Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 | // SPDX-License-Identifier: GPL-2.0 /* * KMSAN hooks for kernel subsystems. * * These functions handle creation of KMSAN metadata for memory allocations. * * Copyright (C) 2018-2022 Google LLC * Author: Alexander Potapenko <glider@google.com> * */ #include <linux/cacheflush.h> #include <linux/dma-direction.h> #include <linux/gfp.h> #include <linux/kmsan.h> #include <linux/mm.h> #include <linux/mm_types.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/usb.h> #include "../internal.h" #include "../slab.h" #include "kmsan.h" /* * Instrumented functions shouldn't be called under * kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to * skipping effects of functions like memset() inside instrumented code. */ void kmsan_task_create(struct task_struct *task) { kmsan_enter_runtime(); kmsan_internal_task_create(task); kmsan_leave_runtime(); } void kmsan_task_exit(struct task_struct *task) { struct kmsan_ctx *ctx = &task->kmsan_ctx; if (!kmsan_enabled || kmsan_in_runtime()) return; ctx->allow_reporting = false; } void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags) { if (unlikely(object == NULL)) return; if (!kmsan_enabled || kmsan_in_runtime()) return; /* * There's a ctor or this is an RCU cache - do nothing. The memory * status hasn't changed since last use. */ if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU)) return; kmsan_enter_runtime(); if (flags & __GFP_ZERO) kmsan_internal_unpoison_memory(object, s->object_size, KMSAN_POISON_CHECK); else kmsan_internal_poison_memory(object, s->object_size, flags, KMSAN_POISON_CHECK); kmsan_leave_runtime(); } void kmsan_slab_free(struct kmem_cache *s, void *object) { if (!kmsan_enabled || kmsan_in_runtime()) return; /* RCU slabs could be legally used after free within the RCU period */ if (unlikely(s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))) return; /* * If there's a constructor, freed memory must remain in the same state * until the next allocation. We cannot save its state to detect * use-after-free bugs, instead we just keep it unpoisoned. */ if (s->ctor) return; kmsan_enter_runtime(); kmsan_internal_poison_memory(object, s->object_size, GFP_KERNEL, KMSAN_POISON_CHECK | KMSAN_POISON_FREE); kmsan_leave_runtime(); } void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags) { if (unlikely(ptr == NULL)) return; if (!kmsan_enabled || kmsan_in_runtime()) return; kmsan_enter_runtime(); if (flags & __GFP_ZERO) kmsan_internal_unpoison_memory((void *)ptr, size, /*checked*/ true); else kmsan_internal_poison_memory((void *)ptr, size, flags, KMSAN_POISON_CHECK); kmsan_leave_runtime(); } void kmsan_kfree_large(const void *ptr) { struct page *page; if (!kmsan_enabled || kmsan_in_runtime()) return; kmsan_enter_runtime(); page = virt_to_head_page((void *)ptr); KMSAN_WARN_ON(ptr != page_address(page)); kmsan_internal_poison_memory((void *)ptr, page_size(page), GFP_KERNEL, KMSAN_POISON_CHECK | KMSAN_POISON_FREE); kmsan_leave_runtime(); } static unsigned long vmalloc_shadow(unsigned long addr) { return (unsigned long)kmsan_get_metadata((void *)addr, KMSAN_META_SHADOW); } static unsigned long vmalloc_origin(unsigned long addr) { return (unsigned long)kmsan_get_metadata((void *)addr, KMSAN_META_ORIGIN); } void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end) { __vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end)); __vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end)); flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end)); flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end)); } /* * This function creates new shadow/origin pages for the physical pages mapped * into the virtual memory. If those physical pages already had shadow/origin, * those are ignored. */ int kmsan_ioremap_page_range(unsigned long start, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int page_shift) { gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO; struct page *shadow, *origin; unsigned long off = 0; int nr, err = 0, clean = 0, mapped; if (!kmsan_enabled || kmsan_in_runtime()) return 0; nr = (end - start) / PAGE_SIZE; kmsan_enter_runtime(); for (int i = 0; i < nr; i++, off += PAGE_SIZE, clean = i) { shadow = alloc_pages(gfp_mask, 1); origin = alloc_pages(gfp_mask, 1); if (!shadow || !origin) { err = -ENOMEM; goto ret; } mapped = __vmap_pages_range_noflush( vmalloc_shadow(start + off), vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow, PAGE_SHIFT); if (mapped) { err = mapped; goto ret; } shadow = NULL; mapped = __vmap_pages_range_noflush( vmalloc_origin(start + off), vmalloc_origin(start + off + PAGE_SIZE), prot, &origin, PAGE_SHIFT); if (mapped) { __vunmap_range_noflush( vmalloc_shadow(start + off), vmalloc_shadow(start + off + PAGE_SIZE)); err = mapped; goto ret; } origin = NULL; } /* Page mapping loop finished normally, nothing to clean up. */ clean = 0; ret: if (clean > 0) { /* * Something went wrong. Clean up shadow/origin pages allocated * on the last loop iteration, then delete mappings created * during the previous iterations. */ if (shadow) __free_pages(shadow, 1); if (origin) __free_pages(origin, 1); __vunmap_range_noflush( vmalloc_shadow(start), vmalloc_shadow(start + clean * PAGE_SIZE)); __vunmap_range_noflush( vmalloc_origin(start), vmalloc_origin(start + clean * PAGE_SIZE)); } flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end)); flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end)); kmsan_leave_runtime(); return err; } void kmsan_iounmap_page_range(unsigned long start, unsigned long end) { unsigned long v_shadow, v_origin; struct page *shadow, *origin; int nr; if (!kmsan_enabled || kmsan_in_runtime()) return; nr = (end - start) / PAGE_SIZE; kmsan_enter_runtime(); v_shadow = (unsigned long)vmalloc_shadow(start); v_origin = (unsigned long)vmalloc_origin(start); for (int i = 0; i < nr; i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) { shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow); origin = kmsan_vmalloc_to_page_or_null((void *)v_origin); __vunmap_range_noflush(v_shadow, vmalloc_shadow(end)); __vunmap_range_noflush(v_origin, vmalloc_origin(end)); if (shadow) __free_pages(shadow, 1); if (origin) __free_pages(origin, 1); } flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end)); flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end)); kmsan_leave_runtime(); } void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy, size_t left) { unsigned long ua_flags; if (!kmsan_enabled || kmsan_in_runtime()) return; /* * At this point we've copied the memory already. It's hard to check it * before copying, as the size of actually copied buffer is unknown. */ /* copy_to_user() may copy zero bytes. No need to check. */ if (!to_copy) return; /* Or maybe copy_to_user() failed to copy anything. */ if (to_copy <= left) return; ua_flags = user_access_save(); if ((u64)to < TASK_SIZE) { /* This is a user memory access, check it. */ kmsan_internal_check_memory((void *)from, to_copy - left, to, REASON_COPY_TO_USER); } else { /* Otherwise this is a kernel memory access. This happens when a * compat syscall passes an argument allocated on the kernel * stack to a real syscall. * Don't check anything, just copy the shadow of the copied * bytes. */ kmsan_internal_memmove_metadata((void *)to, (void *)from, to_copy - left); } user_access_restore(ua_flags); } EXPORT_SYMBOL(kmsan_copy_to_user); /* Helper function to check an URB. */ void kmsan_handle_urb(const struct urb *urb, bool is_out) { if (!urb) return; if (is_out) kmsan_internal_check_memory(urb->transfer_buffer, urb->transfer_buffer_length, /*user_addr*/ 0, REASON_SUBMIT_URB); else kmsan_internal_unpoison_memory(urb->transfer_buffer, urb->transfer_buffer_length, /*checked*/ false); } EXPORT_SYMBOL_GPL(kmsan_handle_urb); static void kmsan_handle_dma_page(const void *addr, size_t size, enum dma_data_direction dir) { switch (dir) { case DMA_BIDIRECTIONAL: kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0, REASON_ANY); kmsan_internal_unpoison_memory((void *)addr, size, /*checked*/ false); break; case DMA_TO_DEVICE: kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0, REASON_ANY); break; case DMA_FROM_DEVICE: kmsan_internal_unpoison_memory((void *)addr, size, /*checked*/ false); break; case DMA_NONE: break; } } /* Helper function to handle DMA data transfers. */ void kmsan_handle_dma(struct page *page, size_t offset, size_t size, enum dma_data_direction dir) { u64 page_offset, to_go, addr; if (PageHighMem(page)) return; addr = (u64)page_address(page) + offset; /* * The kernel may occasionally give us adjacent DMA pages not belonging * to the same allocation. Process them separately to avoid triggering * internal KMSAN checks. */ while (size > 0) { page_offset = offset_in_page(addr); to_go = min(PAGE_SIZE - page_offset, (u64)size); kmsan_handle_dma_page((void *)addr, to_go, dir); addr += to_go; size -= to_go; } } void kmsan_handle_dma_sg(struct scatterlist *sg, int nents, enum dma_data_direction dir) { struct scatterlist *item; int i; for_each_sg(sg, item, nents, i) kmsan_handle_dma(sg_page(item), item->offset, item->length, dir); } /* Functions from kmsan-checks.h follow. */ /* * To create an origin, kmsan_poison_memory() unwinds the stacks and stores it * into the stack depot. This may cause deadlocks if done from within KMSAN * runtime, therefore we bail out if kmsan_in_runtime(). */ void kmsan_poison_memory(const void *address, size_t size, gfp_t flags) { if (!kmsan_enabled || kmsan_in_runtime()) return; kmsan_enter_runtime(); /* The users may want to poison/unpoison random memory. */ kmsan_internal_poison_memory((void *)address, size, flags, KMSAN_POISON_NOCHECK); kmsan_leave_runtime(); } EXPORT_SYMBOL(kmsan_poison_memory); /* * Unlike kmsan_poison_memory(), this function can be used from within KMSAN * runtime, because it does not trigger allocations or call instrumented code. */ void kmsan_unpoison_memory(const void *address, size_t size) { unsigned long ua_flags; if (!kmsan_enabled) return; ua_flags = user_access_save(); /* The users may want to poison/unpoison random memory. */ kmsan_internal_unpoison_memory((void *)address, size, KMSAN_POISON_NOCHECK); user_access_restore(ua_flags); } EXPORT_SYMBOL(kmsan_unpoison_memory); /* * Version of kmsan_unpoison_memory() called from IRQ entry functions. */ void kmsan_unpoison_entry_regs(const struct pt_regs *regs) { kmsan_unpoison_memory((void *)regs, sizeof(*regs)); } void kmsan_check_memory(const void *addr, size_t size) { if (!kmsan_enabled) return; return kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0, REASON_ANY); } EXPORT_SYMBOL(kmsan_check_memory); |