Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/**
  3 * Test driver to test endpoint functionality
  4 *
  5 * Copyright (C) 2017 Texas Instruments
  6 * Author: Kishon Vijay Abraham I <kishon@ti.com>
  7 */
  8
  9#include <linux/crc32.h>
 10#include <linux/delay.h>
 
 11#include <linux/io.h>
 12#include <linux/module.h>
 13#include <linux/slab.h>
 14#include <linux/pci_ids.h>
 15#include <linux/random.h>
 16
 17#include <linux/pci-epc.h>
 18#include <linux/pci-epf.h>
 19#include <linux/pci_regs.h>
 20
 21#define IRQ_TYPE_LEGACY			0
 22#define IRQ_TYPE_MSI			1
 23#define IRQ_TYPE_MSIX			2
 24
 25#define COMMAND_RAISE_LEGACY_IRQ	BIT(0)
 26#define COMMAND_RAISE_MSI_IRQ		BIT(1)
 27#define COMMAND_RAISE_MSIX_IRQ		BIT(2)
 28#define COMMAND_READ			BIT(3)
 29#define COMMAND_WRITE			BIT(4)
 30#define COMMAND_COPY			BIT(5)
 31
 32#define STATUS_READ_SUCCESS		BIT(0)
 33#define STATUS_READ_FAIL		BIT(1)
 34#define STATUS_WRITE_SUCCESS		BIT(2)
 35#define STATUS_WRITE_FAIL		BIT(3)
 36#define STATUS_COPY_SUCCESS		BIT(4)
 37#define STATUS_COPY_FAIL		BIT(5)
 38#define STATUS_IRQ_RAISED		BIT(6)
 39#define STATUS_SRC_ADDR_INVALID		BIT(7)
 40#define STATUS_DST_ADDR_INVALID		BIT(8)
 41
 
 
 42#define TIMER_RESOLUTION		1
 43
 44static struct workqueue_struct *kpcitest_workqueue;
 45
 46struct pci_epf_test {
 47	void			*reg[6];
 48	struct pci_epf		*epf;
 49	enum pci_barno		test_reg_bar;
 
 50	struct delayed_work	cmd_handler;
 
 
 
 
 
 
 
 
 51	const struct pci_epc_features *epc_features;
 52};
 53
 54struct pci_epf_test_reg {
 55	u32	magic;
 56	u32	command;
 57	u32	status;
 58	u64	src_addr;
 59	u64	dst_addr;
 60	u32	size;
 61	u32	checksum;
 62	u32	irq_type;
 63	u32	irq_number;
 
 64} __packed;
 65
 66static struct pci_epf_header test_header = {
 67	.vendorid	= PCI_ANY_ID,
 68	.deviceid	= PCI_ANY_ID,
 69	.baseclass_code = PCI_CLASS_OTHERS,
 70	.interrupt_pin	= PCI_INTERRUPT_INTA,
 71};
 72
 73static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 };
 74
 75static int pci_epf_test_copy(struct pci_epf_test *epf_test)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 76{
 77	int ret;
 78	void __iomem *src_addr;
 79	void __iomem *dst_addr;
 80	phys_addr_t src_phys_addr;
 81	phys_addr_t dst_phys_addr;
 
 82	struct pci_epf *epf = epf_test->epf;
 83	struct device *dev = &epf->dev;
 84	struct pci_epc *epc = epf->epc;
 85	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
 86	struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
 87
 88	src_addr = pci_epc_mem_alloc_addr(epc, &src_phys_addr, reg->size);
 89	if (!src_addr) {
 90		dev_err(dev, "Failed to allocate source address\n");
 91		reg->status = STATUS_SRC_ADDR_INVALID;
 92		ret = -ENOMEM;
 93		goto err;
 94	}
 95
 96	ret = pci_epc_map_addr(epc, epf->func_no, src_phys_addr, reg->src_addr,
 97			       reg->size);
 98	if (ret) {
 99		dev_err(dev, "Failed to map source address\n");
100		reg->status = STATUS_SRC_ADDR_INVALID;
101		goto err_src_addr;
102	}
103
104	dst_addr = pci_epc_mem_alloc_addr(epc, &dst_phys_addr, reg->size);
105	if (!dst_addr) {
106		dev_err(dev, "Failed to allocate destination address\n");
107		reg->status = STATUS_DST_ADDR_INVALID;
108		ret = -ENOMEM;
109		goto err_src_map_addr;
110	}
111
112	ret = pci_epc_map_addr(epc, epf->func_no, dst_phys_addr, reg->dst_addr,
113			       reg->size);
114	if (ret) {
115		dev_err(dev, "Failed to map destination address\n");
116		reg->status = STATUS_DST_ADDR_INVALID;
117		goto err_dst_addr;
118	}
119
120	memcpy(dst_addr, src_addr, reg->size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
122	pci_epc_unmap_addr(epc, epf->func_no, dst_phys_addr);
 
 
 
 
 
 
 
 
 
123
124err_dst_addr:
125	pci_epc_mem_free_addr(epc, dst_phys_addr, dst_addr, reg->size);
126
127err_src_map_addr:
128	pci_epc_unmap_addr(epc, epf->func_no, src_phys_addr);
129
130err_src_addr:
131	pci_epc_mem_free_addr(epc, src_phys_addr, src_addr, reg->size);
132
133err:
134	return ret;
 
 
 
135}
136
137static int pci_epf_test_read(struct pci_epf_test *epf_test)
 
138{
139	int ret;
140	void __iomem *src_addr;
141	void *buf;
142	u32 crc32;
143	phys_addr_t phys_addr;
 
 
144	struct pci_epf *epf = epf_test->epf;
145	struct device *dev = &epf->dev;
146	struct pci_epc *epc = epf->epc;
147	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
148	struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
149
150	src_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
151	if (!src_addr) {
152		dev_err(dev, "Failed to allocate address\n");
153		reg->status = STATUS_SRC_ADDR_INVALID;
154		ret = -ENOMEM;
155		goto err;
156	}
157
158	ret = pci_epc_map_addr(epc, epf->func_no, phys_addr, reg->src_addr,
159			       reg->size);
160	if (ret) {
161		dev_err(dev, "Failed to map address\n");
162		reg->status = STATUS_SRC_ADDR_INVALID;
163		goto err_addr;
164	}
165
166	buf = kzalloc(reg->size, GFP_KERNEL);
167	if (!buf) {
168		ret = -ENOMEM;
169		goto err_map_addr;
170	}
171
172	memcpy_fromio(buf, src_addr, reg->size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173
174	crc32 = crc32_le(~0, buf, reg->size);
175	if (crc32 != reg->checksum)
176		ret = -EIO;
177
 
178	kfree(buf);
179
180err_map_addr:
181	pci_epc_unmap_addr(epc, epf->func_no, phys_addr);
182
183err_addr:
184	pci_epc_mem_free_addr(epc, phys_addr, src_addr, reg->size);
185
186err:
187	return ret;
 
 
 
188}
189
190static int pci_epf_test_write(struct pci_epf_test *epf_test)
 
191{
192	int ret;
193	void __iomem *dst_addr;
194	void *buf;
195	phys_addr_t phys_addr;
 
 
196	struct pci_epf *epf = epf_test->epf;
197	struct device *dev = &epf->dev;
198	struct pci_epc *epc = epf->epc;
199	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
200	struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
201
202	dst_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
203	if (!dst_addr) {
204		dev_err(dev, "Failed to allocate address\n");
205		reg->status = STATUS_DST_ADDR_INVALID;
206		ret = -ENOMEM;
207		goto err;
208	}
209
210	ret = pci_epc_map_addr(epc, epf->func_no, phys_addr, reg->dst_addr,
211			       reg->size);
212	if (ret) {
213		dev_err(dev, "Failed to map address\n");
214		reg->status = STATUS_DST_ADDR_INVALID;
215		goto err_addr;
216	}
217
218	buf = kzalloc(reg->size, GFP_KERNEL);
219	if (!buf) {
220		ret = -ENOMEM;
221		goto err_map_addr;
222	}
223
224	get_random_bytes(buf, reg->size);
225	reg->checksum = crc32_le(~0, buf, reg->size);
226
227	memcpy_toio(dst_addr, buf, reg->size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228
229	/*
230	 * wait 1ms inorder for the write to complete. Without this delay L3
231	 * error in observed in the host system.
232	 */
233	usleep_range(1000, 2000);
234
 
235	kfree(buf);
236
237err_map_addr:
238	pci_epc_unmap_addr(epc, epf->func_no, phys_addr);
239
240err_addr:
241	pci_epc_mem_free_addr(epc, phys_addr, dst_addr, reg->size);
242
243err:
244	return ret;
 
 
 
245}
246
247static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test, u8 irq_type,
248				   u16 irq)
249{
250	struct pci_epf *epf = epf_test->epf;
251	struct device *dev = &epf->dev;
252	struct pci_epc *epc = epf->epc;
253	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
254	struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
255
256	reg->status |= STATUS_IRQ_RAISED;
 
 
 
 
257
258	switch (irq_type) {
259	case IRQ_TYPE_LEGACY:
260		pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_LEGACY, 0);
 
261		break;
262	case IRQ_TYPE_MSI:
263		pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSI, irq);
 
 
 
 
 
 
 
264		break;
265	case IRQ_TYPE_MSIX:
266		pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSIX, irq);
 
 
 
 
 
 
 
267		break;
268	default:
269		dev_err(dev, "Failed to raise IRQ, unknown type\n");
270		break;
271	}
272}
273
274static void pci_epf_test_cmd_handler(struct work_struct *work)
275{
276	int ret;
277	int count;
278	u32 command;
279	struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test,
280						     cmd_handler.work);
281	struct pci_epf *epf = epf_test->epf;
282	struct device *dev = &epf->dev;
283	struct pci_epc *epc = epf->epc;
284	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
285	struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
286
287	command = reg->command;
288	if (!command)
289		goto reset_handler;
290
291	reg->command = 0;
292	reg->status = 0;
293
294	if (reg->irq_type > IRQ_TYPE_MSIX) {
295		dev_err(dev, "Failed to detect IRQ type\n");
296		goto reset_handler;
297	}
298
299	if (command & COMMAND_RAISE_LEGACY_IRQ) {
300		reg->status = STATUS_IRQ_RAISED;
301		pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_LEGACY, 0);
302		goto reset_handler;
303	}
304
305	if (command & COMMAND_WRITE) {
306		ret = pci_epf_test_write(epf_test);
307		if (ret)
308			reg->status |= STATUS_WRITE_FAIL;
309		else
310			reg->status |= STATUS_WRITE_SUCCESS;
311		pci_epf_test_raise_irq(epf_test, reg->irq_type,
312				       reg->irq_number);
313		goto reset_handler;
314	}
315
316	if (command & COMMAND_READ) {
317		ret = pci_epf_test_read(epf_test);
318		if (!ret)
319			reg->status |= STATUS_READ_SUCCESS;
320		else
321			reg->status |= STATUS_READ_FAIL;
322		pci_epf_test_raise_irq(epf_test, reg->irq_type,
323				       reg->irq_number);
324		goto reset_handler;
325	}
326
327	if (command & COMMAND_COPY) {
328		ret = pci_epf_test_copy(epf_test);
329		if (!ret)
330			reg->status |= STATUS_COPY_SUCCESS;
331		else
332			reg->status |= STATUS_COPY_FAIL;
333		pci_epf_test_raise_irq(epf_test, reg->irq_type,
334				       reg->irq_number);
335		goto reset_handler;
336	}
337
338	if (command & COMMAND_RAISE_MSI_IRQ) {
339		count = pci_epc_get_msi(epc, epf->func_no);
340		if (reg->irq_number > count || count <= 0)
341			goto reset_handler;
342		reg->status = STATUS_IRQ_RAISED;
343		pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSI,
344				  reg->irq_number);
345		goto reset_handler;
346	}
347
348	if (command & COMMAND_RAISE_MSIX_IRQ) {
349		count = pci_epc_get_msix(epc, epf->func_no);
350		if (reg->irq_number > count || count <= 0)
351			goto reset_handler;
352		reg->status = STATUS_IRQ_RAISED;
353		pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSIX,
354				  reg->irq_number);
355		goto reset_handler;
 
 
 
 
 
 
 
 
 
 
 
 
 
356	}
357
358reset_handler:
359	queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
360			   msecs_to_jiffies(1));
361}
362
363static void pci_epf_test_linkup(struct pci_epf *epf)
364{
365	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
366
367	queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
368			   msecs_to_jiffies(1));
369}
370
371static void pci_epf_test_unbind(struct pci_epf *epf)
372{
373	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
374	struct pci_epc *epc = epf->epc;
375	struct pci_epf_bar *epf_bar;
376	int bar;
377
378	cancel_delayed_work(&epf_test->cmd_handler);
379	pci_epc_stop(epc);
380	for (bar = BAR_0; bar <= BAR_5; bar++) {
381		epf_bar = &epf->bar[bar];
382
383		if (epf_test->reg[bar]) {
384			pci_epc_clear_bar(epc, epf->func_no, epf_bar);
385			pci_epf_free_space(epf, epf_test->reg[bar], bar);
 
 
386		}
387	}
388}
389
390static int pci_epf_test_set_bar(struct pci_epf *epf)
391{
392	int bar, add;
393	int ret;
394	struct pci_epf_bar *epf_bar;
395	struct pci_epc *epc = epf->epc;
396	struct device *dev = &epf->dev;
397	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
398	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
399	const struct pci_epc_features *epc_features;
400
401	epc_features = epf_test->epc_features;
402
403	for (bar = BAR_0; bar <= BAR_5; bar += add) {
404		epf_bar = &epf->bar[bar];
405		/*
406		 * pci_epc_set_bar() sets PCI_BASE_ADDRESS_MEM_TYPE_64
407		 * if the specific implementation required a 64-bit BAR,
408		 * even if we only requested a 32-bit BAR.
409		 */
410		add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1;
411
412		if (!!(epc_features->reserved_bar & (1 << bar)))
413			continue;
414
415		ret = pci_epc_set_bar(epc, epf->func_no, epf_bar);
 
416		if (ret) {
417			pci_epf_free_space(epf, epf_test->reg[bar], bar);
 
418			dev_err(dev, "Failed to set BAR%d\n", bar);
419			if (bar == test_reg_bar)
420				return ret;
421		}
422	}
423
424	return 0;
425}
426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427static int pci_epf_test_alloc_space(struct pci_epf *epf)
428{
429	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
430	struct device *dev = &epf->dev;
431	struct pci_epf_bar *epf_bar;
 
 
 
 
432	void *base;
433	int bar, add;
434	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
435	const struct pci_epc_features *epc_features;
436	size_t test_reg_size;
437
438	epc_features = epf_test->epc_features;
439
440	if (epc_features->bar_fixed_size[test_reg_bar])
 
 
 
 
 
 
 
 
 
 
 
 
 
441		test_reg_size = bar_size[test_reg_bar];
442	else
443		test_reg_size = sizeof(struct pci_epf_test_reg);
444
445	base = pci_epf_alloc_space(epf, test_reg_size,
446				   test_reg_bar, epc_features->align);
447	if (!base) {
448		dev_err(dev, "Failed to allocated register space\n");
449		return -ENOMEM;
450	}
451	epf_test->reg[test_reg_bar] = base;
452
453	for (bar = BAR_0; bar <= BAR_5; bar += add) {
454		epf_bar = &epf->bar[bar];
455		add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1;
456
457		if (bar == test_reg_bar)
458			continue;
459
460		if (!!(epc_features->reserved_bar & (1 << bar)))
461			continue;
462
463		base = pci_epf_alloc_space(epf, bar_size[bar], bar,
464					   epc_features->align);
 
465		if (!base)
466			dev_err(dev, "Failed to allocate space for BAR%d\n",
467				bar);
468		epf_test->reg[bar] = base;
469	}
470
471	return 0;
472}
473
474static void pci_epf_configure_bar(struct pci_epf *epf,
475				  const struct pci_epc_features *epc_features)
476{
477	struct pci_epf_bar *epf_bar;
478	bool bar_fixed_64bit;
479	int i;
480
481	for (i = BAR_0; i <= BAR_5; i++) {
482		epf_bar = &epf->bar[i];
483		bar_fixed_64bit = !!(epc_features->bar_fixed_64bit & (1 << i));
484		if (bar_fixed_64bit)
485			epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64;
486		if (epc_features->bar_fixed_size[i])
487			bar_size[i] = epc_features->bar_fixed_size[i];
488	}
489}
490
491static int pci_epf_test_bind(struct pci_epf *epf)
492{
493	int ret;
494	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
495	struct pci_epf_header *header = epf->header;
496	const struct pci_epc_features *epc_features;
497	enum pci_barno test_reg_bar = BAR_0;
498	struct pci_epc *epc = epf->epc;
499	struct device *dev = &epf->dev;
500	bool linkup_notifier = false;
501	bool msix_capable = false;
502	bool msi_capable = true;
503
504	if (WARN_ON_ONCE(!epc))
505		return -EINVAL;
506
507	epc_features = pci_epc_get_features(epc, epf->func_no);
508	if (epc_features) {
509		linkup_notifier = epc_features->linkup_notifier;
510		msix_capable = epc_features->msix_capable;
511		msi_capable = epc_features->msi_capable;
512		test_reg_bar = pci_epc_get_first_free_bar(epc_features);
513		pci_epf_configure_bar(epf, epc_features);
514	}
515
 
 
 
 
 
 
 
516	epf_test->test_reg_bar = test_reg_bar;
517	epf_test->epc_features = epc_features;
518
519	ret = pci_epc_write_header(epc, epf->func_no, header);
520	if (ret) {
521		dev_err(dev, "Configuration header write failed\n");
522		return ret;
523	}
524
525	ret = pci_epf_test_alloc_space(epf);
526	if (ret)
527		return ret;
528
529	ret = pci_epf_test_set_bar(epf);
530	if (ret)
531		return ret;
532
533	if (msi_capable) {
534		ret = pci_epc_set_msi(epc, epf->func_no, epf->msi_interrupts);
535		if (ret) {
536			dev_err(dev, "MSI configuration failed\n");
537			return ret;
538		}
539	}
540
541	if (msix_capable) {
542		ret = pci_epc_set_msix(epc, epf->func_no, epf->msix_interrupts);
543		if (ret) {
544			dev_err(dev, "MSI-X configuration failed\n");
545			return ret;
546		}
547	}
548
549	if (!linkup_notifier)
 
 
 
 
550		queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work);
551
552	return 0;
553}
554
555static const struct pci_epf_device_id pci_epf_test_ids[] = {
556	{
557		.name = "pci_epf_test",
558	},
559	{},
560};
561
562static int pci_epf_test_probe(struct pci_epf *epf)
 
563{
564	struct pci_epf_test *epf_test;
565	struct device *dev = &epf->dev;
566
567	epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL);
568	if (!epf_test)
569		return -ENOMEM;
570
571	epf->header = &test_header;
572	epf_test->epf = epf;
573
574	INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler);
575
 
 
576	epf_set_drvdata(epf, epf_test);
577	return 0;
578}
579
580static struct pci_epf_ops ops = {
581	.unbind	= pci_epf_test_unbind,
582	.bind	= pci_epf_test_bind,
583	.linkup = pci_epf_test_linkup,
584};
585
586static struct pci_epf_driver test_driver = {
587	.driver.name	= "pci_epf_test",
588	.probe		= pci_epf_test_probe,
589	.id_table	= pci_epf_test_ids,
590	.ops		= &ops,
591	.owner		= THIS_MODULE,
592};
593
594static int __init pci_epf_test_init(void)
595{
596	int ret;
597
598	kpcitest_workqueue = alloc_workqueue("kpcitest",
599					     WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
600	if (!kpcitest_workqueue) {
601		pr_err("Failed to allocate the kpcitest work queue\n");
602		return -ENOMEM;
603	}
604
605	ret = pci_epf_register_driver(&test_driver);
606	if (ret) {
 
607		pr_err("Failed to register pci epf test driver --> %d\n", ret);
608		return ret;
609	}
610
611	return 0;
612}
613module_init(pci_epf_test_init);
614
615static void __exit pci_epf_test_exit(void)
616{
 
 
617	pci_epf_unregister_driver(&test_driver);
618}
619module_exit(pci_epf_test_exit);
620
621MODULE_DESCRIPTION("PCI EPF TEST DRIVER");
622MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
623MODULE_LICENSE("GPL v2");
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Test driver to test endpoint functionality
   4 *
   5 * Copyright (C) 2017 Texas Instruments
   6 * Author: Kishon Vijay Abraham I <kishon@ti.com>
   7 */
   8
   9#include <linux/crc32.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/io.h>
  13#include <linux/module.h>
  14#include <linux/slab.h>
  15#include <linux/pci_ids.h>
  16#include <linux/random.h>
  17
  18#include <linux/pci-epc.h>
  19#include <linux/pci-epf.h>
  20#include <linux/pci_regs.h>
  21
  22#define IRQ_TYPE_INTX			0
  23#define IRQ_TYPE_MSI			1
  24#define IRQ_TYPE_MSIX			2
  25
  26#define COMMAND_RAISE_INTX_IRQ		BIT(0)
  27#define COMMAND_RAISE_MSI_IRQ		BIT(1)
  28#define COMMAND_RAISE_MSIX_IRQ		BIT(2)
  29#define COMMAND_READ			BIT(3)
  30#define COMMAND_WRITE			BIT(4)
  31#define COMMAND_COPY			BIT(5)
  32
  33#define STATUS_READ_SUCCESS		BIT(0)
  34#define STATUS_READ_FAIL		BIT(1)
  35#define STATUS_WRITE_SUCCESS		BIT(2)
  36#define STATUS_WRITE_FAIL		BIT(3)
  37#define STATUS_COPY_SUCCESS		BIT(4)
  38#define STATUS_COPY_FAIL		BIT(5)
  39#define STATUS_IRQ_RAISED		BIT(6)
  40#define STATUS_SRC_ADDR_INVALID		BIT(7)
  41#define STATUS_DST_ADDR_INVALID		BIT(8)
  42
  43#define FLAG_USE_DMA			BIT(0)
  44
  45#define TIMER_RESOLUTION		1
  46
  47static struct workqueue_struct *kpcitest_workqueue;
  48
  49struct pci_epf_test {
  50	void			*reg[PCI_STD_NUM_BARS];
  51	struct pci_epf		*epf;
  52	enum pci_barno		test_reg_bar;
  53	size_t			msix_table_offset;
  54	struct delayed_work	cmd_handler;
  55	struct dma_chan		*dma_chan_tx;
  56	struct dma_chan		*dma_chan_rx;
  57	struct dma_chan		*transfer_chan;
  58	dma_cookie_t		transfer_cookie;
  59	enum dma_status		transfer_status;
  60	struct completion	transfer_complete;
  61	bool			dma_supported;
  62	bool			dma_private;
  63	const struct pci_epc_features *epc_features;
  64};
  65
  66struct pci_epf_test_reg {
  67	u32	magic;
  68	u32	command;
  69	u32	status;
  70	u64	src_addr;
  71	u64	dst_addr;
  72	u32	size;
  73	u32	checksum;
  74	u32	irq_type;
  75	u32	irq_number;
  76	u32	flags;
  77} __packed;
  78
  79static struct pci_epf_header test_header = {
  80	.vendorid	= PCI_ANY_ID,
  81	.deviceid	= PCI_ANY_ID,
  82	.baseclass_code = PCI_CLASS_OTHERS,
  83	.interrupt_pin	= PCI_INTERRUPT_INTA,
  84};
  85
  86static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 };
  87
  88static void pci_epf_test_dma_callback(void *param)
  89{
  90	struct pci_epf_test *epf_test = param;
  91	struct dma_tx_state state;
  92
  93	epf_test->transfer_status =
  94		dmaengine_tx_status(epf_test->transfer_chan,
  95				    epf_test->transfer_cookie, &state);
  96	if (epf_test->transfer_status == DMA_COMPLETE ||
  97	    epf_test->transfer_status == DMA_ERROR)
  98		complete(&epf_test->transfer_complete);
  99}
 100
 101/**
 102 * pci_epf_test_data_transfer() - Function that uses dmaengine API to transfer
 103 *				  data between PCIe EP and remote PCIe RC
 104 * @epf_test: the EPF test device that performs the data transfer operation
 105 * @dma_dst: The destination address of the data transfer. It can be a physical
 106 *	     address given by pci_epc_mem_alloc_addr or DMA mapping APIs.
 107 * @dma_src: The source address of the data transfer. It can be a physical
 108 *	     address given by pci_epc_mem_alloc_addr or DMA mapping APIs.
 109 * @len: The size of the data transfer
 110 * @dma_remote: remote RC physical address
 111 * @dir: DMA transfer direction
 112 *
 113 * Function that uses dmaengine API to transfer data between PCIe EP and remote
 114 * PCIe RC. The source and destination address can be a physical address given
 115 * by pci_epc_mem_alloc_addr or the one obtained using DMA mapping APIs.
 116 *
 117 * The function returns '0' on success and negative value on failure.
 118 */
 119static int pci_epf_test_data_transfer(struct pci_epf_test *epf_test,
 120				      dma_addr_t dma_dst, dma_addr_t dma_src,
 121				      size_t len, dma_addr_t dma_remote,
 122				      enum dma_transfer_direction dir)
 123{
 124	struct dma_chan *chan = (dir == DMA_MEM_TO_DEV) ?
 125				 epf_test->dma_chan_tx : epf_test->dma_chan_rx;
 126	dma_addr_t dma_local = (dir == DMA_MEM_TO_DEV) ? dma_src : dma_dst;
 127	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 128	struct pci_epf *epf = epf_test->epf;
 129	struct dma_async_tx_descriptor *tx;
 130	struct dma_slave_config sconf = {};
 131	struct device *dev = &epf->dev;
 132	int ret;
 133
 134	if (IS_ERR_OR_NULL(chan)) {
 135		dev_err(dev, "Invalid DMA memcpy channel\n");
 136		return -EINVAL;
 137	}
 138
 139	if (epf_test->dma_private) {
 140		sconf.direction = dir;
 141		if (dir == DMA_MEM_TO_DEV)
 142			sconf.dst_addr = dma_remote;
 143		else
 144			sconf.src_addr = dma_remote;
 145
 146		if (dmaengine_slave_config(chan, &sconf)) {
 147			dev_err(dev, "DMA slave config fail\n");
 148			return -EIO;
 149		}
 150		tx = dmaengine_prep_slave_single(chan, dma_local, len, dir,
 151						 flags);
 152	} else {
 153		tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len,
 154					       flags);
 155	}
 156
 157	if (!tx) {
 158		dev_err(dev, "Failed to prepare DMA memcpy\n");
 159		return -EIO;
 160	}
 161
 162	reinit_completion(&epf_test->transfer_complete);
 163	epf_test->transfer_chan = chan;
 164	tx->callback = pci_epf_test_dma_callback;
 165	tx->callback_param = epf_test;
 166	epf_test->transfer_cookie = dmaengine_submit(tx);
 167
 168	ret = dma_submit_error(epf_test->transfer_cookie);
 169	if (ret) {
 170		dev_err(dev, "Failed to do DMA tx_submit %d\n", ret);
 171		goto terminate;
 172	}
 173
 174	dma_async_issue_pending(chan);
 175	ret = wait_for_completion_interruptible(&epf_test->transfer_complete);
 176	if (ret < 0) {
 177		dev_err(dev, "DMA wait_for_completion interrupted\n");
 178		goto terminate;
 179	}
 180
 181	if (epf_test->transfer_status == DMA_ERROR) {
 182		dev_err(dev, "DMA transfer failed\n");
 183		ret = -EIO;
 184	}
 185
 186terminate:
 187	dmaengine_terminate_sync(chan);
 188
 189	return ret;
 190}
 191
 192struct epf_dma_filter {
 193	struct device *dev;
 194	u32 dma_mask;
 195};
 196
 197static bool epf_dma_filter_fn(struct dma_chan *chan, void *node)
 198{
 199	struct epf_dma_filter *filter = node;
 200	struct dma_slave_caps caps;
 201
 202	memset(&caps, 0, sizeof(caps));
 203	dma_get_slave_caps(chan, &caps);
 204
 205	return chan->device->dev == filter->dev
 206		&& (filter->dma_mask & caps.directions);
 207}
 208
 209/**
 210 * pci_epf_test_init_dma_chan() - Function to initialize EPF test DMA channel
 211 * @epf_test: the EPF test device that performs data transfer operation
 212 *
 213 * Function to initialize EPF test DMA channel.
 214 */
 215static int pci_epf_test_init_dma_chan(struct pci_epf_test *epf_test)
 216{
 217	struct pci_epf *epf = epf_test->epf;
 218	struct device *dev = &epf->dev;
 219	struct epf_dma_filter filter;
 220	struct dma_chan *dma_chan;
 221	dma_cap_mask_t mask;
 222	int ret;
 223
 224	filter.dev = epf->epc->dev.parent;
 225	filter.dma_mask = BIT(DMA_DEV_TO_MEM);
 226
 227	dma_cap_zero(mask);
 228	dma_cap_set(DMA_SLAVE, mask);
 229	dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter);
 230	if (!dma_chan) {
 231		dev_info(dev, "Failed to get private DMA rx channel. Falling back to generic one\n");
 232		goto fail_back_tx;
 233	}
 234
 235	epf_test->dma_chan_rx = dma_chan;
 236
 237	filter.dma_mask = BIT(DMA_MEM_TO_DEV);
 238	dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter);
 239
 240	if (!dma_chan) {
 241		dev_info(dev, "Failed to get private DMA tx channel. Falling back to generic one\n");
 242		goto fail_back_rx;
 243	}
 244
 245	epf_test->dma_chan_tx = dma_chan;
 246	epf_test->dma_private = true;
 247
 248	init_completion(&epf_test->transfer_complete);
 249
 250	return 0;
 251
 252fail_back_rx:
 253	dma_release_channel(epf_test->dma_chan_rx);
 254	epf_test->dma_chan_tx = NULL;
 255
 256fail_back_tx:
 257	dma_cap_zero(mask);
 258	dma_cap_set(DMA_MEMCPY, mask);
 259
 260	dma_chan = dma_request_chan_by_mask(&mask);
 261	if (IS_ERR(dma_chan)) {
 262		ret = PTR_ERR(dma_chan);
 263		if (ret != -EPROBE_DEFER)
 264			dev_err(dev, "Failed to get DMA channel\n");
 265		return ret;
 266	}
 267	init_completion(&epf_test->transfer_complete);
 268
 269	epf_test->dma_chan_tx = epf_test->dma_chan_rx = dma_chan;
 270
 271	return 0;
 272}
 273
 274/**
 275 * pci_epf_test_clean_dma_chan() - Function to cleanup EPF test DMA channel
 276 * @epf_test: the EPF test device that performs data transfer operation
 277 *
 278 * Helper to cleanup EPF test DMA channel.
 279 */
 280static void pci_epf_test_clean_dma_chan(struct pci_epf_test *epf_test)
 281{
 282	if (!epf_test->dma_supported)
 283		return;
 284
 285	dma_release_channel(epf_test->dma_chan_tx);
 286	if (epf_test->dma_chan_tx == epf_test->dma_chan_rx) {
 287		epf_test->dma_chan_tx = NULL;
 288		epf_test->dma_chan_rx = NULL;
 289		return;
 290	}
 291
 292	dma_release_channel(epf_test->dma_chan_rx);
 293	epf_test->dma_chan_rx = NULL;
 294
 295	return;
 296}
 297
 298static void pci_epf_test_print_rate(struct pci_epf_test *epf_test,
 299				    const char *op, u64 size,
 300				    struct timespec64 *start,
 301				    struct timespec64 *end, bool dma)
 302{
 303	struct timespec64 ts = timespec64_sub(*end, *start);
 304	u64 rate = 0, ns;
 305
 306	/* calculate the rate */
 307	ns = timespec64_to_ns(&ts);
 308	if (ns)
 309		rate = div64_u64(size * NSEC_PER_SEC, ns * 1000);
 310
 311	dev_info(&epf_test->epf->dev,
 312		 "%s => Size: %llu B, DMA: %s, Time: %llu.%09u s, Rate: %llu KB/s\n",
 313		 op, size, dma ? "YES" : "NO",
 314		 (u64)ts.tv_sec, (u32)ts.tv_nsec, rate);
 315}
 316
 317static void pci_epf_test_copy(struct pci_epf_test *epf_test,
 318			      struct pci_epf_test_reg *reg)
 319{
 320	int ret;
 321	void __iomem *src_addr;
 322	void __iomem *dst_addr;
 323	phys_addr_t src_phys_addr;
 324	phys_addr_t dst_phys_addr;
 325	struct timespec64 start, end;
 326	struct pci_epf *epf = epf_test->epf;
 327	struct device *dev = &epf->dev;
 328	struct pci_epc *epc = epf->epc;
 
 
 329
 330	src_addr = pci_epc_mem_alloc_addr(epc, &src_phys_addr, reg->size);
 331	if (!src_addr) {
 332		dev_err(dev, "Failed to allocate source address\n");
 333		reg->status = STATUS_SRC_ADDR_INVALID;
 334		ret = -ENOMEM;
 335		goto err;
 336	}
 337
 338	ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr,
 339			       reg->src_addr, reg->size);
 340	if (ret) {
 341		dev_err(dev, "Failed to map source address\n");
 342		reg->status = STATUS_SRC_ADDR_INVALID;
 343		goto err_src_addr;
 344	}
 345
 346	dst_addr = pci_epc_mem_alloc_addr(epc, &dst_phys_addr, reg->size);
 347	if (!dst_addr) {
 348		dev_err(dev, "Failed to allocate destination address\n");
 349		reg->status = STATUS_DST_ADDR_INVALID;
 350		ret = -ENOMEM;
 351		goto err_src_map_addr;
 352	}
 353
 354	ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr,
 355			       reg->dst_addr, reg->size);
 356	if (ret) {
 357		dev_err(dev, "Failed to map destination address\n");
 358		reg->status = STATUS_DST_ADDR_INVALID;
 359		goto err_dst_addr;
 360	}
 361
 362	ktime_get_ts64(&start);
 363	if (reg->flags & FLAG_USE_DMA) {
 364		if (epf_test->dma_private) {
 365			dev_err(dev, "Cannot transfer data using DMA\n");
 366			ret = -EINVAL;
 367			goto err_map_addr;
 368		}
 369
 370		ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr,
 371						 src_phys_addr, reg->size, 0,
 372						 DMA_MEM_TO_MEM);
 373		if (ret)
 374			dev_err(dev, "Data transfer failed\n");
 375	} else {
 376		void *buf;
 377
 378		buf = kzalloc(reg->size, GFP_KERNEL);
 379		if (!buf) {
 380			ret = -ENOMEM;
 381			goto err_map_addr;
 382		}
 383
 384		memcpy_fromio(buf, src_addr, reg->size);
 385		memcpy_toio(dst_addr, buf, reg->size);
 386		kfree(buf);
 387	}
 388	ktime_get_ts64(&end);
 389	pci_epf_test_print_rate(epf_test, "COPY", reg->size, &start, &end,
 390				reg->flags & FLAG_USE_DMA);
 391
 392err_map_addr:
 393	pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr);
 394
 395err_dst_addr:
 396	pci_epc_mem_free_addr(epc, dst_phys_addr, dst_addr, reg->size);
 397
 398err_src_map_addr:
 399	pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr);
 400
 401err_src_addr:
 402	pci_epc_mem_free_addr(epc, src_phys_addr, src_addr, reg->size);
 403
 404err:
 405	if (!ret)
 406		reg->status |= STATUS_COPY_SUCCESS;
 407	else
 408		reg->status |= STATUS_COPY_FAIL;
 409}
 410
 411static void pci_epf_test_read(struct pci_epf_test *epf_test,
 412			      struct pci_epf_test_reg *reg)
 413{
 414	int ret;
 415	void __iomem *src_addr;
 416	void *buf;
 417	u32 crc32;
 418	phys_addr_t phys_addr;
 419	phys_addr_t dst_phys_addr;
 420	struct timespec64 start, end;
 421	struct pci_epf *epf = epf_test->epf;
 422	struct device *dev = &epf->dev;
 423	struct pci_epc *epc = epf->epc;
 424	struct device *dma_dev = epf->epc->dev.parent;
 
 425
 426	src_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
 427	if (!src_addr) {
 428		dev_err(dev, "Failed to allocate address\n");
 429		reg->status = STATUS_SRC_ADDR_INVALID;
 430		ret = -ENOMEM;
 431		goto err;
 432	}
 433
 434	ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr,
 435			       reg->src_addr, reg->size);
 436	if (ret) {
 437		dev_err(dev, "Failed to map address\n");
 438		reg->status = STATUS_SRC_ADDR_INVALID;
 439		goto err_addr;
 440	}
 441
 442	buf = kzalloc(reg->size, GFP_KERNEL);
 443	if (!buf) {
 444		ret = -ENOMEM;
 445		goto err_map_addr;
 446	}
 447
 448	if (reg->flags & FLAG_USE_DMA) {
 449		dst_phys_addr = dma_map_single(dma_dev, buf, reg->size,
 450					       DMA_FROM_DEVICE);
 451		if (dma_mapping_error(dma_dev, dst_phys_addr)) {
 452			dev_err(dev, "Failed to map destination buffer addr\n");
 453			ret = -ENOMEM;
 454			goto err_dma_map;
 455		}
 456
 457		ktime_get_ts64(&start);
 458		ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr,
 459						 phys_addr, reg->size,
 460						 reg->src_addr, DMA_DEV_TO_MEM);
 461		if (ret)
 462			dev_err(dev, "Data transfer failed\n");
 463		ktime_get_ts64(&end);
 464
 465		dma_unmap_single(dma_dev, dst_phys_addr, reg->size,
 466				 DMA_FROM_DEVICE);
 467	} else {
 468		ktime_get_ts64(&start);
 469		memcpy_fromio(buf, src_addr, reg->size);
 470		ktime_get_ts64(&end);
 471	}
 472
 473	pci_epf_test_print_rate(epf_test, "READ", reg->size, &start, &end,
 474				reg->flags & FLAG_USE_DMA);
 475
 476	crc32 = crc32_le(~0, buf, reg->size);
 477	if (crc32 != reg->checksum)
 478		ret = -EIO;
 479
 480err_dma_map:
 481	kfree(buf);
 482
 483err_map_addr:
 484	pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr);
 485
 486err_addr:
 487	pci_epc_mem_free_addr(epc, phys_addr, src_addr, reg->size);
 488
 489err:
 490	if (!ret)
 491		reg->status |= STATUS_READ_SUCCESS;
 492	else
 493		reg->status |= STATUS_READ_FAIL;
 494}
 495
 496static void pci_epf_test_write(struct pci_epf_test *epf_test,
 497			       struct pci_epf_test_reg *reg)
 498{
 499	int ret;
 500	void __iomem *dst_addr;
 501	void *buf;
 502	phys_addr_t phys_addr;
 503	phys_addr_t src_phys_addr;
 504	struct timespec64 start, end;
 505	struct pci_epf *epf = epf_test->epf;
 506	struct device *dev = &epf->dev;
 507	struct pci_epc *epc = epf->epc;
 508	struct device *dma_dev = epf->epc->dev.parent;
 
 509
 510	dst_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
 511	if (!dst_addr) {
 512		dev_err(dev, "Failed to allocate address\n");
 513		reg->status = STATUS_DST_ADDR_INVALID;
 514		ret = -ENOMEM;
 515		goto err;
 516	}
 517
 518	ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr,
 519			       reg->dst_addr, reg->size);
 520	if (ret) {
 521		dev_err(dev, "Failed to map address\n");
 522		reg->status = STATUS_DST_ADDR_INVALID;
 523		goto err_addr;
 524	}
 525
 526	buf = kzalloc(reg->size, GFP_KERNEL);
 527	if (!buf) {
 528		ret = -ENOMEM;
 529		goto err_map_addr;
 530	}
 531
 532	get_random_bytes(buf, reg->size);
 533	reg->checksum = crc32_le(~0, buf, reg->size);
 534
 535	if (reg->flags & FLAG_USE_DMA) {
 536		src_phys_addr = dma_map_single(dma_dev, buf, reg->size,
 537					       DMA_TO_DEVICE);
 538		if (dma_mapping_error(dma_dev, src_phys_addr)) {
 539			dev_err(dev, "Failed to map source buffer addr\n");
 540			ret = -ENOMEM;
 541			goto err_dma_map;
 542		}
 543
 544		ktime_get_ts64(&start);
 545
 546		ret = pci_epf_test_data_transfer(epf_test, phys_addr,
 547						 src_phys_addr, reg->size,
 548						 reg->dst_addr,
 549						 DMA_MEM_TO_DEV);
 550		if (ret)
 551			dev_err(dev, "Data transfer failed\n");
 552		ktime_get_ts64(&end);
 553
 554		dma_unmap_single(dma_dev, src_phys_addr, reg->size,
 555				 DMA_TO_DEVICE);
 556	} else {
 557		ktime_get_ts64(&start);
 558		memcpy_toio(dst_addr, buf, reg->size);
 559		ktime_get_ts64(&end);
 560	}
 561
 562	pci_epf_test_print_rate(epf_test, "WRITE", reg->size, &start, &end,
 563				reg->flags & FLAG_USE_DMA);
 564
 565	/*
 566	 * wait 1ms inorder for the write to complete. Without this delay L3
 567	 * error in observed in the host system.
 568	 */
 569	usleep_range(1000, 2000);
 570
 571err_dma_map:
 572	kfree(buf);
 573
 574err_map_addr:
 575	pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr);
 576
 577err_addr:
 578	pci_epc_mem_free_addr(epc, phys_addr, dst_addr, reg->size);
 579
 580err:
 581	if (!ret)
 582		reg->status |= STATUS_WRITE_SUCCESS;
 583	else
 584		reg->status |= STATUS_WRITE_FAIL;
 585}
 586
 587static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test,
 588				   struct pci_epf_test_reg *reg)
 589{
 590	struct pci_epf *epf = epf_test->epf;
 591	struct device *dev = &epf->dev;
 592	struct pci_epc *epc = epf->epc;
 593	u32 status = reg->status | STATUS_IRQ_RAISED;
 594	int count;
 595
 596	/*
 597	 * Set the status before raising the IRQ to ensure that the host sees
 598	 * the updated value when it gets the IRQ.
 599	 */
 600	WRITE_ONCE(reg->status, status);
 601
 602	switch (reg->irq_type) {
 603	case IRQ_TYPE_INTX:
 604		pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
 605				  PCI_IRQ_INTX, 0);
 606		break;
 607	case IRQ_TYPE_MSI:
 608		count = pci_epc_get_msi(epc, epf->func_no, epf->vfunc_no);
 609		if (reg->irq_number > count || count <= 0) {
 610			dev_err(dev, "Invalid MSI IRQ number %d / %d\n",
 611				reg->irq_number, count);
 612			return;
 613		}
 614		pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
 615				  PCI_IRQ_MSI, reg->irq_number);
 616		break;
 617	case IRQ_TYPE_MSIX:
 618		count = pci_epc_get_msix(epc, epf->func_no, epf->vfunc_no);
 619		if (reg->irq_number > count || count <= 0) {
 620			dev_err(dev, "Invalid MSIX IRQ number %d / %d\n",
 621				reg->irq_number, count);
 622			return;
 623		}
 624		pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
 625				  PCI_IRQ_MSIX, reg->irq_number);
 626		break;
 627	default:
 628		dev_err(dev, "Failed to raise IRQ, unknown type\n");
 629		break;
 630	}
 631}
 632
 633static void pci_epf_test_cmd_handler(struct work_struct *work)
 634{
 
 
 635	u32 command;
 636	struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test,
 637						     cmd_handler.work);
 638	struct pci_epf *epf = epf_test->epf;
 639	struct device *dev = &epf->dev;
 
 640	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
 641	struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
 642
 643	command = READ_ONCE(reg->command);
 644	if (!command)
 645		goto reset_handler;
 646
 647	WRITE_ONCE(reg->command, 0);
 648	WRITE_ONCE(reg->status, 0);
 
 
 
 
 
 
 
 
 
 
 
 649
 650	if ((READ_ONCE(reg->flags) & FLAG_USE_DMA) &&
 651	    !epf_test->dma_supported) {
 652		dev_err(dev, "Cannot transfer data using DMA\n");
 
 
 
 
 
 653		goto reset_handler;
 654	}
 655
 656	if (reg->irq_type > IRQ_TYPE_MSIX) {
 657		dev_err(dev, "Failed to detect IRQ type\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658		goto reset_handler;
 659	}
 660
 661	switch (command) {
 662	case COMMAND_RAISE_INTX_IRQ:
 663	case COMMAND_RAISE_MSI_IRQ:
 664	case COMMAND_RAISE_MSIX_IRQ:
 665		pci_epf_test_raise_irq(epf_test, reg);
 666		break;
 667	case COMMAND_WRITE:
 668		pci_epf_test_write(epf_test, reg);
 669		pci_epf_test_raise_irq(epf_test, reg);
 670		break;
 671	case COMMAND_READ:
 672		pci_epf_test_read(epf_test, reg);
 673		pci_epf_test_raise_irq(epf_test, reg);
 674		break;
 675	case COMMAND_COPY:
 676		pci_epf_test_copy(epf_test, reg);
 677		pci_epf_test_raise_irq(epf_test, reg);
 678		break;
 679	default:
 680		dev_err(dev, "Invalid command 0x%x\n", command);
 681		break;
 682	}
 683
 684reset_handler:
 685	queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
 686			   msecs_to_jiffies(1));
 687}
 688
 
 
 
 
 
 
 
 
 689static void pci_epf_test_unbind(struct pci_epf *epf)
 690{
 691	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
 692	struct pci_epc *epc = epf->epc;
 693	struct pci_epf_bar *epf_bar;
 694	int bar;
 695
 696	cancel_delayed_work(&epf_test->cmd_handler);
 697	pci_epf_test_clean_dma_chan(epf_test);
 698	for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
 699		epf_bar = &epf->bar[bar];
 700
 701		if (epf_test->reg[bar]) {
 702			pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no,
 703					  epf_bar);
 704			pci_epf_free_space(epf, epf_test->reg[bar], bar,
 705					   PRIMARY_INTERFACE);
 706		}
 707	}
 708}
 709
 710static int pci_epf_test_set_bar(struct pci_epf *epf)
 711{
 712	int bar, add;
 713	int ret;
 714	struct pci_epf_bar *epf_bar;
 715	struct pci_epc *epc = epf->epc;
 716	struct device *dev = &epf->dev;
 717	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
 718	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
 719	const struct pci_epc_features *epc_features;
 720
 721	epc_features = epf_test->epc_features;
 722
 723	for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) {
 724		epf_bar = &epf->bar[bar];
 725		/*
 726		 * pci_epc_set_bar() sets PCI_BASE_ADDRESS_MEM_TYPE_64
 727		 * if the specific implementation required a 64-bit BAR,
 728		 * even if we only requested a 32-bit BAR.
 729		 */
 730		add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1;
 731
 732		if (!!(epc_features->reserved_bar & (1 << bar)))
 733			continue;
 734
 735		ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no,
 736				      epf_bar);
 737		if (ret) {
 738			pci_epf_free_space(epf, epf_test->reg[bar], bar,
 739					   PRIMARY_INTERFACE);
 740			dev_err(dev, "Failed to set BAR%d\n", bar);
 741			if (bar == test_reg_bar)
 742				return ret;
 743		}
 744	}
 745
 746	return 0;
 747}
 748
 749static int pci_epf_test_core_init(struct pci_epf *epf)
 750{
 751	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
 752	struct pci_epf_header *header = epf->header;
 753	const struct pci_epc_features *epc_features;
 754	struct pci_epc *epc = epf->epc;
 755	struct device *dev = &epf->dev;
 756	bool msix_capable = false;
 757	bool msi_capable = true;
 758	int ret;
 759
 760	epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
 761	if (epc_features) {
 762		msix_capable = epc_features->msix_capable;
 763		msi_capable = epc_features->msi_capable;
 764	}
 765
 766	if (epf->vfunc_no <= 1) {
 767		ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no, header);
 768		if (ret) {
 769			dev_err(dev, "Configuration header write failed\n");
 770			return ret;
 771		}
 772	}
 773
 774	ret = pci_epf_test_set_bar(epf);
 775	if (ret)
 776		return ret;
 777
 778	if (msi_capable) {
 779		ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no,
 780				      epf->msi_interrupts);
 781		if (ret) {
 782			dev_err(dev, "MSI configuration failed\n");
 783			return ret;
 784		}
 785	}
 786
 787	if (msix_capable) {
 788		ret = pci_epc_set_msix(epc, epf->func_no, epf->vfunc_no,
 789				       epf->msix_interrupts,
 790				       epf_test->test_reg_bar,
 791				       epf_test->msix_table_offset);
 792		if (ret) {
 793			dev_err(dev, "MSI-X configuration failed\n");
 794			return ret;
 795		}
 796	}
 797
 798	return 0;
 799}
 800
 801static int pci_epf_test_link_up(struct pci_epf *epf)
 802{
 803	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
 804
 805	queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
 806			   msecs_to_jiffies(1));
 807
 808	return 0;
 809}
 810
 811static const struct pci_epc_event_ops pci_epf_test_event_ops = {
 812	.core_init = pci_epf_test_core_init,
 813	.link_up = pci_epf_test_link_up,
 814};
 815
 816static int pci_epf_test_alloc_space(struct pci_epf *epf)
 817{
 818	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
 819	struct device *dev = &epf->dev;
 820	struct pci_epf_bar *epf_bar;
 821	size_t msix_table_size = 0;
 822	size_t test_reg_bar_size;
 823	size_t pba_size = 0;
 824	bool msix_capable;
 825	void *base;
 826	int bar, add;
 827	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
 828	const struct pci_epc_features *epc_features;
 829	size_t test_reg_size;
 830
 831	epc_features = epf_test->epc_features;
 832
 833	test_reg_bar_size = ALIGN(sizeof(struct pci_epf_test_reg), 128);
 834
 835	msix_capable = epc_features->msix_capable;
 836	if (msix_capable) {
 837		msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts;
 838		epf_test->msix_table_offset = test_reg_bar_size;
 839		/* Align to QWORD or 8 Bytes */
 840		pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8);
 841	}
 842	test_reg_size = test_reg_bar_size + msix_table_size + pba_size;
 843
 844	if (epc_features->bar_fixed_size[test_reg_bar]) {
 845		if (test_reg_size > bar_size[test_reg_bar])
 846			return -ENOMEM;
 847		test_reg_size = bar_size[test_reg_bar];
 848	}
 
 849
 850	base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar,
 851				   epc_features->align, PRIMARY_INTERFACE);
 852	if (!base) {
 853		dev_err(dev, "Failed to allocated register space\n");
 854		return -ENOMEM;
 855	}
 856	epf_test->reg[test_reg_bar] = base;
 857
 858	for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) {
 859		epf_bar = &epf->bar[bar];
 860		add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1;
 861
 862		if (bar == test_reg_bar)
 863			continue;
 864
 865		if (!!(epc_features->reserved_bar & (1 << bar)))
 866			continue;
 867
 868		base = pci_epf_alloc_space(epf, bar_size[bar], bar,
 869					   epc_features->align,
 870					   PRIMARY_INTERFACE);
 871		if (!base)
 872			dev_err(dev, "Failed to allocate space for BAR%d\n",
 873				bar);
 874		epf_test->reg[bar] = base;
 875	}
 876
 877	return 0;
 878}
 879
 880static void pci_epf_configure_bar(struct pci_epf *epf,
 881				  const struct pci_epc_features *epc_features)
 882{
 883	struct pci_epf_bar *epf_bar;
 884	bool bar_fixed_64bit;
 885	int i;
 886
 887	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 888		epf_bar = &epf->bar[i];
 889		bar_fixed_64bit = !!(epc_features->bar_fixed_64bit & (1 << i));
 890		if (bar_fixed_64bit)
 891			epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64;
 892		if (epc_features->bar_fixed_size[i])
 893			bar_size[i] = epc_features->bar_fixed_size[i];
 894	}
 895}
 896
 897static int pci_epf_test_bind(struct pci_epf *epf)
 898{
 899	int ret;
 900	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
 
 901	const struct pci_epc_features *epc_features;
 902	enum pci_barno test_reg_bar = BAR_0;
 903	struct pci_epc *epc = epf->epc;
 
 904	bool linkup_notifier = false;
 905	bool core_init_notifier = false;
 
 906
 907	if (WARN_ON_ONCE(!epc))
 908		return -EINVAL;
 909
 910	epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
 911	if (!epc_features) {
 912		dev_err(&epf->dev, "epc_features not implemented\n");
 913		return -EOPNOTSUPP;
 
 
 
 914	}
 915
 916	linkup_notifier = epc_features->linkup_notifier;
 917	core_init_notifier = epc_features->core_init_notifier;
 918	test_reg_bar = pci_epc_get_first_free_bar(epc_features);
 919	if (test_reg_bar < 0)
 920		return -EINVAL;
 921	pci_epf_configure_bar(epf, epc_features);
 922
 923	epf_test->test_reg_bar = test_reg_bar;
 924	epf_test->epc_features = epc_features;
 925
 
 
 
 
 
 
 926	ret = pci_epf_test_alloc_space(epf);
 927	if (ret)
 928		return ret;
 929
 930	if (!core_init_notifier) {
 931		ret = pci_epf_test_core_init(epf);
 932		if (ret)
 
 
 
 
 
 933			return ret;
 
 934	}
 935
 936	epf_test->dma_supported = true;
 
 
 
 
 
 
 937
 938	ret = pci_epf_test_init_dma_chan(epf_test);
 939	if (ret)
 940		epf_test->dma_supported = false;
 941
 942	if (!linkup_notifier && !core_init_notifier)
 943		queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work);
 944
 945	return 0;
 946}
 947
 948static const struct pci_epf_device_id pci_epf_test_ids[] = {
 949	{
 950		.name = "pci_epf_test",
 951	},
 952	{},
 953};
 954
 955static int pci_epf_test_probe(struct pci_epf *epf,
 956			      const struct pci_epf_device_id *id)
 957{
 958	struct pci_epf_test *epf_test;
 959	struct device *dev = &epf->dev;
 960
 961	epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL);
 962	if (!epf_test)
 963		return -ENOMEM;
 964
 965	epf->header = &test_header;
 966	epf_test->epf = epf;
 967
 968	INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler);
 969
 970	epf->event_ops = &pci_epf_test_event_ops;
 971
 972	epf_set_drvdata(epf, epf_test);
 973	return 0;
 974}
 975
 976static const struct pci_epf_ops ops = {
 977	.unbind	= pci_epf_test_unbind,
 978	.bind	= pci_epf_test_bind,
 
 979};
 980
 981static struct pci_epf_driver test_driver = {
 982	.driver.name	= "pci_epf_test",
 983	.probe		= pci_epf_test_probe,
 984	.id_table	= pci_epf_test_ids,
 985	.ops		= &ops,
 986	.owner		= THIS_MODULE,
 987};
 988
 989static int __init pci_epf_test_init(void)
 990{
 991	int ret;
 992
 993	kpcitest_workqueue = alloc_workqueue("kpcitest",
 994					     WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
 995	if (!kpcitest_workqueue) {
 996		pr_err("Failed to allocate the kpcitest work queue\n");
 997		return -ENOMEM;
 998	}
 999
1000	ret = pci_epf_register_driver(&test_driver);
1001	if (ret) {
1002		destroy_workqueue(kpcitest_workqueue);
1003		pr_err("Failed to register pci epf test driver --> %d\n", ret);
1004		return ret;
1005	}
1006
1007	return 0;
1008}
1009module_init(pci_epf_test_init);
1010
1011static void __exit pci_epf_test_exit(void)
1012{
1013	if (kpcitest_workqueue)
1014		destroy_workqueue(kpcitest_workqueue);
1015	pci_epf_unregister_driver(&test_driver);
1016}
1017module_exit(pci_epf_test_exit);
1018
1019MODULE_DESCRIPTION("PCI EPF TEST DRIVER");
1020MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
1021MODULE_LICENSE("GPL v2");