Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file contains the base functions to manage periodic tick
  4 * related events.
  5 *
  6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  9 */
 10#include <linux/cpu.h>
 11#include <linux/err.h>
 12#include <linux/hrtimer.h>
 13#include <linux/interrupt.h>
 
 14#include <linux/percpu.h>
 15#include <linux/profile.h>
 16#include <linux/sched.h>
 17#include <linux/module.h>
 18#include <trace/events/power.h>
 19
 20#include <asm/irq_regs.h>
 21
 22#include "tick-internal.h"
 23
 24/*
 25 * Tick devices
 26 */
 27DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
 28/*
 29 * Tick next event: keeps track of the tick time
 
 
 30 */
 31ktime_t tick_next_period;
 32ktime_t tick_period;
 33
 34/*
 35 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
 36 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
 37 * variable has two functions:
 38 *
 39 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
 40 *    timekeeping lock all at once. Only the CPU which is assigned to do the
 41 *    update is handling it.
 42 *
 43 * 2) Hand off the duty in the NOHZ idle case by setting the value to
 44 *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
 45 *    at it will take over and keep the time keeping alive.  The handover
 46 *    procedure also covers cpu hotplug.
 47 */
 48int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
 49#ifdef CONFIG_NO_HZ_FULL
 50/*
 51 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
 52 * tick_do_timer_cpu and it should be taken over by an eligible secondary
 53 * when one comes online.
 54 */
 55static int tick_do_timer_boot_cpu __read_mostly = -1;
 56#endif
 57
 58/*
 59 * Debugging: see timer_list.c
 60 */
 61struct tick_device *tick_get_device(int cpu)
 62{
 63	return &per_cpu(tick_cpu_device, cpu);
 64}
 65
 66/**
 67 * tick_is_oneshot_available - check for a oneshot capable event device
 68 */
 69int tick_is_oneshot_available(void)
 70{
 71	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 72
 73	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 74		return 0;
 75	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 76		return 1;
 77	return tick_broadcast_oneshot_available();
 78}
 79
 80/*
 81 * Periodic tick
 82 */
 83static void tick_periodic(int cpu)
 84{
 85	if (tick_do_timer_cpu == cpu) {
 86		write_seqlock(&jiffies_lock);
 
 87
 88		/* Keep track of the next tick event */
 89		tick_next_period = ktime_add(tick_next_period, tick_period);
 90
 91		do_timer(1);
 92		write_sequnlock(&jiffies_lock);
 
 93		update_wall_time();
 94	}
 95
 96	update_process_times(user_mode(get_irq_regs()));
 97	profile_tick(CPU_PROFILING);
 98}
 99
100/*
101 * Event handler for periodic ticks
102 */
103void tick_handle_periodic(struct clock_event_device *dev)
104{
105	int cpu = smp_processor_id();
106	ktime_t next = dev->next_event;
107
108	tick_periodic(cpu);
109
110#if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
111	/*
112	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
113	 * update_process_times() -> run_local_timers() ->
114	 * hrtimer_run_queues().
115	 */
116	if (dev->event_handler != tick_handle_periodic)
117		return;
118#endif
119
120	if (!clockevent_state_oneshot(dev))
121		return;
122	for (;;) {
123		/*
124		 * Setup the next period for devices, which do not have
125		 * periodic mode:
126		 */
127		next = ktime_add(next, tick_period);
128
129		if (!clockevents_program_event(dev, next, false))
130			return;
131		/*
132		 * Have to be careful here. If we're in oneshot mode,
133		 * before we call tick_periodic() in a loop, we need
134		 * to be sure we're using a real hardware clocksource.
135		 * Otherwise we could get trapped in an infinite
136		 * loop, as the tick_periodic() increments jiffies,
137		 * which then will increment time, possibly causing
138		 * the loop to trigger again and again.
139		 */
140		if (timekeeping_valid_for_hres())
141			tick_periodic(cpu);
142	}
143}
144
145/*
146 * Setup the device for a periodic tick
147 */
148void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
149{
150	tick_set_periodic_handler(dev, broadcast);
151
152	/* Broadcast setup ? */
153	if (!tick_device_is_functional(dev))
154		return;
155
156	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
157	    !tick_broadcast_oneshot_active()) {
158		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
159	} else {
160		unsigned int seq;
161		ktime_t next;
162
163		do {
164			seq = read_seqbegin(&jiffies_lock);
165			next = tick_next_period;
166		} while (read_seqretry(&jiffies_lock, seq));
167
168		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
169
170		for (;;) {
171			if (!clockevents_program_event(dev, next, false))
172				return;
173			next = ktime_add(next, tick_period);
174		}
175	}
176}
177
178#ifdef CONFIG_NO_HZ_FULL
179static void giveup_do_timer(void *info)
180{
181	int cpu = *(unsigned int *)info;
182
183	WARN_ON(tick_do_timer_cpu != smp_processor_id());
184
185	tick_do_timer_cpu = cpu;
186}
187
188static void tick_take_do_timer_from_boot(void)
189{
190	int cpu = smp_processor_id();
191	int from = tick_do_timer_boot_cpu;
192
193	if (from >= 0 && from != cpu)
194		smp_call_function_single(from, giveup_do_timer, &cpu, 1);
195}
196#endif
197
198/*
199 * Setup the tick device
200 */
201static void tick_setup_device(struct tick_device *td,
202			      struct clock_event_device *newdev, int cpu,
203			      const struct cpumask *cpumask)
204{
205	void (*handler)(struct clock_event_device *) = NULL;
206	ktime_t next_event = 0;
207
208	/*
209	 * First device setup ?
210	 */
211	if (!td->evtdev) {
212		/*
213		 * If no cpu took the do_timer update, assign it to
214		 * this cpu:
215		 */
216		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
217			tick_do_timer_cpu = cpu;
218
219			tick_next_period = ktime_get();
220			tick_period = NSEC_PER_SEC / HZ;
221#ifdef CONFIG_NO_HZ_FULL
222			/*
223			 * The boot CPU may be nohz_full, in which case set
224			 * tick_do_timer_boot_cpu so the first housekeeping
225			 * secondary that comes up will take do_timer from
226			 * us.
227			 */
228			if (tick_nohz_full_cpu(cpu))
229				tick_do_timer_boot_cpu = cpu;
230
231		} else if (tick_do_timer_boot_cpu != -1 &&
232						!tick_nohz_full_cpu(cpu)) {
233			tick_take_do_timer_from_boot();
234			tick_do_timer_boot_cpu = -1;
235			WARN_ON(tick_do_timer_cpu != cpu);
236#endif
237		}
238
239		/*
240		 * Startup in periodic mode first.
241		 */
242		td->mode = TICKDEV_MODE_PERIODIC;
243	} else {
244		handler = td->evtdev->event_handler;
245		next_event = td->evtdev->next_event;
246		td->evtdev->event_handler = clockevents_handle_noop;
247	}
248
249	td->evtdev = newdev;
250
251	/*
252	 * When the device is not per cpu, pin the interrupt to the
253	 * current cpu:
254	 */
255	if (!cpumask_equal(newdev->cpumask, cpumask))
256		irq_set_affinity(newdev->irq, cpumask);
257
258	/*
259	 * When global broadcasting is active, check if the current
260	 * device is registered as a placeholder for broadcast mode.
261	 * This allows us to handle this x86 misfeature in a generic
262	 * way. This function also returns !=0 when we keep the
263	 * current active broadcast state for this CPU.
264	 */
265	if (tick_device_uses_broadcast(newdev, cpu))
266		return;
267
268	if (td->mode == TICKDEV_MODE_PERIODIC)
269		tick_setup_periodic(newdev, 0);
270	else
271		tick_setup_oneshot(newdev, handler, next_event);
272}
273
274void tick_install_replacement(struct clock_event_device *newdev)
275{
276	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
277	int cpu = smp_processor_id();
278
279	clockevents_exchange_device(td->evtdev, newdev);
280	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
281	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
282		tick_oneshot_notify();
283}
284
285static bool tick_check_percpu(struct clock_event_device *curdev,
286			      struct clock_event_device *newdev, int cpu)
287{
288	if (!cpumask_test_cpu(cpu, newdev->cpumask))
289		return false;
290	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
291		return true;
292	/* Check if irq affinity can be set */
293	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
294		return false;
295	/* Prefer an existing cpu local device */
296	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
297		return false;
298	return true;
299}
300
301static bool tick_check_preferred(struct clock_event_device *curdev,
302				 struct clock_event_device *newdev)
303{
304	/* Prefer oneshot capable device */
305	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
306		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
307			return false;
308		if (tick_oneshot_mode_active())
309			return false;
310	}
311
312	/*
313	 * Use the higher rated one, but prefer a CPU local device with a lower
314	 * rating than a non-CPU local device
315	 */
316	return !curdev ||
317		newdev->rating > curdev->rating ||
318	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
319}
320
321/*
322 * Check whether the new device is a better fit than curdev. curdev
323 * can be NULL !
324 */
325bool tick_check_replacement(struct clock_event_device *curdev,
326			    struct clock_event_device *newdev)
327{
328	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
329		return false;
330
331	return tick_check_preferred(curdev, newdev);
332}
333
334/*
335 * Check, if the new registered device should be used. Called with
336 * clockevents_lock held and interrupts disabled.
337 */
338void tick_check_new_device(struct clock_event_device *newdev)
339{
340	struct clock_event_device *curdev;
341	struct tick_device *td;
342	int cpu;
343
344	cpu = smp_processor_id();
345	td = &per_cpu(tick_cpu_device, cpu);
346	curdev = td->evtdev;
347
348	/* cpu local device ? */
349	if (!tick_check_percpu(curdev, newdev, cpu))
350		goto out_bc;
351
352	/* Preference decision */
353	if (!tick_check_preferred(curdev, newdev))
354		goto out_bc;
355
356	if (!try_module_get(newdev->owner))
357		return;
358
359	/*
360	 * Replace the eventually existing device by the new
361	 * device. If the current device is the broadcast device, do
362	 * not give it back to the clockevents layer !
363	 */
364	if (tick_is_broadcast_device(curdev)) {
365		clockevents_shutdown(curdev);
366		curdev = NULL;
367	}
368	clockevents_exchange_device(curdev, newdev);
369	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
370	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
371		tick_oneshot_notify();
372	return;
373
374out_bc:
375	/*
376	 * Can the new device be used as a broadcast device ?
377	 */
378	tick_install_broadcast_device(newdev);
379}
380
381/**
382 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
383 * @state:	The target state (enter/exit)
384 *
385 * The system enters/leaves a state, where affected devices might stop
386 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
387 *
388 * Called with interrupts disabled, so clockevents_lock is not
389 * required here because the local clock event device cannot go away
390 * under us.
391 */
392int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
393{
394	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
395
396	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
397		return 0;
398
399	return __tick_broadcast_oneshot_control(state);
400}
401EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
402
403#ifdef CONFIG_HOTPLUG_CPU
404/*
405 * Transfer the do_timer job away from a dying cpu.
406 *
407 * Called with interrupts disabled. Not locking required. If
408 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
409 */
410void tick_handover_do_timer(void)
411{
412	if (tick_do_timer_cpu == smp_processor_id()) {
413		int cpu = cpumask_first(cpu_online_mask);
414
415		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
416			TICK_DO_TIMER_NONE;
417	}
418}
419
420/*
421 * Shutdown an event device on a given cpu:
422 *
423 * This is called on a life CPU, when a CPU is dead. So we cannot
424 * access the hardware device itself.
425 * We just set the mode and remove it from the lists.
426 */
427void tick_shutdown(unsigned int cpu)
428{
429	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
430	struct clock_event_device *dev = td->evtdev;
431
432	td->mode = TICKDEV_MODE_PERIODIC;
433	if (dev) {
434		/*
435		 * Prevent that the clock events layer tries to call
436		 * the set mode function!
437		 */
438		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
439		clockevents_exchange_device(dev, NULL);
440		dev->event_handler = clockevents_handle_noop;
441		td->evtdev = NULL;
442	}
443}
444#endif
445
446/**
447 * tick_suspend_local - Suspend the local tick device
448 *
449 * Called from the local cpu for freeze with interrupts disabled.
450 *
451 * No locks required. Nothing can change the per cpu device.
452 */
453void tick_suspend_local(void)
454{
455	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
456
457	clockevents_shutdown(td->evtdev);
458}
459
460/**
461 * tick_resume_local - Resume the local tick device
462 *
463 * Called from the local CPU for unfreeze or XEN resume magic.
464 *
465 * No locks required. Nothing can change the per cpu device.
466 */
467void tick_resume_local(void)
468{
469	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
470	bool broadcast = tick_resume_check_broadcast();
471
472	clockevents_tick_resume(td->evtdev);
473	if (!broadcast) {
474		if (td->mode == TICKDEV_MODE_PERIODIC)
475			tick_setup_periodic(td->evtdev, 0);
476		else
477			tick_resume_oneshot();
478	}
 
 
 
 
 
 
 
479}
480
481/**
482 * tick_suspend - Suspend the tick and the broadcast device
483 *
484 * Called from syscore_suspend() via timekeeping_suspend with only one
485 * CPU online and interrupts disabled or from tick_unfreeze() under
486 * tick_freeze_lock.
487 *
488 * No locks required. Nothing can change the per cpu device.
489 */
490void tick_suspend(void)
491{
492	tick_suspend_local();
493	tick_suspend_broadcast();
494}
495
496/**
497 * tick_resume - Resume the tick and the broadcast device
498 *
499 * Called from syscore_resume() via timekeeping_resume with only one
500 * CPU online and interrupts disabled.
501 *
502 * No locks required. Nothing can change the per cpu device.
503 */
504void tick_resume(void)
505{
506	tick_resume_broadcast();
507	tick_resume_local();
508}
509
510#ifdef CONFIG_SUSPEND
511static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
512static unsigned int tick_freeze_depth;
513
514/**
515 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
516 *
517 * Check if this is the last online CPU executing the function and if so,
518 * suspend timekeeping.  Otherwise suspend the local tick.
519 *
520 * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
521 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
522 */
523void tick_freeze(void)
524{
525	raw_spin_lock(&tick_freeze_lock);
526
527	tick_freeze_depth++;
528	if (tick_freeze_depth == num_online_cpus()) {
529		trace_suspend_resume(TPS("timekeeping_freeze"),
530				     smp_processor_id(), true);
531		system_state = SYSTEM_SUSPEND;
532		sched_clock_suspend();
533		timekeeping_suspend();
534	} else {
535		tick_suspend_local();
536	}
537
538	raw_spin_unlock(&tick_freeze_lock);
539}
540
541/**
542 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
543 *
544 * Check if this is the first CPU executing the function and if so, resume
545 * timekeeping.  Otherwise resume the local tick.
546 *
547 * Call with interrupts disabled.  Must be balanced with %tick_freeze().
548 * Interrupts must not be enabled after the preceding %tick_freeze().
549 */
550void tick_unfreeze(void)
551{
552	raw_spin_lock(&tick_freeze_lock);
553
554	if (tick_freeze_depth == num_online_cpus()) {
555		timekeeping_resume();
556		sched_clock_resume();
557		system_state = SYSTEM_RUNNING;
558		trace_suspend_resume(TPS("timekeeping_freeze"),
559				     smp_processor_id(), false);
560	} else {
 
561		tick_resume_local();
562	}
563
564	tick_freeze_depth--;
565
566	raw_spin_unlock(&tick_freeze_lock);
567}
568#endif /* CONFIG_SUSPEND */
569
570/**
571 * tick_init - initialize the tick control
572 */
573void __init tick_init(void)
574{
575	tick_broadcast_init();
576	tick_nohz_init();
577}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file contains the base functions to manage periodic tick
  4 * related events.
  5 *
  6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  9 */
 10#include <linux/cpu.h>
 11#include <linux/err.h>
 12#include <linux/hrtimer.h>
 13#include <linux/interrupt.h>
 14#include <linux/nmi.h>
 15#include <linux/percpu.h>
 16#include <linux/profile.h>
 17#include <linux/sched.h>
 18#include <linux/module.h>
 19#include <trace/events/power.h>
 20
 21#include <asm/irq_regs.h>
 22
 23#include "tick-internal.h"
 24
 25/*
 26 * Tick devices
 27 */
 28DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
 29/*
 30 * Tick next event: keeps track of the tick time. It's updated by the
 31 * CPU which handles the tick and protected by jiffies_lock. There is
 32 * no requirement to write hold the jiffies seqcount for it.
 33 */
 34ktime_t tick_next_period;
 
 35
 36/*
 37 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
 38 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
 39 * variable has two functions:
 40 *
 41 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
 42 *    timekeeping lock all at once. Only the CPU which is assigned to do the
 43 *    update is handling it.
 44 *
 45 * 2) Hand off the duty in the NOHZ idle case by setting the value to
 46 *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
 47 *    at it will take over and keep the time keeping alive.  The handover
 48 *    procedure also covers cpu hotplug.
 49 */
 50int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
 51#ifdef CONFIG_NO_HZ_FULL
 52/*
 53 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
 54 * tick_do_timer_cpu and it should be taken over by an eligible secondary
 55 * when one comes online.
 56 */
 57static int tick_do_timer_boot_cpu __read_mostly = -1;
 58#endif
 59
 60/*
 61 * Debugging: see timer_list.c
 62 */
 63struct tick_device *tick_get_device(int cpu)
 64{
 65	return &per_cpu(tick_cpu_device, cpu);
 66}
 67
 68/**
 69 * tick_is_oneshot_available - check for a oneshot capable event device
 70 */
 71int tick_is_oneshot_available(void)
 72{
 73	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 74
 75	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 76		return 0;
 77	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 78		return 1;
 79	return tick_broadcast_oneshot_available();
 80}
 81
 82/*
 83 * Periodic tick
 84 */
 85static void tick_periodic(int cpu)
 86{
 87	if (tick_do_timer_cpu == cpu) {
 88		raw_spin_lock(&jiffies_lock);
 89		write_seqcount_begin(&jiffies_seq);
 90
 91		/* Keep track of the next tick event */
 92		tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
 93
 94		do_timer(1);
 95		write_seqcount_end(&jiffies_seq);
 96		raw_spin_unlock(&jiffies_lock);
 97		update_wall_time();
 98	}
 99
100	update_process_times(user_mode(get_irq_regs()));
101	profile_tick(CPU_PROFILING);
102}
103
104/*
105 * Event handler for periodic ticks
106 */
107void tick_handle_periodic(struct clock_event_device *dev)
108{
109	int cpu = smp_processor_id();
110	ktime_t next = dev->next_event;
111
112	tick_periodic(cpu);
113
114#if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
115	/*
116	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
117	 * update_process_times() -> run_local_timers() ->
118	 * hrtimer_run_queues().
119	 */
120	if (dev->event_handler != tick_handle_periodic)
121		return;
122#endif
123
124	if (!clockevent_state_oneshot(dev))
125		return;
126	for (;;) {
127		/*
128		 * Setup the next period for devices, which do not have
129		 * periodic mode:
130		 */
131		next = ktime_add_ns(next, TICK_NSEC);
132
133		if (!clockevents_program_event(dev, next, false))
134			return;
135		/*
136		 * Have to be careful here. If we're in oneshot mode,
137		 * before we call tick_periodic() in a loop, we need
138		 * to be sure we're using a real hardware clocksource.
139		 * Otherwise we could get trapped in an infinite
140		 * loop, as the tick_periodic() increments jiffies,
141		 * which then will increment time, possibly causing
142		 * the loop to trigger again and again.
143		 */
144		if (timekeeping_valid_for_hres())
145			tick_periodic(cpu);
146	}
147}
148
149/*
150 * Setup the device for a periodic tick
151 */
152void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
153{
154	tick_set_periodic_handler(dev, broadcast);
155
156	/* Broadcast setup ? */
157	if (!tick_device_is_functional(dev))
158		return;
159
160	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
161	    !tick_broadcast_oneshot_active()) {
162		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
163	} else {
164		unsigned int seq;
165		ktime_t next;
166
167		do {
168			seq = read_seqcount_begin(&jiffies_seq);
169			next = tick_next_period;
170		} while (read_seqcount_retry(&jiffies_seq, seq));
171
172		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
173
174		for (;;) {
175			if (!clockevents_program_event(dev, next, false))
176				return;
177			next = ktime_add_ns(next, TICK_NSEC);
178		}
179	}
180}
181
182#ifdef CONFIG_NO_HZ_FULL
183static void giveup_do_timer(void *info)
184{
185	int cpu = *(unsigned int *)info;
186
187	WARN_ON(tick_do_timer_cpu != smp_processor_id());
188
189	tick_do_timer_cpu = cpu;
190}
191
192static void tick_take_do_timer_from_boot(void)
193{
194	int cpu = smp_processor_id();
195	int from = tick_do_timer_boot_cpu;
196
197	if (from >= 0 && from != cpu)
198		smp_call_function_single(from, giveup_do_timer, &cpu, 1);
199}
200#endif
201
202/*
203 * Setup the tick device
204 */
205static void tick_setup_device(struct tick_device *td,
206			      struct clock_event_device *newdev, int cpu,
207			      const struct cpumask *cpumask)
208{
209	void (*handler)(struct clock_event_device *) = NULL;
210	ktime_t next_event = 0;
211
212	/*
213	 * First device setup ?
214	 */
215	if (!td->evtdev) {
216		/*
217		 * If no cpu took the do_timer update, assign it to
218		 * this cpu:
219		 */
220		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
221			tick_do_timer_cpu = cpu;
222
223			tick_next_period = ktime_get();
 
224#ifdef CONFIG_NO_HZ_FULL
225			/*
226			 * The boot CPU may be nohz_full, in which case set
227			 * tick_do_timer_boot_cpu so the first housekeeping
228			 * secondary that comes up will take do_timer from
229			 * us.
230			 */
231			if (tick_nohz_full_cpu(cpu))
232				tick_do_timer_boot_cpu = cpu;
233
234		} else if (tick_do_timer_boot_cpu != -1 &&
235						!tick_nohz_full_cpu(cpu)) {
236			tick_take_do_timer_from_boot();
237			tick_do_timer_boot_cpu = -1;
238			WARN_ON(tick_do_timer_cpu != cpu);
239#endif
240		}
241
242		/*
243		 * Startup in periodic mode first.
244		 */
245		td->mode = TICKDEV_MODE_PERIODIC;
246	} else {
247		handler = td->evtdev->event_handler;
248		next_event = td->evtdev->next_event;
249		td->evtdev->event_handler = clockevents_handle_noop;
250	}
251
252	td->evtdev = newdev;
253
254	/*
255	 * When the device is not per cpu, pin the interrupt to the
256	 * current cpu:
257	 */
258	if (!cpumask_equal(newdev->cpumask, cpumask))
259		irq_set_affinity(newdev->irq, cpumask);
260
261	/*
262	 * When global broadcasting is active, check if the current
263	 * device is registered as a placeholder for broadcast mode.
264	 * This allows us to handle this x86 misfeature in a generic
265	 * way. This function also returns !=0 when we keep the
266	 * current active broadcast state for this CPU.
267	 */
268	if (tick_device_uses_broadcast(newdev, cpu))
269		return;
270
271	if (td->mode == TICKDEV_MODE_PERIODIC)
272		tick_setup_periodic(newdev, 0);
273	else
274		tick_setup_oneshot(newdev, handler, next_event);
275}
276
277void tick_install_replacement(struct clock_event_device *newdev)
278{
279	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
280	int cpu = smp_processor_id();
281
282	clockevents_exchange_device(td->evtdev, newdev);
283	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
284	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
285		tick_oneshot_notify();
286}
287
288static bool tick_check_percpu(struct clock_event_device *curdev,
289			      struct clock_event_device *newdev, int cpu)
290{
291	if (!cpumask_test_cpu(cpu, newdev->cpumask))
292		return false;
293	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
294		return true;
295	/* Check if irq affinity can be set */
296	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
297		return false;
298	/* Prefer an existing cpu local device */
299	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
300		return false;
301	return true;
302}
303
304static bool tick_check_preferred(struct clock_event_device *curdev,
305				 struct clock_event_device *newdev)
306{
307	/* Prefer oneshot capable device */
308	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
309		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
310			return false;
311		if (tick_oneshot_mode_active())
312			return false;
313	}
314
315	/*
316	 * Use the higher rated one, but prefer a CPU local device with a lower
317	 * rating than a non-CPU local device
318	 */
319	return !curdev ||
320		newdev->rating > curdev->rating ||
321	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
322}
323
324/*
325 * Check whether the new device is a better fit than curdev. curdev
326 * can be NULL !
327 */
328bool tick_check_replacement(struct clock_event_device *curdev,
329			    struct clock_event_device *newdev)
330{
331	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
332		return false;
333
334	return tick_check_preferred(curdev, newdev);
335}
336
337/*
338 * Check, if the new registered device should be used. Called with
339 * clockevents_lock held and interrupts disabled.
340 */
341void tick_check_new_device(struct clock_event_device *newdev)
342{
343	struct clock_event_device *curdev;
344	struct tick_device *td;
345	int cpu;
346
347	cpu = smp_processor_id();
348	td = &per_cpu(tick_cpu_device, cpu);
349	curdev = td->evtdev;
350
351	if (!tick_check_replacement(curdev, newdev))
 
 
 
 
 
352		goto out_bc;
353
354	if (!try_module_get(newdev->owner))
355		return;
356
357	/*
358	 * Replace the eventually existing device by the new
359	 * device. If the current device is the broadcast device, do
360	 * not give it back to the clockevents layer !
361	 */
362	if (tick_is_broadcast_device(curdev)) {
363		clockevents_shutdown(curdev);
364		curdev = NULL;
365	}
366	clockevents_exchange_device(curdev, newdev);
367	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
368	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
369		tick_oneshot_notify();
370	return;
371
372out_bc:
373	/*
374	 * Can the new device be used as a broadcast device ?
375	 */
376	tick_install_broadcast_device(newdev, cpu);
377}
378
379/**
380 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
381 * @state:	The target state (enter/exit)
382 *
383 * The system enters/leaves a state, where affected devices might stop
384 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
385 *
386 * Called with interrupts disabled, so clockevents_lock is not
387 * required here because the local clock event device cannot go away
388 * under us.
389 */
390int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
391{
392	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
393
394	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
395		return 0;
396
397	return __tick_broadcast_oneshot_control(state);
398}
399EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
400
401#ifdef CONFIG_HOTPLUG_CPU
402/*
403 * Transfer the do_timer job away from a dying cpu.
404 *
405 * Called with interrupts disabled. No locking required. If
406 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
407 */
408void tick_handover_do_timer(void)
409{
410	if (tick_do_timer_cpu == smp_processor_id())
411		tick_do_timer_cpu = cpumask_first(cpu_online_mask);
 
 
 
 
412}
413
414/*
415 * Shutdown an event device on a given cpu:
416 *
417 * This is called on a life CPU, when a CPU is dead. So we cannot
418 * access the hardware device itself.
419 * We just set the mode and remove it from the lists.
420 */
421void tick_shutdown(unsigned int cpu)
422{
423	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
424	struct clock_event_device *dev = td->evtdev;
425
426	td->mode = TICKDEV_MODE_PERIODIC;
427	if (dev) {
428		/*
429		 * Prevent that the clock events layer tries to call
430		 * the set mode function!
431		 */
432		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
433		clockevents_exchange_device(dev, NULL);
434		dev->event_handler = clockevents_handle_noop;
435		td->evtdev = NULL;
436	}
437}
438#endif
439
440/**
441 * tick_suspend_local - Suspend the local tick device
442 *
443 * Called from the local cpu for freeze with interrupts disabled.
444 *
445 * No locks required. Nothing can change the per cpu device.
446 */
447void tick_suspend_local(void)
448{
449	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
450
451	clockevents_shutdown(td->evtdev);
452}
453
454/**
455 * tick_resume_local - Resume the local tick device
456 *
457 * Called from the local CPU for unfreeze or XEN resume magic.
458 *
459 * No locks required. Nothing can change the per cpu device.
460 */
461void tick_resume_local(void)
462{
463	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
464	bool broadcast = tick_resume_check_broadcast();
465
466	clockevents_tick_resume(td->evtdev);
467	if (!broadcast) {
468		if (td->mode == TICKDEV_MODE_PERIODIC)
469			tick_setup_periodic(td->evtdev, 0);
470		else
471			tick_resume_oneshot();
472	}
473
474	/*
475	 * Ensure that hrtimers are up to date and the clockevents device
476	 * is reprogrammed correctly when high resolution timers are
477	 * enabled.
478	 */
479	hrtimers_resume_local();
480}
481
482/**
483 * tick_suspend - Suspend the tick and the broadcast device
484 *
485 * Called from syscore_suspend() via timekeeping_suspend with only one
486 * CPU online and interrupts disabled or from tick_unfreeze() under
487 * tick_freeze_lock.
488 *
489 * No locks required. Nothing can change the per cpu device.
490 */
491void tick_suspend(void)
492{
493	tick_suspend_local();
494	tick_suspend_broadcast();
495}
496
497/**
498 * tick_resume - Resume the tick and the broadcast device
499 *
500 * Called from syscore_resume() via timekeeping_resume with only one
501 * CPU online and interrupts disabled.
502 *
503 * No locks required. Nothing can change the per cpu device.
504 */
505void tick_resume(void)
506{
507	tick_resume_broadcast();
508	tick_resume_local();
509}
510
511#ifdef CONFIG_SUSPEND
512static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
513static unsigned int tick_freeze_depth;
514
515/**
516 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
517 *
518 * Check if this is the last online CPU executing the function and if so,
519 * suspend timekeeping.  Otherwise suspend the local tick.
520 *
521 * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
522 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
523 */
524void tick_freeze(void)
525{
526	raw_spin_lock(&tick_freeze_lock);
527
528	tick_freeze_depth++;
529	if (tick_freeze_depth == num_online_cpus()) {
530		trace_suspend_resume(TPS("timekeeping_freeze"),
531				     smp_processor_id(), true);
532		system_state = SYSTEM_SUSPEND;
533		sched_clock_suspend();
534		timekeeping_suspend();
535	} else {
536		tick_suspend_local();
537	}
538
539	raw_spin_unlock(&tick_freeze_lock);
540}
541
542/**
543 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
544 *
545 * Check if this is the first CPU executing the function and if so, resume
546 * timekeeping.  Otherwise resume the local tick.
547 *
548 * Call with interrupts disabled.  Must be balanced with %tick_freeze().
549 * Interrupts must not be enabled after the preceding %tick_freeze().
550 */
551void tick_unfreeze(void)
552{
553	raw_spin_lock(&tick_freeze_lock);
554
555	if (tick_freeze_depth == num_online_cpus()) {
556		timekeeping_resume();
557		sched_clock_resume();
558		system_state = SYSTEM_RUNNING;
559		trace_suspend_resume(TPS("timekeeping_freeze"),
560				     smp_processor_id(), false);
561	} else {
562		touch_softlockup_watchdog();
563		tick_resume_local();
564	}
565
566	tick_freeze_depth--;
567
568	raw_spin_unlock(&tick_freeze_lock);
569}
570#endif /* CONFIG_SUSPEND */
571
572/**
573 * tick_init - initialize the tick control
574 */
575void __init tick_init(void)
576{
577	tick_broadcast_init();
578	tick_nohz_init();
579}