Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *	Intel SMP support routines.
  4 *
  5 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
  6 *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
  7 *      (c) 2002,2003 Andi Kleen, SuSE Labs.
  8 *
  9 *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
 10 */
 11
 12#include <linux/init.h>
 13
 14#include <linux/mm.h>
 15#include <linux/delay.h>
 16#include <linux/spinlock.h>
 17#include <linux/export.h>
 18#include <linux/kernel_stat.h>
 19#include <linux/mc146818rtc.h>
 20#include <linux/cache.h>
 21#include <linux/interrupt.h>
 22#include <linux/cpu.h>
 23#include <linux/gfp.h>
 
 24
 25#include <asm/mtrr.h>
 26#include <asm/tlbflush.h>
 27#include <asm/mmu_context.h>
 28#include <asm/proto.h>
 29#include <asm/apic.h>
 
 
 30#include <asm/nmi.h>
 31#include <asm/mce.h>
 32#include <asm/trace/irq_vectors.h>
 33#include <asm/kexec.h>
 34#include <asm/virtext.h>
 35
 36/*
 37 *	Some notes on x86 processor bugs affecting SMP operation:
 38 *
 39 *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
 40 *	The Linux implications for SMP are handled as follows:
 41 *
 42 *	Pentium III / [Xeon]
 43 *		None of the E1AP-E3AP errata are visible to the user.
 44 *
 45 *	E1AP.	see PII A1AP
 46 *	E2AP.	see PII A2AP
 47 *	E3AP.	see PII A3AP
 48 *
 49 *	Pentium II / [Xeon]
 50 *		None of the A1AP-A3AP errata are visible to the user.
 51 *
 52 *	A1AP.	see PPro 1AP
 53 *	A2AP.	see PPro 2AP
 54 *	A3AP.	see PPro 7AP
 55 *
 56 *	Pentium Pro
 57 *		None of 1AP-9AP errata are visible to the normal user,
 58 *	except occasional delivery of 'spurious interrupt' as trap #15.
 59 *	This is very rare and a non-problem.
 60 *
 61 *	1AP.	Linux maps APIC as non-cacheable
 62 *	2AP.	worked around in hardware
 63 *	3AP.	fixed in C0 and above steppings microcode update.
 64 *		Linux does not use excessive STARTUP_IPIs.
 65 *	4AP.	worked around in hardware
 66 *	5AP.	symmetric IO mode (normal Linux operation) not affected.
 67 *		'noapic' mode has vector 0xf filled out properly.
 68 *	6AP.	'noapic' mode might be affected - fixed in later steppings
 69 *	7AP.	We do not assume writes to the LVT deassering IRQs
 70 *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
 71 *	9AP.	We do not use mixed mode
 72 *
 73 *	Pentium
 74 *		There is a marginal case where REP MOVS on 100MHz SMP
 75 *	machines with B stepping processors can fail. XXX should provide
 76 *	an L1cache=Writethrough or L1cache=off option.
 77 *
 78 *		B stepping CPUs may hang. There are hardware work arounds
 79 *	for this. We warn about it in case your board doesn't have the work
 80 *	arounds. Basically that's so I can tell anyone with a B stepping
 81 *	CPU and SMP problems "tough".
 82 *
 83 *	Specific items [From Pentium Processor Specification Update]
 84 *
 85 *	1AP.	Linux doesn't use remote read
 86 *	2AP.	Linux doesn't trust APIC errors
 87 *	3AP.	We work around this
 88 *	4AP.	Linux never generated 3 interrupts of the same priority
 89 *		to cause a lost local interrupt.
 90 *	5AP.	Remote read is never used
 91 *	6AP.	not affected - worked around in hardware
 92 *	7AP.	not affected - worked around in hardware
 93 *	8AP.	worked around in hardware - we get explicit CS errors if not
 94 *	9AP.	only 'noapic' mode affected. Might generate spurious
 95 *		interrupts, we log only the first one and count the
 96 *		rest silently.
 97 *	10AP.	not affected - worked around in hardware
 98 *	11AP.	Linux reads the APIC between writes to avoid this, as per
 99 *		the documentation. Make sure you preserve this as it affects
100 *		the C stepping chips too.
101 *	12AP.	not affected - worked around in hardware
102 *	13AP.	not affected - worked around in hardware
103 *	14AP.	we always deassert INIT during bootup
104 *	15AP.	not affected - worked around in hardware
105 *	16AP.	not affected - worked around in hardware
106 *	17AP.	not affected - worked around in hardware
107 *	18AP.	not affected - worked around in hardware
108 *	19AP.	not affected - worked around in BIOS
109 *
110 *	If this sounds worrying believe me these bugs are either ___RARE___,
111 *	or are signal timing bugs worked around in hardware and there's
112 *	about nothing of note with C stepping upwards.
113 */
114
115static atomic_t stopping_cpu = ATOMIC_INIT(-1);
116static bool smp_no_nmi_ipi = false;
117
118static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
119{
120	/* We are registered on stopping cpu too, avoid spurious NMI */
121	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
122		return NMI_HANDLED;
123
124	cpu_emergency_vmxoff();
125	stop_this_cpu(NULL);
126
127	return NMI_HANDLED;
128}
129
130/*
131 * this function calls the 'stop' function on all other CPUs in the system.
132 */
133
134asmlinkage __visible void smp_reboot_interrupt(void)
135{
136	ipi_entering_ack_irq();
137	cpu_emergency_vmxoff();
138	stop_this_cpu(NULL);
139	irq_exit();
140}
141
142static int register_stop_handler(void)
143{
144	return register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
145				    NMI_FLAG_FIRST, "smp_stop");
146}
147
148static void native_stop_other_cpus(int wait)
149{
150	unsigned long flags;
151	unsigned long timeout;
152
153	if (reboot_force)
154		return;
155
156	/*
157	 * Use an own vector here because smp_call_function
158	 * does lots of things not suitable in a panic situation.
159	 */
 
 
 
160
161	/*
162	 * We start by using the REBOOT_VECTOR irq.
163	 * The irq is treated as a sync point to allow critical
164	 * regions of code on other cpus to release their spin locks
165	 * and re-enable irqs.  Jumping straight to an NMI might
166	 * accidentally cause deadlocks with further shutdown/panic
167	 * code.  By syncing, we give the cpus up to one second to
168	 * finish their work before we force them off with the NMI.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169	 */
170	if (num_online_cpus() > 1) {
171		/* did someone beat us here? */
172		if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
173			return;
174
175		/* sync above data before sending IRQ */
176		wmb();
177
 
178		apic_send_IPI_allbutself(REBOOT_VECTOR);
179
180		/*
181		 * Don't wait longer than a second for IPI completion. The
182		 * wait request is not checked here because that would
183		 * prevent an NMI shutdown attempt in case that not all
184		 * CPUs reach shutdown state.
185		 */
186		timeout = USEC_PER_SEC;
187		while (num_online_cpus() > 1 && timeout--)
188			udelay(1);
189	}
190
191	/* if the REBOOT_VECTOR didn't work, try with the NMI */
192	if (num_online_cpus() > 1) {
193		/*
194		 * If NMI IPI is enabled, try to register the stop handler
195		 * and send the IPI. In any case try to wait for the other
196		 * CPUs to stop.
197		 */
198		if (!smp_no_nmi_ipi && !register_stop_handler()) {
199			/* Sync above data before sending IRQ */
200			wmb();
201
202			pr_emerg("Shutting down cpus with NMI\n");
203
204			apic_send_IPI_allbutself(NMI_VECTOR);
 
205		}
206		/*
207		 * Don't wait longer than 10 ms if the caller didn't
208		 * reqeust it. If wait is true, the machine hangs here if
209		 * one or more CPUs do not reach shutdown state.
210		 */
211		timeout = USEC_PER_MSEC * 10;
212		while (num_online_cpus() > 1 && (wait || timeout--))
213			udelay(1);
214	}
215
216	local_irq_save(flags);
217	disable_local_APIC();
218	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
219	local_irq_restore(flags);
 
 
 
 
 
 
220}
221
222/*
223 * Reschedule call back. KVM uses this interrupt to force a cpu out of
224 * guest mode
225 */
226__visible void __irq_entry smp_reschedule_interrupt(struct pt_regs *regs)
227{
228	ack_APIC_irq();
 
229	inc_irq_stat(irq_resched_count);
230	kvm_set_cpu_l1tf_flush_l1d();
231
232	if (trace_resched_ipi_enabled()) {
233		/*
234		 * scheduler_ipi() might call irq_enter() as well, but
235		 * nested calls are fine.
236		 */
237		irq_enter();
238		trace_reschedule_entry(RESCHEDULE_VECTOR);
239		scheduler_ipi();
240		trace_reschedule_exit(RESCHEDULE_VECTOR);
241		irq_exit();
242		return;
243	}
244	scheduler_ipi();
 
245}
246
247__visible void __irq_entry smp_call_function_interrupt(struct pt_regs *regs)
248{
249	ipi_entering_ack_irq();
250	trace_call_function_entry(CALL_FUNCTION_VECTOR);
251	inc_irq_stat(irq_call_count);
252	generic_smp_call_function_interrupt();
253	trace_call_function_exit(CALL_FUNCTION_VECTOR);
254	exiting_irq();
255}
256
257__visible void __irq_entry smp_call_function_single_interrupt(struct pt_regs *r)
258{
259	ipi_entering_ack_irq();
260	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
261	inc_irq_stat(irq_call_count);
262	generic_smp_call_function_single_interrupt();
263	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
264	exiting_irq();
265}
266
267static int __init nonmi_ipi_setup(char *str)
268{
269	smp_no_nmi_ipi = true;
270	return 1;
271}
272
273__setup("nonmi_ipi", nonmi_ipi_setup);
274
275struct smp_ops smp_ops = {
276	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
277	.smp_prepare_cpus	= native_smp_prepare_cpus,
278	.smp_cpus_done		= native_smp_cpus_done,
279
280	.stop_other_cpus	= native_stop_other_cpus,
281#if defined(CONFIG_KEXEC_CORE)
282	.crash_stop_other_cpus	= kdump_nmi_shootdown_cpus,
283#endif
284	.smp_send_reschedule	= native_smp_send_reschedule,
285
286	.cpu_up			= native_cpu_up,
287	.cpu_die		= native_cpu_die,
288	.cpu_disable		= native_cpu_disable,
289	.play_dead		= native_play_dead,
290
291	.send_call_func_ipi	= native_send_call_func_ipi,
292	.send_call_func_single_ipi = native_send_call_func_single_ipi,
293};
294EXPORT_SYMBOL_GPL(smp_ops);
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *	Intel SMP support routines.
  4 *
  5 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
  6 *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
  7 *      (c) 2002,2003 Andi Kleen, SuSE Labs.
  8 *
  9 *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
 10 */
 11
 12#include <linux/init.h>
 13
 14#include <linux/mm.h>
 15#include <linux/delay.h>
 16#include <linux/spinlock.h>
 17#include <linux/export.h>
 18#include <linux/kernel_stat.h>
 19#include <linux/mc146818rtc.h>
 20#include <linux/cache.h>
 21#include <linux/interrupt.h>
 22#include <linux/cpu.h>
 23#include <linux/gfp.h>
 24#include <linux/kexec.h>
 25
 26#include <asm/mtrr.h>
 27#include <asm/tlbflush.h>
 28#include <asm/mmu_context.h>
 29#include <asm/proto.h>
 30#include <asm/apic.h>
 31#include <asm/cpu.h>
 32#include <asm/idtentry.h>
 33#include <asm/nmi.h>
 34#include <asm/mce.h>
 35#include <asm/trace/irq_vectors.h>
 36#include <asm/kexec.h>
 37#include <asm/reboot.h>
 38
 39/*
 40 *	Some notes on x86 processor bugs affecting SMP operation:
 41 *
 42 *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
 43 *	The Linux implications for SMP are handled as follows:
 44 *
 45 *	Pentium III / [Xeon]
 46 *		None of the E1AP-E3AP errata are visible to the user.
 47 *
 48 *	E1AP.	see PII A1AP
 49 *	E2AP.	see PII A2AP
 50 *	E3AP.	see PII A3AP
 51 *
 52 *	Pentium II / [Xeon]
 53 *		None of the A1AP-A3AP errata are visible to the user.
 54 *
 55 *	A1AP.	see PPro 1AP
 56 *	A2AP.	see PPro 2AP
 57 *	A3AP.	see PPro 7AP
 58 *
 59 *	Pentium Pro
 60 *		None of 1AP-9AP errata are visible to the normal user,
 61 *	except occasional delivery of 'spurious interrupt' as trap #15.
 62 *	This is very rare and a non-problem.
 63 *
 64 *	1AP.	Linux maps APIC as non-cacheable
 65 *	2AP.	worked around in hardware
 66 *	3AP.	fixed in C0 and above steppings microcode update.
 67 *		Linux does not use excessive STARTUP_IPIs.
 68 *	4AP.	worked around in hardware
 69 *	5AP.	symmetric IO mode (normal Linux operation) not affected.
 70 *		'noapic' mode has vector 0xf filled out properly.
 71 *	6AP.	'noapic' mode might be affected - fixed in later steppings
 72 *	7AP.	We do not assume writes to the LVT deasserting IRQs
 73 *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
 74 *	9AP.	We do not use mixed mode
 75 *
 76 *	Pentium
 77 *		There is a marginal case where REP MOVS on 100MHz SMP
 78 *	machines with B stepping processors can fail. XXX should provide
 79 *	an L1cache=Writethrough or L1cache=off option.
 80 *
 81 *		B stepping CPUs may hang. There are hardware work arounds
 82 *	for this. We warn about it in case your board doesn't have the work
 83 *	arounds. Basically that's so I can tell anyone with a B stepping
 84 *	CPU and SMP problems "tough".
 85 *
 86 *	Specific items [From Pentium Processor Specification Update]
 87 *
 88 *	1AP.	Linux doesn't use remote read
 89 *	2AP.	Linux doesn't trust APIC errors
 90 *	3AP.	We work around this
 91 *	4AP.	Linux never generated 3 interrupts of the same priority
 92 *		to cause a lost local interrupt.
 93 *	5AP.	Remote read is never used
 94 *	6AP.	not affected - worked around in hardware
 95 *	7AP.	not affected - worked around in hardware
 96 *	8AP.	worked around in hardware - we get explicit CS errors if not
 97 *	9AP.	only 'noapic' mode affected. Might generate spurious
 98 *		interrupts, we log only the first one and count the
 99 *		rest silently.
100 *	10AP.	not affected - worked around in hardware
101 *	11AP.	Linux reads the APIC between writes to avoid this, as per
102 *		the documentation. Make sure you preserve this as it affects
103 *		the C stepping chips too.
104 *	12AP.	not affected - worked around in hardware
105 *	13AP.	not affected - worked around in hardware
106 *	14AP.	we always deassert INIT during bootup
107 *	15AP.	not affected - worked around in hardware
108 *	16AP.	not affected - worked around in hardware
109 *	17AP.	not affected - worked around in hardware
110 *	18AP.	not affected - worked around in hardware
111 *	19AP.	not affected - worked around in BIOS
112 *
113 *	If this sounds worrying believe me these bugs are either ___RARE___,
114 *	or are signal timing bugs worked around in hardware and there's
115 *	about nothing of note with C stepping upwards.
116 */
117
118static atomic_t stopping_cpu = ATOMIC_INIT(-1);
119static bool smp_no_nmi_ipi = false;
120
121static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
122{
123	/* We are registered on stopping cpu too, avoid spurious NMI */
124	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
125		return NMI_HANDLED;
126
127	cpu_emergency_disable_virtualization();
128	stop_this_cpu(NULL);
129
130	return NMI_HANDLED;
131}
132
133/*
134 * this function calls the 'stop' function on all other CPUs in the system.
135 */
136DEFINE_IDTENTRY_SYSVEC(sysvec_reboot)
 
137{
138	apic_eoi();
139	cpu_emergency_disable_virtualization();
140	stop_this_cpu(NULL);
 
141}
142
143static int register_stop_handler(void)
144{
145	return register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
146				    NMI_FLAG_FIRST, "smp_stop");
147}
148
149static void native_stop_other_cpus(int wait)
150{
151	unsigned int cpu = smp_processor_id();
152	unsigned long flags, timeout;
153
154	if (reboot_force)
155		return;
156
157	/* Only proceed if this is the first CPU to reach this code */
158	if (atomic_cmpxchg(&stopping_cpu, -1, cpu) != -1)
159		return;
160
161	/* For kexec, ensure that offline CPUs are out of MWAIT and in HLT */
162	if (kexec_in_progress)
163		smp_kick_mwait_play_dead();
164
165	/*
166	 * 1) Send an IPI on the reboot vector to all other CPUs.
167	 *
168	 *    The other CPUs should react on it after leaving critical
169	 *    sections and re-enabling interrupts. They might still hold
170	 *    locks, but there is nothing which can be done about that.
171	 *
172	 * 2) Wait for all other CPUs to report that they reached the
173	 *    HLT loop in stop_this_cpu()
174	 *
175	 * 3) If #2 timed out send an NMI to the CPUs which did not
176	 *    yet report
177	 *
178	 * 4) Wait for all other CPUs to report that they reached the
179	 *    HLT loop in stop_this_cpu()
180	 *
181	 * #3 can obviously race against a CPU reaching the HLT loop late.
182	 * That CPU will have reported already and the "have all CPUs
183	 * reached HLT" condition will be true despite the fact that the
184	 * other CPU is still handling the NMI. Again, there is no
185	 * protection against that as "disabled" APICs still respond to
186	 * NMIs.
187	 */
188	cpumask_copy(&cpus_stop_mask, cpu_online_mask);
189	cpumask_clear_cpu(cpu, &cpus_stop_mask);
 
 
 
 
 
190
191	if (!cpumask_empty(&cpus_stop_mask)) {
192		apic_send_IPI_allbutself(REBOOT_VECTOR);
193
194		/*
195		 * Don't wait longer than a second for IPI completion. The
196		 * wait request is not checked here because that would
197		 * prevent an NMI shutdown attempt in case that not all
198		 * CPUs reach shutdown state.
199		 */
200		timeout = USEC_PER_SEC;
201		while (!cpumask_empty(&cpus_stop_mask) && timeout--)
202			udelay(1);
203	}
204
205	/* if the REBOOT_VECTOR didn't work, try with the NMI */
206	if (!cpumask_empty(&cpus_stop_mask)) {
207		/*
208		 * If NMI IPI is enabled, try to register the stop handler
209		 * and send the IPI. In any case try to wait for the other
210		 * CPUs to stop.
211		 */
212		if (!smp_no_nmi_ipi && !register_stop_handler()) {
 
 
 
213			pr_emerg("Shutting down cpus with NMI\n");
214
215			for_each_cpu(cpu, &cpus_stop_mask)
216				__apic_send_IPI(cpu, NMI_VECTOR);
217		}
218		/*
219		 * Don't wait longer than 10 ms if the caller didn't
220		 * request it. If wait is true, the machine hangs here if
221		 * one or more CPUs do not reach shutdown state.
222		 */
223		timeout = USEC_PER_MSEC * 10;
224		while (!cpumask_empty(&cpus_stop_mask) && (wait || timeout--))
225			udelay(1);
226	}
227
228	local_irq_save(flags);
229	disable_local_APIC();
230	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
231	local_irq_restore(flags);
232
233	/*
234	 * Ensure that the cpus_stop_mask cache lines are invalidated on
235	 * the other CPUs. See comment vs. SME in stop_this_cpu().
236	 */
237	cpumask_clear(&cpus_stop_mask);
238}
239
240/*
241 * Reschedule call back. KVM uses this interrupt to force a cpu out of
242 * guest mode.
243 */
244DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_reschedule_ipi)
245{
246	apic_eoi();
247	trace_reschedule_entry(RESCHEDULE_VECTOR);
248	inc_irq_stat(irq_resched_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249	scheduler_ipi();
250	trace_reschedule_exit(RESCHEDULE_VECTOR);
251}
252
253DEFINE_IDTENTRY_SYSVEC(sysvec_call_function)
254{
255	apic_eoi();
256	trace_call_function_entry(CALL_FUNCTION_VECTOR);
257	inc_irq_stat(irq_call_count);
258	generic_smp_call_function_interrupt();
259	trace_call_function_exit(CALL_FUNCTION_VECTOR);
 
260}
261
262DEFINE_IDTENTRY_SYSVEC(sysvec_call_function_single)
263{
264	apic_eoi();
265	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
266	inc_irq_stat(irq_call_count);
267	generic_smp_call_function_single_interrupt();
268	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
 
269}
270
271static int __init nonmi_ipi_setup(char *str)
272{
273	smp_no_nmi_ipi = true;
274	return 1;
275}
276
277__setup("nonmi_ipi", nonmi_ipi_setup);
278
279struct smp_ops smp_ops = {
280	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
281	.smp_prepare_cpus	= native_smp_prepare_cpus,
282	.smp_cpus_done		= native_smp_cpus_done,
283
284	.stop_other_cpus	= native_stop_other_cpus,
285#if defined(CONFIG_KEXEC_CORE)
286	.crash_stop_other_cpus	= kdump_nmi_shootdown_cpus,
287#endif
288	.smp_send_reschedule	= native_smp_send_reschedule,
289
290	.kick_ap_alive		= native_kick_ap,
 
291	.cpu_disable		= native_cpu_disable,
292	.play_dead		= native_play_dead,
293
294	.send_call_func_ipi	= native_send_call_func_ipi,
295	.send_call_func_single_ipi = native_send_call_func_single_ipi,
296};
297EXPORT_SYMBOL_GPL(smp_ops);