
2496	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2497}
2498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2499/* Checks if this SKB belongs to an HW offloaded socket
2500 * and whether any SW fallbacks are required based on dev.
2501 * Check decrypted mark in case skb_orphan() cleared socket.
2502 */
2503static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2504						   struct net_device *dev)
2505{
2506#ifdef CONFIG_SOCK_VALIDATE_XMIT
2507	struct sock *sk = skb->sk;
2508
2509	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2510		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2511#ifdef CONFIG_TLS_DEVICE
2512	} else if (unlikely(skb->decrypted)) {
2513		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2514		kfree_skb(skb);
2515		skb = NULL;
2516#endif
2517	}
2518#endif
2519
2520	return skb;
2521}
2522
2523/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2524 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2525 */
2526static inline bool sk_listener(const struct sock *sk)
2527{
2528	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2529}
2530
2531void sock_enable_timestamp(struct sock *sk, int flag);
2532int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2533		       int type);
2534
2535bool sk_ns_capable(const struct sock *sk,
2536		   struct user_namespace *user_ns, int cap);
2537bool sk_capable(const struct sock *sk, int cap);
2538bool sk_net_capable(const struct sock *sk, int cap);
2539
2540void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2541
2542/* Take into consideration the size of the struct sk_buff overhead in the
2543 * determination of these values, since that is non-constant across
2544 * platforms.  This makes socket queueing behavior and performance
2545 * not depend upon such differences.
2546 */
2547#define _SK_MEM_PACKETS		256
2548#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2549#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2550#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2551
2552extern __u32 sysctl_wmem_max;
2553extern __u32 sysctl_rmem_max;
2554
2555extern int sysctl_tstamp_allow_data;
2556extern int sysctl_optmem_max;
2557
2558extern __u32 sysctl_wmem_default;
2559extern __u32 sysctl_rmem_default;
2560
2561DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2562
2563static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2564{
2565	/* Does this proto have per netns sysctl_wmem ? */
2566	if (proto->sysctl_wmem_offset)
2567		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2568
2569	return *proto->sysctl_wmem;
2570}
2571
2572static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2573{
2574	/* Does this proto have per netns sysctl_rmem ? */
2575	if (proto->sysctl_rmem_offset)
2576		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2577
2578	return *proto->sysctl_rmem;
2579}
2580
2581/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2582 * Some wifi drivers need to tweak it to get more chunks.
2583 * They can use this helper from their ndo_start_xmit()
2584 */
2585static inline void sk_pacing_shift_update(struct sock *sk, int val)
2586{
2587	if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2588		return;
2589	sk->sk_pacing_shift = val;
2590}
2591
2592/* if a socket is bound to a device, check that the given device
2593 * index is either the same or that the socket is bound to an L3
2594 * master device and the given device index is also enslaved to
2595 * that L3 master
2596 */
2597static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2598{
2599	int mdif;
2600
2601	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2602		return true;
2603
2604	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2605	if (mdif && mdif == sk->sk_bound_dev_if)
2606		return true;
2607
2608	return false;
2609}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2610
2611#endif	/* _SOCK_H */
v5.14.15
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the AF_INET socket handler.
   8 *
   9 * Version:	@(#)sock.h	1.0.4	05/13/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *		Florian La Roche <flla@stud.uni-sb.de>
  15 *
  16 * Fixes:
  17 *		Alan Cox	:	Volatiles in skbuff pointers. See
  18 *					skbuff comments. May be overdone,
  19 *					better to prove they can be removed
  20 *					than the reverse.
  21 *		Alan Cox	:	Added a zapped field for tcp to note
  22 *					a socket is reset and must stay shut up
  23 *		Alan Cox	:	New fields for options
  24 *	Pauline Middelink	:	identd support
  25 *		Alan Cox	:	Eliminate low level recv/recvfrom
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *              Steve Whitehouse:       Default routines for sock_ops
  28 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
  29 *              			protinfo be just a void pointer, as the
  30 *              			protocol specific parts were moved to
  31 *              			respective headers and ipv4/v6, etc now
  32 *              			use private slabcaches for its socks
  33 *              Pedro Hortas	:	New flags field for socket options
  34 */
  35#ifndef _SOCK_H
  36#define _SOCK_H
  37
  38#include <linux/hardirq.h>
  39#include <linux/kernel.h>
  40#include <linux/list.h>
  41#include <linux/list_nulls.h>
  42#include <linux/timer.h>
  43#include <linux/cache.h>
  44#include <linux/bitops.h>
  45#include <linux/lockdep.h>
  46#include <linux/netdevice.h>
  47#include <linux/skbuff.h>	/* struct sk_buff */
  48#include <linux/mm.h>
  49#include <linux/security.h>
  50#include <linux/slab.h>
  51#include <linux/uaccess.h>
  52#include <linux/page_counter.h>
  53#include <linux/memcontrol.h>
  54#include <linux/static_key.h>
  55#include <linux/sched.h>
  56#include <linux/wait.h>
  57#include <linux/cgroup-defs.h>
  58#include <linux/rbtree.h>
  59#include <linux/filter.h>
  60#include <linux/rculist_nulls.h>
  61#include <linux/poll.h>
  62#include <linux/sockptr.h>
  63#include <linux/indirect_call_wrapper.h>
  64#include <linux/atomic.h>
  65#include <linux/refcount.h>
  66#include <net/dst.h>
  67#include <net/checksum.h>
  68#include <net/tcp_states.h>
  69#include <linux/net_tstamp.h>
 
  70#include <net/l3mdev.h>
  71
  72/*
  73 * This structure really needs to be cleaned up.
  74 * Most of it is for TCP, and not used by any of
  75 * the other protocols.
  76 */
  77
  78/* Define this to get the SOCK_DBG debugging facility. */
  79#define SOCK_DEBUGGING
  80#ifdef SOCK_DEBUGGING
  81#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  82					printk(KERN_DEBUG msg); } while (0)
  83#else
  84/* Validate arguments and do nothing */
  85static inline __printf(2, 3)
  86void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  87{
  88}
  89#endif
  90
  91/* This is the per-socket lock.  The spinlock provides a synchronization
  92 * between user contexts and software interrupt processing, whereas the
  93 * mini-semaphore synchronizes multiple users amongst themselves.
  94 */
  95typedef struct {
  96	spinlock_t		slock;
  97	int			owned;
  98	wait_queue_head_t	wq;
  99	/*
 100	 * We express the mutex-alike socket_lock semantics
 101	 * to the lock validator by explicitly managing
 102	 * the slock as a lock variant (in addition to
 103	 * the slock itself):
 104	 */
 105#ifdef CONFIG_DEBUG_LOCK_ALLOC
 106	struct lockdep_map dep_map;
 107#endif
 108} socket_lock_t;
 109
 110struct sock;
 111struct proto;
 112struct net;
 113
 114typedef __u32 __bitwise __portpair;
 115typedef __u64 __bitwise __addrpair;
 116
 117/**
 118 *	struct sock_common - minimal network layer representation of sockets
 119 *	@skc_daddr: Foreign IPv4 addr
 120 *	@skc_rcv_saddr: Bound local IPv4 addr
 121 *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
 122 *	@skc_hash: hash value used with various protocol lookup tables
 123 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 124 *	@skc_dport: placeholder for inet_dport/tw_dport
 125 *	@skc_num: placeholder for inet_num/tw_num
 126 *	@skc_portpair: __u32 union of @skc_dport & @skc_num
 127 *	@skc_family: network address family
 128 *	@skc_state: Connection state
 129 *	@skc_reuse: %SO_REUSEADDR setting
 130 *	@skc_reuseport: %SO_REUSEPORT setting
 131 *	@skc_ipv6only: socket is IPV6 only
 132 *	@skc_net_refcnt: socket is using net ref counting
 133 *	@skc_bound_dev_if: bound device index if != 0
 134 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 135 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 136 *	@skc_prot: protocol handlers inside a network family
 137 *	@skc_net: reference to the network namespace of this socket
 138 *	@skc_v6_daddr: IPV6 destination address
 139 *	@skc_v6_rcv_saddr: IPV6 source address
 140 *	@skc_cookie: socket's cookie value
 141 *	@skc_node: main hash linkage for various protocol lookup tables
 142 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 143 *	@skc_tx_queue_mapping: tx queue number for this connection
 144 *	@skc_rx_queue_mapping: rx queue number for this connection
 145 *	@skc_flags: place holder for sk_flags
 146 *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 147 *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 148 *	@skc_listener: connection request listener socket (aka rsk_listener)
 149 *		[union with @skc_flags]
 150 *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
 151 *		[union with @skc_flags]
 152 *	@skc_incoming_cpu: record/match cpu processing incoming packets
 153 *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
 154 *		[union with @skc_incoming_cpu]
 155 *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
 156 *		[union with @skc_incoming_cpu]
 157 *	@skc_refcnt: reference count
 158 *
 159 *	This is the minimal network layer representation of sockets, the header
 160 *	for struct sock and struct inet_timewait_sock.
 161 */
 162struct sock_common {
 163	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 164	 * address on 64bit arches : cf INET_MATCH()
 165	 */
 166	union {
 167		__addrpair	skc_addrpair;
 168		struct {
 169			__be32	skc_daddr;
 170			__be32	skc_rcv_saddr;
 171		};
 172	};
 173	union  {
 174		unsigned int	skc_hash;
 175		__u16		skc_u16hashes[2];
 176	};
 177	/* skc_dport && skc_num must be grouped as well */
 178	union {
 179		__portpair	skc_portpair;
 180		struct {
 181			__be16	skc_dport;
 182			__u16	skc_num;
 183		};
 184	};
 185
 186	unsigned short		skc_family;
 187	volatile unsigned char	skc_state;
 188	unsigned char		skc_reuse:4;
 189	unsigned char		skc_reuseport:1;
 190	unsigned char		skc_ipv6only:1;
 191	unsigned char		skc_net_refcnt:1;
 192	int			skc_bound_dev_if;
 193	union {
 194		struct hlist_node	skc_bind_node;
 195		struct hlist_node	skc_portaddr_node;
 196	};
 197	struct proto		*skc_prot;
 198	possible_net_t		skc_net;
 199
 200#if IS_ENABLED(CONFIG_IPV6)
 201	struct in6_addr		skc_v6_daddr;
 202	struct in6_addr		skc_v6_rcv_saddr;
 203#endif
 204
 205	atomic64_t		skc_cookie;
 206
 207	/* following fields are padding to force
 208	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 209	 * assuming IPV6 is enabled. We use this padding differently
 210	 * for different kind of 'sockets'
 211	 */
 212	union {
 213		unsigned long	skc_flags;
 214		struct sock	*skc_listener; /* request_sock */
 215		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 216	};
 217	/*
 218	 * fields between dontcopy_begin/dontcopy_end
 219	 * are not copied in sock_copy()
 220	 */
 221	/* private: */
 222	int			skc_dontcopy_begin[0];
 223	/* public: */
 224	union {
 225		struct hlist_node	skc_node;
 226		struct hlist_nulls_node skc_nulls_node;
 227	};
 228	unsigned short		skc_tx_queue_mapping;
 229#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
 230	unsigned short		skc_rx_queue_mapping;
 231#endif
 232	union {
 233		int		skc_incoming_cpu;
 234		u32		skc_rcv_wnd;
 235		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 236	};
 237
 238	refcount_t		skc_refcnt;
 239	/* private: */
 240	int                     skc_dontcopy_end[0];
 241	union {
 242		u32		skc_rxhash;
 243		u32		skc_window_clamp;
 244		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 245	};
 246	/* public: */
 247};
 248
 249struct bpf_local_storage;
 250
 251/**
 252  *	struct sock - network layer representation of sockets
 253  *	@__sk_common: shared layout with inet_timewait_sock
 254  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 255  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 256  *	@sk_lock:	synchronizer
 257  *	@sk_kern_sock: True if sock is using kernel lock classes
 258  *	@sk_rcvbuf: size of receive buffer in bytes
 259  *	@sk_wq: sock wait queue and async head
 260  *	@sk_rx_dst: receive input route used by early demux
 261  *	@sk_dst_cache: destination cache
 262  *	@sk_dst_pending_confirm: need to confirm neighbour
 263  *	@sk_policy: flow policy
 264  *	@sk_rx_skb_cache: cache copy of recently accessed RX skb
 265  *	@sk_receive_queue: incoming packets
 266  *	@sk_wmem_alloc: transmit queue bytes committed
 267  *	@sk_tsq_flags: TCP Small Queues flags
 268  *	@sk_write_queue: Packet sending queue
 269  *	@sk_omem_alloc: "o" is "option" or "other"
 270  *	@sk_wmem_queued: persistent queue size
 271  *	@sk_forward_alloc: space allocated forward
 272  *	@sk_napi_id: id of the last napi context to receive data for sk
 273  *	@sk_ll_usec: usecs to busypoll when there is no data
 274  *	@sk_allocation: allocation mode
 275  *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 276  *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
 277  *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 278  *	@sk_sndbuf: size of send buffer in bytes
 279  *	@__sk_flags_offset: empty field used to determine location of bitfield
 280  *	@sk_padding: unused element for alignment
 281  *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 282  *	@sk_no_check_rx: allow zero checksum in RX packets
 283  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 284  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 285  *	@sk_route_forced_caps: static, forced route capabilities
 286  *		(set in tcp_init_sock())
 287  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 288  *	@sk_gso_max_size: Maximum GSO segment size to build
 289  *	@sk_gso_max_segs: Maximum number of GSO segments
 290  *	@sk_pacing_shift: scaling factor for TCP Small Queues
 291  *	@sk_lingertime: %SO_LINGER l_linger setting
 292  *	@sk_backlog: always used with the per-socket spinlock held
 293  *	@sk_callback_lock: used with the callbacks in the end of this struct
 294  *	@sk_error_queue: rarely used
 295  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 296  *			  IPV6_ADDRFORM for instance)
 297  *	@sk_err: last error
 298  *	@sk_err_soft: errors that don't cause failure but are the cause of a
 299  *		      persistent failure not just 'timed out'
 300  *	@sk_drops: raw/udp drops counter
 301  *	@sk_ack_backlog: current listen backlog
 302  *	@sk_max_ack_backlog: listen backlog set in listen()
 303  *	@sk_uid: user id of owner
 304  *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
 305  *	@sk_busy_poll_budget: napi processing budget when busypolling
 306  *	@sk_priority: %SO_PRIORITY setting
 307  *	@sk_type: socket type (%SOCK_STREAM, etc)
 308  *	@sk_protocol: which protocol this socket belongs in this network family
 309  *	@sk_peer_pid: &struct pid for this socket's peer
 310  *	@sk_peer_cred: %SO_PEERCRED setting
 311  *	@sk_rcvlowat: %SO_RCVLOWAT setting
 312  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
 313  *	@sk_sndtimeo: %SO_SNDTIMEO setting
 314  *	@sk_txhash: computed flow hash for use on transmit
 315  *	@sk_filter: socket filtering instructions
 316  *	@sk_timer: sock cleanup timer
 317  *	@sk_stamp: time stamp of last packet received
 318  *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
 319  *	@sk_tsflags: SO_TIMESTAMPING flags
 320  *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
 321  *	              for timestamping
 322  *	@sk_tskey: counter to disambiguate concurrent tstamp requests
 323  *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
 324  *	@sk_socket: Identd and reporting IO signals
 325  *	@sk_user_data: RPC layer private data
 326  *	@sk_frag: cached page frag
 327  *	@sk_peek_off: current peek_offset value
 328  *	@sk_send_head: front of stuff to transmit
 329  *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
 330  *	@sk_tx_skb_cache: cache copy of recently accessed TX skb
 331  *	@sk_security: used by security modules
 332  *	@sk_mark: generic packet mark
 333  *	@sk_cgrp_data: cgroup data for this cgroup
 334  *	@sk_memcg: this socket's memory cgroup association
 335  *	@sk_write_pending: a write to stream socket waits to start
 336  *	@sk_state_change: callback to indicate change in the state of the sock
 337  *	@sk_data_ready: callback to indicate there is data to be processed
 338  *	@sk_write_space: callback to indicate there is bf sending space available
 339  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 340  *	@sk_backlog_rcv: callback to process the backlog
 341  *	@sk_validate_xmit_skb: ptr to an optional validate function
 342  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 343  *	@sk_reuseport_cb: reuseport group container
 344  *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
 345  *	@sk_rcu: used during RCU grace period
 346  *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
 347  *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
 348  *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
 349  *	@sk_txtime_unused: unused txtime flags
 350  */
 351struct sock {
 352	/*
 353	 * Now struct inet_timewait_sock also uses sock_common, so please just
 354	 * don't add nothing before this first member (__sk_common) --acme
 355	 */
 356	struct sock_common	__sk_common;
 357#define sk_node			__sk_common.skc_node
 358#define sk_nulls_node		__sk_common.skc_nulls_node
 359#define sk_refcnt		__sk_common.skc_refcnt
 360#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
 361#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
 362#define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
 363#endif
 364
 365#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
 366#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
 367#define sk_hash			__sk_common.skc_hash
 368#define sk_portpair		__sk_common.skc_portpair
 369#define sk_num			__sk_common.skc_num
 370#define sk_dport		__sk_common.skc_dport
 371#define sk_addrpair		__sk_common.skc_addrpair
 372#define sk_daddr		__sk_common.skc_daddr
 373#define sk_rcv_saddr		__sk_common.skc_rcv_saddr
 374#define sk_family		__sk_common.skc_family
 375#define sk_state		__sk_common.skc_state
 376#define sk_reuse		__sk_common.skc_reuse
 377#define sk_reuseport		__sk_common.skc_reuseport
 378#define sk_ipv6only		__sk_common.skc_ipv6only
 379#define sk_net_refcnt		__sk_common.skc_net_refcnt
 380#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
 381#define sk_bind_node		__sk_common.skc_bind_node
 382#define sk_prot			__sk_common.skc_prot
 383#define sk_net			__sk_common.skc_net
 384#define sk_v6_daddr		__sk_common.skc_v6_daddr
 385#define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
 386#define sk_cookie		__sk_common.skc_cookie
 387#define sk_incoming_cpu		__sk_common.skc_incoming_cpu
 388#define sk_flags		__sk_common.skc_flags
 389#define sk_rxhash		__sk_common.skc_rxhash
 390
 391	socket_lock_t		sk_lock;
 392	atomic_t		sk_drops;
 393	int			sk_rcvlowat;
 394	struct sk_buff_head	sk_error_queue;
 395	struct sk_buff		*sk_rx_skb_cache;
 396	struct sk_buff_head	sk_receive_queue;
 397	/*
 398	 * The backlog queue is special, it is always used with
 399	 * the per-socket spinlock held and requires low latency
 400	 * access. Therefore we special case it's implementation.
 401	 * Note : rmem_alloc is in this structure to fill a hole
 402	 * on 64bit arches, not because its logically part of
 403	 * backlog.
 404	 */
 405	struct {
 406		atomic_t	rmem_alloc;
 407		int		len;
 408		struct sk_buff	*head;
 409		struct sk_buff	*tail;
 410	} sk_backlog;
 411#define sk_rmem_alloc sk_backlog.rmem_alloc
 412
 413	int			sk_forward_alloc;
 414#ifdef CONFIG_NET_RX_BUSY_POLL
 415	unsigned int		sk_ll_usec;
 416	/* ===== mostly read cache line ===== */
 417	unsigned int		sk_napi_id;
 418#endif
 419	int			sk_rcvbuf;
 420
 421	struct sk_filter __rcu	*sk_filter;
 422	union {
 423		struct socket_wq __rcu	*sk_wq;
 424		/* private: */
 425		struct socket_wq	*sk_wq_raw;
 426		/* public: */
 427	};
 428#ifdef CONFIG_XFRM
 429	struct xfrm_policy __rcu *sk_policy[2];
 430#endif
 431	struct dst_entry	*sk_rx_dst;
 432	struct dst_entry __rcu	*sk_dst_cache;
 433	atomic_t		sk_omem_alloc;
 434	int			sk_sndbuf;
 435
 436	/* ===== cache line for TX ===== */
 437	int			sk_wmem_queued;
 438	refcount_t		sk_wmem_alloc;
 439	unsigned long		sk_tsq_flags;
 440	union {
 441		struct sk_buff	*sk_send_head;
 442		struct rb_root	tcp_rtx_queue;
 443	};
 444	struct sk_buff		*sk_tx_skb_cache;
 445	struct sk_buff_head	sk_write_queue;
 446	__s32			sk_peek_off;
 447	int			sk_write_pending;
 448	__u32			sk_dst_pending_confirm;
 449	u32			sk_pacing_status; /* see enum sk_pacing */
 450	long			sk_sndtimeo;
 451	struct timer_list	sk_timer;
 452	__u32			sk_priority;
 453	__u32			sk_mark;
 454	unsigned long		sk_pacing_rate; /* bytes per second */
 455	unsigned long		sk_max_pacing_rate;
 456	struct page_frag	sk_frag;
 457	netdev_features_t	sk_route_caps;
 458	netdev_features_t	sk_route_nocaps;
 459	netdev_features_t	sk_route_forced_caps;
 460	int			sk_gso_type;
 461	unsigned int		sk_gso_max_size;
 462	gfp_t			sk_allocation;
 463	__u32			sk_txhash;
 464
 465	/*
 466	 * Because of non atomicity rules, all
 467	 * changes are protected by socket lock.
 468	 */
 469	u8			sk_padding : 1,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470				sk_kern_sock : 1,
 471				sk_no_check_tx : 1,
 472				sk_no_check_rx : 1,
 473				sk_userlocks : 4;
 
 
 
 
 474	u8			sk_pacing_shift;
 475	u16			sk_type;
 476	u16			sk_protocol;
 477	u16			sk_gso_max_segs;
 478	unsigned long	        sk_lingertime;
 479	struct proto		*sk_prot_creator;
 480	rwlock_t		sk_callback_lock;
 481	int			sk_err,
 482				sk_err_soft;
 483	u32			sk_ack_backlog;
 484	u32			sk_max_ack_backlog;
 485	kuid_t			sk_uid;
 486#ifdef CONFIG_NET_RX_BUSY_POLL
 487	u8			sk_prefer_busy_poll;
 488	u16			sk_busy_poll_budget;
 489#endif
 490	spinlock_t		sk_peer_lock;
 491	struct pid		*sk_peer_pid;
 492	const struct cred	*sk_peer_cred;
 493
 494	long			sk_rcvtimeo;
 495	ktime_t			sk_stamp;
 496#if BITS_PER_LONG==32
 497	seqlock_t		sk_stamp_seq;
 498#endif
 499	u16			sk_tsflags;
 500	int			sk_bind_phc;
 501	u8			sk_shutdown;
 502	u32			sk_tskey;
 503	atomic_t		sk_zckey;
 504
 505	u8			sk_clockid;
 506	u8			sk_txtime_deadline_mode : 1,
 507				sk_txtime_report_errors : 1,
 508				sk_txtime_unused : 6;
 509
 510	struct socket		*sk_socket;
 511	void			*sk_user_data;
 512#ifdef CONFIG_SECURITY
 513	void			*sk_security;
 514#endif
 515	struct sock_cgroup_data	sk_cgrp_data;
 516	struct mem_cgroup	*sk_memcg;
 517	void			(*sk_state_change)(struct sock *sk);
 518	void			(*sk_data_ready)(struct sock *sk);
 519	void			(*sk_write_space)(struct sock *sk);
 520	void			(*sk_error_report)(struct sock *sk);
 521	int			(*sk_backlog_rcv)(struct sock *sk,
 522						  struct sk_buff *skb);
 523#ifdef CONFIG_SOCK_VALIDATE_XMIT
 524	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
 525							struct net_device *dev,
 526							struct sk_buff *skb);
 527#endif
 528	void                    (*sk_destruct)(struct sock *sk);
 529	struct sock_reuseport __rcu	*sk_reuseport_cb;
 530#ifdef CONFIG_BPF_SYSCALL
 531	struct bpf_local_storage __rcu	*sk_bpf_storage;
 532#endif
 533	struct rcu_head		sk_rcu;
 534};
 535
 536enum sk_pacing {
 537	SK_PACING_NONE		= 0,
 538	SK_PACING_NEEDED	= 1,
 539	SK_PACING_FQ		= 2,
 540};
 541
 542/* Pointer stored in sk_user_data might not be suitable for copying
 543 * when cloning the socket. For instance, it can point to a reference
 544 * counted object. sk_user_data bottom bit is set if pointer must not
 545 * be copied.
 546 */
 547#define SK_USER_DATA_NOCOPY	1UL
 548#define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
 549#define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
 550
 551/**
 552 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
 553 * @sk: socket
 554 */
 555static inline bool sk_user_data_is_nocopy(const struct sock *sk)
 556{
 557	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
 558}
 559
 560#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 561
 562#define rcu_dereference_sk_user_data(sk)				\
 563({									\
 564	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
 565	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
 566})
 567#define rcu_assign_sk_user_data(sk, ptr)				\
 568({									\
 569	uintptr_t __tmp = (uintptr_t)(ptr);				\
 570	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
 571	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
 572})
 573#define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
 574({									\
 575	uintptr_t __tmp = (uintptr_t)(ptr);				\
 576	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
 577	rcu_assign_pointer(__sk_user_data((sk)),			\
 578			   __tmp | SK_USER_DATA_NOCOPY);		\
 579})
 580
 581/*
 582 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 583 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 584 * on a socket means that the socket will reuse everybody else's port
 585 * without looking at the other's sk_reuse value.
 586 */
 587
 588#define SK_NO_REUSE	0
 589#define SK_CAN_REUSE	1
 590#define SK_FORCE_REUSE	2
 591
 592int sk_set_peek_off(struct sock *sk, int val);
 593
 594static inline int sk_peek_offset(struct sock *sk, int flags)
 595{
 596	if (unlikely(flags & MSG_PEEK)) {
 597		return READ_ONCE(sk->sk_peek_off);
 598	}
 599
 600	return 0;
 601}
 602
 603static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 604{
 605	s32 off = READ_ONCE(sk->sk_peek_off);
 606
 607	if (unlikely(off >= 0)) {
 608		off = max_t(s32, off - val, 0);
 609		WRITE_ONCE(sk->sk_peek_off, off);
 610	}
 611}
 612
 613static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 614{
 615	sk_peek_offset_bwd(sk, -val);
 616}
 617
 618/*
 619 * Hashed lists helper routines
 620 */
 621static inline struct sock *sk_entry(const struct hlist_node *node)
 622{
 623	return hlist_entry(node, struct sock, sk_node);
 624}
 625
 626static inline struct sock *__sk_head(const struct hlist_head *head)
 627{
 628	return hlist_entry(head->first, struct sock, sk_node);
 629}
 630
 631static inline struct sock *sk_head(const struct hlist_head *head)
 632{
 633	return hlist_empty(head) ? NULL : __sk_head(head);
 634}
 635
 636static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 637{
 638	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 639}
 640
 641static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 642{
 643	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 644}
 645
 646static inline struct sock *sk_next(const struct sock *sk)
 647{
 648	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 649}
 650
 651static inline struct sock *sk_nulls_next(const struct sock *sk)
 652{
 653	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 654		hlist_nulls_entry(sk->sk_nulls_node.next,
 655				  struct sock, sk_nulls_node) :
 656		NULL;
 657}
 658
 659static inline bool sk_unhashed(const struct sock *sk)
 660{
 661	return hlist_unhashed(&sk->sk_node);
 662}
 663
 664static inline bool sk_hashed(const struct sock *sk)
 665{
 666	return !sk_unhashed(sk);
 667}
 668
 669static inline void sk_node_init(struct hlist_node *node)
 670{
 671	node->pprev = NULL;
 672}
 673
 674static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 675{
 676	node->pprev = NULL;
 677}
 678
 679static inline void __sk_del_node(struct sock *sk)
 680{
 681	__hlist_del(&sk->sk_node);
 682}
 683
 684/* NB: equivalent to hlist_del_init_rcu */
 685static inline bool __sk_del_node_init(struct sock *sk)
 686{
 687	if (sk_hashed(sk)) {
 688		__sk_del_node(sk);
 689		sk_node_init(&sk->sk_node);
 690		return true;
 691	}
 692	return false;
 693}
 694
 695/* Grab socket reference count. This operation is valid only
 696   when sk is ALREADY grabbed f.e. it is found in hash table
 697   or a list and the lookup is made under lock preventing hash table
 698   modifications.
 699 */
 700
 701static __always_inline void sock_hold(struct sock *sk)
 702{
 703	refcount_inc(&sk->sk_refcnt);
 704}
 705
 706/* Ungrab socket in the context, which assumes that socket refcnt
 707   cannot hit zero, f.e. it is true in context of any socketcall.
 708 */
 709static __always_inline void __sock_put(struct sock *sk)
 710{
 711	refcount_dec(&sk->sk_refcnt);
 712}
 713
 714static inline bool sk_del_node_init(struct sock *sk)
 715{
 716	bool rc = __sk_del_node_init(sk);
 717
 718	if (rc) {
 719		/* paranoid for a while -acme */
 720		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 721		__sock_put(sk);
 722	}
 723	return rc;
 724}
 725#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
 726
 727static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 728{
 729	if (sk_hashed(sk)) {
 730		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 731		return true;
 732	}
 733	return false;
 734}
 735
 736static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 737{
 738	bool rc = __sk_nulls_del_node_init_rcu(sk);
 739
 740	if (rc) {
 741		/* paranoid for a while -acme */
 742		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 743		__sock_put(sk);
 744	}
 745	return rc;
 746}
 747
 748static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 749{
 750	hlist_add_head(&sk->sk_node, list);
 751}
 752
 753static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 754{
 755	sock_hold(sk);
 756	__sk_add_node(sk, list);
 757}
 758
 759static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 760{
 761	sock_hold(sk);
 762	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 763	    sk->sk_family == AF_INET6)
 764		hlist_add_tail_rcu(&sk->sk_node, list);
 765	else
 766		hlist_add_head_rcu(&sk->sk_node, list);
 767}
 768
 769static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
 770{
 771	sock_hold(sk);
 772	hlist_add_tail_rcu(&sk->sk_node, list);
 773}
 774
 775static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 776{
 777	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 778}
 779
 780static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
 781{
 782	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 783}
 784
 785static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 786{
 787	sock_hold(sk);
 788	__sk_nulls_add_node_rcu(sk, list);
 789}
 790
 791static inline void __sk_del_bind_node(struct sock *sk)
 792{
 793	__hlist_del(&sk->sk_bind_node);
 794}
 795
 796static inline void sk_add_bind_node(struct sock *sk,
 797					struct hlist_head *list)
 798{
 799	hlist_add_head(&sk->sk_bind_node, list);
 800}
 801
 802#define sk_for_each(__sk, list) \
 803	hlist_for_each_entry(__sk, list, sk_node)
 804#define sk_for_each_rcu(__sk, list) \
 805	hlist_for_each_entry_rcu(__sk, list, sk_node)
 806#define sk_nulls_for_each(__sk, node, list) \
 807	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 808#define sk_nulls_for_each_rcu(__sk, node, list) \
 809	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 810#define sk_for_each_from(__sk) \
 811	hlist_for_each_entry_from(__sk, sk_node)
 812#define sk_nulls_for_each_from(__sk, node) \
 813	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 814		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 815#define sk_for_each_safe(__sk, tmp, list) \
 816	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 817#define sk_for_each_bound(__sk, list) \
 818	hlist_for_each_entry(__sk, list, sk_bind_node)
 819
 820/**
 821 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 822 * @tpos:	the type * to use as a loop cursor.
 823 * @pos:	the &struct hlist_node to use as a loop cursor.
 824 * @head:	the head for your list.
 825 * @offset:	offset of hlist_node within the struct.
 826 *
 827 */
 828#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
 829	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
 830	     pos != NULL &&						       \
 831		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 832	     pos = rcu_dereference(hlist_next_rcu(pos)))
 833
 834static inline struct user_namespace *sk_user_ns(struct sock *sk)
 835{
 836	/* Careful only use this in a context where these parameters
 837	 * can not change and must all be valid, such as recvmsg from
 838	 * userspace.
 839	 */
 840	return sk->sk_socket->file->f_cred->user_ns;
 841}
 842
 843/* Sock flags */
 844enum sock_flags {
 845	SOCK_DEAD,
 846	SOCK_DONE,
 847	SOCK_URGINLINE,
 848	SOCK_KEEPOPEN,
 849	SOCK_LINGER,
 850	SOCK_DESTROY,
 851	SOCK_BROADCAST,
 852	SOCK_TIMESTAMP,
 853	SOCK_ZAPPED,
 854	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 855	SOCK_DBG, /* %SO_DEBUG setting */
 856	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 857	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 858	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 
 859	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 860	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 861	SOCK_FASYNC, /* fasync() active */
 862	SOCK_RXQ_OVFL,
 863	SOCK_ZEROCOPY, /* buffers from userspace */
 864	SOCK_WIFI_STATUS, /* push wifi status to userspace */
 865	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 866		     * Will use last 4 bytes of packet sent from
 867		     * user-space instead.
 868		     */
 869	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 870	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 871	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 872	SOCK_TXTIME,
 873	SOCK_XDP, /* XDP is attached */
 874	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
 875};
 876
 877#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 878
 879static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 880{
 881	nsk->sk_flags = osk->sk_flags;
 882}
 883
 884static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 885{
 886	__set_bit(flag, &sk->sk_flags);
 887}
 888
 889static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 890{
 891	__clear_bit(flag, &sk->sk_flags);
 892}
 893
 894static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
 895				     int valbool)
 896{
 897	if (valbool)
 898		sock_set_flag(sk, bit);
 899	else
 900		sock_reset_flag(sk, bit);
 901}
 902
 903static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 904{
 905	return test_bit(flag, &sk->sk_flags);
 906}
 907
 908#ifdef CONFIG_NET
 909DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
 910static inline int sk_memalloc_socks(void)
 911{
 912	return static_branch_unlikely(&memalloc_socks_key);
 913}
 914
 915void __receive_sock(struct file *file);
 916#else
 917
 918static inline int sk_memalloc_socks(void)
 919{
 920	return 0;
 921}
 922
 923static inline void __receive_sock(struct file *file)
 924{ }
 925#endif
 926
 927static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 928{
 929	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 930}
 931
 932static inline void sk_acceptq_removed(struct sock *sk)
 933{
 934	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
 935}
 936
 937static inline void sk_acceptq_added(struct sock *sk)
 938{
 939	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
 940}
 941
 942/* Note: If you think the test should be:
 943 *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
 944 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
 945 */
 946static inline bool sk_acceptq_is_full(const struct sock *sk)
 947{
 948	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
 949}
 950
 951/*
 952 * Compute minimal free write space needed to queue new packets.
 953 */
 954static inline int sk_stream_min_wspace(const struct sock *sk)
 955{
 956	return READ_ONCE(sk->sk_wmem_queued) >> 1;
 957}
 958
 959static inline int sk_stream_wspace(const struct sock *sk)
 960{
 961	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
 962}
 963
 964static inline void sk_wmem_queued_add(struct sock *sk, int val)
 965{
 966	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
 967}
 968
 969void sk_stream_write_space(struct sock *sk);
 970
 971/* OOB backlog add */
 972static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 973{
 974	/* dont let skb dst not refcounted, we are going to leave rcu lock */
 975	skb_dst_force(skb);
 976
 977	if (!sk->sk_backlog.tail)
 978		WRITE_ONCE(sk->sk_backlog.head, skb);
 979	else
 980		sk->sk_backlog.tail->next = skb;
 981
 982	WRITE_ONCE(sk->sk_backlog.tail, skb);
 983	skb->next = NULL;
 984}
 985
 986/*
 987 * Take into account size of receive queue and backlog queue
 988 * Do not take into account this skb truesize,
 989 * to allow even a single big packet to come.
 990 */
 991static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 992{
 993	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 994
 995	return qsize > limit;
 996}
 997
 998/* The per-socket spinlock must be held here. */
 999static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1000					      unsigned int limit)
1001{
1002	if (sk_rcvqueues_full(sk, limit))
1003		return -ENOBUFS;
1004
1005	/*
1006	 * If the skb was allocated from pfmemalloc reserves, only
1007	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1008	 * helping free memory
1009	 */
1010	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1011		return -ENOMEM;
1012
1013	__sk_add_backlog(sk, skb);
1014	sk->sk_backlog.len += skb->truesize;
1015	return 0;
1016}
1017
1018int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1019
1020static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1021{
1022	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1023		return __sk_backlog_rcv(sk, skb);
1024
1025	return sk->sk_backlog_rcv(sk, skb);
1026}
1027
1028static inline void sk_incoming_cpu_update(struct sock *sk)
1029{
1030	int cpu = raw_smp_processor_id();
1031
1032	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1033		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1034}
1035
1036static inline void sock_rps_record_flow_hash(__u32 hash)
1037{
1038#ifdef CONFIG_RPS
1039	struct rps_sock_flow_table *sock_flow_table;
1040
1041	rcu_read_lock();
1042	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1043	rps_record_sock_flow(sock_flow_table, hash);
1044	rcu_read_unlock();
1045#endif
1046}
1047
1048static inline void sock_rps_record_flow(const struct sock *sk)
1049{
1050#ifdef CONFIG_RPS
1051	if (static_branch_unlikely(&rfs_needed)) {
1052		/* Reading sk->sk_rxhash might incur an expensive cache line
1053		 * miss.
1054		 *
1055		 * TCP_ESTABLISHED does cover almost all states where RFS
1056		 * might be useful, and is cheaper [1] than testing :
1057		 *	IPv4: inet_sk(sk)->inet_daddr
1058		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1059		 * OR	an additional socket flag
1060		 * [1] : sk_state and sk_prot are in the same cache line.
1061		 */
1062		if (sk->sk_state == TCP_ESTABLISHED)
1063			sock_rps_record_flow_hash(sk->sk_rxhash);
1064	}
1065#endif
1066}
1067
1068static inline void sock_rps_save_rxhash(struct sock *sk,
1069					const struct sk_buff *skb)
1070{
1071#ifdef CONFIG_RPS
1072	if (unlikely(sk->sk_rxhash != skb->hash))
1073		sk->sk_rxhash = skb->hash;
1074#endif
1075}
1076
1077static inline void sock_rps_reset_rxhash(struct sock *sk)
1078{
1079#ifdef CONFIG_RPS
1080	sk->sk_rxhash = 0;
1081#endif
1082}
1083
1084#define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1085	({	int __rc;						\
1086		release_sock(__sk);					\
1087		__rc = __condition;					\
1088		if (!__rc) {						\
1089			*(__timeo) = wait_woken(__wait,			\
1090						TASK_INTERRUPTIBLE,	\
1091						*(__timeo));		\
1092		}							\
1093		sched_annotate_sleep();					\
1094		lock_sock(__sk);					\
1095		__rc = __condition;					\
1096		__rc;							\
1097	})
1098
1099int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1100int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1101void sk_stream_wait_close(struct sock *sk, long timeo_p);
1102int sk_stream_error(struct sock *sk, int flags, int err);
1103void sk_stream_kill_queues(struct sock *sk);
1104void sk_set_memalloc(struct sock *sk);
1105void sk_clear_memalloc(struct sock *sk);
1106
1107void __sk_flush_backlog(struct sock *sk);
1108
1109static inline bool sk_flush_backlog(struct sock *sk)
1110{
1111	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1112		__sk_flush_backlog(sk);
1113		return true;
1114	}
1115	return false;
1116}
1117
1118int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1119
1120struct request_sock_ops;
1121struct timewait_sock_ops;
1122struct inet_hashinfo;
1123struct raw_hashinfo;
1124struct smc_hashinfo;
1125struct module;
1126struct sk_psock;
1127
1128/*
1129 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1130 * un-modified. Special care is taken when initializing object to zero.
1131 */
1132static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1133{
1134	if (offsetof(struct sock, sk_node.next) != 0)
1135		memset(sk, 0, offsetof(struct sock, sk_node.next));
1136	memset(&sk->sk_node.pprev, 0,
1137	       size - offsetof(struct sock, sk_node.pprev));
1138}
1139
1140/* Networking protocol blocks we attach to sockets.
1141 * socket layer -> transport layer interface
1142 */
1143struct proto {
1144	void			(*close)(struct sock *sk,
1145					long timeout);
1146	int			(*pre_connect)(struct sock *sk,
1147					struct sockaddr *uaddr,
1148					int addr_len);
1149	int			(*connect)(struct sock *sk,
1150					struct sockaddr *uaddr,
1151					int addr_len);
1152	int			(*disconnect)(struct sock *sk, int flags);
1153
1154	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1155					  bool kern);
1156
1157	int			(*ioctl)(struct sock *sk, int cmd,
1158					 unsigned long arg);
1159	int			(*init)(struct sock *sk);
1160	void			(*destroy)(struct sock *sk);
1161	void			(*shutdown)(struct sock *sk, int how);
1162	int			(*setsockopt)(struct sock *sk, int level,
1163					int optname, sockptr_t optval,
1164					unsigned int optlen);
1165	int			(*getsockopt)(struct sock *sk, int level,
1166					int optname, char __user *optval,
1167					int __user *option);
1168	void			(*keepalive)(struct sock *sk, int valbool);
1169#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
1170	int			(*compat_ioctl)(struct sock *sk,
1171					unsigned int cmd, unsigned long arg);
1172#endif
1173	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1174					   size_t len);
1175	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1176					   size_t len, int noblock, int flags,
1177					   int *addr_len);
1178	int			(*sendpage)(struct sock *sk, struct page *page,
1179					int offset, size_t size, int flags);
1180	int			(*bind)(struct sock *sk,
1181					struct sockaddr *addr, int addr_len);
1182	int			(*bind_add)(struct sock *sk,
1183					struct sockaddr *addr, int addr_len);
1184
1185	int			(*backlog_rcv) (struct sock *sk,
1186						struct sk_buff *skb);
1187	bool			(*bpf_bypass_getsockopt)(int level,
1188							 int optname);
1189
1190	void		(*release_cb)(struct sock *sk);
1191
1192	/* Keeping track of sk's, looking them up, and port selection methods. */
1193	int			(*hash)(struct sock *sk);
1194	void			(*unhash)(struct sock *sk);
1195	void			(*rehash)(struct sock *sk);
1196	int			(*get_port)(struct sock *sk, unsigned short snum);
1197#ifdef CONFIG_BPF_SYSCALL
1198	int			(*psock_update_sk_prot)(struct sock *sk,
1199							struct sk_psock *psock,
1200							bool restore);
1201#endif
1202
1203	/* Keeping track of sockets in use */
1204#ifdef CONFIG_PROC_FS
1205	unsigned int		inuse_idx;
1206#endif
1207
1208	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1209	bool			(*stream_memory_read)(const struct sock *sk);
1210	/* Memory pressure */
1211	void			(*enter_memory_pressure)(struct sock *sk);
1212	void			(*leave_memory_pressure)(struct sock *sk);
1213	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1214	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1215	/*
1216	 * Pressure flag: try to collapse.
1217	 * Technical note: it is used by multiple contexts non atomically.
1218	 * All the __sk_mem_schedule() is of this nature: accounting
1219	 * is strict, actions are advisory and have some latency.
1220	 */
1221	unsigned long		*memory_pressure;
1222	long			*sysctl_mem;
1223
1224	int			*sysctl_wmem;
1225	int			*sysctl_rmem;
1226	u32			sysctl_wmem_offset;
1227	u32			sysctl_rmem_offset;
1228
1229	int			max_header;
1230	bool			no_autobind;
1231
1232	struct kmem_cache	*slab;
1233	unsigned int		obj_size;
1234	slab_flags_t		slab_flags;
1235	unsigned int		useroffset;	/* Usercopy region offset */
1236	unsigned int		usersize;	/* Usercopy region size */
1237
1238	struct percpu_counter	*orphan_count;
1239
1240	struct request_sock_ops	*rsk_prot;
1241	struct timewait_sock_ops *twsk_prot;
1242
1243	union {
1244		struct inet_hashinfo	*hashinfo;
1245		struct udp_table	*udp_table;
1246		struct raw_hashinfo	*raw_hash;
1247		struct smc_hashinfo	*smc_hash;
1248	} h;
1249
1250	struct module		*owner;
1251
1252	char			name[32];
1253
1254	struct list_head	node;
1255#ifdef SOCK_REFCNT_DEBUG
1256	atomic_t		socks;
1257#endif
1258	int			(*diag_destroy)(struct sock *sk, int err);
1259} __randomize_layout;
1260
1261int proto_register(struct proto *prot, int alloc_slab);
1262void proto_unregister(struct proto *prot);
1263int sock_load_diag_module(int family, int protocol);
1264
1265#ifdef SOCK_REFCNT_DEBUG
1266static inline void sk_refcnt_debug_inc(struct sock *sk)
1267{
1268	atomic_inc(&sk->sk_prot->socks);
1269}
1270
1271static inline void sk_refcnt_debug_dec(struct sock *sk)
1272{
1273	atomic_dec(&sk->sk_prot->socks);
1274	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1275	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1276}
1277
1278static inline void sk_refcnt_debug_release(const struct sock *sk)
1279{
1280	if (refcount_read(&sk->sk_refcnt) != 1)
1281		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1282		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1283}
1284#else /* SOCK_REFCNT_DEBUG */
1285#define sk_refcnt_debug_inc(sk) do { } while (0)
1286#define sk_refcnt_debug_dec(sk) do { } while (0)
1287#define sk_refcnt_debug_release(sk) do { } while (0)
1288#endif /* SOCK_REFCNT_DEBUG */
1289
1290INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1291
1292static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1293{
1294	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1295		return false;
1296
1297#ifdef CONFIG_INET
1298	return sk->sk_prot->stream_memory_free ?
1299		INDIRECT_CALL_1(sk->sk_prot->stream_memory_free,
1300			        tcp_stream_memory_free,
1301				sk, wake) : true;
1302#else
1303	return sk->sk_prot->stream_memory_free ?
1304		sk->sk_prot->stream_memory_free(sk, wake) : true;
1305#endif
1306}
1307
1308static inline bool sk_stream_memory_free(const struct sock *sk)
1309{
1310	return __sk_stream_memory_free(sk, 0);
1311}
1312
1313static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1314{
1315	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1316	       __sk_stream_memory_free(sk, wake);
1317}
1318
1319static inline bool sk_stream_is_writeable(const struct sock *sk)
1320{
1321	return __sk_stream_is_writeable(sk, 0);
1322}
1323
1324static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1325					    struct cgroup *ancestor)
1326{
1327#ifdef CONFIG_SOCK_CGROUP_DATA
1328	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1329				    ancestor);
1330#else
1331	return -ENOTSUPP;
1332#endif
1333}
1334
1335static inline bool sk_has_memory_pressure(const struct sock *sk)
1336{
1337	return sk->sk_prot->memory_pressure != NULL;
1338}
1339
1340static inline bool sk_under_memory_pressure(const struct sock *sk)
1341{
1342	if (!sk->sk_prot->memory_pressure)
1343		return false;
1344
1345	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1346	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1347		return true;
1348
1349	return !!*sk->sk_prot->memory_pressure;
1350}
1351
1352static inline long
1353sk_memory_allocated(const struct sock *sk)
1354{
1355	return atomic_long_read(sk->sk_prot->memory_allocated);
1356}
1357
1358static inline long
1359sk_memory_allocated_add(struct sock *sk, int amt)
1360{
1361	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1362}
1363
1364static inline void
1365sk_memory_allocated_sub(struct sock *sk, int amt)
1366{
1367	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1368}
1369
1370#define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1371
1372static inline void sk_sockets_allocated_dec(struct sock *sk)
1373{
1374	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1375				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1376}
1377
1378static inline void sk_sockets_allocated_inc(struct sock *sk)
1379{
1380	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1381				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1382}
1383
1384static inline u64
1385sk_sockets_allocated_read_positive(struct sock *sk)
1386{
1387	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1388}
1389
1390static inline int
1391proto_sockets_allocated_sum_positive(struct proto *prot)
1392{
1393	return percpu_counter_sum_positive(prot->sockets_allocated);
1394}
1395
1396static inline long
1397proto_memory_allocated(struct proto *prot)
1398{
1399	return atomic_long_read(prot->memory_allocated);
1400}
1401
1402static inline bool
1403proto_memory_pressure(struct proto *prot)
1404{
1405	if (!prot->memory_pressure)
1406		return false;
1407	return !!*prot->memory_pressure;
1408}
1409
1410
1411#ifdef CONFIG_PROC_FS
1412/* Called with local bh disabled */
1413void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1414int sock_prot_inuse_get(struct net *net, struct proto *proto);
1415int sock_inuse_get(struct net *net);
1416#else
1417static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1418		int inc)
1419{
1420}
1421#endif
1422
1423
1424/* With per-bucket locks this operation is not-atomic, so that
1425 * this version is not worse.
1426 */
1427static inline int __sk_prot_rehash(struct sock *sk)
1428{
1429	sk->sk_prot->unhash(sk);
1430	return sk->sk_prot->hash(sk);
1431}
1432
1433/* About 10 seconds */
1434#define SOCK_DESTROY_TIME (10*HZ)
1435
1436/* Sockets 0-1023 can't be bound to unless you are superuser */
1437#define PROT_SOCK	1024
1438
1439#define SHUTDOWN_MASK	3
1440#define RCV_SHUTDOWN	1
1441#define SEND_SHUTDOWN	2
1442
1443#define SOCK_SNDBUF_LOCK	1
1444#define SOCK_RCVBUF_LOCK	2
1445#define SOCK_BINDADDR_LOCK	4
1446#define SOCK_BINDPORT_LOCK	8
1447
1448struct socket_alloc {
1449	struct socket socket;
1450	struct inode vfs_inode;
1451};
1452
1453static inline struct socket *SOCKET_I(struct inode *inode)
1454{
1455	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1456}
1457
1458static inline struct inode *SOCK_INODE(struct socket *socket)
1459{
1460	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1461}
1462
1463/*
1464 * Functions for memory accounting
1465 */
1466int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1467int __sk_mem_schedule(struct sock *sk, int size, int kind);
1468void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1469void __sk_mem_reclaim(struct sock *sk, int amount);
1470
1471/* We used to have PAGE_SIZE here, but systems with 64KB pages
1472 * do not necessarily have 16x time more memory than 4KB ones.
1473 */
1474#define SK_MEM_QUANTUM 4096
1475#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1476#define SK_MEM_SEND	0
1477#define SK_MEM_RECV	1
1478
1479/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1480static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1481{
1482	long val = sk->sk_prot->sysctl_mem[index];
1483
1484#if PAGE_SIZE > SK_MEM_QUANTUM
1485	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1486#elif PAGE_SIZE < SK_MEM_QUANTUM
1487	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1488#endif
1489	return val;
1490}
1491
1492static inline int sk_mem_pages(int amt)
1493{
1494	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1495}
1496
1497static inline bool sk_has_account(struct sock *sk)
1498{
1499	/* return true if protocol supports memory accounting */
1500	return !!sk->sk_prot->memory_allocated;
1501}
1502
1503static inline bool sk_wmem_schedule(struct sock *sk, int size)
1504{
1505	if (!sk_has_account(sk))
1506		return true;
1507	return size <= sk->sk_forward_alloc ||
1508		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1509}
1510
1511static inline bool
1512sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1513{
1514	if (!sk_has_account(sk))
1515		return true;
1516	return size <= sk->sk_forward_alloc ||
1517		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1518		skb_pfmemalloc(skb);
1519}
1520
1521static inline void sk_mem_reclaim(struct sock *sk)
1522{
1523	if (!sk_has_account(sk))
1524		return;
1525	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1526		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1527}
1528
1529static inline void sk_mem_reclaim_partial(struct sock *sk)
1530{
1531	if (!sk_has_account(sk))
1532		return;
1533	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1534		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1535}
1536
1537static inline void sk_mem_charge(struct sock *sk, int size)
1538{
1539	if (!sk_has_account(sk))
1540		return;
1541	sk->sk_forward_alloc -= size;
1542}
1543
1544static inline void sk_mem_uncharge(struct sock *sk, int size)
1545{
1546	if (!sk_has_account(sk))
1547		return;
1548	sk->sk_forward_alloc += size;
1549
1550	/* Avoid a possible overflow.
1551	 * TCP send queues can make this happen, if sk_mem_reclaim()
1552	 * is not called and more than 2 GBytes are released at once.
1553	 *
1554	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1555	 * no need to hold that much forward allocation anyway.
1556	 */
1557	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1558		__sk_mem_reclaim(sk, 1 << 20);
1559}
1560
1561DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1562static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1563{
 
1564	sk_wmem_queued_add(sk, -skb->truesize);
1565	sk_mem_uncharge(sk, skb->truesize);
1566	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1567	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1568		skb_ext_reset(skb);
1569		skb_zcopy_clear(skb, true);
1570		sk->sk_tx_skb_cache = skb;
1571		return;
1572	}
1573	__kfree_skb(skb);
1574}
1575
1576static inline void sock_release_ownership(struct sock *sk)
1577{
1578	if (sk->sk_lock.owned) {
1579		sk->sk_lock.owned = 0;
1580
1581		/* The sk_lock has mutex_unlock() semantics: */
1582		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1583	}
1584}
1585
1586/*
1587 * Macro so as to not evaluate some arguments when
1588 * lockdep is not enabled.
1589 *
1590 * Mark both the sk_lock and the sk_lock.slock as a
1591 * per-address-family lock class.
1592 */
1593#define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1594do {									\
1595	sk->sk_lock.owned = 0;						\
1596	init_waitqueue_head(&sk->sk_lock.wq);				\
1597	spin_lock_init(&(sk)->sk_lock.slock);				\
1598	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1599			sizeof((sk)->sk_lock));				\
1600	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1601				(skey), (sname));				\
1602	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1603} while (0)
1604
 
1605static inline bool lockdep_sock_is_held(const struct sock *sk)
1606{
1607	return lockdep_is_held(&sk->sk_lock) ||
1608	       lockdep_is_held(&sk->sk_lock.slock);
1609}
 
1610
1611void lock_sock_nested(struct sock *sk, int subclass);
1612
1613static inline void lock_sock(struct sock *sk)
1614{
1615	lock_sock_nested(sk, 0);
1616}
1617
1618void __lock_sock(struct sock *sk);
1619void __release_sock(struct sock *sk);
1620void release_sock(struct sock *sk);
1621
1622/* BH context may only use the following locking interface. */
1623#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1624#define bh_lock_sock_nested(__sk) \
1625				spin_lock_nested(&((__sk)->sk_lock.slock), \
1626				SINGLE_DEPTH_NESTING)
1627#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1628
1629bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1630
1631/**
1632 * unlock_sock_fast - complement of lock_sock_fast
1633 * @sk: socket
1634 * @slow: slow mode
1635 *
1636 * fast unlock socket for user context.
1637 * If slow mode is on, we call regular release_sock()
1638 */
1639static inline void unlock_sock_fast(struct sock *sk, bool slow)
1640	__releases(&sk->sk_lock.slock)
1641{
1642	if (slow) {
1643		release_sock(sk);
1644		__release(&sk->sk_lock.slock);
1645	} else {
1646		spin_unlock_bh(&sk->sk_lock.slock);
1647	}
1648}
1649
1650/* Used by processes to "lock" a socket state, so that
1651 * interrupts and bottom half handlers won't change it
1652 * from under us. It essentially blocks any incoming
1653 * packets, so that we won't get any new data or any
1654 * packets that change the state of the socket.
1655 *
1656 * While locked, BH processing will add new packets to
1657 * the backlog queue.  This queue is processed by the
1658 * owner of the socket lock right before it is released.
1659 *
1660 * Since ~2.3.5 it is also exclusive sleep lock serializing
1661 * accesses from user process context.
1662 */
1663
1664static inline void sock_owned_by_me(const struct sock *sk)
1665{
1666#ifdef CONFIG_LOCKDEP
1667	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1668#endif
1669}
1670
1671static inline bool sock_owned_by_user(const struct sock *sk)
1672{
1673	sock_owned_by_me(sk);
1674	return sk->sk_lock.owned;
1675}
1676
1677static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1678{
1679	return sk->sk_lock.owned;
1680}
1681
1682/* no reclassification while locks are held */
1683static inline bool sock_allow_reclassification(const struct sock *csk)
1684{
1685	struct sock *sk = (struct sock *)csk;
1686
1687	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1688}
1689
1690struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1691		      struct proto *prot, int kern);
1692void sk_free(struct sock *sk);
1693void sk_destruct(struct sock *sk);
1694struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1695void sk_free_unlock_clone(struct sock *sk);
1696
1697struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1698			     gfp_t priority);
1699void __sock_wfree(struct sk_buff *skb);
1700void sock_wfree(struct sk_buff *skb);
1701struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1702			     gfp_t priority);
1703void skb_orphan_partial(struct sk_buff *skb);
1704void sock_rfree(struct sk_buff *skb);
1705void sock_efree(struct sk_buff *skb);
1706#ifdef CONFIG_INET
1707void sock_edemux(struct sk_buff *skb);
1708void sock_pfree(struct sk_buff *skb);
1709#else
1710#define sock_edemux sock_efree
1711#endif
1712
1713int sock_setsockopt(struct socket *sock, int level, int op,
1714		    sockptr_t optval, unsigned int optlen);
1715
1716int sock_getsockopt(struct socket *sock, int level, int op,
1717		    char __user *optval, int __user *optlen);
1718int sock_gettstamp(struct socket *sock, void __user *userstamp,
1719		   bool timeval, bool time32);
1720struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1721				    int noblock, int *errcode);
1722struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1723				     unsigned long data_len, int noblock,
1724				     int *errcode, int max_page_order);
1725void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1726void sock_kfree_s(struct sock *sk, void *mem, int size);
1727void sock_kzfree_s(struct sock *sk, void *mem, int size);
1728void sk_send_sigurg(struct sock *sk);
1729
1730struct sockcm_cookie {
1731	u64 transmit_time;
1732	u32 mark;
1733	u16 tsflags;
1734};
1735
1736static inline void sockcm_init(struct sockcm_cookie *sockc,
1737			       const struct sock *sk)
1738{
1739	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1740}
1741
1742int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1743		     struct sockcm_cookie *sockc);
1744int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1745		   struct sockcm_cookie *sockc);
1746
1747/*
1748 * Functions to fill in entries in struct proto_ops when a protocol
1749 * does not implement a particular function.
1750 */
1751int sock_no_bind(struct socket *, struct sockaddr *, int);
1752int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1753int sock_no_socketpair(struct socket *, struct socket *);
1754int sock_no_accept(struct socket *, struct socket *, int, bool);
1755int sock_no_getname(struct socket *, struct sockaddr *, int);
1756int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1757int sock_no_listen(struct socket *, int);
1758int sock_no_shutdown(struct socket *, int);
 
 
1759int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1760int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1761int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1762int sock_no_mmap(struct file *file, struct socket *sock,
1763		 struct vm_area_struct *vma);
1764ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1765			 size_t size, int flags);
1766ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1767				int offset, size_t size, int flags);
1768
1769/*
1770 * Functions to fill in entries in struct proto_ops when a protocol
1771 * uses the inet style.
1772 */
1773int sock_common_getsockopt(struct socket *sock, int level, int optname,
1774				  char __user *optval, int __user *optlen);
1775int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1776			int flags);
1777int sock_common_setsockopt(struct socket *sock, int level, int optname,
1778			   sockptr_t optval, unsigned int optlen);
 
 
 
 
1779
1780void sk_common_release(struct sock *sk);
1781
1782/*
1783 *	Default socket callbacks and setup code
1784 */
1785
1786/* Initialise core socket variables */
1787void sock_init_data(struct socket *sock, struct sock *sk);
1788
1789/*
1790 * Socket reference counting postulates.
1791 *
1792 * * Each user of socket SHOULD hold a reference count.
1793 * * Each access point to socket (an hash table bucket, reference from a list,
1794 *   running timer, skb in flight MUST hold a reference count.
1795 * * When reference count hits 0, it means it will never increase back.
1796 * * When reference count hits 0, it means that no references from
1797 *   outside exist to this socket and current process on current CPU
1798 *   is last user and may/should destroy this socket.
1799 * * sk_free is called from any context: process, BH, IRQ. When
1800 *   it is called, socket has no references from outside -> sk_free
1801 *   may release descendant resources allocated by the socket, but
1802 *   to the time when it is called, socket is NOT referenced by any
1803 *   hash tables, lists etc.
1804 * * Packets, delivered from outside (from network or from another process)
1805 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1806 *   when they sit in queue. Otherwise, packets will leak to hole, when
1807 *   socket is looked up by one cpu and unhasing is made by another CPU.
1808 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1809 *   (leak to backlog). Packet socket does all the processing inside
1810 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1811 *   use separate SMP lock, so that they are prone too.
1812 */
1813
1814/* Ungrab socket and destroy it, if it was the last reference. */
1815static inline void sock_put(struct sock *sk)
1816{
1817	if (refcount_dec_and_test(&sk->sk_refcnt))
1818		sk_free(sk);
1819}
1820/* Generic version of sock_put(), dealing with all sockets
1821 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1822 */
1823void sock_gen_put(struct sock *sk);
1824
1825int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1826		     unsigned int trim_cap, bool refcounted);
1827static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1828				 const int nested)
1829{
1830	return __sk_receive_skb(sk, skb, nested, 1, true);
1831}
1832
1833static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1834{
1835	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1836	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1837		return;
1838	sk->sk_tx_queue_mapping = tx_queue;
1839}
1840
1841#define NO_QUEUE_MAPPING	USHRT_MAX
1842
1843static inline void sk_tx_queue_clear(struct sock *sk)
1844{
1845	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1846}
1847
1848static inline int sk_tx_queue_get(const struct sock *sk)
1849{
1850	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1851		return sk->sk_tx_queue_mapping;
1852
1853	return -1;
1854}
1855
1856static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1857{
1858#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1859	if (skb_rx_queue_recorded(skb)) {
1860		u16 rx_queue = skb_get_rx_queue(skb);
1861
1862		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1863			return;
1864
1865		sk->sk_rx_queue_mapping = rx_queue;
1866	}
1867#endif
1868}
1869
1870static inline void sk_rx_queue_clear(struct sock *sk)
1871{
1872#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1873	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1874#endif
1875}
1876
 
1877static inline int sk_rx_queue_get(const struct sock *sk)
1878{
1879#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1880	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1881		return sk->sk_rx_queue_mapping;
1882#endif
1883
1884	return -1;
1885}
 
1886
1887static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1888{
 
1889	sk->sk_socket = sock;
1890}
1891
1892static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1893{
1894	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1895	return &rcu_dereference_raw(sk->sk_wq)->wait;
1896}
1897/* Detach socket from process context.
1898 * Announce socket dead, detach it from wait queue and inode.
1899 * Note that parent inode held reference count on this struct sock,
1900 * we do not release it in this function, because protocol
1901 * probably wants some additional cleanups or even continuing
1902 * to work with this socket (TCP).
1903 */
1904static inline void sock_orphan(struct sock *sk)
1905{
1906	write_lock_bh(&sk->sk_callback_lock);
1907	sock_set_flag(sk, SOCK_DEAD);
1908	sk_set_socket(sk, NULL);
1909	sk->sk_wq  = NULL;
1910	write_unlock_bh(&sk->sk_callback_lock);
1911}
1912
1913static inline void sock_graft(struct sock *sk, struct socket *parent)
1914{
1915	WARN_ON(parent->sk);
1916	write_lock_bh(&sk->sk_callback_lock);
1917	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1918	parent->sk = sk;
1919	sk_set_socket(sk, parent);
1920	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1921	security_sock_graft(sk, parent);
1922	write_unlock_bh(&sk->sk_callback_lock);
1923}
1924
1925kuid_t sock_i_uid(struct sock *sk);
1926unsigned long sock_i_ino(struct sock *sk);
1927
1928static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1929{
1930	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1931}
1932
1933static inline u32 net_tx_rndhash(void)
1934{
1935	u32 v = prandom_u32();
1936
1937	return v ?: 1;
1938}
1939
1940static inline void sk_set_txhash(struct sock *sk)
1941{
1942	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1943	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1944}
1945
1946static inline bool sk_rethink_txhash(struct sock *sk)
1947{
1948	if (sk->sk_txhash) {
1949		sk_set_txhash(sk);
1950		return true;
1951	}
1952	return false;
1953}
1954
1955static inline struct dst_entry *
1956__sk_dst_get(struct sock *sk)
1957{
1958	return rcu_dereference_check(sk->sk_dst_cache,
1959				     lockdep_sock_is_held(sk));
1960}
1961
1962static inline struct dst_entry *
1963sk_dst_get(struct sock *sk)
1964{
1965	struct dst_entry *dst;
1966
1967	rcu_read_lock();
1968	dst = rcu_dereference(sk->sk_dst_cache);
1969	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1970		dst = NULL;
1971	rcu_read_unlock();
1972	return dst;
1973}
1974
1975static inline void __dst_negative_advice(struct sock *sk)
1976{
1977	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1978
 
 
1979	if (dst && dst->ops->negative_advice) {
1980		ndst = dst->ops->negative_advice(dst);
1981
1982		if (ndst != dst) {
1983			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1984			sk_tx_queue_clear(sk);
1985			sk->sk_dst_pending_confirm = 0;
1986		}
1987	}
1988}
1989
1990static inline void dst_negative_advice(struct sock *sk)
1991{
1992	sk_rethink_txhash(sk);
1993	__dst_negative_advice(sk);
1994}
1995
1996static inline void
1997__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1998{
1999	struct dst_entry *old_dst;
2000
2001	sk_tx_queue_clear(sk);
2002	sk->sk_dst_pending_confirm = 0;
2003	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2004					    lockdep_sock_is_held(sk));
2005	rcu_assign_pointer(sk->sk_dst_cache, dst);
2006	dst_release(old_dst);
2007}
2008
2009static inline void
2010sk_dst_set(struct sock *sk, struct dst_entry *dst)
2011{
2012	struct dst_entry *old_dst;
2013
2014	sk_tx_queue_clear(sk);
2015	sk->sk_dst_pending_confirm = 0;
2016	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2017	dst_release(old_dst);
2018}
2019
2020static inline void
2021__sk_dst_reset(struct sock *sk)
2022{
2023	__sk_dst_set(sk, NULL);
2024}
2025
2026static inline void
2027sk_dst_reset(struct sock *sk)
2028{
2029	sk_dst_set(sk, NULL);
2030}
2031
2032struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2033
2034struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2035
2036static inline void sk_dst_confirm(struct sock *sk)
2037{
2038	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2039		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2040}
2041
2042static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2043{
2044	if (skb_get_dst_pending_confirm(skb)) {
2045		struct sock *sk = skb->sk;
2046		unsigned long now = jiffies;
2047
2048		/* avoid dirtying neighbour */
2049		if (READ_ONCE(n->confirmed) != now)
2050			WRITE_ONCE(n->confirmed, now);
2051		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2052			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2053	}
2054}
2055
2056bool sk_mc_loop(struct sock *sk);
2057
2058static inline bool sk_can_gso(const struct sock *sk)
2059{
2060	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2061}
2062
2063void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2064
2065static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2066{
2067	sk->sk_route_nocaps |= flags;
2068	sk->sk_route_caps &= ~flags;
2069}
2070
2071static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2072					   struct iov_iter *from, char *to,
2073					   int copy, int offset)
2074{
2075	if (skb->ip_summed == CHECKSUM_NONE) {
2076		__wsum csum = 0;
2077		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2078			return -EFAULT;
2079		skb->csum = csum_block_add(skb->csum, csum, offset);
2080	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2081		if (!copy_from_iter_full_nocache(to, copy, from))
2082			return -EFAULT;
2083	} else if (!copy_from_iter_full(to, copy, from))
2084		return -EFAULT;
2085
2086	return 0;
2087}
2088
2089static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2090				       struct iov_iter *from, int copy)
2091{
2092	int err, offset = skb->len;
2093
2094	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2095				       copy, offset);
2096	if (err)
2097		__skb_trim(skb, offset);
2098
2099	return err;
2100}
2101
2102static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2103					   struct sk_buff *skb,
2104					   struct page *page,
2105					   int off, int copy)
2106{
2107	int err;
2108
2109	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2110				       copy, skb->len);
2111	if (err)
2112		return err;
2113
2114	skb->len	     += copy;
2115	skb->data_len	     += copy;
2116	skb->truesize	     += copy;
2117	sk_wmem_queued_add(sk, copy);
2118	sk_mem_charge(sk, copy);
2119	return 0;
2120}
2121
2122/**
2123 * sk_wmem_alloc_get - returns write allocations
2124 * @sk: socket
2125 *
2126 * Return: sk_wmem_alloc minus initial offset of one
2127 */
2128static inline int sk_wmem_alloc_get(const struct sock *sk)
2129{
2130	return refcount_read(&sk->sk_wmem_alloc) - 1;
2131}
2132
2133/**
2134 * sk_rmem_alloc_get - returns read allocations
2135 * @sk: socket
2136 *
2137 * Return: sk_rmem_alloc
2138 */
2139static inline int sk_rmem_alloc_get(const struct sock *sk)
2140{
2141	return atomic_read(&sk->sk_rmem_alloc);
2142}
2143
2144/**
2145 * sk_has_allocations - check if allocations are outstanding
2146 * @sk: socket
2147 *
2148 * Return: true if socket has write or read allocations
2149 */
2150static inline bool sk_has_allocations(const struct sock *sk)
2151{
2152	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2153}
2154
2155/**
2156 * skwq_has_sleeper - check if there are any waiting processes
2157 * @wq: struct socket_wq
2158 *
2159 * Return: true if socket_wq has waiting processes
2160 *
2161 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2162 * barrier call. They were added due to the race found within the tcp code.
2163 *
2164 * Consider following tcp code paths::
2165 *
2166 *   CPU1                CPU2
2167 *   sys_select          receive packet
2168 *   ...                 ...
2169 *   __add_wait_queue    update tp->rcv_nxt
2170 *   ...                 ...
2171 *   tp->rcv_nxt check   sock_def_readable
2172 *   ...                 {
2173 *   schedule               rcu_read_lock();
2174 *                          wq = rcu_dereference(sk->sk_wq);
2175 *                          if (wq && waitqueue_active(&wq->wait))
2176 *                              wake_up_interruptible(&wq->wait)
2177 *                          ...
2178 *                       }
2179 *
2180 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2181 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2182 * could then endup calling schedule and sleep forever if there are no more
2183 * data on the socket.
2184 *
2185 */
2186static inline bool skwq_has_sleeper(struct socket_wq *wq)
2187{
2188	return wq && wq_has_sleeper(&wq->wait);
2189}
2190
2191/**
2192 * sock_poll_wait - place memory barrier behind the poll_wait call.
2193 * @filp:           file
2194 * @sock:           socket to wait on
2195 * @p:              poll_table
2196 *
2197 * See the comments in the wq_has_sleeper function.
2198 */
2199static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2200				  poll_table *p)
2201{
2202	if (!poll_does_not_wait(p)) {
2203		poll_wait(filp, &sock->wq.wait, p);
2204		/* We need to be sure we are in sync with the
2205		 * socket flags modification.
2206		 *
2207		 * This memory barrier is paired in the wq_has_sleeper.
2208		 */
2209		smp_mb();
2210	}
2211}
2212
2213static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2214{
2215	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2216	u32 txhash = READ_ONCE(sk->sk_txhash);
2217
2218	if (txhash) {
2219		skb->l4_hash = 1;
2220		skb->hash = txhash;
2221	}
2222}
2223
2224void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2225
2226/*
2227 *	Queue a received datagram if it will fit. Stream and sequenced
2228 *	protocols can't normally use this as they need to fit buffers in
2229 *	and play with them.
2230 *
2231 *	Inlined as it's very short and called for pretty much every
2232 *	packet ever received.
2233 */
2234static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2235{
2236	skb_orphan(skb);
2237	skb->sk = sk;
2238	skb->destructor = sock_rfree;
2239	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2240	sk_mem_charge(sk, skb->truesize);
2241}
2242
2243static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2244{
2245	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2246		skb_orphan(skb);
2247		skb->destructor = sock_efree;
2248		skb->sk = sk;
2249		return true;
2250	}
2251	return false;
2252}
2253
2254void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2255		    unsigned long expires);
2256
2257void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2258
2259void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2260
2261int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2262			struct sk_buff *skb, unsigned int flags,
2263			void (*destructor)(struct sock *sk,
2264					   struct sk_buff *skb));
2265int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2266int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2267
2268int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2269struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2270
2271/*
2272 *	Recover an error report and clear atomically
2273 */
2274
2275static inline int sock_error(struct sock *sk)
2276{
2277	int err;
2278
2279	/* Avoid an atomic operation for the common case.
2280	 * This is racy since another cpu/thread can change sk_err under us.
2281	 */
2282	if (likely(data_race(!sk->sk_err)))
2283		return 0;
2284
2285	err = xchg(&sk->sk_err, 0);
2286	return -err;
2287}
2288
2289void sk_error_report(struct sock *sk);
2290
2291static inline unsigned long sock_wspace(struct sock *sk)
2292{
2293	int amt = 0;
2294
2295	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2296		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2297		if (amt < 0)
2298			amt = 0;
2299	}
2300	return amt;
2301}
2302
2303/* Note:
2304 *  We use sk->sk_wq_raw, from contexts knowing this
2305 *  pointer is not NULL and cannot disappear/change.
2306 */
2307static inline void sk_set_bit(int nr, struct sock *sk)
2308{
2309	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2310	    !sock_flag(sk, SOCK_FASYNC))
2311		return;
2312
2313	set_bit(nr, &sk->sk_wq_raw->flags);
2314}
2315
2316static inline void sk_clear_bit(int nr, struct sock *sk)
2317{
2318	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2319	    !sock_flag(sk, SOCK_FASYNC))
2320		return;
2321
2322	clear_bit(nr, &sk->sk_wq_raw->flags);
2323}
2324
2325static inline void sk_wake_async(const struct sock *sk, int how, int band)
2326{
2327	if (sock_flag(sk, SOCK_FASYNC)) {
2328		rcu_read_lock();
2329		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2330		rcu_read_unlock();
2331	}
2332}
2333
2334/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2335 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2336 * Note: for send buffers, TCP works better if we can build two skbs at
2337 * minimum.
2338 */
2339#define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2340
2341#define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2342#define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2343
2344static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2345{
2346	u32 val;
2347
2348	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2349		return;
2350
2351	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2352
2353	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2354}
2355
2356struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2357				    bool force_schedule);
2358
2359/**
2360 * sk_page_frag - return an appropriate page_frag
2361 * @sk: socket
2362 *
2363 * Use the per task page_frag instead of the per socket one for
2364 * optimization when we know that we're in the normal context and owns
2365 * everything that's associated with %current.
2366 *
2367 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2368 * inside other socket operations and end up recursing into sk_page_frag()
2369 * while it's already in use.
2370 *
2371 * Return: a per task page_frag if context allows that,
2372 * otherwise a per socket one.
2373 */
2374static inline struct page_frag *sk_page_frag(struct sock *sk)
2375{
2376	if (gfpflags_normal_context(sk->sk_allocation))
2377		return &current->task_frag;
2378
2379	return &sk->sk_frag;
2380}
2381
2382bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2383
2384/*
2385 *	Default write policy as shown to user space via poll/select/SIGIO
2386 */
2387static inline bool sock_writeable(const struct sock *sk)
2388{
2389	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2390}
2391
2392static inline gfp_t gfp_any(void)
2393{
2394	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2395}
2396
2397static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2398{
2399	return noblock ? 0 : sk->sk_rcvtimeo;
2400}
2401
2402static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2403{
2404	return noblock ? 0 : sk->sk_sndtimeo;
2405}
2406
2407static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2408{
2409	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2410
2411	return v ?: 1;
2412}
2413
2414/* Alas, with timeout socket operations are not restartable.
2415 * Compare this to poll().
2416 */
2417static inline int sock_intr_errno(long timeo)
2418{
2419	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2420}
2421
2422struct sock_skb_cb {
2423	u32 dropcount;
2424};
2425
2426/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2427 * using skb->cb[] would keep using it directly and utilize its
2428 * alignement guarantee.
2429 */
2430#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2431			    sizeof(struct sock_skb_cb)))
2432
2433#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2434			    SOCK_SKB_CB_OFFSET))
2435
2436#define sock_skb_cb_check_size(size) \
2437	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2438
2439static inline void
2440sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2441{
2442	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2443						atomic_read(&sk->sk_drops) : 0;
2444}
2445
2446static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2447{
2448	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2449
2450	atomic_add(segs, &sk->sk_drops);
2451}
2452
2453static inline ktime_t sock_read_timestamp(struct sock *sk)
2454{
2455#if BITS_PER_LONG==32
2456	unsigned int seq;
2457	ktime_t kt;
2458
2459	do {
2460		seq = read_seqbegin(&sk->sk_stamp_seq);
2461		kt = sk->sk_stamp;
2462	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2463
2464	return kt;
2465#else
2466	return READ_ONCE(sk->sk_stamp);
2467#endif
2468}
2469
2470static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2471{
2472#if BITS_PER_LONG==32
2473	write_seqlock(&sk->sk_stamp_seq);
2474	sk->sk_stamp = kt;
2475	write_sequnlock(&sk->sk_stamp_seq);
2476#else
2477	WRITE_ONCE(sk->sk_stamp, kt);
2478#endif
2479}
2480
2481void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2482			   struct sk_buff *skb);
2483void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2484			     struct sk_buff *skb);
2485
2486static inline void
2487sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2488{
2489	ktime_t kt = skb->tstamp;
2490	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2491
2492	/*
2493	 * generate control messages if
2494	 * - receive time stamping in software requested
2495	 * - software time stamp available and wanted
2496	 * - hardware time stamps available and wanted
2497	 */
2498	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2499	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2500	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2501	    (hwtstamps->hwtstamp &&
2502	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2503		__sock_recv_timestamp(msg, sk, skb);
2504	else
2505		sock_write_timestamp(sk, kt);
2506
2507	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2508		__sock_recv_wifi_status(msg, sk, skb);
2509}
2510
2511void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2512			      struct sk_buff *skb);
2513
2514#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2515static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2516					  struct sk_buff *skb)
2517{
2518#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2519			   (1UL << SOCK_RCVTSTAMP))
2520#define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2521			   SOF_TIMESTAMPING_RAW_HARDWARE)
2522
2523	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2524		__sock_recv_ts_and_drops(msg, sk, skb);
2525	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2526		sock_write_timestamp(sk, skb->tstamp);
2527	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2528		sock_write_timestamp(sk, 0);
2529}
2530
2531void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2532
2533/**
2534 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2535 * @sk:		socket sending this packet
2536 * @tsflags:	timestamping flags to use
2537 * @tx_flags:	completed with instructions for time stamping
2538 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2539 *
2540 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2541 */
2542static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2543				      __u8 *tx_flags, __u32 *tskey)
2544{
2545	if (unlikely(tsflags)) {
2546		__sock_tx_timestamp(tsflags, tx_flags);
2547		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2548		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2549			*tskey = sk->sk_tskey++;
2550	}
2551	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2552		*tx_flags |= SKBTX_WIFI_STATUS;
2553}
2554
2555static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2556				     __u8 *tx_flags)
2557{
2558	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2559}
2560
2561static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2562{
2563	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2564			   &skb_shinfo(skb)->tskey);
2565}
2566
2567DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2568/**
2569 * sk_eat_skb - Release a skb if it is no longer needed
2570 * @sk: socket to eat this skb from
2571 * @skb: socket buffer to eat
2572 *
2573 * This routine must be called with interrupts disabled or with the socket
2574 * locked so that the sk_buff queue operation is ok.
2575*/
 
2576static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2577{
2578	__skb_unlink(skb, &sk->sk_receive_queue);
2579	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2580	    !sk->sk_rx_skb_cache) {
2581		sk->sk_rx_skb_cache = skb;
2582		skb_orphan(skb);
2583		return;
2584	}
2585	__kfree_skb(skb);
2586}
2587
2588static inline
2589struct net *sock_net(const struct sock *sk)
2590{
2591	return read_pnet(&sk->sk_net);
2592}
2593
2594static inline
2595void sock_net_set(struct sock *sk, struct net *net)
2596{
2597	write_pnet(&sk->sk_net, net);
2598}
2599
2600static inline bool
2601skb_sk_is_prefetched(struct sk_buff *skb)
2602{
2603#ifdef CONFIG_INET
2604	return skb->destructor == sock_pfree;
2605#else
2606	return false;
2607#endif /* CONFIG_INET */
 
 
 
2608}
2609
2610/* This helper checks if a socket is a full socket,
2611 * ie _not_ a timewait or request socket.
2612 */
2613static inline bool sk_fullsock(const struct sock *sk)
2614{
2615	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2616}
2617
2618static inline bool
2619sk_is_refcounted(struct sock *sk)
2620{
2621	/* Only full sockets have sk->sk_flags. */
2622	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2623}
2624
2625/**
2626 * skb_steal_sock - steal a socket from an sk_buff
2627 * @skb: sk_buff to steal the socket from
2628 * @refcounted: is set to true if the socket is reference-counted
2629 */
2630static inline struct sock *
2631skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2632{
2633	if (skb->sk) {
2634		struct sock *sk = skb->sk;
2635
2636		*refcounted = true;
2637		if (skb_sk_is_prefetched(skb))
2638			*refcounted = sk_is_refcounted(sk);
2639		skb->destructor = NULL;
2640		skb->sk = NULL;
2641		return sk;
2642	}
2643	*refcounted = false;
2644	return NULL;
2645}
2646
2647/* Checks if this SKB belongs to an HW offloaded socket
2648 * and whether any SW fallbacks are required based on dev.
2649 * Check decrypted mark in case skb_orphan() cleared socket.
2650 */
2651static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2652						   struct net_device *dev)
2653{
2654#ifdef CONFIG_SOCK_VALIDATE_XMIT
2655	struct sock *sk = skb->sk;
2656
2657	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2658		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2659#ifdef CONFIG_TLS_DEVICE
2660	} else if (unlikely(skb->decrypted)) {
2661		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2662		kfree_skb(skb);
2663		skb = NULL;
2664#endif
2665	}
2666#endif
2667
2668	return skb;
2669}
2670
2671/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2672 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2673 */
2674static inline bool sk_listener(const struct sock *sk)
2675{
2676	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2677}
2678
2679void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2680int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2681		       int type);
2682
2683bool sk_ns_capable(const struct sock *sk,
2684		   struct user_namespace *user_ns, int cap);
2685bool sk_capable(const struct sock *sk, int cap);
2686bool sk_net_capable(const struct sock *sk, int cap);
2687
2688void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2689
2690/* Take into consideration the size of the struct sk_buff overhead in the
2691 * determination of these values, since that is non-constant across
2692 * platforms.  This makes socket queueing behavior and performance
2693 * not depend upon such differences.
2694 */
2695#define _SK_MEM_PACKETS		256
2696#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2697#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2698#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2699
2700extern __u32 sysctl_wmem_max;
2701extern __u32 sysctl_rmem_max;
2702
2703extern int sysctl_tstamp_allow_data;
2704extern int sysctl_optmem_max;
2705
2706extern __u32 sysctl_wmem_default;
2707extern __u32 sysctl_rmem_default;
2708
2709DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2710
2711static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2712{
2713	/* Does this proto have per netns sysctl_wmem ? */
2714	if (proto->sysctl_wmem_offset)
2715		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2716
2717	return *proto->sysctl_wmem;
2718}
2719
2720static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2721{
2722	/* Does this proto have per netns sysctl_rmem ? */
2723	if (proto->sysctl_rmem_offset)
2724		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2725
2726	return *proto->sysctl_rmem;
2727}
2728
2729/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2730 * Some wifi drivers need to tweak it to get more chunks.
2731 * They can use this helper from their ndo_start_xmit()
2732 */
2733static inline void sk_pacing_shift_update(struct sock *sk, int val)
2734{
2735	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2736		return;
2737	WRITE_ONCE(sk->sk_pacing_shift, val);
2738}
2739
2740/* if a socket is bound to a device, check that the given device
2741 * index is either the same or that the socket is bound to an L3
2742 * master device and the given device index is also enslaved to
2743 * that L3 master
2744 */
2745static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2746{
2747	int mdif;
2748
2749	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2750		return true;
2751
2752	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2753	if (mdif && mdif == sk->sk_bound_dev_if)
2754		return true;
2755
2756	return false;
2757}
2758
2759void sock_def_readable(struct sock *sk);
2760
2761int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2762void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2763int sock_set_timestamping(struct sock *sk, int optname,
2764			  struct so_timestamping timestamping);
2765
2766void sock_enable_timestamps(struct sock *sk);
2767void sock_no_linger(struct sock *sk);
2768void sock_set_keepalive(struct sock *sk);
2769void sock_set_priority(struct sock *sk, u32 priority);
2770void sock_set_rcvbuf(struct sock *sk, int val);
2771void sock_set_mark(struct sock *sk, u32 val);
2772void sock_set_reuseaddr(struct sock *sk);
2773void sock_set_reuseport(struct sock *sk);
2774void sock_set_sndtimeo(struct sock *sk, s64 secs);
2775
2776int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2777
2778#endif	/* _SOCK_H */