Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/writeback.h>
10#include <linux/pagemap.h>
11#include <linux/blkdev.h>
12#include <linux/uuid.h>
13#include "misc.h"
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
17#include "locking.h"
18#include "tree-log.h"
19#include "inode-map.h"
20#include "volumes.h"
21#include "dev-replace.h"
22#include "qgroup.h"
23#include "block-group.h"
24
25#define BTRFS_ROOT_TRANS_TAG 0
26
27static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
28 [TRANS_STATE_RUNNING] = 0U,
29 [TRANS_STATE_BLOCKED] = __TRANS_START,
30 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
31 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
32 __TRANS_ATTACH |
33 __TRANS_JOIN |
34 __TRANS_JOIN_NOSTART),
35 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
36 __TRANS_ATTACH |
37 __TRANS_JOIN |
38 __TRANS_JOIN_NOLOCK |
39 __TRANS_JOIN_NOSTART),
40 [TRANS_STATE_COMPLETED] = (__TRANS_START |
41 __TRANS_ATTACH |
42 __TRANS_JOIN |
43 __TRANS_JOIN_NOLOCK |
44 __TRANS_JOIN_NOSTART),
45};
46
47void btrfs_put_transaction(struct btrfs_transaction *transaction)
48{
49 WARN_ON(refcount_read(&transaction->use_count) == 0);
50 if (refcount_dec_and_test(&transaction->use_count)) {
51 BUG_ON(!list_empty(&transaction->list));
52 WARN_ON(!RB_EMPTY_ROOT(
53 &transaction->delayed_refs.href_root.rb_root));
54 if (transaction->delayed_refs.pending_csums)
55 btrfs_err(transaction->fs_info,
56 "pending csums is %llu",
57 transaction->delayed_refs.pending_csums);
58 /*
59 * If any block groups are found in ->deleted_bgs then it's
60 * because the transaction was aborted and a commit did not
61 * happen (things failed before writing the new superblock
62 * and calling btrfs_finish_extent_commit()), so we can not
63 * discard the physical locations of the block groups.
64 */
65 while (!list_empty(&transaction->deleted_bgs)) {
66 struct btrfs_block_group_cache *cache;
67
68 cache = list_first_entry(&transaction->deleted_bgs,
69 struct btrfs_block_group_cache,
70 bg_list);
71 list_del_init(&cache->bg_list);
72 btrfs_put_block_group_trimming(cache);
73 btrfs_put_block_group(cache);
74 }
75 WARN_ON(!list_empty(&transaction->dev_update_list));
76 kfree(transaction);
77 }
78}
79
80static noinline void switch_commit_roots(struct btrfs_transaction *trans)
81{
82 struct btrfs_fs_info *fs_info = trans->fs_info;
83 struct btrfs_root *root, *tmp;
84
85 down_write(&fs_info->commit_root_sem);
86 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
87 dirty_list) {
88 list_del_init(&root->dirty_list);
89 free_extent_buffer(root->commit_root);
90 root->commit_root = btrfs_root_node(root);
91 if (is_fstree(root->root_key.objectid))
92 btrfs_unpin_free_ino(root);
93 extent_io_tree_release(&root->dirty_log_pages);
94 btrfs_qgroup_clean_swapped_blocks(root);
95 }
96
97 /* We can free old roots now. */
98 spin_lock(&trans->dropped_roots_lock);
99 while (!list_empty(&trans->dropped_roots)) {
100 root = list_first_entry(&trans->dropped_roots,
101 struct btrfs_root, root_list);
102 list_del_init(&root->root_list);
103 spin_unlock(&trans->dropped_roots_lock);
104 btrfs_drop_and_free_fs_root(fs_info, root);
105 spin_lock(&trans->dropped_roots_lock);
106 }
107 spin_unlock(&trans->dropped_roots_lock);
108 up_write(&fs_info->commit_root_sem);
109}
110
111static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
112 unsigned int type)
113{
114 if (type & TRANS_EXTWRITERS)
115 atomic_inc(&trans->num_extwriters);
116}
117
118static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
119 unsigned int type)
120{
121 if (type & TRANS_EXTWRITERS)
122 atomic_dec(&trans->num_extwriters);
123}
124
125static inline void extwriter_counter_init(struct btrfs_transaction *trans,
126 unsigned int type)
127{
128 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
129}
130
131static inline int extwriter_counter_read(struct btrfs_transaction *trans)
132{
133 return atomic_read(&trans->num_extwriters);
134}
135
136/*
137 * To be called after all the new block groups attached to the transaction
138 * handle have been created (btrfs_create_pending_block_groups()).
139 */
140void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
141{
142 struct btrfs_fs_info *fs_info = trans->fs_info;
143
144 if (!trans->chunk_bytes_reserved)
145 return;
146
147 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
148
149 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
150 trans->chunk_bytes_reserved);
151 trans->chunk_bytes_reserved = 0;
152}
153
154/*
155 * either allocate a new transaction or hop into the existing one
156 */
157static noinline int join_transaction(struct btrfs_fs_info *fs_info,
158 unsigned int type)
159{
160 struct btrfs_transaction *cur_trans;
161
162 spin_lock(&fs_info->trans_lock);
163loop:
164 /* The file system has been taken offline. No new transactions. */
165 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
166 spin_unlock(&fs_info->trans_lock);
167 return -EROFS;
168 }
169
170 cur_trans = fs_info->running_transaction;
171 if (cur_trans) {
172 if (cur_trans->aborted) {
173 spin_unlock(&fs_info->trans_lock);
174 return cur_trans->aborted;
175 }
176 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
177 spin_unlock(&fs_info->trans_lock);
178 return -EBUSY;
179 }
180 refcount_inc(&cur_trans->use_count);
181 atomic_inc(&cur_trans->num_writers);
182 extwriter_counter_inc(cur_trans, type);
183 spin_unlock(&fs_info->trans_lock);
184 return 0;
185 }
186 spin_unlock(&fs_info->trans_lock);
187
188 /*
189 * If we are ATTACH, we just want to catch the current transaction,
190 * and commit it. If there is no transaction, just return ENOENT.
191 */
192 if (type == TRANS_ATTACH)
193 return -ENOENT;
194
195 /*
196 * JOIN_NOLOCK only happens during the transaction commit, so
197 * it is impossible that ->running_transaction is NULL
198 */
199 BUG_ON(type == TRANS_JOIN_NOLOCK);
200
201 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
202 if (!cur_trans)
203 return -ENOMEM;
204
205 spin_lock(&fs_info->trans_lock);
206 if (fs_info->running_transaction) {
207 /*
208 * someone started a transaction after we unlocked. Make sure
209 * to redo the checks above
210 */
211 kfree(cur_trans);
212 goto loop;
213 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
214 spin_unlock(&fs_info->trans_lock);
215 kfree(cur_trans);
216 return -EROFS;
217 }
218
219 cur_trans->fs_info = fs_info;
220 atomic_set(&cur_trans->num_writers, 1);
221 extwriter_counter_init(cur_trans, type);
222 init_waitqueue_head(&cur_trans->writer_wait);
223 init_waitqueue_head(&cur_trans->commit_wait);
224 cur_trans->state = TRANS_STATE_RUNNING;
225 /*
226 * One for this trans handle, one so it will live on until we
227 * commit the transaction.
228 */
229 refcount_set(&cur_trans->use_count, 2);
230 cur_trans->flags = 0;
231 cur_trans->start_time = ktime_get_seconds();
232
233 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
234
235 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
236 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
237 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
238
239 /*
240 * although the tree mod log is per file system and not per transaction,
241 * the log must never go across transaction boundaries.
242 */
243 smp_mb();
244 if (!list_empty(&fs_info->tree_mod_seq_list))
245 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
246 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
247 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
248 atomic64_set(&fs_info->tree_mod_seq, 0);
249
250 spin_lock_init(&cur_trans->delayed_refs.lock);
251
252 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
253 INIT_LIST_HEAD(&cur_trans->dev_update_list);
254 INIT_LIST_HEAD(&cur_trans->switch_commits);
255 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
256 INIT_LIST_HEAD(&cur_trans->io_bgs);
257 INIT_LIST_HEAD(&cur_trans->dropped_roots);
258 mutex_init(&cur_trans->cache_write_mutex);
259 spin_lock_init(&cur_trans->dirty_bgs_lock);
260 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
261 spin_lock_init(&cur_trans->dropped_roots_lock);
262 list_add_tail(&cur_trans->list, &fs_info->trans_list);
263 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
264 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
265 fs_info->generation++;
266 cur_trans->transid = fs_info->generation;
267 fs_info->running_transaction = cur_trans;
268 cur_trans->aborted = 0;
269 spin_unlock(&fs_info->trans_lock);
270
271 return 0;
272}
273
274/*
275 * this does all the record keeping required to make sure that a reference
276 * counted root is properly recorded in a given transaction. This is required
277 * to make sure the old root from before we joined the transaction is deleted
278 * when the transaction commits
279 */
280static int record_root_in_trans(struct btrfs_trans_handle *trans,
281 struct btrfs_root *root,
282 int force)
283{
284 struct btrfs_fs_info *fs_info = root->fs_info;
285
286 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
287 root->last_trans < trans->transid) || force) {
288 WARN_ON(root == fs_info->extent_root);
289 WARN_ON(!force && root->commit_root != root->node);
290
291 /*
292 * see below for IN_TRANS_SETUP usage rules
293 * we have the reloc mutex held now, so there
294 * is only one writer in this function
295 */
296 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
297
298 /* make sure readers find IN_TRANS_SETUP before
299 * they find our root->last_trans update
300 */
301 smp_wmb();
302
303 spin_lock(&fs_info->fs_roots_radix_lock);
304 if (root->last_trans == trans->transid && !force) {
305 spin_unlock(&fs_info->fs_roots_radix_lock);
306 return 0;
307 }
308 radix_tree_tag_set(&fs_info->fs_roots_radix,
309 (unsigned long)root->root_key.objectid,
310 BTRFS_ROOT_TRANS_TAG);
311 spin_unlock(&fs_info->fs_roots_radix_lock);
312 root->last_trans = trans->transid;
313
314 /* this is pretty tricky. We don't want to
315 * take the relocation lock in btrfs_record_root_in_trans
316 * unless we're really doing the first setup for this root in
317 * this transaction.
318 *
319 * Normally we'd use root->last_trans as a flag to decide
320 * if we want to take the expensive mutex.
321 *
322 * But, we have to set root->last_trans before we
323 * init the relocation root, otherwise, we trip over warnings
324 * in ctree.c. The solution used here is to flag ourselves
325 * with root IN_TRANS_SETUP. When this is 1, we're still
326 * fixing up the reloc trees and everyone must wait.
327 *
328 * When this is zero, they can trust root->last_trans and fly
329 * through btrfs_record_root_in_trans without having to take the
330 * lock. smp_wmb() makes sure that all the writes above are
331 * done before we pop in the zero below
332 */
333 btrfs_init_reloc_root(trans, root);
334 smp_mb__before_atomic();
335 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
336 }
337 return 0;
338}
339
340
341void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root)
343{
344 struct btrfs_fs_info *fs_info = root->fs_info;
345 struct btrfs_transaction *cur_trans = trans->transaction;
346
347 /* Add ourselves to the transaction dropped list */
348 spin_lock(&cur_trans->dropped_roots_lock);
349 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
350 spin_unlock(&cur_trans->dropped_roots_lock);
351
352 /* Make sure we don't try to update the root at commit time */
353 spin_lock(&fs_info->fs_roots_radix_lock);
354 radix_tree_tag_clear(&fs_info->fs_roots_radix,
355 (unsigned long)root->root_key.objectid,
356 BTRFS_ROOT_TRANS_TAG);
357 spin_unlock(&fs_info->fs_roots_radix_lock);
358}
359
360int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
361 struct btrfs_root *root)
362{
363 struct btrfs_fs_info *fs_info = root->fs_info;
364
365 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
366 return 0;
367
368 /*
369 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
370 * and barriers
371 */
372 smp_rmb();
373 if (root->last_trans == trans->transid &&
374 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
375 return 0;
376
377 mutex_lock(&fs_info->reloc_mutex);
378 record_root_in_trans(trans, root, 0);
379 mutex_unlock(&fs_info->reloc_mutex);
380
381 return 0;
382}
383
384static inline int is_transaction_blocked(struct btrfs_transaction *trans)
385{
386 return (trans->state >= TRANS_STATE_BLOCKED &&
387 trans->state < TRANS_STATE_UNBLOCKED &&
388 !trans->aborted);
389}
390
391/* wait for commit against the current transaction to become unblocked
392 * when this is done, it is safe to start a new transaction, but the current
393 * transaction might not be fully on disk.
394 */
395static void wait_current_trans(struct btrfs_fs_info *fs_info)
396{
397 struct btrfs_transaction *cur_trans;
398
399 spin_lock(&fs_info->trans_lock);
400 cur_trans = fs_info->running_transaction;
401 if (cur_trans && is_transaction_blocked(cur_trans)) {
402 refcount_inc(&cur_trans->use_count);
403 spin_unlock(&fs_info->trans_lock);
404
405 wait_event(fs_info->transaction_wait,
406 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
407 cur_trans->aborted);
408 btrfs_put_transaction(cur_trans);
409 } else {
410 spin_unlock(&fs_info->trans_lock);
411 }
412}
413
414static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
415{
416 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
417 return 0;
418
419 if (type == TRANS_START)
420 return 1;
421
422 return 0;
423}
424
425static inline bool need_reserve_reloc_root(struct btrfs_root *root)
426{
427 struct btrfs_fs_info *fs_info = root->fs_info;
428
429 if (!fs_info->reloc_ctl ||
430 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
431 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
432 root->reloc_root)
433 return false;
434
435 return true;
436}
437
438static struct btrfs_trans_handle *
439start_transaction(struct btrfs_root *root, unsigned int num_items,
440 unsigned int type, enum btrfs_reserve_flush_enum flush,
441 bool enforce_qgroups)
442{
443 struct btrfs_fs_info *fs_info = root->fs_info;
444 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
445 struct btrfs_trans_handle *h;
446 struct btrfs_transaction *cur_trans;
447 u64 num_bytes = 0;
448 u64 qgroup_reserved = 0;
449 bool reloc_reserved = false;
450 int ret;
451
452 /* Send isn't supposed to start transactions. */
453 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
454
455 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
456 return ERR_PTR(-EROFS);
457
458 if (current->journal_info) {
459 WARN_ON(type & TRANS_EXTWRITERS);
460 h = current->journal_info;
461 refcount_inc(&h->use_count);
462 WARN_ON(refcount_read(&h->use_count) > 2);
463 h->orig_rsv = h->block_rsv;
464 h->block_rsv = NULL;
465 goto got_it;
466 }
467
468 /*
469 * Do the reservation before we join the transaction so we can do all
470 * the appropriate flushing if need be.
471 */
472 if (num_items && root != fs_info->chunk_root) {
473 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
474 u64 delayed_refs_bytes = 0;
475
476 qgroup_reserved = num_items * fs_info->nodesize;
477 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
478 enforce_qgroups);
479 if (ret)
480 return ERR_PTR(ret);
481
482 /*
483 * We want to reserve all the bytes we may need all at once, so
484 * we only do 1 enospc flushing cycle per transaction start. We
485 * accomplish this by simply assuming we'll do 2 x num_items
486 * worth of delayed refs updates in this trans handle, and
487 * refill that amount for whatever is missing in the reserve.
488 */
489 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
490 if (delayed_refs_rsv->full == 0) {
491 delayed_refs_bytes = num_bytes;
492 num_bytes <<= 1;
493 }
494
495 /*
496 * Do the reservation for the relocation root creation
497 */
498 if (need_reserve_reloc_root(root)) {
499 num_bytes += fs_info->nodesize;
500 reloc_reserved = true;
501 }
502
503 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
504 if (ret)
505 goto reserve_fail;
506 if (delayed_refs_bytes) {
507 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
508 delayed_refs_bytes);
509 num_bytes -= delayed_refs_bytes;
510 }
511 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
512 !delayed_refs_rsv->full) {
513 /*
514 * Some people call with btrfs_start_transaction(root, 0)
515 * because they can be throttled, but have some other mechanism
516 * for reserving space. We still want these guys to refill the
517 * delayed block_rsv so just add 1 items worth of reservation
518 * here.
519 */
520 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
521 if (ret)
522 goto reserve_fail;
523 }
524again:
525 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
526 if (!h) {
527 ret = -ENOMEM;
528 goto alloc_fail;
529 }
530
531 /*
532 * If we are JOIN_NOLOCK we're already committing a transaction and
533 * waiting on this guy, so we don't need to do the sb_start_intwrite
534 * because we're already holding a ref. We need this because we could
535 * have raced in and did an fsync() on a file which can kick a commit
536 * and then we deadlock with somebody doing a freeze.
537 *
538 * If we are ATTACH, it means we just want to catch the current
539 * transaction and commit it, so we needn't do sb_start_intwrite().
540 */
541 if (type & __TRANS_FREEZABLE)
542 sb_start_intwrite(fs_info->sb);
543
544 if (may_wait_transaction(fs_info, type))
545 wait_current_trans(fs_info);
546
547 do {
548 ret = join_transaction(fs_info, type);
549 if (ret == -EBUSY) {
550 wait_current_trans(fs_info);
551 if (unlikely(type == TRANS_ATTACH ||
552 type == TRANS_JOIN_NOSTART))
553 ret = -ENOENT;
554 }
555 } while (ret == -EBUSY);
556
557 if (ret < 0)
558 goto join_fail;
559
560 cur_trans = fs_info->running_transaction;
561
562 h->transid = cur_trans->transid;
563 h->transaction = cur_trans;
564 h->root = root;
565 refcount_set(&h->use_count, 1);
566 h->fs_info = root->fs_info;
567
568 h->type = type;
569 h->can_flush_pending_bgs = true;
570 INIT_LIST_HEAD(&h->new_bgs);
571
572 smp_mb();
573 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
574 may_wait_transaction(fs_info, type)) {
575 current->journal_info = h;
576 btrfs_commit_transaction(h);
577 goto again;
578 }
579
580 if (num_bytes) {
581 trace_btrfs_space_reservation(fs_info, "transaction",
582 h->transid, num_bytes, 1);
583 h->block_rsv = &fs_info->trans_block_rsv;
584 h->bytes_reserved = num_bytes;
585 h->reloc_reserved = reloc_reserved;
586 }
587
588got_it:
589 btrfs_record_root_in_trans(h, root);
590
591 if (!current->journal_info)
592 current->journal_info = h;
593 return h;
594
595join_fail:
596 if (type & __TRANS_FREEZABLE)
597 sb_end_intwrite(fs_info->sb);
598 kmem_cache_free(btrfs_trans_handle_cachep, h);
599alloc_fail:
600 if (num_bytes)
601 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
602 num_bytes);
603reserve_fail:
604 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
605 return ERR_PTR(ret);
606}
607
608struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
609 unsigned int num_items)
610{
611 return start_transaction(root, num_items, TRANS_START,
612 BTRFS_RESERVE_FLUSH_ALL, true);
613}
614
615struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
616 struct btrfs_root *root,
617 unsigned int num_items,
618 int min_factor)
619{
620 struct btrfs_fs_info *fs_info = root->fs_info;
621 struct btrfs_trans_handle *trans;
622 u64 num_bytes;
623 int ret;
624
625 /*
626 * We have two callers: unlink and block group removal. The
627 * former should succeed even if we will temporarily exceed
628 * quota and the latter operates on the extent root so
629 * qgroup enforcement is ignored anyway.
630 */
631 trans = start_transaction(root, num_items, TRANS_START,
632 BTRFS_RESERVE_FLUSH_ALL, false);
633 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
634 return trans;
635
636 trans = btrfs_start_transaction(root, 0);
637 if (IS_ERR(trans))
638 return trans;
639
640 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
641 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
642 num_bytes, min_factor);
643 if (ret) {
644 btrfs_end_transaction(trans);
645 return ERR_PTR(ret);
646 }
647
648 trans->block_rsv = &fs_info->trans_block_rsv;
649 trans->bytes_reserved = num_bytes;
650 trace_btrfs_space_reservation(fs_info, "transaction",
651 trans->transid, num_bytes, 1);
652
653 return trans;
654}
655
656struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
657{
658 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
659 true);
660}
661
662struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
663{
664 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
665 BTRFS_RESERVE_NO_FLUSH, true);
666}
667
668/*
669 * Similar to regular join but it never starts a transaction when none is
670 * running or after waiting for the current one to finish.
671 */
672struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
673{
674 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
675 BTRFS_RESERVE_NO_FLUSH, true);
676}
677
678/*
679 * btrfs_attach_transaction() - catch the running transaction
680 *
681 * It is used when we want to commit the current the transaction, but
682 * don't want to start a new one.
683 *
684 * Note: If this function return -ENOENT, it just means there is no
685 * running transaction. But it is possible that the inactive transaction
686 * is still in the memory, not fully on disk. If you hope there is no
687 * inactive transaction in the fs when -ENOENT is returned, you should
688 * invoke
689 * btrfs_attach_transaction_barrier()
690 */
691struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
692{
693 return start_transaction(root, 0, TRANS_ATTACH,
694 BTRFS_RESERVE_NO_FLUSH, true);
695}
696
697/*
698 * btrfs_attach_transaction_barrier() - catch the running transaction
699 *
700 * It is similar to the above function, the difference is this one
701 * will wait for all the inactive transactions until they fully
702 * complete.
703 */
704struct btrfs_trans_handle *
705btrfs_attach_transaction_barrier(struct btrfs_root *root)
706{
707 struct btrfs_trans_handle *trans;
708
709 trans = start_transaction(root, 0, TRANS_ATTACH,
710 BTRFS_RESERVE_NO_FLUSH, true);
711 if (trans == ERR_PTR(-ENOENT))
712 btrfs_wait_for_commit(root->fs_info, 0);
713
714 return trans;
715}
716
717/* wait for a transaction commit to be fully complete */
718static noinline void wait_for_commit(struct btrfs_transaction *commit)
719{
720 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
721}
722
723int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
724{
725 struct btrfs_transaction *cur_trans = NULL, *t;
726 int ret = 0;
727
728 if (transid) {
729 if (transid <= fs_info->last_trans_committed)
730 goto out;
731
732 /* find specified transaction */
733 spin_lock(&fs_info->trans_lock);
734 list_for_each_entry(t, &fs_info->trans_list, list) {
735 if (t->transid == transid) {
736 cur_trans = t;
737 refcount_inc(&cur_trans->use_count);
738 ret = 0;
739 break;
740 }
741 if (t->transid > transid) {
742 ret = 0;
743 break;
744 }
745 }
746 spin_unlock(&fs_info->trans_lock);
747
748 /*
749 * The specified transaction doesn't exist, or we
750 * raced with btrfs_commit_transaction
751 */
752 if (!cur_trans) {
753 if (transid > fs_info->last_trans_committed)
754 ret = -EINVAL;
755 goto out;
756 }
757 } else {
758 /* find newest transaction that is committing | committed */
759 spin_lock(&fs_info->trans_lock);
760 list_for_each_entry_reverse(t, &fs_info->trans_list,
761 list) {
762 if (t->state >= TRANS_STATE_COMMIT_START) {
763 if (t->state == TRANS_STATE_COMPLETED)
764 break;
765 cur_trans = t;
766 refcount_inc(&cur_trans->use_count);
767 break;
768 }
769 }
770 spin_unlock(&fs_info->trans_lock);
771 if (!cur_trans)
772 goto out; /* nothing committing|committed */
773 }
774
775 wait_for_commit(cur_trans);
776 btrfs_put_transaction(cur_trans);
777out:
778 return ret;
779}
780
781void btrfs_throttle(struct btrfs_fs_info *fs_info)
782{
783 wait_current_trans(fs_info);
784}
785
786static int should_end_transaction(struct btrfs_trans_handle *trans)
787{
788 struct btrfs_fs_info *fs_info = trans->fs_info;
789
790 if (btrfs_check_space_for_delayed_refs(fs_info))
791 return 1;
792
793 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
794}
795
796int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
797{
798 struct btrfs_transaction *cur_trans = trans->transaction;
799
800 smp_mb();
801 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
802 cur_trans->delayed_refs.flushing)
803 return 1;
804
805 return should_end_transaction(trans);
806}
807
808static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
809
810{
811 struct btrfs_fs_info *fs_info = trans->fs_info;
812
813 if (!trans->block_rsv) {
814 ASSERT(!trans->bytes_reserved);
815 return;
816 }
817
818 if (!trans->bytes_reserved)
819 return;
820
821 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
822 trace_btrfs_space_reservation(fs_info, "transaction",
823 trans->transid, trans->bytes_reserved, 0);
824 btrfs_block_rsv_release(fs_info, trans->block_rsv,
825 trans->bytes_reserved);
826 trans->bytes_reserved = 0;
827}
828
829static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
830 int throttle)
831{
832 struct btrfs_fs_info *info = trans->fs_info;
833 struct btrfs_transaction *cur_trans = trans->transaction;
834 int lock = (trans->type != TRANS_JOIN_NOLOCK);
835 int err = 0;
836
837 if (refcount_read(&trans->use_count) > 1) {
838 refcount_dec(&trans->use_count);
839 trans->block_rsv = trans->orig_rsv;
840 return 0;
841 }
842
843 btrfs_trans_release_metadata(trans);
844 trans->block_rsv = NULL;
845
846 btrfs_create_pending_block_groups(trans);
847
848 btrfs_trans_release_chunk_metadata(trans);
849
850 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
851 if (throttle)
852 return btrfs_commit_transaction(trans);
853 else
854 wake_up_process(info->transaction_kthread);
855 }
856
857 if (trans->type & __TRANS_FREEZABLE)
858 sb_end_intwrite(info->sb);
859
860 WARN_ON(cur_trans != info->running_transaction);
861 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
862 atomic_dec(&cur_trans->num_writers);
863 extwriter_counter_dec(cur_trans, trans->type);
864
865 cond_wake_up(&cur_trans->writer_wait);
866 btrfs_put_transaction(cur_trans);
867
868 if (current->journal_info == trans)
869 current->journal_info = NULL;
870
871 if (throttle)
872 btrfs_run_delayed_iputs(info);
873
874 if (trans->aborted ||
875 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
876 wake_up_process(info->transaction_kthread);
877 err = -EIO;
878 }
879
880 kmem_cache_free(btrfs_trans_handle_cachep, trans);
881 return err;
882}
883
884int btrfs_end_transaction(struct btrfs_trans_handle *trans)
885{
886 return __btrfs_end_transaction(trans, 0);
887}
888
889int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
890{
891 return __btrfs_end_transaction(trans, 1);
892}
893
894/*
895 * when btree blocks are allocated, they have some corresponding bits set for
896 * them in one of two extent_io trees. This is used to make sure all of
897 * those extents are sent to disk but does not wait on them
898 */
899int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
900 struct extent_io_tree *dirty_pages, int mark)
901{
902 int err = 0;
903 int werr = 0;
904 struct address_space *mapping = fs_info->btree_inode->i_mapping;
905 struct extent_state *cached_state = NULL;
906 u64 start = 0;
907 u64 end;
908
909 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
910 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
911 mark, &cached_state)) {
912 bool wait_writeback = false;
913
914 err = convert_extent_bit(dirty_pages, start, end,
915 EXTENT_NEED_WAIT,
916 mark, &cached_state);
917 /*
918 * convert_extent_bit can return -ENOMEM, which is most of the
919 * time a temporary error. So when it happens, ignore the error
920 * and wait for writeback of this range to finish - because we
921 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
922 * to __btrfs_wait_marked_extents() would not know that
923 * writeback for this range started and therefore wouldn't
924 * wait for it to finish - we don't want to commit a
925 * superblock that points to btree nodes/leafs for which
926 * writeback hasn't finished yet (and without errors).
927 * We cleanup any entries left in the io tree when committing
928 * the transaction (through extent_io_tree_release()).
929 */
930 if (err == -ENOMEM) {
931 err = 0;
932 wait_writeback = true;
933 }
934 if (!err)
935 err = filemap_fdatawrite_range(mapping, start, end);
936 if (err)
937 werr = err;
938 else if (wait_writeback)
939 werr = filemap_fdatawait_range(mapping, start, end);
940 free_extent_state(cached_state);
941 cached_state = NULL;
942 cond_resched();
943 start = end + 1;
944 }
945 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
946 return werr;
947}
948
949/*
950 * when btree blocks are allocated, they have some corresponding bits set for
951 * them in one of two extent_io trees. This is used to make sure all of
952 * those extents are on disk for transaction or log commit. We wait
953 * on all the pages and clear them from the dirty pages state tree
954 */
955static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
956 struct extent_io_tree *dirty_pages)
957{
958 int err = 0;
959 int werr = 0;
960 struct address_space *mapping = fs_info->btree_inode->i_mapping;
961 struct extent_state *cached_state = NULL;
962 u64 start = 0;
963 u64 end;
964
965 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
966 EXTENT_NEED_WAIT, &cached_state)) {
967 /*
968 * Ignore -ENOMEM errors returned by clear_extent_bit().
969 * When committing the transaction, we'll remove any entries
970 * left in the io tree. For a log commit, we don't remove them
971 * after committing the log because the tree can be accessed
972 * concurrently - we do it only at transaction commit time when
973 * it's safe to do it (through extent_io_tree_release()).
974 */
975 err = clear_extent_bit(dirty_pages, start, end,
976 EXTENT_NEED_WAIT, 0, 0, &cached_state);
977 if (err == -ENOMEM)
978 err = 0;
979 if (!err)
980 err = filemap_fdatawait_range(mapping, start, end);
981 if (err)
982 werr = err;
983 free_extent_state(cached_state);
984 cached_state = NULL;
985 cond_resched();
986 start = end + 1;
987 }
988 if (err)
989 werr = err;
990 return werr;
991}
992
993int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
994 struct extent_io_tree *dirty_pages)
995{
996 bool errors = false;
997 int err;
998
999 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1000 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1001 errors = true;
1002
1003 if (errors && !err)
1004 err = -EIO;
1005 return err;
1006}
1007
1008int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1009{
1010 struct btrfs_fs_info *fs_info = log_root->fs_info;
1011 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1012 bool errors = false;
1013 int err;
1014
1015 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1016
1017 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1018 if ((mark & EXTENT_DIRTY) &&
1019 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1020 errors = true;
1021
1022 if ((mark & EXTENT_NEW) &&
1023 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1024 errors = true;
1025
1026 if (errors && !err)
1027 err = -EIO;
1028 return err;
1029}
1030
1031/*
1032 * When btree blocks are allocated the corresponding extents are marked dirty.
1033 * This function ensures such extents are persisted on disk for transaction or
1034 * log commit.
1035 *
1036 * @trans: transaction whose dirty pages we'd like to write
1037 */
1038static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1039{
1040 int ret;
1041 int ret2;
1042 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1043 struct btrfs_fs_info *fs_info = trans->fs_info;
1044 struct blk_plug plug;
1045
1046 blk_start_plug(&plug);
1047 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1048 blk_finish_plug(&plug);
1049 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1050
1051 extent_io_tree_release(&trans->transaction->dirty_pages);
1052
1053 if (ret)
1054 return ret;
1055 else if (ret2)
1056 return ret2;
1057 else
1058 return 0;
1059}
1060
1061/*
1062 * this is used to update the root pointer in the tree of tree roots.
1063 *
1064 * But, in the case of the extent allocation tree, updating the root
1065 * pointer may allocate blocks which may change the root of the extent
1066 * allocation tree.
1067 *
1068 * So, this loops and repeats and makes sure the cowonly root didn't
1069 * change while the root pointer was being updated in the metadata.
1070 */
1071static int update_cowonly_root(struct btrfs_trans_handle *trans,
1072 struct btrfs_root *root)
1073{
1074 int ret;
1075 u64 old_root_bytenr;
1076 u64 old_root_used;
1077 struct btrfs_fs_info *fs_info = root->fs_info;
1078 struct btrfs_root *tree_root = fs_info->tree_root;
1079
1080 old_root_used = btrfs_root_used(&root->root_item);
1081
1082 while (1) {
1083 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1084 if (old_root_bytenr == root->node->start &&
1085 old_root_used == btrfs_root_used(&root->root_item))
1086 break;
1087
1088 btrfs_set_root_node(&root->root_item, root->node);
1089 ret = btrfs_update_root(trans, tree_root,
1090 &root->root_key,
1091 &root->root_item);
1092 if (ret)
1093 return ret;
1094
1095 old_root_used = btrfs_root_used(&root->root_item);
1096 }
1097
1098 return 0;
1099}
1100
1101/*
1102 * update all the cowonly tree roots on disk
1103 *
1104 * The error handling in this function may not be obvious. Any of the
1105 * failures will cause the file system to go offline. We still need
1106 * to clean up the delayed refs.
1107 */
1108static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1109{
1110 struct btrfs_fs_info *fs_info = trans->fs_info;
1111 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1112 struct list_head *io_bgs = &trans->transaction->io_bgs;
1113 struct list_head *next;
1114 struct extent_buffer *eb;
1115 int ret;
1116
1117 eb = btrfs_lock_root_node(fs_info->tree_root);
1118 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1119 0, &eb);
1120 btrfs_tree_unlock(eb);
1121 free_extent_buffer(eb);
1122
1123 if (ret)
1124 return ret;
1125
1126 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1127 if (ret)
1128 return ret;
1129
1130 ret = btrfs_run_dev_stats(trans);
1131 if (ret)
1132 return ret;
1133 ret = btrfs_run_dev_replace(trans);
1134 if (ret)
1135 return ret;
1136 ret = btrfs_run_qgroups(trans);
1137 if (ret)
1138 return ret;
1139
1140 ret = btrfs_setup_space_cache(trans);
1141 if (ret)
1142 return ret;
1143
1144 /* run_qgroups might have added some more refs */
1145 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1146 if (ret)
1147 return ret;
1148again:
1149 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1150 struct btrfs_root *root;
1151 next = fs_info->dirty_cowonly_roots.next;
1152 list_del_init(next);
1153 root = list_entry(next, struct btrfs_root, dirty_list);
1154 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1155
1156 if (root != fs_info->extent_root)
1157 list_add_tail(&root->dirty_list,
1158 &trans->transaction->switch_commits);
1159 ret = update_cowonly_root(trans, root);
1160 if (ret)
1161 return ret;
1162 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1163 if (ret)
1164 return ret;
1165 }
1166
1167 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1168 ret = btrfs_write_dirty_block_groups(trans);
1169 if (ret)
1170 return ret;
1171 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1172 if (ret)
1173 return ret;
1174 }
1175
1176 if (!list_empty(&fs_info->dirty_cowonly_roots))
1177 goto again;
1178
1179 list_add_tail(&fs_info->extent_root->dirty_list,
1180 &trans->transaction->switch_commits);
1181
1182 /* Update dev-replace pointer once everything is committed */
1183 fs_info->dev_replace.committed_cursor_left =
1184 fs_info->dev_replace.cursor_left_last_write_of_item;
1185
1186 return 0;
1187}
1188
1189/*
1190 * dead roots are old snapshots that need to be deleted. This allocates
1191 * a dirty root struct and adds it into the list of dead roots that need to
1192 * be deleted
1193 */
1194void btrfs_add_dead_root(struct btrfs_root *root)
1195{
1196 struct btrfs_fs_info *fs_info = root->fs_info;
1197
1198 spin_lock(&fs_info->trans_lock);
1199 if (list_empty(&root->root_list))
1200 list_add_tail(&root->root_list, &fs_info->dead_roots);
1201 spin_unlock(&fs_info->trans_lock);
1202}
1203
1204/*
1205 * update all the cowonly tree roots on disk
1206 */
1207static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1208{
1209 struct btrfs_fs_info *fs_info = trans->fs_info;
1210 struct btrfs_root *gang[8];
1211 int i;
1212 int ret;
1213 int err = 0;
1214
1215 spin_lock(&fs_info->fs_roots_radix_lock);
1216 while (1) {
1217 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1218 (void **)gang, 0,
1219 ARRAY_SIZE(gang),
1220 BTRFS_ROOT_TRANS_TAG);
1221 if (ret == 0)
1222 break;
1223 for (i = 0; i < ret; i++) {
1224 struct btrfs_root *root = gang[i];
1225 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1226 (unsigned long)root->root_key.objectid,
1227 BTRFS_ROOT_TRANS_TAG);
1228 spin_unlock(&fs_info->fs_roots_radix_lock);
1229
1230 btrfs_free_log(trans, root);
1231 btrfs_update_reloc_root(trans, root);
1232
1233 btrfs_save_ino_cache(root, trans);
1234
1235 /* see comments in should_cow_block() */
1236 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1237 smp_mb__after_atomic();
1238
1239 if (root->commit_root != root->node) {
1240 list_add_tail(&root->dirty_list,
1241 &trans->transaction->switch_commits);
1242 btrfs_set_root_node(&root->root_item,
1243 root->node);
1244 }
1245
1246 err = btrfs_update_root(trans, fs_info->tree_root,
1247 &root->root_key,
1248 &root->root_item);
1249 spin_lock(&fs_info->fs_roots_radix_lock);
1250 if (err)
1251 break;
1252 btrfs_qgroup_free_meta_all_pertrans(root);
1253 }
1254 }
1255 spin_unlock(&fs_info->fs_roots_radix_lock);
1256 return err;
1257}
1258
1259/*
1260 * defrag a given btree.
1261 * Every leaf in the btree is read and defragged.
1262 */
1263int btrfs_defrag_root(struct btrfs_root *root)
1264{
1265 struct btrfs_fs_info *info = root->fs_info;
1266 struct btrfs_trans_handle *trans;
1267 int ret;
1268
1269 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1270 return 0;
1271
1272 while (1) {
1273 trans = btrfs_start_transaction(root, 0);
1274 if (IS_ERR(trans))
1275 return PTR_ERR(trans);
1276
1277 ret = btrfs_defrag_leaves(trans, root);
1278
1279 btrfs_end_transaction(trans);
1280 btrfs_btree_balance_dirty(info);
1281 cond_resched();
1282
1283 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1284 break;
1285
1286 if (btrfs_defrag_cancelled(info)) {
1287 btrfs_debug(info, "defrag_root cancelled");
1288 ret = -EAGAIN;
1289 break;
1290 }
1291 }
1292 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1293 return ret;
1294}
1295
1296/*
1297 * Do all special snapshot related qgroup dirty hack.
1298 *
1299 * Will do all needed qgroup inherit and dirty hack like switch commit
1300 * roots inside one transaction and write all btree into disk, to make
1301 * qgroup works.
1302 */
1303static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1304 struct btrfs_root *src,
1305 struct btrfs_root *parent,
1306 struct btrfs_qgroup_inherit *inherit,
1307 u64 dst_objectid)
1308{
1309 struct btrfs_fs_info *fs_info = src->fs_info;
1310 int ret;
1311
1312 /*
1313 * Save some performance in the case that qgroups are not
1314 * enabled. If this check races with the ioctl, rescan will
1315 * kick in anyway.
1316 */
1317 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1318 return 0;
1319
1320 /*
1321 * Ensure dirty @src will be committed. Or, after coming
1322 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1323 * recorded root will never be updated again, causing an outdated root
1324 * item.
1325 */
1326 record_root_in_trans(trans, src, 1);
1327
1328 /*
1329 * We are going to commit transaction, see btrfs_commit_transaction()
1330 * comment for reason locking tree_log_mutex
1331 */
1332 mutex_lock(&fs_info->tree_log_mutex);
1333
1334 ret = commit_fs_roots(trans);
1335 if (ret)
1336 goto out;
1337 ret = btrfs_qgroup_account_extents(trans);
1338 if (ret < 0)
1339 goto out;
1340
1341 /* Now qgroup are all updated, we can inherit it to new qgroups */
1342 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1343 inherit);
1344 if (ret < 0)
1345 goto out;
1346
1347 /*
1348 * Now we do a simplified commit transaction, which will:
1349 * 1) commit all subvolume and extent tree
1350 * To ensure all subvolume and extent tree have a valid
1351 * commit_root to accounting later insert_dir_item()
1352 * 2) write all btree blocks onto disk
1353 * This is to make sure later btree modification will be cowed
1354 * Or commit_root can be populated and cause wrong qgroup numbers
1355 * In this simplified commit, we don't really care about other trees
1356 * like chunk and root tree, as they won't affect qgroup.
1357 * And we don't write super to avoid half committed status.
1358 */
1359 ret = commit_cowonly_roots(trans);
1360 if (ret)
1361 goto out;
1362 switch_commit_roots(trans->transaction);
1363 ret = btrfs_write_and_wait_transaction(trans);
1364 if (ret)
1365 btrfs_handle_fs_error(fs_info, ret,
1366 "Error while writing out transaction for qgroup");
1367
1368out:
1369 mutex_unlock(&fs_info->tree_log_mutex);
1370
1371 /*
1372 * Force parent root to be updated, as we recorded it before so its
1373 * last_trans == cur_transid.
1374 * Or it won't be committed again onto disk after later
1375 * insert_dir_item()
1376 */
1377 if (!ret)
1378 record_root_in_trans(trans, parent, 1);
1379 return ret;
1380}
1381
1382/*
1383 * new snapshots need to be created at a very specific time in the
1384 * transaction commit. This does the actual creation.
1385 *
1386 * Note:
1387 * If the error which may affect the commitment of the current transaction
1388 * happens, we should return the error number. If the error which just affect
1389 * the creation of the pending snapshots, just return 0.
1390 */
1391static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1392 struct btrfs_pending_snapshot *pending)
1393{
1394
1395 struct btrfs_fs_info *fs_info = trans->fs_info;
1396 struct btrfs_key key;
1397 struct btrfs_root_item *new_root_item;
1398 struct btrfs_root *tree_root = fs_info->tree_root;
1399 struct btrfs_root *root = pending->root;
1400 struct btrfs_root *parent_root;
1401 struct btrfs_block_rsv *rsv;
1402 struct inode *parent_inode;
1403 struct btrfs_path *path;
1404 struct btrfs_dir_item *dir_item;
1405 struct dentry *dentry;
1406 struct extent_buffer *tmp;
1407 struct extent_buffer *old;
1408 struct timespec64 cur_time;
1409 int ret = 0;
1410 u64 to_reserve = 0;
1411 u64 index = 0;
1412 u64 objectid;
1413 u64 root_flags;
1414 uuid_le new_uuid;
1415
1416 ASSERT(pending->path);
1417 path = pending->path;
1418
1419 ASSERT(pending->root_item);
1420 new_root_item = pending->root_item;
1421
1422 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1423 if (pending->error)
1424 goto no_free_objectid;
1425
1426 /*
1427 * Make qgroup to skip current new snapshot's qgroupid, as it is
1428 * accounted by later btrfs_qgroup_inherit().
1429 */
1430 btrfs_set_skip_qgroup(trans, objectid);
1431
1432 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1433
1434 if (to_reserve > 0) {
1435 pending->error = btrfs_block_rsv_add(root,
1436 &pending->block_rsv,
1437 to_reserve,
1438 BTRFS_RESERVE_NO_FLUSH);
1439 if (pending->error)
1440 goto clear_skip_qgroup;
1441 }
1442
1443 key.objectid = objectid;
1444 key.offset = (u64)-1;
1445 key.type = BTRFS_ROOT_ITEM_KEY;
1446
1447 rsv = trans->block_rsv;
1448 trans->block_rsv = &pending->block_rsv;
1449 trans->bytes_reserved = trans->block_rsv->reserved;
1450 trace_btrfs_space_reservation(fs_info, "transaction",
1451 trans->transid,
1452 trans->bytes_reserved, 1);
1453 dentry = pending->dentry;
1454 parent_inode = pending->dir;
1455 parent_root = BTRFS_I(parent_inode)->root;
1456 record_root_in_trans(trans, parent_root, 0);
1457
1458 cur_time = current_time(parent_inode);
1459
1460 /*
1461 * insert the directory item
1462 */
1463 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1464 BUG_ON(ret); /* -ENOMEM */
1465
1466 /* check if there is a file/dir which has the same name. */
1467 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1468 btrfs_ino(BTRFS_I(parent_inode)),
1469 dentry->d_name.name,
1470 dentry->d_name.len, 0);
1471 if (dir_item != NULL && !IS_ERR(dir_item)) {
1472 pending->error = -EEXIST;
1473 goto dir_item_existed;
1474 } else if (IS_ERR(dir_item)) {
1475 ret = PTR_ERR(dir_item);
1476 btrfs_abort_transaction(trans, ret);
1477 goto fail;
1478 }
1479 btrfs_release_path(path);
1480
1481 /*
1482 * pull in the delayed directory update
1483 * and the delayed inode item
1484 * otherwise we corrupt the FS during
1485 * snapshot
1486 */
1487 ret = btrfs_run_delayed_items(trans);
1488 if (ret) { /* Transaction aborted */
1489 btrfs_abort_transaction(trans, ret);
1490 goto fail;
1491 }
1492
1493 record_root_in_trans(trans, root, 0);
1494 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1495 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1496 btrfs_check_and_init_root_item(new_root_item);
1497
1498 root_flags = btrfs_root_flags(new_root_item);
1499 if (pending->readonly)
1500 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1501 else
1502 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1503 btrfs_set_root_flags(new_root_item, root_flags);
1504
1505 btrfs_set_root_generation_v2(new_root_item,
1506 trans->transid);
1507 uuid_le_gen(&new_uuid);
1508 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1509 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1510 BTRFS_UUID_SIZE);
1511 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1512 memset(new_root_item->received_uuid, 0,
1513 sizeof(new_root_item->received_uuid));
1514 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1515 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1516 btrfs_set_root_stransid(new_root_item, 0);
1517 btrfs_set_root_rtransid(new_root_item, 0);
1518 }
1519 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1520 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1521 btrfs_set_root_otransid(new_root_item, trans->transid);
1522
1523 old = btrfs_lock_root_node(root);
1524 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1525 if (ret) {
1526 btrfs_tree_unlock(old);
1527 free_extent_buffer(old);
1528 btrfs_abort_transaction(trans, ret);
1529 goto fail;
1530 }
1531
1532 btrfs_set_lock_blocking_write(old);
1533
1534 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1535 /* clean up in any case */
1536 btrfs_tree_unlock(old);
1537 free_extent_buffer(old);
1538 if (ret) {
1539 btrfs_abort_transaction(trans, ret);
1540 goto fail;
1541 }
1542 /* see comments in should_cow_block() */
1543 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1544 smp_wmb();
1545
1546 btrfs_set_root_node(new_root_item, tmp);
1547 /* record when the snapshot was created in key.offset */
1548 key.offset = trans->transid;
1549 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1550 btrfs_tree_unlock(tmp);
1551 free_extent_buffer(tmp);
1552 if (ret) {
1553 btrfs_abort_transaction(trans, ret);
1554 goto fail;
1555 }
1556
1557 /*
1558 * insert root back/forward references
1559 */
1560 ret = btrfs_add_root_ref(trans, objectid,
1561 parent_root->root_key.objectid,
1562 btrfs_ino(BTRFS_I(parent_inode)), index,
1563 dentry->d_name.name, dentry->d_name.len);
1564 if (ret) {
1565 btrfs_abort_transaction(trans, ret);
1566 goto fail;
1567 }
1568
1569 key.offset = (u64)-1;
1570 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1571 if (IS_ERR(pending->snap)) {
1572 ret = PTR_ERR(pending->snap);
1573 btrfs_abort_transaction(trans, ret);
1574 goto fail;
1575 }
1576
1577 ret = btrfs_reloc_post_snapshot(trans, pending);
1578 if (ret) {
1579 btrfs_abort_transaction(trans, ret);
1580 goto fail;
1581 }
1582
1583 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1584 if (ret) {
1585 btrfs_abort_transaction(trans, ret);
1586 goto fail;
1587 }
1588
1589 /*
1590 * Do special qgroup accounting for snapshot, as we do some qgroup
1591 * snapshot hack to do fast snapshot.
1592 * To co-operate with that hack, we do hack again.
1593 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1594 */
1595 ret = qgroup_account_snapshot(trans, root, parent_root,
1596 pending->inherit, objectid);
1597 if (ret < 0)
1598 goto fail;
1599
1600 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1601 dentry->d_name.len, BTRFS_I(parent_inode),
1602 &key, BTRFS_FT_DIR, index);
1603 /* We have check then name at the beginning, so it is impossible. */
1604 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1605 if (ret) {
1606 btrfs_abort_transaction(trans, ret);
1607 goto fail;
1608 }
1609
1610 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1611 dentry->d_name.len * 2);
1612 parent_inode->i_mtime = parent_inode->i_ctime =
1613 current_time(parent_inode);
1614 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1615 if (ret) {
1616 btrfs_abort_transaction(trans, ret);
1617 goto fail;
1618 }
1619 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1620 objectid);
1621 if (ret) {
1622 btrfs_abort_transaction(trans, ret);
1623 goto fail;
1624 }
1625 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1626 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1627 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1628 objectid);
1629 if (ret && ret != -EEXIST) {
1630 btrfs_abort_transaction(trans, ret);
1631 goto fail;
1632 }
1633 }
1634
1635 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1636 if (ret) {
1637 btrfs_abort_transaction(trans, ret);
1638 goto fail;
1639 }
1640
1641fail:
1642 pending->error = ret;
1643dir_item_existed:
1644 trans->block_rsv = rsv;
1645 trans->bytes_reserved = 0;
1646clear_skip_qgroup:
1647 btrfs_clear_skip_qgroup(trans);
1648no_free_objectid:
1649 kfree(new_root_item);
1650 pending->root_item = NULL;
1651 btrfs_free_path(path);
1652 pending->path = NULL;
1653
1654 return ret;
1655}
1656
1657/*
1658 * create all the snapshots we've scheduled for creation
1659 */
1660static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1661{
1662 struct btrfs_pending_snapshot *pending, *next;
1663 struct list_head *head = &trans->transaction->pending_snapshots;
1664 int ret = 0;
1665
1666 list_for_each_entry_safe(pending, next, head, list) {
1667 list_del(&pending->list);
1668 ret = create_pending_snapshot(trans, pending);
1669 if (ret)
1670 break;
1671 }
1672 return ret;
1673}
1674
1675static void update_super_roots(struct btrfs_fs_info *fs_info)
1676{
1677 struct btrfs_root_item *root_item;
1678 struct btrfs_super_block *super;
1679
1680 super = fs_info->super_copy;
1681
1682 root_item = &fs_info->chunk_root->root_item;
1683 super->chunk_root = root_item->bytenr;
1684 super->chunk_root_generation = root_item->generation;
1685 super->chunk_root_level = root_item->level;
1686
1687 root_item = &fs_info->tree_root->root_item;
1688 super->root = root_item->bytenr;
1689 super->generation = root_item->generation;
1690 super->root_level = root_item->level;
1691 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1692 super->cache_generation = root_item->generation;
1693 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1694 super->uuid_tree_generation = root_item->generation;
1695}
1696
1697int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1698{
1699 struct btrfs_transaction *trans;
1700 int ret = 0;
1701
1702 spin_lock(&info->trans_lock);
1703 trans = info->running_transaction;
1704 if (trans)
1705 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1706 spin_unlock(&info->trans_lock);
1707 return ret;
1708}
1709
1710int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1711{
1712 struct btrfs_transaction *trans;
1713 int ret = 0;
1714
1715 spin_lock(&info->trans_lock);
1716 trans = info->running_transaction;
1717 if (trans)
1718 ret = is_transaction_blocked(trans);
1719 spin_unlock(&info->trans_lock);
1720 return ret;
1721}
1722
1723/*
1724 * wait for the current transaction commit to start and block subsequent
1725 * transaction joins
1726 */
1727static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1728 struct btrfs_transaction *trans)
1729{
1730 wait_event(fs_info->transaction_blocked_wait,
1731 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1732}
1733
1734/*
1735 * wait for the current transaction to start and then become unblocked.
1736 * caller holds ref.
1737 */
1738static void wait_current_trans_commit_start_and_unblock(
1739 struct btrfs_fs_info *fs_info,
1740 struct btrfs_transaction *trans)
1741{
1742 wait_event(fs_info->transaction_wait,
1743 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1744}
1745
1746/*
1747 * commit transactions asynchronously. once btrfs_commit_transaction_async
1748 * returns, any subsequent transaction will not be allowed to join.
1749 */
1750struct btrfs_async_commit {
1751 struct btrfs_trans_handle *newtrans;
1752 struct work_struct work;
1753};
1754
1755static void do_async_commit(struct work_struct *work)
1756{
1757 struct btrfs_async_commit *ac =
1758 container_of(work, struct btrfs_async_commit, work);
1759
1760 /*
1761 * We've got freeze protection passed with the transaction.
1762 * Tell lockdep about it.
1763 */
1764 if (ac->newtrans->type & __TRANS_FREEZABLE)
1765 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1766
1767 current->journal_info = ac->newtrans;
1768
1769 btrfs_commit_transaction(ac->newtrans);
1770 kfree(ac);
1771}
1772
1773int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1774 int wait_for_unblock)
1775{
1776 struct btrfs_fs_info *fs_info = trans->fs_info;
1777 struct btrfs_async_commit *ac;
1778 struct btrfs_transaction *cur_trans;
1779
1780 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1781 if (!ac)
1782 return -ENOMEM;
1783
1784 INIT_WORK(&ac->work, do_async_commit);
1785 ac->newtrans = btrfs_join_transaction(trans->root);
1786 if (IS_ERR(ac->newtrans)) {
1787 int err = PTR_ERR(ac->newtrans);
1788 kfree(ac);
1789 return err;
1790 }
1791
1792 /* take transaction reference */
1793 cur_trans = trans->transaction;
1794 refcount_inc(&cur_trans->use_count);
1795
1796 btrfs_end_transaction(trans);
1797
1798 /*
1799 * Tell lockdep we've released the freeze rwsem, since the
1800 * async commit thread will be the one to unlock it.
1801 */
1802 if (ac->newtrans->type & __TRANS_FREEZABLE)
1803 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1804
1805 schedule_work(&ac->work);
1806
1807 /* wait for transaction to start and unblock */
1808 if (wait_for_unblock)
1809 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1810 else
1811 wait_current_trans_commit_start(fs_info, cur_trans);
1812
1813 if (current->journal_info == trans)
1814 current->journal_info = NULL;
1815
1816 btrfs_put_transaction(cur_trans);
1817 return 0;
1818}
1819
1820
1821static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1822{
1823 struct btrfs_fs_info *fs_info = trans->fs_info;
1824 struct btrfs_transaction *cur_trans = trans->transaction;
1825
1826 WARN_ON(refcount_read(&trans->use_count) > 1);
1827
1828 btrfs_abort_transaction(trans, err);
1829
1830 spin_lock(&fs_info->trans_lock);
1831
1832 /*
1833 * If the transaction is removed from the list, it means this
1834 * transaction has been committed successfully, so it is impossible
1835 * to call the cleanup function.
1836 */
1837 BUG_ON(list_empty(&cur_trans->list));
1838
1839 list_del_init(&cur_trans->list);
1840 if (cur_trans == fs_info->running_transaction) {
1841 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1842 spin_unlock(&fs_info->trans_lock);
1843 wait_event(cur_trans->writer_wait,
1844 atomic_read(&cur_trans->num_writers) == 1);
1845
1846 spin_lock(&fs_info->trans_lock);
1847 }
1848 spin_unlock(&fs_info->trans_lock);
1849
1850 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1851
1852 spin_lock(&fs_info->trans_lock);
1853 if (cur_trans == fs_info->running_transaction)
1854 fs_info->running_transaction = NULL;
1855 spin_unlock(&fs_info->trans_lock);
1856
1857 if (trans->type & __TRANS_FREEZABLE)
1858 sb_end_intwrite(fs_info->sb);
1859 btrfs_put_transaction(cur_trans);
1860 btrfs_put_transaction(cur_trans);
1861
1862 trace_btrfs_transaction_commit(trans->root);
1863
1864 if (current->journal_info == trans)
1865 current->journal_info = NULL;
1866 btrfs_scrub_cancel(fs_info);
1867
1868 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1869}
1870
1871/*
1872 * Release reserved delayed ref space of all pending block groups of the
1873 * transaction and remove them from the list
1874 */
1875static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1876{
1877 struct btrfs_fs_info *fs_info = trans->fs_info;
1878 struct btrfs_block_group_cache *block_group, *tmp;
1879
1880 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1881 btrfs_delayed_refs_rsv_release(fs_info, 1);
1882 list_del_init(&block_group->bg_list);
1883 }
1884}
1885
1886static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1887{
1888 struct btrfs_fs_info *fs_info = trans->fs_info;
1889
1890 /*
1891 * We use writeback_inodes_sb here because if we used
1892 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1893 * Currently are holding the fs freeze lock, if we do an async flush
1894 * we'll do btrfs_join_transaction() and deadlock because we need to
1895 * wait for the fs freeze lock. Using the direct flushing we benefit
1896 * from already being in a transaction and our join_transaction doesn't
1897 * have to re-take the fs freeze lock.
1898 */
1899 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1900 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1901 } else {
1902 struct btrfs_pending_snapshot *pending;
1903 struct list_head *head = &trans->transaction->pending_snapshots;
1904
1905 /*
1906 * Flush dellaloc for any root that is going to be snapshotted.
1907 * This is done to avoid a corrupted version of files, in the
1908 * snapshots, that had both buffered and direct IO writes (even
1909 * if they were done sequentially) due to an unordered update of
1910 * the inode's size on disk.
1911 */
1912 list_for_each_entry(pending, head, list) {
1913 int ret;
1914
1915 ret = btrfs_start_delalloc_snapshot(pending->root);
1916 if (ret)
1917 return ret;
1918 }
1919 }
1920 return 0;
1921}
1922
1923static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1924{
1925 struct btrfs_fs_info *fs_info = trans->fs_info;
1926
1927 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1928 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1929 } else {
1930 struct btrfs_pending_snapshot *pending;
1931 struct list_head *head = &trans->transaction->pending_snapshots;
1932
1933 /*
1934 * Wait for any dellaloc that we started previously for the roots
1935 * that are going to be snapshotted. This is to avoid a corrupted
1936 * version of files in the snapshots that had both buffered and
1937 * direct IO writes (even if they were done sequentially).
1938 */
1939 list_for_each_entry(pending, head, list)
1940 btrfs_wait_ordered_extents(pending->root,
1941 U64_MAX, 0, U64_MAX);
1942 }
1943}
1944
1945int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1946{
1947 struct btrfs_fs_info *fs_info = trans->fs_info;
1948 struct btrfs_transaction *cur_trans = trans->transaction;
1949 struct btrfs_transaction *prev_trans = NULL;
1950 int ret;
1951
1952 /* Stop the commit early if ->aborted is set */
1953 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1954 ret = cur_trans->aborted;
1955 btrfs_end_transaction(trans);
1956 return ret;
1957 }
1958
1959 btrfs_trans_release_metadata(trans);
1960 trans->block_rsv = NULL;
1961
1962 /* make a pass through all the delayed refs we have so far
1963 * any runnings procs may add more while we are here
1964 */
1965 ret = btrfs_run_delayed_refs(trans, 0);
1966 if (ret) {
1967 btrfs_end_transaction(trans);
1968 return ret;
1969 }
1970
1971 cur_trans = trans->transaction;
1972
1973 /*
1974 * set the flushing flag so procs in this transaction have to
1975 * start sending their work down.
1976 */
1977 cur_trans->delayed_refs.flushing = 1;
1978 smp_wmb();
1979
1980 btrfs_create_pending_block_groups(trans);
1981
1982 ret = btrfs_run_delayed_refs(trans, 0);
1983 if (ret) {
1984 btrfs_end_transaction(trans);
1985 return ret;
1986 }
1987
1988 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1989 int run_it = 0;
1990
1991 /* this mutex is also taken before trying to set
1992 * block groups readonly. We need to make sure
1993 * that nobody has set a block group readonly
1994 * after a extents from that block group have been
1995 * allocated for cache files. btrfs_set_block_group_ro
1996 * will wait for the transaction to commit if it
1997 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1998 *
1999 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2000 * only one process starts all the block group IO. It wouldn't
2001 * hurt to have more than one go through, but there's no
2002 * real advantage to it either.
2003 */
2004 mutex_lock(&fs_info->ro_block_group_mutex);
2005 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2006 &cur_trans->flags))
2007 run_it = 1;
2008 mutex_unlock(&fs_info->ro_block_group_mutex);
2009
2010 if (run_it) {
2011 ret = btrfs_start_dirty_block_groups(trans);
2012 if (ret) {
2013 btrfs_end_transaction(trans);
2014 return ret;
2015 }
2016 }
2017 }
2018
2019 spin_lock(&fs_info->trans_lock);
2020 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2021 spin_unlock(&fs_info->trans_lock);
2022 refcount_inc(&cur_trans->use_count);
2023 ret = btrfs_end_transaction(trans);
2024
2025 wait_for_commit(cur_trans);
2026
2027 if (unlikely(cur_trans->aborted))
2028 ret = cur_trans->aborted;
2029
2030 btrfs_put_transaction(cur_trans);
2031
2032 return ret;
2033 }
2034
2035 cur_trans->state = TRANS_STATE_COMMIT_START;
2036 wake_up(&fs_info->transaction_blocked_wait);
2037
2038 if (cur_trans->list.prev != &fs_info->trans_list) {
2039 prev_trans = list_entry(cur_trans->list.prev,
2040 struct btrfs_transaction, list);
2041 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2042 refcount_inc(&prev_trans->use_count);
2043 spin_unlock(&fs_info->trans_lock);
2044
2045 wait_for_commit(prev_trans);
2046 ret = prev_trans->aborted;
2047
2048 btrfs_put_transaction(prev_trans);
2049 if (ret)
2050 goto cleanup_transaction;
2051 } else {
2052 spin_unlock(&fs_info->trans_lock);
2053 }
2054 } else {
2055 spin_unlock(&fs_info->trans_lock);
2056 /*
2057 * The previous transaction was aborted and was already removed
2058 * from the list of transactions at fs_info->trans_list. So we
2059 * abort to prevent writing a new superblock that reflects a
2060 * corrupt state (pointing to trees with unwritten nodes/leafs).
2061 */
2062 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2063 ret = -EROFS;
2064 goto cleanup_transaction;
2065 }
2066 }
2067
2068 extwriter_counter_dec(cur_trans, trans->type);
2069
2070 ret = btrfs_start_delalloc_flush(trans);
2071 if (ret)
2072 goto cleanup_transaction;
2073
2074 ret = btrfs_run_delayed_items(trans);
2075 if (ret)
2076 goto cleanup_transaction;
2077
2078 wait_event(cur_trans->writer_wait,
2079 extwriter_counter_read(cur_trans) == 0);
2080
2081 /* some pending stuffs might be added after the previous flush. */
2082 ret = btrfs_run_delayed_items(trans);
2083 if (ret)
2084 goto cleanup_transaction;
2085
2086 btrfs_wait_delalloc_flush(trans);
2087
2088 btrfs_scrub_pause(fs_info);
2089 /*
2090 * Ok now we need to make sure to block out any other joins while we
2091 * commit the transaction. We could have started a join before setting
2092 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2093 */
2094 spin_lock(&fs_info->trans_lock);
2095 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2096 spin_unlock(&fs_info->trans_lock);
2097 wait_event(cur_trans->writer_wait,
2098 atomic_read(&cur_trans->num_writers) == 1);
2099
2100 /* ->aborted might be set after the previous check, so check it */
2101 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2102 ret = cur_trans->aborted;
2103 goto scrub_continue;
2104 }
2105 /*
2106 * the reloc mutex makes sure that we stop
2107 * the balancing code from coming in and moving
2108 * extents around in the middle of the commit
2109 */
2110 mutex_lock(&fs_info->reloc_mutex);
2111
2112 /*
2113 * We needn't worry about the delayed items because we will
2114 * deal with them in create_pending_snapshot(), which is the
2115 * core function of the snapshot creation.
2116 */
2117 ret = create_pending_snapshots(trans);
2118 if (ret) {
2119 mutex_unlock(&fs_info->reloc_mutex);
2120 goto scrub_continue;
2121 }
2122
2123 /*
2124 * We insert the dir indexes of the snapshots and update the inode
2125 * of the snapshots' parents after the snapshot creation, so there
2126 * are some delayed items which are not dealt with. Now deal with
2127 * them.
2128 *
2129 * We needn't worry that this operation will corrupt the snapshots,
2130 * because all the tree which are snapshoted will be forced to COW
2131 * the nodes and leaves.
2132 */
2133 ret = btrfs_run_delayed_items(trans);
2134 if (ret) {
2135 mutex_unlock(&fs_info->reloc_mutex);
2136 goto scrub_continue;
2137 }
2138
2139 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2140 if (ret) {
2141 mutex_unlock(&fs_info->reloc_mutex);
2142 goto scrub_continue;
2143 }
2144
2145 /*
2146 * make sure none of the code above managed to slip in a
2147 * delayed item
2148 */
2149 btrfs_assert_delayed_root_empty(fs_info);
2150
2151 WARN_ON(cur_trans != trans->transaction);
2152
2153 /* btrfs_commit_tree_roots is responsible for getting the
2154 * various roots consistent with each other. Every pointer
2155 * in the tree of tree roots has to point to the most up to date
2156 * root for every subvolume and other tree. So, we have to keep
2157 * the tree logging code from jumping in and changing any
2158 * of the trees.
2159 *
2160 * At this point in the commit, there can't be any tree-log
2161 * writers, but a little lower down we drop the trans mutex
2162 * and let new people in. By holding the tree_log_mutex
2163 * from now until after the super is written, we avoid races
2164 * with the tree-log code.
2165 */
2166 mutex_lock(&fs_info->tree_log_mutex);
2167
2168 ret = commit_fs_roots(trans);
2169 if (ret) {
2170 mutex_unlock(&fs_info->tree_log_mutex);
2171 mutex_unlock(&fs_info->reloc_mutex);
2172 goto scrub_continue;
2173 }
2174
2175 /*
2176 * Since the transaction is done, we can apply the pending changes
2177 * before the next transaction.
2178 */
2179 btrfs_apply_pending_changes(fs_info);
2180
2181 /* commit_fs_roots gets rid of all the tree log roots, it is now
2182 * safe to free the root of tree log roots
2183 */
2184 btrfs_free_log_root_tree(trans, fs_info);
2185
2186 /*
2187 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2188 * new delayed refs. Must handle them or qgroup can be wrong.
2189 */
2190 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2191 if (ret) {
2192 mutex_unlock(&fs_info->tree_log_mutex);
2193 mutex_unlock(&fs_info->reloc_mutex);
2194 goto scrub_continue;
2195 }
2196
2197 /*
2198 * Since fs roots are all committed, we can get a quite accurate
2199 * new_roots. So let's do quota accounting.
2200 */
2201 ret = btrfs_qgroup_account_extents(trans);
2202 if (ret < 0) {
2203 mutex_unlock(&fs_info->tree_log_mutex);
2204 mutex_unlock(&fs_info->reloc_mutex);
2205 goto scrub_continue;
2206 }
2207
2208 ret = commit_cowonly_roots(trans);
2209 if (ret) {
2210 mutex_unlock(&fs_info->tree_log_mutex);
2211 mutex_unlock(&fs_info->reloc_mutex);
2212 goto scrub_continue;
2213 }
2214
2215 /*
2216 * The tasks which save the space cache and inode cache may also
2217 * update ->aborted, check it.
2218 */
2219 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2220 ret = cur_trans->aborted;
2221 mutex_unlock(&fs_info->tree_log_mutex);
2222 mutex_unlock(&fs_info->reloc_mutex);
2223 goto scrub_continue;
2224 }
2225
2226 btrfs_prepare_extent_commit(fs_info);
2227
2228 cur_trans = fs_info->running_transaction;
2229
2230 btrfs_set_root_node(&fs_info->tree_root->root_item,
2231 fs_info->tree_root->node);
2232 list_add_tail(&fs_info->tree_root->dirty_list,
2233 &cur_trans->switch_commits);
2234
2235 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2236 fs_info->chunk_root->node);
2237 list_add_tail(&fs_info->chunk_root->dirty_list,
2238 &cur_trans->switch_commits);
2239
2240 switch_commit_roots(cur_trans);
2241
2242 ASSERT(list_empty(&cur_trans->dirty_bgs));
2243 ASSERT(list_empty(&cur_trans->io_bgs));
2244 update_super_roots(fs_info);
2245
2246 btrfs_set_super_log_root(fs_info->super_copy, 0);
2247 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2248 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2249 sizeof(*fs_info->super_copy));
2250
2251 btrfs_commit_device_sizes(cur_trans);
2252
2253 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2254 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2255
2256 btrfs_trans_release_chunk_metadata(trans);
2257
2258 spin_lock(&fs_info->trans_lock);
2259 cur_trans->state = TRANS_STATE_UNBLOCKED;
2260 fs_info->running_transaction = NULL;
2261 spin_unlock(&fs_info->trans_lock);
2262 mutex_unlock(&fs_info->reloc_mutex);
2263
2264 wake_up(&fs_info->transaction_wait);
2265
2266 ret = btrfs_write_and_wait_transaction(trans);
2267 if (ret) {
2268 btrfs_handle_fs_error(fs_info, ret,
2269 "Error while writing out transaction");
2270 mutex_unlock(&fs_info->tree_log_mutex);
2271 goto scrub_continue;
2272 }
2273
2274 ret = write_all_supers(fs_info, 0);
2275 /*
2276 * the super is written, we can safely allow the tree-loggers
2277 * to go about their business
2278 */
2279 mutex_unlock(&fs_info->tree_log_mutex);
2280 if (ret)
2281 goto scrub_continue;
2282
2283 btrfs_finish_extent_commit(trans);
2284
2285 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2286 btrfs_clear_space_info_full(fs_info);
2287
2288 fs_info->last_trans_committed = cur_trans->transid;
2289 /*
2290 * We needn't acquire the lock here because there is no other task
2291 * which can change it.
2292 */
2293 cur_trans->state = TRANS_STATE_COMPLETED;
2294 wake_up(&cur_trans->commit_wait);
2295 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2296
2297 spin_lock(&fs_info->trans_lock);
2298 list_del_init(&cur_trans->list);
2299 spin_unlock(&fs_info->trans_lock);
2300
2301 btrfs_put_transaction(cur_trans);
2302 btrfs_put_transaction(cur_trans);
2303
2304 if (trans->type & __TRANS_FREEZABLE)
2305 sb_end_intwrite(fs_info->sb);
2306
2307 trace_btrfs_transaction_commit(trans->root);
2308
2309 btrfs_scrub_continue(fs_info);
2310
2311 if (current->journal_info == trans)
2312 current->journal_info = NULL;
2313
2314 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2315
2316 return ret;
2317
2318scrub_continue:
2319 btrfs_scrub_continue(fs_info);
2320cleanup_transaction:
2321 btrfs_trans_release_metadata(trans);
2322 btrfs_cleanup_pending_block_groups(trans);
2323 btrfs_trans_release_chunk_metadata(trans);
2324 trans->block_rsv = NULL;
2325 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2326 if (current->journal_info == trans)
2327 current->journal_info = NULL;
2328 cleanup_transaction(trans, ret);
2329
2330 return ret;
2331}
2332
2333/*
2334 * return < 0 if error
2335 * 0 if there are no more dead_roots at the time of call
2336 * 1 there are more to be processed, call me again
2337 *
2338 * The return value indicates there are certainly more snapshots to delete, but
2339 * if there comes a new one during processing, it may return 0. We don't mind,
2340 * because btrfs_commit_super will poke cleaner thread and it will process it a
2341 * few seconds later.
2342 */
2343int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2344{
2345 int ret;
2346 struct btrfs_fs_info *fs_info = root->fs_info;
2347
2348 spin_lock(&fs_info->trans_lock);
2349 if (list_empty(&fs_info->dead_roots)) {
2350 spin_unlock(&fs_info->trans_lock);
2351 return 0;
2352 }
2353 root = list_first_entry(&fs_info->dead_roots,
2354 struct btrfs_root, root_list);
2355 list_del_init(&root->root_list);
2356 spin_unlock(&fs_info->trans_lock);
2357
2358 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2359
2360 btrfs_kill_all_delayed_nodes(root);
2361
2362 if (btrfs_header_backref_rev(root->node) <
2363 BTRFS_MIXED_BACKREF_REV)
2364 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2365 else
2366 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2367
2368 return (ret < 0) ? 0 : 1;
2369}
2370
2371void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2372{
2373 unsigned long prev;
2374 unsigned long bit;
2375
2376 prev = xchg(&fs_info->pending_changes, 0);
2377 if (!prev)
2378 return;
2379
2380 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2381 if (prev & bit)
2382 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2383 prev &= ~bit;
2384
2385 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2386 if (prev & bit)
2387 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2388 prev &= ~bit;
2389
2390 bit = 1 << BTRFS_PENDING_COMMIT;
2391 if (prev & bit)
2392 btrfs_debug(fs_info, "pending commit done");
2393 prev &= ~bit;
2394
2395 if (prev)
2396 btrfs_warn(fs_info,
2397 "unknown pending changes left 0x%lx, ignoring", prev);
2398}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/writeback.h>
11#include <linux/pagemap.h>
12#include <linux/blkdev.h>
13#include <linux/uuid.h>
14#include <linux/timekeeping.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "locking.h"
20#include "tree-log.h"
21#include "volumes.h"
22#include "dev-replace.h"
23#include "qgroup.h"
24#include "block-group.h"
25#include "space-info.h"
26#include "zoned.h"
27#include "fs.h"
28#include "accessors.h"
29#include "extent-tree.h"
30#include "root-tree.h"
31#include "defrag.h"
32#include "dir-item.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37
38static struct kmem_cache *btrfs_trans_handle_cachep;
39
40/*
41 * Transaction states and transitions
42 *
43 * No running transaction (fs tree blocks are not modified)
44 * |
45 * | To next stage:
46 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
47 * V
48 * Transaction N [[TRANS_STATE_RUNNING]]
49 * |
50 * | New trans handles can be attached to transaction N by calling all
51 * | start_transaction() variants.
52 * |
53 * | To next stage:
54 * | Call btrfs_commit_transaction() on any trans handle attached to
55 * | transaction N
56 * V
57 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
58 * |
59 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
60 * | the race and the rest will wait for the winner to commit the transaction.
61 * |
62 * | The winner will wait for previous running transaction to completely finish
63 * | if there is one.
64 * |
65 * Transaction N [[TRANS_STATE_COMMIT_START]]
66 * |
67 * | Then one of the following happens:
68 * | - Wait for all other trans handle holders to release.
69 * | The btrfs_commit_transaction() caller will do the commit work.
70 * | - Wait for current transaction to be committed by others.
71 * | Other btrfs_commit_transaction() caller will do the commit work.
72 * |
73 * | At this stage, only btrfs_join_transaction*() variants can attach
74 * | to this running transaction.
75 * | All other variants will wait for current one to finish and attach to
76 * | transaction N+1.
77 * |
78 * | To next stage:
79 * | Caller is chosen to commit transaction N, and all other trans handle
80 * | haven been released.
81 * V
82 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
83 * |
84 * | The heavy lifting transaction work is started.
85 * | From running delayed refs (modifying extent tree) to creating pending
86 * | snapshots, running qgroups.
87 * | In short, modify supporting trees to reflect modifications of subvolume
88 * | trees.
89 * |
90 * | At this stage, all start_transaction() calls will wait for this
91 * | transaction to finish and attach to transaction N+1.
92 * |
93 * | To next stage:
94 * | Until all supporting trees are updated.
95 * V
96 * Transaction N [[TRANS_STATE_UNBLOCKED]]
97 * | Transaction N+1
98 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
99 * | need to write them back to disk and update |
100 * | super blocks. |
101 * | |
102 * | At this stage, new transaction is allowed to |
103 * | start. |
104 * | All new start_transaction() calls will be |
105 * | attached to transid N+1. |
106 * | |
107 * | To next stage: |
108 * | Until all tree blocks are super blocks are |
109 * | written to block devices |
110 * V |
111 * Transaction N [[TRANS_STATE_COMPLETED]] V
112 * All tree blocks and super blocks are written. Transaction N+1
113 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
114 * data structures will be cleaned up. | Life goes on
115 */
116static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
117 [TRANS_STATE_RUNNING] = 0U,
118 [TRANS_STATE_COMMIT_PREP] = 0U,
119 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
120 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
121 __TRANS_ATTACH |
122 __TRANS_JOIN |
123 __TRANS_JOIN_NOSTART),
124 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
125 __TRANS_ATTACH |
126 __TRANS_JOIN |
127 __TRANS_JOIN_NOLOCK |
128 __TRANS_JOIN_NOSTART),
129 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
130 __TRANS_ATTACH |
131 __TRANS_JOIN |
132 __TRANS_JOIN_NOLOCK |
133 __TRANS_JOIN_NOSTART),
134 [TRANS_STATE_COMPLETED] = (__TRANS_START |
135 __TRANS_ATTACH |
136 __TRANS_JOIN |
137 __TRANS_JOIN_NOLOCK |
138 __TRANS_JOIN_NOSTART),
139};
140
141void btrfs_put_transaction(struct btrfs_transaction *transaction)
142{
143 WARN_ON(refcount_read(&transaction->use_count) == 0);
144 if (refcount_dec_and_test(&transaction->use_count)) {
145 BUG_ON(!list_empty(&transaction->list));
146 WARN_ON(!RB_EMPTY_ROOT(
147 &transaction->delayed_refs.href_root.rb_root));
148 WARN_ON(!RB_EMPTY_ROOT(
149 &transaction->delayed_refs.dirty_extent_root));
150 if (transaction->delayed_refs.pending_csums)
151 btrfs_err(transaction->fs_info,
152 "pending csums is %llu",
153 transaction->delayed_refs.pending_csums);
154 /*
155 * If any block groups are found in ->deleted_bgs then it's
156 * because the transaction was aborted and a commit did not
157 * happen (things failed before writing the new superblock
158 * and calling btrfs_finish_extent_commit()), so we can not
159 * discard the physical locations of the block groups.
160 */
161 while (!list_empty(&transaction->deleted_bgs)) {
162 struct btrfs_block_group *cache;
163
164 cache = list_first_entry(&transaction->deleted_bgs,
165 struct btrfs_block_group,
166 bg_list);
167 list_del_init(&cache->bg_list);
168 btrfs_unfreeze_block_group(cache);
169 btrfs_put_block_group(cache);
170 }
171 WARN_ON(!list_empty(&transaction->dev_update_list));
172 kfree(transaction);
173 }
174}
175
176static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
177{
178 struct btrfs_transaction *cur_trans = trans->transaction;
179 struct btrfs_fs_info *fs_info = trans->fs_info;
180 struct btrfs_root *root, *tmp;
181
182 /*
183 * At this point no one can be using this transaction to modify any tree
184 * and no one can start another transaction to modify any tree either.
185 */
186 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
187
188 down_write(&fs_info->commit_root_sem);
189
190 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
191 fs_info->last_reloc_trans = trans->transid;
192
193 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
194 dirty_list) {
195 list_del_init(&root->dirty_list);
196 free_extent_buffer(root->commit_root);
197 root->commit_root = btrfs_root_node(root);
198 extent_io_tree_release(&root->dirty_log_pages);
199 btrfs_qgroup_clean_swapped_blocks(root);
200 }
201
202 /* We can free old roots now. */
203 spin_lock(&cur_trans->dropped_roots_lock);
204 while (!list_empty(&cur_trans->dropped_roots)) {
205 root = list_first_entry(&cur_trans->dropped_roots,
206 struct btrfs_root, root_list);
207 list_del_init(&root->root_list);
208 spin_unlock(&cur_trans->dropped_roots_lock);
209 btrfs_free_log(trans, root);
210 btrfs_drop_and_free_fs_root(fs_info, root);
211 spin_lock(&cur_trans->dropped_roots_lock);
212 }
213 spin_unlock(&cur_trans->dropped_roots_lock);
214
215 up_write(&fs_info->commit_root_sem);
216}
217
218static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
219 unsigned int type)
220{
221 if (type & TRANS_EXTWRITERS)
222 atomic_inc(&trans->num_extwriters);
223}
224
225static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
226 unsigned int type)
227{
228 if (type & TRANS_EXTWRITERS)
229 atomic_dec(&trans->num_extwriters);
230}
231
232static inline void extwriter_counter_init(struct btrfs_transaction *trans,
233 unsigned int type)
234{
235 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
236}
237
238static inline int extwriter_counter_read(struct btrfs_transaction *trans)
239{
240 return atomic_read(&trans->num_extwriters);
241}
242
243/*
244 * To be called after doing the chunk btree updates right after allocating a new
245 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
246 * chunk after all chunk btree updates and after finishing the second phase of
247 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
248 * group had its chunk item insertion delayed to the second phase.
249 */
250void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
251{
252 struct btrfs_fs_info *fs_info = trans->fs_info;
253
254 if (!trans->chunk_bytes_reserved)
255 return;
256
257 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
258 trans->chunk_bytes_reserved, NULL);
259 trans->chunk_bytes_reserved = 0;
260}
261
262/*
263 * either allocate a new transaction or hop into the existing one
264 */
265static noinline int join_transaction(struct btrfs_fs_info *fs_info,
266 unsigned int type)
267{
268 struct btrfs_transaction *cur_trans;
269
270 spin_lock(&fs_info->trans_lock);
271loop:
272 /* The file system has been taken offline. No new transactions. */
273 if (BTRFS_FS_ERROR(fs_info)) {
274 spin_unlock(&fs_info->trans_lock);
275 return -EROFS;
276 }
277
278 cur_trans = fs_info->running_transaction;
279 if (cur_trans) {
280 if (TRANS_ABORTED(cur_trans)) {
281 spin_unlock(&fs_info->trans_lock);
282 return cur_trans->aborted;
283 }
284 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
285 spin_unlock(&fs_info->trans_lock);
286 return -EBUSY;
287 }
288 refcount_inc(&cur_trans->use_count);
289 atomic_inc(&cur_trans->num_writers);
290 extwriter_counter_inc(cur_trans, type);
291 spin_unlock(&fs_info->trans_lock);
292 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
293 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
294 return 0;
295 }
296 spin_unlock(&fs_info->trans_lock);
297
298 /*
299 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
300 * current transaction, and commit it. If there is no transaction, just
301 * return ENOENT.
302 */
303 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
304 return -ENOENT;
305
306 /*
307 * JOIN_NOLOCK only happens during the transaction commit, so
308 * it is impossible that ->running_transaction is NULL
309 */
310 BUG_ON(type == TRANS_JOIN_NOLOCK);
311
312 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
313 if (!cur_trans)
314 return -ENOMEM;
315
316 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
317 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
318
319 spin_lock(&fs_info->trans_lock);
320 if (fs_info->running_transaction) {
321 /*
322 * someone started a transaction after we unlocked. Make sure
323 * to redo the checks above
324 */
325 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
326 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
327 kfree(cur_trans);
328 goto loop;
329 } else if (BTRFS_FS_ERROR(fs_info)) {
330 spin_unlock(&fs_info->trans_lock);
331 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
332 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
333 kfree(cur_trans);
334 return -EROFS;
335 }
336
337 cur_trans->fs_info = fs_info;
338 atomic_set(&cur_trans->pending_ordered, 0);
339 init_waitqueue_head(&cur_trans->pending_wait);
340 atomic_set(&cur_trans->num_writers, 1);
341 extwriter_counter_init(cur_trans, type);
342 init_waitqueue_head(&cur_trans->writer_wait);
343 init_waitqueue_head(&cur_trans->commit_wait);
344 cur_trans->state = TRANS_STATE_RUNNING;
345 /*
346 * One for this trans handle, one so it will live on until we
347 * commit the transaction.
348 */
349 refcount_set(&cur_trans->use_count, 2);
350 cur_trans->flags = 0;
351 cur_trans->start_time = ktime_get_seconds();
352
353 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
354
355 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
356 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
357 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
358
359 /*
360 * although the tree mod log is per file system and not per transaction,
361 * the log must never go across transaction boundaries.
362 */
363 smp_mb();
364 if (!list_empty(&fs_info->tree_mod_seq_list))
365 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
366 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
367 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
368 atomic64_set(&fs_info->tree_mod_seq, 0);
369
370 spin_lock_init(&cur_trans->delayed_refs.lock);
371
372 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
373 INIT_LIST_HEAD(&cur_trans->dev_update_list);
374 INIT_LIST_HEAD(&cur_trans->switch_commits);
375 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
376 INIT_LIST_HEAD(&cur_trans->io_bgs);
377 INIT_LIST_HEAD(&cur_trans->dropped_roots);
378 mutex_init(&cur_trans->cache_write_mutex);
379 spin_lock_init(&cur_trans->dirty_bgs_lock);
380 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
381 spin_lock_init(&cur_trans->dropped_roots_lock);
382 list_add_tail(&cur_trans->list, &fs_info->trans_list);
383 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
384 IO_TREE_TRANS_DIRTY_PAGES);
385 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
386 IO_TREE_FS_PINNED_EXTENTS);
387 btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
388 cur_trans->transid = fs_info->generation;
389 fs_info->running_transaction = cur_trans;
390 cur_trans->aborted = 0;
391 spin_unlock(&fs_info->trans_lock);
392
393 return 0;
394}
395
396/*
397 * This does all the record keeping required to make sure that a shareable root
398 * is properly recorded in a given transaction. This is required to make sure
399 * the old root from before we joined the transaction is deleted when the
400 * transaction commits.
401 */
402static int record_root_in_trans(struct btrfs_trans_handle *trans,
403 struct btrfs_root *root,
404 int force)
405{
406 struct btrfs_fs_info *fs_info = root->fs_info;
407 int ret = 0;
408
409 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
410 root->last_trans < trans->transid) || force) {
411 WARN_ON(!force && root->commit_root != root->node);
412
413 /*
414 * see below for IN_TRANS_SETUP usage rules
415 * we have the reloc mutex held now, so there
416 * is only one writer in this function
417 */
418 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
419
420 /* make sure readers find IN_TRANS_SETUP before
421 * they find our root->last_trans update
422 */
423 smp_wmb();
424
425 spin_lock(&fs_info->fs_roots_radix_lock);
426 if (root->last_trans == trans->transid && !force) {
427 spin_unlock(&fs_info->fs_roots_radix_lock);
428 return 0;
429 }
430 radix_tree_tag_set(&fs_info->fs_roots_radix,
431 (unsigned long)root->root_key.objectid,
432 BTRFS_ROOT_TRANS_TAG);
433 spin_unlock(&fs_info->fs_roots_radix_lock);
434 root->last_trans = trans->transid;
435
436 /* this is pretty tricky. We don't want to
437 * take the relocation lock in btrfs_record_root_in_trans
438 * unless we're really doing the first setup for this root in
439 * this transaction.
440 *
441 * Normally we'd use root->last_trans as a flag to decide
442 * if we want to take the expensive mutex.
443 *
444 * But, we have to set root->last_trans before we
445 * init the relocation root, otherwise, we trip over warnings
446 * in ctree.c. The solution used here is to flag ourselves
447 * with root IN_TRANS_SETUP. When this is 1, we're still
448 * fixing up the reloc trees and everyone must wait.
449 *
450 * When this is zero, they can trust root->last_trans and fly
451 * through btrfs_record_root_in_trans without having to take the
452 * lock. smp_wmb() makes sure that all the writes above are
453 * done before we pop in the zero below
454 */
455 ret = btrfs_init_reloc_root(trans, root);
456 smp_mb__before_atomic();
457 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
458 }
459 return ret;
460}
461
462
463void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
464 struct btrfs_root *root)
465{
466 struct btrfs_fs_info *fs_info = root->fs_info;
467 struct btrfs_transaction *cur_trans = trans->transaction;
468
469 /* Add ourselves to the transaction dropped list */
470 spin_lock(&cur_trans->dropped_roots_lock);
471 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
472 spin_unlock(&cur_trans->dropped_roots_lock);
473
474 /* Make sure we don't try to update the root at commit time */
475 spin_lock(&fs_info->fs_roots_radix_lock);
476 radix_tree_tag_clear(&fs_info->fs_roots_radix,
477 (unsigned long)root->root_key.objectid,
478 BTRFS_ROOT_TRANS_TAG);
479 spin_unlock(&fs_info->fs_roots_radix_lock);
480}
481
482int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
483 struct btrfs_root *root)
484{
485 struct btrfs_fs_info *fs_info = root->fs_info;
486 int ret;
487
488 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
489 return 0;
490
491 /*
492 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
493 * and barriers
494 */
495 smp_rmb();
496 if (root->last_trans == trans->transid &&
497 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
498 return 0;
499
500 mutex_lock(&fs_info->reloc_mutex);
501 ret = record_root_in_trans(trans, root, 0);
502 mutex_unlock(&fs_info->reloc_mutex);
503
504 return ret;
505}
506
507static inline int is_transaction_blocked(struct btrfs_transaction *trans)
508{
509 return (trans->state >= TRANS_STATE_COMMIT_START &&
510 trans->state < TRANS_STATE_UNBLOCKED &&
511 !TRANS_ABORTED(trans));
512}
513
514/* wait for commit against the current transaction to become unblocked
515 * when this is done, it is safe to start a new transaction, but the current
516 * transaction might not be fully on disk.
517 */
518static void wait_current_trans(struct btrfs_fs_info *fs_info)
519{
520 struct btrfs_transaction *cur_trans;
521
522 spin_lock(&fs_info->trans_lock);
523 cur_trans = fs_info->running_transaction;
524 if (cur_trans && is_transaction_blocked(cur_trans)) {
525 refcount_inc(&cur_trans->use_count);
526 spin_unlock(&fs_info->trans_lock);
527
528 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
529 wait_event(fs_info->transaction_wait,
530 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
531 TRANS_ABORTED(cur_trans));
532 btrfs_put_transaction(cur_trans);
533 } else {
534 spin_unlock(&fs_info->trans_lock);
535 }
536}
537
538static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
539{
540 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
541 return 0;
542
543 if (type == TRANS_START)
544 return 1;
545
546 return 0;
547}
548
549static inline bool need_reserve_reloc_root(struct btrfs_root *root)
550{
551 struct btrfs_fs_info *fs_info = root->fs_info;
552
553 if (!fs_info->reloc_ctl ||
554 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
555 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
556 root->reloc_root)
557 return false;
558
559 return true;
560}
561
562static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
563 enum btrfs_reserve_flush_enum flush,
564 u64 num_bytes,
565 u64 *delayed_refs_bytes)
566{
567 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
568 u64 bytes = num_bytes + *delayed_refs_bytes;
569 int ret;
570
571 /*
572 * We want to reserve all the bytes we may need all at once, so we only
573 * do 1 enospc flushing cycle per transaction start.
574 */
575 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
576
577 /*
578 * If we are an emergency flush, which can steal from the global block
579 * reserve, then attempt to not reserve space for the delayed refs, as
580 * we will consume space for them from the global block reserve.
581 */
582 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
583 bytes -= *delayed_refs_bytes;
584 *delayed_refs_bytes = 0;
585 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
586 }
587
588 return ret;
589}
590
591static struct btrfs_trans_handle *
592start_transaction(struct btrfs_root *root, unsigned int num_items,
593 unsigned int type, enum btrfs_reserve_flush_enum flush,
594 bool enforce_qgroups)
595{
596 struct btrfs_fs_info *fs_info = root->fs_info;
597 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
598 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
599 struct btrfs_trans_handle *h;
600 struct btrfs_transaction *cur_trans;
601 u64 num_bytes = 0;
602 u64 qgroup_reserved = 0;
603 u64 delayed_refs_bytes = 0;
604 bool reloc_reserved = false;
605 bool do_chunk_alloc = false;
606 int ret;
607
608 if (BTRFS_FS_ERROR(fs_info))
609 return ERR_PTR(-EROFS);
610
611 if (current->journal_info) {
612 WARN_ON(type & TRANS_EXTWRITERS);
613 h = current->journal_info;
614 refcount_inc(&h->use_count);
615 WARN_ON(refcount_read(&h->use_count) > 2);
616 h->orig_rsv = h->block_rsv;
617 h->block_rsv = NULL;
618 goto got_it;
619 }
620
621 /*
622 * Do the reservation before we join the transaction so we can do all
623 * the appropriate flushing if need be.
624 */
625 if (num_items && root != fs_info->chunk_root) {
626 qgroup_reserved = num_items * fs_info->nodesize;
627 /*
628 * Use prealloc for now, as there might be a currently running
629 * transaction that could free this reserved space prematurely
630 * by committing.
631 */
632 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
633 enforce_qgroups, false);
634 if (ret)
635 return ERR_PTR(ret);
636
637 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
638 /*
639 * If we plan to insert/update/delete "num_items" from a btree,
640 * we will also generate delayed refs for extent buffers in the
641 * respective btree paths, so reserve space for the delayed refs
642 * that will be generated by the caller as it modifies btrees.
643 * Try to reserve them to avoid excessive use of the global
644 * block reserve.
645 */
646 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
647
648 /*
649 * Do the reservation for the relocation root creation
650 */
651 if (need_reserve_reloc_root(root)) {
652 num_bytes += fs_info->nodesize;
653 reloc_reserved = true;
654 }
655
656 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
657 &delayed_refs_bytes);
658 if (ret)
659 goto reserve_fail;
660
661 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
662
663 if (trans_rsv->space_info->force_alloc)
664 do_chunk_alloc = true;
665 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
666 !btrfs_block_rsv_full(delayed_refs_rsv)) {
667 /*
668 * Some people call with btrfs_start_transaction(root, 0)
669 * because they can be throttled, but have some other mechanism
670 * for reserving space. We still want these guys to refill the
671 * delayed block_rsv so just add 1 items worth of reservation
672 * here.
673 */
674 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
675 if (ret)
676 goto reserve_fail;
677 }
678again:
679 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
680 if (!h) {
681 ret = -ENOMEM;
682 goto alloc_fail;
683 }
684
685 /*
686 * If we are JOIN_NOLOCK we're already committing a transaction and
687 * waiting on this guy, so we don't need to do the sb_start_intwrite
688 * because we're already holding a ref. We need this because we could
689 * have raced in and did an fsync() on a file which can kick a commit
690 * and then we deadlock with somebody doing a freeze.
691 *
692 * If we are ATTACH, it means we just want to catch the current
693 * transaction and commit it, so we needn't do sb_start_intwrite().
694 */
695 if (type & __TRANS_FREEZABLE)
696 sb_start_intwrite(fs_info->sb);
697
698 if (may_wait_transaction(fs_info, type))
699 wait_current_trans(fs_info);
700
701 do {
702 ret = join_transaction(fs_info, type);
703 if (ret == -EBUSY) {
704 wait_current_trans(fs_info);
705 if (unlikely(type == TRANS_ATTACH ||
706 type == TRANS_JOIN_NOSTART))
707 ret = -ENOENT;
708 }
709 } while (ret == -EBUSY);
710
711 if (ret < 0)
712 goto join_fail;
713
714 cur_trans = fs_info->running_transaction;
715
716 h->transid = cur_trans->transid;
717 h->transaction = cur_trans;
718 refcount_set(&h->use_count, 1);
719 h->fs_info = root->fs_info;
720
721 h->type = type;
722 INIT_LIST_HEAD(&h->new_bgs);
723 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
724
725 smp_mb();
726 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
727 may_wait_transaction(fs_info, type)) {
728 current->journal_info = h;
729 btrfs_commit_transaction(h);
730 goto again;
731 }
732
733 if (num_bytes) {
734 trace_btrfs_space_reservation(fs_info, "transaction",
735 h->transid, num_bytes, 1);
736 h->block_rsv = trans_rsv;
737 h->bytes_reserved = num_bytes;
738 if (delayed_refs_bytes > 0) {
739 trace_btrfs_space_reservation(fs_info,
740 "local_delayed_refs_rsv",
741 h->transid,
742 delayed_refs_bytes, 1);
743 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
744 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
745 delayed_refs_bytes = 0;
746 }
747 h->reloc_reserved = reloc_reserved;
748 }
749
750 /*
751 * Now that we have found a transaction to be a part of, convert the
752 * qgroup reservation from prealloc to pertrans. A different transaction
753 * can't race in and free our pertrans out from under us.
754 */
755 if (qgroup_reserved)
756 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
757
758got_it:
759 if (!current->journal_info)
760 current->journal_info = h;
761
762 /*
763 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
764 * ALLOC_FORCE the first run through, and then we won't allocate for
765 * anybody else who races in later. We don't care about the return
766 * value here.
767 */
768 if (do_chunk_alloc && num_bytes) {
769 u64 flags = h->block_rsv->space_info->flags;
770
771 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
772 CHUNK_ALLOC_NO_FORCE);
773 }
774
775 /*
776 * btrfs_record_root_in_trans() needs to alloc new extents, and may
777 * call btrfs_join_transaction() while we're also starting a
778 * transaction.
779 *
780 * Thus it need to be called after current->journal_info initialized,
781 * or we can deadlock.
782 */
783 ret = btrfs_record_root_in_trans(h, root);
784 if (ret) {
785 /*
786 * The transaction handle is fully initialized and linked with
787 * other structures so it needs to be ended in case of errors,
788 * not just freed.
789 */
790 btrfs_end_transaction(h);
791 return ERR_PTR(ret);
792 }
793
794 return h;
795
796join_fail:
797 if (type & __TRANS_FREEZABLE)
798 sb_end_intwrite(fs_info->sb);
799 kmem_cache_free(btrfs_trans_handle_cachep, h);
800alloc_fail:
801 if (num_bytes)
802 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
803 if (delayed_refs_bytes)
804 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
805 delayed_refs_bytes);
806reserve_fail:
807 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
808 return ERR_PTR(ret);
809}
810
811struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
812 unsigned int num_items)
813{
814 return start_transaction(root, num_items, TRANS_START,
815 BTRFS_RESERVE_FLUSH_ALL, true);
816}
817
818struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
819 struct btrfs_root *root,
820 unsigned int num_items)
821{
822 return start_transaction(root, num_items, TRANS_START,
823 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
824}
825
826struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
827{
828 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
829 true);
830}
831
832struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
833{
834 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
835 BTRFS_RESERVE_NO_FLUSH, true);
836}
837
838/*
839 * Similar to regular join but it never starts a transaction when none is
840 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
841 * This is similar to btrfs_attach_transaction() but it allows the join to
842 * happen if the transaction commit already started but it's not yet in the
843 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
844 */
845struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
846{
847 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
848 BTRFS_RESERVE_NO_FLUSH, true);
849}
850
851/*
852 * Catch the running transaction.
853 *
854 * It is used when we want to commit the current the transaction, but
855 * don't want to start a new one.
856 *
857 * Note: If this function return -ENOENT, it just means there is no
858 * running transaction. But it is possible that the inactive transaction
859 * is still in the memory, not fully on disk. If you hope there is no
860 * inactive transaction in the fs when -ENOENT is returned, you should
861 * invoke
862 * btrfs_attach_transaction_barrier()
863 */
864struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
865{
866 return start_transaction(root, 0, TRANS_ATTACH,
867 BTRFS_RESERVE_NO_FLUSH, true);
868}
869
870/*
871 * Catch the running transaction.
872 *
873 * It is similar to the above function, the difference is this one
874 * will wait for all the inactive transactions until they fully
875 * complete.
876 */
877struct btrfs_trans_handle *
878btrfs_attach_transaction_barrier(struct btrfs_root *root)
879{
880 struct btrfs_trans_handle *trans;
881
882 trans = start_transaction(root, 0, TRANS_ATTACH,
883 BTRFS_RESERVE_NO_FLUSH, true);
884 if (trans == ERR_PTR(-ENOENT)) {
885 int ret;
886
887 ret = btrfs_wait_for_commit(root->fs_info, 0);
888 if (ret)
889 return ERR_PTR(ret);
890 }
891
892 return trans;
893}
894
895/* Wait for a transaction commit to reach at least the given state. */
896static noinline void wait_for_commit(struct btrfs_transaction *commit,
897 const enum btrfs_trans_state min_state)
898{
899 struct btrfs_fs_info *fs_info = commit->fs_info;
900 u64 transid = commit->transid;
901 bool put = false;
902
903 /*
904 * At the moment this function is called with min_state either being
905 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
906 */
907 if (min_state == TRANS_STATE_COMPLETED)
908 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
909 else
910 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
911
912 while (1) {
913 wait_event(commit->commit_wait, commit->state >= min_state);
914 if (put)
915 btrfs_put_transaction(commit);
916
917 if (min_state < TRANS_STATE_COMPLETED)
918 break;
919
920 /*
921 * A transaction isn't really completed until all of the
922 * previous transactions are completed, but with fsync we can
923 * end up with SUPER_COMMITTED transactions before a COMPLETED
924 * transaction. Wait for those.
925 */
926
927 spin_lock(&fs_info->trans_lock);
928 commit = list_first_entry_or_null(&fs_info->trans_list,
929 struct btrfs_transaction,
930 list);
931 if (!commit || commit->transid > transid) {
932 spin_unlock(&fs_info->trans_lock);
933 break;
934 }
935 refcount_inc(&commit->use_count);
936 put = true;
937 spin_unlock(&fs_info->trans_lock);
938 }
939}
940
941int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
942{
943 struct btrfs_transaction *cur_trans = NULL, *t;
944 int ret = 0;
945
946 if (transid) {
947 if (transid <= btrfs_get_last_trans_committed(fs_info))
948 goto out;
949
950 /* find specified transaction */
951 spin_lock(&fs_info->trans_lock);
952 list_for_each_entry(t, &fs_info->trans_list, list) {
953 if (t->transid == transid) {
954 cur_trans = t;
955 refcount_inc(&cur_trans->use_count);
956 ret = 0;
957 break;
958 }
959 if (t->transid > transid) {
960 ret = 0;
961 break;
962 }
963 }
964 spin_unlock(&fs_info->trans_lock);
965
966 /*
967 * The specified transaction doesn't exist, or we
968 * raced with btrfs_commit_transaction
969 */
970 if (!cur_trans) {
971 if (transid > btrfs_get_last_trans_committed(fs_info))
972 ret = -EINVAL;
973 goto out;
974 }
975 } else {
976 /* find newest transaction that is committing | committed */
977 spin_lock(&fs_info->trans_lock);
978 list_for_each_entry_reverse(t, &fs_info->trans_list,
979 list) {
980 if (t->state >= TRANS_STATE_COMMIT_START) {
981 if (t->state == TRANS_STATE_COMPLETED)
982 break;
983 cur_trans = t;
984 refcount_inc(&cur_trans->use_count);
985 break;
986 }
987 }
988 spin_unlock(&fs_info->trans_lock);
989 if (!cur_trans)
990 goto out; /* nothing committing|committed */
991 }
992
993 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
994 ret = cur_trans->aborted;
995 btrfs_put_transaction(cur_trans);
996out:
997 return ret;
998}
999
1000void btrfs_throttle(struct btrfs_fs_info *fs_info)
1001{
1002 wait_current_trans(fs_info);
1003}
1004
1005bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1006{
1007 struct btrfs_transaction *cur_trans = trans->transaction;
1008
1009 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1010 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1011 return true;
1012
1013 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1014 return true;
1015
1016 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1017}
1018
1019static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1020
1021{
1022 struct btrfs_fs_info *fs_info = trans->fs_info;
1023
1024 if (!trans->block_rsv) {
1025 ASSERT(!trans->bytes_reserved);
1026 ASSERT(!trans->delayed_refs_bytes_reserved);
1027 return;
1028 }
1029
1030 if (!trans->bytes_reserved) {
1031 ASSERT(!trans->delayed_refs_bytes_reserved);
1032 return;
1033 }
1034
1035 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1036 trace_btrfs_space_reservation(fs_info, "transaction",
1037 trans->transid, trans->bytes_reserved, 0);
1038 btrfs_block_rsv_release(fs_info, trans->block_rsv,
1039 trans->bytes_reserved, NULL);
1040 trans->bytes_reserved = 0;
1041
1042 if (!trans->delayed_refs_bytes_reserved)
1043 return;
1044
1045 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1046 trans->transid,
1047 trans->delayed_refs_bytes_reserved, 0);
1048 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1049 trans->delayed_refs_bytes_reserved, NULL);
1050 trans->delayed_refs_bytes_reserved = 0;
1051}
1052
1053static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1054 int throttle)
1055{
1056 struct btrfs_fs_info *info = trans->fs_info;
1057 struct btrfs_transaction *cur_trans = trans->transaction;
1058 int err = 0;
1059
1060 if (refcount_read(&trans->use_count) > 1) {
1061 refcount_dec(&trans->use_count);
1062 trans->block_rsv = trans->orig_rsv;
1063 return 0;
1064 }
1065
1066 btrfs_trans_release_metadata(trans);
1067 trans->block_rsv = NULL;
1068
1069 btrfs_create_pending_block_groups(trans);
1070
1071 btrfs_trans_release_chunk_metadata(trans);
1072
1073 if (trans->type & __TRANS_FREEZABLE)
1074 sb_end_intwrite(info->sb);
1075
1076 WARN_ON(cur_trans != info->running_transaction);
1077 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1078 atomic_dec(&cur_trans->num_writers);
1079 extwriter_counter_dec(cur_trans, trans->type);
1080
1081 cond_wake_up(&cur_trans->writer_wait);
1082
1083 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1084 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1085
1086 btrfs_put_transaction(cur_trans);
1087
1088 if (current->journal_info == trans)
1089 current->journal_info = NULL;
1090
1091 if (throttle)
1092 btrfs_run_delayed_iputs(info);
1093
1094 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1095 wake_up_process(info->transaction_kthread);
1096 if (TRANS_ABORTED(trans))
1097 err = trans->aborted;
1098 else
1099 err = -EROFS;
1100 }
1101
1102 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1103 return err;
1104}
1105
1106int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1107{
1108 return __btrfs_end_transaction(trans, 0);
1109}
1110
1111int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1112{
1113 return __btrfs_end_transaction(trans, 1);
1114}
1115
1116/*
1117 * when btree blocks are allocated, they have some corresponding bits set for
1118 * them in one of two extent_io trees. This is used to make sure all of
1119 * those extents are sent to disk but does not wait on them
1120 */
1121int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1122 struct extent_io_tree *dirty_pages, int mark)
1123{
1124 int err = 0;
1125 int werr = 0;
1126 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1127 struct extent_state *cached_state = NULL;
1128 u64 start = 0;
1129 u64 end;
1130
1131 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1132 mark, &cached_state)) {
1133 bool wait_writeback = false;
1134
1135 err = convert_extent_bit(dirty_pages, start, end,
1136 EXTENT_NEED_WAIT,
1137 mark, &cached_state);
1138 /*
1139 * convert_extent_bit can return -ENOMEM, which is most of the
1140 * time a temporary error. So when it happens, ignore the error
1141 * and wait for writeback of this range to finish - because we
1142 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1143 * to __btrfs_wait_marked_extents() would not know that
1144 * writeback for this range started and therefore wouldn't
1145 * wait for it to finish - we don't want to commit a
1146 * superblock that points to btree nodes/leafs for which
1147 * writeback hasn't finished yet (and without errors).
1148 * We cleanup any entries left in the io tree when committing
1149 * the transaction (through extent_io_tree_release()).
1150 */
1151 if (err == -ENOMEM) {
1152 err = 0;
1153 wait_writeback = true;
1154 }
1155 if (!err)
1156 err = filemap_fdatawrite_range(mapping, start, end);
1157 if (err)
1158 werr = err;
1159 else if (wait_writeback)
1160 werr = filemap_fdatawait_range(mapping, start, end);
1161 free_extent_state(cached_state);
1162 cached_state = NULL;
1163 cond_resched();
1164 start = end + 1;
1165 }
1166 return werr;
1167}
1168
1169/*
1170 * when btree blocks are allocated, they have some corresponding bits set for
1171 * them in one of two extent_io trees. This is used to make sure all of
1172 * those extents are on disk for transaction or log commit. We wait
1173 * on all the pages and clear them from the dirty pages state tree
1174 */
1175static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1176 struct extent_io_tree *dirty_pages)
1177{
1178 int err = 0;
1179 int werr = 0;
1180 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1181 struct extent_state *cached_state = NULL;
1182 u64 start = 0;
1183 u64 end;
1184
1185 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1186 EXTENT_NEED_WAIT, &cached_state)) {
1187 /*
1188 * Ignore -ENOMEM errors returned by clear_extent_bit().
1189 * When committing the transaction, we'll remove any entries
1190 * left in the io tree. For a log commit, we don't remove them
1191 * after committing the log because the tree can be accessed
1192 * concurrently - we do it only at transaction commit time when
1193 * it's safe to do it (through extent_io_tree_release()).
1194 */
1195 err = clear_extent_bit(dirty_pages, start, end,
1196 EXTENT_NEED_WAIT, &cached_state);
1197 if (err == -ENOMEM)
1198 err = 0;
1199 if (!err)
1200 err = filemap_fdatawait_range(mapping, start, end);
1201 if (err)
1202 werr = err;
1203 free_extent_state(cached_state);
1204 cached_state = NULL;
1205 cond_resched();
1206 start = end + 1;
1207 }
1208 if (err)
1209 werr = err;
1210 return werr;
1211}
1212
1213static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1214 struct extent_io_tree *dirty_pages)
1215{
1216 bool errors = false;
1217 int err;
1218
1219 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1220 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1221 errors = true;
1222
1223 if (errors && !err)
1224 err = -EIO;
1225 return err;
1226}
1227
1228int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1229{
1230 struct btrfs_fs_info *fs_info = log_root->fs_info;
1231 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1232 bool errors = false;
1233 int err;
1234
1235 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1236
1237 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1238 if ((mark & EXTENT_DIRTY) &&
1239 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1240 errors = true;
1241
1242 if ((mark & EXTENT_NEW) &&
1243 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1244 errors = true;
1245
1246 if (errors && !err)
1247 err = -EIO;
1248 return err;
1249}
1250
1251/*
1252 * When btree blocks are allocated the corresponding extents are marked dirty.
1253 * This function ensures such extents are persisted on disk for transaction or
1254 * log commit.
1255 *
1256 * @trans: transaction whose dirty pages we'd like to write
1257 */
1258static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1259{
1260 int ret;
1261 int ret2;
1262 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1263 struct btrfs_fs_info *fs_info = trans->fs_info;
1264 struct blk_plug plug;
1265
1266 blk_start_plug(&plug);
1267 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1268 blk_finish_plug(&plug);
1269 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1270
1271 extent_io_tree_release(&trans->transaction->dirty_pages);
1272
1273 if (ret)
1274 return ret;
1275 else if (ret2)
1276 return ret2;
1277 else
1278 return 0;
1279}
1280
1281/*
1282 * this is used to update the root pointer in the tree of tree roots.
1283 *
1284 * But, in the case of the extent allocation tree, updating the root
1285 * pointer may allocate blocks which may change the root of the extent
1286 * allocation tree.
1287 *
1288 * So, this loops and repeats and makes sure the cowonly root didn't
1289 * change while the root pointer was being updated in the metadata.
1290 */
1291static int update_cowonly_root(struct btrfs_trans_handle *trans,
1292 struct btrfs_root *root)
1293{
1294 int ret;
1295 u64 old_root_bytenr;
1296 u64 old_root_used;
1297 struct btrfs_fs_info *fs_info = root->fs_info;
1298 struct btrfs_root *tree_root = fs_info->tree_root;
1299
1300 old_root_used = btrfs_root_used(&root->root_item);
1301
1302 while (1) {
1303 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1304 if (old_root_bytenr == root->node->start &&
1305 old_root_used == btrfs_root_used(&root->root_item))
1306 break;
1307
1308 btrfs_set_root_node(&root->root_item, root->node);
1309 ret = btrfs_update_root(trans, tree_root,
1310 &root->root_key,
1311 &root->root_item);
1312 if (ret)
1313 return ret;
1314
1315 old_root_used = btrfs_root_used(&root->root_item);
1316 }
1317
1318 return 0;
1319}
1320
1321/*
1322 * update all the cowonly tree roots on disk
1323 *
1324 * The error handling in this function may not be obvious. Any of the
1325 * failures will cause the file system to go offline. We still need
1326 * to clean up the delayed refs.
1327 */
1328static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1329{
1330 struct btrfs_fs_info *fs_info = trans->fs_info;
1331 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1332 struct list_head *io_bgs = &trans->transaction->io_bgs;
1333 struct list_head *next;
1334 struct extent_buffer *eb;
1335 int ret;
1336
1337 /*
1338 * At this point no one can be using this transaction to modify any tree
1339 * and no one can start another transaction to modify any tree either.
1340 */
1341 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1342
1343 eb = btrfs_lock_root_node(fs_info->tree_root);
1344 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1345 0, &eb, BTRFS_NESTING_COW);
1346 btrfs_tree_unlock(eb);
1347 free_extent_buffer(eb);
1348
1349 if (ret)
1350 return ret;
1351
1352 ret = btrfs_run_dev_stats(trans);
1353 if (ret)
1354 return ret;
1355 ret = btrfs_run_dev_replace(trans);
1356 if (ret)
1357 return ret;
1358 ret = btrfs_run_qgroups(trans);
1359 if (ret)
1360 return ret;
1361
1362 ret = btrfs_setup_space_cache(trans);
1363 if (ret)
1364 return ret;
1365
1366again:
1367 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1368 struct btrfs_root *root;
1369 next = fs_info->dirty_cowonly_roots.next;
1370 list_del_init(next);
1371 root = list_entry(next, struct btrfs_root, dirty_list);
1372 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1373
1374 list_add_tail(&root->dirty_list,
1375 &trans->transaction->switch_commits);
1376 ret = update_cowonly_root(trans, root);
1377 if (ret)
1378 return ret;
1379 }
1380
1381 /* Now flush any delayed refs generated by updating all of the roots */
1382 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1383 if (ret)
1384 return ret;
1385
1386 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1387 ret = btrfs_write_dirty_block_groups(trans);
1388 if (ret)
1389 return ret;
1390
1391 /*
1392 * We're writing the dirty block groups, which could generate
1393 * delayed refs, which could generate more dirty block groups,
1394 * so we want to keep this flushing in this loop to make sure
1395 * everything gets run.
1396 */
1397 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1398 if (ret)
1399 return ret;
1400 }
1401
1402 if (!list_empty(&fs_info->dirty_cowonly_roots))
1403 goto again;
1404
1405 /* Update dev-replace pointer once everything is committed */
1406 fs_info->dev_replace.committed_cursor_left =
1407 fs_info->dev_replace.cursor_left_last_write_of_item;
1408
1409 return 0;
1410}
1411
1412/*
1413 * If we had a pending drop we need to see if there are any others left in our
1414 * dead roots list, and if not clear our bit and wake any waiters.
1415 */
1416void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1417{
1418 /*
1419 * We put the drop in progress roots at the front of the list, so if the
1420 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1421 * up.
1422 */
1423 spin_lock(&fs_info->trans_lock);
1424 if (!list_empty(&fs_info->dead_roots)) {
1425 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1426 struct btrfs_root,
1427 root_list);
1428 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1429 spin_unlock(&fs_info->trans_lock);
1430 return;
1431 }
1432 }
1433 spin_unlock(&fs_info->trans_lock);
1434
1435 btrfs_wake_unfinished_drop(fs_info);
1436}
1437
1438/*
1439 * dead roots are old snapshots that need to be deleted. This allocates
1440 * a dirty root struct and adds it into the list of dead roots that need to
1441 * be deleted
1442 */
1443void btrfs_add_dead_root(struct btrfs_root *root)
1444{
1445 struct btrfs_fs_info *fs_info = root->fs_info;
1446
1447 spin_lock(&fs_info->trans_lock);
1448 if (list_empty(&root->root_list)) {
1449 btrfs_grab_root(root);
1450
1451 /* We want to process the partially complete drops first. */
1452 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1453 list_add(&root->root_list, &fs_info->dead_roots);
1454 else
1455 list_add_tail(&root->root_list, &fs_info->dead_roots);
1456 }
1457 spin_unlock(&fs_info->trans_lock);
1458}
1459
1460/*
1461 * Update each subvolume root and its relocation root, if it exists, in the tree
1462 * of tree roots. Also free log roots if they exist.
1463 */
1464static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1465{
1466 struct btrfs_fs_info *fs_info = trans->fs_info;
1467 struct btrfs_root *gang[8];
1468 int i;
1469 int ret;
1470
1471 /*
1472 * At this point no one can be using this transaction to modify any tree
1473 * and no one can start another transaction to modify any tree either.
1474 */
1475 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1476
1477 spin_lock(&fs_info->fs_roots_radix_lock);
1478 while (1) {
1479 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1480 (void **)gang, 0,
1481 ARRAY_SIZE(gang),
1482 BTRFS_ROOT_TRANS_TAG);
1483 if (ret == 0)
1484 break;
1485 for (i = 0; i < ret; i++) {
1486 struct btrfs_root *root = gang[i];
1487 int ret2;
1488
1489 /*
1490 * At this point we can neither have tasks logging inodes
1491 * from a root nor trying to commit a log tree.
1492 */
1493 ASSERT(atomic_read(&root->log_writers) == 0);
1494 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1495 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1496
1497 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1498 (unsigned long)root->root_key.objectid,
1499 BTRFS_ROOT_TRANS_TAG);
1500 spin_unlock(&fs_info->fs_roots_radix_lock);
1501
1502 btrfs_free_log(trans, root);
1503 ret2 = btrfs_update_reloc_root(trans, root);
1504 if (ret2)
1505 return ret2;
1506
1507 /* see comments in should_cow_block() */
1508 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1509 smp_mb__after_atomic();
1510
1511 if (root->commit_root != root->node) {
1512 list_add_tail(&root->dirty_list,
1513 &trans->transaction->switch_commits);
1514 btrfs_set_root_node(&root->root_item,
1515 root->node);
1516 }
1517
1518 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1519 &root->root_key,
1520 &root->root_item);
1521 if (ret2)
1522 return ret2;
1523 spin_lock(&fs_info->fs_roots_radix_lock);
1524 btrfs_qgroup_free_meta_all_pertrans(root);
1525 }
1526 }
1527 spin_unlock(&fs_info->fs_roots_radix_lock);
1528 return 0;
1529}
1530
1531/*
1532 * Do all special snapshot related qgroup dirty hack.
1533 *
1534 * Will do all needed qgroup inherit and dirty hack like switch commit
1535 * roots inside one transaction and write all btree into disk, to make
1536 * qgroup works.
1537 */
1538static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1539 struct btrfs_root *src,
1540 struct btrfs_root *parent,
1541 struct btrfs_qgroup_inherit *inherit,
1542 u64 dst_objectid)
1543{
1544 struct btrfs_fs_info *fs_info = src->fs_info;
1545 int ret;
1546
1547 /*
1548 * Save some performance in the case that qgroups are not enabled. If
1549 * this check races with the ioctl, rescan will kick in anyway.
1550 */
1551 if (!btrfs_qgroup_full_accounting(fs_info))
1552 return 0;
1553
1554 /*
1555 * Ensure dirty @src will be committed. Or, after coming
1556 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1557 * recorded root will never be updated again, causing an outdated root
1558 * item.
1559 */
1560 ret = record_root_in_trans(trans, src, 1);
1561 if (ret)
1562 return ret;
1563
1564 /*
1565 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1566 * src root, so we must run the delayed refs here.
1567 *
1568 * However this isn't particularly fool proof, because there's no
1569 * synchronization keeping us from changing the tree after this point
1570 * before we do the qgroup_inherit, or even from making changes while
1571 * we're doing the qgroup_inherit. But that's a problem for the future,
1572 * for now flush the delayed refs to narrow the race window where the
1573 * qgroup counters could end up wrong.
1574 */
1575 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1576 if (ret) {
1577 btrfs_abort_transaction(trans, ret);
1578 return ret;
1579 }
1580
1581 ret = commit_fs_roots(trans);
1582 if (ret)
1583 goto out;
1584 ret = btrfs_qgroup_account_extents(trans);
1585 if (ret < 0)
1586 goto out;
1587
1588 /* Now qgroup are all updated, we can inherit it to new qgroups */
1589 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1590 parent->root_key.objectid, inherit);
1591 if (ret < 0)
1592 goto out;
1593
1594 /*
1595 * Now we do a simplified commit transaction, which will:
1596 * 1) commit all subvolume and extent tree
1597 * To ensure all subvolume and extent tree have a valid
1598 * commit_root to accounting later insert_dir_item()
1599 * 2) write all btree blocks onto disk
1600 * This is to make sure later btree modification will be cowed
1601 * Or commit_root can be populated and cause wrong qgroup numbers
1602 * In this simplified commit, we don't really care about other trees
1603 * like chunk and root tree, as they won't affect qgroup.
1604 * And we don't write super to avoid half committed status.
1605 */
1606 ret = commit_cowonly_roots(trans);
1607 if (ret)
1608 goto out;
1609 switch_commit_roots(trans);
1610 ret = btrfs_write_and_wait_transaction(trans);
1611 if (ret)
1612 btrfs_handle_fs_error(fs_info, ret,
1613 "Error while writing out transaction for qgroup");
1614
1615out:
1616 /*
1617 * Force parent root to be updated, as we recorded it before so its
1618 * last_trans == cur_transid.
1619 * Or it won't be committed again onto disk after later
1620 * insert_dir_item()
1621 */
1622 if (!ret)
1623 ret = record_root_in_trans(trans, parent, 1);
1624 return ret;
1625}
1626
1627/*
1628 * new snapshots need to be created at a very specific time in the
1629 * transaction commit. This does the actual creation.
1630 *
1631 * Note:
1632 * If the error which may affect the commitment of the current transaction
1633 * happens, we should return the error number. If the error which just affect
1634 * the creation of the pending snapshots, just return 0.
1635 */
1636static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1637 struct btrfs_pending_snapshot *pending)
1638{
1639
1640 struct btrfs_fs_info *fs_info = trans->fs_info;
1641 struct btrfs_key key;
1642 struct btrfs_root_item *new_root_item;
1643 struct btrfs_root *tree_root = fs_info->tree_root;
1644 struct btrfs_root *root = pending->root;
1645 struct btrfs_root *parent_root;
1646 struct btrfs_block_rsv *rsv;
1647 struct inode *parent_inode = pending->dir;
1648 struct btrfs_path *path;
1649 struct btrfs_dir_item *dir_item;
1650 struct extent_buffer *tmp;
1651 struct extent_buffer *old;
1652 struct timespec64 cur_time;
1653 int ret = 0;
1654 u64 to_reserve = 0;
1655 u64 index = 0;
1656 u64 objectid;
1657 u64 root_flags;
1658 unsigned int nofs_flags;
1659 struct fscrypt_name fname;
1660
1661 ASSERT(pending->path);
1662 path = pending->path;
1663
1664 ASSERT(pending->root_item);
1665 new_root_item = pending->root_item;
1666
1667 /*
1668 * We're inside a transaction and must make sure that any potential
1669 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1670 * filesystem.
1671 */
1672 nofs_flags = memalloc_nofs_save();
1673 pending->error = fscrypt_setup_filename(parent_inode,
1674 &pending->dentry->d_name, 0,
1675 &fname);
1676 memalloc_nofs_restore(nofs_flags);
1677 if (pending->error)
1678 goto free_pending;
1679
1680 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1681 if (pending->error)
1682 goto free_fname;
1683
1684 /*
1685 * Make qgroup to skip current new snapshot's qgroupid, as it is
1686 * accounted by later btrfs_qgroup_inherit().
1687 */
1688 btrfs_set_skip_qgroup(trans, objectid);
1689
1690 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1691
1692 if (to_reserve > 0) {
1693 pending->error = btrfs_block_rsv_add(fs_info,
1694 &pending->block_rsv,
1695 to_reserve,
1696 BTRFS_RESERVE_NO_FLUSH);
1697 if (pending->error)
1698 goto clear_skip_qgroup;
1699 }
1700
1701 key.objectid = objectid;
1702 key.offset = (u64)-1;
1703 key.type = BTRFS_ROOT_ITEM_KEY;
1704
1705 rsv = trans->block_rsv;
1706 trans->block_rsv = &pending->block_rsv;
1707 trans->bytes_reserved = trans->block_rsv->reserved;
1708 trace_btrfs_space_reservation(fs_info, "transaction",
1709 trans->transid,
1710 trans->bytes_reserved, 1);
1711 parent_root = BTRFS_I(parent_inode)->root;
1712 ret = record_root_in_trans(trans, parent_root, 0);
1713 if (ret)
1714 goto fail;
1715 cur_time = current_time(parent_inode);
1716
1717 /*
1718 * insert the directory item
1719 */
1720 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1721 if (ret) {
1722 btrfs_abort_transaction(trans, ret);
1723 goto fail;
1724 }
1725
1726 /* check if there is a file/dir which has the same name. */
1727 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1728 btrfs_ino(BTRFS_I(parent_inode)),
1729 &fname.disk_name, 0);
1730 if (dir_item != NULL && !IS_ERR(dir_item)) {
1731 pending->error = -EEXIST;
1732 goto dir_item_existed;
1733 } else if (IS_ERR(dir_item)) {
1734 ret = PTR_ERR(dir_item);
1735 btrfs_abort_transaction(trans, ret);
1736 goto fail;
1737 }
1738 btrfs_release_path(path);
1739
1740 ret = btrfs_create_qgroup(trans, objectid);
1741 if (ret && ret != -EEXIST) {
1742 btrfs_abort_transaction(trans, ret);
1743 goto fail;
1744 }
1745
1746 /*
1747 * pull in the delayed directory update
1748 * and the delayed inode item
1749 * otherwise we corrupt the FS during
1750 * snapshot
1751 */
1752 ret = btrfs_run_delayed_items(trans);
1753 if (ret) { /* Transaction aborted */
1754 btrfs_abort_transaction(trans, ret);
1755 goto fail;
1756 }
1757
1758 ret = record_root_in_trans(trans, root, 0);
1759 if (ret) {
1760 btrfs_abort_transaction(trans, ret);
1761 goto fail;
1762 }
1763 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1764 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1765 btrfs_check_and_init_root_item(new_root_item);
1766
1767 root_flags = btrfs_root_flags(new_root_item);
1768 if (pending->readonly)
1769 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1770 else
1771 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1772 btrfs_set_root_flags(new_root_item, root_flags);
1773
1774 btrfs_set_root_generation_v2(new_root_item,
1775 trans->transid);
1776 generate_random_guid(new_root_item->uuid);
1777 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1778 BTRFS_UUID_SIZE);
1779 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1780 memset(new_root_item->received_uuid, 0,
1781 sizeof(new_root_item->received_uuid));
1782 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1783 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1784 btrfs_set_root_stransid(new_root_item, 0);
1785 btrfs_set_root_rtransid(new_root_item, 0);
1786 }
1787 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1788 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1789 btrfs_set_root_otransid(new_root_item, trans->transid);
1790
1791 old = btrfs_lock_root_node(root);
1792 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1793 BTRFS_NESTING_COW);
1794 if (ret) {
1795 btrfs_tree_unlock(old);
1796 free_extent_buffer(old);
1797 btrfs_abort_transaction(trans, ret);
1798 goto fail;
1799 }
1800
1801 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1802 /* clean up in any case */
1803 btrfs_tree_unlock(old);
1804 free_extent_buffer(old);
1805 if (ret) {
1806 btrfs_abort_transaction(trans, ret);
1807 goto fail;
1808 }
1809 /* see comments in should_cow_block() */
1810 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1811 smp_wmb();
1812
1813 btrfs_set_root_node(new_root_item, tmp);
1814 /* record when the snapshot was created in key.offset */
1815 key.offset = trans->transid;
1816 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1817 btrfs_tree_unlock(tmp);
1818 free_extent_buffer(tmp);
1819 if (ret) {
1820 btrfs_abort_transaction(trans, ret);
1821 goto fail;
1822 }
1823
1824 /*
1825 * insert root back/forward references
1826 */
1827 ret = btrfs_add_root_ref(trans, objectid,
1828 parent_root->root_key.objectid,
1829 btrfs_ino(BTRFS_I(parent_inode)), index,
1830 &fname.disk_name);
1831 if (ret) {
1832 btrfs_abort_transaction(trans, ret);
1833 goto fail;
1834 }
1835
1836 key.offset = (u64)-1;
1837 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1838 if (IS_ERR(pending->snap)) {
1839 ret = PTR_ERR(pending->snap);
1840 pending->snap = NULL;
1841 btrfs_abort_transaction(trans, ret);
1842 goto fail;
1843 }
1844
1845 ret = btrfs_reloc_post_snapshot(trans, pending);
1846 if (ret) {
1847 btrfs_abort_transaction(trans, ret);
1848 goto fail;
1849 }
1850
1851 /*
1852 * Do special qgroup accounting for snapshot, as we do some qgroup
1853 * snapshot hack to do fast snapshot.
1854 * To co-operate with that hack, we do hack again.
1855 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1856 */
1857 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1858 ret = qgroup_account_snapshot(trans, root, parent_root,
1859 pending->inherit, objectid);
1860 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1861 ret = btrfs_qgroup_inherit(trans, root->root_key.objectid, objectid,
1862 parent_root->root_key.objectid, pending->inherit);
1863 if (ret < 0)
1864 goto fail;
1865
1866 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1867 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1868 index);
1869 /* We have check then name at the beginning, so it is impossible. */
1870 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1871 if (ret) {
1872 btrfs_abort_transaction(trans, ret);
1873 goto fail;
1874 }
1875
1876 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1877 fname.disk_name.len * 2);
1878 inode_set_mtime_to_ts(parent_inode,
1879 inode_set_ctime_current(parent_inode));
1880 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1881 if (ret) {
1882 btrfs_abort_transaction(trans, ret);
1883 goto fail;
1884 }
1885 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1886 BTRFS_UUID_KEY_SUBVOL,
1887 objectid);
1888 if (ret) {
1889 btrfs_abort_transaction(trans, ret);
1890 goto fail;
1891 }
1892 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1893 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1894 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1895 objectid);
1896 if (ret && ret != -EEXIST) {
1897 btrfs_abort_transaction(trans, ret);
1898 goto fail;
1899 }
1900 }
1901
1902fail:
1903 pending->error = ret;
1904dir_item_existed:
1905 trans->block_rsv = rsv;
1906 trans->bytes_reserved = 0;
1907clear_skip_qgroup:
1908 btrfs_clear_skip_qgroup(trans);
1909free_fname:
1910 fscrypt_free_filename(&fname);
1911free_pending:
1912 kfree(new_root_item);
1913 pending->root_item = NULL;
1914 btrfs_free_path(path);
1915 pending->path = NULL;
1916
1917 return ret;
1918}
1919
1920/*
1921 * create all the snapshots we've scheduled for creation
1922 */
1923static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1924{
1925 struct btrfs_pending_snapshot *pending, *next;
1926 struct list_head *head = &trans->transaction->pending_snapshots;
1927 int ret = 0;
1928
1929 list_for_each_entry_safe(pending, next, head, list) {
1930 list_del(&pending->list);
1931 ret = create_pending_snapshot(trans, pending);
1932 if (ret)
1933 break;
1934 }
1935 return ret;
1936}
1937
1938static void update_super_roots(struct btrfs_fs_info *fs_info)
1939{
1940 struct btrfs_root_item *root_item;
1941 struct btrfs_super_block *super;
1942
1943 super = fs_info->super_copy;
1944
1945 root_item = &fs_info->chunk_root->root_item;
1946 super->chunk_root = root_item->bytenr;
1947 super->chunk_root_generation = root_item->generation;
1948 super->chunk_root_level = root_item->level;
1949
1950 root_item = &fs_info->tree_root->root_item;
1951 super->root = root_item->bytenr;
1952 super->generation = root_item->generation;
1953 super->root_level = root_item->level;
1954 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1955 super->cache_generation = root_item->generation;
1956 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1957 super->cache_generation = 0;
1958 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1959 super->uuid_tree_generation = root_item->generation;
1960}
1961
1962int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1963{
1964 struct btrfs_transaction *trans;
1965 int ret = 0;
1966
1967 spin_lock(&info->trans_lock);
1968 trans = info->running_transaction;
1969 if (trans)
1970 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1971 spin_unlock(&info->trans_lock);
1972 return ret;
1973}
1974
1975int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1976{
1977 struct btrfs_transaction *trans;
1978 int ret = 0;
1979
1980 spin_lock(&info->trans_lock);
1981 trans = info->running_transaction;
1982 if (trans)
1983 ret = is_transaction_blocked(trans);
1984 spin_unlock(&info->trans_lock);
1985 return ret;
1986}
1987
1988void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1989{
1990 struct btrfs_fs_info *fs_info = trans->fs_info;
1991 struct btrfs_transaction *cur_trans;
1992
1993 /* Kick the transaction kthread. */
1994 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1995 wake_up_process(fs_info->transaction_kthread);
1996
1997 /* take transaction reference */
1998 cur_trans = trans->transaction;
1999 refcount_inc(&cur_trans->use_count);
2000
2001 btrfs_end_transaction(trans);
2002
2003 /*
2004 * Wait for the current transaction commit to start and block
2005 * subsequent transaction joins
2006 */
2007 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2008 wait_event(fs_info->transaction_blocked_wait,
2009 cur_trans->state >= TRANS_STATE_COMMIT_START ||
2010 TRANS_ABORTED(cur_trans));
2011 btrfs_put_transaction(cur_trans);
2012}
2013
2014static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2015{
2016 struct btrfs_fs_info *fs_info = trans->fs_info;
2017 struct btrfs_transaction *cur_trans = trans->transaction;
2018
2019 WARN_ON(refcount_read(&trans->use_count) > 1);
2020
2021 btrfs_abort_transaction(trans, err);
2022
2023 spin_lock(&fs_info->trans_lock);
2024
2025 /*
2026 * If the transaction is removed from the list, it means this
2027 * transaction has been committed successfully, so it is impossible
2028 * to call the cleanup function.
2029 */
2030 BUG_ON(list_empty(&cur_trans->list));
2031
2032 if (cur_trans == fs_info->running_transaction) {
2033 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2034 spin_unlock(&fs_info->trans_lock);
2035
2036 /*
2037 * The thread has already released the lockdep map as reader
2038 * already in btrfs_commit_transaction().
2039 */
2040 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2041 wait_event(cur_trans->writer_wait,
2042 atomic_read(&cur_trans->num_writers) == 1);
2043
2044 spin_lock(&fs_info->trans_lock);
2045 }
2046
2047 /*
2048 * Now that we know no one else is still using the transaction we can
2049 * remove the transaction from the list of transactions. This avoids
2050 * the transaction kthread from cleaning up the transaction while some
2051 * other task is still using it, which could result in a use-after-free
2052 * on things like log trees, as it forces the transaction kthread to
2053 * wait for this transaction to be cleaned up by us.
2054 */
2055 list_del_init(&cur_trans->list);
2056
2057 spin_unlock(&fs_info->trans_lock);
2058
2059 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2060
2061 spin_lock(&fs_info->trans_lock);
2062 if (cur_trans == fs_info->running_transaction)
2063 fs_info->running_transaction = NULL;
2064 spin_unlock(&fs_info->trans_lock);
2065
2066 if (trans->type & __TRANS_FREEZABLE)
2067 sb_end_intwrite(fs_info->sb);
2068 btrfs_put_transaction(cur_trans);
2069 btrfs_put_transaction(cur_trans);
2070
2071 trace_btrfs_transaction_commit(fs_info);
2072
2073 if (current->journal_info == trans)
2074 current->journal_info = NULL;
2075
2076 /*
2077 * If relocation is running, we can't cancel scrub because that will
2078 * result in a deadlock. Before relocating a block group, relocation
2079 * pauses scrub, then starts and commits a transaction before unpausing
2080 * scrub. If the transaction commit is being done by the relocation
2081 * task or triggered by another task and the relocation task is waiting
2082 * for the commit, and we end up here due to an error in the commit
2083 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2084 * asking for scrub to stop while having it asked to be paused higher
2085 * above in relocation code.
2086 */
2087 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2088 btrfs_scrub_cancel(fs_info);
2089
2090 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2091}
2092
2093/*
2094 * Release reserved delayed ref space of all pending block groups of the
2095 * transaction and remove them from the list
2096 */
2097static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2098{
2099 struct btrfs_fs_info *fs_info = trans->fs_info;
2100 struct btrfs_block_group *block_group, *tmp;
2101
2102 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2103 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2104 list_del_init(&block_group->bg_list);
2105 }
2106}
2107
2108static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2109{
2110 /*
2111 * We use try_to_writeback_inodes_sb() here because if we used
2112 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2113 * Currently are holding the fs freeze lock, if we do an async flush
2114 * we'll do btrfs_join_transaction() and deadlock because we need to
2115 * wait for the fs freeze lock. Using the direct flushing we benefit
2116 * from already being in a transaction and our join_transaction doesn't
2117 * have to re-take the fs freeze lock.
2118 *
2119 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2120 * if it can read lock sb->s_umount. It will always be able to lock it,
2121 * except when the filesystem is being unmounted or being frozen, but in
2122 * those cases sync_filesystem() is called, which results in calling
2123 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2124 * Note that we don't call writeback_inodes_sb() directly, because it
2125 * will emit a warning if sb->s_umount is not locked.
2126 */
2127 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2128 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2129 return 0;
2130}
2131
2132static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2133{
2134 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2135 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2136}
2137
2138/*
2139 * Add a pending snapshot associated with the given transaction handle to the
2140 * respective handle. This must be called after the transaction commit started
2141 * and while holding fs_info->trans_lock.
2142 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2143 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2144 * returns an error.
2145 */
2146static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2147{
2148 struct btrfs_transaction *cur_trans = trans->transaction;
2149
2150 if (!trans->pending_snapshot)
2151 return;
2152
2153 lockdep_assert_held(&trans->fs_info->trans_lock);
2154 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2155
2156 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2157}
2158
2159static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2160{
2161 fs_info->commit_stats.commit_count++;
2162 fs_info->commit_stats.last_commit_dur = interval;
2163 fs_info->commit_stats.max_commit_dur =
2164 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2165 fs_info->commit_stats.total_commit_dur += interval;
2166}
2167
2168int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2169{
2170 struct btrfs_fs_info *fs_info = trans->fs_info;
2171 struct btrfs_transaction *cur_trans = trans->transaction;
2172 struct btrfs_transaction *prev_trans = NULL;
2173 int ret;
2174 ktime_t start_time;
2175 ktime_t interval;
2176
2177 ASSERT(refcount_read(&trans->use_count) == 1);
2178 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2179
2180 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2181
2182 /* Stop the commit early if ->aborted is set */
2183 if (TRANS_ABORTED(cur_trans)) {
2184 ret = cur_trans->aborted;
2185 goto lockdep_trans_commit_start_release;
2186 }
2187
2188 btrfs_trans_release_metadata(trans);
2189 trans->block_rsv = NULL;
2190
2191 /*
2192 * We only want one transaction commit doing the flushing so we do not
2193 * waste a bunch of time on lock contention on the extent root node.
2194 */
2195 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2196 &cur_trans->delayed_refs.flags)) {
2197 /*
2198 * Make a pass through all the delayed refs we have so far.
2199 * Any running threads may add more while we are here.
2200 */
2201 ret = btrfs_run_delayed_refs(trans, 0);
2202 if (ret)
2203 goto lockdep_trans_commit_start_release;
2204 }
2205
2206 btrfs_create_pending_block_groups(trans);
2207
2208 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2209 int run_it = 0;
2210
2211 /* this mutex is also taken before trying to set
2212 * block groups readonly. We need to make sure
2213 * that nobody has set a block group readonly
2214 * after a extents from that block group have been
2215 * allocated for cache files. btrfs_set_block_group_ro
2216 * will wait for the transaction to commit if it
2217 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2218 *
2219 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2220 * only one process starts all the block group IO. It wouldn't
2221 * hurt to have more than one go through, but there's no
2222 * real advantage to it either.
2223 */
2224 mutex_lock(&fs_info->ro_block_group_mutex);
2225 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2226 &cur_trans->flags))
2227 run_it = 1;
2228 mutex_unlock(&fs_info->ro_block_group_mutex);
2229
2230 if (run_it) {
2231 ret = btrfs_start_dirty_block_groups(trans);
2232 if (ret)
2233 goto lockdep_trans_commit_start_release;
2234 }
2235 }
2236
2237 spin_lock(&fs_info->trans_lock);
2238 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2239 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2240
2241 add_pending_snapshot(trans);
2242
2243 spin_unlock(&fs_info->trans_lock);
2244 refcount_inc(&cur_trans->use_count);
2245
2246 if (trans->in_fsync)
2247 want_state = TRANS_STATE_SUPER_COMMITTED;
2248
2249 btrfs_trans_state_lockdep_release(fs_info,
2250 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2251 ret = btrfs_end_transaction(trans);
2252 wait_for_commit(cur_trans, want_state);
2253
2254 if (TRANS_ABORTED(cur_trans))
2255 ret = cur_trans->aborted;
2256
2257 btrfs_put_transaction(cur_trans);
2258
2259 return ret;
2260 }
2261
2262 cur_trans->state = TRANS_STATE_COMMIT_PREP;
2263 wake_up(&fs_info->transaction_blocked_wait);
2264 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2265
2266 if (cur_trans->list.prev != &fs_info->trans_list) {
2267 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2268
2269 if (trans->in_fsync)
2270 want_state = TRANS_STATE_SUPER_COMMITTED;
2271
2272 prev_trans = list_entry(cur_trans->list.prev,
2273 struct btrfs_transaction, list);
2274 if (prev_trans->state < want_state) {
2275 refcount_inc(&prev_trans->use_count);
2276 spin_unlock(&fs_info->trans_lock);
2277
2278 wait_for_commit(prev_trans, want_state);
2279
2280 ret = READ_ONCE(prev_trans->aborted);
2281
2282 btrfs_put_transaction(prev_trans);
2283 if (ret)
2284 goto lockdep_release;
2285 spin_lock(&fs_info->trans_lock);
2286 }
2287 } else {
2288 /*
2289 * The previous transaction was aborted and was already removed
2290 * from the list of transactions at fs_info->trans_list. So we
2291 * abort to prevent writing a new superblock that reflects a
2292 * corrupt state (pointing to trees with unwritten nodes/leafs).
2293 */
2294 if (BTRFS_FS_ERROR(fs_info)) {
2295 spin_unlock(&fs_info->trans_lock);
2296 ret = -EROFS;
2297 goto lockdep_release;
2298 }
2299 }
2300
2301 cur_trans->state = TRANS_STATE_COMMIT_START;
2302 wake_up(&fs_info->transaction_blocked_wait);
2303 spin_unlock(&fs_info->trans_lock);
2304
2305 /*
2306 * Get the time spent on the work done by the commit thread and not
2307 * the time spent waiting on a previous commit
2308 */
2309 start_time = ktime_get_ns();
2310
2311 extwriter_counter_dec(cur_trans, trans->type);
2312
2313 ret = btrfs_start_delalloc_flush(fs_info);
2314 if (ret)
2315 goto lockdep_release;
2316
2317 ret = btrfs_run_delayed_items(trans);
2318 if (ret)
2319 goto lockdep_release;
2320
2321 /*
2322 * The thread has started/joined the transaction thus it holds the
2323 * lockdep map as a reader. It has to release it before acquiring the
2324 * lockdep map as a writer.
2325 */
2326 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2327 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2328 wait_event(cur_trans->writer_wait,
2329 extwriter_counter_read(cur_trans) == 0);
2330
2331 /* some pending stuffs might be added after the previous flush. */
2332 ret = btrfs_run_delayed_items(trans);
2333 if (ret) {
2334 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2335 goto cleanup_transaction;
2336 }
2337
2338 btrfs_wait_delalloc_flush(fs_info);
2339
2340 /*
2341 * Wait for all ordered extents started by a fast fsync that joined this
2342 * transaction. Otherwise if this transaction commits before the ordered
2343 * extents complete we lose logged data after a power failure.
2344 */
2345 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2346 wait_event(cur_trans->pending_wait,
2347 atomic_read(&cur_trans->pending_ordered) == 0);
2348
2349 btrfs_scrub_pause(fs_info);
2350 /*
2351 * Ok now we need to make sure to block out any other joins while we
2352 * commit the transaction. We could have started a join before setting
2353 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2354 */
2355 spin_lock(&fs_info->trans_lock);
2356 add_pending_snapshot(trans);
2357 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2358 spin_unlock(&fs_info->trans_lock);
2359
2360 /*
2361 * The thread has started/joined the transaction thus it holds the
2362 * lockdep map as a reader. It has to release it before acquiring the
2363 * lockdep map as a writer.
2364 */
2365 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2366 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2367 wait_event(cur_trans->writer_wait,
2368 atomic_read(&cur_trans->num_writers) == 1);
2369
2370 /*
2371 * Make lockdep happy by acquiring the state locks after
2372 * btrfs_trans_num_writers is released. If we acquired the state locks
2373 * before releasing the btrfs_trans_num_writers lock then lockdep would
2374 * complain because we did not follow the reverse order unlocking rule.
2375 */
2376 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2377 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2378 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2379
2380 /*
2381 * We've started the commit, clear the flag in case we were triggered to
2382 * do an async commit but somebody else started before the transaction
2383 * kthread could do the work.
2384 */
2385 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2386
2387 if (TRANS_ABORTED(cur_trans)) {
2388 ret = cur_trans->aborted;
2389 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2390 goto scrub_continue;
2391 }
2392 /*
2393 * the reloc mutex makes sure that we stop
2394 * the balancing code from coming in and moving
2395 * extents around in the middle of the commit
2396 */
2397 mutex_lock(&fs_info->reloc_mutex);
2398
2399 /*
2400 * We needn't worry about the delayed items because we will
2401 * deal with them in create_pending_snapshot(), which is the
2402 * core function of the snapshot creation.
2403 */
2404 ret = create_pending_snapshots(trans);
2405 if (ret)
2406 goto unlock_reloc;
2407
2408 /*
2409 * We insert the dir indexes of the snapshots and update the inode
2410 * of the snapshots' parents after the snapshot creation, so there
2411 * are some delayed items which are not dealt with. Now deal with
2412 * them.
2413 *
2414 * We needn't worry that this operation will corrupt the snapshots,
2415 * because all the tree which are snapshoted will be forced to COW
2416 * the nodes and leaves.
2417 */
2418 ret = btrfs_run_delayed_items(trans);
2419 if (ret)
2420 goto unlock_reloc;
2421
2422 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2423 if (ret)
2424 goto unlock_reloc;
2425
2426 /*
2427 * make sure none of the code above managed to slip in a
2428 * delayed item
2429 */
2430 btrfs_assert_delayed_root_empty(fs_info);
2431
2432 WARN_ON(cur_trans != trans->transaction);
2433
2434 ret = commit_fs_roots(trans);
2435 if (ret)
2436 goto unlock_reloc;
2437
2438 /* commit_fs_roots gets rid of all the tree log roots, it is now
2439 * safe to free the root of tree log roots
2440 */
2441 btrfs_free_log_root_tree(trans, fs_info);
2442
2443 /*
2444 * Since fs roots are all committed, we can get a quite accurate
2445 * new_roots. So let's do quota accounting.
2446 */
2447 ret = btrfs_qgroup_account_extents(trans);
2448 if (ret < 0)
2449 goto unlock_reloc;
2450
2451 ret = commit_cowonly_roots(trans);
2452 if (ret)
2453 goto unlock_reloc;
2454
2455 /*
2456 * The tasks which save the space cache and inode cache may also
2457 * update ->aborted, check it.
2458 */
2459 if (TRANS_ABORTED(cur_trans)) {
2460 ret = cur_trans->aborted;
2461 goto unlock_reloc;
2462 }
2463
2464 cur_trans = fs_info->running_transaction;
2465
2466 btrfs_set_root_node(&fs_info->tree_root->root_item,
2467 fs_info->tree_root->node);
2468 list_add_tail(&fs_info->tree_root->dirty_list,
2469 &cur_trans->switch_commits);
2470
2471 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2472 fs_info->chunk_root->node);
2473 list_add_tail(&fs_info->chunk_root->dirty_list,
2474 &cur_trans->switch_commits);
2475
2476 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2477 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2478 fs_info->block_group_root->node);
2479 list_add_tail(&fs_info->block_group_root->dirty_list,
2480 &cur_trans->switch_commits);
2481 }
2482
2483 switch_commit_roots(trans);
2484
2485 ASSERT(list_empty(&cur_trans->dirty_bgs));
2486 ASSERT(list_empty(&cur_trans->io_bgs));
2487 update_super_roots(fs_info);
2488
2489 btrfs_set_super_log_root(fs_info->super_copy, 0);
2490 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2491 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2492 sizeof(*fs_info->super_copy));
2493
2494 btrfs_commit_device_sizes(cur_trans);
2495
2496 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2497 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2498
2499 btrfs_trans_release_chunk_metadata(trans);
2500
2501 /*
2502 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2503 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2504 * make sure that before we commit our superblock, no other task can
2505 * start a new transaction and commit a log tree before we commit our
2506 * superblock. Anyone trying to commit a log tree locks this mutex before
2507 * writing its superblock.
2508 */
2509 mutex_lock(&fs_info->tree_log_mutex);
2510
2511 spin_lock(&fs_info->trans_lock);
2512 cur_trans->state = TRANS_STATE_UNBLOCKED;
2513 fs_info->running_transaction = NULL;
2514 spin_unlock(&fs_info->trans_lock);
2515 mutex_unlock(&fs_info->reloc_mutex);
2516
2517 wake_up(&fs_info->transaction_wait);
2518 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2519
2520 /* If we have features changed, wake up the cleaner to update sysfs. */
2521 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2522 fs_info->cleaner_kthread)
2523 wake_up_process(fs_info->cleaner_kthread);
2524
2525 ret = btrfs_write_and_wait_transaction(trans);
2526 if (ret) {
2527 btrfs_handle_fs_error(fs_info, ret,
2528 "Error while writing out transaction");
2529 mutex_unlock(&fs_info->tree_log_mutex);
2530 goto scrub_continue;
2531 }
2532
2533 ret = write_all_supers(fs_info, 0);
2534 /*
2535 * the super is written, we can safely allow the tree-loggers
2536 * to go about their business
2537 */
2538 mutex_unlock(&fs_info->tree_log_mutex);
2539 if (ret)
2540 goto scrub_continue;
2541
2542 /*
2543 * We needn't acquire the lock here because there is no other task
2544 * which can change it.
2545 */
2546 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2547 wake_up(&cur_trans->commit_wait);
2548 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2549
2550 btrfs_finish_extent_commit(trans);
2551
2552 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2553 btrfs_clear_space_info_full(fs_info);
2554
2555 btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2556 /*
2557 * We needn't acquire the lock here because there is no other task
2558 * which can change it.
2559 */
2560 cur_trans->state = TRANS_STATE_COMPLETED;
2561 wake_up(&cur_trans->commit_wait);
2562 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2563
2564 spin_lock(&fs_info->trans_lock);
2565 list_del_init(&cur_trans->list);
2566 spin_unlock(&fs_info->trans_lock);
2567
2568 btrfs_put_transaction(cur_trans);
2569 btrfs_put_transaction(cur_trans);
2570
2571 if (trans->type & __TRANS_FREEZABLE)
2572 sb_end_intwrite(fs_info->sb);
2573
2574 trace_btrfs_transaction_commit(fs_info);
2575
2576 interval = ktime_get_ns() - start_time;
2577
2578 btrfs_scrub_continue(fs_info);
2579
2580 if (current->journal_info == trans)
2581 current->journal_info = NULL;
2582
2583 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2584
2585 update_commit_stats(fs_info, interval);
2586
2587 return ret;
2588
2589unlock_reloc:
2590 mutex_unlock(&fs_info->reloc_mutex);
2591 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2592scrub_continue:
2593 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2594 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2595 btrfs_scrub_continue(fs_info);
2596cleanup_transaction:
2597 btrfs_trans_release_metadata(trans);
2598 btrfs_cleanup_pending_block_groups(trans);
2599 btrfs_trans_release_chunk_metadata(trans);
2600 trans->block_rsv = NULL;
2601 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2602 if (current->journal_info == trans)
2603 current->journal_info = NULL;
2604 cleanup_transaction(trans, ret);
2605
2606 return ret;
2607
2608lockdep_release:
2609 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2610 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2611 goto cleanup_transaction;
2612
2613lockdep_trans_commit_start_release:
2614 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2615 btrfs_end_transaction(trans);
2616 return ret;
2617}
2618
2619/*
2620 * return < 0 if error
2621 * 0 if there are no more dead_roots at the time of call
2622 * 1 there are more to be processed, call me again
2623 *
2624 * The return value indicates there are certainly more snapshots to delete, but
2625 * if there comes a new one during processing, it may return 0. We don't mind,
2626 * because btrfs_commit_super will poke cleaner thread and it will process it a
2627 * few seconds later.
2628 */
2629int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2630{
2631 struct btrfs_root *root;
2632 int ret;
2633
2634 spin_lock(&fs_info->trans_lock);
2635 if (list_empty(&fs_info->dead_roots)) {
2636 spin_unlock(&fs_info->trans_lock);
2637 return 0;
2638 }
2639 root = list_first_entry(&fs_info->dead_roots,
2640 struct btrfs_root, root_list);
2641 list_del_init(&root->root_list);
2642 spin_unlock(&fs_info->trans_lock);
2643
2644 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2645
2646 btrfs_kill_all_delayed_nodes(root);
2647
2648 if (btrfs_header_backref_rev(root->node) <
2649 BTRFS_MIXED_BACKREF_REV)
2650 ret = btrfs_drop_snapshot(root, 0, 0);
2651 else
2652 ret = btrfs_drop_snapshot(root, 1, 0);
2653
2654 btrfs_put_root(root);
2655 return (ret < 0) ? 0 : 1;
2656}
2657
2658/*
2659 * We only mark the transaction aborted and then set the file system read-only.
2660 * This will prevent new transactions from starting or trying to join this
2661 * one.
2662 *
2663 * This means that error recovery at the call site is limited to freeing
2664 * any local memory allocations and passing the error code up without
2665 * further cleanup. The transaction should complete as it normally would
2666 * in the call path but will return -EIO.
2667 *
2668 * We'll complete the cleanup in btrfs_end_transaction and
2669 * btrfs_commit_transaction.
2670 */
2671void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2672 const char *function,
2673 unsigned int line, int error, bool first_hit)
2674{
2675 struct btrfs_fs_info *fs_info = trans->fs_info;
2676
2677 WRITE_ONCE(trans->aborted, error);
2678 WRITE_ONCE(trans->transaction->aborted, error);
2679 if (first_hit && error == -ENOSPC)
2680 btrfs_dump_space_info_for_trans_abort(fs_info);
2681 /* Wake up anybody who may be waiting on this transaction */
2682 wake_up(&fs_info->transaction_wait);
2683 wake_up(&fs_info->transaction_blocked_wait);
2684 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2685}
2686
2687int __init btrfs_transaction_init(void)
2688{
2689 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2690 sizeof(struct btrfs_trans_handle), 0,
2691 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2692 if (!btrfs_trans_handle_cachep)
2693 return -ENOMEM;
2694 return 0;
2695}
2696
2697void __cold btrfs_transaction_exit(void)
2698{
2699 kmem_cache_destroy(btrfs_trans_handle_cachep);
2700}