Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Low level x86 E820 memory map handling functions.
   4 *
   5 * The firmware and bootloader passes us the "E820 table", which is the primary
   6 * physical memory layout description available about x86 systems.
   7 *
   8 * The kernel takes the E820 memory layout and optionally modifies it with
   9 * quirks and other tweaks, and feeds that into the generic Linux memory
  10 * allocation code routines via a platform independent interface (memblock, etc.).
  11 */
  12#include <linux/crash_dump.h>
  13#include <linux/memblock.h>
  14#include <linux/suspend.h>
  15#include <linux/acpi.h>
  16#include <linux/firmware-map.h>
 
  17#include <linux/sort.h>
  18#include <linux/memory_hotplug.h>
  19
  20#include <asm/e820/api.h>
  21#include <asm/setup.h>
  22
  23/*
  24 * We organize the E820 table into three main data structures:
  25 *
  26 * - 'e820_table_firmware': the original firmware version passed to us by the
  27 *   bootloader - not modified by the kernel. It is composed of two parts:
  28 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
  29 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
  30 *
  31 *       - inform the user about the firmware's notion of memory layout
  32 *         via /sys/firmware/memmap
  33 *
  34 *       - the hibernation code uses it to generate a kernel-independent MD5
  35 *         fingerprint of the physical memory layout of a system.
  36 *
  37 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
  38 *   passed to us by the bootloader - the major difference between
  39 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
  40 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
  41 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
  42 *   might also be modified by the kexec itself to fake a mptable.
  43 *   We use this to:
  44 *
  45 *       - kexec, which is a bootloader in disguise, uses the original E820
  46 *         layout to pass to the kexec-ed kernel. This way the original kernel
  47 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
  48 *         can have access to full memory - etc.
  49 *
  50 * - 'e820_table': this is the main E820 table that is massaged by the
  51 *   low level x86 platform code, or modified by boot parameters, before
  52 *   passed on to higher level MM layers.
  53 *
  54 * Once the E820 map has been converted to the standard Linux memory layout
  55 * information its role stops - modifying it has no effect and does not get
  56 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
  57 * specific memory layout data during early bootup.
  58 */
  59static struct e820_table e820_table_init		__initdata;
  60static struct e820_table e820_table_kexec_init		__initdata;
  61static struct e820_table e820_table_firmware_init	__initdata;
  62
  63struct e820_table *e820_table __refdata			= &e820_table_init;
  64struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
  65struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
  66
  67/* For PCI or other memory-mapped resources */
  68unsigned long pci_mem_start = 0xaeedbabe;
  69#ifdef CONFIG_PCI
  70EXPORT_SYMBOL(pci_mem_start);
  71#endif
  72
  73/*
  74 * This function checks if any part of the range <start,end> is mapped
  75 * with type.
  76 */
  77static bool _e820__mapped_any(struct e820_table *table,
  78			      u64 start, u64 end, enum e820_type type)
  79{
  80	int i;
  81
  82	for (i = 0; i < table->nr_entries; i++) {
  83		struct e820_entry *entry = &table->entries[i];
  84
  85		if (type && entry->type != type)
  86			continue;
  87		if (entry->addr >= end || entry->addr + entry->size <= start)
  88			continue;
  89		return true;
  90	}
  91	return false;
  92}
  93
  94bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
  95{
  96	return _e820__mapped_any(e820_table_firmware, start, end, type);
  97}
  98EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
  99
 100bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
 101{
 102	return _e820__mapped_any(e820_table, start, end, type);
 103}
 104EXPORT_SYMBOL_GPL(e820__mapped_any);
 105
 106/*
 107 * This function checks if the entire <start,end> range is mapped with 'type'.
 108 *
 109 * Note: this function only works correctly once the E820 table is sorted and
 110 * not-overlapping (at least for the range specified), which is the case normally.
 111 */
 112static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
 113					     enum e820_type type)
 114{
 115	int i;
 116
 117	for (i = 0; i < e820_table->nr_entries; i++) {
 118		struct e820_entry *entry = &e820_table->entries[i];
 119
 120		if (type && entry->type != type)
 121			continue;
 122
 123		/* Is the region (part) in overlap with the current region? */
 124		if (entry->addr >= end || entry->addr + entry->size <= start)
 125			continue;
 126
 127		/*
 128		 * If the region is at the beginning of <start,end> we move
 129		 * 'start' to the end of the region since it's ok until there
 130		 */
 131		if (entry->addr <= start)
 132			start = entry->addr + entry->size;
 133
 134		/*
 135		 * If 'start' is now at or beyond 'end', we're done, full
 136		 * coverage of the desired range exists:
 137		 */
 138		if (start >= end)
 139			return entry;
 140	}
 141
 142	return NULL;
 143}
 144
 145/*
 146 * This function checks if the entire range <start,end> is mapped with type.
 147 */
 148bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
 149{
 150	return __e820__mapped_all(start, end, type);
 151}
 152
 153/*
 154 * This function returns the type associated with the range <start,end>.
 155 */
 156int e820__get_entry_type(u64 start, u64 end)
 157{
 158	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
 159
 160	return entry ? entry->type : -EINVAL;
 161}
 162
 163/*
 164 * Add a memory region to the kernel E820 map.
 165 */
 166static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
 167{
 168	int x = table->nr_entries;
 169
 170	if (x >= ARRAY_SIZE(table->entries)) {
 171		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
 172		       start, start + size - 1);
 173		return;
 174	}
 175
 176	table->entries[x].addr = start;
 177	table->entries[x].size = size;
 178	table->entries[x].type = type;
 179	table->nr_entries++;
 180}
 181
 182void __init e820__range_add(u64 start, u64 size, enum e820_type type)
 183{
 184	__e820__range_add(e820_table, start, size, type);
 185}
 186
 187static void __init e820_print_type(enum e820_type type)
 188{
 189	switch (type) {
 190	case E820_TYPE_RAM:		/* Fall through: */
 191	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
 192	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
 193	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
 194	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
 195	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
 196	case E820_TYPE_PMEM:		/* Fall through: */
 197	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
 198	default:			pr_cont("type %u", type);		break;
 199	}
 200}
 201
 202void __init e820__print_table(char *who)
 203{
 204	int i;
 205
 206	for (i = 0; i < e820_table->nr_entries; i++) {
 207		pr_info("%s: [mem %#018Lx-%#018Lx] ",
 208			who,
 209			e820_table->entries[i].addr,
 210			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
 211
 212		e820_print_type(e820_table->entries[i].type);
 213		pr_cont("\n");
 214	}
 215}
 216
 217/*
 218 * Sanitize an E820 map.
 219 *
 220 * Some E820 layouts include overlapping entries. The following
 221 * replaces the original E820 map with a new one, removing overlaps,
 222 * and resolving conflicting memory types in favor of highest
 223 * numbered type.
 224 *
 225 * The input parameter 'entries' points to an array of 'struct
 226 * e820_entry' which on entry has elements in the range [0, *nr_entries)
 227 * valid, and which has space for up to max_nr_entries entries.
 228 * On return, the resulting sanitized E820 map entries will be in
 229 * overwritten in the same location, starting at 'entries'.
 230 *
 231 * The integer pointed to by nr_entries must be valid on entry (the
 232 * current number of valid entries located at 'entries'). If the
 233 * sanitizing succeeds the *nr_entries will be updated with the new
 234 * number of valid entries (something no more than max_nr_entries).
 235 *
 236 * The return value from e820__update_table() is zero if it
 237 * successfully 'sanitized' the map entries passed in, and is -1
 238 * if it did nothing, which can happen if either of (1) it was
 239 * only passed one map entry, or (2) any of the input map entries
 240 * were invalid (start + size < start, meaning that the size was
 241 * so big the described memory range wrapped around through zero.)
 242 *
 243 *	Visually we're performing the following
 244 *	(1,2,3,4 = memory types)...
 245 *
 246 *	Sample memory map (w/overlaps):
 247 *	   ____22__________________
 248 *	   ______________________4_
 249 *	   ____1111________________
 250 *	   _44_____________________
 251 *	   11111111________________
 252 *	   ____________________33__
 253 *	   ___________44___________
 254 *	   __________33333_________
 255 *	   ______________22________
 256 *	   ___________________2222_
 257 *	   _________111111111______
 258 *	   _____________________11_
 259 *	   _________________4______
 260 *
 261 *	Sanitized equivalent (no overlap):
 262 *	   1_______________________
 263 *	   _44_____________________
 264 *	   ___1____________________
 265 *	   ____22__________________
 266 *	   ______11________________
 267 *	   _________1______________
 268 *	   __________3_____________
 269 *	   ___________44___________
 270 *	   _____________33_________
 271 *	   _______________2________
 272 *	   ________________1_______
 273 *	   _________________4______
 274 *	   ___________________2____
 275 *	   ____________________33__
 276 *	   ______________________4_
 277 */
 278struct change_member {
 279	/* Pointer to the original entry: */
 280	struct e820_entry	*entry;
 281	/* Address for this change point: */
 282	unsigned long long	addr;
 283};
 284
 285static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
 286static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
 287static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
 288static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
 289
 290static int __init cpcompare(const void *a, const void *b)
 291{
 292	struct change_member * const *app = a, * const *bpp = b;
 293	const struct change_member *ap = *app, *bp = *bpp;
 294
 295	/*
 296	 * Inputs are pointers to two elements of change_point[].  If their
 297	 * addresses are not equal, their difference dominates.  If the addresses
 298	 * are equal, then consider one that represents the end of its region
 299	 * to be greater than one that does not.
 300	 */
 301	if (ap->addr != bp->addr)
 302		return ap->addr > bp->addr ? 1 : -1;
 303
 304	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
 305}
 306
 307int __init e820__update_table(struct e820_table *table)
 308{
 309	struct e820_entry *entries = table->entries;
 310	u32 max_nr_entries = ARRAY_SIZE(table->entries);
 311	enum e820_type current_type, last_type;
 312	unsigned long long last_addr;
 313	u32 new_nr_entries, overlap_entries;
 314	u32 i, chg_idx, chg_nr;
 315
 316	/* If there's only one memory region, don't bother: */
 317	if (table->nr_entries < 2)
 318		return -1;
 319
 320	BUG_ON(table->nr_entries > max_nr_entries);
 321
 322	/* Bail out if we find any unreasonable addresses in the map: */
 323	for (i = 0; i < table->nr_entries; i++) {
 324		if (entries[i].addr + entries[i].size < entries[i].addr)
 325			return -1;
 326	}
 327
 328	/* Create pointers for initial change-point information (for sorting): */
 329	for (i = 0; i < 2 * table->nr_entries; i++)
 330		change_point[i] = &change_point_list[i];
 331
 332	/*
 333	 * Record all known change-points (starting and ending addresses),
 334	 * omitting empty memory regions:
 335	 */
 336	chg_idx = 0;
 337	for (i = 0; i < table->nr_entries; i++)	{
 338		if (entries[i].size != 0) {
 339			change_point[chg_idx]->addr	= entries[i].addr;
 340			change_point[chg_idx++]->entry	= &entries[i];
 341			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
 342			change_point[chg_idx++]->entry	= &entries[i];
 343		}
 344	}
 345	chg_nr = chg_idx;
 346
 347	/* Sort change-point list by memory addresses (low -> high): */
 348	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
 349
 350	/* Create a new memory map, removing overlaps: */
 351	overlap_entries = 0;	 /* Number of entries in the overlap table */
 352	new_nr_entries = 0;	 /* Index for creating new map entries */
 353	last_type = 0;		 /* Start with undefined memory type */
 354	last_addr = 0;		 /* Start with 0 as last starting address */
 355
 356	/* Loop through change-points, determining effect on the new map: */
 357	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
 358		/* Keep track of all overlapping entries */
 359		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
 360			/* Add map entry to overlap list (> 1 entry implies an overlap) */
 361			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
 362		} else {
 363			/* Remove entry from list (order independent, so swap with last): */
 364			for (i = 0; i < overlap_entries; i++) {
 365				if (overlap_list[i] == change_point[chg_idx]->entry)
 366					overlap_list[i] = overlap_list[overlap_entries-1];
 367			}
 368			overlap_entries--;
 369		}
 370		/*
 371		 * If there are overlapping entries, decide which
 372		 * "type" to use (larger value takes precedence --
 373		 * 1=usable, 2,3,4,4+=unusable)
 374		 */
 375		current_type = 0;
 376		for (i = 0; i < overlap_entries; i++) {
 377			if (overlap_list[i]->type > current_type)
 378				current_type = overlap_list[i]->type;
 379		}
 380
 381		/* Continue building up new map based on this information: */
 382		if (current_type != last_type || current_type == E820_TYPE_PRAM) {
 383			if (last_type != 0)	 {
 384				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
 385				/* Move forward only if the new size was non-zero: */
 386				if (new_entries[new_nr_entries].size != 0)
 387					/* No more space left for new entries? */
 388					if (++new_nr_entries >= max_nr_entries)
 389						break;
 390			}
 391			if (current_type != 0)	{
 392				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
 393				new_entries[new_nr_entries].type = current_type;
 394				last_addr = change_point[chg_idx]->addr;
 395			}
 396			last_type = current_type;
 397		}
 398	}
 399
 400	/* Copy the new entries into the original location: */
 401	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
 402	table->nr_entries = new_nr_entries;
 403
 404	return 0;
 405}
 406
 407static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 408{
 409	struct boot_e820_entry *entry = entries;
 410
 411	while (nr_entries) {
 412		u64 start = entry->addr;
 413		u64 size = entry->size;
 414		u64 end = start + size - 1;
 415		u32 type = entry->type;
 416
 417		/* Ignore the entry on 64-bit overflow: */
 418		if (start > end && likely(size))
 419			return -1;
 420
 421		e820__range_add(start, size, type);
 422
 423		entry++;
 424		nr_entries--;
 425	}
 426	return 0;
 427}
 428
 429/*
 430 * Copy the BIOS E820 map into a safe place.
 431 *
 432 * Sanity-check it while we're at it..
 433 *
 434 * If we're lucky and live on a modern system, the setup code
 435 * will have given us a memory map that we can use to properly
 436 * set up memory.  If we aren't, we'll fake a memory map.
 437 */
 438static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 439{
 440	/* Only one memory region (or negative)? Ignore it */
 441	if (nr_entries < 2)
 442		return -1;
 443
 444	return __append_e820_table(entries, nr_entries);
 445}
 446
 447static u64 __init
 448__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 449{
 450	u64 end;
 451	unsigned int i;
 452	u64 real_updated_size = 0;
 453
 454	BUG_ON(old_type == new_type);
 455
 456	if (size > (ULLONG_MAX - start))
 457		size = ULLONG_MAX - start;
 458
 459	end = start + size;
 460	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
 461	e820_print_type(old_type);
 462	pr_cont(" ==> ");
 463	e820_print_type(new_type);
 464	pr_cont("\n");
 465
 466	for (i = 0; i < table->nr_entries; i++) {
 467		struct e820_entry *entry = &table->entries[i];
 468		u64 final_start, final_end;
 469		u64 entry_end;
 470
 471		if (entry->type != old_type)
 472			continue;
 473
 474		entry_end = entry->addr + entry->size;
 475
 476		/* Completely covered by new range? */
 477		if (entry->addr >= start && entry_end <= end) {
 478			entry->type = new_type;
 479			real_updated_size += entry->size;
 480			continue;
 481		}
 482
 483		/* New range is completely covered? */
 484		if (entry->addr < start && entry_end > end) {
 485			__e820__range_add(table, start, size, new_type);
 486			__e820__range_add(table, end, entry_end - end, entry->type);
 487			entry->size = start - entry->addr;
 488			real_updated_size += size;
 489			continue;
 490		}
 491
 492		/* Partially covered: */
 493		final_start = max(start, entry->addr);
 494		final_end = min(end, entry_end);
 495		if (final_start >= final_end)
 496			continue;
 497
 498		__e820__range_add(table, final_start, final_end - final_start, new_type);
 499
 500		real_updated_size += final_end - final_start;
 501
 502		/*
 503		 * Left range could be head or tail, so need to update
 504		 * its size first:
 505		 */
 506		entry->size -= final_end - final_start;
 507		if (entry->addr < final_start)
 508			continue;
 509
 510		entry->addr = final_end;
 511	}
 512	return real_updated_size;
 513}
 514
 515u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 516{
 517	return __e820__range_update(e820_table, start, size, old_type, new_type);
 518}
 519
 520static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
 521{
 522	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
 523}
 524
 525/* Remove a range of memory from the E820 table: */
 526u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
 527{
 528	int i;
 529	u64 end;
 530	u64 real_removed_size = 0;
 531
 532	if (size > (ULLONG_MAX - start))
 533		size = ULLONG_MAX - start;
 534
 535	end = start + size;
 536	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
 537	if (check_type)
 538		e820_print_type(old_type);
 539	pr_cont("\n");
 540
 541	for (i = 0; i < e820_table->nr_entries; i++) {
 542		struct e820_entry *entry = &e820_table->entries[i];
 543		u64 final_start, final_end;
 544		u64 entry_end;
 545
 546		if (check_type && entry->type != old_type)
 547			continue;
 548
 549		entry_end = entry->addr + entry->size;
 550
 551		/* Completely covered? */
 552		if (entry->addr >= start && entry_end <= end) {
 553			real_removed_size += entry->size;
 554			memset(entry, 0, sizeof(*entry));
 555			continue;
 556		}
 557
 558		/* Is the new range completely covered? */
 559		if (entry->addr < start && entry_end > end) {
 560			e820__range_add(end, entry_end - end, entry->type);
 561			entry->size = start - entry->addr;
 562			real_removed_size += size;
 563			continue;
 564		}
 565
 566		/* Partially covered: */
 567		final_start = max(start, entry->addr);
 568		final_end = min(end, entry_end);
 569		if (final_start >= final_end)
 570			continue;
 571
 572		real_removed_size += final_end - final_start;
 573
 574		/*
 575		 * Left range could be head or tail, so need to update
 576		 * the size first:
 577		 */
 578		entry->size -= final_end - final_start;
 579		if (entry->addr < final_start)
 580			continue;
 581
 582		entry->addr = final_end;
 583	}
 584	return real_removed_size;
 585}
 586
 587void __init e820__update_table_print(void)
 588{
 589	if (e820__update_table(e820_table))
 590		return;
 591
 592	pr_info("modified physical RAM map:\n");
 593	e820__print_table("modified");
 594}
 595
 596static void __init e820__update_table_kexec(void)
 597{
 598	e820__update_table(e820_table_kexec);
 599}
 600
 601#define MAX_GAP_END 0x100000000ull
 602
 603/*
 604 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
 605 */
 606static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
 607{
 608	unsigned long long last = MAX_GAP_END;
 609	int i = e820_table->nr_entries;
 610	int found = 0;
 611
 612	while (--i >= 0) {
 613		unsigned long long start = e820_table->entries[i].addr;
 614		unsigned long long end = start + e820_table->entries[i].size;
 615
 616		/*
 617		 * Since "last" is at most 4GB, we know we'll
 618		 * fit in 32 bits if this condition is true:
 619		 */
 620		if (last > end) {
 621			unsigned long gap = last - end;
 622
 623			if (gap >= *gapsize) {
 624				*gapsize = gap;
 625				*gapstart = end;
 626				found = 1;
 627			}
 628		}
 629		if (start < last)
 630			last = start;
 631	}
 632	return found;
 633}
 634
 635/*
 636 * Search for the biggest gap in the low 32 bits of the E820
 637 * memory space. We pass this space to the PCI subsystem, so
 638 * that it can assign MMIO resources for hotplug or
 639 * unconfigured devices in.
 640 *
 641 * Hopefully the BIOS let enough space left.
 642 */
 643__init void e820__setup_pci_gap(void)
 644{
 645	unsigned long gapstart, gapsize;
 646	int found;
 647
 648	gapsize = 0x400000;
 649	found  = e820_search_gap(&gapstart, &gapsize);
 650
 651	if (!found) {
 652#ifdef CONFIG_X86_64
 653		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 654		pr_err("Cannot find an available gap in the 32-bit address range\n");
 655		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
 
 656#else
 657		gapstart = 0x10000000;
 658#endif
 659	}
 660
 661	/*
 662	 * e820__reserve_resources_late() protects stolen RAM already:
 663	 */
 664	pci_mem_start = gapstart;
 665
 666	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
 667		gapstart, gapstart + gapsize - 1);
 668}
 669
 670/*
 671 * Called late during init, in free_initmem().
 672 *
 673 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
 674 *
 675 * Copy them to a (usually much smaller) dynamically allocated area that is
 676 * sized precisely after the number of e820 entries.
 677 *
 678 * This is done after we've performed all the fixes and tweaks to the tables.
 679 * All functions which modify them are __init functions, which won't exist
 680 * after free_initmem().
 681 */
 682__init void e820__reallocate_tables(void)
 683{
 684	struct e820_table *n;
 685	int size;
 686
 687	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
 688	n = kmemdup(e820_table, size, GFP_KERNEL);
 689	BUG_ON(!n);
 
 690	e820_table = n;
 691
 692	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
 693	n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
 694	BUG_ON(!n);
 
 695	e820_table_kexec = n;
 696
 697	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
 698	n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
 699	BUG_ON(!n);
 
 700	e820_table_firmware = n;
 701}
 702
 703/*
 704 * Because of the small fixed size of struct boot_params, only the first
 705 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
 706 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
 707 * struct setup_data, which is parsed here.
 708 */
 709void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
 710{
 711	int entries;
 712	struct boot_e820_entry *extmap;
 713	struct setup_data *sdata;
 714
 715	sdata = early_memremap(phys_addr, data_len);
 716	entries = sdata->len / sizeof(*extmap);
 717	extmap = (struct boot_e820_entry *)(sdata->data);
 718
 719	__append_e820_table(extmap, entries);
 720	e820__update_table(e820_table);
 721
 722	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
 723	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
 724
 725	early_memunmap(sdata, data_len);
 726	pr_info("extended physical RAM map:\n");
 727	e820__print_table("extended");
 728}
 729
 730/*
 731 * Find the ranges of physical addresses that do not correspond to
 732 * E820 RAM areas and register the corresponding pages as 'nosave' for
 733 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
 734 *
 735 * This function requires the E820 map to be sorted and without any
 736 * overlapping entries.
 737 */
 738void __init e820__register_nosave_regions(unsigned long limit_pfn)
 739{
 740	int i;
 741	unsigned long pfn = 0;
 742
 743	for (i = 0; i < e820_table->nr_entries; i++) {
 744		struct e820_entry *entry = &e820_table->entries[i];
 745
 746		if (pfn < PFN_UP(entry->addr))
 747			register_nosave_region(pfn, PFN_UP(entry->addr));
 748
 749		pfn = PFN_DOWN(entry->addr + entry->size);
 750
 751		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
 752			register_nosave_region(PFN_UP(entry->addr), pfn);
 753
 754		if (pfn >= limit_pfn)
 755			break;
 756	}
 757}
 758
 759#ifdef CONFIG_ACPI
 760/*
 761 * Register ACPI NVS memory regions, so that we can save/restore them during
 762 * hibernation and the subsequent resume:
 763 */
 764static int __init e820__register_nvs_regions(void)
 765{
 766	int i;
 767
 768	for (i = 0; i < e820_table->nr_entries; i++) {
 769		struct e820_entry *entry = &e820_table->entries[i];
 770
 771		if (entry->type == E820_TYPE_NVS)
 772			acpi_nvs_register(entry->addr, entry->size);
 773	}
 774
 775	return 0;
 776}
 777core_initcall(e820__register_nvs_regions);
 778#endif
 779
 780/*
 781 * Allocate the requested number of bytes with the requsted alignment
 782 * and return (the physical address) to the caller. Also register this
 783 * range in the 'kexec' E820 table as a reserved range.
 784 *
 785 * This allows kexec to fake a new mptable, as if it came from the real
 786 * system.
 787 */
 788u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
 789{
 790	u64 addr;
 791
 792	addr = memblock_phys_alloc(size, align);
 793	if (addr) {
 794		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 795		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
 796		e820__update_table_kexec();
 797	}
 798
 799	return addr;
 800}
 801
 802#ifdef CONFIG_X86_32
 803# ifdef CONFIG_X86_PAE
 804#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 805# else
 806#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 807# endif
 808#else /* CONFIG_X86_32 */
 809# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 810#endif
 811
 812/*
 813 * Find the highest page frame number we have available
 814 */
 815static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
 816{
 817	int i;
 818	unsigned long last_pfn = 0;
 819	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 820
 821	for (i = 0; i < e820_table->nr_entries; i++) {
 822		struct e820_entry *entry = &e820_table->entries[i];
 823		unsigned long start_pfn;
 824		unsigned long end_pfn;
 825
 826		if (entry->type != type)
 827			continue;
 828
 829		start_pfn = entry->addr >> PAGE_SHIFT;
 830		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
 831
 832		if (start_pfn >= limit_pfn)
 833			continue;
 834		if (end_pfn > limit_pfn) {
 835			last_pfn = limit_pfn;
 836			break;
 837		}
 838		if (end_pfn > last_pfn)
 839			last_pfn = end_pfn;
 840	}
 841
 842	if (last_pfn > max_arch_pfn)
 843		last_pfn = max_arch_pfn;
 844
 845	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
 846		last_pfn, max_arch_pfn);
 847	return last_pfn;
 848}
 849
 850unsigned long __init e820__end_of_ram_pfn(void)
 851{
 852	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
 853}
 854
 855unsigned long __init e820__end_of_low_ram_pfn(void)
 856{
 857	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
 858}
 859
 860static void __init early_panic(char *msg)
 861{
 862	early_printk(msg);
 863	panic(msg);
 864}
 865
 866static int userdef __initdata;
 867
 868/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
 869static int __init parse_memopt(char *p)
 870{
 871	u64 mem_size;
 872
 873	if (!p)
 874		return -EINVAL;
 875
 876	if (!strcmp(p, "nopentium")) {
 877#ifdef CONFIG_X86_32
 878		setup_clear_cpu_cap(X86_FEATURE_PSE);
 879		return 0;
 880#else
 881		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
 882		return -EINVAL;
 883#endif
 884	}
 885
 886	userdef = 1;
 887	mem_size = memparse(p, &p);
 888
 889	/* Don't remove all memory when getting "mem={invalid}" parameter: */
 890	if (mem_size == 0)
 891		return -EINVAL;
 892
 893	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 894
 895#ifdef CONFIG_MEMORY_HOTPLUG
 896	max_mem_size = mem_size;
 897#endif
 898
 899	return 0;
 900}
 901early_param("mem", parse_memopt);
 902
 903static int __init parse_memmap_one(char *p)
 904{
 905	char *oldp;
 906	u64 start_at, mem_size;
 907
 908	if (!p)
 909		return -EINVAL;
 910
 911	if (!strncmp(p, "exactmap", 8)) {
 912#ifdef CONFIG_CRASH_DUMP
 913		/*
 914		 * If we are doing a crash dump, we still need to know
 915		 * the real memory size before the original memory map is
 916		 * reset.
 917		 */
 918		saved_max_pfn = e820__end_of_ram_pfn();
 919#endif
 920		e820_table->nr_entries = 0;
 921		userdef = 1;
 922		return 0;
 923	}
 924
 925	oldp = p;
 926	mem_size = memparse(p, &p);
 927	if (p == oldp)
 928		return -EINVAL;
 929
 930	userdef = 1;
 931	if (*p == '@') {
 932		start_at = memparse(p+1, &p);
 933		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
 934	} else if (*p == '#') {
 935		start_at = memparse(p+1, &p);
 936		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
 937	} else if (*p == '$') {
 938		start_at = memparse(p+1, &p);
 939		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
 940	} else if (*p == '!') {
 941		start_at = memparse(p+1, &p);
 942		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
 943	} else if (*p == '%') {
 944		enum e820_type from = 0, to = 0;
 945
 946		start_at = memparse(p + 1, &p);
 947		if (*p == '-')
 948			from = simple_strtoull(p + 1, &p, 0);
 949		if (*p == '+')
 950			to = simple_strtoull(p + 1, &p, 0);
 951		if (*p != '\0')
 952			return -EINVAL;
 953		if (from && to)
 954			e820__range_update(start_at, mem_size, from, to);
 955		else if (to)
 956			e820__range_add(start_at, mem_size, to);
 957		else if (from)
 958			e820__range_remove(start_at, mem_size, from, 1);
 959		else
 960			e820__range_remove(start_at, mem_size, 0, 0);
 961	} else {
 962		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 963	}
 964
 965	return *p == '\0' ? 0 : -EINVAL;
 966}
 967
 968static int __init parse_memmap_opt(char *str)
 969{
 970	while (str) {
 971		char *k = strchr(str, ',');
 972
 973		if (k)
 974			*k++ = 0;
 975
 976		parse_memmap_one(str);
 977		str = k;
 978	}
 979
 980	return 0;
 981}
 982early_param("memmap", parse_memmap_opt);
 983
 984/*
 985 * Reserve all entries from the bootloader's extensible data nodes list,
 986 * because if present we are going to use it later on to fetch e820
 987 * entries from it:
 988 */
 989void __init e820__reserve_setup_data(void)
 990{
 991	struct setup_data *data;
 992	u64 pa_data;
 993
 994	pa_data = boot_params.hdr.setup_data;
 995	if (!pa_data)
 996		return;
 997
 998	while (pa_data) {
 999		data = early_memremap(pa_data, sizeof(*data));
1000		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1001		e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1002		pa_data = data->next;
1003		early_memunmap(data, sizeof(*data));
1004	}
1005
1006	e820__update_table(e820_table);
1007	e820__update_table(e820_table_kexec);
1008
1009	pr_info("extended physical RAM map:\n");
1010	e820__print_table("reserve setup_data");
1011}
1012
1013/*
1014 * Called after parse_early_param(), after early parameters (such as mem=)
1015 * have been processed, in which case we already have an E820 table filled in
1016 * via the parameter callback function(s), but it's not sorted and printed yet:
1017 */
1018void __init e820__finish_early_params(void)
1019{
1020	if (userdef) {
1021		if (e820__update_table(e820_table) < 0)
1022			early_panic("Invalid user supplied memory map");
1023
1024		pr_info("user-defined physical RAM map:\n");
1025		e820__print_table("user");
1026	}
1027}
1028
1029static const char *__init e820_type_to_string(struct e820_entry *entry)
1030{
1031	switch (entry->type) {
1032	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1033	case E820_TYPE_RAM:		return "System RAM";
1034	case E820_TYPE_ACPI:		return "ACPI Tables";
1035	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1036	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1037	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1038	case E820_TYPE_PMEM:		return "Persistent Memory";
1039	case E820_TYPE_RESERVED:	return "Reserved";
1040	default:			return "Unknown E820 type";
1041	}
1042}
1043
1044static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1045{
1046	switch (entry->type) {
1047	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1048	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1049	case E820_TYPE_ACPI:		/* Fall-through: */
1050	case E820_TYPE_NVS:		/* Fall-through: */
1051	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1052	case E820_TYPE_PRAM:		/* Fall-through: */
1053	case E820_TYPE_PMEM:		/* Fall-through: */
1054	case E820_TYPE_RESERVED:	/* Fall-through: */
1055	default:			return IORESOURCE_MEM;
1056	}
1057}
1058
1059static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1060{
1061	switch (entry->type) {
1062	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1063	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1064	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1065	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1066	case E820_TYPE_RESERVED:	return IORES_DESC_RESERVED;
1067	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1068	case E820_TYPE_RAM:		/* Fall-through: */
1069	case E820_TYPE_UNUSABLE:	/* Fall-through: */
 
1070	default:			return IORES_DESC_NONE;
1071	}
1072}
1073
1074static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1075{
1076	/* this is the legacy bios/dos rom-shadow + mmio region */
1077	if (res->start < (1ULL<<20))
1078		return true;
1079
1080	/*
1081	 * Treat persistent memory like device memory, i.e. reserve it
1082	 * for exclusive use of a driver
1083	 */
1084	switch (type) {
1085	case E820_TYPE_RESERVED:
1086	case E820_TYPE_PRAM:
1087	case E820_TYPE_PMEM:
1088		return false;
1089	case E820_TYPE_RESERVED_KERN:
1090	case E820_TYPE_RAM:
1091	case E820_TYPE_ACPI:
1092	case E820_TYPE_NVS:
1093	case E820_TYPE_UNUSABLE:
1094	default:
1095		return true;
1096	}
1097}
1098
1099/*
1100 * Mark E820 reserved areas as busy for the resource manager:
1101 */
1102
1103static struct resource __initdata *e820_res;
1104
1105void __init e820__reserve_resources(void)
1106{
1107	int i;
1108	struct resource *res;
1109	u64 end;
1110
1111	res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
1112			     SMP_CACHE_BYTES);
1113	if (!res)
1114		panic("%s: Failed to allocate %zu bytes\n", __func__,
1115		      sizeof(*res) * e820_table->nr_entries);
1116	e820_res = res;
1117
1118	for (i = 0; i < e820_table->nr_entries; i++) {
1119		struct e820_entry *entry = e820_table->entries + i;
1120
1121		end = entry->addr + entry->size - 1;
1122		if (end != (resource_size_t)end) {
1123			res++;
1124			continue;
1125		}
1126		res->start = entry->addr;
1127		res->end   = end;
1128		res->name  = e820_type_to_string(entry);
1129		res->flags = e820_type_to_iomem_type(entry);
1130		res->desc  = e820_type_to_iores_desc(entry);
1131
1132		/*
1133		 * Don't register the region that could be conflicted with
1134		 * PCI device BAR resources and insert them later in
1135		 * pcibios_resource_survey():
1136		 */
1137		if (do_mark_busy(entry->type, res)) {
1138			res->flags |= IORESOURCE_BUSY;
1139			insert_resource(&iomem_resource, res);
1140		}
1141		res++;
1142	}
1143
1144	/* Expose the bootloader-provided memory layout to the sysfs. */
1145	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1146		struct e820_entry *entry = e820_table_firmware->entries + i;
1147
1148		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1149	}
1150}
1151
1152/*
1153 * How much should we pad the end of RAM, depending on where it is?
1154 */
1155static unsigned long __init ram_alignment(resource_size_t pos)
1156{
1157	unsigned long mb = pos >> 20;
1158
1159	/* To 64kB in the first megabyte */
1160	if (!mb)
1161		return 64*1024;
1162
1163	/* To 1MB in the first 16MB */
1164	if (mb < 16)
1165		return 1024*1024;
1166
1167	/* To 64MB for anything above that */
1168	return 64*1024*1024;
1169}
1170
1171#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1172
1173void __init e820__reserve_resources_late(void)
1174{
1175	int i;
1176	struct resource *res;
1177
1178	res = e820_res;
1179	for (i = 0; i < e820_table->nr_entries; i++) {
1180		if (!res->parent && res->end)
1181			insert_resource_expand_to_fit(&iomem_resource, res);
1182		res++;
1183	}
1184
1185	/*
1186	 * Try to bump up RAM regions to reasonable boundaries, to
1187	 * avoid stolen RAM:
1188	 */
1189	for (i = 0; i < e820_table->nr_entries; i++) {
1190		struct e820_entry *entry = &e820_table->entries[i];
1191		u64 start, end;
1192
1193		if (entry->type != E820_TYPE_RAM)
1194			continue;
1195
1196		start = entry->addr + entry->size;
1197		end = round_up(start, ram_alignment(start)) - 1;
1198		if (end > MAX_RESOURCE_SIZE)
1199			end = MAX_RESOURCE_SIZE;
1200		if (start >= end)
1201			continue;
1202
1203		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1204		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1205	}
1206}
1207
1208/*
1209 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1210 */
1211char *__init e820__memory_setup_default(void)
1212{
1213	char *who = "BIOS-e820";
1214
1215	/*
1216	 * Try to copy the BIOS-supplied E820-map.
1217	 *
1218	 * Otherwise fake a memory map; one section from 0k->640k,
1219	 * the next section from 1mb->appropriate_mem_k
1220	 */
1221	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1222		u64 mem_size;
1223
1224		/* Compare results from other methods and take the one that gives more RAM: */
1225		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1226			mem_size = boot_params.screen_info.ext_mem_k;
1227			who = "BIOS-88";
1228		} else {
1229			mem_size = boot_params.alt_mem_k;
1230			who = "BIOS-e801";
1231		}
1232
1233		e820_table->nr_entries = 0;
1234		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1235		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1236	}
1237
1238	/* We just appended a lot of ranges, sanitize the table: */
1239	e820__update_table(e820_table);
1240
1241	return who;
1242}
1243
1244/*
1245 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1246 * E820 map - with an optional platform quirk available for virtual platforms
1247 * to override this method of boot environment processing:
1248 */
1249void __init e820__memory_setup(void)
1250{
1251	char *who;
1252
1253	/* This is a firmware interface ABI - make sure we don't break it: */
1254	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1255
1256	who = x86_init.resources.memory_setup();
1257
1258	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1259	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1260
1261	pr_info("BIOS-provided physical RAM map:\n");
1262	e820__print_table(who);
1263}
1264
1265void __init e820__memblock_setup(void)
1266{
1267	int i;
1268	u64 end;
1269
1270	/*
1271	 * The bootstrap memblock region count maximum is 128 entries
1272	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1273	 * than that - so allow memblock resizing.
1274	 *
1275	 * This is safe, because this call happens pretty late during x86 setup,
1276	 * so we know about reserved memory regions already. (This is important
1277	 * so that memblock resizing does no stomp over reserved areas.)
1278	 */
1279	memblock_allow_resize();
1280
1281	for (i = 0; i < e820_table->nr_entries; i++) {
1282		struct e820_entry *entry = &e820_table->entries[i];
1283
1284		end = entry->addr + entry->size;
1285		if (end != (resource_size_t)end)
1286			continue;
1287
1288		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1289			continue;
1290
1291		memblock_add(entry->addr, entry->size);
1292	}
1293
1294	/* Throw away partial pages: */
1295	memblock_trim_memory(PAGE_SIZE);
1296
1297	memblock_dump_all();
1298}
v4.17
 
   1/*
   2 * Low level x86 E820 memory map handling functions.
   3 *
   4 * The firmware and bootloader passes us the "E820 table", which is the primary
   5 * physical memory layout description available about x86 systems.
   6 *
   7 * The kernel takes the E820 memory layout and optionally modifies it with
   8 * quirks and other tweaks, and feeds that into the generic Linux memory
   9 * allocation code routines via a platform independent interface (memblock, etc.).
  10 */
  11#include <linux/crash_dump.h>
  12#include <linux/bootmem.h>
  13#include <linux/suspend.h>
  14#include <linux/acpi.h>
  15#include <linux/firmware-map.h>
  16#include <linux/memblock.h>
  17#include <linux/sort.h>
 
  18
  19#include <asm/e820/api.h>
  20#include <asm/setup.h>
  21
  22/*
  23 * We organize the E820 table into three main data structures:
  24 *
  25 * - 'e820_table_firmware': the original firmware version passed to us by the
  26 *   bootloader - not modified by the kernel. It is composed of two parts:
  27 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
  28 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
  29 *
  30 *       - inform the user about the firmware's notion of memory layout
  31 *         via /sys/firmware/memmap
  32 *
  33 *       - the hibernation code uses it to generate a kernel-independent MD5
  34 *         fingerprint of the physical memory layout of a system.
  35 *
  36 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
  37 *   passed to us by the bootloader - the major difference between
  38 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
  39 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
  40 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
  41 *   might also be modified by the kexec itself to fake a mptable.
  42 *   We use this to:
  43 *
  44 *       - kexec, which is a bootloader in disguise, uses the original E820
  45 *         layout to pass to the kexec-ed kernel. This way the original kernel
  46 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
  47 *         can have access to full memory - etc.
  48 *
  49 * - 'e820_table': this is the main E820 table that is massaged by the
  50 *   low level x86 platform code, or modified by boot parameters, before
  51 *   passed on to higher level MM layers.
  52 *
  53 * Once the E820 map has been converted to the standard Linux memory layout
  54 * information its role stops - modifying it has no effect and does not get
  55 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
  56 * specific memory layout data during early bootup.
  57 */
  58static struct e820_table e820_table_init		__initdata;
  59static struct e820_table e820_table_kexec_init		__initdata;
  60static struct e820_table e820_table_firmware_init	__initdata;
  61
  62struct e820_table *e820_table __refdata			= &e820_table_init;
  63struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
  64struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
  65
  66/* For PCI or other memory-mapped resources */
  67unsigned long pci_mem_start = 0xaeedbabe;
  68#ifdef CONFIG_PCI
  69EXPORT_SYMBOL(pci_mem_start);
  70#endif
  71
  72/*
  73 * This function checks if any part of the range <start,end> is mapped
  74 * with type.
  75 */
  76bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
 
  77{
  78	int i;
  79
  80	for (i = 0; i < e820_table->nr_entries; i++) {
  81		struct e820_entry *entry = &e820_table->entries[i];
  82
  83		if (type && entry->type != type)
  84			continue;
  85		if (entry->addr >= end || entry->addr + entry->size <= start)
  86			continue;
  87		return 1;
  88	}
  89	return 0;
 
 
 
 
 
 
 
 
 
 
 
  90}
  91EXPORT_SYMBOL_GPL(e820__mapped_any);
  92
  93/*
  94 * This function checks if the entire <start,end> range is mapped with 'type'.
  95 *
  96 * Note: this function only works correctly once the E820 table is sorted and
  97 * not-overlapping (at least for the range specified), which is the case normally.
  98 */
  99static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
 100					     enum e820_type type)
 101{
 102	int i;
 103
 104	for (i = 0; i < e820_table->nr_entries; i++) {
 105		struct e820_entry *entry = &e820_table->entries[i];
 106
 107		if (type && entry->type != type)
 108			continue;
 109
 110		/* Is the region (part) in overlap with the current region? */
 111		if (entry->addr >= end || entry->addr + entry->size <= start)
 112			continue;
 113
 114		/*
 115		 * If the region is at the beginning of <start,end> we move
 116		 * 'start' to the end of the region since it's ok until there
 117		 */
 118		if (entry->addr <= start)
 119			start = entry->addr + entry->size;
 120
 121		/*
 122		 * If 'start' is now at or beyond 'end', we're done, full
 123		 * coverage of the desired range exists:
 124		 */
 125		if (start >= end)
 126			return entry;
 127	}
 128
 129	return NULL;
 130}
 131
 132/*
 133 * This function checks if the entire range <start,end> is mapped with type.
 134 */
 135bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
 136{
 137	return __e820__mapped_all(start, end, type);
 138}
 139
 140/*
 141 * This function returns the type associated with the range <start,end>.
 142 */
 143int e820__get_entry_type(u64 start, u64 end)
 144{
 145	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
 146
 147	return entry ? entry->type : -EINVAL;
 148}
 149
 150/*
 151 * Add a memory region to the kernel E820 map.
 152 */
 153static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
 154{
 155	int x = table->nr_entries;
 156
 157	if (x >= ARRAY_SIZE(table->entries)) {
 158		pr_err("e820: too many entries; ignoring [mem %#010llx-%#010llx]\n", start, start + size - 1);
 
 159		return;
 160	}
 161
 162	table->entries[x].addr = start;
 163	table->entries[x].size = size;
 164	table->entries[x].type = type;
 165	table->nr_entries++;
 166}
 167
 168void __init e820__range_add(u64 start, u64 size, enum e820_type type)
 169{
 170	__e820__range_add(e820_table, start, size, type);
 171}
 172
 173static void __init e820_print_type(enum e820_type type)
 174{
 175	switch (type) {
 176	case E820_TYPE_RAM:		/* Fall through: */
 177	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
 178	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
 179	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
 180	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
 181	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
 182	case E820_TYPE_PMEM:		/* Fall through: */
 183	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
 184	default:			pr_cont("type %u", type);		break;
 185	}
 186}
 187
 188void __init e820__print_table(char *who)
 189{
 190	int i;
 191
 192	for (i = 0; i < e820_table->nr_entries; i++) {
 193		pr_info("%s: [mem %#018Lx-%#018Lx] ", who,
 194		       e820_table->entries[i].addr,
 195		       e820_table->entries[i].addr + e820_table->entries[i].size - 1);
 
 196
 197		e820_print_type(e820_table->entries[i].type);
 198		pr_cont("\n");
 199	}
 200}
 201
 202/*
 203 * Sanitize an E820 map.
 204 *
 205 * Some E820 layouts include overlapping entries. The following
 206 * replaces the original E820 map with a new one, removing overlaps,
 207 * and resolving conflicting memory types in favor of highest
 208 * numbered type.
 209 *
 210 * The input parameter 'entries' points to an array of 'struct
 211 * e820_entry' which on entry has elements in the range [0, *nr_entries)
 212 * valid, and which has space for up to max_nr_entries entries.
 213 * On return, the resulting sanitized E820 map entries will be in
 214 * overwritten in the same location, starting at 'entries'.
 215 *
 216 * The integer pointed to by nr_entries must be valid on entry (the
 217 * current number of valid entries located at 'entries'). If the
 218 * sanitizing succeeds the *nr_entries will be updated with the new
 219 * number of valid entries (something no more than max_nr_entries).
 220 *
 221 * The return value from e820__update_table() is zero if it
 222 * successfully 'sanitized' the map entries passed in, and is -1
 223 * if it did nothing, which can happen if either of (1) it was
 224 * only passed one map entry, or (2) any of the input map entries
 225 * were invalid (start + size < start, meaning that the size was
 226 * so big the described memory range wrapped around through zero.)
 227 *
 228 *	Visually we're performing the following
 229 *	(1,2,3,4 = memory types)...
 230 *
 231 *	Sample memory map (w/overlaps):
 232 *	   ____22__________________
 233 *	   ______________________4_
 234 *	   ____1111________________
 235 *	   _44_____________________
 236 *	   11111111________________
 237 *	   ____________________33__
 238 *	   ___________44___________
 239 *	   __________33333_________
 240 *	   ______________22________
 241 *	   ___________________2222_
 242 *	   _________111111111______
 243 *	   _____________________11_
 244 *	   _________________4______
 245 *
 246 *	Sanitized equivalent (no overlap):
 247 *	   1_______________________
 248 *	   _44_____________________
 249 *	   ___1____________________
 250 *	   ____22__________________
 251 *	   ______11________________
 252 *	   _________1______________
 253 *	   __________3_____________
 254 *	   ___________44___________
 255 *	   _____________33_________
 256 *	   _______________2________
 257 *	   ________________1_______
 258 *	   _________________4______
 259 *	   ___________________2____
 260 *	   ____________________33__
 261 *	   ______________________4_
 262 */
 263struct change_member {
 264	/* Pointer to the original entry: */
 265	struct e820_entry	*entry;
 266	/* Address for this change point: */
 267	unsigned long long	addr;
 268};
 269
 270static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
 271static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
 272static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
 273static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
 274
 275static int __init cpcompare(const void *a, const void *b)
 276{
 277	struct change_member * const *app = a, * const *bpp = b;
 278	const struct change_member *ap = *app, *bp = *bpp;
 279
 280	/*
 281	 * Inputs are pointers to two elements of change_point[].  If their
 282	 * addresses are not equal, their difference dominates.  If the addresses
 283	 * are equal, then consider one that represents the end of its region
 284	 * to be greater than one that does not.
 285	 */
 286	if (ap->addr != bp->addr)
 287		return ap->addr > bp->addr ? 1 : -1;
 288
 289	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
 290}
 291
 292int __init e820__update_table(struct e820_table *table)
 293{
 294	struct e820_entry *entries = table->entries;
 295	u32 max_nr_entries = ARRAY_SIZE(table->entries);
 296	enum e820_type current_type, last_type;
 297	unsigned long long last_addr;
 298	u32 new_nr_entries, overlap_entries;
 299	u32 i, chg_idx, chg_nr;
 300
 301	/* If there's only one memory region, don't bother: */
 302	if (table->nr_entries < 2)
 303		return -1;
 304
 305	BUG_ON(table->nr_entries > max_nr_entries);
 306
 307	/* Bail out if we find any unreasonable addresses in the map: */
 308	for (i = 0; i < table->nr_entries; i++) {
 309		if (entries[i].addr + entries[i].size < entries[i].addr)
 310			return -1;
 311	}
 312
 313	/* Create pointers for initial change-point information (for sorting): */
 314	for (i = 0; i < 2 * table->nr_entries; i++)
 315		change_point[i] = &change_point_list[i];
 316
 317	/*
 318	 * Record all known change-points (starting and ending addresses),
 319	 * omitting empty memory regions:
 320	 */
 321	chg_idx = 0;
 322	for (i = 0; i < table->nr_entries; i++)	{
 323		if (entries[i].size != 0) {
 324			change_point[chg_idx]->addr	= entries[i].addr;
 325			change_point[chg_idx++]->entry	= &entries[i];
 326			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
 327			change_point[chg_idx++]->entry	= &entries[i];
 328		}
 329	}
 330	chg_nr = chg_idx;
 331
 332	/* Sort change-point list by memory addresses (low -> high): */
 333	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
 334
 335	/* Create a new memory map, removing overlaps: */
 336	overlap_entries = 0;	 /* Number of entries in the overlap table */
 337	new_nr_entries = 0;	 /* Index for creating new map entries */
 338	last_type = 0;		 /* Start with undefined memory type */
 339	last_addr = 0;		 /* Start with 0 as last starting address */
 340
 341	/* Loop through change-points, determining effect on the new map: */
 342	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
 343		/* Keep track of all overlapping entries */
 344		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
 345			/* Add map entry to overlap list (> 1 entry implies an overlap) */
 346			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
 347		} else {
 348			/* Remove entry from list (order independent, so swap with last): */
 349			for (i = 0; i < overlap_entries; i++) {
 350				if (overlap_list[i] == change_point[chg_idx]->entry)
 351					overlap_list[i] = overlap_list[overlap_entries-1];
 352			}
 353			overlap_entries--;
 354		}
 355		/*
 356		 * If there are overlapping entries, decide which
 357		 * "type" to use (larger value takes precedence --
 358		 * 1=usable, 2,3,4,4+=unusable)
 359		 */
 360		current_type = 0;
 361		for (i = 0; i < overlap_entries; i++) {
 362			if (overlap_list[i]->type > current_type)
 363				current_type = overlap_list[i]->type;
 364		}
 365
 366		/* Continue building up new map based on this information: */
 367		if (current_type != last_type || current_type == E820_TYPE_PRAM) {
 368			if (last_type != 0)	 {
 369				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
 370				/* Move forward only if the new size was non-zero: */
 371				if (new_entries[new_nr_entries].size != 0)
 372					/* No more space left for new entries? */
 373					if (++new_nr_entries >= max_nr_entries)
 374						break;
 375			}
 376			if (current_type != 0)	{
 377				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
 378				new_entries[new_nr_entries].type = current_type;
 379				last_addr = change_point[chg_idx]->addr;
 380			}
 381			last_type = current_type;
 382		}
 383	}
 384
 385	/* Copy the new entries into the original location: */
 386	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
 387	table->nr_entries = new_nr_entries;
 388
 389	return 0;
 390}
 391
 392static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 393{
 394	struct boot_e820_entry *entry = entries;
 395
 396	while (nr_entries) {
 397		u64 start = entry->addr;
 398		u64 size = entry->size;
 399		u64 end = start + size - 1;
 400		u32 type = entry->type;
 401
 402		/* Ignore the entry on 64-bit overflow: */
 403		if (start > end && likely(size))
 404			return -1;
 405
 406		e820__range_add(start, size, type);
 407
 408		entry++;
 409		nr_entries--;
 410	}
 411	return 0;
 412}
 413
 414/*
 415 * Copy the BIOS E820 map into a safe place.
 416 *
 417 * Sanity-check it while we're at it..
 418 *
 419 * If we're lucky and live on a modern system, the setup code
 420 * will have given us a memory map that we can use to properly
 421 * set up memory.  If we aren't, we'll fake a memory map.
 422 */
 423static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 424{
 425	/* Only one memory region (or negative)? Ignore it */
 426	if (nr_entries < 2)
 427		return -1;
 428
 429	return __append_e820_table(entries, nr_entries);
 430}
 431
 432static u64 __init
 433__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 434{
 435	u64 end;
 436	unsigned int i;
 437	u64 real_updated_size = 0;
 438
 439	BUG_ON(old_type == new_type);
 440
 441	if (size > (ULLONG_MAX - start))
 442		size = ULLONG_MAX - start;
 443
 444	end = start + size;
 445	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
 446	e820_print_type(old_type);
 447	pr_cont(" ==> ");
 448	e820_print_type(new_type);
 449	pr_cont("\n");
 450
 451	for (i = 0; i < table->nr_entries; i++) {
 452		struct e820_entry *entry = &table->entries[i];
 453		u64 final_start, final_end;
 454		u64 entry_end;
 455
 456		if (entry->type != old_type)
 457			continue;
 458
 459		entry_end = entry->addr + entry->size;
 460
 461		/* Completely covered by new range? */
 462		if (entry->addr >= start && entry_end <= end) {
 463			entry->type = new_type;
 464			real_updated_size += entry->size;
 465			continue;
 466		}
 467
 468		/* New range is completely covered? */
 469		if (entry->addr < start && entry_end > end) {
 470			__e820__range_add(table, start, size, new_type);
 471			__e820__range_add(table, end, entry_end - end, entry->type);
 472			entry->size = start - entry->addr;
 473			real_updated_size += size;
 474			continue;
 475		}
 476
 477		/* Partially covered: */
 478		final_start = max(start, entry->addr);
 479		final_end = min(end, entry_end);
 480		if (final_start >= final_end)
 481			continue;
 482
 483		__e820__range_add(table, final_start, final_end - final_start, new_type);
 484
 485		real_updated_size += final_end - final_start;
 486
 487		/*
 488		 * Left range could be head or tail, so need to update
 489		 * its size first:
 490		 */
 491		entry->size -= final_end - final_start;
 492		if (entry->addr < final_start)
 493			continue;
 494
 495		entry->addr = final_end;
 496	}
 497	return real_updated_size;
 498}
 499
 500u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 501{
 502	return __e820__range_update(e820_table, start, size, old_type, new_type);
 503}
 504
 505static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
 506{
 507	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
 508}
 509
 510/* Remove a range of memory from the E820 table: */
 511u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
 512{
 513	int i;
 514	u64 end;
 515	u64 real_removed_size = 0;
 516
 517	if (size > (ULLONG_MAX - start))
 518		size = ULLONG_MAX - start;
 519
 520	end = start + size;
 521	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
 522	if (check_type)
 523		e820_print_type(old_type);
 524	pr_cont("\n");
 525
 526	for (i = 0; i < e820_table->nr_entries; i++) {
 527		struct e820_entry *entry = &e820_table->entries[i];
 528		u64 final_start, final_end;
 529		u64 entry_end;
 530
 531		if (check_type && entry->type != old_type)
 532			continue;
 533
 534		entry_end = entry->addr + entry->size;
 535
 536		/* Completely covered? */
 537		if (entry->addr >= start && entry_end <= end) {
 538			real_removed_size += entry->size;
 539			memset(entry, 0, sizeof(*entry));
 540			continue;
 541		}
 542
 543		/* Is the new range completely covered? */
 544		if (entry->addr < start && entry_end > end) {
 545			e820__range_add(end, entry_end - end, entry->type);
 546			entry->size = start - entry->addr;
 547			real_removed_size += size;
 548			continue;
 549		}
 550
 551		/* Partially covered: */
 552		final_start = max(start, entry->addr);
 553		final_end = min(end, entry_end);
 554		if (final_start >= final_end)
 555			continue;
 556
 557		real_removed_size += final_end - final_start;
 558
 559		/*
 560		 * Left range could be head or tail, so need to update
 561		 * the size first:
 562		 */
 563		entry->size -= final_end - final_start;
 564		if (entry->addr < final_start)
 565			continue;
 566
 567		entry->addr = final_end;
 568	}
 569	return real_removed_size;
 570}
 571
 572void __init e820__update_table_print(void)
 573{
 574	if (e820__update_table(e820_table))
 575		return;
 576
 577	pr_info("e820: modified physical RAM map:\n");
 578	e820__print_table("modified");
 579}
 580
 581static void __init e820__update_table_kexec(void)
 582{
 583	e820__update_table(e820_table_kexec);
 584}
 585
 586#define MAX_GAP_END 0x100000000ull
 587
 588/*
 589 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
 590 */
 591static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
 592{
 593	unsigned long long last = MAX_GAP_END;
 594	int i = e820_table->nr_entries;
 595	int found = 0;
 596
 597	while (--i >= 0) {
 598		unsigned long long start = e820_table->entries[i].addr;
 599		unsigned long long end = start + e820_table->entries[i].size;
 600
 601		/*
 602		 * Since "last" is at most 4GB, we know we'll
 603		 * fit in 32 bits if this condition is true:
 604		 */
 605		if (last > end) {
 606			unsigned long gap = last - end;
 607
 608			if (gap >= *gapsize) {
 609				*gapsize = gap;
 610				*gapstart = end;
 611				found = 1;
 612			}
 613		}
 614		if (start < last)
 615			last = start;
 616	}
 617	return found;
 618}
 619
 620/*
 621 * Search for the biggest gap in the low 32 bits of the E820
 622 * memory space. We pass this space to the PCI subsystem, so
 623 * that it can assign MMIO resources for hotplug or
 624 * unconfigured devices in.
 625 *
 626 * Hopefully the BIOS let enough space left.
 627 */
 628__init void e820__setup_pci_gap(void)
 629{
 630	unsigned long gapstart, gapsize;
 631	int found;
 632
 633	gapsize = 0x400000;
 634	found  = e820_search_gap(&gapstart, &gapsize);
 635
 636	if (!found) {
 637#ifdef CONFIG_X86_64
 638		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 639		pr_err(
 640			"e820: Cannot find an available gap in the 32-bit address range\n"
 641			"e820: PCI devices with unassigned 32-bit BARs may not work!\n");
 642#else
 643		gapstart = 0x10000000;
 644#endif
 645	}
 646
 647	/*
 648	 * e820__reserve_resources_late() protects stolen RAM already:
 649	 */
 650	pci_mem_start = gapstart;
 651
 652	pr_info("e820: [mem %#010lx-%#010lx] available for PCI devices\n", gapstart, gapstart + gapsize - 1);
 
 653}
 654
 655/*
 656 * Called late during init, in free_initmem().
 657 *
 658 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
 659 *
 660 * Copy them to a (usually much smaller) dynamically allocated area that is
 661 * sized precisely after the number of e820 entries.
 662 *
 663 * This is done after we've performed all the fixes and tweaks to the tables.
 664 * All functions which modify them are __init functions, which won't exist
 665 * after free_initmem().
 666 */
 667__init void e820__reallocate_tables(void)
 668{
 669	struct e820_table *n;
 670	int size;
 671
 672	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
 673	n = kmalloc(size, GFP_KERNEL);
 674	BUG_ON(!n);
 675	memcpy(n, e820_table, size);
 676	e820_table = n;
 677
 678	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
 679	n = kmalloc(size, GFP_KERNEL);
 680	BUG_ON(!n);
 681	memcpy(n, e820_table_kexec, size);
 682	e820_table_kexec = n;
 683
 684	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
 685	n = kmalloc(size, GFP_KERNEL);
 686	BUG_ON(!n);
 687	memcpy(n, e820_table_firmware, size);
 688	e820_table_firmware = n;
 689}
 690
 691/*
 692 * Because of the small fixed size of struct boot_params, only the first
 693 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
 694 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
 695 * struct setup_data, which is parsed here.
 696 */
 697void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
 698{
 699	int entries;
 700	struct boot_e820_entry *extmap;
 701	struct setup_data *sdata;
 702
 703	sdata = early_memremap(phys_addr, data_len);
 704	entries = sdata->len / sizeof(*extmap);
 705	extmap = (struct boot_e820_entry *)(sdata->data);
 706
 707	__append_e820_table(extmap, entries);
 708	e820__update_table(e820_table);
 709
 710	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
 711	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
 712
 713	early_memunmap(sdata, data_len);
 714	pr_info("e820: extended physical RAM map:\n");
 715	e820__print_table("extended");
 716}
 717
 718/*
 719 * Find the ranges of physical addresses that do not correspond to
 720 * E820 RAM areas and register the corresponding pages as 'nosave' for
 721 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
 722 *
 723 * This function requires the E820 map to be sorted and without any
 724 * overlapping entries.
 725 */
 726void __init e820__register_nosave_regions(unsigned long limit_pfn)
 727{
 728	int i;
 729	unsigned long pfn = 0;
 730
 731	for (i = 0; i < e820_table->nr_entries; i++) {
 732		struct e820_entry *entry = &e820_table->entries[i];
 733
 734		if (pfn < PFN_UP(entry->addr))
 735			register_nosave_region(pfn, PFN_UP(entry->addr));
 736
 737		pfn = PFN_DOWN(entry->addr + entry->size);
 738
 739		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
 740			register_nosave_region(PFN_UP(entry->addr), pfn);
 741
 742		if (pfn >= limit_pfn)
 743			break;
 744	}
 745}
 746
 747#ifdef CONFIG_ACPI
 748/*
 749 * Register ACPI NVS memory regions, so that we can save/restore them during
 750 * hibernation and the subsequent resume:
 751 */
 752static int __init e820__register_nvs_regions(void)
 753{
 754	int i;
 755
 756	for (i = 0; i < e820_table->nr_entries; i++) {
 757		struct e820_entry *entry = &e820_table->entries[i];
 758
 759		if (entry->type == E820_TYPE_NVS)
 760			acpi_nvs_register(entry->addr, entry->size);
 761	}
 762
 763	return 0;
 764}
 765core_initcall(e820__register_nvs_regions);
 766#endif
 767
 768/*
 769 * Allocate the requested number of bytes with the requsted alignment
 770 * and return (the physical address) to the caller. Also register this
 771 * range in the 'kexec' E820 table as a reserved range.
 772 *
 773 * This allows kexec to fake a new mptable, as if it came from the real
 774 * system.
 775 */
 776u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
 777{
 778	u64 addr;
 779
 780	addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 781	if (addr) {
 782		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 783		pr_info("e820: update e820_table_kexec for e820__memblock_alloc_reserved()\n");
 784		e820__update_table_kexec();
 785	}
 786
 787	return addr;
 788}
 789
 790#ifdef CONFIG_X86_32
 791# ifdef CONFIG_X86_PAE
 792#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 793# else
 794#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 795# endif
 796#else /* CONFIG_X86_32 */
 797# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 798#endif
 799
 800/*
 801 * Find the highest page frame number we have available
 802 */
 803static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
 804{
 805	int i;
 806	unsigned long last_pfn = 0;
 807	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 808
 809	for (i = 0; i < e820_table->nr_entries; i++) {
 810		struct e820_entry *entry = &e820_table->entries[i];
 811		unsigned long start_pfn;
 812		unsigned long end_pfn;
 813
 814		if (entry->type != type)
 815			continue;
 816
 817		start_pfn = entry->addr >> PAGE_SHIFT;
 818		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
 819
 820		if (start_pfn >= limit_pfn)
 821			continue;
 822		if (end_pfn > limit_pfn) {
 823			last_pfn = limit_pfn;
 824			break;
 825		}
 826		if (end_pfn > last_pfn)
 827			last_pfn = end_pfn;
 828	}
 829
 830	if (last_pfn > max_arch_pfn)
 831		last_pfn = max_arch_pfn;
 832
 833	pr_info("e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
 834			 last_pfn, max_arch_pfn);
 835	return last_pfn;
 836}
 837
 838unsigned long __init e820__end_of_ram_pfn(void)
 839{
 840	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
 841}
 842
 843unsigned long __init e820__end_of_low_ram_pfn(void)
 844{
 845	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
 846}
 847
 848static void __init early_panic(char *msg)
 849{
 850	early_printk(msg);
 851	panic(msg);
 852}
 853
 854static int userdef __initdata;
 855
 856/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
 857static int __init parse_memopt(char *p)
 858{
 859	u64 mem_size;
 860
 861	if (!p)
 862		return -EINVAL;
 863
 864	if (!strcmp(p, "nopentium")) {
 865#ifdef CONFIG_X86_32
 866		setup_clear_cpu_cap(X86_FEATURE_PSE);
 867		return 0;
 868#else
 869		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
 870		return -EINVAL;
 871#endif
 872	}
 873
 874	userdef = 1;
 875	mem_size = memparse(p, &p);
 876
 877	/* Don't remove all memory when getting "mem={invalid}" parameter: */
 878	if (mem_size == 0)
 879		return -EINVAL;
 880
 881	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 882
 
 
 
 
 883	return 0;
 884}
 885early_param("mem", parse_memopt);
 886
 887static int __init parse_memmap_one(char *p)
 888{
 889	char *oldp;
 890	u64 start_at, mem_size;
 891
 892	if (!p)
 893		return -EINVAL;
 894
 895	if (!strncmp(p, "exactmap", 8)) {
 896#ifdef CONFIG_CRASH_DUMP
 897		/*
 898		 * If we are doing a crash dump, we still need to know
 899		 * the real memory size before the original memory map is
 900		 * reset.
 901		 */
 902		saved_max_pfn = e820__end_of_ram_pfn();
 903#endif
 904		e820_table->nr_entries = 0;
 905		userdef = 1;
 906		return 0;
 907	}
 908
 909	oldp = p;
 910	mem_size = memparse(p, &p);
 911	if (p == oldp)
 912		return -EINVAL;
 913
 914	userdef = 1;
 915	if (*p == '@') {
 916		start_at = memparse(p+1, &p);
 917		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
 918	} else if (*p == '#') {
 919		start_at = memparse(p+1, &p);
 920		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
 921	} else if (*p == '$') {
 922		start_at = memparse(p+1, &p);
 923		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
 924	} else if (*p == '!') {
 925		start_at = memparse(p+1, &p);
 926		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
 927	} else if (*p == '%') {
 928		enum e820_type from = 0, to = 0;
 929
 930		start_at = memparse(p + 1, &p);
 931		if (*p == '-')
 932			from = simple_strtoull(p + 1, &p, 0);
 933		if (*p == '+')
 934			to = simple_strtoull(p + 1, &p, 0);
 935		if (*p != '\0')
 936			return -EINVAL;
 937		if (from && to)
 938			e820__range_update(start_at, mem_size, from, to);
 939		else if (to)
 940			e820__range_add(start_at, mem_size, to);
 941		else if (from)
 942			e820__range_remove(start_at, mem_size, from, 1);
 943		else
 944			e820__range_remove(start_at, mem_size, 0, 0);
 945	} else {
 946		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 947	}
 948
 949	return *p == '\0' ? 0 : -EINVAL;
 950}
 951
 952static int __init parse_memmap_opt(char *str)
 953{
 954	while (str) {
 955		char *k = strchr(str, ',');
 956
 957		if (k)
 958			*k++ = 0;
 959
 960		parse_memmap_one(str);
 961		str = k;
 962	}
 963
 964	return 0;
 965}
 966early_param("memmap", parse_memmap_opt);
 967
 968/*
 969 * Reserve all entries from the bootloader's extensible data nodes list,
 970 * because if present we are going to use it later on to fetch e820
 971 * entries from it:
 972 */
 973void __init e820__reserve_setup_data(void)
 974{
 975	struct setup_data *data;
 976	u64 pa_data;
 977
 978	pa_data = boot_params.hdr.setup_data;
 979	if (!pa_data)
 980		return;
 981
 982	while (pa_data) {
 983		data = early_memremap(pa_data, sizeof(*data));
 984		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
 985		e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
 986		pa_data = data->next;
 987		early_memunmap(data, sizeof(*data));
 988	}
 989
 990	e820__update_table(e820_table);
 991	e820__update_table(e820_table_kexec);
 992
 993	pr_info("extended physical RAM map:\n");
 994	e820__print_table("reserve setup_data");
 995}
 996
 997/*
 998 * Called after parse_early_param(), after early parameters (such as mem=)
 999 * have been processed, in which case we already have an E820 table filled in
1000 * via the parameter callback function(s), but it's not sorted and printed yet:
1001 */
1002void __init e820__finish_early_params(void)
1003{
1004	if (userdef) {
1005		if (e820__update_table(e820_table) < 0)
1006			early_panic("Invalid user supplied memory map");
1007
1008		pr_info("e820: user-defined physical RAM map:\n");
1009		e820__print_table("user");
1010	}
1011}
1012
1013static const char *__init e820_type_to_string(struct e820_entry *entry)
1014{
1015	switch (entry->type) {
1016	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1017	case E820_TYPE_RAM:		return "System RAM";
1018	case E820_TYPE_ACPI:		return "ACPI Tables";
1019	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1020	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1021	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1022	case E820_TYPE_PMEM:		return "Persistent Memory";
1023	case E820_TYPE_RESERVED:	return "Reserved";
1024	default:			return "Unknown E820 type";
1025	}
1026}
1027
1028static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1029{
1030	switch (entry->type) {
1031	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1032	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1033	case E820_TYPE_ACPI:		/* Fall-through: */
1034	case E820_TYPE_NVS:		/* Fall-through: */
1035	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1036	case E820_TYPE_PRAM:		/* Fall-through: */
1037	case E820_TYPE_PMEM:		/* Fall-through: */
1038	case E820_TYPE_RESERVED:	/* Fall-through: */
1039	default:			return IORESOURCE_MEM;
1040	}
1041}
1042
1043static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1044{
1045	switch (entry->type) {
1046	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1047	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1048	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1049	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
 
1050	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1051	case E820_TYPE_RAM:		/* Fall-through: */
1052	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1053	case E820_TYPE_RESERVED:	/* Fall-through: */
1054	default:			return IORES_DESC_NONE;
1055	}
1056}
1057
1058static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1059{
1060	/* this is the legacy bios/dos rom-shadow + mmio region */
1061	if (res->start < (1ULL<<20))
1062		return true;
1063
1064	/*
1065	 * Treat persistent memory like device memory, i.e. reserve it
1066	 * for exclusive use of a driver
1067	 */
1068	switch (type) {
1069	case E820_TYPE_RESERVED:
1070	case E820_TYPE_PRAM:
1071	case E820_TYPE_PMEM:
1072		return false;
1073	case E820_TYPE_RESERVED_KERN:
1074	case E820_TYPE_RAM:
1075	case E820_TYPE_ACPI:
1076	case E820_TYPE_NVS:
1077	case E820_TYPE_UNUSABLE:
1078	default:
1079		return true;
1080	}
1081}
1082
1083/*
1084 * Mark E820 reserved areas as busy for the resource manager:
1085 */
1086
1087static struct resource __initdata *e820_res;
1088
1089void __init e820__reserve_resources(void)
1090{
1091	int i;
1092	struct resource *res;
1093	u64 end;
1094
1095	res = alloc_bootmem(sizeof(*res) * e820_table->nr_entries);
 
 
 
 
1096	e820_res = res;
1097
1098	for (i = 0; i < e820_table->nr_entries; i++) {
1099		struct e820_entry *entry = e820_table->entries + i;
1100
1101		end = entry->addr + entry->size - 1;
1102		if (end != (resource_size_t)end) {
1103			res++;
1104			continue;
1105		}
1106		res->start = entry->addr;
1107		res->end   = end;
1108		res->name  = e820_type_to_string(entry);
1109		res->flags = e820_type_to_iomem_type(entry);
1110		res->desc  = e820_type_to_iores_desc(entry);
1111
1112		/*
1113		 * Don't register the region that could be conflicted with
1114		 * PCI device BAR resources and insert them later in
1115		 * pcibios_resource_survey():
1116		 */
1117		if (do_mark_busy(entry->type, res)) {
1118			res->flags |= IORESOURCE_BUSY;
1119			insert_resource(&iomem_resource, res);
1120		}
1121		res++;
1122	}
1123
1124	/* Expose the bootloader-provided memory layout to the sysfs. */
1125	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1126		struct e820_entry *entry = e820_table_firmware->entries + i;
1127
1128		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1129	}
1130}
1131
1132/*
1133 * How much should we pad the end of RAM, depending on where it is?
1134 */
1135static unsigned long __init ram_alignment(resource_size_t pos)
1136{
1137	unsigned long mb = pos >> 20;
1138
1139	/* To 64kB in the first megabyte */
1140	if (!mb)
1141		return 64*1024;
1142
1143	/* To 1MB in the first 16MB */
1144	if (mb < 16)
1145		return 1024*1024;
1146
1147	/* To 64MB for anything above that */
1148	return 64*1024*1024;
1149}
1150
1151#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1152
1153void __init e820__reserve_resources_late(void)
1154{
1155	int i;
1156	struct resource *res;
1157
1158	res = e820_res;
1159	for (i = 0; i < e820_table->nr_entries; i++) {
1160		if (!res->parent && res->end)
1161			insert_resource_expand_to_fit(&iomem_resource, res);
1162		res++;
1163	}
1164
1165	/*
1166	 * Try to bump up RAM regions to reasonable boundaries, to
1167	 * avoid stolen RAM:
1168	 */
1169	for (i = 0; i < e820_table->nr_entries; i++) {
1170		struct e820_entry *entry = &e820_table->entries[i];
1171		u64 start, end;
1172
1173		if (entry->type != E820_TYPE_RAM)
1174			continue;
1175
1176		start = entry->addr + entry->size;
1177		end = round_up(start, ram_alignment(start)) - 1;
1178		if (end > MAX_RESOURCE_SIZE)
1179			end = MAX_RESOURCE_SIZE;
1180		if (start >= end)
1181			continue;
1182
1183		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1184		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1185	}
1186}
1187
1188/*
1189 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1190 */
1191char *__init e820__memory_setup_default(void)
1192{
1193	char *who = "BIOS-e820";
1194
1195	/*
1196	 * Try to copy the BIOS-supplied E820-map.
1197	 *
1198	 * Otherwise fake a memory map; one section from 0k->640k,
1199	 * the next section from 1mb->appropriate_mem_k
1200	 */
1201	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1202		u64 mem_size;
1203
1204		/* Compare results from other methods and take the one that gives more RAM: */
1205		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1206			mem_size = boot_params.screen_info.ext_mem_k;
1207			who = "BIOS-88";
1208		} else {
1209			mem_size = boot_params.alt_mem_k;
1210			who = "BIOS-e801";
1211		}
1212
1213		e820_table->nr_entries = 0;
1214		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1215		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1216	}
1217
1218	/* We just appended a lot of ranges, sanitize the table: */
1219	e820__update_table(e820_table);
1220
1221	return who;
1222}
1223
1224/*
1225 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1226 * E820 map - with an optional platform quirk available for virtual platforms
1227 * to override this method of boot environment processing:
1228 */
1229void __init e820__memory_setup(void)
1230{
1231	char *who;
1232
1233	/* This is a firmware interface ABI - make sure we don't break it: */
1234	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1235
1236	who = x86_init.resources.memory_setup();
1237
1238	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1239	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1240
1241	pr_info("e820: BIOS-provided physical RAM map:\n");
1242	e820__print_table(who);
1243}
1244
1245void __init e820__memblock_setup(void)
1246{
1247	int i;
1248	u64 end;
1249
1250	/*
1251	 * The bootstrap memblock region count maximum is 128 entries
1252	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1253	 * than that - so allow memblock resizing.
1254	 *
1255	 * This is safe, because this call happens pretty late during x86 setup,
1256	 * so we know about reserved memory regions already. (This is important
1257	 * so that memblock resizing does no stomp over reserved areas.)
1258	 */
1259	memblock_allow_resize();
1260
1261	for (i = 0; i < e820_table->nr_entries; i++) {
1262		struct e820_entry *entry = &e820_table->entries[i];
1263
1264		end = entry->addr + entry->size;
1265		if (end != (resource_size_t)end)
1266			continue;
1267
1268		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1269			continue;
1270
1271		memblock_add(entry->addr, entry->size);
1272	}
1273
1274	/* Throw away partial pages: */
1275	memblock_trim_memory(PAGE_SIZE);
1276
1277	memblock_dump_all();
1278}