Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *	Intel SMP support routines.
  4 *
  5 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
  6 *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
  7 *      (c) 2002,2003 Andi Kleen, SuSE Labs.
  8 *
  9 *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
 
 
 
 10 */
 11
 12#include <linux/init.h>
 13
 14#include <linux/mm.h>
 15#include <linux/delay.h>
 16#include <linux/spinlock.h>
 17#include <linux/export.h>
 18#include <linux/kernel_stat.h>
 19#include <linux/mc146818rtc.h>
 20#include <linux/cache.h>
 21#include <linux/interrupt.h>
 22#include <linux/cpu.h>
 23#include <linux/gfp.h>
 24
 25#include <asm/mtrr.h>
 26#include <asm/tlbflush.h>
 27#include <asm/mmu_context.h>
 28#include <asm/proto.h>
 29#include <asm/apic.h>
 30#include <asm/nmi.h>
 31#include <asm/mce.h>
 32#include <asm/trace/irq_vectors.h>
 33#include <asm/kexec.h>
 34#include <asm/virtext.h>
 35
 36/*
 37 *	Some notes on x86 processor bugs affecting SMP operation:
 38 *
 39 *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
 40 *	The Linux implications for SMP are handled as follows:
 41 *
 42 *	Pentium III / [Xeon]
 43 *		None of the E1AP-E3AP errata are visible to the user.
 44 *
 45 *	E1AP.	see PII A1AP
 46 *	E2AP.	see PII A2AP
 47 *	E3AP.	see PII A3AP
 48 *
 49 *	Pentium II / [Xeon]
 50 *		None of the A1AP-A3AP errata are visible to the user.
 51 *
 52 *	A1AP.	see PPro 1AP
 53 *	A2AP.	see PPro 2AP
 54 *	A3AP.	see PPro 7AP
 55 *
 56 *	Pentium Pro
 57 *		None of 1AP-9AP errata are visible to the normal user,
 58 *	except occasional delivery of 'spurious interrupt' as trap #15.
 59 *	This is very rare and a non-problem.
 60 *
 61 *	1AP.	Linux maps APIC as non-cacheable
 62 *	2AP.	worked around in hardware
 63 *	3AP.	fixed in C0 and above steppings microcode update.
 64 *		Linux does not use excessive STARTUP_IPIs.
 65 *	4AP.	worked around in hardware
 66 *	5AP.	symmetric IO mode (normal Linux operation) not affected.
 67 *		'noapic' mode has vector 0xf filled out properly.
 68 *	6AP.	'noapic' mode might be affected - fixed in later steppings
 69 *	7AP.	We do not assume writes to the LVT deassering IRQs
 70 *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
 71 *	9AP.	We do not use mixed mode
 72 *
 73 *	Pentium
 74 *		There is a marginal case where REP MOVS on 100MHz SMP
 75 *	machines with B stepping processors can fail. XXX should provide
 76 *	an L1cache=Writethrough or L1cache=off option.
 77 *
 78 *		B stepping CPUs may hang. There are hardware work arounds
 79 *	for this. We warn about it in case your board doesn't have the work
 80 *	arounds. Basically that's so I can tell anyone with a B stepping
 81 *	CPU and SMP problems "tough".
 82 *
 83 *	Specific items [From Pentium Processor Specification Update]
 84 *
 85 *	1AP.	Linux doesn't use remote read
 86 *	2AP.	Linux doesn't trust APIC errors
 87 *	3AP.	We work around this
 88 *	4AP.	Linux never generated 3 interrupts of the same priority
 89 *		to cause a lost local interrupt.
 90 *	5AP.	Remote read is never used
 91 *	6AP.	not affected - worked around in hardware
 92 *	7AP.	not affected - worked around in hardware
 93 *	8AP.	worked around in hardware - we get explicit CS errors if not
 94 *	9AP.	only 'noapic' mode affected. Might generate spurious
 95 *		interrupts, we log only the first one and count the
 96 *		rest silently.
 97 *	10AP.	not affected - worked around in hardware
 98 *	11AP.	Linux reads the APIC between writes to avoid this, as per
 99 *		the documentation. Make sure you preserve this as it affects
100 *		the C stepping chips too.
101 *	12AP.	not affected - worked around in hardware
102 *	13AP.	not affected - worked around in hardware
103 *	14AP.	we always deassert INIT during bootup
104 *	15AP.	not affected - worked around in hardware
105 *	16AP.	not affected - worked around in hardware
106 *	17AP.	not affected - worked around in hardware
107 *	18AP.	not affected - worked around in hardware
108 *	19AP.	not affected - worked around in BIOS
109 *
110 *	If this sounds worrying believe me these bugs are either ___RARE___,
111 *	or are signal timing bugs worked around in hardware and there's
112 *	about nothing of note with C stepping upwards.
113 */
114
115static atomic_t stopping_cpu = ATOMIC_INIT(-1);
116static bool smp_no_nmi_ipi = false;
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
119{
120	/* We are registered on stopping cpu too, avoid spurious NMI */
121	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
122		return NMI_HANDLED;
123
124	cpu_emergency_vmxoff();
125	stop_this_cpu(NULL);
126
127	return NMI_HANDLED;
128}
129
130/*
131 * this function calls the 'stop' function on all other CPUs in the system.
132 */
133
134asmlinkage __visible void smp_reboot_interrupt(void)
135{
136	ipi_entering_ack_irq();
137	cpu_emergency_vmxoff();
138	stop_this_cpu(NULL);
139	irq_exit();
140}
141
142static int register_stop_handler(void)
143{
144	return register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
145				    NMI_FLAG_FIRST, "smp_stop");
146}
147
148static void native_stop_other_cpus(int wait)
149{
150	unsigned long flags;
151	unsigned long timeout;
152
153	if (reboot_force)
154		return;
155
156	/*
157	 * Use an own vector here because smp_call_function
158	 * does lots of things not suitable in a panic situation.
159	 */
160
161	/*
162	 * We start by using the REBOOT_VECTOR irq.
163	 * The irq is treated as a sync point to allow critical
164	 * regions of code on other cpus to release their spin locks
165	 * and re-enable irqs.  Jumping straight to an NMI might
166	 * accidentally cause deadlocks with further shutdown/panic
167	 * code.  By syncing, we give the cpus up to one second to
168	 * finish their work before we force them off with the NMI.
169	 */
170	if (num_online_cpus() > 1) {
171		/* did someone beat us here? */
172		if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
173			return;
174
175		/* sync above data before sending IRQ */
176		wmb();
177
178		apic_send_IPI_allbutself(REBOOT_VECTOR);
179
180		/*
181		 * Don't wait longer than a second for IPI completion. The
182		 * wait request is not checked here because that would
183		 * prevent an NMI shutdown attempt in case that not all
184		 * CPUs reach shutdown state.
185		 */
186		timeout = USEC_PER_SEC;
187		while (num_online_cpus() > 1 && timeout--)
188			udelay(1);
189	}
190
191	/* if the REBOOT_VECTOR didn't work, try with the NMI */
192	if (num_online_cpus() > 1) {
193		/*
194		 * If NMI IPI is enabled, try to register the stop handler
195		 * and send the IPI. In any case try to wait for the other
196		 * CPUs to stop.
197		 */
198		if (!smp_no_nmi_ipi && !register_stop_handler()) {
199			/* Sync above data before sending IRQ */
200			wmb();
 
 
201
202			pr_emerg("Shutting down cpus with NMI\n");
203
204			apic_send_IPI_allbutself(NMI_VECTOR);
205		}
206		/*
207		 * Don't wait longer than 10 ms if the caller didn't
208		 * reqeust it. If wait is true, the machine hangs here if
209		 * one or more CPUs do not reach shutdown state.
210		 */
211		timeout = USEC_PER_MSEC * 10;
212		while (num_online_cpus() > 1 && (wait || timeout--))
213			udelay(1);
214	}
215
 
216	local_irq_save(flags);
217	disable_local_APIC();
218	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
219	local_irq_restore(flags);
220}
221
222/*
223 * Reschedule call back. KVM uses this interrupt to force a cpu out of
224 * guest mode
225 */
226__visible void __irq_entry smp_reschedule_interrupt(struct pt_regs *regs)
227{
228	ack_APIC_irq();
229	inc_irq_stat(irq_resched_count);
230	kvm_set_cpu_l1tf_flush_l1d();
231
232	if (trace_resched_ipi_enabled()) {
233		/*
234		 * scheduler_ipi() might call irq_enter() as well, but
235		 * nested calls are fine.
236		 */
237		irq_enter();
238		trace_reschedule_entry(RESCHEDULE_VECTOR);
239		scheduler_ipi();
240		trace_reschedule_exit(RESCHEDULE_VECTOR);
241		irq_exit();
242		return;
243	}
244	scheduler_ipi();
245}
246
247__visible void __irq_entry smp_call_function_interrupt(struct pt_regs *regs)
248{
249	ipi_entering_ack_irq();
250	trace_call_function_entry(CALL_FUNCTION_VECTOR);
251	inc_irq_stat(irq_call_count);
252	generic_smp_call_function_interrupt();
253	trace_call_function_exit(CALL_FUNCTION_VECTOR);
254	exiting_irq();
255}
256
257__visible void __irq_entry smp_call_function_single_interrupt(struct pt_regs *r)
258{
259	ipi_entering_ack_irq();
260	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
261	inc_irq_stat(irq_call_count);
262	generic_smp_call_function_single_interrupt();
263	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
264	exiting_irq();
265}
266
267static int __init nonmi_ipi_setup(char *str)
268{
269	smp_no_nmi_ipi = true;
270	return 1;
271}
272
273__setup("nonmi_ipi", nonmi_ipi_setup);
274
275struct smp_ops smp_ops = {
276	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
277	.smp_prepare_cpus	= native_smp_prepare_cpus,
278	.smp_cpus_done		= native_smp_cpus_done,
279
280	.stop_other_cpus	= native_stop_other_cpus,
281#if defined(CONFIG_KEXEC_CORE)
282	.crash_stop_other_cpus	= kdump_nmi_shootdown_cpus,
283#endif
284	.smp_send_reschedule	= native_smp_send_reschedule,
285
286	.cpu_up			= native_cpu_up,
287	.cpu_die		= native_cpu_die,
288	.cpu_disable		= native_cpu_disable,
289	.play_dead		= native_play_dead,
290
291	.send_call_func_ipi	= native_send_call_func_ipi,
292	.send_call_func_single_ipi = native_send_call_func_single_ipi,
293};
294EXPORT_SYMBOL_GPL(smp_ops);
v4.17
 
  1/*
  2 *	Intel SMP support routines.
  3 *
  4 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
  5 *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
  6 *      (c) 2002,2003 Andi Kleen, SuSE Labs.
  7 *
  8 *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
  9 *
 10 *	This code is released under the GNU General Public License version 2 or
 11 *	later.
 12 */
 13
 14#include <linux/init.h>
 15
 16#include <linux/mm.h>
 17#include <linux/delay.h>
 18#include <linux/spinlock.h>
 19#include <linux/export.h>
 20#include <linux/kernel_stat.h>
 21#include <linux/mc146818rtc.h>
 22#include <linux/cache.h>
 23#include <linux/interrupt.h>
 24#include <linux/cpu.h>
 25#include <linux/gfp.h>
 26
 27#include <asm/mtrr.h>
 28#include <asm/tlbflush.h>
 29#include <asm/mmu_context.h>
 30#include <asm/proto.h>
 31#include <asm/apic.h>
 32#include <asm/nmi.h>
 33#include <asm/mce.h>
 34#include <asm/trace/irq_vectors.h>
 35#include <asm/kexec.h>
 36#include <asm/virtext.h>
 37
 38/*
 39 *	Some notes on x86 processor bugs affecting SMP operation:
 40 *
 41 *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
 42 *	The Linux implications for SMP are handled as follows:
 43 *
 44 *	Pentium III / [Xeon]
 45 *		None of the E1AP-E3AP errata are visible to the user.
 46 *
 47 *	E1AP.	see PII A1AP
 48 *	E2AP.	see PII A2AP
 49 *	E3AP.	see PII A3AP
 50 *
 51 *	Pentium II / [Xeon]
 52 *		None of the A1AP-A3AP errata are visible to the user.
 53 *
 54 *	A1AP.	see PPro 1AP
 55 *	A2AP.	see PPro 2AP
 56 *	A3AP.	see PPro 7AP
 57 *
 58 *	Pentium Pro
 59 *		None of 1AP-9AP errata are visible to the normal user,
 60 *	except occasional delivery of 'spurious interrupt' as trap #15.
 61 *	This is very rare and a non-problem.
 62 *
 63 *	1AP.	Linux maps APIC as non-cacheable
 64 *	2AP.	worked around in hardware
 65 *	3AP.	fixed in C0 and above steppings microcode update.
 66 *		Linux does not use excessive STARTUP_IPIs.
 67 *	4AP.	worked around in hardware
 68 *	5AP.	symmetric IO mode (normal Linux operation) not affected.
 69 *		'noapic' mode has vector 0xf filled out properly.
 70 *	6AP.	'noapic' mode might be affected - fixed in later steppings
 71 *	7AP.	We do not assume writes to the LVT deassering IRQs
 72 *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
 73 *	9AP.	We do not use mixed mode
 74 *
 75 *	Pentium
 76 *		There is a marginal case where REP MOVS on 100MHz SMP
 77 *	machines with B stepping processors can fail. XXX should provide
 78 *	an L1cache=Writethrough or L1cache=off option.
 79 *
 80 *		B stepping CPUs may hang. There are hardware work arounds
 81 *	for this. We warn about it in case your board doesn't have the work
 82 *	arounds. Basically that's so I can tell anyone with a B stepping
 83 *	CPU and SMP problems "tough".
 84 *
 85 *	Specific items [From Pentium Processor Specification Update]
 86 *
 87 *	1AP.	Linux doesn't use remote read
 88 *	2AP.	Linux doesn't trust APIC errors
 89 *	3AP.	We work around this
 90 *	4AP.	Linux never generated 3 interrupts of the same priority
 91 *		to cause a lost local interrupt.
 92 *	5AP.	Remote read is never used
 93 *	6AP.	not affected - worked around in hardware
 94 *	7AP.	not affected - worked around in hardware
 95 *	8AP.	worked around in hardware - we get explicit CS errors if not
 96 *	9AP.	only 'noapic' mode affected. Might generate spurious
 97 *		interrupts, we log only the first one and count the
 98 *		rest silently.
 99 *	10AP.	not affected - worked around in hardware
100 *	11AP.	Linux reads the APIC between writes to avoid this, as per
101 *		the documentation. Make sure you preserve this as it affects
102 *		the C stepping chips too.
103 *	12AP.	not affected - worked around in hardware
104 *	13AP.	not affected - worked around in hardware
105 *	14AP.	we always deassert INIT during bootup
106 *	15AP.	not affected - worked around in hardware
107 *	16AP.	not affected - worked around in hardware
108 *	17AP.	not affected - worked around in hardware
109 *	18AP.	not affected - worked around in hardware
110 *	19AP.	not affected - worked around in BIOS
111 *
112 *	If this sounds worrying believe me these bugs are either ___RARE___,
113 *	or are signal timing bugs worked around in hardware and there's
114 *	about nothing of note with C stepping upwards.
115 */
116
117static atomic_t stopping_cpu = ATOMIC_INIT(-1);
118static bool smp_no_nmi_ipi = false;
119
120/*
121 * this function sends a 'reschedule' IPI to another CPU.
122 * it goes straight through and wastes no time serializing
123 * anything. Worst case is that we lose a reschedule ...
124 */
125static void native_smp_send_reschedule(int cpu)
126{
127	if (unlikely(cpu_is_offline(cpu))) {
128		WARN(1, "sched: Unexpected reschedule of offline CPU#%d!\n", cpu);
129		return;
130	}
131	apic->send_IPI(cpu, RESCHEDULE_VECTOR);
132}
133
134void native_send_call_func_single_ipi(int cpu)
135{
136	apic->send_IPI(cpu, CALL_FUNCTION_SINGLE_VECTOR);
137}
138
139void native_send_call_func_ipi(const struct cpumask *mask)
140{
141	cpumask_var_t allbutself;
142
143	if (!alloc_cpumask_var(&allbutself, GFP_ATOMIC)) {
144		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
145		return;
146	}
147
148	cpumask_copy(allbutself, cpu_online_mask);
149	cpumask_clear_cpu(smp_processor_id(), allbutself);
150
151	if (cpumask_equal(mask, allbutself) &&
152	    cpumask_equal(cpu_online_mask, cpu_callout_mask))
153		apic->send_IPI_allbutself(CALL_FUNCTION_VECTOR);
154	else
155		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
156
157	free_cpumask_var(allbutself);
158}
159
160static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
161{
162	/* We are registered on stopping cpu too, avoid spurious NMI */
163	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
164		return NMI_HANDLED;
165
166	cpu_emergency_vmxoff();
167	stop_this_cpu(NULL);
168
169	return NMI_HANDLED;
170}
171
172/*
173 * this function calls the 'stop' function on all other CPUs in the system.
174 */
175
176asmlinkage __visible void smp_reboot_interrupt(void)
177{
178	ipi_entering_ack_irq();
179	cpu_emergency_vmxoff();
180	stop_this_cpu(NULL);
181	irq_exit();
182}
183
 
 
 
 
 
 
184static void native_stop_other_cpus(int wait)
185{
186	unsigned long flags;
187	unsigned long timeout;
188
189	if (reboot_force)
190		return;
191
192	/*
193	 * Use an own vector here because smp_call_function
194	 * does lots of things not suitable in a panic situation.
195	 */
196
197	/*
198	 * We start by using the REBOOT_VECTOR irq.
199	 * The irq is treated as a sync point to allow critical
200	 * regions of code on other cpus to release their spin locks
201	 * and re-enable irqs.  Jumping straight to an NMI might
202	 * accidentally cause deadlocks with further shutdown/panic
203	 * code.  By syncing, we give the cpus up to one second to
204	 * finish their work before we force them off with the NMI.
205	 */
206	if (num_online_cpus() > 1) {
207		/* did someone beat us here? */
208		if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
209			return;
210
211		/* sync above data before sending IRQ */
212		wmb();
213
214		apic->send_IPI_allbutself(REBOOT_VECTOR);
215
216		/*
217		 * Don't wait longer than a second if the caller
218		 * didn't ask us to wait.
 
 
219		 */
220		timeout = USEC_PER_SEC;
221		while (num_online_cpus() > 1 && (wait || timeout--))
222			udelay(1);
223	}
224	
225	/* if the REBOOT_VECTOR didn't work, try with the NMI */
226	if ((num_online_cpus() > 1) && (!smp_no_nmi_ipi))  {
227		if (register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
228					 NMI_FLAG_FIRST, "smp_stop"))
229			/* Note: we ignore failures here */
230			/* Hope the REBOOT_IRQ is good enough */
231			goto finish;
232
233		/* sync above data before sending IRQ */
234		wmb();
235
236		pr_emerg("Shutting down cpus with NMI\n");
237
238		apic->send_IPI_allbutself(NMI_VECTOR);
239
 
 
240		/*
241		 * Don't wait longer than a 10 ms if the caller
242		 * didn't ask us to wait.
 
243		 */
244		timeout = USEC_PER_MSEC * 10;
245		while (num_online_cpus() > 1 && (wait || timeout--))
246			udelay(1);
247	}
248
249finish:
250	local_irq_save(flags);
251	disable_local_APIC();
252	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
253	local_irq_restore(flags);
254}
255
256/*
257 * Reschedule call back. KVM uses this interrupt to force a cpu out of
258 * guest mode
259 */
260__visible void __irq_entry smp_reschedule_interrupt(struct pt_regs *regs)
261{
262	ack_APIC_irq();
263	inc_irq_stat(irq_resched_count);
 
264
265	if (trace_resched_ipi_enabled()) {
266		/*
267		 * scheduler_ipi() might call irq_enter() as well, but
268		 * nested calls are fine.
269		 */
270		irq_enter();
271		trace_reschedule_entry(RESCHEDULE_VECTOR);
272		scheduler_ipi();
273		trace_reschedule_exit(RESCHEDULE_VECTOR);
274		irq_exit();
275		return;
276	}
277	scheduler_ipi();
278}
279
280__visible void __irq_entry smp_call_function_interrupt(struct pt_regs *regs)
281{
282	ipi_entering_ack_irq();
283	trace_call_function_entry(CALL_FUNCTION_VECTOR);
284	inc_irq_stat(irq_call_count);
285	generic_smp_call_function_interrupt();
286	trace_call_function_exit(CALL_FUNCTION_VECTOR);
287	exiting_irq();
288}
289
290__visible void __irq_entry smp_call_function_single_interrupt(struct pt_regs *r)
291{
292	ipi_entering_ack_irq();
293	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
294	inc_irq_stat(irq_call_count);
295	generic_smp_call_function_single_interrupt();
296	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
297	exiting_irq();
298}
299
300static int __init nonmi_ipi_setup(char *str)
301{
302	smp_no_nmi_ipi = true;
303	return 1;
304}
305
306__setup("nonmi_ipi", nonmi_ipi_setup);
307
308struct smp_ops smp_ops = {
309	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
310	.smp_prepare_cpus	= native_smp_prepare_cpus,
311	.smp_cpus_done		= native_smp_cpus_done,
312
313	.stop_other_cpus	= native_stop_other_cpus,
314#if defined(CONFIG_KEXEC_CORE)
315	.crash_stop_other_cpus	= kdump_nmi_shootdown_cpus,
316#endif
317	.smp_send_reschedule	= native_smp_send_reschedule,
318
319	.cpu_up			= native_cpu_up,
320	.cpu_die		= native_cpu_die,
321	.cpu_disable		= native_cpu_disable,
322	.play_dead		= native_play_dead,
323
324	.send_call_func_ipi	= native_send_call_func_ipi,
325	.send_call_func_single_ipi = native_send_call_func_single_ipi,
326};
327EXPORT_SYMBOL_GPL(smp_ops);