Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Low level x86 E820 memory map handling functions.
   4 *
   5 * The firmware and bootloader passes us the "E820 table", which is the primary
   6 * physical memory layout description available about x86 systems.
   7 *
   8 * The kernel takes the E820 memory layout and optionally modifies it with
   9 * quirks and other tweaks, and feeds that into the generic Linux memory
  10 * allocation code routines via a platform independent interface (memblock, etc.).
  11 */
  12#include <linux/crash_dump.h>
  13#include <linux/memblock.h>
  14#include <linux/suspend.h>
  15#include <linux/acpi.h>
  16#include <linux/firmware-map.h>
  17#include <linux/sort.h>
  18#include <linux/memory_hotplug.h>
  19
  20#include <asm/e820/api.h>
  21#include <asm/setup.h>
  22
  23/*
  24 * We organize the E820 table into three main data structures:
  25 *
  26 * - 'e820_table_firmware': the original firmware version passed to us by the
  27 *   bootloader - not modified by the kernel. It is composed of two parts:
  28 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
  29 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
  30 *
  31 *       - inform the user about the firmware's notion of memory layout
  32 *         via /sys/firmware/memmap
  33 *
  34 *       - the hibernation code uses it to generate a kernel-independent MD5
  35 *         fingerprint of the physical memory layout of a system.
  36 *
  37 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
  38 *   passed to us by the bootloader - the major difference between
  39 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
  40 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
  41 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
  42 *   might also be modified by the kexec itself to fake a mptable.
  43 *   We use this to:
  44 *
  45 *       - kexec, which is a bootloader in disguise, uses the original E820
  46 *         layout to pass to the kexec-ed kernel. This way the original kernel
  47 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
  48 *         can have access to full memory - etc.
  49 *
  50 * - 'e820_table': this is the main E820 table that is massaged by the
  51 *   low level x86 platform code, or modified by boot parameters, before
  52 *   passed on to higher level MM layers.
  53 *
  54 * Once the E820 map has been converted to the standard Linux memory layout
  55 * information its role stops - modifying it has no effect and does not get
  56 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
  57 * specific memory layout data during early bootup.
  58 */
  59static struct e820_table e820_table_init		__initdata;
  60static struct e820_table e820_table_kexec_init		__initdata;
  61static struct e820_table e820_table_firmware_init	__initdata;
  62
  63struct e820_table *e820_table __refdata			= &e820_table_init;
  64struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
  65struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
  66
  67/* For PCI or other memory-mapped resources */
  68unsigned long pci_mem_start = 0xaeedbabe;
  69#ifdef CONFIG_PCI
  70EXPORT_SYMBOL(pci_mem_start);
  71#endif
  72
  73/*
  74 * This function checks if any part of the range <start,end> is mapped
  75 * with type.
  76 */
  77static bool _e820__mapped_any(struct e820_table *table,
  78			      u64 start, u64 end, enum e820_type type)
  79{
  80	int i;
  81
  82	for (i = 0; i < table->nr_entries; i++) {
  83		struct e820_entry *entry = &table->entries[i];
  84
  85		if (type && entry->type != type)
  86			continue;
  87		if (entry->addr >= end || entry->addr + entry->size <= start)
  88			continue;
  89		return true;
  90	}
  91	return false;
  92}
  93
  94bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
  95{
  96	return _e820__mapped_any(e820_table_firmware, start, end, type);
  97}
  98EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
  99
 100bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
 101{
 102	return _e820__mapped_any(e820_table, start, end, type);
 103}
 104EXPORT_SYMBOL_GPL(e820__mapped_any);
 105
 106/*
 107 * This function checks if the entire <start,end> range is mapped with 'type'.
 108 *
 109 * Note: this function only works correctly once the E820 table is sorted and
 110 * not-overlapping (at least for the range specified), which is the case normally.
 111 */
 112static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
 113					     enum e820_type type)
 114{
 115	int i;
 116
 117	for (i = 0; i < e820_table->nr_entries; i++) {
 118		struct e820_entry *entry = &e820_table->entries[i];
 119
 120		if (type && entry->type != type)
 121			continue;
 122
 123		/* Is the region (part) in overlap with the current region? */
 124		if (entry->addr >= end || entry->addr + entry->size <= start)
 125			continue;
 126
 127		/*
 128		 * If the region is at the beginning of <start,end> we move
 129		 * 'start' to the end of the region since it's ok until there
 130		 */
 131		if (entry->addr <= start)
 132			start = entry->addr + entry->size;
 133
 134		/*
 135		 * If 'start' is now at or beyond 'end', we're done, full
 136		 * coverage of the desired range exists:
 137		 */
 138		if (start >= end)
 139			return entry;
 140	}
 141
 142	return NULL;
 143}
 144
 145/*
 146 * This function checks if the entire range <start,end> is mapped with type.
 147 */
 148bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
 149{
 150	return __e820__mapped_all(start, end, type);
 151}
 152
 153/*
 154 * This function returns the type associated with the range <start,end>.
 155 */
 156int e820__get_entry_type(u64 start, u64 end)
 157{
 158	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
 159
 160	return entry ? entry->type : -EINVAL;
 161}
 162
 163/*
 164 * Add a memory region to the kernel E820 map.
 165 */
 166static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
 167{
 168	int x = table->nr_entries;
 169
 170	if (x >= ARRAY_SIZE(table->entries)) {
 171		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
 172		       start, start + size - 1);
 173		return;
 174	}
 175
 176	table->entries[x].addr = start;
 177	table->entries[x].size = size;
 178	table->entries[x].type = type;
 179	table->nr_entries++;
 180}
 181
 182void __init e820__range_add(u64 start, u64 size, enum e820_type type)
 183{
 184	__e820__range_add(e820_table, start, size, type);
 185}
 186
 187static void __init e820_print_type(enum e820_type type)
 188{
 189	switch (type) {
 190	case E820_TYPE_RAM:		/* Fall through: */
 191	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
 192	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
 
 193	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
 194	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
 195	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
 196	case E820_TYPE_PMEM:		/* Fall through: */
 197	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
 198	default:			pr_cont("type %u", type);		break;
 199	}
 200}
 201
 202void __init e820__print_table(char *who)
 203{
 204	int i;
 205
 206	for (i = 0; i < e820_table->nr_entries; i++) {
 207		pr_info("%s: [mem %#018Lx-%#018Lx] ",
 208			who,
 209			e820_table->entries[i].addr,
 210			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
 211
 212		e820_print_type(e820_table->entries[i].type);
 213		pr_cont("\n");
 214	}
 215}
 216
 217/*
 218 * Sanitize an E820 map.
 219 *
 220 * Some E820 layouts include overlapping entries. The following
 221 * replaces the original E820 map with a new one, removing overlaps,
 222 * and resolving conflicting memory types in favor of highest
 223 * numbered type.
 224 *
 225 * The input parameter 'entries' points to an array of 'struct
 226 * e820_entry' which on entry has elements in the range [0, *nr_entries)
 227 * valid, and which has space for up to max_nr_entries entries.
 228 * On return, the resulting sanitized E820 map entries will be in
 229 * overwritten in the same location, starting at 'entries'.
 230 *
 231 * The integer pointed to by nr_entries must be valid on entry (the
 232 * current number of valid entries located at 'entries'). If the
 233 * sanitizing succeeds the *nr_entries will be updated with the new
 234 * number of valid entries (something no more than max_nr_entries).
 235 *
 236 * The return value from e820__update_table() is zero if it
 237 * successfully 'sanitized' the map entries passed in, and is -1
 238 * if it did nothing, which can happen if either of (1) it was
 239 * only passed one map entry, or (2) any of the input map entries
 240 * were invalid (start + size < start, meaning that the size was
 241 * so big the described memory range wrapped around through zero.)
 242 *
 243 *	Visually we're performing the following
 244 *	(1,2,3,4 = memory types)...
 245 *
 246 *	Sample memory map (w/overlaps):
 247 *	   ____22__________________
 248 *	   ______________________4_
 249 *	   ____1111________________
 250 *	   _44_____________________
 251 *	   11111111________________
 252 *	   ____________________33__
 253 *	   ___________44___________
 254 *	   __________33333_________
 255 *	   ______________22________
 256 *	   ___________________2222_
 257 *	   _________111111111______
 258 *	   _____________________11_
 259 *	   _________________4______
 260 *
 261 *	Sanitized equivalent (no overlap):
 262 *	   1_______________________
 263 *	   _44_____________________
 264 *	   ___1____________________
 265 *	   ____22__________________
 266 *	   ______11________________
 267 *	   _________1______________
 268 *	   __________3_____________
 269 *	   ___________44___________
 270 *	   _____________33_________
 271 *	   _______________2________
 272 *	   ________________1_______
 273 *	   _________________4______
 274 *	   ___________________2____
 275 *	   ____________________33__
 276 *	   ______________________4_
 277 */
 278struct change_member {
 279	/* Pointer to the original entry: */
 280	struct e820_entry	*entry;
 281	/* Address for this change point: */
 282	unsigned long long	addr;
 283};
 284
 285static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
 286static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
 287static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
 288static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
 289
 290static int __init cpcompare(const void *a, const void *b)
 291{
 292	struct change_member * const *app = a, * const *bpp = b;
 293	const struct change_member *ap = *app, *bp = *bpp;
 294
 295	/*
 296	 * Inputs are pointers to two elements of change_point[].  If their
 297	 * addresses are not equal, their difference dominates.  If the addresses
 298	 * are equal, then consider one that represents the end of its region
 299	 * to be greater than one that does not.
 300	 */
 301	if (ap->addr != bp->addr)
 302		return ap->addr > bp->addr ? 1 : -1;
 303
 304	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
 305}
 306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307int __init e820__update_table(struct e820_table *table)
 308{
 309	struct e820_entry *entries = table->entries;
 310	u32 max_nr_entries = ARRAY_SIZE(table->entries);
 311	enum e820_type current_type, last_type;
 312	unsigned long long last_addr;
 313	u32 new_nr_entries, overlap_entries;
 314	u32 i, chg_idx, chg_nr;
 315
 316	/* If there's only one memory region, don't bother: */
 317	if (table->nr_entries < 2)
 318		return -1;
 319
 320	BUG_ON(table->nr_entries > max_nr_entries);
 321
 322	/* Bail out if we find any unreasonable addresses in the map: */
 323	for (i = 0; i < table->nr_entries; i++) {
 324		if (entries[i].addr + entries[i].size < entries[i].addr)
 325			return -1;
 326	}
 327
 328	/* Create pointers for initial change-point information (for sorting): */
 329	for (i = 0; i < 2 * table->nr_entries; i++)
 330		change_point[i] = &change_point_list[i];
 331
 332	/*
 333	 * Record all known change-points (starting and ending addresses),
 334	 * omitting empty memory regions:
 335	 */
 336	chg_idx = 0;
 337	for (i = 0; i < table->nr_entries; i++)	{
 338		if (entries[i].size != 0) {
 339			change_point[chg_idx]->addr	= entries[i].addr;
 340			change_point[chg_idx++]->entry	= &entries[i];
 341			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
 342			change_point[chg_idx++]->entry	= &entries[i];
 343		}
 344	}
 345	chg_nr = chg_idx;
 346
 347	/* Sort change-point list by memory addresses (low -> high): */
 348	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
 349
 350	/* Create a new memory map, removing overlaps: */
 351	overlap_entries = 0;	 /* Number of entries in the overlap table */
 352	new_nr_entries = 0;	 /* Index for creating new map entries */
 353	last_type = 0;		 /* Start with undefined memory type */
 354	last_addr = 0;		 /* Start with 0 as last starting address */
 355
 356	/* Loop through change-points, determining effect on the new map: */
 357	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
 358		/* Keep track of all overlapping entries */
 359		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
 360			/* Add map entry to overlap list (> 1 entry implies an overlap) */
 361			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
 362		} else {
 363			/* Remove entry from list (order independent, so swap with last): */
 364			for (i = 0; i < overlap_entries; i++) {
 365				if (overlap_list[i] == change_point[chg_idx]->entry)
 366					overlap_list[i] = overlap_list[overlap_entries-1];
 367			}
 368			overlap_entries--;
 369		}
 370		/*
 371		 * If there are overlapping entries, decide which
 372		 * "type" to use (larger value takes precedence --
 373		 * 1=usable, 2,3,4,4+=unusable)
 374		 */
 375		current_type = 0;
 376		for (i = 0; i < overlap_entries; i++) {
 377			if (overlap_list[i]->type > current_type)
 378				current_type = overlap_list[i]->type;
 379		}
 380
 381		/* Continue building up new map based on this information: */
 382		if (current_type != last_type || current_type == E820_TYPE_PRAM) {
 383			if (last_type != 0)	 {
 384				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
 385				/* Move forward only if the new size was non-zero: */
 386				if (new_entries[new_nr_entries].size != 0)
 387					/* No more space left for new entries? */
 388					if (++new_nr_entries >= max_nr_entries)
 389						break;
 390			}
 391			if (current_type != 0)	{
 392				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
 393				new_entries[new_nr_entries].type = current_type;
 394				last_addr = change_point[chg_idx]->addr;
 395			}
 396			last_type = current_type;
 397		}
 398	}
 399
 400	/* Copy the new entries into the original location: */
 401	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
 402	table->nr_entries = new_nr_entries;
 403
 404	return 0;
 405}
 406
 407static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 408{
 409	struct boot_e820_entry *entry = entries;
 410
 411	while (nr_entries) {
 412		u64 start = entry->addr;
 413		u64 size = entry->size;
 414		u64 end = start + size - 1;
 415		u32 type = entry->type;
 416
 417		/* Ignore the entry on 64-bit overflow: */
 418		if (start > end && likely(size))
 419			return -1;
 420
 421		e820__range_add(start, size, type);
 422
 423		entry++;
 424		nr_entries--;
 425	}
 426	return 0;
 427}
 428
 429/*
 430 * Copy the BIOS E820 map into a safe place.
 431 *
 432 * Sanity-check it while we're at it..
 433 *
 434 * If we're lucky and live on a modern system, the setup code
 435 * will have given us a memory map that we can use to properly
 436 * set up memory.  If we aren't, we'll fake a memory map.
 437 */
 438static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 439{
 440	/* Only one memory region (or negative)? Ignore it */
 441	if (nr_entries < 2)
 442		return -1;
 443
 444	return __append_e820_table(entries, nr_entries);
 445}
 446
 447static u64 __init
 448__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 449{
 450	u64 end;
 451	unsigned int i;
 452	u64 real_updated_size = 0;
 453
 454	BUG_ON(old_type == new_type);
 455
 456	if (size > (ULLONG_MAX - start))
 457		size = ULLONG_MAX - start;
 458
 459	end = start + size;
 460	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
 461	e820_print_type(old_type);
 462	pr_cont(" ==> ");
 463	e820_print_type(new_type);
 464	pr_cont("\n");
 465
 466	for (i = 0; i < table->nr_entries; i++) {
 467		struct e820_entry *entry = &table->entries[i];
 468		u64 final_start, final_end;
 469		u64 entry_end;
 470
 471		if (entry->type != old_type)
 472			continue;
 473
 474		entry_end = entry->addr + entry->size;
 475
 476		/* Completely covered by new range? */
 477		if (entry->addr >= start && entry_end <= end) {
 478			entry->type = new_type;
 479			real_updated_size += entry->size;
 480			continue;
 481		}
 482
 483		/* New range is completely covered? */
 484		if (entry->addr < start && entry_end > end) {
 485			__e820__range_add(table, start, size, new_type);
 486			__e820__range_add(table, end, entry_end - end, entry->type);
 487			entry->size = start - entry->addr;
 488			real_updated_size += size;
 489			continue;
 490		}
 491
 492		/* Partially covered: */
 493		final_start = max(start, entry->addr);
 494		final_end = min(end, entry_end);
 495		if (final_start >= final_end)
 496			continue;
 497
 498		__e820__range_add(table, final_start, final_end - final_start, new_type);
 499
 500		real_updated_size += final_end - final_start;
 501
 502		/*
 503		 * Left range could be head or tail, so need to update
 504		 * its size first:
 505		 */
 506		entry->size -= final_end - final_start;
 507		if (entry->addr < final_start)
 508			continue;
 509
 510		entry->addr = final_end;
 511	}
 512	return real_updated_size;
 513}
 514
 515u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 516{
 517	return __e820__range_update(e820_table, start, size, old_type, new_type);
 518}
 519
 520static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
 521{
 522	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
 523}
 524
 525/* Remove a range of memory from the E820 table: */
 526u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
 527{
 528	int i;
 529	u64 end;
 530	u64 real_removed_size = 0;
 531
 532	if (size > (ULLONG_MAX - start))
 533		size = ULLONG_MAX - start;
 534
 535	end = start + size;
 536	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
 537	if (check_type)
 538		e820_print_type(old_type);
 539	pr_cont("\n");
 540
 541	for (i = 0; i < e820_table->nr_entries; i++) {
 542		struct e820_entry *entry = &e820_table->entries[i];
 543		u64 final_start, final_end;
 544		u64 entry_end;
 545
 546		if (check_type && entry->type != old_type)
 547			continue;
 548
 549		entry_end = entry->addr + entry->size;
 550
 551		/* Completely covered? */
 552		if (entry->addr >= start && entry_end <= end) {
 553			real_removed_size += entry->size;
 554			memset(entry, 0, sizeof(*entry));
 555			continue;
 556		}
 557
 558		/* Is the new range completely covered? */
 559		if (entry->addr < start && entry_end > end) {
 560			e820__range_add(end, entry_end - end, entry->type);
 561			entry->size = start - entry->addr;
 562			real_removed_size += size;
 563			continue;
 564		}
 565
 566		/* Partially covered: */
 567		final_start = max(start, entry->addr);
 568		final_end = min(end, entry_end);
 569		if (final_start >= final_end)
 570			continue;
 571
 572		real_removed_size += final_end - final_start;
 573
 574		/*
 575		 * Left range could be head or tail, so need to update
 576		 * the size first:
 577		 */
 578		entry->size -= final_end - final_start;
 579		if (entry->addr < final_start)
 580			continue;
 581
 582		entry->addr = final_end;
 583	}
 584	return real_removed_size;
 585}
 586
 587void __init e820__update_table_print(void)
 588{
 589	if (e820__update_table(e820_table))
 590		return;
 591
 592	pr_info("modified physical RAM map:\n");
 593	e820__print_table("modified");
 594}
 595
 596static void __init e820__update_table_kexec(void)
 597{
 598	e820__update_table(e820_table_kexec);
 599}
 600
 601#define MAX_GAP_END 0x100000000ull
 602
 603/*
 604 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
 605 */
 606static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
 607{
 608	unsigned long long last = MAX_GAP_END;
 609	int i = e820_table->nr_entries;
 610	int found = 0;
 611
 612	while (--i >= 0) {
 613		unsigned long long start = e820_table->entries[i].addr;
 614		unsigned long long end = start + e820_table->entries[i].size;
 615
 616		/*
 617		 * Since "last" is at most 4GB, we know we'll
 618		 * fit in 32 bits if this condition is true:
 619		 */
 620		if (last > end) {
 621			unsigned long gap = last - end;
 622
 623			if (gap >= *gapsize) {
 624				*gapsize = gap;
 625				*gapstart = end;
 626				found = 1;
 627			}
 628		}
 629		if (start < last)
 630			last = start;
 631	}
 632	return found;
 633}
 634
 635/*
 636 * Search for the biggest gap in the low 32 bits of the E820
 637 * memory space. We pass this space to the PCI subsystem, so
 638 * that it can assign MMIO resources for hotplug or
 639 * unconfigured devices in.
 640 *
 641 * Hopefully the BIOS let enough space left.
 642 */
 643__init void e820__setup_pci_gap(void)
 644{
 645	unsigned long gapstart, gapsize;
 646	int found;
 647
 648	gapsize = 0x400000;
 649	found  = e820_search_gap(&gapstart, &gapsize);
 650
 651	if (!found) {
 652#ifdef CONFIG_X86_64
 653		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 654		pr_err("Cannot find an available gap in the 32-bit address range\n");
 655		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
 656#else
 657		gapstart = 0x10000000;
 658#endif
 659	}
 660
 661	/*
 662	 * e820__reserve_resources_late() protects stolen RAM already:
 663	 */
 664	pci_mem_start = gapstart;
 665
 666	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
 667		gapstart, gapstart + gapsize - 1);
 668}
 669
 670/*
 671 * Called late during init, in free_initmem().
 672 *
 673 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
 674 *
 675 * Copy them to a (usually much smaller) dynamically allocated area that is
 676 * sized precisely after the number of e820 entries.
 677 *
 678 * This is done after we've performed all the fixes and tweaks to the tables.
 679 * All functions which modify them are __init functions, which won't exist
 680 * after free_initmem().
 681 */
 682__init void e820__reallocate_tables(void)
 683{
 684	struct e820_table *n;
 685	int size;
 686
 687	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
 688	n = kmemdup(e820_table, size, GFP_KERNEL);
 689	BUG_ON(!n);
 690	e820_table = n;
 691
 692	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
 693	n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
 694	BUG_ON(!n);
 695	e820_table_kexec = n;
 696
 697	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
 698	n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
 699	BUG_ON(!n);
 700	e820_table_firmware = n;
 701}
 702
 703/*
 704 * Because of the small fixed size of struct boot_params, only the first
 705 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
 706 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
 707 * struct setup_data, which is parsed here.
 708 */
 709void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
 710{
 711	int entries;
 712	struct boot_e820_entry *extmap;
 713	struct setup_data *sdata;
 714
 715	sdata = early_memremap(phys_addr, data_len);
 716	entries = sdata->len / sizeof(*extmap);
 717	extmap = (struct boot_e820_entry *)(sdata->data);
 718
 719	__append_e820_table(extmap, entries);
 720	e820__update_table(e820_table);
 721
 722	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
 723	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
 724
 725	early_memunmap(sdata, data_len);
 726	pr_info("extended physical RAM map:\n");
 727	e820__print_table("extended");
 728}
 729
 730/*
 731 * Find the ranges of physical addresses that do not correspond to
 732 * E820 RAM areas and register the corresponding pages as 'nosave' for
 733 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
 734 *
 735 * This function requires the E820 map to be sorted and without any
 736 * overlapping entries.
 737 */
 738void __init e820__register_nosave_regions(unsigned long limit_pfn)
 739{
 740	int i;
 741	unsigned long pfn = 0;
 742
 743	for (i = 0; i < e820_table->nr_entries; i++) {
 744		struct e820_entry *entry = &e820_table->entries[i];
 745
 746		if (pfn < PFN_UP(entry->addr))
 747			register_nosave_region(pfn, PFN_UP(entry->addr));
 748
 749		pfn = PFN_DOWN(entry->addr + entry->size);
 750
 751		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
 752			register_nosave_region(PFN_UP(entry->addr), pfn);
 753
 754		if (pfn >= limit_pfn)
 755			break;
 756	}
 757}
 758
 759#ifdef CONFIG_ACPI
 760/*
 761 * Register ACPI NVS memory regions, so that we can save/restore them during
 762 * hibernation and the subsequent resume:
 763 */
 764static int __init e820__register_nvs_regions(void)
 765{
 766	int i;
 767
 768	for (i = 0; i < e820_table->nr_entries; i++) {
 769		struct e820_entry *entry = &e820_table->entries[i];
 770
 771		if (entry->type == E820_TYPE_NVS)
 772			acpi_nvs_register(entry->addr, entry->size);
 773	}
 774
 775	return 0;
 776}
 777core_initcall(e820__register_nvs_regions);
 778#endif
 779
 780/*
 781 * Allocate the requested number of bytes with the requsted alignment
 782 * and return (the physical address) to the caller. Also register this
 783 * range in the 'kexec' E820 table as a reserved range.
 784 *
 785 * This allows kexec to fake a new mptable, as if it came from the real
 786 * system.
 787 */
 788u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
 789{
 790	u64 addr;
 791
 792	addr = memblock_phys_alloc(size, align);
 793	if (addr) {
 794		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 795		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
 796		e820__update_table_kexec();
 797	}
 798
 799	return addr;
 800}
 801
 802#ifdef CONFIG_X86_32
 803# ifdef CONFIG_X86_PAE
 804#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 805# else
 806#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 807# endif
 808#else /* CONFIG_X86_32 */
 809# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 810#endif
 811
 812/*
 813 * Find the highest page frame number we have available
 814 */
 815static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
 816{
 817	int i;
 818	unsigned long last_pfn = 0;
 819	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 820
 821	for (i = 0; i < e820_table->nr_entries; i++) {
 822		struct e820_entry *entry = &e820_table->entries[i];
 823		unsigned long start_pfn;
 824		unsigned long end_pfn;
 825
 826		if (entry->type != type)
 827			continue;
 828
 829		start_pfn = entry->addr >> PAGE_SHIFT;
 830		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
 831
 832		if (start_pfn >= limit_pfn)
 833			continue;
 834		if (end_pfn > limit_pfn) {
 835			last_pfn = limit_pfn;
 836			break;
 837		}
 838		if (end_pfn > last_pfn)
 839			last_pfn = end_pfn;
 840	}
 841
 842	if (last_pfn > max_arch_pfn)
 843		last_pfn = max_arch_pfn;
 844
 845	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
 846		last_pfn, max_arch_pfn);
 847	return last_pfn;
 848}
 849
 850unsigned long __init e820__end_of_ram_pfn(void)
 851{
 852	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
 853}
 854
 855unsigned long __init e820__end_of_low_ram_pfn(void)
 856{
 857	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
 858}
 859
 860static void __init early_panic(char *msg)
 861{
 862	early_printk(msg);
 863	panic(msg);
 864}
 865
 866static int userdef __initdata;
 867
 868/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
 869static int __init parse_memopt(char *p)
 870{
 871	u64 mem_size;
 872
 873	if (!p)
 874		return -EINVAL;
 875
 876	if (!strcmp(p, "nopentium")) {
 877#ifdef CONFIG_X86_32
 878		setup_clear_cpu_cap(X86_FEATURE_PSE);
 879		return 0;
 880#else
 881		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
 882		return -EINVAL;
 883#endif
 884	}
 885
 886	userdef = 1;
 887	mem_size = memparse(p, &p);
 888
 889	/* Don't remove all memory when getting "mem={invalid}" parameter: */
 890	if (mem_size == 0)
 891		return -EINVAL;
 892
 893	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 894
 895#ifdef CONFIG_MEMORY_HOTPLUG
 896	max_mem_size = mem_size;
 897#endif
 898
 899	return 0;
 900}
 901early_param("mem", parse_memopt);
 902
 903static int __init parse_memmap_one(char *p)
 904{
 905	char *oldp;
 906	u64 start_at, mem_size;
 907
 908	if (!p)
 909		return -EINVAL;
 910
 911	if (!strncmp(p, "exactmap", 8)) {
 912#ifdef CONFIG_CRASH_DUMP
 913		/*
 914		 * If we are doing a crash dump, we still need to know
 915		 * the real memory size before the original memory map is
 916		 * reset.
 917		 */
 918		saved_max_pfn = e820__end_of_ram_pfn();
 919#endif
 920		e820_table->nr_entries = 0;
 921		userdef = 1;
 922		return 0;
 923	}
 924
 925	oldp = p;
 926	mem_size = memparse(p, &p);
 927	if (p == oldp)
 928		return -EINVAL;
 929
 930	userdef = 1;
 931	if (*p == '@') {
 932		start_at = memparse(p+1, &p);
 933		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
 934	} else if (*p == '#') {
 935		start_at = memparse(p+1, &p);
 936		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
 937	} else if (*p == '$') {
 938		start_at = memparse(p+1, &p);
 939		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
 940	} else if (*p == '!') {
 941		start_at = memparse(p+1, &p);
 942		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
 943	} else if (*p == '%') {
 944		enum e820_type from = 0, to = 0;
 945
 946		start_at = memparse(p + 1, &p);
 947		if (*p == '-')
 948			from = simple_strtoull(p + 1, &p, 0);
 949		if (*p == '+')
 950			to = simple_strtoull(p + 1, &p, 0);
 951		if (*p != '\0')
 952			return -EINVAL;
 953		if (from && to)
 954			e820__range_update(start_at, mem_size, from, to);
 955		else if (to)
 956			e820__range_add(start_at, mem_size, to);
 957		else if (from)
 958			e820__range_remove(start_at, mem_size, from, 1);
 959		else
 960			e820__range_remove(start_at, mem_size, 0, 0);
 961	} else {
 962		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 963	}
 964
 965	return *p == '\0' ? 0 : -EINVAL;
 966}
 967
 968static int __init parse_memmap_opt(char *str)
 969{
 970	while (str) {
 971		char *k = strchr(str, ',');
 972
 973		if (k)
 974			*k++ = 0;
 975
 976		parse_memmap_one(str);
 977		str = k;
 978	}
 979
 980	return 0;
 981}
 982early_param("memmap", parse_memmap_opt);
 983
 984/*
 985 * Reserve all entries from the bootloader's extensible data nodes list,
 986 * because if present we are going to use it later on to fetch e820
 987 * entries from it:
 988 */
 989void __init e820__reserve_setup_data(void)
 990{
 
 991	struct setup_data *data;
 992	u64 pa_data;
 
 993
 994	pa_data = boot_params.hdr.setup_data;
 995	if (!pa_data)
 996		return;
 997
 998	while (pa_data) {
 999		data = early_memremap(pa_data, sizeof(*data));
 
 
 
 
 
 
 
 
1000		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1001		e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1002		pa_data = data->next;
1003		early_memunmap(data, sizeof(*data));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004	}
1005
1006	e820__update_table(e820_table);
1007	e820__update_table(e820_table_kexec);
1008
1009	pr_info("extended physical RAM map:\n");
1010	e820__print_table("reserve setup_data");
1011}
1012
1013/*
1014 * Called after parse_early_param(), after early parameters (such as mem=)
1015 * have been processed, in which case we already have an E820 table filled in
1016 * via the parameter callback function(s), but it's not sorted and printed yet:
1017 */
1018void __init e820__finish_early_params(void)
1019{
1020	if (userdef) {
1021		if (e820__update_table(e820_table) < 0)
1022			early_panic("Invalid user supplied memory map");
1023
1024		pr_info("user-defined physical RAM map:\n");
1025		e820__print_table("user");
1026	}
1027}
1028
1029static const char *__init e820_type_to_string(struct e820_entry *entry)
1030{
1031	switch (entry->type) {
1032	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1033	case E820_TYPE_RAM:		return "System RAM";
1034	case E820_TYPE_ACPI:		return "ACPI Tables";
1035	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1036	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1037	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1038	case E820_TYPE_PMEM:		return "Persistent Memory";
1039	case E820_TYPE_RESERVED:	return "Reserved";
 
1040	default:			return "Unknown E820 type";
1041	}
1042}
1043
1044static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1045{
1046	switch (entry->type) {
1047	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1048	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1049	case E820_TYPE_ACPI:		/* Fall-through: */
1050	case E820_TYPE_NVS:		/* Fall-through: */
1051	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1052	case E820_TYPE_PRAM:		/* Fall-through: */
1053	case E820_TYPE_PMEM:		/* Fall-through: */
1054	case E820_TYPE_RESERVED:	/* Fall-through: */
 
1055	default:			return IORESOURCE_MEM;
1056	}
1057}
1058
1059static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1060{
1061	switch (entry->type) {
1062	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1063	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1064	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1065	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1066	case E820_TYPE_RESERVED:	return IORES_DESC_RESERVED;
 
1067	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1068	case E820_TYPE_RAM:		/* Fall-through: */
1069	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1070	default:			return IORES_DESC_NONE;
1071	}
1072}
1073
1074static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1075{
1076	/* this is the legacy bios/dos rom-shadow + mmio region */
1077	if (res->start < (1ULL<<20))
1078		return true;
1079
1080	/*
1081	 * Treat persistent memory like device memory, i.e. reserve it
1082	 * for exclusive use of a driver
1083	 */
1084	switch (type) {
1085	case E820_TYPE_RESERVED:
 
1086	case E820_TYPE_PRAM:
1087	case E820_TYPE_PMEM:
1088		return false;
1089	case E820_TYPE_RESERVED_KERN:
1090	case E820_TYPE_RAM:
1091	case E820_TYPE_ACPI:
1092	case E820_TYPE_NVS:
1093	case E820_TYPE_UNUSABLE:
1094	default:
1095		return true;
1096	}
1097}
1098
1099/*
1100 * Mark E820 reserved areas as busy for the resource manager:
1101 */
1102
1103static struct resource __initdata *e820_res;
1104
1105void __init e820__reserve_resources(void)
1106{
1107	int i;
1108	struct resource *res;
1109	u64 end;
1110
1111	res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
1112			     SMP_CACHE_BYTES);
1113	if (!res)
1114		panic("%s: Failed to allocate %zu bytes\n", __func__,
1115		      sizeof(*res) * e820_table->nr_entries);
1116	e820_res = res;
1117
1118	for (i = 0; i < e820_table->nr_entries; i++) {
1119		struct e820_entry *entry = e820_table->entries + i;
1120
1121		end = entry->addr + entry->size - 1;
1122		if (end != (resource_size_t)end) {
1123			res++;
1124			continue;
1125		}
1126		res->start = entry->addr;
1127		res->end   = end;
1128		res->name  = e820_type_to_string(entry);
1129		res->flags = e820_type_to_iomem_type(entry);
1130		res->desc  = e820_type_to_iores_desc(entry);
1131
1132		/*
1133		 * Don't register the region that could be conflicted with
1134		 * PCI device BAR resources and insert them later in
1135		 * pcibios_resource_survey():
1136		 */
1137		if (do_mark_busy(entry->type, res)) {
1138			res->flags |= IORESOURCE_BUSY;
1139			insert_resource(&iomem_resource, res);
1140		}
1141		res++;
1142	}
1143
1144	/* Expose the bootloader-provided memory layout to the sysfs. */
1145	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1146		struct e820_entry *entry = e820_table_firmware->entries + i;
1147
1148		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1149	}
1150}
1151
1152/*
1153 * How much should we pad the end of RAM, depending on where it is?
1154 */
1155static unsigned long __init ram_alignment(resource_size_t pos)
1156{
1157	unsigned long mb = pos >> 20;
1158
1159	/* To 64kB in the first megabyte */
1160	if (!mb)
1161		return 64*1024;
1162
1163	/* To 1MB in the first 16MB */
1164	if (mb < 16)
1165		return 1024*1024;
1166
1167	/* To 64MB for anything above that */
1168	return 64*1024*1024;
1169}
1170
1171#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1172
1173void __init e820__reserve_resources_late(void)
1174{
1175	int i;
1176	struct resource *res;
1177
1178	res = e820_res;
1179	for (i = 0; i < e820_table->nr_entries; i++) {
1180		if (!res->parent && res->end)
1181			insert_resource_expand_to_fit(&iomem_resource, res);
1182		res++;
1183	}
1184
1185	/*
1186	 * Try to bump up RAM regions to reasonable boundaries, to
1187	 * avoid stolen RAM:
1188	 */
1189	for (i = 0; i < e820_table->nr_entries; i++) {
1190		struct e820_entry *entry = &e820_table->entries[i];
1191		u64 start, end;
1192
1193		if (entry->type != E820_TYPE_RAM)
1194			continue;
1195
1196		start = entry->addr + entry->size;
1197		end = round_up(start, ram_alignment(start)) - 1;
1198		if (end > MAX_RESOURCE_SIZE)
1199			end = MAX_RESOURCE_SIZE;
1200		if (start >= end)
1201			continue;
1202
1203		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1204		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1205	}
1206}
1207
1208/*
1209 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1210 */
1211char *__init e820__memory_setup_default(void)
1212{
1213	char *who = "BIOS-e820";
1214
1215	/*
1216	 * Try to copy the BIOS-supplied E820-map.
1217	 *
1218	 * Otherwise fake a memory map; one section from 0k->640k,
1219	 * the next section from 1mb->appropriate_mem_k
1220	 */
1221	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1222		u64 mem_size;
1223
1224		/* Compare results from other methods and take the one that gives more RAM: */
1225		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1226			mem_size = boot_params.screen_info.ext_mem_k;
1227			who = "BIOS-88";
1228		} else {
1229			mem_size = boot_params.alt_mem_k;
1230			who = "BIOS-e801";
1231		}
1232
1233		e820_table->nr_entries = 0;
1234		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1235		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1236	}
1237
1238	/* We just appended a lot of ranges, sanitize the table: */
1239	e820__update_table(e820_table);
1240
1241	return who;
1242}
1243
1244/*
1245 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1246 * E820 map - with an optional platform quirk available for virtual platforms
1247 * to override this method of boot environment processing:
1248 */
1249void __init e820__memory_setup(void)
1250{
1251	char *who;
1252
1253	/* This is a firmware interface ABI - make sure we don't break it: */
1254	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1255
1256	who = x86_init.resources.memory_setup();
1257
1258	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1259	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1260
1261	pr_info("BIOS-provided physical RAM map:\n");
1262	e820__print_table(who);
1263}
1264
1265void __init e820__memblock_setup(void)
1266{
1267	int i;
1268	u64 end;
1269
1270	/*
1271	 * The bootstrap memblock region count maximum is 128 entries
1272	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1273	 * than that - so allow memblock resizing.
1274	 *
1275	 * This is safe, because this call happens pretty late during x86 setup,
1276	 * so we know about reserved memory regions already. (This is important
1277	 * so that memblock resizing does no stomp over reserved areas.)
1278	 */
1279	memblock_allow_resize();
1280
1281	for (i = 0; i < e820_table->nr_entries; i++) {
1282		struct e820_entry *entry = &e820_table->entries[i];
1283
1284		end = entry->addr + entry->size;
1285		if (end != (resource_size_t)end)
1286			continue;
 
 
 
1287
1288		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1289			continue;
1290
1291		memblock_add(entry->addr, entry->size);
1292	}
1293
1294	/* Throw away partial pages: */
1295	memblock_trim_memory(PAGE_SIZE);
1296
1297	memblock_dump_all();
1298}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Low level x86 E820 memory map handling functions.
   4 *
   5 * The firmware and bootloader passes us the "E820 table", which is the primary
   6 * physical memory layout description available about x86 systems.
   7 *
   8 * The kernel takes the E820 memory layout and optionally modifies it with
   9 * quirks and other tweaks, and feeds that into the generic Linux memory
  10 * allocation code routines via a platform independent interface (memblock, etc.).
  11 */
  12#include <linux/crash_dump.h>
  13#include <linux/memblock.h>
  14#include <linux/suspend.h>
  15#include <linux/acpi.h>
  16#include <linux/firmware-map.h>
  17#include <linux/sort.h>
  18#include <linux/memory_hotplug.h>
  19
  20#include <asm/e820/api.h>
  21#include <asm/setup.h>
  22
  23/*
  24 * We organize the E820 table into three main data structures:
  25 *
  26 * - 'e820_table_firmware': the original firmware version passed to us by the
  27 *   bootloader - not modified by the kernel. It is composed of two parts:
  28 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
  29 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
  30 *
  31 *       - inform the user about the firmware's notion of memory layout
  32 *         via /sys/firmware/memmap
  33 *
  34 *       - the hibernation code uses it to generate a kernel-independent CRC32
  35 *         checksum of the physical memory layout of a system.
  36 *
  37 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
  38 *   passed to us by the bootloader - the major difference between
  39 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
  40 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
  41 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
  42 *   might also be modified by the kexec itself to fake a mptable.
  43 *   We use this to:
  44 *
  45 *       - kexec, which is a bootloader in disguise, uses the original E820
  46 *         layout to pass to the kexec-ed kernel. This way the original kernel
  47 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
  48 *         can have access to full memory - etc.
  49 *
  50 * - 'e820_table': this is the main E820 table that is massaged by the
  51 *   low level x86 platform code, or modified by boot parameters, before
  52 *   passed on to higher level MM layers.
  53 *
  54 * Once the E820 map has been converted to the standard Linux memory layout
  55 * information its role stops - modifying it has no effect and does not get
  56 * re-propagated. So its main role is a temporary bootstrap storage of firmware
  57 * specific memory layout data during early bootup.
  58 */
  59static struct e820_table e820_table_init		__initdata;
  60static struct e820_table e820_table_kexec_init		__initdata;
  61static struct e820_table e820_table_firmware_init	__initdata;
  62
  63struct e820_table *e820_table __refdata			= &e820_table_init;
  64struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
  65struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
  66
  67/* For PCI or other memory-mapped resources */
  68unsigned long pci_mem_start = 0xaeedbabe;
  69#ifdef CONFIG_PCI
  70EXPORT_SYMBOL(pci_mem_start);
  71#endif
  72
  73/*
  74 * This function checks if any part of the range <start,end> is mapped
  75 * with type.
  76 */
  77static bool _e820__mapped_any(struct e820_table *table,
  78			      u64 start, u64 end, enum e820_type type)
  79{
  80	int i;
  81
  82	for (i = 0; i < table->nr_entries; i++) {
  83		struct e820_entry *entry = &table->entries[i];
  84
  85		if (type && entry->type != type)
  86			continue;
  87		if (entry->addr >= end || entry->addr + entry->size <= start)
  88			continue;
  89		return true;
  90	}
  91	return false;
  92}
  93
  94bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
  95{
  96	return _e820__mapped_any(e820_table_firmware, start, end, type);
  97}
  98EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
  99
 100bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
 101{
 102	return _e820__mapped_any(e820_table, start, end, type);
 103}
 104EXPORT_SYMBOL_GPL(e820__mapped_any);
 105
 106/*
 107 * This function checks if the entire <start,end> range is mapped with 'type'.
 108 *
 109 * Note: this function only works correctly once the E820 table is sorted and
 110 * not-overlapping (at least for the range specified), which is the case normally.
 111 */
 112static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
 113					     enum e820_type type)
 114{
 115	int i;
 116
 117	for (i = 0; i < e820_table->nr_entries; i++) {
 118		struct e820_entry *entry = &e820_table->entries[i];
 119
 120		if (type && entry->type != type)
 121			continue;
 122
 123		/* Is the region (part) in overlap with the current region? */
 124		if (entry->addr >= end || entry->addr + entry->size <= start)
 125			continue;
 126
 127		/*
 128		 * If the region is at the beginning of <start,end> we move
 129		 * 'start' to the end of the region since it's ok until there
 130		 */
 131		if (entry->addr <= start)
 132			start = entry->addr + entry->size;
 133
 134		/*
 135		 * If 'start' is now at or beyond 'end', we're done, full
 136		 * coverage of the desired range exists:
 137		 */
 138		if (start >= end)
 139			return entry;
 140	}
 141
 142	return NULL;
 143}
 144
 145/*
 146 * This function checks if the entire range <start,end> is mapped with type.
 147 */
 148bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
 149{
 150	return __e820__mapped_all(start, end, type);
 151}
 152
 153/*
 154 * This function returns the type associated with the range <start,end>.
 155 */
 156int e820__get_entry_type(u64 start, u64 end)
 157{
 158	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
 159
 160	return entry ? entry->type : -EINVAL;
 161}
 162
 163/*
 164 * Add a memory region to the kernel E820 map.
 165 */
 166static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
 167{
 168	int x = table->nr_entries;
 169
 170	if (x >= ARRAY_SIZE(table->entries)) {
 171		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
 172		       start, start + size - 1);
 173		return;
 174	}
 175
 176	table->entries[x].addr = start;
 177	table->entries[x].size = size;
 178	table->entries[x].type = type;
 179	table->nr_entries++;
 180}
 181
 182void __init e820__range_add(u64 start, u64 size, enum e820_type type)
 183{
 184	__e820__range_add(e820_table, start, size, type);
 185}
 186
 187static void __init e820_print_type(enum e820_type type)
 188{
 189	switch (type) {
 190	case E820_TYPE_RAM:		/* Fall through: */
 191	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
 192	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
 193	case E820_TYPE_SOFT_RESERVED:	pr_cont("soft reserved");		break;
 194	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
 195	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
 196	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
 197	case E820_TYPE_PMEM:		/* Fall through: */
 198	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
 199	default:			pr_cont("type %u", type);		break;
 200	}
 201}
 202
 203void __init e820__print_table(char *who)
 204{
 205	int i;
 206
 207	for (i = 0; i < e820_table->nr_entries; i++) {
 208		pr_info("%s: [mem %#018Lx-%#018Lx] ",
 209			who,
 210			e820_table->entries[i].addr,
 211			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
 212
 213		e820_print_type(e820_table->entries[i].type);
 214		pr_cont("\n");
 215	}
 216}
 217
 218/*
 219 * Sanitize an E820 map.
 220 *
 221 * Some E820 layouts include overlapping entries. The following
 222 * replaces the original E820 map with a new one, removing overlaps,
 223 * and resolving conflicting memory types in favor of highest
 224 * numbered type.
 225 *
 226 * The input parameter 'entries' points to an array of 'struct
 227 * e820_entry' which on entry has elements in the range [0, *nr_entries)
 228 * valid, and which has space for up to max_nr_entries entries.
 229 * On return, the resulting sanitized E820 map entries will be in
 230 * overwritten in the same location, starting at 'entries'.
 231 *
 232 * The integer pointed to by nr_entries must be valid on entry (the
 233 * current number of valid entries located at 'entries'). If the
 234 * sanitizing succeeds the *nr_entries will be updated with the new
 235 * number of valid entries (something no more than max_nr_entries).
 236 *
 237 * The return value from e820__update_table() is zero if it
 238 * successfully 'sanitized' the map entries passed in, and is -1
 239 * if it did nothing, which can happen if either of (1) it was
 240 * only passed one map entry, or (2) any of the input map entries
 241 * were invalid (start + size < start, meaning that the size was
 242 * so big the described memory range wrapped around through zero.)
 243 *
 244 *	Visually we're performing the following
 245 *	(1,2,3,4 = memory types)...
 246 *
 247 *	Sample memory map (w/overlaps):
 248 *	   ____22__________________
 249 *	   ______________________4_
 250 *	   ____1111________________
 251 *	   _44_____________________
 252 *	   11111111________________
 253 *	   ____________________33__
 254 *	   ___________44___________
 255 *	   __________33333_________
 256 *	   ______________22________
 257 *	   ___________________2222_
 258 *	   _________111111111______
 259 *	   _____________________11_
 260 *	   _________________4______
 261 *
 262 *	Sanitized equivalent (no overlap):
 263 *	   1_______________________
 264 *	   _44_____________________
 265 *	   ___1____________________
 266 *	   ____22__________________
 267 *	   ______11________________
 268 *	   _________1______________
 269 *	   __________3_____________
 270 *	   ___________44___________
 271 *	   _____________33_________
 272 *	   _______________2________
 273 *	   ________________1_______
 274 *	   _________________4______
 275 *	   ___________________2____
 276 *	   ____________________33__
 277 *	   ______________________4_
 278 */
 279struct change_member {
 280	/* Pointer to the original entry: */
 281	struct e820_entry	*entry;
 282	/* Address for this change point: */
 283	unsigned long long	addr;
 284};
 285
 286static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
 287static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
 288static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
 289static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
 290
 291static int __init cpcompare(const void *a, const void *b)
 292{
 293	struct change_member * const *app = a, * const *bpp = b;
 294	const struct change_member *ap = *app, *bp = *bpp;
 295
 296	/*
 297	 * Inputs are pointers to two elements of change_point[].  If their
 298	 * addresses are not equal, their difference dominates.  If the addresses
 299	 * are equal, then consider one that represents the end of its region
 300	 * to be greater than one that does not.
 301	 */
 302	if (ap->addr != bp->addr)
 303		return ap->addr > bp->addr ? 1 : -1;
 304
 305	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
 306}
 307
 308static bool e820_nomerge(enum e820_type type)
 309{
 310	/*
 311	 * These types may indicate distinct platform ranges aligned to
 312	 * numa node, protection domain, performance domain, or other
 313	 * boundaries. Do not merge them.
 314	 */
 315	if (type == E820_TYPE_PRAM)
 316		return true;
 317	if (type == E820_TYPE_SOFT_RESERVED)
 318		return true;
 319	return false;
 320}
 321
 322int __init e820__update_table(struct e820_table *table)
 323{
 324	struct e820_entry *entries = table->entries;
 325	u32 max_nr_entries = ARRAY_SIZE(table->entries);
 326	enum e820_type current_type, last_type;
 327	unsigned long long last_addr;
 328	u32 new_nr_entries, overlap_entries;
 329	u32 i, chg_idx, chg_nr;
 330
 331	/* If there's only one memory region, don't bother: */
 332	if (table->nr_entries < 2)
 333		return -1;
 334
 335	BUG_ON(table->nr_entries > max_nr_entries);
 336
 337	/* Bail out if we find any unreasonable addresses in the map: */
 338	for (i = 0; i < table->nr_entries; i++) {
 339		if (entries[i].addr + entries[i].size < entries[i].addr)
 340			return -1;
 341	}
 342
 343	/* Create pointers for initial change-point information (for sorting): */
 344	for (i = 0; i < 2 * table->nr_entries; i++)
 345		change_point[i] = &change_point_list[i];
 346
 347	/*
 348	 * Record all known change-points (starting and ending addresses),
 349	 * omitting empty memory regions:
 350	 */
 351	chg_idx = 0;
 352	for (i = 0; i < table->nr_entries; i++)	{
 353		if (entries[i].size != 0) {
 354			change_point[chg_idx]->addr	= entries[i].addr;
 355			change_point[chg_idx++]->entry	= &entries[i];
 356			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
 357			change_point[chg_idx++]->entry	= &entries[i];
 358		}
 359	}
 360	chg_nr = chg_idx;
 361
 362	/* Sort change-point list by memory addresses (low -> high): */
 363	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
 364
 365	/* Create a new memory map, removing overlaps: */
 366	overlap_entries = 0;	 /* Number of entries in the overlap table */
 367	new_nr_entries = 0;	 /* Index for creating new map entries */
 368	last_type = 0;		 /* Start with undefined memory type */
 369	last_addr = 0;		 /* Start with 0 as last starting address */
 370
 371	/* Loop through change-points, determining effect on the new map: */
 372	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
 373		/* Keep track of all overlapping entries */
 374		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
 375			/* Add map entry to overlap list (> 1 entry implies an overlap) */
 376			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
 377		} else {
 378			/* Remove entry from list (order independent, so swap with last): */
 379			for (i = 0; i < overlap_entries; i++) {
 380				if (overlap_list[i] == change_point[chg_idx]->entry)
 381					overlap_list[i] = overlap_list[overlap_entries-1];
 382			}
 383			overlap_entries--;
 384		}
 385		/*
 386		 * If there are overlapping entries, decide which
 387		 * "type" to use (larger value takes precedence --
 388		 * 1=usable, 2,3,4,4+=unusable)
 389		 */
 390		current_type = 0;
 391		for (i = 0; i < overlap_entries; i++) {
 392			if (overlap_list[i]->type > current_type)
 393				current_type = overlap_list[i]->type;
 394		}
 395
 396		/* Continue building up new map based on this information: */
 397		if (current_type != last_type || e820_nomerge(current_type)) {
 398			if (last_type) {
 399				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
 400				/* Move forward only if the new size was non-zero: */
 401				if (new_entries[new_nr_entries].size != 0)
 402					/* No more space left for new entries? */
 403					if (++new_nr_entries >= max_nr_entries)
 404						break;
 405			}
 406			if (current_type) {
 407				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
 408				new_entries[new_nr_entries].type = current_type;
 409				last_addr = change_point[chg_idx]->addr;
 410			}
 411			last_type = current_type;
 412		}
 413	}
 414
 415	/* Copy the new entries into the original location: */
 416	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
 417	table->nr_entries = new_nr_entries;
 418
 419	return 0;
 420}
 421
 422static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 423{
 424	struct boot_e820_entry *entry = entries;
 425
 426	while (nr_entries) {
 427		u64 start = entry->addr;
 428		u64 size = entry->size;
 429		u64 end = start + size - 1;
 430		u32 type = entry->type;
 431
 432		/* Ignore the entry on 64-bit overflow: */
 433		if (start > end && likely(size))
 434			return -1;
 435
 436		e820__range_add(start, size, type);
 437
 438		entry++;
 439		nr_entries--;
 440	}
 441	return 0;
 442}
 443
 444/*
 445 * Copy the BIOS E820 map into a safe place.
 446 *
 447 * Sanity-check it while we're at it..
 448 *
 449 * If we're lucky and live on a modern system, the setup code
 450 * will have given us a memory map that we can use to properly
 451 * set up memory.  If we aren't, we'll fake a memory map.
 452 */
 453static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 454{
 455	/* Only one memory region (or negative)? Ignore it */
 456	if (nr_entries < 2)
 457		return -1;
 458
 459	return __append_e820_table(entries, nr_entries);
 460}
 461
 462static u64 __init
 463__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 464{
 465	u64 end;
 466	unsigned int i;
 467	u64 real_updated_size = 0;
 468
 469	BUG_ON(old_type == new_type);
 470
 471	if (size > (ULLONG_MAX - start))
 472		size = ULLONG_MAX - start;
 473
 474	end = start + size;
 475	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
 476	e820_print_type(old_type);
 477	pr_cont(" ==> ");
 478	e820_print_type(new_type);
 479	pr_cont("\n");
 480
 481	for (i = 0; i < table->nr_entries; i++) {
 482		struct e820_entry *entry = &table->entries[i];
 483		u64 final_start, final_end;
 484		u64 entry_end;
 485
 486		if (entry->type != old_type)
 487			continue;
 488
 489		entry_end = entry->addr + entry->size;
 490
 491		/* Completely covered by new range? */
 492		if (entry->addr >= start && entry_end <= end) {
 493			entry->type = new_type;
 494			real_updated_size += entry->size;
 495			continue;
 496		}
 497
 498		/* New range is completely covered? */
 499		if (entry->addr < start && entry_end > end) {
 500			__e820__range_add(table, start, size, new_type);
 501			__e820__range_add(table, end, entry_end - end, entry->type);
 502			entry->size = start - entry->addr;
 503			real_updated_size += size;
 504			continue;
 505		}
 506
 507		/* Partially covered: */
 508		final_start = max(start, entry->addr);
 509		final_end = min(end, entry_end);
 510		if (final_start >= final_end)
 511			continue;
 512
 513		__e820__range_add(table, final_start, final_end - final_start, new_type);
 514
 515		real_updated_size += final_end - final_start;
 516
 517		/*
 518		 * Left range could be head or tail, so need to update
 519		 * its size first:
 520		 */
 521		entry->size -= final_end - final_start;
 522		if (entry->addr < final_start)
 523			continue;
 524
 525		entry->addr = final_end;
 526	}
 527	return real_updated_size;
 528}
 529
 530u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 531{
 532	return __e820__range_update(e820_table, start, size, old_type, new_type);
 533}
 534
 535static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
 536{
 537	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
 538}
 539
 540/* Remove a range of memory from the E820 table: */
 541u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
 542{
 543	int i;
 544	u64 end;
 545	u64 real_removed_size = 0;
 546
 547	if (size > (ULLONG_MAX - start))
 548		size = ULLONG_MAX - start;
 549
 550	end = start + size;
 551	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
 552	if (check_type)
 553		e820_print_type(old_type);
 554	pr_cont("\n");
 555
 556	for (i = 0; i < e820_table->nr_entries; i++) {
 557		struct e820_entry *entry = &e820_table->entries[i];
 558		u64 final_start, final_end;
 559		u64 entry_end;
 560
 561		if (check_type && entry->type != old_type)
 562			continue;
 563
 564		entry_end = entry->addr + entry->size;
 565
 566		/* Completely covered? */
 567		if (entry->addr >= start && entry_end <= end) {
 568			real_removed_size += entry->size;
 569			memset(entry, 0, sizeof(*entry));
 570			continue;
 571		}
 572
 573		/* Is the new range completely covered? */
 574		if (entry->addr < start && entry_end > end) {
 575			e820__range_add(end, entry_end - end, entry->type);
 576			entry->size = start - entry->addr;
 577			real_removed_size += size;
 578			continue;
 579		}
 580
 581		/* Partially covered: */
 582		final_start = max(start, entry->addr);
 583		final_end = min(end, entry_end);
 584		if (final_start >= final_end)
 585			continue;
 586
 587		real_removed_size += final_end - final_start;
 588
 589		/*
 590		 * Left range could be head or tail, so need to update
 591		 * the size first:
 592		 */
 593		entry->size -= final_end - final_start;
 594		if (entry->addr < final_start)
 595			continue;
 596
 597		entry->addr = final_end;
 598	}
 599	return real_removed_size;
 600}
 601
 602void __init e820__update_table_print(void)
 603{
 604	if (e820__update_table(e820_table))
 605		return;
 606
 607	pr_info("modified physical RAM map:\n");
 608	e820__print_table("modified");
 609}
 610
 611static void __init e820__update_table_kexec(void)
 612{
 613	e820__update_table(e820_table_kexec);
 614}
 615
 616#define MAX_GAP_END 0x100000000ull
 617
 618/*
 619 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
 620 */
 621static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
 622{
 623	unsigned long long last = MAX_GAP_END;
 624	int i = e820_table->nr_entries;
 625	int found = 0;
 626
 627	while (--i >= 0) {
 628		unsigned long long start = e820_table->entries[i].addr;
 629		unsigned long long end = start + e820_table->entries[i].size;
 630
 631		/*
 632		 * Since "last" is at most 4GB, we know we'll
 633		 * fit in 32 bits if this condition is true:
 634		 */
 635		if (last > end) {
 636			unsigned long gap = last - end;
 637
 638			if (gap >= *gapsize) {
 639				*gapsize = gap;
 640				*gapstart = end;
 641				found = 1;
 642			}
 643		}
 644		if (start < last)
 645			last = start;
 646	}
 647	return found;
 648}
 649
 650/*
 651 * Search for the biggest gap in the low 32 bits of the E820
 652 * memory space. We pass this space to the PCI subsystem, so
 653 * that it can assign MMIO resources for hotplug or
 654 * unconfigured devices in.
 655 *
 656 * Hopefully the BIOS let enough space left.
 657 */
 658__init void e820__setup_pci_gap(void)
 659{
 660	unsigned long gapstart, gapsize;
 661	int found;
 662
 663	gapsize = 0x400000;
 664	found  = e820_search_gap(&gapstart, &gapsize);
 665
 666	if (!found) {
 667#ifdef CONFIG_X86_64
 668		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 669		pr_err("Cannot find an available gap in the 32-bit address range\n");
 670		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
 671#else
 672		gapstart = 0x10000000;
 673#endif
 674	}
 675
 676	/*
 677	 * e820__reserve_resources_late() protects stolen RAM already:
 678	 */
 679	pci_mem_start = gapstart;
 680
 681	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
 682		gapstart, gapstart + gapsize - 1);
 683}
 684
 685/*
 686 * Called late during init, in free_initmem().
 687 *
 688 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
 689 *
 690 * Copy them to a (usually much smaller) dynamically allocated area that is
 691 * sized precisely after the number of e820 entries.
 692 *
 693 * This is done after we've performed all the fixes and tweaks to the tables.
 694 * All functions which modify them are __init functions, which won't exist
 695 * after free_initmem().
 696 */
 697__init void e820__reallocate_tables(void)
 698{
 699	struct e820_table *n;
 700	int size;
 701
 702	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
 703	n = kmemdup(e820_table, size, GFP_KERNEL);
 704	BUG_ON(!n);
 705	e820_table = n;
 706
 707	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
 708	n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
 709	BUG_ON(!n);
 710	e820_table_kexec = n;
 711
 712	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
 713	n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
 714	BUG_ON(!n);
 715	e820_table_firmware = n;
 716}
 717
 718/*
 719 * Because of the small fixed size of struct boot_params, only the first
 720 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
 721 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
 722 * struct setup_data, which is parsed here.
 723 */
 724void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
 725{
 726	int entries;
 727	struct boot_e820_entry *extmap;
 728	struct setup_data *sdata;
 729
 730	sdata = early_memremap(phys_addr, data_len);
 731	entries = sdata->len / sizeof(*extmap);
 732	extmap = (struct boot_e820_entry *)(sdata->data);
 733
 734	__append_e820_table(extmap, entries);
 735	e820__update_table(e820_table);
 736
 737	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
 738	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
 739
 740	early_memunmap(sdata, data_len);
 741	pr_info("extended physical RAM map:\n");
 742	e820__print_table("extended");
 743}
 744
 745/*
 746 * Find the ranges of physical addresses that do not correspond to
 747 * E820 RAM areas and register the corresponding pages as 'nosave' for
 748 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
 749 *
 750 * This function requires the E820 map to be sorted and without any
 751 * overlapping entries.
 752 */
 753void __init e820__register_nosave_regions(unsigned long limit_pfn)
 754{
 755	int i;
 756	unsigned long pfn = 0;
 757
 758	for (i = 0; i < e820_table->nr_entries; i++) {
 759		struct e820_entry *entry = &e820_table->entries[i];
 760
 761		if (pfn < PFN_UP(entry->addr))
 762			register_nosave_region(pfn, PFN_UP(entry->addr));
 763
 764		pfn = PFN_DOWN(entry->addr + entry->size);
 765
 766		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
 767			register_nosave_region(PFN_UP(entry->addr), pfn);
 768
 769		if (pfn >= limit_pfn)
 770			break;
 771	}
 772}
 773
 774#ifdef CONFIG_ACPI
 775/*
 776 * Register ACPI NVS memory regions, so that we can save/restore them during
 777 * hibernation and the subsequent resume:
 778 */
 779static int __init e820__register_nvs_regions(void)
 780{
 781	int i;
 782
 783	for (i = 0; i < e820_table->nr_entries; i++) {
 784		struct e820_entry *entry = &e820_table->entries[i];
 785
 786		if (entry->type == E820_TYPE_NVS)
 787			acpi_nvs_register(entry->addr, entry->size);
 788	}
 789
 790	return 0;
 791}
 792core_initcall(e820__register_nvs_regions);
 793#endif
 794
 795/*
 796 * Allocate the requested number of bytes with the requested alignment
 797 * and return (the physical address) to the caller. Also register this
 798 * range in the 'kexec' E820 table as a reserved range.
 799 *
 800 * This allows kexec to fake a new mptable, as if it came from the real
 801 * system.
 802 */
 803u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
 804{
 805	u64 addr;
 806
 807	addr = memblock_phys_alloc(size, align);
 808	if (addr) {
 809		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 810		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
 811		e820__update_table_kexec();
 812	}
 813
 814	return addr;
 815}
 816
 817#ifdef CONFIG_X86_32
 818# ifdef CONFIG_X86_PAE
 819#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 820# else
 821#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 822# endif
 823#else /* CONFIG_X86_32 */
 824# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 825#endif
 826
 827/*
 828 * Find the highest page frame number we have available
 829 */
 830static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
 831{
 832	int i;
 833	unsigned long last_pfn = 0;
 834	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 835
 836	for (i = 0; i < e820_table->nr_entries; i++) {
 837		struct e820_entry *entry = &e820_table->entries[i];
 838		unsigned long start_pfn;
 839		unsigned long end_pfn;
 840
 841		if (entry->type != type)
 842			continue;
 843
 844		start_pfn = entry->addr >> PAGE_SHIFT;
 845		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
 846
 847		if (start_pfn >= limit_pfn)
 848			continue;
 849		if (end_pfn > limit_pfn) {
 850			last_pfn = limit_pfn;
 851			break;
 852		}
 853		if (end_pfn > last_pfn)
 854			last_pfn = end_pfn;
 855	}
 856
 857	if (last_pfn > max_arch_pfn)
 858		last_pfn = max_arch_pfn;
 859
 860	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
 861		last_pfn, max_arch_pfn);
 862	return last_pfn;
 863}
 864
 865unsigned long __init e820__end_of_ram_pfn(void)
 866{
 867	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
 868}
 869
 870unsigned long __init e820__end_of_low_ram_pfn(void)
 871{
 872	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
 873}
 874
 875static void __init early_panic(char *msg)
 876{
 877	early_printk(msg);
 878	panic(msg);
 879}
 880
 881static int userdef __initdata;
 882
 883/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
 884static int __init parse_memopt(char *p)
 885{
 886	u64 mem_size;
 887
 888	if (!p)
 889		return -EINVAL;
 890
 891	if (!strcmp(p, "nopentium")) {
 892#ifdef CONFIG_X86_32
 893		setup_clear_cpu_cap(X86_FEATURE_PSE);
 894		return 0;
 895#else
 896		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
 897		return -EINVAL;
 898#endif
 899	}
 900
 901	userdef = 1;
 902	mem_size = memparse(p, &p);
 903
 904	/* Don't remove all memory when getting "mem={invalid}" parameter: */
 905	if (mem_size == 0)
 906		return -EINVAL;
 907
 908	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 909
 910#ifdef CONFIG_MEMORY_HOTPLUG
 911	max_mem_size = mem_size;
 912#endif
 913
 914	return 0;
 915}
 916early_param("mem", parse_memopt);
 917
 918static int __init parse_memmap_one(char *p)
 919{
 920	char *oldp;
 921	u64 start_at, mem_size;
 922
 923	if (!p)
 924		return -EINVAL;
 925
 926	if (!strncmp(p, "exactmap", 8)) {
 
 
 
 
 
 
 
 
 927		e820_table->nr_entries = 0;
 928		userdef = 1;
 929		return 0;
 930	}
 931
 932	oldp = p;
 933	mem_size = memparse(p, &p);
 934	if (p == oldp)
 935		return -EINVAL;
 936
 937	userdef = 1;
 938	if (*p == '@') {
 939		start_at = memparse(p+1, &p);
 940		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
 941	} else if (*p == '#') {
 942		start_at = memparse(p+1, &p);
 943		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
 944	} else if (*p == '$') {
 945		start_at = memparse(p+1, &p);
 946		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
 947	} else if (*p == '!') {
 948		start_at = memparse(p+1, &p);
 949		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
 950	} else if (*p == '%') {
 951		enum e820_type from = 0, to = 0;
 952
 953		start_at = memparse(p + 1, &p);
 954		if (*p == '-')
 955			from = simple_strtoull(p + 1, &p, 0);
 956		if (*p == '+')
 957			to = simple_strtoull(p + 1, &p, 0);
 958		if (*p != '\0')
 959			return -EINVAL;
 960		if (from && to)
 961			e820__range_update(start_at, mem_size, from, to);
 962		else if (to)
 963			e820__range_add(start_at, mem_size, to);
 964		else if (from)
 965			e820__range_remove(start_at, mem_size, from, 1);
 966		else
 967			e820__range_remove(start_at, mem_size, 0, 0);
 968	} else {
 969		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 970	}
 971
 972	return *p == '\0' ? 0 : -EINVAL;
 973}
 974
 975static int __init parse_memmap_opt(char *str)
 976{
 977	while (str) {
 978		char *k = strchr(str, ',');
 979
 980		if (k)
 981			*k++ = 0;
 982
 983		parse_memmap_one(str);
 984		str = k;
 985	}
 986
 987	return 0;
 988}
 989early_param("memmap", parse_memmap_opt);
 990
 991/*
 992 * Reserve all entries from the bootloader's extensible data nodes list,
 993 * because if present we are going to use it later on to fetch e820
 994 * entries from it:
 995 */
 996void __init e820__reserve_setup_data(void)
 997{
 998	struct setup_indirect *indirect;
 999	struct setup_data *data;
1000	u64 pa_data, pa_next;
1001	u32 len;
1002
1003	pa_data = boot_params.hdr.setup_data;
1004	if (!pa_data)
1005		return;
1006
1007	while (pa_data) {
1008		data = early_memremap(pa_data, sizeof(*data));
1009		if (!data) {
1010			pr_warn("e820: failed to memremap setup_data entry\n");
1011			return;
1012		}
1013
1014		len = sizeof(*data);
1015		pa_next = data->next;
1016
1017		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1018
1019		/*
1020		 * SETUP_EFI, SETUP_IMA and SETUP_RNG_SEED are supplied by
1021		 * kexec and do not need to be reserved.
1022		 */
1023		if (data->type != SETUP_EFI &&
1024		    data->type != SETUP_IMA &&
1025		    data->type != SETUP_RNG_SEED)
1026			e820__range_update_kexec(pa_data,
1027						 sizeof(*data) + data->len,
1028						 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1029
1030		if (data->type == SETUP_INDIRECT) {
1031			len += data->len;
1032			early_memunmap(data, sizeof(*data));
1033			data = early_memremap(pa_data, len);
1034			if (!data) {
1035				pr_warn("e820: failed to memremap indirect setup_data\n");
1036				return;
1037			}
1038
1039			indirect = (struct setup_indirect *)data->data;
1040
1041			if (indirect->type != SETUP_INDIRECT) {
1042				e820__range_update(indirect->addr, indirect->len,
1043						   E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1044				e820__range_update_kexec(indirect->addr, indirect->len,
1045							 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1046			}
1047		}
1048
1049		pa_data = pa_next;
1050		early_memunmap(data, len);
1051	}
1052
1053	e820__update_table(e820_table);
1054	e820__update_table(e820_table_kexec);
1055
1056	pr_info("extended physical RAM map:\n");
1057	e820__print_table("reserve setup_data");
1058}
1059
1060/*
1061 * Called after parse_early_param(), after early parameters (such as mem=)
1062 * have been processed, in which case we already have an E820 table filled in
1063 * via the parameter callback function(s), but it's not sorted and printed yet:
1064 */
1065void __init e820__finish_early_params(void)
1066{
1067	if (userdef) {
1068		if (e820__update_table(e820_table) < 0)
1069			early_panic("Invalid user supplied memory map");
1070
1071		pr_info("user-defined physical RAM map:\n");
1072		e820__print_table("user");
1073	}
1074}
1075
1076static const char *__init e820_type_to_string(struct e820_entry *entry)
1077{
1078	switch (entry->type) {
1079	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1080	case E820_TYPE_RAM:		return "System RAM";
1081	case E820_TYPE_ACPI:		return "ACPI Tables";
1082	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1083	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1084	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1085	case E820_TYPE_PMEM:		return "Persistent Memory";
1086	case E820_TYPE_RESERVED:	return "Reserved";
1087	case E820_TYPE_SOFT_RESERVED:	return "Soft Reserved";
1088	default:			return "Unknown E820 type";
1089	}
1090}
1091
1092static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1093{
1094	switch (entry->type) {
1095	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1096	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1097	case E820_TYPE_ACPI:		/* Fall-through: */
1098	case E820_TYPE_NVS:		/* Fall-through: */
1099	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1100	case E820_TYPE_PRAM:		/* Fall-through: */
1101	case E820_TYPE_PMEM:		/* Fall-through: */
1102	case E820_TYPE_RESERVED:	/* Fall-through: */
1103	case E820_TYPE_SOFT_RESERVED:	/* Fall-through: */
1104	default:			return IORESOURCE_MEM;
1105	}
1106}
1107
1108static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1109{
1110	switch (entry->type) {
1111	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1112	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1113	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1114	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1115	case E820_TYPE_RESERVED:	return IORES_DESC_RESERVED;
1116	case E820_TYPE_SOFT_RESERVED:	return IORES_DESC_SOFT_RESERVED;
1117	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1118	case E820_TYPE_RAM:		/* Fall-through: */
1119	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1120	default:			return IORES_DESC_NONE;
1121	}
1122}
1123
1124static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1125{
1126	/* this is the legacy bios/dos rom-shadow + mmio region */
1127	if (res->start < (1ULL<<20))
1128		return true;
1129
1130	/*
1131	 * Treat persistent memory and other special memory ranges like
1132	 * device memory, i.e. reserve it for exclusive use of a driver
1133	 */
1134	switch (type) {
1135	case E820_TYPE_RESERVED:
1136	case E820_TYPE_SOFT_RESERVED:
1137	case E820_TYPE_PRAM:
1138	case E820_TYPE_PMEM:
1139		return false;
1140	case E820_TYPE_RESERVED_KERN:
1141	case E820_TYPE_RAM:
1142	case E820_TYPE_ACPI:
1143	case E820_TYPE_NVS:
1144	case E820_TYPE_UNUSABLE:
1145	default:
1146		return true;
1147	}
1148}
1149
1150/*
1151 * Mark E820 reserved areas as busy for the resource manager:
1152 */
1153
1154static struct resource __initdata *e820_res;
1155
1156void __init e820__reserve_resources(void)
1157{
1158	int i;
1159	struct resource *res;
1160	u64 end;
1161
1162	res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
1163			     SMP_CACHE_BYTES);
1164	if (!res)
1165		panic("%s: Failed to allocate %zu bytes\n", __func__,
1166		      sizeof(*res) * e820_table->nr_entries);
1167	e820_res = res;
1168
1169	for (i = 0; i < e820_table->nr_entries; i++) {
1170		struct e820_entry *entry = e820_table->entries + i;
1171
1172		end = entry->addr + entry->size - 1;
1173		if (end != (resource_size_t)end) {
1174			res++;
1175			continue;
1176		}
1177		res->start = entry->addr;
1178		res->end   = end;
1179		res->name  = e820_type_to_string(entry);
1180		res->flags = e820_type_to_iomem_type(entry);
1181		res->desc  = e820_type_to_iores_desc(entry);
1182
1183		/*
1184		 * Don't register the region that could be conflicted with
1185		 * PCI device BAR resources and insert them later in
1186		 * pcibios_resource_survey():
1187		 */
1188		if (do_mark_busy(entry->type, res)) {
1189			res->flags |= IORESOURCE_BUSY;
1190			insert_resource(&iomem_resource, res);
1191		}
1192		res++;
1193	}
1194
1195	/* Expose the bootloader-provided memory layout to the sysfs. */
1196	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1197		struct e820_entry *entry = e820_table_firmware->entries + i;
1198
1199		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1200	}
1201}
1202
1203/*
1204 * How much should we pad the end of RAM, depending on where it is?
1205 */
1206static unsigned long __init ram_alignment(resource_size_t pos)
1207{
1208	unsigned long mb = pos >> 20;
1209
1210	/* To 64kB in the first megabyte */
1211	if (!mb)
1212		return 64*1024;
1213
1214	/* To 1MB in the first 16MB */
1215	if (mb < 16)
1216		return 1024*1024;
1217
1218	/* To 64MB for anything above that */
1219	return 64*1024*1024;
1220}
1221
1222#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1223
1224void __init e820__reserve_resources_late(void)
1225{
1226	int i;
1227	struct resource *res;
1228
1229	res = e820_res;
1230	for (i = 0; i < e820_table->nr_entries; i++) {
1231		if (!res->parent && res->end)
1232			insert_resource_expand_to_fit(&iomem_resource, res);
1233		res++;
1234	}
1235
1236	/*
1237	 * Try to bump up RAM regions to reasonable boundaries, to
1238	 * avoid stolen RAM:
1239	 */
1240	for (i = 0; i < e820_table->nr_entries; i++) {
1241		struct e820_entry *entry = &e820_table->entries[i];
1242		u64 start, end;
1243
1244		if (entry->type != E820_TYPE_RAM)
1245			continue;
1246
1247		start = entry->addr + entry->size;
1248		end = round_up(start, ram_alignment(start)) - 1;
1249		if (end > MAX_RESOURCE_SIZE)
1250			end = MAX_RESOURCE_SIZE;
1251		if (start >= end)
1252			continue;
1253
1254		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1255		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1256	}
1257}
1258
1259/*
1260 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1261 */
1262char *__init e820__memory_setup_default(void)
1263{
1264	char *who = "BIOS-e820";
1265
1266	/*
1267	 * Try to copy the BIOS-supplied E820-map.
1268	 *
1269	 * Otherwise fake a memory map; one section from 0k->640k,
1270	 * the next section from 1mb->appropriate_mem_k
1271	 */
1272	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1273		u64 mem_size;
1274
1275		/* Compare results from other methods and take the one that gives more RAM: */
1276		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1277			mem_size = boot_params.screen_info.ext_mem_k;
1278			who = "BIOS-88";
1279		} else {
1280			mem_size = boot_params.alt_mem_k;
1281			who = "BIOS-e801";
1282		}
1283
1284		e820_table->nr_entries = 0;
1285		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1286		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1287	}
1288
1289	/* We just appended a lot of ranges, sanitize the table: */
1290	e820__update_table(e820_table);
1291
1292	return who;
1293}
1294
1295/*
1296 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1297 * E820 map - with an optional platform quirk available for virtual platforms
1298 * to override this method of boot environment processing:
1299 */
1300void __init e820__memory_setup(void)
1301{
1302	char *who;
1303
1304	/* This is a firmware interface ABI - make sure we don't break it: */
1305	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1306
1307	who = x86_init.resources.memory_setup();
1308
1309	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1310	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1311
1312	pr_info("BIOS-provided physical RAM map:\n");
1313	e820__print_table(who);
1314}
1315
1316void __init e820__memblock_setup(void)
1317{
1318	int i;
1319	u64 end;
1320
1321	/*
1322	 * The bootstrap memblock region count maximum is 128 entries
1323	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1324	 * than that - so allow memblock resizing.
1325	 *
1326	 * This is safe, because this call happens pretty late during x86 setup,
1327	 * so we know about reserved memory regions already. (This is important
1328	 * so that memblock resizing does no stomp over reserved areas.)
1329	 */
1330	memblock_allow_resize();
1331
1332	for (i = 0; i < e820_table->nr_entries; i++) {
1333		struct e820_entry *entry = &e820_table->entries[i];
1334
1335		end = entry->addr + entry->size;
1336		if (end != (resource_size_t)end)
1337			continue;
1338
1339		if (entry->type == E820_TYPE_SOFT_RESERVED)
1340			memblock_reserve(entry->addr, entry->size);
1341
1342		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1343			continue;
1344
1345		memblock_add(entry->addr, entry->size);
1346	}
1347
1348	/* Throw away partial pages: */
1349	memblock_trim_memory(PAGE_SIZE);
1350
1351	memblock_dump_all();
1352}