Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * KMSAN hooks for kernel subsystems.
  4 *
  5 * These functions handle creation of KMSAN metadata for memory allocations.
  6 *
  7 * Copyright (C) 2018-2022 Google LLC
  8 * Author: Alexander Potapenko <glider@google.com>
  9 *
 10 */
 11
 12#include <linux/cacheflush.h>
 13#include <linux/dma-direction.h>
 14#include <linux/gfp.h>
 15#include <linux/kmsan.h>
 16#include <linux/mm.h>
 17#include <linux/mm_types.h>
 18#include <linux/scatterlist.h>
 19#include <linux/slab.h>
 20#include <linux/uaccess.h>
 21#include <linux/usb.h>
 22
 23#include "../internal.h"
 24#include "../slab.h"
 25#include "kmsan.h"
 26
 27/*
 28 * Instrumented functions shouldn't be called under
 29 * kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to
 30 * skipping effects of functions like memset() inside instrumented code.
 31 */
 32
 33void kmsan_task_create(struct task_struct *task)
 34{
 35	kmsan_enter_runtime();
 36	kmsan_internal_task_create(task);
 37	kmsan_leave_runtime();
 38}
 39
 40void kmsan_task_exit(struct task_struct *task)
 41{
 42	struct kmsan_ctx *ctx = &task->kmsan_ctx;
 43
 44	if (!kmsan_enabled || kmsan_in_runtime())
 45		return;
 46
 47	ctx->allow_reporting = false;
 48}
 49
 50void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags)
 51{
 52	if (unlikely(object == NULL))
 53		return;
 54	if (!kmsan_enabled || kmsan_in_runtime())
 55		return;
 56	/*
 57	 * There's a ctor or this is an RCU cache - do nothing. The memory
 58	 * status hasn't changed since last use.
 59	 */
 60	if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU))
 61		return;
 62
 63	kmsan_enter_runtime();
 64	if (flags & __GFP_ZERO)
 65		kmsan_internal_unpoison_memory(object, s->object_size,
 66					       KMSAN_POISON_CHECK);
 67	else
 68		kmsan_internal_poison_memory(object, s->object_size, flags,
 69					     KMSAN_POISON_CHECK);
 70	kmsan_leave_runtime();
 71}
 72
 73void kmsan_slab_free(struct kmem_cache *s, void *object)
 74{
 75	if (!kmsan_enabled || kmsan_in_runtime())
 76		return;
 77
 78	/* RCU slabs could be legally used after free within the RCU period */
 79	if (unlikely(s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)))
 80		return;
 81	/*
 82	 * If there's a constructor, freed memory must remain in the same state
 83	 * until the next allocation. We cannot save its state to detect
 84	 * use-after-free bugs, instead we just keep it unpoisoned.
 85	 */
 86	if (s->ctor)
 87		return;
 88	kmsan_enter_runtime();
 89	kmsan_internal_poison_memory(object, s->object_size, GFP_KERNEL,
 90				     KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
 91	kmsan_leave_runtime();
 92}
 93
 94void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
 95{
 96	if (unlikely(ptr == NULL))
 97		return;
 98	if (!kmsan_enabled || kmsan_in_runtime())
 99		return;
100	kmsan_enter_runtime();
101	if (flags & __GFP_ZERO)
102		kmsan_internal_unpoison_memory((void *)ptr, size,
103					       /*checked*/ true);
104	else
105		kmsan_internal_poison_memory((void *)ptr, size, flags,
106					     KMSAN_POISON_CHECK);
107	kmsan_leave_runtime();
108}
109
110void kmsan_kfree_large(const void *ptr)
111{
112	struct page *page;
113
114	if (!kmsan_enabled || kmsan_in_runtime())
115		return;
116	kmsan_enter_runtime();
117	page = virt_to_head_page((void *)ptr);
118	KMSAN_WARN_ON(ptr != page_address(page));
119	kmsan_internal_poison_memory((void *)ptr,
120				     PAGE_SIZE << compound_order(page),
121				     GFP_KERNEL,
122				     KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
123	kmsan_leave_runtime();
124}
125
126static unsigned long vmalloc_shadow(unsigned long addr)
127{
128	return (unsigned long)kmsan_get_metadata((void *)addr,
129						 KMSAN_META_SHADOW);
130}
131
132static unsigned long vmalloc_origin(unsigned long addr)
133{
134	return (unsigned long)kmsan_get_metadata((void *)addr,
135						 KMSAN_META_ORIGIN);
136}
137
138void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end)
139{
140	__vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end));
141	__vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end));
142	flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
143	flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
144}
145
146/*
147 * This function creates new shadow/origin pages for the physical pages mapped
148 * into the virtual memory. If those physical pages already had shadow/origin,
149 * those are ignored.
150 */
151void kmsan_ioremap_page_range(unsigned long start, unsigned long end,
152			      phys_addr_t phys_addr, pgprot_t prot,
153			      unsigned int page_shift)
154{
155	gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO;
156	struct page *shadow, *origin;
157	unsigned long off = 0;
158	int nr;
159
160	if (!kmsan_enabled || kmsan_in_runtime())
161		return;
162
163	nr = (end - start) / PAGE_SIZE;
164	kmsan_enter_runtime();
165	for (int i = 0; i < nr; i++, off += PAGE_SIZE) {
166		shadow = alloc_pages(gfp_mask, 1);
167		origin = alloc_pages(gfp_mask, 1);
168		__vmap_pages_range_noflush(
169			vmalloc_shadow(start + off),
170			vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow,
171			PAGE_SHIFT);
172		__vmap_pages_range_noflush(
173			vmalloc_origin(start + off),
174			vmalloc_origin(start + off + PAGE_SIZE), prot, &origin,
175			PAGE_SHIFT);
176	}
177	flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
178	flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
179	kmsan_leave_runtime();
180}
181
182void kmsan_iounmap_page_range(unsigned long start, unsigned long end)
183{
184	unsigned long v_shadow, v_origin;
185	struct page *shadow, *origin;
186	int nr;
187
188	if (!kmsan_enabled || kmsan_in_runtime())
189		return;
190
191	nr = (end - start) / PAGE_SIZE;
192	kmsan_enter_runtime();
193	v_shadow = (unsigned long)vmalloc_shadow(start);
194	v_origin = (unsigned long)vmalloc_origin(start);
195	for (int i = 0; i < nr;
196	     i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) {
197		shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow);
198		origin = kmsan_vmalloc_to_page_or_null((void *)v_origin);
199		__vunmap_range_noflush(v_shadow, vmalloc_shadow(end));
200		__vunmap_range_noflush(v_origin, vmalloc_origin(end));
201		if (shadow)
202			__free_pages(shadow, 1);
203		if (origin)
204			__free_pages(origin, 1);
205	}
206	flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
207	flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
208	kmsan_leave_runtime();
209}
210
211void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy,
212			size_t left)
213{
214	unsigned long ua_flags;
215
216	if (!kmsan_enabled || kmsan_in_runtime())
217		return;
218	/*
219	 * At this point we've copied the memory already. It's hard to check it
220	 * before copying, as the size of actually copied buffer is unknown.
221	 */
222
223	/* copy_to_user() may copy zero bytes. No need to check. */
224	if (!to_copy)
225		return;
226	/* Or maybe copy_to_user() failed to copy anything. */
227	if (to_copy <= left)
228		return;
229
230	ua_flags = user_access_save();
231	if ((u64)to < TASK_SIZE) {
232		/* This is a user memory access, check it. */
233		kmsan_internal_check_memory((void *)from, to_copy - left, to,
234					    REASON_COPY_TO_USER);
235	} else {
236		/* Otherwise this is a kernel memory access. This happens when a
237		 * compat syscall passes an argument allocated on the kernel
238		 * stack to a real syscall.
239		 * Don't check anything, just copy the shadow of the copied
240		 * bytes.
241		 */
242		kmsan_internal_memmove_metadata((void *)to, (void *)from,
243						to_copy - left);
244	}
245	user_access_restore(ua_flags);
246}
247EXPORT_SYMBOL(kmsan_copy_to_user);
248
249/* Helper function to check an URB. */
250void kmsan_handle_urb(const struct urb *urb, bool is_out)
251{
252	if (!urb)
253		return;
254	if (is_out)
255		kmsan_internal_check_memory(urb->transfer_buffer,
256					    urb->transfer_buffer_length,
257					    /*user_addr*/ 0, REASON_SUBMIT_URB);
258	else
259		kmsan_internal_unpoison_memory(urb->transfer_buffer,
260					       urb->transfer_buffer_length,
261					       /*checked*/ false);
262}
263EXPORT_SYMBOL_GPL(kmsan_handle_urb);
264
265static void kmsan_handle_dma_page(const void *addr, size_t size,
266				  enum dma_data_direction dir)
267{
268	switch (dir) {
269	case DMA_BIDIRECTIONAL:
270		kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
271					    REASON_ANY);
272		kmsan_internal_unpoison_memory((void *)addr, size,
273					       /*checked*/ false);
274		break;
275	case DMA_TO_DEVICE:
276		kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
277					    REASON_ANY);
278		break;
279	case DMA_FROM_DEVICE:
280		kmsan_internal_unpoison_memory((void *)addr, size,
281					       /*checked*/ false);
282		break;
283	case DMA_NONE:
284		break;
285	}
286}
287
288/* Helper function to handle DMA data transfers. */
289void kmsan_handle_dma(struct page *page, size_t offset, size_t size,
290		      enum dma_data_direction dir)
291{
292	u64 page_offset, to_go, addr;
293
294	if (PageHighMem(page))
295		return;
296	addr = (u64)page_address(page) + offset;
297	/*
298	 * The kernel may occasionally give us adjacent DMA pages not belonging
299	 * to the same allocation. Process them separately to avoid triggering
300	 * internal KMSAN checks.
301	 */
302	while (size > 0) {
303		page_offset = addr % PAGE_SIZE;
304		to_go = min(PAGE_SIZE - page_offset, (u64)size);
305		kmsan_handle_dma_page((void *)addr, to_go, dir);
306		addr += to_go;
307		size -= to_go;
308	}
309}
310
311void kmsan_handle_dma_sg(struct scatterlist *sg, int nents,
312			 enum dma_data_direction dir)
313{
314	struct scatterlist *item;
315	int i;
316
317	for_each_sg(sg, item, nents, i)
318		kmsan_handle_dma(sg_page(item), item->offset, item->length,
319				 dir);
320}
321
322/* Functions from kmsan-checks.h follow. */
323void kmsan_poison_memory(const void *address, size_t size, gfp_t flags)
324{
325	if (!kmsan_enabled || kmsan_in_runtime())
326		return;
327	kmsan_enter_runtime();
328	/* The users may want to poison/unpoison random memory. */
329	kmsan_internal_poison_memory((void *)address, size, flags,
330				     KMSAN_POISON_NOCHECK);
331	kmsan_leave_runtime();
332}
333EXPORT_SYMBOL(kmsan_poison_memory);
334
335void kmsan_unpoison_memory(const void *address, size_t size)
336{
337	unsigned long ua_flags;
338
339	if (!kmsan_enabled || kmsan_in_runtime())
340		return;
341
342	ua_flags = user_access_save();
343	kmsan_enter_runtime();
344	/* The users may want to poison/unpoison random memory. */
345	kmsan_internal_unpoison_memory((void *)address, size,
346				       KMSAN_POISON_NOCHECK);
347	kmsan_leave_runtime();
348	user_access_restore(ua_flags);
349}
350EXPORT_SYMBOL(kmsan_unpoison_memory);
351
352/*
353 * Version of kmsan_unpoison_memory() that can be called from within the KMSAN
354 * runtime.
355 *
356 * Non-instrumented IRQ entry functions receive struct pt_regs from assembly
357 * code. Those regs need to be unpoisoned, otherwise using them will result in
358 * false positives.
359 * Using kmsan_unpoison_memory() is not an option in entry code, because the
360 * return value of in_task() is inconsistent - as a result, certain calls to
361 * kmsan_unpoison_memory() are ignored. kmsan_unpoison_entry_regs() ensures that
362 * the registers are unpoisoned even if kmsan_in_runtime() is true in the early
363 * entry code.
364 */
365void kmsan_unpoison_entry_regs(const struct pt_regs *regs)
366{
367	unsigned long ua_flags;
368
369	if (!kmsan_enabled)
370		return;
371
372	ua_flags = user_access_save();
373	kmsan_internal_unpoison_memory((void *)regs, sizeof(*regs),
374				       KMSAN_POISON_NOCHECK);
375	user_access_restore(ua_flags);
376}
377
378void kmsan_check_memory(const void *addr, size_t size)
379{
380	if (!kmsan_enabled)
381		return;
382	return kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
383					   REASON_ANY);
384}
385EXPORT_SYMBOL(kmsan_check_memory);