Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 | // SPDX-License-Identifier: GPL-2.0 /* * Test driver to test endpoint functionality * * Copyright (C) 2017 Texas Instruments * Author: Kishon Vijay Abraham I <kishon@ti.com> */ #include <linux/crc32.h> #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/io.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/pci_ids.h> #include <linux/random.h> #include <linux/pci-epc.h> #include <linux/pci-epf.h> #include <linux/pci_regs.h> #define IRQ_TYPE_INTX 0 #define IRQ_TYPE_MSI 1 #define IRQ_TYPE_MSIX 2 #define COMMAND_RAISE_INTX_IRQ BIT(0) #define COMMAND_RAISE_MSI_IRQ BIT(1) #define COMMAND_RAISE_MSIX_IRQ BIT(2) #define COMMAND_READ BIT(3) #define COMMAND_WRITE BIT(4) #define COMMAND_COPY BIT(5) #define STATUS_READ_SUCCESS BIT(0) #define STATUS_READ_FAIL BIT(1) #define STATUS_WRITE_SUCCESS BIT(2) #define STATUS_WRITE_FAIL BIT(3) #define STATUS_COPY_SUCCESS BIT(4) #define STATUS_COPY_FAIL BIT(5) #define STATUS_IRQ_RAISED BIT(6) #define STATUS_SRC_ADDR_INVALID BIT(7) #define STATUS_DST_ADDR_INVALID BIT(8) #define FLAG_USE_DMA BIT(0) #define TIMER_RESOLUTION 1 static struct workqueue_struct *kpcitest_workqueue; struct pci_epf_test { void *reg[PCI_STD_NUM_BARS]; struct pci_epf *epf; enum pci_barno test_reg_bar; size_t msix_table_offset; struct delayed_work cmd_handler; struct dma_chan *dma_chan_tx; struct dma_chan *dma_chan_rx; struct dma_chan *transfer_chan; dma_cookie_t transfer_cookie; enum dma_status transfer_status; struct completion transfer_complete; bool dma_supported; bool dma_private; const struct pci_epc_features *epc_features; }; struct pci_epf_test_reg { u32 magic; u32 command; u32 status; u64 src_addr; u64 dst_addr; u32 size; u32 checksum; u32 irq_type; u32 irq_number; u32 flags; } __packed; static struct pci_epf_header test_header = { .vendorid = PCI_ANY_ID, .deviceid = PCI_ANY_ID, .baseclass_code = PCI_CLASS_OTHERS, .interrupt_pin = PCI_INTERRUPT_INTA, }; static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 }; static void pci_epf_test_dma_callback(void *param) { struct pci_epf_test *epf_test = param; struct dma_tx_state state; epf_test->transfer_status = dmaengine_tx_status(epf_test->transfer_chan, epf_test->transfer_cookie, &state); if (epf_test->transfer_status == DMA_COMPLETE || epf_test->transfer_status == DMA_ERROR) complete(&epf_test->transfer_complete); } /** * pci_epf_test_data_transfer() - Function that uses dmaengine API to transfer * data between PCIe EP and remote PCIe RC * @epf_test: the EPF test device that performs the data transfer operation * @dma_dst: The destination address of the data transfer. It can be a physical * address given by pci_epc_mem_alloc_addr or DMA mapping APIs. * @dma_src: The source address of the data transfer. It can be a physical * address given by pci_epc_mem_alloc_addr or DMA mapping APIs. * @len: The size of the data transfer * @dma_remote: remote RC physical address * @dir: DMA transfer direction * * Function that uses dmaengine API to transfer data between PCIe EP and remote * PCIe RC. The source and destination address can be a physical address given * by pci_epc_mem_alloc_addr or the one obtained using DMA mapping APIs. * * The function returns '0' on success and negative value on failure. */ static int pci_epf_test_data_transfer(struct pci_epf_test *epf_test, dma_addr_t dma_dst, dma_addr_t dma_src, size_t len, dma_addr_t dma_remote, enum dma_transfer_direction dir) { struct dma_chan *chan = (dir == DMA_MEM_TO_DEV) ? epf_test->dma_chan_tx : epf_test->dma_chan_rx; dma_addr_t dma_local = (dir == DMA_MEM_TO_DEV) ? dma_src : dma_dst; enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; struct pci_epf *epf = epf_test->epf; struct dma_async_tx_descriptor *tx; struct dma_slave_config sconf = {}; struct device *dev = &epf->dev; int ret; if (IS_ERR_OR_NULL(chan)) { dev_err(dev, "Invalid DMA memcpy channel\n"); return -EINVAL; } if (epf_test->dma_private) { sconf.direction = dir; if (dir == DMA_MEM_TO_DEV) sconf.dst_addr = dma_remote; else sconf.src_addr = dma_remote; if (dmaengine_slave_config(chan, &sconf)) { dev_err(dev, "DMA slave config fail\n"); return -EIO; } tx = dmaengine_prep_slave_single(chan, dma_local, len, dir, flags); } else { tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags); } if (!tx) { dev_err(dev, "Failed to prepare DMA memcpy\n"); return -EIO; } reinit_completion(&epf_test->transfer_complete); epf_test->transfer_chan = chan; tx->callback = pci_epf_test_dma_callback; tx->callback_param = epf_test; epf_test->transfer_cookie = dmaengine_submit(tx); ret = dma_submit_error(epf_test->transfer_cookie); if (ret) { dev_err(dev, "Failed to do DMA tx_submit %d\n", ret); goto terminate; } dma_async_issue_pending(chan); ret = wait_for_completion_interruptible(&epf_test->transfer_complete); if (ret < 0) { dev_err(dev, "DMA wait_for_completion interrupted\n"); goto terminate; } if (epf_test->transfer_status == DMA_ERROR) { dev_err(dev, "DMA transfer failed\n"); ret = -EIO; } terminate: dmaengine_terminate_sync(chan); return ret; } struct epf_dma_filter { struct device *dev; u32 dma_mask; }; static bool epf_dma_filter_fn(struct dma_chan *chan, void *node) { struct epf_dma_filter *filter = node; struct dma_slave_caps caps; memset(&caps, 0, sizeof(caps)); dma_get_slave_caps(chan, &caps); return chan->device->dev == filter->dev && (filter->dma_mask & caps.directions); } /** * pci_epf_test_init_dma_chan() - Function to initialize EPF test DMA channel * @epf_test: the EPF test device that performs data transfer operation * * Function to initialize EPF test DMA channel. */ static int pci_epf_test_init_dma_chan(struct pci_epf_test *epf_test) { struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct epf_dma_filter filter; struct dma_chan *dma_chan; dma_cap_mask_t mask; int ret; filter.dev = epf->epc->dev.parent; filter.dma_mask = BIT(DMA_DEV_TO_MEM); dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter); if (!dma_chan) { dev_info(dev, "Failed to get private DMA rx channel. Falling back to generic one\n"); goto fail_back_tx; } epf_test->dma_chan_rx = dma_chan; filter.dma_mask = BIT(DMA_MEM_TO_DEV); dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter); if (!dma_chan) { dev_info(dev, "Failed to get private DMA tx channel. Falling back to generic one\n"); goto fail_back_rx; } epf_test->dma_chan_tx = dma_chan; epf_test->dma_private = true; init_completion(&epf_test->transfer_complete); return 0; fail_back_rx: dma_release_channel(epf_test->dma_chan_rx); epf_test->dma_chan_tx = NULL; fail_back_tx: dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); dma_chan = dma_request_chan_by_mask(&mask); if (IS_ERR(dma_chan)) { ret = PTR_ERR(dma_chan); if (ret != -EPROBE_DEFER) dev_err(dev, "Failed to get DMA channel\n"); return ret; } init_completion(&epf_test->transfer_complete); epf_test->dma_chan_tx = epf_test->dma_chan_rx = dma_chan; return 0; } /** * pci_epf_test_clean_dma_chan() - Function to cleanup EPF test DMA channel * @epf_test: the EPF test device that performs data transfer operation * * Helper to cleanup EPF test DMA channel. */ static void pci_epf_test_clean_dma_chan(struct pci_epf_test *epf_test) { if (!epf_test->dma_supported) return; dma_release_channel(epf_test->dma_chan_tx); if (epf_test->dma_chan_tx == epf_test->dma_chan_rx) { epf_test->dma_chan_tx = NULL; epf_test->dma_chan_rx = NULL; return; } dma_release_channel(epf_test->dma_chan_rx); epf_test->dma_chan_rx = NULL; return; } static void pci_epf_test_print_rate(struct pci_epf_test *epf_test, const char *op, u64 size, struct timespec64 *start, struct timespec64 *end, bool dma) { struct timespec64 ts = timespec64_sub(*end, *start); u64 rate = 0, ns; /* calculate the rate */ ns = timespec64_to_ns(&ts); if (ns) rate = div64_u64(size * NSEC_PER_SEC, ns * 1000); dev_info(&epf_test->epf->dev, "%s => Size: %llu B, DMA: %s, Time: %llu.%09u s, Rate: %llu KB/s\n", op, size, dma ? "YES" : "NO", (u64)ts.tv_sec, (u32)ts.tv_nsec, rate); } static void pci_epf_test_copy(struct pci_epf_test *epf_test, struct pci_epf_test_reg *reg) { int ret; void __iomem *src_addr; void __iomem *dst_addr; phys_addr_t src_phys_addr; phys_addr_t dst_phys_addr; struct timespec64 start, end; struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; src_addr = pci_epc_mem_alloc_addr(epc, &src_phys_addr, reg->size); if (!src_addr) { dev_err(dev, "Failed to allocate source address\n"); reg->status = STATUS_SRC_ADDR_INVALID; ret = -ENOMEM; goto err; } ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr, reg->src_addr, reg->size); if (ret) { dev_err(dev, "Failed to map source address\n"); reg->status = STATUS_SRC_ADDR_INVALID; goto err_src_addr; } dst_addr = pci_epc_mem_alloc_addr(epc, &dst_phys_addr, reg->size); if (!dst_addr) { dev_err(dev, "Failed to allocate destination address\n"); reg->status = STATUS_DST_ADDR_INVALID; ret = -ENOMEM; goto err_src_map_addr; } ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr, reg->dst_addr, reg->size); if (ret) { dev_err(dev, "Failed to map destination address\n"); reg->status = STATUS_DST_ADDR_INVALID; goto err_dst_addr; } ktime_get_ts64(&start); if (reg->flags & FLAG_USE_DMA) { if (epf_test->dma_private) { dev_err(dev, "Cannot transfer data using DMA\n"); ret = -EINVAL; goto err_map_addr; } ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr, src_phys_addr, reg->size, 0, DMA_MEM_TO_MEM); if (ret) dev_err(dev, "Data transfer failed\n"); } else { void *buf; buf = kzalloc(reg->size, GFP_KERNEL); if (!buf) { ret = -ENOMEM; goto err_map_addr; } memcpy_fromio(buf, src_addr, reg->size); memcpy_toio(dst_addr, buf, reg->size); kfree(buf); } ktime_get_ts64(&end); pci_epf_test_print_rate(epf_test, "COPY", reg->size, &start, &end, reg->flags & FLAG_USE_DMA); err_map_addr: pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr); err_dst_addr: pci_epc_mem_free_addr(epc, dst_phys_addr, dst_addr, reg->size); err_src_map_addr: pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr); err_src_addr: pci_epc_mem_free_addr(epc, src_phys_addr, src_addr, reg->size); err: if (!ret) reg->status |= STATUS_COPY_SUCCESS; else reg->status |= STATUS_COPY_FAIL; } static void pci_epf_test_read(struct pci_epf_test *epf_test, struct pci_epf_test_reg *reg) { int ret; void __iomem *src_addr; void *buf; u32 crc32; phys_addr_t phys_addr; phys_addr_t dst_phys_addr; struct timespec64 start, end; struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; struct device *dma_dev = epf->epc->dev.parent; src_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size); if (!src_addr) { dev_err(dev, "Failed to allocate address\n"); reg->status = STATUS_SRC_ADDR_INVALID; ret = -ENOMEM; goto err; } ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr, reg->src_addr, reg->size); if (ret) { dev_err(dev, "Failed to map address\n"); reg->status = STATUS_SRC_ADDR_INVALID; goto err_addr; } buf = kzalloc(reg->size, GFP_KERNEL); if (!buf) { ret = -ENOMEM; goto err_map_addr; } if (reg->flags & FLAG_USE_DMA) { dst_phys_addr = dma_map_single(dma_dev, buf, reg->size, DMA_FROM_DEVICE); if (dma_mapping_error(dma_dev, dst_phys_addr)) { dev_err(dev, "Failed to map destination buffer addr\n"); ret = -ENOMEM; goto err_dma_map; } ktime_get_ts64(&start); ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr, phys_addr, reg->size, reg->src_addr, DMA_DEV_TO_MEM); if (ret) dev_err(dev, "Data transfer failed\n"); ktime_get_ts64(&end); dma_unmap_single(dma_dev, dst_phys_addr, reg->size, DMA_FROM_DEVICE); } else { ktime_get_ts64(&start); memcpy_fromio(buf, src_addr, reg->size); ktime_get_ts64(&end); } pci_epf_test_print_rate(epf_test, "READ", reg->size, &start, &end, reg->flags & FLAG_USE_DMA); crc32 = crc32_le(~0, buf, reg->size); if (crc32 != reg->checksum) ret = -EIO; err_dma_map: kfree(buf); err_map_addr: pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr); err_addr: pci_epc_mem_free_addr(epc, phys_addr, src_addr, reg->size); err: if (!ret) reg->status |= STATUS_READ_SUCCESS; else reg->status |= STATUS_READ_FAIL; } static void pci_epf_test_write(struct pci_epf_test *epf_test, struct pci_epf_test_reg *reg) { int ret; void __iomem *dst_addr; void *buf; phys_addr_t phys_addr; phys_addr_t src_phys_addr; struct timespec64 start, end; struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; struct device *dma_dev = epf->epc->dev.parent; dst_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size); if (!dst_addr) { dev_err(dev, "Failed to allocate address\n"); reg->status = STATUS_DST_ADDR_INVALID; ret = -ENOMEM; goto err; } ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr, reg->dst_addr, reg->size); if (ret) { dev_err(dev, "Failed to map address\n"); reg->status = STATUS_DST_ADDR_INVALID; goto err_addr; } buf = kzalloc(reg->size, GFP_KERNEL); if (!buf) { ret = -ENOMEM; goto err_map_addr; } get_random_bytes(buf, reg->size); reg->checksum = crc32_le(~0, buf, reg->size); if (reg->flags & FLAG_USE_DMA) { src_phys_addr = dma_map_single(dma_dev, buf, reg->size, DMA_TO_DEVICE); if (dma_mapping_error(dma_dev, src_phys_addr)) { dev_err(dev, "Failed to map source buffer addr\n"); ret = -ENOMEM; goto err_dma_map; } ktime_get_ts64(&start); ret = pci_epf_test_data_transfer(epf_test, phys_addr, src_phys_addr, reg->size, reg->dst_addr, DMA_MEM_TO_DEV); if (ret) dev_err(dev, "Data transfer failed\n"); ktime_get_ts64(&end); dma_unmap_single(dma_dev, src_phys_addr, reg->size, DMA_TO_DEVICE); } else { ktime_get_ts64(&start); memcpy_toio(dst_addr, buf, reg->size); ktime_get_ts64(&end); } pci_epf_test_print_rate(epf_test, "WRITE", reg->size, &start, &end, reg->flags & FLAG_USE_DMA); /* * wait 1ms inorder for the write to complete. Without this delay L3 * error in observed in the host system. */ usleep_range(1000, 2000); err_dma_map: kfree(buf); err_map_addr: pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr); err_addr: pci_epc_mem_free_addr(epc, phys_addr, dst_addr, reg->size); err: if (!ret) reg->status |= STATUS_WRITE_SUCCESS; else reg->status |= STATUS_WRITE_FAIL; } static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test, struct pci_epf_test_reg *reg) { struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; u32 status = reg->status | STATUS_IRQ_RAISED; int count; /* * Set the status before raising the IRQ to ensure that the host sees * the updated value when it gets the IRQ. */ WRITE_ONCE(reg->status, status); switch (reg->irq_type) { case IRQ_TYPE_INTX: pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, PCI_IRQ_INTX, 0); break; case IRQ_TYPE_MSI: count = pci_epc_get_msi(epc, epf->func_no, epf->vfunc_no); if (reg->irq_number > count || count <= 0) { dev_err(dev, "Invalid MSI IRQ number %d / %d\n", reg->irq_number, count); return; } pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, PCI_IRQ_MSI, reg->irq_number); break; case IRQ_TYPE_MSIX: count = pci_epc_get_msix(epc, epf->func_no, epf->vfunc_no); if (reg->irq_number > count || count <= 0) { dev_err(dev, "Invalid MSIX IRQ number %d / %d\n", reg->irq_number, count); return; } pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, PCI_IRQ_MSIX, reg->irq_number); break; default: dev_err(dev, "Failed to raise IRQ, unknown type\n"); break; } } static void pci_epf_test_cmd_handler(struct work_struct *work) { u32 command; struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test, cmd_handler.work); struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; enum pci_barno test_reg_bar = epf_test->test_reg_bar; struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; command = READ_ONCE(reg->command); if (!command) goto reset_handler; WRITE_ONCE(reg->command, 0); WRITE_ONCE(reg->status, 0); if ((READ_ONCE(reg->flags) & FLAG_USE_DMA) && !epf_test->dma_supported) { dev_err(dev, "Cannot transfer data using DMA\n"); goto reset_handler; } if (reg->irq_type > IRQ_TYPE_MSIX) { dev_err(dev, "Failed to detect IRQ type\n"); goto reset_handler; } switch (command) { case COMMAND_RAISE_INTX_IRQ: case COMMAND_RAISE_MSI_IRQ: case COMMAND_RAISE_MSIX_IRQ: pci_epf_test_raise_irq(epf_test, reg); break; case COMMAND_WRITE: pci_epf_test_write(epf_test, reg); pci_epf_test_raise_irq(epf_test, reg); break; case COMMAND_READ: pci_epf_test_read(epf_test, reg); pci_epf_test_raise_irq(epf_test, reg); break; case COMMAND_COPY: pci_epf_test_copy(epf_test, reg); pci_epf_test_raise_irq(epf_test, reg); break; default: dev_err(dev, "Invalid command 0x%x\n", command); break; } reset_handler: queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, msecs_to_jiffies(1)); } static void pci_epf_test_unbind(struct pci_epf *epf) { struct pci_epf_test *epf_test = epf_get_drvdata(epf); struct pci_epc *epc = epf->epc; struct pci_epf_bar *epf_bar; int bar; cancel_delayed_work(&epf_test->cmd_handler); pci_epf_test_clean_dma_chan(epf_test); for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { epf_bar = &epf->bar[bar]; if (epf_test->reg[bar]) { pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no, epf_bar); pci_epf_free_space(epf, epf_test->reg[bar], bar, PRIMARY_INTERFACE); } } } static int pci_epf_test_set_bar(struct pci_epf *epf) { int bar, add; int ret; struct pci_epf_bar *epf_bar; struct pci_epc *epc = epf->epc; struct device *dev = &epf->dev; struct pci_epf_test *epf_test = epf_get_drvdata(epf); enum pci_barno test_reg_bar = epf_test->test_reg_bar; const struct pci_epc_features *epc_features; epc_features = epf_test->epc_features; for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) { epf_bar = &epf->bar[bar]; /* * pci_epc_set_bar() sets PCI_BASE_ADDRESS_MEM_TYPE_64 * if the specific implementation required a 64-bit BAR, * even if we only requested a 32-bit BAR. */ add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1; if (epc_features->bar[bar].type == BAR_RESERVED) continue; ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, epf_bar); if (ret) { pci_epf_free_space(epf, epf_test->reg[bar], bar, PRIMARY_INTERFACE); dev_err(dev, "Failed to set BAR%d\n", bar); if (bar == test_reg_bar) return ret; } } return 0; } static int pci_epf_test_core_init(struct pci_epf *epf) { struct pci_epf_test *epf_test = epf_get_drvdata(epf); struct pci_epf_header *header = epf->header; const struct pci_epc_features *epc_features; struct pci_epc *epc = epf->epc; struct device *dev = &epf->dev; bool msix_capable = false; bool msi_capable = true; int ret; epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no); if (epc_features) { msix_capable = epc_features->msix_capable; msi_capable = epc_features->msi_capable; } if (epf->vfunc_no <= 1) { ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no, header); if (ret) { dev_err(dev, "Configuration header write failed\n"); return ret; } } ret = pci_epf_test_set_bar(epf); if (ret) return ret; if (msi_capable) { ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no, epf->msi_interrupts); if (ret) { dev_err(dev, "MSI configuration failed\n"); return ret; } } if (msix_capable) { ret = pci_epc_set_msix(epc, epf->func_no, epf->vfunc_no, epf->msix_interrupts, epf_test->test_reg_bar, epf_test->msix_table_offset); if (ret) { dev_err(dev, "MSI-X configuration failed\n"); return ret; } } return 0; } static int pci_epf_test_link_up(struct pci_epf *epf) { struct pci_epf_test *epf_test = epf_get_drvdata(epf); queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, msecs_to_jiffies(1)); return 0; } static const struct pci_epc_event_ops pci_epf_test_event_ops = { .core_init = pci_epf_test_core_init, .link_up = pci_epf_test_link_up, }; static int pci_epf_test_alloc_space(struct pci_epf *epf) { struct pci_epf_test *epf_test = epf_get_drvdata(epf); struct device *dev = &epf->dev; struct pci_epf_bar *epf_bar; size_t msix_table_size = 0; size_t test_reg_bar_size; size_t pba_size = 0; bool msix_capable; void *base; int bar, add; enum pci_barno test_reg_bar = epf_test->test_reg_bar; const struct pci_epc_features *epc_features; size_t test_reg_size; epc_features = epf_test->epc_features; test_reg_bar_size = ALIGN(sizeof(struct pci_epf_test_reg), 128); msix_capable = epc_features->msix_capable; if (msix_capable) { msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts; epf_test->msix_table_offset = test_reg_bar_size; /* Align to QWORD or 8 Bytes */ pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8); } test_reg_size = test_reg_bar_size + msix_table_size + pba_size; base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar, epc_features, PRIMARY_INTERFACE); if (!base) { dev_err(dev, "Failed to allocated register space\n"); return -ENOMEM; } epf_test->reg[test_reg_bar] = base; for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) { epf_bar = &epf->bar[bar]; add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1; if (bar == test_reg_bar) continue; if (epc_features->bar[bar].type == BAR_RESERVED) continue; base = pci_epf_alloc_space(epf, bar_size[bar], bar, epc_features, PRIMARY_INTERFACE); if (!base) dev_err(dev, "Failed to allocate space for BAR%d\n", bar); epf_test->reg[bar] = base; } return 0; } static void pci_epf_configure_bar(struct pci_epf *epf, const struct pci_epc_features *epc_features) { struct pci_epf_bar *epf_bar; int i; for (i = 0; i < PCI_STD_NUM_BARS; i++) { epf_bar = &epf->bar[i]; if (epc_features->bar[i].only_64bit) epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64; } } static int pci_epf_test_bind(struct pci_epf *epf) { int ret; struct pci_epf_test *epf_test = epf_get_drvdata(epf); const struct pci_epc_features *epc_features; enum pci_barno test_reg_bar = BAR_0; struct pci_epc *epc = epf->epc; bool linkup_notifier = false; bool core_init_notifier = false; if (WARN_ON_ONCE(!epc)) return -EINVAL; epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no); if (!epc_features) { dev_err(&epf->dev, "epc_features not implemented\n"); return -EOPNOTSUPP; } linkup_notifier = epc_features->linkup_notifier; core_init_notifier = epc_features->core_init_notifier; test_reg_bar = pci_epc_get_first_free_bar(epc_features); if (test_reg_bar < 0) return -EINVAL; pci_epf_configure_bar(epf, epc_features); epf_test->test_reg_bar = test_reg_bar; epf_test->epc_features = epc_features; ret = pci_epf_test_alloc_space(epf); if (ret) return ret; if (!core_init_notifier) { ret = pci_epf_test_core_init(epf); if (ret) return ret; } epf_test->dma_supported = true; ret = pci_epf_test_init_dma_chan(epf_test); if (ret) epf_test->dma_supported = false; if (!linkup_notifier && !core_init_notifier) queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work); return 0; } static const struct pci_epf_device_id pci_epf_test_ids[] = { { .name = "pci_epf_test", }, {}, }; static int pci_epf_test_probe(struct pci_epf *epf, const struct pci_epf_device_id *id) { struct pci_epf_test *epf_test; struct device *dev = &epf->dev; epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL); if (!epf_test) return -ENOMEM; epf->header = &test_header; epf_test->epf = epf; INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler); epf->event_ops = &pci_epf_test_event_ops; epf_set_drvdata(epf, epf_test); return 0; } static const struct pci_epf_ops ops = { .unbind = pci_epf_test_unbind, .bind = pci_epf_test_bind, }; static struct pci_epf_driver test_driver = { .driver.name = "pci_epf_test", .probe = pci_epf_test_probe, .id_table = pci_epf_test_ids, .ops = &ops, .owner = THIS_MODULE, }; static int __init pci_epf_test_init(void) { int ret; kpcitest_workqueue = alloc_workqueue("kpcitest", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); if (!kpcitest_workqueue) { pr_err("Failed to allocate the kpcitest work queue\n"); return -ENOMEM; } ret = pci_epf_register_driver(&test_driver); if (ret) { destroy_workqueue(kpcitest_workqueue); pr_err("Failed to register pci epf test driver --> %d\n", ret); return ret; } return 0; } module_init(pci_epf_test_init); static void __exit pci_epf_test_exit(void) { if (kpcitest_workqueue) destroy_workqueue(kpcitest_workqueue); pci_epf_unregister_driver(&test_driver); } module_exit(pci_epf_test_exit); MODULE_DESCRIPTION("PCI EPF TEST DRIVER"); MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); MODULE_LICENSE("GPL v2"); |