Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/writeback.h>
10#include <linux/pagemap.h>
11#include <linux/blkdev.h>
12#include <linux/uuid.h>
13#include "misc.h"
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
17#include "locking.h"
18#include "tree-log.h"
19#include "inode-map.h"
20#include "volumes.h"
21#include "dev-replace.h"
22#include "qgroup.h"
23#include "block-group.h"
24
25#define BTRFS_ROOT_TRANS_TAG 0
26
27static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
28 [TRANS_STATE_RUNNING] = 0U,
29 [TRANS_STATE_BLOCKED] = __TRANS_START,
30 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
31 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
32 __TRANS_ATTACH |
33 __TRANS_JOIN |
34 __TRANS_JOIN_NOSTART),
35 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
36 __TRANS_ATTACH |
37 __TRANS_JOIN |
38 __TRANS_JOIN_NOLOCK |
39 __TRANS_JOIN_NOSTART),
40 [TRANS_STATE_COMPLETED] = (__TRANS_START |
41 __TRANS_ATTACH |
42 __TRANS_JOIN |
43 __TRANS_JOIN_NOLOCK |
44 __TRANS_JOIN_NOSTART),
45};
46
47void btrfs_put_transaction(struct btrfs_transaction *transaction)
48{
49 WARN_ON(refcount_read(&transaction->use_count) == 0);
50 if (refcount_dec_and_test(&transaction->use_count)) {
51 BUG_ON(!list_empty(&transaction->list));
52 WARN_ON(!RB_EMPTY_ROOT(
53 &transaction->delayed_refs.href_root.rb_root));
54 if (transaction->delayed_refs.pending_csums)
55 btrfs_err(transaction->fs_info,
56 "pending csums is %llu",
57 transaction->delayed_refs.pending_csums);
58 /*
59 * If any block groups are found in ->deleted_bgs then it's
60 * because the transaction was aborted and a commit did not
61 * happen (things failed before writing the new superblock
62 * and calling btrfs_finish_extent_commit()), so we can not
63 * discard the physical locations of the block groups.
64 */
65 while (!list_empty(&transaction->deleted_bgs)) {
66 struct btrfs_block_group_cache *cache;
67
68 cache = list_first_entry(&transaction->deleted_bgs,
69 struct btrfs_block_group_cache,
70 bg_list);
71 list_del_init(&cache->bg_list);
72 btrfs_put_block_group_trimming(cache);
73 btrfs_put_block_group(cache);
74 }
75 WARN_ON(!list_empty(&transaction->dev_update_list));
76 kfree(transaction);
77 }
78}
79
80static noinline void switch_commit_roots(struct btrfs_transaction *trans)
81{
82 struct btrfs_fs_info *fs_info = trans->fs_info;
83 struct btrfs_root *root, *tmp;
84
85 down_write(&fs_info->commit_root_sem);
86 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
87 dirty_list) {
88 list_del_init(&root->dirty_list);
89 free_extent_buffer(root->commit_root);
90 root->commit_root = btrfs_root_node(root);
91 if (is_fstree(root->root_key.objectid))
92 btrfs_unpin_free_ino(root);
93 extent_io_tree_release(&root->dirty_log_pages);
94 btrfs_qgroup_clean_swapped_blocks(root);
95 }
96
97 /* We can free old roots now. */
98 spin_lock(&trans->dropped_roots_lock);
99 while (!list_empty(&trans->dropped_roots)) {
100 root = list_first_entry(&trans->dropped_roots,
101 struct btrfs_root, root_list);
102 list_del_init(&root->root_list);
103 spin_unlock(&trans->dropped_roots_lock);
104 btrfs_drop_and_free_fs_root(fs_info, root);
105 spin_lock(&trans->dropped_roots_lock);
106 }
107 spin_unlock(&trans->dropped_roots_lock);
108 up_write(&fs_info->commit_root_sem);
109}
110
111static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
112 unsigned int type)
113{
114 if (type & TRANS_EXTWRITERS)
115 atomic_inc(&trans->num_extwriters);
116}
117
118static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
119 unsigned int type)
120{
121 if (type & TRANS_EXTWRITERS)
122 atomic_dec(&trans->num_extwriters);
123}
124
125static inline void extwriter_counter_init(struct btrfs_transaction *trans,
126 unsigned int type)
127{
128 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
129}
130
131static inline int extwriter_counter_read(struct btrfs_transaction *trans)
132{
133 return atomic_read(&trans->num_extwriters);
134}
135
136/*
137 * To be called after all the new block groups attached to the transaction
138 * handle have been created (btrfs_create_pending_block_groups()).
139 */
140void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
141{
142 struct btrfs_fs_info *fs_info = trans->fs_info;
143
144 if (!trans->chunk_bytes_reserved)
145 return;
146
147 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
148
149 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
150 trans->chunk_bytes_reserved);
151 trans->chunk_bytes_reserved = 0;
152}
153
154/*
155 * either allocate a new transaction or hop into the existing one
156 */
157static noinline int join_transaction(struct btrfs_fs_info *fs_info,
158 unsigned int type)
159{
160 struct btrfs_transaction *cur_trans;
161
162 spin_lock(&fs_info->trans_lock);
163loop:
164 /* The file system has been taken offline. No new transactions. */
165 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
166 spin_unlock(&fs_info->trans_lock);
167 return -EROFS;
168 }
169
170 cur_trans = fs_info->running_transaction;
171 if (cur_trans) {
172 if (cur_trans->aborted) {
173 spin_unlock(&fs_info->trans_lock);
174 return cur_trans->aborted;
175 }
176 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
177 spin_unlock(&fs_info->trans_lock);
178 return -EBUSY;
179 }
180 refcount_inc(&cur_trans->use_count);
181 atomic_inc(&cur_trans->num_writers);
182 extwriter_counter_inc(cur_trans, type);
183 spin_unlock(&fs_info->trans_lock);
184 return 0;
185 }
186 spin_unlock(&fs_info->trans_lock);
187
188 /*
189 * If we are ATTACH, we just want to catch the current transaction,
190 * and commit it. If there is no transaction, just return ENOENT.
191 */
192 if (type == TRANS_ATTACH)
193 return -ENOENT;
194
195 /*
196 * JOIN_NOLOCK only happens during the transaction commit, so
197 * it is impossible that ->running_transaction is NULL
198 */
199 BUG_ON(type == TRANS_JOIN_NOLOCK);
200
201 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
202 if (!cur_trans)
203 return -ENOMEM;
204
205 spin_lock(&fs_info->trans_lock);
206 if (fs_info->running_transaction) {
207 /*
208 * someone started a transaction after we unlocked. Make sure
209 * to redo the checks above
210 */
211 kfree(cur_trans);
212 goto loop;
213 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
214 spin_unlock(&fs_info->trans_lock);
215 kfree(cur_trans);
216 return -EROFS;
217 }
218
219 cur_trans->fs_info = fs_info;
220 atomic_set(&cur_trans->num_writers, 1);
221 extwriter_counter_init(cur_trans, type);
222 init_waitqueue_head(&cur_trans->writer_wait);
223 init_waitqueue_head(&cur_trans->commit_wait);
224 cur_trans->state = TRANS_STATE_RUNNING;
225 /*
226 * One for this trans handle, one so it will live on until we
227 * commit the transaction.
228 */
229 refcount_set(&cur_trans->use_count, 2);
230 cur_trans->flags = 0;
231 cur_trans->start_time = ktime_get_seconds();
232
233 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
234
235 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
236 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
237 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
238
239 /*
240 * although the tree mod log is per file system and not per transaction,
241 * the log must never go across transaction boundaries.
242 */
243 smp_mb();
244 if (!list_empty(&fs_info->tree_mod_seq_list))
245 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
246 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
247 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
248 atomic64_set(&fs_info->tree_mod_seq, 0);
249
250 spin_lock_init(&cur_trans->delayed_refs.lock);
251
252 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
253 INIT_LIST_HEAD(&cur_trans->dev_update_list);
254 INIT_LIST_HEAD(&cur_trans->switch_commits);
255 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
256 INIT_LIST_HEAD(&cur_trans->io_bgs);
257 INIT_LIST_HEAD(&cur_trans->dropped_roots);
258 mutex_init(&cur_trans->cache_write_mutex);
259 spin_lock_init(&cur_trans->dirty_bgs_lock);
260 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
261 spin_lock_init(&cur_trans->dropped_roots_lock);
262 list_add_tail(&cur_trans->list, &fs_info->trans_list);
263 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
264 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
265 fs_info->generation++;
266 cur_trans->transid = fs_info->generation;
267 fs_info->running_transaction = cur_trans;
268 cur_trans->aborted = 0;
269 spin_unlock(&fs_info->trans_lock);
270
271 return 0;
272}
273
274/*
275 * this does all the record keeping required to make sure that a reference
276 * counted root is properly recorded in a given transaction. This is required
277 * to make sure the old root from before we joined the transaction is deleted
278 * when the transaction commits
279 */
280static int record_root_in_trans(struct btrfs_trans_handle *trans,
281 struct btrfs_root *root,
282 int force)
283{
284 struct btrfs_fs_info *fs_info = root->fs_info;
285
286 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
287 root->last_trans < trans->transid) || force) {
288 WARN_ON(root == fs_info->extent_root);
289 WARN_ON(!force && root->commit_root != root->node);
290
291 /*
292 * see below for IN_TRANS_SETUP usage rules
293 * we have the reloc mutex held now, so there
294 * is only one writer in this function
295 */
296 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
297
298 /* make sure readers find IN_TRANS_SETUP before
299 * they find our root->last_trans update
300 */
301 smp_wmb();
302
303 spin_lock(&fs_info->fs_roots_radix_lock);
304 if (root->last_trans == trans->transid && !force) {
305 spin_unlock(&fs_info->fs_roots_radix_lock);
306 return 0;
307 }
308 radix_tree_tag_set(&fs_info->fs_roots_radix,
309 (unsigned long)root->root_key.objectid,
310 BTRFS_ROOT_TRANS_TAG);
311 spin_unlock(&fs_info->fs_roots_radix_lock);
312 root->last_trans = trans->transid;
313
314 /* this is pretty tricky. We don't want to
315 * take the relocation lock in btrfs_record_root_in_trans
316 * unless we're really doing the first setup for this root in
317 * this transaction.
318 *
319 * Normally we'd use root->last_trans as a flag to decide
320 * if we want to take the expensive mutex.
321 *
322 * But, we have to set root->last_trans before we
323 * init the relocation root, otherwise, we trip over warnings
324 * in ctree.c. The solution used here is to flag ourselves
325 * with root IN_TRANS_SETUP. When this is 1, we're still
326 * fixing up the reloc trees and everyone must wait.
327 *
328 * When this is zero, they can trust root->last_trans and fly
329 * through btrfs_record_root_in_trans without having to take the
330 * lock. smp_wmb() makes sure that all the writes above are
331 * done before we pop in the zero below
332 */
333 btrfs_init_reloc_root(trans, root);
334 smp_mb__before_atomic();
335 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
336 }
337 return 0;
338}
339
340
341void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root)
343{
344 struct btrfs_fs_info *fs_info = root->fs_info;
345 struct btrfs_transaction *cur_trans = trans->transaction;
346
347 /* Add ourselves to the transaction dropped list */
348 spin_lock(&cur_trans->dropped_roots_lock);
349 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
350 spin_unlock(&cur_trans->dropped_roots_lock);
351
352 /* Make sure we don't try to update the root at commit time */
353 spin_lock(&fs_info->fs_roots_radix_lock);
354 radix_tree_tag_clear(&fs_info->fs_roots_radix,
355 (unsigned long)root->root_key.objectid,
356 BTRFS_ROOT_TRANS_TAG);
357 spin_unlock(&fs_info->fs_roots_radix_lock);
358}
359
360int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
361 struct btrfs_root *root)
362{
363 struct btrfs_fs_info *fs_info = root->fs_info;
364
365 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
366 return 0;
367
368 /*
369 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
370 * and barriers
371 */
372 smp_rmb();
373 if (root->last_trans == trans->transid &&
374 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
375 return 0;
376
377 mutex_lock(&fs_info->reloc_mutex);
378 record_root_in_trans(trans, root, 0);
379 mutex_unlock(&fs_info->reloc_mutex);
380
381 return 0;
382}
383
384static inline int is_transaction_blocked(struct btrfs_transaction *trans)
385{
386 return (trans->state >= TRANS_STATE_BLOCKED &&
387 trans->state < TRANS_STATE_UNBLOCKED &&
388 !trans->aborted);
389}
390
391/* wait for commit against the current transaction to become unblocked
392 * when this is done, it is safe to start a new transaction, but the current
393 * transaction might not be fully on disk.
394 */
395static void wait_current_trans(struct btrfs_fs_info *fs_info)
396{
397 struct btrfs_transaction *cur_trans;
398
399 spin_lock(&fs_info->trans_lock);
400 cur_trans = fs_info->running_transaction;
401 if (cur_trans && is_transaction_blocked(cur_trans)) {
402 refcount_inc(&cur_trans->use_count);
403 spin_unlock(&fs_info->trans_lock);
404
405 wait_event(fs_info->transaction_wait,
406 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
407 cur_trans->aborted);
408 btrfs_put_transaction(cur_trans);
409 } else {
410 spin_unlock(&fs_info->trans_lock);
411 }
412}
413
414static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
415{
416 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
417 return 0;
418
419 if (type == TRANS_START)
420 return 1;
421
422 return 0;
423}
424
425static inline bool need_reserve_reloc_root(struct btrfs_root *root)
426{
427 struct btrfs_fs_info *fs_info = root->fs_info;
428
429 if (!fs_info->reloc_ctl ||
430 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
431 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
432 root->reloc_root)
433 return false;
434
435 return true;
436}
437
438static struct btrfs_trans_handle *
439start_transaction(struct btrfs_root *root, unsigned int num_items,
440 unsigned int type, enum btrfs_reserve_flush_enum flush,
441 bool enforce_qgroups)
442{
443 struct btrfs_fs_info *fs_info = root->fs_info;
444 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
445 struct btrfs_trans_handle *h;
446 struct btrfs_transaction *cur_trans;
447 u64 num_bytes = 0;
448 u64 qgroup_reserved = 0;
449 bool reloc_reserved = false;
450 int ret;
451
452 /* Send isn't supposed to start transactions. */
453 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
454
455 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
456 return ERR_PTR(-EROFS);
457
458 if (current->journal_info) {
459 WARN_ON(type & TRANS_EXTWRITERS);
460 h = current->journal_info;
461 refcount_inc(&h->use_count);
462 WARN_ON(refcount_read(&h->use_count) > 2);
463 h->orig_rsv = h->block_rsv;
464 h->block_rsv = NULL;
465 goto got_it;
466 }
467
468 /*
469 * Do the reservation before we join the transaction so we can do all
470 * the appropriate flushing if need be.
471 */
472 if (num_items && root != fs_info->chunk_root) {
473 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
474 u64 delayed_refs_bytes = 0;
475
476 qgroup_reserved = num_items * fs_info->nodesize;
477 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
478 enforce_qgroups);
479 if (ret)
480 return ERR_PTR(ret);
481
482 /*
483 * We want to reserve all the bytes we may need all at once, so
484 * we only do 1 enospc flushing cycle per transaction start. We
485 * accomplish this by simply assuming we'll do 2 x num_items
486 * worth of delayed refs updates in this trans handle, and
487 * refill that amount for whatever is missing in the reserve.
488 */
489 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
490 if (delayed_refs_rsv->full == 0) {
491 delayed_refs_bytes = num_bytes;
492 num_bytes <<= 1;
493 }
494
495 /*
496 * Do the reservation for the relocation root creation
497 */
498 if (need_reserve_reloc_root(root)) {
499 num_bytes += fs_info->nodesize;
500 reloc_reserved = true;
501 }
502
503 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
504 if (ret)
505 goto reserve_fail;
506 if (delayed_refs_bytes) {
507 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
508 delayed_refs_bytes);
509 num_bytes -= delayed_refs_bytes;
510 }
511 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
512 !delayed_refs_rsv->full) {
513 /*
514 * Some people call with btrfs_start_transaction(root, 0)
515 * because they can be throttled, but have some other mechanism
516 * for reserving space. We still want these guys to refill the
517 * delayed block_rsv so just add 1 items worth of reservation
518 * here.
519 */
520 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
521 if (ret)
522 goto reserve_fail;
523 }
524again:
525 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
526 if (!h) {
527 ret = -ENOMEM;
528 goto alloc_fail;
529 }
530
531 /*
532 * If we are JOIN_NOLOCK we're already committing a transaction and
533 * waiting on this guy, so we don't need to do the sb_start_intwrite
534 * because we're already holding a ref. We need this because we could
535 * have raced in and did an fsync() on a file which can kick a commit
536 * and then we deadlock with somebody doing a freeze.
537 *
538 * If we are ATTACH, it means we just want to catch the current
539 * transaction and commit it, so we needn't do sb_start_intwrite().
540 */
541 if (type & __TRANS_FREEZABLE)
542 sb_start_intwrite(fs_info->sb);
543
544 if (may_wait_transaction(fs_info, type))
545 wait_current_trans(fs_info);
546
547 do {
548 ret = join_transaction(fs_info, type);
549 if (ret == -EBUSY) {
550 wait_current_trans(fs_info);
551 if (unlikely(type == TRANS_ATTACH ||
552 type == TRANS_JOIN_NOSTART))
553 ret = -ENOENT;
554 }
555 } while (ret == -EBUSY);
556
557 if (ret < 0)
558 goto join_fail;
559
560 cur_trans = fs_info->running_transaction;
561
562 h->transid = cur_trans->transid;
563 h->transaction = cur_trans;
564 h->root = root;
565 refcount_set(&h->use_count, 1);
566 h->fs_info = root->fs_info;
567
568 h->type = type;
569 h->can_flush_pending_bgs = true;
570 INIT_LIST_HEAD(&h->new_bgs);
571
572 smp_mb();
573 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
574 may_wait_transaction(fs_info, type)) {
575 current->journal_info = h;
576 btrfs_commit_transaction(h);
577 goto again;
578 }
579
580 if (num_bytes) {
581 trace_btrfs_space_reservation(fs_info, "transaction",
582 h->transid, num_bytes, 1);
583 h->block_rsv = &fs_info->trans_block_rsv;
584 h->bytes_reserved = num_bytes;
585 h->reloc_reserved = reloc_reserved;
586 }
587
588got_it:
589 btrfs_record_root_in_trans(h, root);
590
591 if (!current->journal_info)
592 current->journal_info = h;
593 return h;
594
595join_fail:
596 if (type & __TRANS_FREEZABLE)
597 sb_end_intwrite(fs_info->sb);
598 kmem_cache_free(btrfs_trans_handle_cachep, h);
599alloc_fail:
600 if (num_bytes)
601 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
602 num_bytes);
603reserve_fail:
604 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
605 return ERR_PTR(ret);
606}
607
608struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
609 unsigned int num_items)
610{
611 return start_transaction(root, num_items, TRANS_START,
612 BTRFS_RESERVE_FLUSH_ALL, true);
613}
614
615struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
616 struct btrfs_root *root,
617 unsigned int num_items,
618 int min_factor)
619{
620 struct btrfs_fs_info *fs_info = root->fs_info;
621 struct btrfs_trans_handle *trans;
622 u64 num_bytes;
623 int ret;
624
625 /*
626 * We have two callers: unlink and block group removal. The
627 * former should succeed even if we will temporarily exceed
628 * quota and the latter operates on the extent root so
629 * qgroup enforcement is ignored anyway.
630 */
631 trans = start_transaction(root, num_items, TRANS_START,
632 BTRFS_RESERVE_FLUSH_ALL, false);
633 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
634 return trans;
635
636 trans = btrfs_start_transaction(root, 0);
637 if (IS_ERR(trans))
638 return trans;
639
640 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
641 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
642 num_bytes, min_factor);
643 if (ret) {
644 btrfs_end_transaction(trans);
645 return ERR_PTR(ret);
646 }
647
648 trans->block_rsv = &fs_info->trans_block_rsv;
649 trans->bytes_reserved = num_bytes;
650 trace_btrfs_space_reservation(fs_info, "transaction",
651 trans->transid, num_bytes, 1);
652
653 return trans;
654}
655
656struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
657{
658 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
659 true);
660}
661
662struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
663{
664 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
665 BTRFS_RESERVE_NO_FLUSH, true);
666}
667
668/*
669 * Similar to regular join but it never starts a transaction when none is
670 * running or after waiting for the current one to finish.
671 */
672struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
673{
674 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
675 BTRFS_RESERVE_NO_FLUSH, true);
676}
677
678/*
679 * btrfs_attach_transaction() - catch the running transaction
680 *
681 * It is used when we want to commit the current the transaction, but
682 * don't want to start a new one.
683 *
684 * Note: If this function return -ENOENT, it just means there is no
685 * running transaction. But it is possible that the inactive transaction
686 * is still in the memory, not fully on disk. If you hope there is no
687 * inactive transaction in the fs when -ENOENT is returned, you should
688 * invoke
689 * btrfs_attach_transaction_barrier()
690 */
691struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
692{
693 return start_transaction(root, 0, TRANS_ATTACH,
694 BTRFS_RESERVE_NO_FLUSH, true);
695}
696
697/*
698 * btrfs_attach_transaction_barrier() - catch the running transaction
699 *
700 * It is similar to the above function, the difference is this one
701 * will wait for all the inactive transactions until they fully
702 * complete.
703 */
704struct btrfs_trans_handle *
705btrfs_attach_transaction_barrier(struct btrfs_root *root)
706{
707 struct btrfs_trans_handle *trans;
708
709 trans = start_transaction(root, 0, TRANS_ATTACH,
710 BTRFS_RESERVE_NO_FLUSH, true);
711 if (trans == ERR_PTR(-ENOENT))
712 btrfs_wait_for_commit(root->fs_info, 0);
713
714 return trans;
715}
716
717/* wait for a transaction commit to be fully complete */
718static noinline void wait_for_commit(struct btrfs_transaction *commit)
719{
720 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
721}
722
723int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
724{
725 struct btrfs_transaction *cur_trans = NULL, *t;
726 int ret = 0;
727
728 if (transid) {
729 if (transid <= fs_info->last_trans_committed)
730 goto out;
731
732 /* find specified transaction */
733 spin_lock(&fs_info->trans_lock);
734 list_for_each_entry(t, &fs_info->trans_list, list) {
735 if (t->transid == transid) {
736 cur_trans = t;
737 refcount_inc(&cur_trans->use_count);
738 ret = 0;
739 break;
740 }
741 if (t->transid > transid) {
742 ret = 0;
743 break;
744 }
745 }
746 spin_unlock(&fs_info->trans_lock);
747
748 /*
749 * The specified transaction doesn't exist, or we
750 * raced with btrfs_commit_transaction
751 */
752 if (!cur_trans) {
753 if (transid > fs_info->last_trans_committed)
754 ret = -EINVAL;
755 goto out;
756 }
757 } else {
758 /* find newest transaction that is committing | committed */
759 spin_lock(&fs_info->trans_lock);
760 list_for_each_entry_reverse(t, &fs_info->trans_list,
761 list) {
762 if (t->state >= TRANS_STATE_COMMIT_START) {
763 if (t->state == TRANS_STATE_COMPLETED)
764 break;
765 cur_trans = t;
766 refcount_inc(&cur_trans->use_count);
767 break;
768 }
769 }
770 spin_unlock(&fs_info->trans_lock);
771 if (!cur_trans)
772 goto out; /* nothing committing|committed */
773 }
774
775 wait_for_commit(cur_trans);
776 btrfs_put_transaction(cur_trans);
777out:
778 return ret;
779}
780
781void btrfs_throttle(struct btrfs_fs_info *fs_info)
782{
783 wait_current_trans(fs_info);
784}
785
786static int should_end_transaction(struct btrfs_trans_handle *trans)
787{
788 struct btrfs_fs_info *fs_info = trans->fs_info;
789
790 if (btrfs_check_space_for_delayed_refs(fs_info))
791 return 1;
792
793 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
794}
795
796int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
797{
798 struct btrfs_transaction *cur_trans = trans->transaction;
799
800 smp_mb();
801 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
802 cur_trans->delayed_refs.flushing)
803 return 1;
804
805 return should_end_transaction(trans);
806}
807
808static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
809
810{
811 struct btrfs_fs_info *fs_info = trans->fs_info;
812
813 if (!trans->block_rsv) {
814 ASSERT(!trans->bytes_reserved);
815 return;
816 }
817
818 if (!trans->bytes_reserved)
819 return;
820
821 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
822 trace_btrfs_space_reservation(fs_info, "transaction",
823 trans->transid, trans->bytes_reserved, 0);
824 btrfs_block_rsv_release(fs_info, trans->block_rsv,
825 trans->bytes_reserved);
826 trans->bytes_reserved = 0;
827}
828
829static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
830 int throttle)
831{
832 struct btrfs_fs_info *info = trans->fs_info;
833 struct btrfs_transaction *cur_trans = trans->transaction;
834 int lock = (trans->type != TRANS_JOIN_NOLOCK);
835 int err = 0;
836
837 if (refcount_read(&trans->use_count) > 1) {
838 refcount_dec(&trans->use_count);
839 trans->block_rsv = trans->orig_rsv;
840 return 0;
841 }
842
843 btrfs_trans_release_metadata(trans);
844 trans->block_rsv = NULL;
845
846 btrfs_create_pending_block_groups(trans);
847
848 btrfs_trans_release_chunk_metadata(trans);
849
850 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
851 if (throttle)
852 return btrfs_commit_transaction(trans);
853 else
854 wake_up_process(info->transaction_kthread);
855 }
856
857 if (trans->type & __TRANS_FREEZABLE)
858 sb_end_intwrite(info->sb);
859
860 WARN_ON(cur_trans != info->running_transaction);
861 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
862 atomic_dec(&cur_trans->num_writers);
863 extwriter_counter_dec(cur_trans, trans->type);
864
865 cond_wake_up(&cur_trans->writer_wait);
866 btrfs_put_transaction(cur_trans);
867
868 if (current->journal_info == trans)
869 current->journal_info = NULL;
870
871 if (throttle)
872 btrfs_run_delayed_iputs(info);
873
874 if (trans->aborted ||
875 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
876 wake_up_process(info->transaction_kthread);
877 err = -EIO;
878 }
879
880 kmem_cache_free(btrfs_trans_handle_cachep, trans);
881 return err;
882}
883
884int btrfs_end_transaction(struct btrfs_trans_handle *trans)
885{
886 return __btrfs_end_transaction(trans, 0);
887}
888
889int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
890{
891 return __btrfs_end_transaction(trans, 1);
892}
893
894/*
895 * when btree blocks are allocated, they have some corresponding bits set for
896 * them in one of two extent_io trees. This is used to make sure all of
897 * those extents are sent to disk but does not wait on them
898 */
899int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
900 struct extent_io_tree *dirty_pages, int mark)
901{
902 int err = 0;
903 int werr = 0;
904 struct address_space *mapping = fs_info->btree_inode->i_mapping;
905 struct extent_state *cached_state = NULL;
906 u64 start = 0;
907 u64 end;
908
909 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
910 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
911 mark, &cached_state)) {
912 bool wait_writeback = false;
913
914 err = convert_extent_bit(dirty_pages, start, end,
915 EXTENT_NEED_WAIT,
916 mark, &cached_state);
917 /*
918 * convert_extent_bit can return -ENOMEM, which is most of the
919 * time a temporary error. So when it happens, ignore the error
920 * and wait for writeback of this range to finish - because we
921 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
922 * to __btrfs_wait_marked_extents() would not know that
923 * writeback for this range started and therefore wouldn't
924 * wait for it to finish - we don't want to commit a
925 * superblock that points to btree nodes/leafs for which
926 * writeback hasn't finished yet (and without errors).
927 * We cleanup any entries left in the io tree when committing
928 * the transaction (through extent_io_tree_release()).
929 */
930 if (err == -ENOMEM) {
931 err = 0;
932 wait_writeback = true;
933 }
934 if (!err)
935 err = filemap_fdatawrite_range(mapping, start, end);
936 if (err)
937 werr = err;
938 else if (wait_writeback)
939 werr = filemap_fdatawait_range(mapping, start, end);
940 free_extent_state(cached_state);
941 cached_state = NULL;
942 cond_resched();
943 start = end + 1;
944 }
945 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
946 return werr;
947}
948
949/*
950 * when btree blocks are allocated, they have some corresponding bits set for
951 * them in one of two extent_io trees. This is used to make sure all of
952 * those extents are on disk for transaction or log commit. We wait
953 * on all the pages and clear them from the dirty pages state tree
954 */
955static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
956 struct extent_io_tree *dirty_pages)
957{
958 int err = 0;
959 int werr = 0;
960 struct address_space *mapping = fs_info->btree_inode->i_mapping;
961 struct extent_state *cached_state = NULL;
962 u64 start = 0;
963 u64 end;
964
965 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
966 EXTENT_NEED_WAIT, &cached_state)) {
967 /*
968 * Ignore -ENOMEM errors returned by clear_extent_bit().
969 * When committing the transaction, we'll remove any entries
970 * left in the io tree. For a log commit, we don't remove them
971 * after committing the log because the tree can be accessed
972 * concurrently - we do it only at transaction commit time when
973 * it's safe to do it (through extent_io_tree_release()).
974 */
975 err = clear_extent_bit(dirty_pages, start, end,
976 EXTENT_NEED_WAIT, 0, 0, &cached_state);
977 if (err == -ENOMEM)
978 err = 0;
979 if (!err)
980 err = filemap_fdatawait_range(mapping, start, end);
981 if (err)
982 werr = err;
983 free_extent_state(cached_state);
984 cached_state = NULL;
985 cond_resched();
986 start = end + 1;
987 }
988 if (err)
989 werr = err;
990 return werr;
991}
992
993int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
994 struct extent_io_tree *dirty_pages)
995{
996 bool errors = false;
997 int err;
998
999 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1000 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1001 errors = true;
1002
1003 if (errors && !err)
1004 err = -EIO;
1005 return err;
1006}
1007
1008int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1009{
1010 struct btrfs_fs_info *fs_info = log_root->fs_info;
1011 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1012 bool errors = false;
1013 int err;
1014
1015 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1016
1017 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1018 if ((mark & EXTENT_DIRTY) &&
1019 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1020 errors = true;
1021
1022 if ((mark & EXTENT_NEW) &&
1023 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1024 errors = true;
1025
1026 if (errors && !err)
1027 err = -EIO;
1028 return err;
1029}
1030
1031/*
1032 * When btree blocks are allocated the corresponding extents are marked dirty.
1033 * This function ensures such extents are persisted on disk for transaction or
1034 * log commit.
1035 *
1036 * @trans: transaction whose dirty pages we'd like to write
1037 */
1038static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1039{
1040 int ret;
1041 int ret2;
1042 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1043 struct btrfs_fs_info *fs_info = trans->fs_info;
1044 struct blk_plug plug;
1045
1046 blk_start_plug(&plug);
1047 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1048 blk_finish_plug(&plug);
1049 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1050
1051 extent_io_tree_release(&trans->transaction->dirty_pages);
1052
1053 if (ret)
1054 return ret;
1055 else if (ret2)
1056 return ret2;
1057 else
1058 return 0;
1059}
1060
1061/*
1062 * this is used to update the root pointer in the tree of tree roots.
1063 *
1064 * But, in the case of the extent allocation tree, updating the root
1065 * pointer may allocate blocks which may change the root of the extent
1066 * allocation tree.
1067 *
1068 * So, this loops and repeats and makes sure the cowonly root didn't
1069 * change while the root pointer was being updated in the metadata.
1070 */
1071static int update_cowonly_root(struct btrfs_trans_handle *trans,
1072 struct btrfs_root *root)
1073{
1074 int ret;
1075 u64 old_root_bytenr;
1076 u64 old_root_used;
1077 struct btrfs_fs_info *fs_info = root->fs_info;
1078 struct btrfs_root *tree_root = fs_info->tree_root;
1079
1080 old_root_used = btrfs_root_used(&root->root_item);
1081
1082 while (1) {
1083 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1084 if (old_root_bytenr == root->node->start &&
1085 old_root_used == btrfs_root_used(&root->root_item))
1086 break;
1087
1088 btrfs_set_root_node(&root->root_item, root->node);
1089 ret = btrfs_update_root(trans, tree_root,
1090 &root->root_key,
1091 &root->root_item);
1092 if (ret)
1093 return ret;
1094
1095 old_root_used = btrfs_root_used(&root->root_item);
1096 }
1097
1098 return 0;
1099}
1100
1101/*
1102 * update all the cowonly tree roots on disk
1103 *
1104 * The error handling in this function may not be obvious. Any of the
1105 * failures will cause the file system to go offline. We still need
1106 * to clean up the delayed refs.
1107 */
1108static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1109{
1110 struct btrfs_fs_info *fs_info = trans->fs_info;
1111 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1112 struct list_head *io_bgs = &trans->transaction->io_bgs;
1113 struct list_head *next;
1114 struct extent_buffer *eb;
1115 int ret;
1116
1117 eb = btrfs_lock_root_node(fs_info->tree_root);
1118 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1119 0, &eb);
1120 btrfs_tree_unlock(eb);
1121 free_extent_buffer(eb);
1122
1123 if (ret)
1124 return ret;
1125
1126 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1127 if (ret)
1128 return ret;
1129
1130 ret = btrfs_run_dev_stats(trans);
1131 if (ret)
1132 return ret;
1133 ret = btrfs_run_dev_replace(trans);
1134 if (ret)
1135 return ret;
1136 ret = btrfs_run_qgroups(trans);
1137 if (ret)
1138 return ret;
1139
1140 ret = btrfs_setup_space_cache(trans);
1141 if (ret)
1142 return ret;
1143
1144 /* run_qgroups might have added some more refs */
1145 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1146 if (ret)
1147 return ret;
1148again:
1149 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1150 struct btrfs_root *root;
1151 next = fs_info->dirty_cowonly_roots.next;
1152 list_del_init(next);
1153 root = list_entry(next, struct btrfs_root, dirty_list);
1154 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1155
1156 if (root != fs_info->extent_root)
1157 list_add_tail(&root->dirty_list,
1158 &trans->transaction->switch_commits);
1159 ret = update_cowonly_root(trans, root);
1160 if (ret)
1161 return ret;
1162 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1163 if (ret)
1164 return ret;
1165 }
1166
1167 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1168 ret = btrfs_write_dirty_block_groups(trans);
1169 if (ret)
1170 return ret;
1171 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1172 if (ret)
1173 return ret;
1174 }
1175
1176 if (!list_empty(&fs_info->dirty_cowonly_roots))
1177 goto again;
1178
1179 list_add_tail(&fs_info->extent_root->dirty_list,
1180 &trans->transaction->switch_commits);
1181
1182 /* Update dev-replace pointer once everything is committed */
1183 fs_info->dev_replace.committed_cursor_left =
1184 fs_info->dev_replace.cursor_left_last_write_of_item;
1185
1186 return 0;
1187}
1188
1189/*
1190 * dead roots are old snapshots that need to be deleted. This allocates
1191 * a dirty root struct and adds it into the list of dead roots that need to
1192 * be deleted
1193 */
1194void btrfs_add_dead_root(struct btrfs_root *root)
1195{
1196 struct btrfs_fs_info *fs_info = root->fs_info;
1197
1198 spin_lock(&fs_info->trans_lock);
1199 if (list_empty(&root->root_list))
1200 list_add_tail(&root->root_list, &fs_info->dead_roots);
1201 spin_unlock(&fs_info->trans_lock);
1202}
1203
1204/*
1205 * update all the cowonly tree roots on disk
1206 */
1207static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1208{
1209 struct btrfs_fs_info *fs_info = trans->fs_info;
1210 struct btrfs_root *gang[8];
1211 int i;
1212 int ret;
1213 int err = 0;
1214
1215 spin_lock(&fs_info->fs_roots_radix_lock);
1216 while (1) {
1217 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1218 (void **)gang, 0,
1219 ARRAY_SIZE(gang),
1220 BTRFS_ROOT_TRANS_TAG);
1221 if (ret == 0)
1222 break;
1223 for (i = 0; i < ret; i++) {
1224 struct btrfs_root *root = gang[i];
1225 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1226 (unsigned long)root->root_key.objectid,
1227 BTRFS_ROOT_TRANS_TAG);
1228 spin_unlock(&fs_info->fs_roots_radix_lock);
1229
1230 btrfs_free_log(trans, root);
1231 btrfs_update_reloc_root(trans, root);
1232
1233 btrfs_save_ino_cache(root, trans);
1234
1235 /* see comments in should_cow_block() */
1236 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1237 smp_mb__after_atomic();
1238
1239 if (root->commit_root != root->node) {
1240 list_add_tail(&root->dirty_list,
1241 &trans->transaction->switch_commits);
1242 btrfs_set_root_node(&root->root_item,
1243 root->node);
1244 }
1245
1246 err = btrfs_update_root(trans, fs_info->tree_root,
1247 &root->root_key,
1248 &root->root_item);
1249 spin_lock(&fs_info->fs_roots_radix_lock);
1250 if (err)
1251 break;
1252 btrfs_qgroup_free_meta_all_pertrans(root);
1253 }
1254 }
1255 spin_unlock(&fs_info->fs_roots_radix_lock);
1256 return err;
1257}
1258
1259/*
1260 * defrag a given btree.
1261 * Every leaf in the btree is read and defragged.
1262 */
1263int btrfs_defrag_root(struct btrfs_root *root)
1264{
1265 struct btrfs_fs_info *info = root->fs_info;
1266 struct btrfs_trans_handle *trans;
1267 int ret;
1268
1269 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1270 return 0;
1271
1272 while (1) {
1273 trans = btrfs_start_transaction(root, 0);
1274 if (IS_ERR(trans))
1275 return PTR_ERR(trans);
1276
1277 ret = btrfs_defrag_leaves(trans, root);
1278
1279 btrfs_end_transaction(trans);
1280 btrfs_btree_balance_dirty(info);
1281 cond_resched();
1282
1283 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1284 break;
1285
1286 if (btrfs_defrag_cancelled(info)) {
1287 btrfs_debug(info, "defrag_root cancelled");
1288 ret = -EAGAIN;
1289 break;
1290 }
1291 }
1292 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1293 return ret;
1294}
1295
1296/*
1297 * Do all special snapshot related qgroup dirty hack.
1298 *
1299 * Will do all needed qgroup inherit and dirty hack like switch commit
1300 * roots inside one transaction and write all btree into disk, to make
1301 * qgroup works.
1302 */
1303static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1304 struct btrfs_root *src,
1305 struct btrfs_root *parent,
1306 struct btrfs_qgroup_inherit *inherit,
1307 u64 dst_objectid)
1308{
1309 struct btrfs_fs_info *fs_info = src->fs_info;
1310 int ret;
1311
1312 /*
1313 * Save some performance in the case that qgroups are not
1314 * enabled. If this check races with the ioctl, rescan will
1315 * kick in anyway.
1316 */
1317 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1318 return 0;
1319
1320 /*
1321 * Ensure dirty @src will be committed. Or, after coming
1322 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1323 * recorded root will never be updated again, causing an outdated root
1324 * item.
1325 */
1326 record_root_in_trans(trans, src, 1);
1327
1328 /*
1329 * We are going to commit transaction, see btrfs_commit_transaction()
1330 * comment for reason locking tree_log_mutex
1331 */
1332 mutex_lock(&fs_info->tree_log_mutex);
1333
1334 ret = commit_fs_roots(trans);
1335 if (ret)
1336 goto out;
1337 ret = btrfs_qgroup_account_extents(trans);
1338 if (ret < 0)
1339 goto out;
1340
1341 /* Now qgroup are all updated, we can inherit it to new qgroups */
1342 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1343 inherit);
1344 if (ret < 0)
1345 goto out;
1346
1347 /*
1348 * Now we do a simplified commit transaction, which will:
1349 * 1) commit all subvolume and extent tree
1350 * To ensure all subvolume and extent tree have a valid
1351 * commit_root to accounting later insert_dir_item()
1352 * 2) write all btree blocks onto disk
1353 * This is to make sure later btree modification will be cowed
1354 * Or commit_root can be populated and cause wrong qgroup numbers
1355 * In this simplified commit, we don't really care about other trees
1356 * like chunk and root tree, as they won't affect qgroup.
1357 * And we don't write super to avoid half committed status.
1358 */
1359 ret = commit_cowonly_roots(trans);
1360 if (ret)
1361 goto out;
1362 switch_commit_roots(trans->transaction);
1363 ret = btrfs_write_and_wait_transaction(trans);
1364 if (ret)
1365 btrfs_handle_fs_error(fs_info, ret,
1366 "Error while writing out transaction for qgroup");
1367
1368out:
1369 mutex_unlock(&fs_info->tree_log_mutex);
1370
1371 /*
1372 * Force parent root to be updated, as we recorded it before so its
1373 * last_trans == cur_transid.
1374 * Or it won't be committed again onto disk after later
1375 * insert_dir_item()
1376 */
1377 if (!ret)
1378 record_root_in_trans(trans, parent, 1);
1379 return ret;
1380}
1381
1382/*
1383 * new snapshots need to be created at a very specific time in the
1384 * transaction commit. This does the actual creation.
1385 *
1386 * Note:
1387 * If the error which may affect the commitment of the current transaction
1388 * happens, we should return the error number. If the error which just affect
1389 * the creation of the pending snapshots, just return 0.
1390 */
1391static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1392 struct btrfs_pending_snapshot *pending)
1393{
1394
1395 struct btrfs_fs_info *fs_info = trans->fs_info;
1396 struct btrfs_key key;
1397 struct btrfs_root_item *new_root_item;
1398 struct btrfs_root *tree_root = fs_info->tree_root;
1399 struct btrfs_root *root = pending->root;
1400 struct btrfs_root *parent_root;
1401 struct btrfs_block_rsv *rsv;
1402 struct inode *parent_inode;
1403 struct btrfs_path *path;
1404 struct btrfs_dir_item *dir_item;
1405 struct dentry *dentry;
1406 struct extent_buffer *tmp;
1407 struct extent_buffer *old;
1408 struct timespec64 cur_time;
1409 int ret = 0;
1410 u64 to_reserve = 0;
1411 u64 index = 0;
1412 u64 objectid;
1413 u64 root_flags;
1414 uuid_le new_uuid;
1415
1416 ASSERT(pending->path);
1417 path = pending->path;
1418
1419 ASSERT(pending->root_item);
1420 new_root_item = pending->root_item;
1421
1422 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1423 if (pending->error)
1424 goto no_free_objectid;
1425
1426 /*
1427 * Make qgroup to skip current new snapshot's qgroupid, as it is
1428 * accounted by later btrfs_qgroup_inherit().
1429 */
1430 btrfs_set_skip_qgroup(trans, objectid);
1431
1432 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1433
1434 if (to_reserve > 0) {
1435 pending->error = btrfs_block_rsv_add(root,
1436 &pending->block_rsv,
1437 to_reserve,
1438 BTRFS_RESERVE_NO_FLUSH);
1439 if (pending->error)
1440 goto clear_skip_qgroup;
1441 }
1442
1443 key.objectid = objectid;
1444 key.offset = (u64)-1;
1445 key.type = BTRFS_ROOT_ITEM_KEY;
1446
1447 rsv = trans->block_rsv;
1448 trans->block_rsv = &pending->block_rsv;
1449 trans->bytes_reserved = trans->block_rsv->reserved;
1450 trace_btrfs_space_reservation(fs_info, "transaction",
1451 trans->transid,
1452 trans->bytes_reserved, 1);
1453 dentry = pending->dentry;
1454 parent_inode = pending->dir;
1455 parent_root = BTRFS_I(parent_inode)->root;
1456 record_root_in_trans(trans, parent_root, 0);
1457
1458 cur_time = current_time(parent_inode);
1459
1460 /*
1461 * insert the directory item
1462 */
1463 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1464 BUG_ON(ret); /* -ENOMEM */
1465
1466 /* check if there is a file/dir which has the same name. */
1467 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1468 btrfs_ino(BTRFS_I(parent_inode)),
1469 dentry->d_name.name,
1470 dentry->d_name.len, 0);
1471 if (dir_item != NULL && !IS_ERR(dir_item)) {
1472 pending->error = -EEXIST;
1473 goto dir_item_existed;
1474 } else if (IS_ERR(dir_item)) {
1475 ret = PTR_ERR(dir_item);
1476 btrfs_abort_transaction(trans, ret);
1477 goto fail;
1478 }
1479 btrfs_release_path(path);
1480
1481 /*
1482 * pull in the delayed directory update
1483 * and the delayed inode item
1484 * otherwise we corrupt the FS during
1485 * snapshot
1486 */
1487 ret = btrfs_run_delayed_items(trans);
1488 if (ret) { /* Transaction aborted */
1489 btrfs_abort_transaction(trans, ret);
1490 goto fail;
1491 }
1492
1493 record_root_in_trans(trans, root, 0);
1494 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1495 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1496 btrfs_check_and_init_root_item(new_root_item);
1497
1498 root_flags = btrfs_root_flags(new_root_item);
1499 if (pending->readonly)
1500 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1501 else
1502 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1503 btrfs_set_root_flags(new_root_item, root_flags);
1504
1505 btrfs_set_root_generation_v2(new_root_item,
1506 trans->transid);
1507 uuid_le_gen(&new_uuid);
1508 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1509 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1510 BTRFS_UUID_SIZE);
1511 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1512 memset(new_root_item->received_uuid, 0,
1513 sizeof(new_root_item->received_uuid));
1514 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1515 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1516 btrfs_set_root_stransid(new_root_item, 0);
1517 btrfs_set_root_rtransid(new_root_item, 0);
1518 }
1519 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1520 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1521 btrfs_set_root_otransid(new_root_item, trans->transid);
1522
1523 old = btrfs_lock_root_node(root);
1524 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1525 if (ret) {
1526 btrfs_tree_unlock(old);
1527 free_extent_buffer(old);
1528 btrfs_abort_transaction(trans, ret);
1529 goto fail;
1530 }
1531
1532 btrfs_set_lock_blocking_write(old);
1533
1534 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1535 /* clean up in any case */
1536 btrfs_tree_unlock(old);
1537 free_extent_buffer(old);
1538 if (ret) {
1539 btrfs_abort_transaction(trans, ret);
1540 goto fail;
1541 }
1542 /* see comments in should_cow_block() */
1543 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1544 smp_wmb();
1545
1546 btrfs_set_root_node(new_root_item, tmp);
1547 /* record when the snapshot was created in key.offset */
1548 key.offset = trans->transid;
1549 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1550 btrfs_tree_unlock(tmp);
1551 free_extent_buffer(tmp);
1552 if (ret) {
1553 btrfs_abort_transaction(trans, ret);
1554 goto fail;
1555 }
1556
1557 /*
1558 * insert root back/forward references
1559 */
1560 ret = btrfs_add_root_ref(trans, objectid,
1561 parent_root->root_key.objectid,
1562 btrfs_ino(BTRFS_I(parent_inode)), index,
1563 dentry->d_name.name, dentry->d_name.len);
1564 if (ret) {
1565 btrfs_abort_transaction(trans, ret);
1566 goto fail;
1567 }
1568
1569 key.offset = (u64)-1;
1570 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1571 if (IS_ERR(pending->snap)) {
1572 ret = PTR_ERR(pending->snap);
1573 btrfs_abort_transaction(trans, ret);
1574 goto fail;
1575 }
1576
1577 ret = btrfs_reloc_post_snapshot(trans, pending);
1578 if (ret) {
1579 btrfs_abort_transaction(trans, ret);
1580 goto fail;
1581 }
1582
1583 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1584 if (ret) {
1585 btrfs_abort_transaction(trans, ret);
1586 goto fail;
1587 }
1588
1589 /*
1590 * Do special qgroup accounting for snapshot, as we do some qgroup
1591 * snapshot hack to do fast snapshot.
1592 * To co-operate with that hack, we do hack again.
1593 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1594 */
1595 ret = qgroup_account_snapshot(trans, root, parent_root,
1596 pending->inherit, objectid);
1597 if (ret < 0)
1598 goto fail;
1599
1600 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1601 dentry->d_name.len, BTRFS_I(parent_inode),
1602 &key, BTRFS_FT_DIR, index);
1603 /* We have check then name at the beginning, so it is impossible. */
1604 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1605 if (ret) {
1606 btrfs_abort_transaction(trans, ret);
1607 goto fail;
1608 }
1609
1610 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1611 dentry->d_name.len * 2);
1612 parent_inode->i_mtime = parent_inode->i_ctime =
1613 current_time(parent_inode);
1614 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1615 if (ret) {
1616 btrfs_abort_transaction(trans, ret);
1617 goto fail;
1618 }
1619 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1620 objectid);
1621 if (ret) {
1622 btrfs_abort_transaction(trans, ret);
1623 goto fail;
1624 }
1625 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1626 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1627 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1628 objectid);
1629 if (ret && ret != -EEXIST) {
1630 btrfs_abort_transaction(trans, ret);
1631 goto fail;
1632 }
1633 }
1634
1635 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1636 if (ret) {
1637 btrfs_abort_transaction(trans, ret);
1638 goto fail;
1639 }
1640
1641fail:
1642 pending->error = ret;
1643dir_item_existed:
1644 trans->block_rsv = rsv;
1645 trans->bytes_reserved = 0;
1646clear_skip_qgroup:
1647 btrfs_clear_skip_qgroup(trans);
1648no_free_objectid:
1649 kfree(new_root_item);
1650 pending->root_item = NULL;
1651 btrfs_free_path(path);
1652 pending->path = NULL;
1653
1654 return ret;
1655}
1656
1657/*
1658 * create all the snapshots we've scheduled for creation
1659 */
1660static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1661{
1662 struct btrfs_pending_snapshot *pending, *next;
1663 struct list_head *head = &trans->transaction->pending_snapshots;
1664 int ret = 0;
1665
1666 list_for_each_entry_safe(pending, next, head, list) {
1667 list_del(&pending->list);
1668 ret = create_pending_snapshot(trans, pending);
1669 if (ret)
1670 break;
1671 }
1672 return ret;
1673}
1674
1675static void update_super_roots(struct btrfs_fs_info *fs_info)
1676{
1677 struct btrfs_root_item *root_item;
1678 struct btrfs_super_block *super;
1679
1680 super = fs_info->super_copy;
1681
1682 root_item = &fs_info->chunk_root->root_item;
1683 super->chunk_root = root_item->bytenr;
1684 super->chunk_root_generation = root_item->generation;
1685 super->chunk_root_level = root_item->level;
1686
1687 root_item = &fs_info->tree_root->root_item;
1688 super->root = root_item->bytenr;
1689 super->generation = root_item->generation;
1690 super->root_level = root_item->level;
1691 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1692 super->cache_generation = root_item->generation;
1693 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1694 super->uuid_tree_generation = root_item->generation;
1695}
1696
1697int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1698{
1699 struct btrfs_transaction *trans;
1700 int ret = 0;
1701
1702 spin_lock(&info->trans_lock);
1703 trans = info->running_transaction;
1704 if (trans)
1705 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1706 spin_unlock(&info->trans_lock);
1707 return ret;
1708}
1709
1710int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1711{
1712 struct btrfs_transaction *trans;
1713 int ret = 0;
1714
1715 spin_lock(&info->trans_lock);
1716 trans = info->running_transaction;
1717 if (trans)
1718 ret = is_transaction_blocked(trans);
1719 spin_unlock(&info->trans_lock);
1720 return ret;
1721}
1722
1723/*
1724 * wait for the current transaction commit to start and block subsequent
1725 * transaction joins
1726 */
1727static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1728 struct btrfs_transaction *trans)
1729{
1730 wait_event(fs_info->transaction_blocked_wait,
1731 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1732}
1733
1734/*
1735 * wait for the current transaction to start and then become unblocked.
1736 * caller holds ref.
1737 */
1738static void wait_current_trans_commit_start_and_unblock(
1739 struct btrfs_fs_info *fs_info,
1740 struct btrfs_transaction *trans)
1741{
1742 wait_event(fs_info->transaction_wait,
1743 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1744}
1745
1746/*
1747 * commit transactions asynchronously. once btrfs_commit_transaction_async
1748 * returns, any subsequent transaction will not be allowed to join.
1749 */
1750struct btrfs_async_commit {
1751 struct btrfs_trans_handle *newtrans;
1752 struct work_struct work;
1753};
1754
1755static void do_async_commit(struct work_struct *work)
1756{
1757 struct btrfs_async_commit *ac =
1758 container_of(work, struct btrfs_async_commit, work);
1759
1760 /*
1761 * We've got freeze protection passed with the transaction.
1762 * Tell lockdep about it.
1763 */
1764 if (ac->newtrans->type & __TRANS_FREEZABLE)
1765 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1766
1767 current->journal_info = ac->newtrans;
1768
1769 btrfs_commit_transaction(ac->newtrans);
1770 kfree(ac);
1771}
1772
1773int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1774 int wait_for_unblock)
1775{
1776 struct btrfs_fs_info *fs_info = trans->fs_info;
1777 struct btrfs_async_commit *ac;
1778 struct btrfs_transaction *cur_trans;
1779
1780 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1781 if (!ac)
1782 return -ENOMEM;
1783
1784 INIT_WORK(&ac->work, do_async_commit);
1785 ac->newtrans = btrfs_join_transaction(trans->root);
1786 if (IS_ERR(ac->newtrans)) {
1787 int err = PTR_ERR(ac->newtrans);
1788 kfree(ac);
1789 return err;
1790 }
1791
1792 /* take transaction reference */
1793 cur_trans = trans->transaction;
1794 refcount_inc(&cur_trans->use_count);
1795
1796 btrfs_end_transaction(trans);
1797
1798 /*
1799 * Tell lockdep we've released the freeze rwsem, since the
1800 * async commit thread will be the one to unlock it.
1801 */
1802 if (ac->newtrans->type & __TRANS_FREEZABLE)
1803 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1804
1805 schedule_work(&ac->work);
1806
1807 /* wait for transaction to start and unblock */
1808 if (wait_for_unblock)
1809 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1810 else
1811 wait_current_trans_commit_start(fs_info, cur_trans);
1812
1813 if (current->journal_info == trans)
1814 current->journal_info = NULL;
1815
1816 btrfs_put_transaction(cur_trans);
1817 return 0;
1818}
1819
1820
1821static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1822{
1823 struct btrfs_fs_info *fs_info = trans->fs_info;
1824 struct btrfs_transaction *cur_trans = trans->transaction;
1825
1826 WARN_ON(refcount_read(&trans->use_count) > 1);
1827
1828 btrfs_abort_transaction(trans, err);
1829
1830 spin_lock(&fs_info->trans_lock);
1831
1832 /*
1833 * If the transaction is removed from the list, it means this
1834 * transaction has been committed successfully, so it is impossible
1835 * to call the cleanup function.
1836 */
1837 BUG_ON(list_empty(&cur_trans->list));
1838
1839 list_del_init(&cur_trans->list);
1840 if (cur_trans == fs_info->running_transaction) {
1841 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1842 spin_unlock(&fs_info->trans_lock);
1843 wait_event(cur_trans->writer_wait,
1844 atomic_read(&cur_trans->num_writers) == 1);
1845
1846 spin_lock(&fs_info->trans_lock);
1847 }
1848 spin_unlock(&fs_info->trans_lock);
1849
1850 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1851
1852 spin_lock(&fs_info->trans_lock);
1853 if (cur_trans == fs_info->running_transaction)
1854 fs_info->running_transaction = NULL;
1855 spin_unlock(&fs_info->trans_lock);
1856
1857 if (trans->type & __TRANS_FREEZABLE)
1858 sb_end_intwrite(fs_info->sb);
1859 btrfs_put_transaction(cur_trans);
1860 btrfs_put_transaction(cur_trans);
1861
1862 trace_btrfs_transaction_commit(trans->root);
1863
1864 if (current->journal_info == trans)
1865 current->journal_info = NULL;
1866 btrfs_scrub_cancel(fs_info);
1867
1868 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1869}
1870
1871/*
1872 * Release reserved delayed ref space of all pending block groups of the
1873 * transaction and remove them from the list
1874 */
1875static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1876{
1877 struct btrfs_fs_info *fs_info = trans->fs_info;
1878 struct btrfs_block_group_cache *block_group, *tmp;
1879
1880 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1881 btrfs_delayed_refs_rsv_release(fs_info, 1);
1882 list_del_init(&block_group->bg_list);
1883 }
1884}
1885
1886static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1887{
1888 struct btrfs_fs_info *fs_info = trans->fs_info;
1889
1890 /*
1891 * We use writeback_inodes_sb here because if we used
1892 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1893 * Currently are holding the fs freeze lock, if we do an async flush
1894 * we'll do btrfs_join_transaction() and deadlock because we need to
1895 * wait for the fs freeze lock. Using the direct flushing we benefit
1896 * from already being in a transaction and our join_transaction doesn't
1897 * have to re-take the fs freeze lock.
1898 */
1899 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1900 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1901 } else {
1902 struct btrfs_pending_snapshot *pending;
1903 struct list_head *head = &trans->transaction->pending_snapshots;
1904
1905 /*
1906 * Flush dellaloc for any root that is going to be snapshotted.
1907 * This is done to avoid a corrupted version of files, in the
1908 * snapshots, that had both buffered and direct IO writes (even
1909 * if they were done sequentially) due to an unordered update of
1910 * the inode's size on disk.
1911 */
1912 list_for_each_entry(pending, head, list) {
1913 int ret;
1914
1915 ret = btrfs_start_delalloc_snapshot(pending->root);
1916 if (ret)
1917 return ret;
1918 }
1919 }
1920 return 0;
1921}
1922
1923static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1924{
1925 struct btrfs_fs_info *fs_info = trans->fs_info;
1926
1927 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1928 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1929 } else {
1930 struct btrfs_pending_snapshot *pending;
1931 struct list_head *head = &trans->transaction->pending_snapshots;
1932
1933 /*
1934 * Wait for any dellaloc that we started previously for the roots
1935 * that are going to be snapshotted. This is to avoid a corrupted
1936 * version of files in the snapshots that had both buffered and
1937 * direct IO writes (even if they were done sequentially).
1938 */
1939 list_for_each_entry(pending, head, list)
1940 btrfs_wait_ordered_extents(pending->root,
1941 U64_MAX, 0, U64_MAX);
1942 }
1943}
1944
1945int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1946{
1947 struct btrfs_fs_info *fs_info = trans->fs_info;
1948 struct btrfs_transaction *cur_trans = trans->transaction;
1949 struct btrfs_transaction *prev_trans = NULL;
1950 int ret;
1951
1952 /* Stop the commit early if ->aborted is set */
1953 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1954 ret = cur_trans->aborted;
1955 btrfs_end_transaction(trans);
1956 return ret;
1957 }
1958
1959 btrfs_trans_release_metadata(trans);
1960 trans->block_rsv = NULL;
1961
1962 /* make a pass through all the delayed refs we have so far
1963 * any runnings procs may add more while we are here
1964 */
1965 ret = btrfs_run_delayed_refs(trans, 0);
1966 if (ret) {
1967 btrfs_end_transaction(trans);
1968 return ret;
1969 }
1970
1971 cur_trans = trans->transaction;
1972
1973 /*
1974 * set the flushing flag so procs in this transaction have to
1975 * start sending their work down.
1976 */
1977 cur_trans->delayed_refs.flushing = 1;
1978 smp_wmb();
1979
1980 btrfs_create_pending_block_groups(trans);
1981
1982 ret = btrfs_run_delayed_refs(trans, 0);
1983 if (ret) {
1984 btrfs_end_transaction(trans);
1985 return ret;
1986 }
1987
1988 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1989 int run_it = 0;
1990
1991 /* this mutex is also taken before trying to set
1992 * block groups readonly. We need to make sure
1993 * that nobody has set a block group readonly
1994 * after a extents from that block group have been
1995 * allocated for cache files. btrfs_set_block_group_ro
1996 * will wait for the transaction to commit if it
1997 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1998 *
1999 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2000 * only one process starts all the block group IO. It wouldn't
2001 * hurt to have more than one go through, but there's no
2002 * real advantage to it either.
2003 */
2004 mutex_lock(&fs_info->ro_block_group_mutex);
2005 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2006 &cur_trans->flags))
2007 run_it = 1;
2008 mutex_unlock(&fs_info->ro_block_group_mutex);
2009
2010 if (run_it) {
2011 ret = btrfs_start_dirty_block_groups(trans);
2012 if (ret) {
2013 btrfs_end_transaction(trans);
2014 return ret;
2015 }
2016 }
2017 }
2018
2019 spin_lock(&fs_info->trans_lock);
2020 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2021 spin_unlock(&fs_info->trans_lock);
2022 refcount_inc(&cur_trans->use_count);
2023 ret = btrfs_end_transaction(trans);
2024
2025 wait_for_commit(cur_trans);
2026
2027 if (unlikely(cur_trans->aborted))
2028 ret = cur_trans->aborted;
2029
2030 btrfs_put_transaction(cur_trans);
2031
2032 return ret;
2033 }
2034
2035 cur_trans->state = TRANS_STATE_COMMIT_START;
2036 wake_up(&fs_info->transaction_blocked_wait);
2037
2038 if (cur_trans->list.prev != &fs_info->trans_list) {
2039 prev_trans = list_entry(cur_trans->list.prev,
2040 struct btrfs_transaction, list);
2041 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2042 refcount_inc(&prev_trans->use_count);
2043 spin_unlock(&fs_info->trans_lock);
2044
2045 wait_for_commit(prev_trans);
2046 ret = prev_trans->aborted;
2047
2048 btrfs_put_transaction(prev_trans);
2049 if (ret)
2050 goto cleanup_transaction;
2051 } else {
2052 spin_unlock(&fs_info->trans_lock);
2053 }
2054 } else {
2055 spin_unlock(&fs_info->trans_lock);
2056 /*
2057 * The previous transaction was aborted and was already removed
2058 * from the list of transactions at fs_info->trans_list. So we
2059 * abort to prevent writing a new superblock that reflects a
2060 * corrupt state (pointing to trees with unwritten nodes/leafs).
2061 */
2062 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2063 ret = -EROFS;
2064 goto cleanup_transaction;
2065 }
2066 }
2067
2068 extwriter_counter_dec(cur_trans, trans->type);
2069
2070 ret = btrfs_start_delalloc_flush(trans);
2071 if (ret)
2072 goto cleanup_transaction;
2073
2074 ret = btrfs_run_delayed_items(trans);
2075 if (ret)
2076 goto cleanup_transaction;
2077
2078 wait_event(cur_trans->writer_wait,
2079 extwriter_counter_read(cur_trans) == 0);
2080
2081 /* some pending stuffs might be added after the previous flush. */
2082 ret = btrfs_run_delayed_items(trans);
2083 if (ret)
2084 goto cleanup_transaction;
2085
2086 btrfs_wait_delalloc_flush(trans);
2087
2088 btrfs_scrub_pause(fs_info);
2089 /*
2090 * Ok now we need to make sure to block out any other joins while we
2091 * commit the transaction. We could have started a join before setting
2092 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2093 */
2094 spin_lock(&fs_info->trans_lock);
2095 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2096 spin_unlock(&fs_info->trans_lock);
2097 wait_event(cur_trans->writer_wait,
2098 atomic_read(&cur_trans->num_writers) == 1);
2099
2100 /* ->aborted might be set after the previous check, so check it */
2101 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2102 ret = cur_trans->aborted;
2103 goto scrub_continue;
2104 }
2105 /*
2106 * the reloc mutex makes sure that we stop
2107 * the balancing code from coming in and moving
2108 * extents around in the middle of the commit
2109 */
2110 mutex_lock(&fs_info->reloc_mutex);
2111
2112 /*
2113 * We needn't worry about the delayed items because we will
2114 * deal with them in create_pending_snapshot(), which is the
2115 * core function of the snapshot creation.
2116 */
2117 ret = create_pending_snapshots(trans);
2118 if (ret) {
2119 mutex_unlock(&fs_info->reloc_mutex);
2120 goto scrub_continue;
2121 }
2122
2123 /*
2124 * We insert the dir indexes of the snapshots and update the inode
2125 * of the snapshots' parents after the snapshot creation, so there
2126 * are some delayed items which are not dealt with. Now deal with
2127 * them.
2128 *
2129 * We needn't worry that this operation will corrupt the snapshots,
2130 * because all the tree which are snapshoted will be forced to COW
2131 * the nodes and leaves.
2132 */
2133 ret = btrfs_run_delayed_items(trans);
2134 if (ret) {
2135 mutex_unlock(&fs_info->reloc_mutex);
2136 goto scrub_continue;
2137 }
2138
2139 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2140 if (ret) {
2141 mutex_unlock(&fs_info->reloc_mutex);
2142 goto scrub_continue;
2143 }
2144
2145 /*
2146 * make sure none of the code above managed to slip in a
2147 * delayed item
2148 */
2149 btrfs_assert_delayed_root_empty(fs_info);
2150
2151 WARN_ON(cur_trans != trans->transaction);
2152
2153 /* btrfs_commit_tree_roots is responsible for getting the
2154 * various roots consistent with each other. Every pointer
2155 * in the tree of tree roots has to point to the most up to date
2156 * root for every subvolume and other tree. So, we have to keep
2157 * the tree logging code from jumping in and changing any
2158 * of the trees.
2159 *
2160 * At this point in the commit, there can't be any tree-log
2161 * writers, but a little lower down we drop the trans mutex
2162 * and let new people in. By holding the tree_log_mutex
2163 * from now until after the super is written, we avoid races
2164 * with the tree-log code.
2165 */
2166 mutex_lock(&fs_info->tree_log_mutex);
2167
2168 ret = commit_fs_roots(trans);
2169 if (ret) {
2170 mutex_unlock(&fs_info->tree_log_mutex);
2171 mutex_unlock(&fs_info->reloc_mutex);
2172 goto scrub_continue;
2173 }
2174
2175 /*
2176 * Since the transaction is done, we can apply the pending changes
2177 * before the next transaction.
2178 */
2179 btrfs_apply_pending_changes(fs_info);
2180
2181 /* commit_fs_roots gets rid of all the tree log roots, it is now
2182 * safe to free the root of tree log roots
2183 */
2184 btrfs_free_log_root_tree(trans, fs_info);
2185
2186 /*
2187 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2188 * new delayed refs. Must handle them or qgroup can be wrong.
2189 */
2190 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2191 if (ret) {
2192 mutex_unlock(&fs_info->tree_log_mutex);
2193 mutex_unlock(&fs_info->reloc_mutex);
2194 goto scrub_continue;
2195 }
2196
2197 /*
2198 * Since fs roots are all committed, we can get a quite accurate
2199 * new_roots. So let's do quota accounting.
2200 */
2201 ret = btrfs_qgroup_account_extents(trans);
2202 if (ret < 0) {
2203 mutex_unlock(&fs_info->tree_log_mutex);
2204 mutex_unlock(&fs_info->reloc_mutex);
2205 goto scrub_continue;
2206 }
2207
2208 ret = commit_cowonly_roots(trans);
2209 if (ret) {
2210 mutex_unlock(&fs_info->tree_log_mutex);
2211 mutex_unlock(&fs_info->reloc_mutex);
2212 goto scrub_continue;
2213 }
2214
2215 /*
2216 * The tasks which save the space cache and inode cache may also
2217 * update ->aborted, check it.
2218 */
2219 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2220 ret = cur_trans->aborted;
2221 mutex_unlock(&fs_info->tree_log_mutex);
2222 mutex_unlock(&fs_info->reloc_mutex);
2223 goto scrub_continue;
2224 }
2225
2226 btrfs_prepare_extent_commit(fs_info);
2227
2228 cur_trans = fs_info->running_transaction;
2229
2230 btrfs_set_root_node(&fs_info->tree_root->root_item,
2231 fs_info->tree_root->node);
2232 list_add_tail(&fs_info->tree_root->dirty_list,
2233 &cur_trans->switch_commits);
2234
2235 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2236 fs_info->chunk_root->node);
2237 list_add_tail(&fs_info->chunk_root->dirty_list,
2238 &cur_trans->switch_commits);
2239
2240 switch_commit_roots(cur_trans);
2241
2242 ASSERT(list_empty(&cur_trans->dirty_bgs));
2243 ASSERT(list_empty(&cur_trans->io_bgs));
2244 update_super_roots(fs_info);
2245
2246 btrfs_set_super_log_root(fs_info->super_copy, 0);
2247 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2248 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2249 sizeof(*fs_info->super_copy));
2250
2251 btrfs_commit_device_sizes(cur_trans);
2252
2253 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2254 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2255
2256 btrfs_trans_release_chunk_metadata(trans);
2257
2258 spin_lock(&fs_info->trans_lock);
2259 cur_trans->state = TRANS_STATE_UNBLOCKED;
2260 fs_info->running_transaction = NULL;
2261 spin_unlock(&fs_info->trans_lock);
2262 mutex_unlock(&fs_info->reloc_mutex);
2263
2264 wake_up(&fs_info->transaction_wait);
2265
2266 ret = btrfs_write_and_wait_transaction(trans);
2267 if (ret) {
2268 btrfs_handle_fs_error(fs_info, ret,
2269 "Error while writing out transaction");
2270 mutex_unlock(&fs_info->tree_log_mutex);
2271 goto scrub_continue;
2272 }
2273
2274 ret = write_all_supers(fs_info, 0);
2275 /*
2276 * the super is written, we can safely allow the tree-loggers
2277 * to go about their business
2278 */
2279 mutex_unlock(&fs_info->tree_log_mutex);
2280 if (ret)
2281 goto scrub_continue;
2282
2283 btrfs_finish_extent_commit(trans);
2284
2285 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2286 btrfs_clear_space_info_full(fs_info);
2287
2288 fs_info->last_trans_committed = cur_trans->transid;
2289 /*
2290 * We needn't acquire the lock here because there is no other task
2291 * which can change it.
2292 */
2293 cur_trans->state = TRANS_STATE_COMPLETED;
2294 wake_up(&cur_trans->commit_wait);
2295 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2296
2297 spin_lock(&fs_info->trans_lock);
2298 list_del_init(&cur_trans->list);
2299 spin_unlock(&fs_info->trans_lock);
2300
2301 btrfs_put_transaction(cur_trans);
2302 btrfs_put_transaction(cur_trans);
2303
2304 if (trans->type & __TRANS_FREEZABLE)
2305 sb_end_intwrite(fs_info->sb);
2306
2307 trace_btrfs_transaction_commit(trans->root);
2308
2309 btrfs_scrub_continue(fs_info);
2310
2311 if (current->journal_info == trans)
2312 current->journal_info = NULL;
2313
2314 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2315
2316 return ret;
2317
2318scrub_continue:
2319 btrfs_scrub_continue(fs_info);
2320cleanup_transaction:
2321 btrfs_trans_release_metadata(trans);
2322 btrfs_cleanup_pending_block_groups(trans);
2323 btrfs_trans_release_chunk_metadata(trans);
2324 trans->block_rsv = NULL;
2325 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2326 if (current->journal_info == trans)
2327 current->journal_info = NULL;
2328 cleanup_transaction(trans, ret);
2329
2330 return ret;
2331}
2332
2333/*
2334 * return < 0 if error
2335 * 0 if there are no more dead_roots at the time of call
2336 * 1 there are more to be processed, call me again
2337 *
2338 * The return value indicates there are certainly more snapshots to delete, but
2339 * if there comes a new one during processing, it may return 0. We don't mind,
2340 * because btrfs_commit_super will poke cleaner thread and it will process it a
2341 * few seconds later.
2342 */
2343int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2344{
2345 int ret;
2346 struct btrfs_fs_info *fs_info = root->fs_info;
2347
2348 spin_lock(&fs_info->trans_lock);
2349 if (list_empty(&fs_info->dead_roots)) {
2350 spin_unlock(&fs_info->trans_lock);
2351 return 0;
2352 }
2353 root = list_first_entry(&fs_info->dead_roots,
2354 struct btrfs_root, root_list);
2355 list_del_init(&root->root_list);
2356 spin_unlock(&fs_info->trans_lock);
2357
2358 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2359
2360 btrfs_kill_all_delayed_nodes(root);
2361
2362 if (btrfs_header_backref_rev(root->node) <
2363 BTRFS_MIXED_BACKREF_REV)
2364 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2365 else
2366 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2367
2368 return (ret < 0) ? 0 : 1;
2369}
2370
2371void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2372{
2373 unsigned long prev;
2374 unsigned long bit;
2375
2376 prev = xchg(&fs_info->pending_changes, 0);
2377 if (!prev)
2378 return;
2379
2380 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2381 if (prev & bit)
2382 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2383 prev &= ~bit;
2384
2385 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2386 if (prev & bit)
2387 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2388 prev &= ~bit;
2389
2390 bit = 1 << BTRFS_PENDING_COMMIT;
2391 if (prev & bit)
2392 btrfs_debug(fs_info, "pending commit done");
2393 prev &= ~bit;
2394
2395 if (prev)
2396 btrfs_warn(fs_info,
2397 "unknown pending changes left 0x%lx, ignoring", prev);
2398}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/writeback.h>
23#include <linux/pagemap.h>
24#include <linux/blkdev.h>
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "locking.h"
29#include "tree-log.h"
30#include "inode-map.h"
31
32#define BTRFS_ROOT_TRANS_TAG 0
33
34static noinline void put_transaction(struct btrfs_transaction *transaction)
35{
36 WARN_ON(atomic_read(&transaction->use_count) == 0);
37 if (atomic_dec_and_test(&transaction->use_count)) {
38 BUG_ON(!list_empty(&transaction->list));
39 memset(transaction, 0, sizeof(*transaction));
40 kmem_cache_free(btrfs_transaction_cachep, transaction);
41 }
42}
43
44static noinline void switch_commit_root(struct btrfs_root *root)
45{
46 free_extent_buffer(root->commit_root);
47 root->commit_root = btrfs_root_node(root);
48}
49
50/*
51 * either allocate a new transaction or hop into the existing one
52 */
53static noinline int join_transaction(struct btrfs_root *root, int nofail)
54{
55 struct btrfs_transaction *cur_trans;
56
57 spin_lock(&root->fs_info->trans_lock);
58 if (root->fs_info->trans_no_join) {
59 if (!nofail) {
60 spin_unlock(&root->fs_info->trans_lock);
61 return -EBUSY;
62 }
63 }
64
65 cur_trans = root->fs_info->running_transaction;
66 if (cur_trans) {
67 atomic_inc(&cur_trans->use_count);
68 atomic_inc(&cur_trans->num_writers);
69 cur_trans->num_joined++;
70 spin_unlock(&root->fs_info->trans_lock);
71 return 0;
72 }
73 spin_unlock(&root->fs_info->trans_lock);
74
75 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
76 if (!cur_trans)
77 return -ENOMEM;
78 spin_lock(&root->fs_info->trans_lock);
79 if (root->fs_info->running_transaction) {
80 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
81 cur_trans = root->fs_info->running_transaction;
82 atomic_inc(&cur_trans->use_count);
83 atomic_inc(&cur_trans->num_writers);
84 cur_trans->num_joined++;
85 spin_unlock(&root->fs_info->trans_lock);
86 return 0;
87 }
88 atomic_set(&cur_trans->num_writers, 1);
89 cur_trans->num_joined = 0;
90 init_waitqueue_head(&cur_trans->writer_wait);
91 init_waitqueue_head(&cur_trans->commit_wait);
92 cur_trans->in_commit = 0;
93 cur_trans->blocked = 0;
94 /*
95 * One for this trans handle, one so it will live on until we
96 * commit the transaction.
97 */
98 atomic_set(&cur_trans->use_count, 2);
99 cur_trans->commit_done = 0;
100 cur_trans->start_time = get_seconds();
101
102 cur_trans->delayed_refs.root = RB_ROOT;
103 cur_trans->delayed_refs.num_entries = 0;
104 cur_trans->delayed_refs.num_heads_ready = 0;
105 cur_trans->delayed_refs.num_heads = 0;
106 cur_trans->delayed_refs.flushing = 0;
107 cur_trans->delayed_refs.run_delayed_start = 0;
108 spin_lock_init(&cur_trans->commit_lock);
109 spin_lock_init(&cur_trans->delayed_refs.lock);
110
111 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
112 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
113 extent_io_tree_init(&cur_trans->dirty_pages,
114 root->fs_info->btree_inode->i_mapping);
115 root->fs_info->generation++;
116 cur_trans->transid = root->fs_info->generation;
117 root->fs_info->running_transaction = cur_trans;
118 spin_unlock(&root->fs_info->trans_lock);
119
120 return 0;
121}
122
123/*
124 * this does all the record keeping required to make sure that a reference
125 * counted root is properly recorded in a given transaction. This is required
126 * to make sure the old root from before we joined the transaction is deleted
127 * when the transaction commits
128 */
129static int record_root_in_trans(struct btrfs_trans_handle *trans,
130 struct btrfs_root *root)
131{
132 if (root->ref_cows && root->last_trans < trans->transid) {
133 WARN_ON(root == root->fs_info->extent_root);
134 WARN_ON(root->commit_root != root->node);
135
136 /*
137 * see below for in_trans_setup usage rules
138 * we have the reloc mutex held now, so there
139 * is only one writer in this function
140 */
141 root->in_trans_setup = 1;
142
143 /* make sure readers find in_trans_setup before
144 * they find our root->last_trans update
145 */
146 smp_wmb();
147
148 spin_lock(&root->fs_info->fs_roots_radix_lock);
149 if (root->last_trans == trans->transid) {
150 spin_unlock(&root->fs_info->fs_roots_radix_lock);
151 return 0;
152 }
153 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
154 (unsigned long)root->root_key.objectid,
155 BTRFS_ROOT_TRANS_TAG);
156 spin_unlock(&root->fs_info->fs_roots_radix_lock);
157 root->last_trans = trans->transid;
158
159 /* this is pretty tricky. We don't want to
160 * take the relocation lock in btrfs_record_root_in_trans
161 * unless we're really doing the first setup for this root in
162 * this transaction.
163 *
164 * Normally we'd use root->last_trans as a flag to decide
165 * if we want to take the expensive mutex.
166 *
167 * But, we have to set root->last_trans before we
168 * init the relocation root, otherwise, we trip over warnings
169 * in ctree.c. The solution used here is to flag ourselves
170 * with root->in_trans_setup. When this is 1, we're still
171 * fixing up the reloc trees and everyone must wait.
172 *
173 * When this is zero, they can trust root->last_trans and fly
174 * through btrfs_record_root_in_trans without having to take the
175 * lock. smp_wmb() makes sure that all the writes above are
176 * done before we pop in the zero below
177 */
178 btrfs_init_reloc_root(trans, root);
179 smp_wmb();
180 root->in_trans_setup = 0;
181 }
182 return 0;
183}
184
185
186int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
187 struct btrfs_root *root)
188{
189 if (!root->ref_cows)
190 return 0;
191
192 /*
193 * see record_root_in_trans for comments about in_trans_setup usage
194 * and barriers
195 */
196 smp_rmb();
197 if (root->last_trans == trans->transid &&
198 !root->in_trans_setup)
199 return 0;
200
201 mutex_lock(&root->fs_info->reloc_mutex);
202 record_root_in_trans(trans, root);
203 mutex_unlock(&root->fs_info->reloc_mutex);
204
205 return 0;
206}
207
208/* wait for commit against the current transaction to become unblocked
209 * when this is done, it is safe to start a new transaction, but the current
210 * transaction might not be fully on disk.
211 */
212static void wait_current_trans(struct btrfs_root *root)
213{
214 struct btrfs_transaction *cur_trans;
215
216 spin_lock(&root->fs_info->trans_lock);
217 cur_trans = root->fs_info->running_transaction;
218 if (cur_trans && cur_trans->blocked) {
219 atomic_inc(&cur_trans->use_count);
220 spin_unlock(&root->fs_info->trans_lock);
221
222 wait_event(root->fs_info->transaction_wait,
223 !cur_trans->blocked);
224 put_transaction(cur_trans);
225 } else {
226 spin_unlock(&root->fs_info->trans_lock);
227 }
228}
229
230enum btrfs_trans_type {
231 TRANS_START,
232 TRANS_JOIN,
233 TRANS_USERSPACE,
234 TRANS_JOIN_NOLOCK,
235};
236
237static int may_wait_transaction(struct btrfs_root *root, int type)
238{
239 if (root->fs_info->log_root_recovering)
240 return 0;
241
242 if (type == TRANS_USERSPACE)
243 return 1;
244
245 if (type == TRANS_START &&
246 !atomic_read(&root->fs_info->open_ioctl_trans))
247 return 1;
248
249 return 0;
250}
251
252static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
253 u64 num_items, int type)
254{
255 struct btrfs_trans_handle *h;
256 struct btrfs_transaction *cur_trans;
257 u64 num_bytes = 0;
258 int ret;
259
260 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
261 return ERR_PTR(-EROFS);
262
263 if (current->journal_info) {
264 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
265 h = current->journal_info;
266 h->use_count++;
267 h->orig_rsv = h->block_rsv;
268 h->block_rsv = NULL;
269 goto got_it;
270 }
271
272 /*
273 * Do the reservation before we join the transaction so we can do all
274 * the appropriate flushing if need be.
275 */
276 if (num_items > 0 && root != root->fs_info->chunk_root) {
277 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
278 ret = btrfs_block_rsv_add(NULL, root,
279 &root->fs_info->trans_block_rsv,
280 num_bytes);
281 if (ret)
282 return ERR_PTR(ret);
283 }
284again:
285 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
286 if (!h)
287 return ERR_PTR(-ENOMEM);
288
289 if (may_wait_transaction(root, type))
290 wait_current_trans(root);
291
292 do {
293 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
294 if (ret == -EBUSY)
295 wait_current_trans(root);
296 } while (ret == -EBUSY);
297
298 if (ret < 0) {
299 kmem_cache_free(btrfs_trans_handle_cachep, h);
300 return ERR_PTR(ret);
301 }
302
303 cur_trans = root->fs_info->running_transaction;
304
305 h->transid = cur_trans->transid;
306 h->transaction = cur_trans;
307 h->blocks_used = 0;
308 h->bytes_reserved = 0;
309 h->delayed_ref_updates = 0;
310 h->use_count = 1;
311 h->block_rsv = NULL;
312 h->orig_rsv = NULL;
313
314 smp_mb();
315 if (cur_trans->blocked && may_wait_transaction(root, type)) {
316 btrfs_commit_transaction(h, root);
317 goto again;
318 }
319
320 if (num_bytes) {
321 h->block_rsv = &root->fs_info->trans_block_rsv;
322 h->bytes_reserved = num_bytes;
323 }
324
325got_it:
326 btrfs_record_root_in_trans(h, root);
327
328 if (!current->journal_info && type != TRANS_USERSPACE)
329 current->journal_info = h;
330 return h;
331}
332
333struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
334 int num_items)
335{
336 return start_transaction(root, num_items, TRANS_START);
337}
338struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
339{
340 return start_transaction(root, 0, TRANS_JOIN);
341}
342
343struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
344{
345 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
346}
347
348struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
349{
350 return start_transaction(root, 0, TRANS_USERSPACE);
351}
352
353/* wait for a transaction commit to be fully complete */
354static noinline void wait_for_commit(struct btrfs_root *root,
355 struct btrfs_transaction *commit)
356{
357 wait_event(commit->commit_wait, commit->commit_done);
358}
359
360int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
361{
362 struct btrfs_transaction *cur_trans = NULL, *t;
363 int ret;
364
365 ret = 0;
366 if (transid) {
367 if (transid <= root->fs_info->last_trans_committed)
368 goto out;
369
370 /* find specified transaction */
371 spin_lock(&root->fs_info->trans_lock);
372 list_for_each_entry(t, &root->fs_info->trans_list, list) {
373 if (t->transid == transid) {
374 cur_trans = t;
375 atomic_inc(&cur_trans->use_count);
376 break;
377 }
378 if (t->transid > transid)
379 break;
380 }
381 spin_unlock(&root->fs_info->trans_lock);
382 ret = -EINVAL;
383 if (!cur_trans)
384 goto out; /* bad transid */
385 } else {
386 /* find newest transaction that is committing | committed */
387 spin_lock(&root->fs_info->trans_lock);
388 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
389 list) {
390 if (t->in_commit) {
391 if (t->commit_done)
392 break;
393 cur_trans = t;
394 atomic_inc(&cur_trans->use_count);
395 break;
396 }
397 }
398 spin_unlock(&root->fs_info->trans_lock);
399 if (!cur_trans)
400 goto out; /* nothing committing|committed */
401 }
402
403 wait_for_commit(root, cur_trans);
404
405 put_transaction(cur_trans);
406 ret = 0;
407out:
408 return ret;
409}
410
411void btrfs_throttle(struct btrfs_root *root)
412{
413 if (!atomic_read(&root->fs_info->open_ioctl_trans))
414 wait_current_trans(root);
415}
416
417static int should_end_transaction(struct btrfs_trans_handle *trans,
418 struct btrfs_root *root)
419{
420 int ret;
421 ret = btrfs_block_rsv_check(trans, root,
422 &root->fs_info->global_block_rsv, 0, 5);
423 return ret ? 1 : 0;
424}
425
426int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
427 struct btrfs_root *root)
428{
429 struct btrfs_transaction *cur_trans = trans->transaction;
430 int updates;
431
432 smp_mb();
433 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
434 return 1;
435
436 updates = trans->delayed_ref_updates;
437 trans->delayed_ref_updates = 0;
438 if (updates)
439 btrfs_run_delayed_refs(trans, root, updates);
440
441 return should_end_transaction(trans, root);
442}
443
444static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
445 struct btrfs_root *root, int throttle, int lock)
446{
447 struct btrfs_transaction *cur_trans = trans->transaction;
448 struct btrfs_fs_info *info = root->fs_info;
449 int count = 0;
450
451 if (--trans->use_count) {
452 trans->block_rsv = trans->orig_rsv;
453 return 0;
454 }
455
456 while (count < 4) {
457 unsigned long cur = trans->delayed_ref_updates;
458 trans->delayed_ref_updates = 0;
459 if (cur &&
460 trans->transaction->delayed_refs.num_heads_ready > 64) {
461 trans->delayed_ref_updates = 0;
462
463 /*
464 * do a full flush if the transaction is trying
465 * to close
466 */
467 if (trans->transaction->delayed_refs.flushing)
468 cur = 0;
469 btrfs_run_delayed_refs(trans, root, cur);
470 } else {
471 break;
472 }
473 count++;
474 }
475
476 btrfs_trans_release_metadata(trans, root);
477
478 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
479 should_end_transaction(trans, root)) {
480 trans->transaction->blocked = 1;
481 smp_wmb();
482 }
483
484 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
485 if (throttle) {
486 /*
487 * We may race with somebody else here so end up having
488 * to call end_transaction on ourselves again, so inc
489 * our use_count.
490 */
491 trans->use_count++;
492 return btrfs_commit_transaction(trans, root);
493 } else {
494 wake_up_process(info->transaction_kthread);
495 }
496 }
497
498 WARN_ON(cur_trans != info->running_transaction);
499 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
500 atomic_dec(&cur_trans->num_writers);
501
502 smp_mb();
503 if (waitqueue_active(&cur_trans->writer_wait))
504 wake_up(&cur_trans->writer_wait);
505 put_transaction(cur_trans);
506
507 if (current->journal_info == trans)
508 current->journal_info = NULL;
509 memset(trans, 0, sizeof(*trans));
510 kmem_cache_free(btrfs_trans_handle_cachep, trans);
511
512 if (throttle)
513 btrfs_run_delayed_iputs(root);
514
515 return 0;
516}
517
518int btrfs_end_transaction(struct btrfs_trans_handle *trans,
519 struct btrfs_root *root)
520{
521 int ret;
522
523 ret = __btrfs_end_transaction(trans, root, 0, 1);
524 if (ret)
525 return ret;
526 return 0;
527}
528
529int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
530 struct btrfs_root *root)
531{
532 int ret;
533
534 ret = __btrfs_end_transaction(trans, root, 1, 1);
535 if (ret)
536 return ret;
537 return 0;
538}
539
540int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
541 struct btrfs_root *root)
542{
543 int ret;
544
545 ret = __btrfs_end_transaction(trans, root, 0, 0);
546 if (ret)
547 return ret;
548 return 0;
549}
550
551int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
552 struct btrfs_root *root)
553{
554 return __btrfs_end_transaction(trans, root, 1, 1);
555}
556
557/*
558 * when btree blocks are allocated, they have some corresponding bits set for
559 * them in one of two extent_io trees. This is used to make sure all of
560 * those extents are sent to disk but does not wait on them
561 */
562int btrfs_write_marked_extents(struct btrfs_root *root,
563 struct extent_io_tree *dirty_pages, int mark)
564{
565 int ret;
566 int err = 0;
567 int werr = 0;
568 struct page *page;
569 struct inode *btree_inode = root->fs_info->btree_inode;
570 u64 start = 0;
571 u64 end;
572 unsigned long index;
573
574 while (1) {
575 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
576 mark);
577 if (ret)
578 break;
579 while (start <= end) {
580 cond_resched();
581
582 index = start >> PAGE_CACHE_SHIFT;
583 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
584 page = find_get_page(btree_inode->i_mapping, index);
585 if (!page)
586 continue;
587
588 btree_lock_page_hook(page);
589 if (!page->mapping) {
590 unlock_page(page);
591 page_cache_release(page);
592 continue;
593 }
594
595 if (PageWriteback(page)) {
596 if (PageDirty(page))
597 wait_on_page_writeback(page);
598 else {
599 unlock_page(page);
600 page_cache_release(page);
601 continue;
602 }
603 }
604 err = write_one_page(page, 0);
605 if (err)
606 werr = err;
607 page_cache_release(page);
608 }
609 }
610 if (err)
611 werr = err;
612 return werr;
613}
614
615/*
616 * when btree blocks are allocated, they have some corresponding bits set for
617 * them in one of two extent_io trees. This is used to make sure all of
618 * those extents are on disk for transaction or log commit. We wait
619 * on all the pages and clear them from the dirty pages state tree
620 */
621int btrfs_wait_marked_extents(struct btrfs_root *root,
622 struct extent_io_tree *dirty_pages, int mark)
623{
624 int ret;
625 int err = 0;
626 int werr = 0;
627 struct page *page;
628 struct inode *btree_inode = root->fs_info->btree_inode;
629 u64 start = 0;
630 u64 end;
631 unsigned long index;
632
633 while (1) {
634 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
635 mark);
636 if (ret)
637 break;
638
639 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
640 while (start <= end) {
641 index = start >> PAGE_CACHE_SHIFT;
642 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
643 page = find_get_page(btree_inode->i_mapping, index);
644 if (!page)
645 continue;
646 if (PageDirty(page)) {
647 btree_lock_page_hook(page);
648 wait_on_page_writeback(page);
649 err = write_one_page(page, 0);
650 if (err)
651 werr = err;
652 }
653 wait_on_page_writeback(page);
654 page_cache_release(page);
655 cond_resched();
656 }
657 }
658 if (err)
659 werr = err;
660 return werr;
661}
662
663/*
664 * when btree blocks are allocated, they have some corresponding bits set for
665 * them in one of two extent_io trees. This is used to make sure all of
666 * those extents are on disk for transaction or log commit
667 */
668int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
669 struct extent_io_tree *dirty_pages, int mark)
670{
671 int ret;
672 int ret2;
673
674 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
675 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
676 return ret || ret2;
677}
678
679int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
680 struct btrfs_root *root)
681{
682 if (!trans || !trans->transaction) {
683 struct inode *btree_inode;
684 btree_inode = root->fs_info->btree_inode;
685 return filemap_write_and_wait(btree_inode->i_mapping);
686 }
687 return btrfs_write_and_wait_marked_extents(root,
688 &trans->transaction->dirty_pages,
689 EXTENT_DIRTY);
690}
691
692/*
693 * this is used to update the root pointer in the tree of tree roots.
694 *
695 * But, in the case of the extent allocation tree, updating the root
696 * pointer may allocate blocks which may change the root of the extent
697 * allocation tree.
698 *
699 * So, this loops and repeats and makes sure the cowonly root didn't
700 * change while the root pointer was being updated in the metadata.
701 */
702static int update_cowonly_root(struct btrfs_trans_handle *trans,
703 struct btrfs_root *root)
704{
705 int ret;
706 u64 old_root_bytenr;
707 u64 old_root_used;
708 struct btrfs_root *tree_root = root->fs_info->tree_root;
709
710 old_root_used = btrfs_root_used(&root->root_item);
711 btrfs_write_dirty_block_groups(trans, root);
712
713 while (1) {
714 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
715 if (old_root_bytenr == root->node->start &&
716 old_root_used == btrfs_root_used(&root->root_item))
717 break;
718
719 btrfs_set_root_node(&root->root_item, root->node);
720 ret = btrfs_update_root(trans, tree_root,
721 &root->root_key,
722 &root->root_item);
723 BUG_ON(ret);
724
725 old_root_used = btrfs_root_used(&root->root_item);
726 ret = btrfs_write_dirty_block_groups(trans, root);
727 BUG_ON(ret);
728 }
729
730 if (root != root->fs_info->extent_root)
731 switch_commit_root(root);
732
733 return 0;
734}
735
736/*
737 * update all the cowonly tree roots on disk
738 */
739static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
740 struct btrfs_root *root)
741{
742 struct btrfs_fs_info *fs_info = root->fs_info;
743 struct list_head *next;
744 struct extent_buffer *eb;
745 int ret;
746
747 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
748 BUG_ON(ret);
749
750 eb = btrfs_lock_root_node(fs_info->tree_root);
751 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
752 btrfs_tree_unlock(eb);
753 free_extent_buffer(eb);
754
755 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
756 BUG_ON(ret);
757
758 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
759 next = fs_info->dirty_cowonly_roots.next;
760 list_del_init(next);
761 root = list_entry(next, struct btrfs_root, dirty_list);
762
763 update_cowonly_root(trans, root);
764 }
765
766 down_write(&fs_info->extent_commit_sem);
767 switch_commit_root(fs_info->extent_root);
768 up_write(&fs_info->extent_commit_sem);
769
770 return 0;
771}
772
773/*
774 * dead roots are old snapshots that need to be deleted. This allocates
775 * a dirty root struct and adds it into the list of dead roots that need to
776 * be deleted
777 */
778int btrfs_add_dead_root(struct btrfs_root *root)
779{
780 spin_lock(&root->fs_info->trans_lock);
781 list_add(&root->root_list, &root->fs_info->dead_roots);
782 spin_unlock(&root->fs_info->trans_lock);
783 return 0;
784}
785
786/*
787 * update all the cowonly tree roots on disk
788 */
789static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
790 struct btrfs_root *root)
791{
792 struct btrfs_root *gang[8];
793 struct btrfs_fs_info *fs_info = root->fs_info;
794 int i;
795 int ret;
796 int err = 0;
797
798 spin_lock(&fs_info->fs_roots_radix_lock);
799 while (1) {
800 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
801 (void **)gang, 0,
802 ARRAY_SIZE(gang),
803 BTRFS_ROOT_TRANS_TAG);
804 if (ret == 0)
805 break;
806 for (i = 0; i < ret; i++) {
807 root = gang[i];
808 radix_tree_tag_clear(&fs_info->fs_roots_radix,
809 (unsigned long)root->root_key.objectid,
810 BTRFS_ROOT_TRANS_TAG);
811 spin_unlock(&fs_info->fs_roots_radix_lock);
812
813 btrfs_free_log(trans, root);
814 btrfs_update_reloc_root(trans, root);
815 btrfs_orphan_commit_root(trans, root);
816
817 btrfs_save_ino_cache(root, trans);
818
819 if (root->commit_root != root->node) {
820 mutex_lock(&root->fs_commit_mutex);
821 switch_commit_root(root);
822 btrfs_unpin_free_ino(root);
823 mutex_unlock(&root->fs_commit_mutex);
824
825 btrfs_set_root_node(&root->root_item,
826 root->node);
827 }
828
829 err = btrfs_update_root(trans, fs_info->tree_root,
830 &root->root_key,
831 &root->root_item);
832 spin_lock(&fs_info->fs_roots_radix_lock);
833 if (err)
834 break;
835 }
836 }
837 spin_unlock(&fs_info->fs_roots_radix_lock);
838 return err;
839}
840
841/*
842 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
843 * otherwise every leaf in the btree is read and defragged.
844 */
845int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
846{
847 struct btrfs_fs_info *info = root->fs_info;
848 struct btrfs_trans_handle *trans;
849 int ret;
850 unsigned long nr;
851
852 if (xchg(&root->defrag_running, 1))
853 return 0;
854
855 while (1) {
856 trans = btrfs_start_transaction(root, 0);
857 if (IS_ERR(trans))
858 return PTR_ERR(trans);
859
860 ret = btrfs_defrag_leaves(trans, root, cacheonly);
861
862 nr = trans->blocks_used;
863 btrfs_end_transaction(trans, root);
864 btrfs_btree_balance_dirty(info->tree_root, nr);
865 cond_resched();
866
867 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
868 break;
869 }
870 root->defrag_running = 0;
871 return ret;
872}
873
874/*
875 * new snapshots need to be created at a very specific time in the
876 * transaction commit. This does the actual creation
877 */
878static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
879 struct btrfs_fs_info *fs_info,
880 struct btrfs_pending_snapshot *pending)
881{
882 struct btrfs_key key;
883 struct btrfs_root_item *new_root_item;
884 struct btrfs_root *tree_root = fs_info->tree_root;
885 struct btrfs_root *root = pending->root;
886 struct btrfs_root *parent_root;
887 struct btrfs_block_rsv *rsv;
888 struct inode *parent_inode;
889 struct dentry *parent;
890 struct dentry *dentry;
891 struct extent_buffer *tmp;
892 struct extent_buffer *old;
893 int ret;
894 u64 to_reserve = 0;
895 u64 index = 0;
896 u64 objectid;
897 u64 root_flags;
898
899 rsv = trans->block_rsv;
900
901 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
902 if (!new_root_item) {
903 pending->error = -ENOMEM;
904 goto fail;
905 }
906
907 ret = btrfs_find_free_objectid(tree_root, &objectid);
908 if (ret) {
909 pending->error = ret;
910 goto fail;
911 }
912
913 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
914 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
915
916 if (to_reserve > 0) {
917 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
918 to_reserve);
919 if (ret) {
920 pending->error = ret;
921 goto fail;
922 }
923 }
924
925 key.objectid = objectid;
926 key.offset = (u64)-1;
927 key.type = BTRFS_ROOT_ITEM_KEY;
928
929 trans->block_rsv = &pending->block_rsv;
930
931 dentry = pending->dentry;
932 parent = dget_parent(dentry);
933 parent_inode = parent->d_inode;
934 parent_root = BTRFS_I(parent_inode)->root;
935 record_root_in_trans(trans, parent_root);
936
937 /*
938 * insert the directory item
939 */
940 ret = btrfs_set_inode_index(parent_inode, &index);
941 BUG_ON(ret);
942 ret = btrfs_insert_dir_item(trans, parent_root,
943 dentry->d_name.name, dentry->d_name.len,
944 parent_inode, &key,
945 BTRFS_FT_DIR, index);
946 BUG_ON(ret);
947
948 btrfs_i_size_write(parent_inode, parent_inode->i_size +
949 dentry->d_name.len * 2);
950 ret = btrfs_update_inode(trans, parent_root, parent_inode);
951 BUG_ON(ret);
952
953 /*
954 * pull in the delayed directory update
955 * and the delayed inode item
956 * otherwise we corrupt the FS during
957 * snapshot
958 */
959 ret = btrfs_run_delayed_items(trans, root);
960 BUG_ON(ret);
961
962 record_root_in_trans(trans, root);
963 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
964 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
965 btrfs_check_and_init_root_item(new_root_item);
966
967 root_flags = btrfs_root_flags(new_root_item);
968 if (pending->readonly)
969 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
970 else
971 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
972 btrfs_set_root_flags(new_root_item, root_flags);
973
974 old = btrfs_lock_root_node(root);
975 btrfs_cow_block(trans, root, old, NULL, 0, &old);
976 btrfs_set_lock_blocking(old);
977
978 btrfs_copy_root(trans, root, old, &tmp, objectid);
979 btrfs_tree_unlock(old);
980 free_extent_buffer(old);
981
982 btrfs_set_root_node(new_root_item, tmp);
983 /* record when the snapshot was created in key.offset */
984 key.offset = trans->transid;
985 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
986 btrfs_tree_unlock(tmp);
987 free_extent_buffer(tmp);
988 BUG_ON(ret);
989
990 /*
991 * insert root back/forward references
992 */
993 ret = btrfs_add_root_ref(trans, tree_root, objectid,
994 parent_root->root_key.objectid,
995 btrfs_ino(parent_inode), index,
996 dentry->d_name.name, dentry->d_name.len);
997 BUG_ON(ret);
998 dput(parent);
999
1000 key.offset = (u64)-1;
1001 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1002 BUG_ON(IS_ERR(pending->snap));
1003
1004 btrfs_reloc_post_snapshot(trans, pending);
1005 btrfs_orphan_post_snapshot(trans, pending);
1006fail:
1007 kfree(new_root_item);
1008 trans->block_rsv = rsv;
1009 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1010 return 0;
1011}
1012
1013/*
1014 * create all the snapshots we've scheduled for creation
1015 */
1016static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1017 struct btrfs_fs_info *fs_info)
1018{
1019 struct btrfs_pending_snapshot *pending;
1020 struct list_head *head = &trans->transaction->pending_snapshots;
1021 int ret;
1022
1023 list_for_each_entry(pending, head, list) {
1024 ret = create_pending_snapshot(trans, fs_info, pending);
1025 BUG_ON(ret);
1026 }
1027 return 0;
1028}
1029
1030static void update_super_roots(struct btrfs_root *root)
1031{
1032 struct btrfs_root_item *root_item;
1033 struct btrfs_super_block *super;
1034
1035 super = &root->fs_info->super_copy;
1036
1037 root_item = &root->fs_info->chunk_root->root_item;
1038 super->chunk_root = root_item->bytenr;
1039 super->chunk_root_generation = root_item->generation;
1040 super->chunk_root_level = root_item->level;
1041
1042 root_item = &root->fs_info->tree_root->root_item;
1043 super->root = root_item->bytenr;
1044 super->generation = root_item->generation;
1045 super->root_level = root_item->level;
1046 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1047 super->cache_generation = root_item->generation;
1048}
1049
1050int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1051{
1052 int ret = 0;
1053 spin_lock(&info->trans_lock);
1054 if (info->running_transaction)
1055 ret = info->running_transaction->in_commit;
1056 spin_unlock(&info->trans_lock);
1057 return ret;
1058}
1059
1060int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1061{
1062 int ret = 0;
1063 spin_lock(&info->trans_lock);
1064 if (info->running_transaction)
1065 ret = info->running_transaction->blocked;
1066 spin_unlock(&info->trans_lock);
1067 return ret;
1068}
1069
1070/*
1071 * wait for the current transaction commit to start and block subsequent
1072 * transaction joins
1073 */
1074static void wait_current_trans_commit_start(struct btrfs_root *root,
1075 struct btrfs_transaction *trans)
1076{
1077 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1078}
1079
1080/*
1081 * wait for the current transaction to start and then become unblocked.
1082 * caller holds ref.
1083 */
1084static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1085 struct btrfs_transaction *trans)
1086{
1087 wait_event(root->fs_info->transaction_wait,
1088 trans->commit_done || (trans->in_commit && !trans->blocked));
1089}
1090
1091/*
1092 * commit transactions asynchronously. once btrfs_commit_transaction_async
1093 * returns, any subsequent transaction will not be allowed to join.
1094 */
1095struct btrfs_async_commit {
1096 struct btrfs_trans_handle *newtrans;
1097 struct btrfs_root *root;
1098 struct delayed_work work;
1099};
1100
1101static void do_async_commit(struct work_struct *work)
1102{
1103 struct btrfs_async_commit *ac =
1104 container_of(work, struct btrfs_async_commit, work.work);
1105
1106 btrfs_commit_transaction(ac->newtrans, ac->root);
1107 kfree(ac);
1108}
1109
1110int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1111 struct btrfs_root *root,
1112 int wait_for_unblock)
1113{
1114 struct btrfs_async_commit *ac;
1115 struct btrfs_transaction *cur_trans;
1116
1117 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1118 if (!ac)
1119 return -ENOMEM;
1120
1121 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1122 ac->root = root;
1123 ac->newtrans = btrfs_join_transaction(root);
1124 if (IS_ERR(ac->newtrans)) {
1125 int err = PTR_ERR(ac->newtrans);
1126 kfree(ac);
1127 return err;
1128 }
1129
1130 /* take transaction reference */
1131 cur_trans = trans->transaction;
1132 atomic_inc(&cur_trans->use_count);
1133
1134 btrfs_end_transaction(trans, root);
1135 schedule_delayed_work(&ac->work, 0);
1136
1137 /* wait for transaction to start and unblock */
1138 if (wait_for_unblock)
1139 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1140 else
1141 wait_current_trans_commit_start(root, cur_trans);
1142
1143 if (current->journal_info == trans)
1144 current->journal_info = NULL;
1145
1146 put_transaction(cur_trans);
1147 return 0;
1148}
1149
1150/*
1151 * btrfs_transaction state sequence:
1152 * in_commit = 0, blocked = 0 (initial)
1153 * in_commit = 1, blocked = 1
1154 * blocked = 0
1155 * commit_done = 1
1156 */
1157int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root)
1159{
1160 unsigned long joined = 0;
1161 struct btrfs_transaction *cur_trans;
1162 struct btrfs_transaction *prev_trans = NULL;
1163 DEFINE_WAIT(wait);
1164 int ret;
1165 int should_grow = 0;
1166 unsigned long now = get_seconds();
1167 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1168
1169 btrfs_run_ordered_operations(root, 0);
1170
1171 /* make a pass through all the delayed refs we have so far
1172 * any runnings procs may add more while we are here
1173 */
1174 ret = btrfs_run_delayed_refs(trans, root, 0);
1175 BUG_ON(ret);
1176
1177 btrfs_trans_release_metadata(trans, root);
1178
1179 cur_trans = trans->transaction;
1180 /*
1181 * set the flushing flag so procs in this transaction have to
1182 * start sending their work down.
1183 */
1184 cur_trans->delayed_refs.flushing = 1;
1185
1186 ret = btrfs_run_delayed_refs(trans, root, 0);
1187 BUG_ON(ret);
1188
1189 spin_lock(&cur_trans->commit_lock);
1190 if (cur_trans->in_commit) {
1191 spin_unlock(&cur_trans->commit_lock);
1192 atomic_inc(&cur_trans->use_count);
1193 btrfs_end_transaction(trans, root);
1194
1195 wait_for_commit(root, cur_trans);
1196
1197 put_transaction(cur_trans);
1198
1199 return 0;
1200 }
1201
1202 trans->transaction->in_commit = 1;
1203 trans->transaction->blocked = 1;
1204 spin_unlock(&cur_trans->commit_lock);
1205 wake_up(&root->fs_info->transaction_blocked_wait);
1206
1207 spin_lock(&root->fs_info->trans_lock);
1208 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1209 prev_trans = list_entry(cur_trans->list.prev,
1210 struct btrfs_transaction, list);
1211 if (!prev_trans->commit_done) {
1212 atomic_inc(&prev_trans->use_count);
1213 spin_unlock(&root->fs_info->trans_lock);
1214
1215 wait_for_commit(root, prev_trans);
1216
1217 put_transaction(prev_trans);
1218 } else {
1219 spin_unlock(&root->fs_info->trans_lock);
1220 }
1221 } else {
1222 spin_unlock(&root->fs_info->trans_lock);
1223 }
1224
1225 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1226 should_grow = 1;
1227
1228 do {
1229 int snap_pending = 0;
1230
1231 joined = cur_trans->num_joined;
1232 if (!list_empty(&trans->transaction->pending_snapshots))
1233 snap_pending = 1;
1234
1235 WARN_ON(cur_trans != trans->transaction);
1236
1237 if (flush_on_commit || snap_pending) {
1238 btrfs_start_delalloc_inodes(root, 1);
1239 ret = btrfs_wait_ordered_extents(root, 0, 1);
1240 BUG_ON(ret);
1241 }
1242
1243 ret = btrfs_run_delayed_items(trans, root);
1244 BUG_ON(ret);
1245
1246 /*
1247 * rename don't use btrfs_join_transaction, so, once we
1248 * set the transaction to blocked above, we aren't going
1249 * to get any new ordered operations. We can safely run
1250 * it here and no for sure that nothing new will be added
1251 * to the list
1252 */
1253 btrfs_run_ordered_operations(root, 1);
1254
1255 prepare_to_wait(&cur_trans->writer_wait, &wait,
1256 TASK_UNINTERRUPTIBLE);
1257
1258 if (atomic_read(&cur_trans->num_writers) > 1)
1259 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1260 else if (should_grow)
1261 schedule_timeout(1);
1262
1263 finish_wait(&cur_trans->writer_wait, &wait);
1264 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1265 (should_grow && cur_trans->num_joined != joined));
1266
1267 /*
1268 * Ok now we need to make sure to block out any other joins while we
1269 * commit the transaction. We could have started a join before setting
1270 * no_join so make sure to wait for num_writers to == 1 again.
1271 */
1272 spin_lock(&root->fs_info->trans_lock);
1273 root->fs_info->trans_no_join = 1;
1274 spin_unlock(&root->fs_info->trans_lock);
1275 wait_event(cur_trans->writer_wait,
1276 atomic_read(&cur_trans->num_writers) == 1);
1277
1278 /*
1279 * the reloc mutex makes sure that we stop
1280 * the balancing code from coming in and moving
1281 * extents around in the middle of the commit
1282 */
1283 mutex_lock(&root->fs_info->reloc_mutex);
1284
1285 ret = btrfs_run_delayed_items(trans, root);
1286 BUG_ON(ret);
1287
1288 ret = create_pending_snapshots(trans, root->fs_info);
1289 BUG_ON(ret);
1290
1291 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1292 BUG_ON(ret);
1293
1294 /*
1295 * make sure none of the code above managed to slip in a
1296 * delayed item
1297 */
1298 btrfs_assert_delayed_root_empty(root);
1299
1300 WARN_ON(cur_trans != trans->transaction);
1301
1302 btrfs_scrub_pause(root);
1303 /* btrfs_commit_tree_roots is responsible for getting the
1304 * various roots consistent with each other. Every pointer
1305 * in the tree of tree roots has to point to the most up to date
1306 * root for every subvolume and other tree. So, we have to keep
1307 * the tree logging code from jumping in and changing any
1308 * of the trees.
1309 *
1310 * At this point in the commit, there can't be any tree-log
1311 * writers, but a little lower down we drop the trans mutex
1312 * and let new people in. By holding the tree_log_mutex
1313 * from now until after the super is written, we avoid races
1314 * with the tree-log code.
1315 */
1316 mutex_lock(&root->fs_info->tree_log_mutex);
1317
1318 ret = commit_fs_roots(trans, root);
1319 BUG_ON(ret);
1320
1321 /* commit_fs_roots gets rid of all the tree log roots, it is now
1322 * safe to free the root of tree log roots
1323 */
1324 btrfs_free_log_root_tree(trans, root->fs_info);
1325
1326 ret = commit_cowonly_roots(trans, root);
1327 BUG_ON(ret);
1328
1329 btrfs_prepare_extent_commit(trans, root);
1330
1331 cur_trans = root->fs_info->running_transaction;
1332
1333 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1334 root->fs_info->tree_root->node);
1335 switch_commit_root(root->fs_info->tree_root);
1336
1337 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1338 root->fs_info->chunk_root->node);
1339 switch_commit_root(root->fs_info->chunk_root);
1340
1341 update_super_roots(root);
1342
1343 if (!root->fs_info->log_root_recovering) {
1344 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1345 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1346 }
1347
1348 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1349 sizeof(root->fs_info->super_copy));
1350
1351 trans->transaction->blocked = 0;
1352 spin_lock(&root->fs_info->trans_lock);
1353 root->fs_info->running_transaction = NULL;
1354 root->fs_info->trans_no_join = 0;
1355 spin_unlock(&root->fs_info->trans_lock);
1356 mutex_unlock(&root->fs_info->reloc_mutex);
1357
1358 wake_up(&root->fs_info->transaction_wait);
1359
1360 ret = btrfs_write_and_wait_transaction(trans, root);
1361 BUG_ON(ret);
1362 write_ctree_super(trans, root, 0);
1363
1364 /*
1365 * the super is written, we can safely allow the tree-loggers
1366 * to go about their business
1367 */
1368 mutex_unlock(&root->fs_info->tree_log_mutex);
1369
1370 btrfs_finish_extent_commit(trans, root);
1371
1372 cur_trans->commit_done = 1;
1373
1374 root->fs_info->last_trans_committed = cur_trans->transid;
1375
1376 wake_up(&cur_trans->commit_wait);
1377
1378 spin_lock(&root->fs_info->trans_lock);
1379 list_del_init(&cur_trans->list);
1380 spin_unlock(&root->fs_info->trans_lock);
1381
1382 put_transaction(cur_trans);
1383 put_transaction(cur_trans);
1384
1385 trace_btrfs_transaction_commit(root);
1386
1387 btrfs_scrub_continue(root);
1388
1389 if (current->journal_info == trans)
1390 current->journal_info = NULL;
1391
1392 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1393
1394 if (current != root->fs_info->transaction_kthread)
1395 btrfs_run_delayed_iputs(root);
1396
1397 return ret;
1398}
1399
1400/*
1401 * interface function to delete all the snapshots we have scheduled for deletion
1402 */
1403int btrfs_clean_old_snapshots(struct btrfs_root *root)
1404{
1405 LIST_HEAD(list);
1406 struct btrfs_fs_info *fs_info = root->fs_info;
1407
1408 spin_lock(&fs_info->trans_lock);
1409 list_splice_init(&fs_info->dead_roots, &list);
1410 spin_unlock(&fs_info->trans_lock);
1411
1412 while (!list_empty(&list)) {
1413 root = list_entry(list.next, struct btrfs_root, root_list);
1414 list_del(&root->root_list);
1415
1416 btrfs_kill_all_delayed_nodes(root);
1417
1418 if (btrfs_header_backref_rev(root->node) <
1419 BTRFS_MIXED_BACKREF_REV)
1420 btrfs_drop_snapshot(root, NULL, 0);
1421 else
1422 btrfs_drop_snapshot(root, NULL, 1);
1423 }
1424 return 0;
1425}