Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
 
 
  3 * This file contains the base functions to manage periodic tick
  4 * related events.
  5 *
  6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 
 
 
  9 */
 10#include <linux/cpu.h>
 11#include <linux/err.h>
 12#include <linux/hrtimer.h>
 13#include <linux/interrupt.h>
 14#include <linux/percpu.h>
 15#include <linux/profile.h>
 16#include <linux/sched.h>
 17#include <linux/module.h>
 18#include <trace/events/power.h>
 19
 20#include <asm/irq_regs.h>
 21
 22#include "tick-internal.h"
 23
 24/*
 25 * Tick devices
 26 */
 27DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
 28/*
 29 * Tick next event: keeps track of the tick time
 30 */
 31ktime_t tick_next_period;
 32ktime_t tick_period;
 33
 34/*
 35 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
 36 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
 37 * variable has two functions:
 38 *
 39 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
 40 *    timekeeping lock all at once. Only the CPU which is assigned to do the
 41 *    update is handling it.
 42 *
 43 * 2) Hand off the duty in the NOHZ idle case by setting the value to
 44 *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
 45 *    at it will take over and keep the time keeping alive.  The handover
 46 *    procedure also covers cpu hotplug.
 47 */
 48int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
 49#ifdef CONFIG_NO_HZ_FULL
 50/*
 51 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
 52 * tick_do_timer_cpu and it should be taken over by an eligible secondary
 53 * when one comes online.
 54 */
 55static int tick_do_timer_boot_cpu __read_mostly = -1;
 56#endif
 57
 58/*
 59 * Debugging: see timer_list.c
 60 */
 61struct tick_device *tick_get_device(int cpu)
 62{
 63	return &per_cpu(tick_cpu_device, cpu);
 64}
 65
 66/**
 67 * tick_is_oneshot_available - check for a oneshot capable event device
 68 */
 69int tick_is_oneshot_available(void)
 70{
 71	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 72
 73	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 74		return 0;
 75	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 76		return 1;
 77	return tick_broadcast_oneshot_available();
 78}
 79
 80/*
 81 * Periodic tick
 82 */
 83static void tick_periodic(int cpu)
 84{
 85	if (tick_do_timer_cpu == cpu) {
 86		write_seqlock(&jiffies_lock);
 87
 88		/* Keep track of the next tick event */
 89		tick_next_period = ktime_add(tick_next_period, tick_period);
 90
 91		do_timer(1);
 92		write_sequnlock(&jiffies_lock);
 93		update_wall_time();
 94	}
 95
 96	update_process_times(user_mode(get_irq_regs()));
 97	profile_tick(CPU_PROFILING);
 98}
 99
100/*
101 * Event handler for periodic ticks
102 */
103void tick_handle_periodic(struct clock_event_device *dev)
104{
105	int cpu = smp_processor_id();
106	ktime_t next = dev->next_event;
107
108	tick_periodic(cpu);
109
110#if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
111	/*
112	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
113	 * update_process_times() -> run_local_timers() ->
114	 * hrtimer_run_queues().
115	 */
116	if (dev->event_handler != tick_handle_periodic)
117		return;
118#endif
119
120	if (!clockevent_state_oneshot(dev))
121		return;
122	for (;;) {
123		/*
124		 * Setup the next period for devices, which do not have
125		 * periodic mode:
126		 */
127		next = ktime_add(next, tick_period);
128
129		if (!clockevents_program_event(dev, next, false))
130			return;
131		/*
132		 * Have to be careful here. If we're in oneshot mode,
133		 * before we call tick_periodic() in a loop, we need
134		 * to be sure we're using a real hardware clocksource.
135		 * Otherwise we could get trapped in an infinite
136		 * loop, as the tick_periodic() increments jiffies,
137		 * which then will increment time, possibly causing
138		 * the loop to trigger again and again.
139		 */
140		if (timekeeping_valid_for_hres())
141			tick_periodic(cpu);
142	}
143}
144
145/*
146 * Setup the device for a periodic tick
147 */
148void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
149{
150	tick_set_periodic_handler(dev, broadcast);
151
152	/* Broadcast setup ? */
153	if (!tick_device_is_functional(dev))
154		return;
155
156	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
157	    !tick_broadcast_oneshot_active()) {
158		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
159	} else {
160		unsigned int seq;
161		ktime_t next;
162
163		do {
164			seq = read_seqbegin(&jiffies_lock);
165			next = tick_next_period;
166		} while (read_seqretry(&jiffies_lock, seq));
167
168		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
169
170		for (;;) {
171			if (!clockevents_program_event(dev, next, false))
172				return;
173			next = ktime_add(next, tick_period);
174		}
175	}
176}
177
178#ifdef CONFIG_NO_HZ_FULL
179static void giveup_do_timer(void *info)
180{
181	int cpu = *(unsigned int *)info;
182
183	WARN_ON(tick_do_timer_cpu != smp_processor_id());
184
185	tick_do_timer_cpu = cpu;
186}
187
188static void tick_take_do_timer_from_boot(void)
189{
190	int cpu = smp_processor_id();
191	int from = tick_do_timer_boot_cpu;
192
193	if (from >= 0 && from != cpu)
194		smp_call_function_single(from, giveup_do_timer, &cpu, 1);
195}
196#endif
197
198/*
199 * Setup the tick device
200 */
201static void tick_setup_device(struct tick_device *td,
202			      struct clock_event_device *newdev, int cpu,
203			      const struct cpumask *cpumask)
204{
 
205	void (*handler)(struct clock_event_device *) = NULL;
206	ktime_t next_event = 0;
207
208	/*
209	 * First device setup ?
210	 */
211	if (!td->evtdev) {
212		/*
213		 * If no cpu took the do_timer update, assign it to
214		 * this cpu:
215		 */
216		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
217			tick_do_timer_cpu = cpu;
218
 
 
219			tick_next_period = ktime_get();
220			tick_period = NSEC_PER_SEC / HZ;
221#ifdef CONFIG_NO_HZ_FULL
222			/*
223			 * The boot CPU may be nohz_full, in which case set
224			 * tick_do_timer_boot_cpu so the first housekeeping
225			 * secondary that comes up will take do_timer from
226			 * us.
227			 */
228			if (tick_nohz_full_cpu(cpu))
229				tick_do_timer_boot_cpu = cpu;
230
231		} else if (tick_do_timer_boot_cpu != -1 &&
232						!tick_nohz_full_cpu(cpu)) {
233			tick_take_do_timer_from_boot();
234			tick_do_timer_boot_cpu = -1;
235			WARN_ON(tick_do_timer_cpu != cpu);
236#endif
237		}
238
239		/*
240		 * Startup in periodic mode first.
241		 */
242		td->mode = TICKDEV_MODE_PERIODIC;
243	} else {
244		handler = td->evtdev->event_handler;
245		next_event = td->evtdev->next_event;
246		td->evtdev->event_handler = clockevents_handle_noop;
247	}
248
249	td->evtdev = newdev;
250
251	/*
252	 * When the device is not per cpu, pin the interrupt to the
253	 * current cpu:
254	 */
255	if (!cpumask_equal(newdev->cpumask, cpumask))
256		irq_set_affinity(newdev->irq, cpumask);
257
258	/*
259	 * When global broadcasting is active, check if the current
260	 * device is registered as a placeholder for broadcast mode.
261	 * This allows us to handle this x86 misfeature in a generic
262	 * way. This function also returns !=0 when we keep the
263	 * current active broadcast state for this CPU.
264	 */
265	if (tick_device_uses_broadcast(newdev, cpu))
266		return;
267
268	if (td->mode == TICKDEV_MODE_PERIODIC)
269		tick_setup_periodic(newdev, 0);
270	else
271		tick_setup_oneshot(newdev, handler, next_event);
272}
273
274void tick_install_replacement(struct clock_event_device *newdev)
275{
276	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
277	int cpu = smp_processor_id();
278
279	clockevents_exchange_device(td->evtdev, newdev);
280	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
281	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
282		tick_oneshot_notify();
283}
284
285static bool tick_check_percpu(struct clock_event_device *curdev,
286			      struct clock_event_device *newdev, int cpu)
287{
288	if (!cpumask_test_cpu(cpu, newdev->cpumask))
289		return false;
290	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
291		return true;
292	/* Check if irq affinity can be set */
293	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
294		return false;
295	/* Prefer an existing cpu local device */
296	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
297		return false;
298	return true;
299}
300
301static bool tick_check_preferred(struct clock_event_device *curdev,
302				 struct clock_event_device *newdev)
303{
304	/* Prefer oneshot capable device */
305	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
306		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
307			return false;
308		if (tick_oneshot_mode_active())
309			return false;
310	}
311
312	/*
313	 * Use the higher rated one, but prefer a CPU local device with a lower
314	 * rating than a non-CPU local device
315	 */
316	return !curdev ||
317		newdev->rating > curdev->rating ||
318	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
319}
320
321/*
322 * Check whether the new device is a better fit than curdev. curdev
323 * can be NULL !
324 */
325bool tick_check_replacement(struct clock_event_device *curdev,
326			    struct clock_event_device *newdev)
327{
328	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
329		return false;
330
331	return tick_check_preferred(curdev, newdev);
332}
333
334/*
335 * Check, if the new registered device should be used. Called with
336 * clockevents_lock held and interrupts disabled.
337 */
338void tick_check_new_device(struct clock_event_device *newdev)
339{
340	struct clock_event_device *curdev;
341	struct tick_device *td;
342	int cpu;
343
344	cpu = smp_processor_id();
 
 
 
345	td = &per_cpu(tick_cpu_device, cpu);
346	curdev = td->evtdev;
347
348	/* cpu local device ? */
349	if (!tick_check_percpu(curdev, newdev, cpu))
350		goto out_bc;
351
352	/* Preference decision */
353	if (!tick_check_preferred(curdev, newdev))
354		goto out_bc;
355
356	if (!try_module_get(newdev->owner))
357		return;
358
359	/*
360	 * Replace the eventually existing device by the new
361	 * device. If the current device is the broadcast device, do
362	 * not give it back to the clockevents layer !
363	 */
364	if (tick_is_broadcast_device(curdev)) {
365		clockevents_shutdown(curdev);
366		curdev = NULL;
367	}
368	clockevents_exchange_device(curdev, newdev);
369	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
370	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
371		tick_oneshot_notify();
372	return;
373
374out_bc:
375	/*
376	 * Can the new device be used as a broadcast device ?
377	 */
378	tick_install_broadcast_device(newdev);
379}
380
381/**
382 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
383 * @state:	The target state (enter/exit)
384 *
385 * The system enters/leaves a state, where affected devices might stop
386 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
387 *
388 * Called with interrupts disabled, so clockevents_lock is not
389 * required here because the local clock event device cannot go away
390 * under us.
391 */
392int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
393{
394	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
395
396	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
397		return 0;
398
399	return __tick_broadcast_oneshot_control(state);
400}
401EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
402
403#ifdef CONFIG_HOTPLUG_CPU
404/*
405 * Transfer the do_timer job away from a dying cpu.
406 *
407 * Called with interrupts disabled. Not locking required. If
408 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
409 */
410void tick_handover_do_timer(void)
411{
412	if (tick_do_timer_cpu == smp_processor_id()) {
413		int cpu = cpumask_first(cpu_online_mask);
414
415		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
416			TICK_DO_TIMER_NONE;
417	}
418}
419
420/*
421 * Shutdown an event device on a given cpu:
422 *
423 * This is called on a life CPU, when a CPU is dead. So we cannot
424 * access the hardware device itself.
425 * We just set the mode and remove it from the lists.
426 */
427void tick_shutdown(unsigned int cpu)
428{
429	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
430	struct clock_event_device *dev = td->evtdev;
431
432	td->mode = TICKDEV_MODE_PERIODIC;
433	if (dev) {
434		/*
435		 * Prevent that the clock events layer tries to call
436		 * the set mode function!
437		 */
438		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
439		clockevents_exchange_device(dev, NULL);
440		dev->event_handler = clockevents_handle_noop;
441		td->evtdev = NULL;
442	}
443}
444#endif
445
446/**
447 * tick_suspend_local - Suspend the local tick device
448 *
449 * Called from the local cpu for freeze with interrupts disabled.
450 *
451 * No locks required. Nothing can change the per cpu device.
452 */
453void tick_suspend_local(void)
454{
455	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
456
457	clockevents_shutdown(td->evtdev);
458}
459
460/**
461 * tick_resume_local - Resume the local tick device
462 *
463 * Called from the local CPU for unfreeze or XEN resume magic.
464 *
465 * No locks required. Nothing can change the per cpu device.
466 */
467void tick_resume_local(void)
468{
469	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
470	bool broadcast = tick_resume_check_broadcast();
 
 
471
472	clockevents_tick_resume(td->evtdev);
473	if (!broadcast) {
474		if (td->mode == TICKDEV_MODE_PERIODIC)
475			tick_setup_periodic(td->evtdev, 0);
476		else
477			tick_resume_oneshot();
478	}
479}
480
481/**
482 * tick_suspend - Suspend the tick and the broadcast device
483 *
484 * Called from syscore_suspend() via timekeeping_suspend with only one
485 * CPU online and interrupts disabled or from tick_unfreeze() under
486 * tick_freeze_lock.
487 *
488 * No locks required. Nothing can change the per cpu device.
489 */
490void tick_suspend(void)
491{
492	tick_suspend_local();
493	tick_suspend_broadcast();
494}
495
496/**
497 * tick_resume - Resume the tick and the broadcast device
498 *
499 * Called from syscore_resume() via timekeeping_resume with only one
500 * CPU online and interrupts disabled.
501 *
502 * No locks required. Nothing can change the per cpu device.
503 */
504void tick_resume(void)
505{
506	tick_resume_broadcast();
507	tick_resume_local();
508}
509
510#ifdef CONFIG_SUSPEND
511static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
512static unsigned int tick_freeze_depth;
513
514/**
515 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
516 *
517 * Check if this is the last online CPU executing the function and if so,
518 * suspend timekeeping.  Otherwise suspend the local tick.
519 *
520 * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
521 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
522 */
523void tick_freeze(void)
524{
525	raw_spin_lock(&tick_freeze_lock);
526
527	tick_freeze_depth++;
528	if (tick_freeze_depth == num_online_cpus()) {
529		trace_suspend_resume(TPS("timekeeping_freeze"),
530				     smp_processor_id(), true);
531		system_state = SYSTEM_SUSPEND;
532		sched_clock_suspend();
533		timekeeping_suspend();
534	} else {
535		tick_suspend_local();
536	}
537
538	raw_spin_unlock(&tick_freeze_lock);
539}
540
541/**
542 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
543 *
544 * Check if this is the first CPU executing the function and if so, resume
545 * timekeeping.  Otherwise resume the local tick.
546 *
547 * Call with interrupts disabled.  Must be balanced with %tick_freeze().
548 * Interrupts must not be enabled after the preceding %tick_freeze().
549 */
550void tick_unfreeze(void)
551{
552	raw_spin_lock(&tick_freeze_lock);
553
554	if (tick_freeze_depth == num_online_cpus()) {
555		timekeeping_resume();
556		sched_clock_resume();
557		system_state = SYSTEM_RUNNING;
558		trace_suspend_resume(TPS("timekeeping_freeze"),
559				     smp_processor_id(), false);
560	} else {
561		tick_resume_local();
562	}
563
564	tick_freeze_depth--;
565
566	raw_spin_unlock(&tick_freeze_lock);
567}
568#endif /* CONFIG_SUSPEND */
569
570/**
571 * tick_init - initialize the tick control
572 */
573void __init tick_init(void)
574{
575	tick_broadcast_init();
576	tick_nohz_init();
577}
v3.15
 
  1/*
  2 * linux/kernel/time/tick-common.c
  3 *
  4 * This file contains the base functions to manage periodic tick
  5 * related events.
  6 *
  7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 10 *
 11 * This code is licenced under the GPL version 2. For details see
 12 * kernel-base/COPYING.
 13 */
 14#include <linux/cpu.h>
 15#include <linux/err.h>
 16#include <linux/hrtimer.h>
 17#include <linux/interrupt.h>
 18#include <linux/percpu.h>
 19#include <linux/profile.h>
 20#include <linux/sched.h>
 21#include <linux/module.h>
 
 22
 23#include <asm/irq_regs.h>
 24
 25#include "tick-internal.h"
 26
 27/*
 28 * Tick devices
 29 */
 30DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
 31/*
 32 * Tick next event: keeps track of the tick time
 33 */
 34ktime_t tick_next_period;
 35ktime_t tick_period;
 36
 37/*
 38 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
 39 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
 40 * variable has two functions:
 41 *
 42 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
 43 *    timekeeping lock all at once. Only the CPU which is assigned to do the
 44 *    update is handling it.
 45 *
 46 * 2) Hand off the duty in the NOHZ idle case by setting the value to
 47 *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
 48 *    at it will take over and keep the time keeping alive.  The handover
 49 *    procedure also covers cpu hotplug.
 50 */
 51int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
 
 
 
 
 
 
 
 
 52
 53/*
 54 * Debugging: see timer_list.c
 55 */
 56struct tick_device *tick_get_device(int cpu)
 57{
 58	return &per_cpu(tick_cpu_device, cpu);
 59}
 60
 61/**
 62 * tick_is_oneshot_available - check for a oneshot capable event device
 63 */
 64int tick_is_oneshot_available(void)
 65{
 66	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 67
 68	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 69		return 0;
 70	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 71		return 1;
 72	return tick_broadcast_oneshot_available();
 73}
 74
 75/*
 76 * Periodic tick
 77 */
 78static void tick_periodic(int cpu)
 79{
 80	if (tick_do_timer_cpu == cpu) {
 81		write_seqlock(&jiffies_lock);
 82
 83		/* Keep track of the next tick event */
 84		tick_next_period = ktime_add(tick_next_period, tick_period);
 85
 86		do_timer(1);
 87		write_sequnlock(&jiffies_lock);
 88		update_wall_time();
 89	}
 90
 91	update_process_times(user_mode(get_irq_regs()));
 92	profile_tick(CPU_PROFILING);
 93}
 94
 95/*
 96 * Event handler for periodic ticks
 97 */
 98void tick_handle_periodic(struct clock_event_device *dev)
 99{
100	int cpu = smp_processor_id();
101	ktime_t next = dev->next_event;
102
103	tick_periodic(cpu);
104
105	if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
 
 
 
 
 
 
 
 
 
 
106		return;
107	for (;;) {
108		/*
109		 * Setup the next period for devices, which do not have
110		 * periodic mode:
111		 */
112		next = ktime_add(next, tick_period);
113
114		if (!clockevents_program_event(dev, next, false))
115			return;
116		/*
117		 * Have to be careful here. If we're in oneshot mode,
118		 * before we call tick_periodic() in a loop, we need
119		 * to be sure we're using a real hardware clocksource.
120		 * Otherwise we could get trapped in an infinite
121		 * loop, as the tick_periodic() increments jiffies,
122		 * which then will increment time, possibly causing
123		 * the loop to trigger again and again.
124		 */
125		if (timekeeping_valid_for_hres())
126			tick_periodic(cpu);
127	}
128}
129
130/*
131 * Setup the device for a periodic tick
132 */
133void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
134{
135	tick_set_periodic_handler(dev, broadcast);
136
137	/* Broadcast setup ? */
138	if (!tick_device_is_functional(dev))
139		return;
140
141	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
142	    !tick_broadcast_oneshot_active()) {
143		clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
144	} else {
145		unsigned long seq;
146		ktime_t next;
147
148		do {
149			seq = read_seqbegin(&jiffies_lock);
150			next = tick_next_period;
151		} while (read_seqretry(&jiffies_lock, seq));
152
153		clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
154
155		for (;;) {
156			if (!clockevents_program_event(dev, next, false))
157				return;
158			next = ktime_add(next, tick_period);
159		}
160	}
161}
162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163/*
164 * Setup the tick device
165 */
166static void tick_setup_device(struct tick_device *td,
167			      struct clock_event_device *newdev, int cpu,
168			      const struct cpumask *cpumask)
169{
170	ktime_t next_event;
171	void (*handler)(struct clock_event_device *) = NULL;
 
172
173	/*
174	 * First device setup ?
175	 */
176	if (!td->evtdev) {
177		/*
178		 * If no cpu took the do_timer update, assign it to
179		 * this cpu:
180		 */
181		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
182			if (!tick_nohz_full_cpu(cpu))
183				tick_do_timer_cpu = cpu;
184			else
185				tick_do_timer_cpu = TICK_DO_TIMER_NONE;
186			tick_next_period = ktime_get();
187			tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188		}
189
190		/*
191		 * Startup in periodic mode first.
192		 */
193		td->mode = TICKDEV_MODE_PERIODIC;
194	} else {
195		handler = td->evtdev->event_handler;
196		next_event = td->evtdev->next_event;
197		td->evtdev->event_handler = clockevents_handle_noop;
198	}
199
200	td->evtdev = newdev;
201
202	/*
203	 * When the device is not per cpu, pin the interrupt to the
204	 * current cpu:
205	 */
206	if (!cpumask_equal(newdev->cpumask, cpumask))
207		irq_set_affinity(newdev->irq, cpumask);
208
209	/*
210	 * When global broadcasting is active, check if the current
211	 * device is registered as a placeholder for broadcast mode.
212	 * This allows us to handle this x86 misfeature in a generic
213	 * way. This function also returns !=0 when we keep the
214	 * current active broadcast state for this CPU.
215	 */
216	if (tick_device_uses_broadcast(newdev, cpu))
217		return;
218
219	if (td->mode == TICKDEV_MODE_PERIODIC)
220		tick_setup_periodic(newdev, 0);
221	else
222		tick_setup_oneshot(newdev, handler, next_event);
223}
224
225void tick_install_replacement(struct clock_event_device *newdev)
226{
227	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
228	int cpu = smp_processor_id();
229
230	clockevents_exchange_device(td->evtdev, newdev);
231	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
232	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
233		tick_oneshot_notify();
234}
235
236static bool tick_check_percpu(struct clock_event_device *curdev,
237			      struct clock_event_device *newdev, int cpu)
238{
239	if (!cpumask_test_cpu(cpu, newdev->cpumask))
240		return false;
241	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
242		return true;
243	/* Check if irq affinity can be set */
244	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
245		return false;
246	/* Prefer an existing cpu local device */
247	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
248		return false;
249	return true;
250}
251
252static bool tick_check_preferred(struct clock_event_device *curdev,
253				 struct clock_event_device *newdev)
254{
255	/* Prefer oneshot capable device */
256	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
257		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
258			return false;
259		if (tick_oneshot_mode_active())
260			return false;
261	}
262
263	/*
264	 * Use the higher rated one, but prefer a CPU local device with a lower
265	 * rating than a non-CPU local device
266	 */
267	return !curdev ||
268		newdev->rating > curdev->rating ||
269	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
270}
271
272/*
273 * Check whether the new device is a better fit than curdev. curdev
274 * can be NULL !
275 */
276bool tick_check_replacement(struct clock_event_device *curdev,
277			    struct clock_event_device *newdev)
278{
279	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
280		return false;
281
282	return tick_check_preferred(curdev, newdev);
283}
284
285/*
286 * Check, if the new registered device should be used. Called with
287 * clockevents_lock held and interrupts disabled.
288 */
289void tick_check_new_device(struct clock_event_device *newdev)
290{
291	struct clock_event_device *curdev;
292	struct tick_device *td;
293	int cpu;
294
295	cpu = smp_processor_id();
296	if (!cpumask_test_cpu(cpu, newdev->cpumask))
297		goto out_bc;
298
299	td = &per_cpu(tick_cpu_device, cpu);
300	curdev = td->evtdev;
301
302	/* cpu local device ? */
303	if (!tick_check_percpu(curdev, newdev, cpu))
304		goto out_bc;
305
306	/* Preference decision */
307	if (!tick_check_preferred(curdev, newdev))
308		goto out_bc;
309
310	if (!try_module_get(newdev->owner))
311		return;
312
313	/*
314	 * Replace the eventually existing device by the new
315	 * device. If the current device is the broadcast device, do
316	 * not give it back to the clockevents layer !
317	 */
318	if (tick_is_broadcast_device(curdev)) {
319		clockevents_shutdown(curdev);
320		curdev = NULL;
321	}
322	clockevents_exchange_device(curdev, newdev);
323	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
324	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
325		tick_oneshot_notify();
326	return;
327
328out_bc:
329	/*
330	 * Can the new device be used as a broadcast device ?
331	 */
332	tick_install_broadcast_device(newdev);
333}
334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335/*
336 * Transfer the do_timer job away from a dying cpu.
337 *
338 * Called with interrupts disabled.
 
339 */
340void tick_handover_do_timer(int *cpup)
341{
342	if (*cpup == tick_do_timer_cpu) {
343		int cpu = cpumask_first(cpu_online_mask);
344
345		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
346			TICK_DO_TIMER_NONE;
347	}
348}
349
350/*
351 * Shutdown an event device on a given cpu:
352 *
353 * This is called on a life CPU, when a CPU is dead. So we cannot
354 * access the hardware device itself.
355 * We just set the mode and remove it from the lists.
356 */
357void tick_shutdown(unsigned int *cpup)
358{
359	struct tick_device *td = &per_cpu(tick_cpu_device, *cpup);
360	struct clock_event_device *dev = td->evtdev;
361
362	td->mode = TICKDEV_MODE_PERIODIC;
363	if (dev) {
364		/*
365		 * Prevent that the clock events layer tries to call
366		 * the set mode function!
367		 */
368		dev->mode = CLOCK_EVT_MODE_UNUSED;
369		clockevents_exchange_device(dev, NULL);
370		dev->event_handler = clockevents_handle_noop;
371		td->evtdev = NULL;
372	}
373}
 
374
375void tick_suspend(void)
 
 
 
 
 
 
 
376{
377	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
378
379	clockevents_shutdown(td->evtdev);
380}
381
382void tick_resume(void)
 
 
 
 
 
 
 
383{
384	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
385	int broadcast = tick_resume_broadcast();
386
387	clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME);
388
 
389	if (!broadcast) {
390		if (td->mode == TICKDEV_MODE_PERIODIC)
391			tick_setup_periodic(td->evtdev, 0);
392		else
393			tick_resume_oneshot();
394	}
395}
396
397/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398 * tick_init - initialize the tick control
399 */
400void __init tick_init(void)
401{
402	tick_broadcast_init();
 
403}